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Summary – The insulin/IGF-1 signalling (IIS) pathway connects nutrient levels to metabolism, growth and lifespan in eukaryotes
ranging from yeasts to humans, including nematodes such as the genetic model organism Caenorhabditis elegans. The link between
ageing and the IIS pathway has been thoroughly studied in C. elegans; upon reduced IIS signalling, a genetic survival program is
activated resulting in a drastic lifespan extension. One of the components of this program is the upregulation of antioxidant activity but
experiments failed to show a clear causal relation to longevity. However, oxidative damage, such as protein carbonyls, accumulates at a
slower pace in long-lived C. elegans mutants with reduced IIS. This is probably not achieved by increased macroautophagy, a process
that sequesters cellular components to be eliminated as protein turnover rates are slowed down in IIS mutants. The IIS mutant daf-2,
bearing a mutation in the insulin/IGF-1 receptor, recapitulates the dauer survival program, including accumulation of fat and glycogen.
Fat can be converted into glucose and glycogen via the glyoxylate shunt, a pathway absent in vertebrates. These carbohydrates can
be used as substrates for trehalose synthesis, also absent in mammals. Trehalose, a non-reducing homodimer of glucose, stabilises
intracellular components and is responsible for almost half of the lifespan extension in IIS mutants. Hence, the molecular mechanisms
by which lifespan is extended under reduced IIS may differ substantially between phyla that have an active glyoxylate cycle and
trehalose synthesis, such as ecdysozoans and fungi, and vertebrate species such as mammals.
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The ageing process of free-living nematodes was first
explored in 1970 by David Gershon using the vinegar eel
Turbatrix aceti. By applying synchronisation and chem-
ical sterilisation techniques, he established the first sur-
vival curves of worm cohorts and monitored age-specific
loss of enzyme activities (Erlanger & Gershon, 1970; Ger-
shon, 1970; Gershon & Gershon, 1970). A few years later,
ageing in Caenorhabditis elegans was first described in
studies covering survival at varying environmental condi-
tions (Klass, 1977) and the non-ageing characteristics of
the dauer diapause stage (Klass & Hirsh, 1976). Two stud-
ies in the early 1980s nucleated the field of the genetics of
ageing in C. elegans. First, Tom Johnson showed that in
C. elegans the genetic components of recombinant inbred
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lines dictate lifespan (Johnson & Wood, 1982), and, sec-
ond, Michael Klass discovered the first C. elegans mutants
with extended lifespan (Klass, 1983). The latter strains
were not outcrossed and showed pleiotropic phenotypes
and, therefore, the author assumed the worms lived longer
due to a dietary restriction effect rather than by mutation
in one specific gene that regulates ageing rate. Subsequent
genetic analysis of these strains by Tom Johnson resulted
in the discovery of age-1 (ageing alteration), the first mu-
tated gene ever described that causes lifespan extension in
a metazoan (Friedman & Johnson, 1988). With the discov-
ery of a second longevity mutant, daf-2 (abnormal dauer
f ormation), a few years later (Kenyon et al., 1993), the ge-
netics of ageing field gained substantial momentum. The
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daf-2 mutant was not recovered from a genetic longevity
screen but was isolated in an effort to analyse genetically
dauer formation (Kenyon, 2011). In the Kenyon study, it
was shown that lifespan extension in daf-2 mutants is fully
dependent on daf-16 gene activity. A few years later, these
genes were cloned, characterised and found to be part
of an Insulin/Insulin Growth Factor 1-mediated signalling
(IIS) pathway, with daf-2 coding for the Ins/IGF-1 recep-
tor (Kimura et al., 1997), age-1 being a homologue of a
phosphoinositide 3-kinase subunit (Morris et al., 1996)
and daf-16 representing the C. elegans forkhead box O
(FOXO) transcription factor (Lin et al., 1997; Ogg et al.,
1997).

The IIS pathway

After the seminal discoveries of age-1, daf-2 and daf-
16, other genes of the IIS pathway (Fig. 1) were identified
and characterised (Ogg & Ruvkun, 1998; Paradis &
Ruvkun, 1998; Paradis et al., 1999; Wolkow et al., 2002;
Hertweck et al., 2004). Most IIS genes have homologues
in species ranging from yeast to humans, indicating
the strong evolutionary conservation of this pathway.
Moreover, the IIS pathway seems to influence lifespan
in many of these species, including humans (Kenyon,
2010). These discoveries elicited quite some optimism
and many research groups have since focused on the
IIS pathway and the mechanisms by which it extends

Fig. 1. Overview of the most important components of the IIS pathway in Caenorhabditis elegans.
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C. elegans lifespan. The gene index in the abstract book of
the 2015 International C. elegans Meeting (Los Angeles,
CA, USA) leaves no doubt that daf-2 and daf-16 are,
currently, by far the most studied C. elegans genes.

Although the IIS pathway generally regulates growth
and metabolism in all eukaryotes, its constituents have
diverged into networks that differ among phylogenetic
groups (Papatheodorou et al., 2014; McGaugh et al.,
2015). As a result, there is no one-to-one gene homology
between the IIS components of C. elegans and humans.
The worm genome encodes for 40 insulins, most of which
have unidentified functions (Pierce et al., 2001; Cornils et
al., 2011), whilst in humans only three related insulin-like
peptides occur: insulin, IGF-1 and IGF-2. On the other
hand, C. elegans has only one known IIS receptor, daf-2,
whilst humans express several receptors, each controlling
downstream pathways that trigger specific physiological
functions (Clayton et al., 2011). In C. elegans, the FOXO
transcription factor DAF-16 is the endpoint of the IIS
cascade. A forkhead box (FOX) is an 80-100 amino-acid
DNA-binding motif that is present in a wide variety of
FOX proteins. These proteins are clustered in subfamilies
ranging from A to S based on sequence homology and
DAF-16 belongs to the O subfamily. A single daf-16 locus
in C. elegans encodes five isoforms (Kwon et al., 2010;
Chen et al., 2015), two of which influence lifespan, whilst
in humans four separate genes make up the FOXO family.
Also here, two FOXO forms have been linked to lifespan
determination (Martins et al., 2016). Hence, despite their
diversity, FOXO transcription factors seem to regulate
lifespan in a wide range of eukaryotes, but likely via
different downstream programs.

The FOXO/DAF-16 lifespan program

Being identified as a master switch in lifespan regu-
lation, daf-16 has received much attention over the last
two decades. The identification of genes under control of
this transcription factor could reveal the molecular mech-
anism(s) of lifespan extension.

With the dawn of the omics era, transcriptomic (McEl-
wee et al., 2003; Murphy et al., 2003; McElwee et al.,
2004; Halaschek-Wiener et al., 2005), proteomic (Dong et
al., 2007; Jones et al., 2010; Depuydt et al., 2013, 2014;
Stout et al., 2013; Walther et al., 2015) and metabolomic
(Fuchs et al., 2010) studies showed that IIS mutants un-
dergo massive changes in gene expression and shifts in
metabolic networks. DAF-16 targets were also determined
by analysing DNA binding sites of this transcription fac-

tor with DamID and ChIP (Oh et al., 2006; Schuster et al.,
2010). In an early microarray study, many of the differen-
tially expressed genes of IIS mutants were tested for their
influence on lifespan. Most of these genes only had a par-
tial effect, suggesting that the total IIS lifespan extension
is caused by the upregulation of a wide variety of genes,
including genes involved in the cellular stress and antimi-
crobial response, as well as metabolic genes (Murphy et
al., 2003). These differentially expressed genes largely
overlap with the transcriptional pattern observed in C. ele-
gans dauers (McElwee et al., 2004, 2006), which is not
surprising as in the long-lived IIS mutants, the dauer pro-
gram is probably activated heterochronically during adult-
hood.

The DAF-16/dauer longevity program: a struggle
against free radicals?

In an early effort to characterise the physiology of
the long-lived IIS mutant age-1, two researchers inde-
pendently found that the antioxidant activity is increased
in this strain (Larsen, 1993; Vanfleteren, 1993). This fits
well with the free radical theory of ageing that states
that free radicals, produced as a by-product of oxidative
metabolism in the mitochondria, cause molecular damage
that accumulates over time and underlies the functional
decline that characterises ageing (Harman, 1956, 1972).
In this reasoning, the high antioxidant levels in long-lived
age-1 mutants would scavenge free radicals, preventing
damage accumulation and lead to lifespan extension. High
antioxidant activity was later also confirmed for the long-
lived IIS mutant daf-2 (Houthoofd et al., 2003, 2005).
Also in the transcriptomic studies mentioned above, it was
confirmed that a broad antioxidant response is activated
in IIS mutants (Murphy et al., 2003; Halaschek-Wiener
et al., 2005). The expression and activity of the primary
ROS scavengers superoxide dismutase (SOD) and cata-
lase (CTL), in particular, are strongly upregulated. How-
ever, are antioxidant upregulation and lifespan extension
causally related? An early test using RNAi knockdown
of sod-3, ctl-1 and ctl-2 genes suggested that these genes
are only marginally involved in IIS lifespan extension
as knockdown resulted in a slight (10-15%) decrease of
daf-2 lifespan (Murphy et al., 2003). Later studies us-
ing knockout mutants did not find any effect. Knocking
down the two mitochondrial SODs as well as two cytoso-
lic SODs did not shorten daf-2 lifespan, whilst knock-
down of the extracellular SOD extended daf-2 lifespan
even more (Doonan et al., 2008). Later it was shown that
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quintuple mutants, lacking all five C. elegans SODs, had a
normal lifespan but were extremely sensitive to oxidative
stress. This suggests that, under normal conditions, oxida-
tive stress is not a lifespan determinant (Van Raamsdonk
& Hekimi, 2012). It is still to be tested whether the lack
of all five sod genes reduces the lifespan of long-lived IIS
mutants.

Damage accumulation in IIS mutants

If antioxidant enzymes play no or only a minor role
in IIS longevity, does oxidative damage accumulate in
these worms at the same rate as in wild type controls?
Several studies suggest this is not the case; IIS mutants
seem to have low rates of oxidative damage accumulation.
Protein carbonylation, a standard measure of oxidative
protein damage, increases at slower rates in the age-1
mutant (Ishii et al., 2002) and in daf-2 mitochondria (Brys
et al., 2007) compared to the wild type control. This
decrease in the accrual of oxidative protein modifications
in IIS mutants was confirmed in studies using mass
spectrometry (Knoefler et al., 2012; Dhondt et al., 2016).
This phenotype may be linked to increased antioxidant
activity in IIS mutants but, again, a direct causal link to
lifespan has not been shown.

Damage clearance and protein turnover

Oxidative damage may just be one type of damage
that accumulates over time and its contribution to ageing
may vary from species to species (Gladyshev, 2014).
This can explain the limited effect of antioxidants to
lifespan in the very short-lived C. elegans species. Here,
more general processes that prevent damage accumulation
may be of greater importance. Protein turnover has been
put forward as a potential key player in ageing as it
allows the maintenance of proteome quality over time
(Gafni, 1990; Ryazanov & Nefsky, 2002; Tavernarakis
& Driscoll, 2002). As protein turnover rates have been
shown to decline strongly with age, it is comprehensible
that ageing could be caused by a gradual self-reinforcing
collapse of protein homeostasis (proteostasis).

The finding that autophagy is increased and genetically
required for lifespan extension of IIS mutants supports
this view (Melendez et al., 2003; Lapierre et al., 2013).
Increased autophagy rates in IIS mutants may clear
protein damage efficiently thereby postponing damage
accumulation and ageing. However, not all studies are

in accordance with this view. RNAi knockdown of 14
autophagy-related genes in daf-2 mutants showed that
RNAi of only two genes caused lifespan shortening while
the other 12 genes caused further extension of lifespan or
had no effect (Hashimoto et al., 2009). Hence, the role of
autophagy in IIS longevity is still unclear.

Recent findings cast further doubt on the importance of
high bulk protein turnover rates in IIS longevity. Quanti-
tative proteomics data showed a clear decrease in ribo-
somal subunits and translation factors in daf-2 mutants
suggesting a decrease in protein synthesis rates in these
worms (Depuydt et al., 2013; Stout et al., 2013). Active
insulin and IGF pathways are known to support anabolic
growth. Hence, a reduction-of-function mutation in these
pathways, such as daf-2(e1370), is indeed expected to de-
crease anabolic processes such as protein synthesis. This
was recently confirmed using classical 35S pulse chase la-
belling (Depuydt et al., 2016) and stable isotope labelling
combined with mass spectrometry (Dhondt et al., 2016;
Visscher et al., 2016). About half of the protein species
show decreased turnover rates in the long-lived daf-2 mu-
tants, while turnover of the other proteins remains un-
changed (Dhondt et al., 2016). The IIS mutants do not
seem to invest in the energy-consuming process of protein
turnover to maintain proteostasis. Nevertheless, proteosta-
sis is well maintained during adulthood in these mutants
(Walther et al., 2015).

Investment in fat and glycogen synthesis

If antioxidants and protein turnover are not the (main)
strategies to postpone molecular damage and ageing in
IIS mutants, which processes do matter? The morphol-
ogy of IIS mutants may provide a first clue: daf-2 mu-
tants tend to accumulate large amounts of fat (Ogg et
al., 1997; Depuydt et al., 2014) and glycogen (Frazier
& Roth, 2009; Depuydt et al., 2014) in the intestine, hy-
podermis and to some extent in the body wall muscles,
thereby phenocopying dauers (Fig. 2). Hence, IIS mutants
seem to invest heavily in carbon storage in the form of car-
bohydrates and triglycerides. In dauers, accumulated fat
serves as an energy source for long-term survival in the
absence of feeding and its use is tightly controlled by in-
tracellular energy sensors capable of switching lipases on
and off (Narbonne & Roy, 2009). Glycogen accumulation
in IIS mutants may seem linked to energy storage as well
but it also relates to osmotic and anoxic stress resistance
(Frazier & Roth, 2009; LaMacchia et al., 2015; Possik et
al., 2015), which are important features in dauer survival.
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Fig. 2. Transmission electron micrographs of Caenorhabditis elegans. A: A reference strain with normal lifespan, glp-4(bn2) daf-
16(mgDf 50);daf-2(e1370); B: The long-lived IIS mutant glp-4(bn2);daf-2(e1370). Abbreviations: M: mitochondrium; G: glycogen
accumulation; F: fat droplet. Sample preparation and electron microscopy were carried out as described in Depuydt et al. (2014). (Scale
bar = 1 μm.)

The fat and glycogen storage phenotype is supported in
proteomic studies. Many enzymes involved in fatty acid
β-oxidation are upregulated in adult daf-2(e1370) mu-
tants, while food uptake is drastically lowered, hinting at
the use of stored fat as an energy source during adulthood
in IIS mutants (Depuydt et al., 2014). In these mutants,
most enzymes involved in carbohydrate metabolism are
also strongly upregulated with glycogen synthase (GSY-
1) belonging to the top most upregulated proteins. This
agrees with the copious amounts of glycogen observed in
the daf-2 intestine and hypodermis (Fig. 2).

Unlike in vertebrates, fat can be easily converted into
glycogen in C. elegans (Fig. 3): fatty acids are degraded
to acetyl-CoA by β-oxidation, which in turn can be
fed to the glyoxylate cycle. The glyoxylate cycle is a
shortcut of the tricarboxylic acid (TCA) cycle bypassing
two decarboxylation steps. This is managed by a single
polypeptide with two enzymatic functions: isocitrate lyase
and malate synthase activity (Liu et al., 1995). In C.
elegans, two isoforms of this multifunctional protein
exist: the mitochondrial ICL-1 (Erkut et al., 2016) and
the less characterised C08F11.14 (Frazier & Roth, 2009).
When the glyoxylate cycle is activated, carbon is not
completely oxidised and lost as CO2 but instead malate
and succinate are synthesised that can be converted
into oxaloacetate. The latter substrate can be fed into
the gluconeogenesis pathway and the resulting glucose
phosphate can finally be incorporated into glycogen. In
short, fat can be converted into glycogen by glyoxylate
cycle activity. It comes as no surprise that icl-1 is

drastically upregulated in dauers (Holt & Riddle, 2003;
Wang & Kim, 2003; Erkut et al., 2016) and IIS mutants
(Murphy et al., 2003; Depuydt et al., 2014; Shen et al.,
2014). Moreover, icl-1 activity is responsible for up to
45% of the lifespan extension observed in daf-2 mutants
(Murphy et al., 2003; Shen et al., 2014). But how can the
fat-to-glycogen conversion or glycogen itself support the
longevity phenotype of IIS mutants?

Trehalose, a chemical chaperone that stabilises
proteins and membranes

It is very likely that glycogen provides a fast and eas-
ily accessible source of glucose units for the synthesis of
trehalose, a disaccharide with well known cytoprotective
properties (Elbein et al., 2003; Perry & Wharton, 2011).
In C. elegans dauers, trehalose is required for success-
ful anhydrobiosis, an ametabolic desiccated state that al-
lows individuals to survive sustained periods of drought
stress (Erkut et al., 2011). Moreover, the glyoxylate shunt
is required for anhydrobiotic survival as well in C. ele-
gans, clearly linking fat-to-sugar conversion and trehalose
metabolism (Erkut et al., 2016). Again this metabolic
pattern is mirrored in IIS mutants; endogenous trehalose
synthesis explains a considerable portion of the extended
lifespan of daf-2 mutants. Exogenously added trehalose
extends lifespan of wild-type worms while in daf-2 mu-
tants lifespan is not further extended, which also indicates
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Fig. 3. Simplified overview of Caenorhabditis elegans dauer and IIS mutant metabolism with emphasis on the interrelation between
fat, glycogen and trehalose. Non-mammalian pathways, enzymes and metabolites are indicated in blue.

that longevity in daf-2 is (at least in part) caused by en-
dogenous trehalose (Honda et al., 2010).

Using a recent C. elegans metabolic network model,
trehalose production was predicted to be strongly sup-
ported by glyoxylate cycle activity under micro-aerobic
conditions (Yilmaz & Walhout, 2016). However, in the
absence of glyoxylate shunt activity, trehalose can still be
produced in lower quantities, probably explaining the par-
tial rescue of icl-1 mutation on daf-2 lifespan extension
(Shen et al., 2014).

Finally, exogenously added trehalose increases protein
stability, measured as the trichloroacetic acid-soluble pro-
tein fraction, in C. elegans. This fraction also correlates
well with endogenous trehalose levels in C. elegans, indi-
cating that intracellular trehalose acts as a potent protein
stabiliser in this worm (Depuydt et al., 2016).

Hence, the protein and membrane stabilising properties
of trehalose are likely key to IIS mutant longevity. The
field of trehalose biology in C. elegans in underexplored
and future work should reveal in which tissues it is synthe-
sised, how it is transported between tissues, and whether
certain tissue types benefit more from trehalose protection
than others (with lifespan as a readout). Caenorhabditis

elegans would also allow for easy genetic manipulation to
increase artificially intracellular trehalose levels by over-
expressing trehalose synthesis genes and/or knockdown of
trehalases and test whether there is a beneficial effect on
lifespan. Trehalose can act in concert with LEA proteins
for its protective function (Chakrabortee et al., 2007). The
C. elegans genome encodes a single lea gene homologue,
known to be upregulated in daf-2 mutants (Dong et al.,
2007; Depuydt et al., 2016) and awaiting functional char-
acterisation.

Relevance to human biology

There is no doubt that C. elegans fuelled genetic age-
ing research in other models including vertebrate species.
One of the most successful discoveries so far was the
role of IIS signalling in lifespan determination, first re-
vealed in C. elegans and later confirmed in many other
species (Kenyon, 2010). Nevertheless, one should al-
ways bear in mind that, despite evolutionary conserva-
tion of many genes and pathways, C. elegans and humans
differ widely in their molecular physiology as a result
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of differences in size, thermobiology and environmen-
tal challenges. Although reduced IIS pathway signalling
may lead to broadly comparable phenotypes in worms
and mammals, the means by which these characteristics
are achieved may differ widely. IIS longevity in C. ele-
gans is, at least in part, supported by metabolic pathways
that are absent in mammals, such as glyoxylate shunting
and trehalose synthesis (Fig. 3). Also the glutamate syn-
thase homologue W07E11.1, which, like ICL-1, only oc-
curs in bacteria, plants and nematodes, is highly upreg-
ulated in daf-2 mutants hinting at an important function
in the IIS longevity phenotype (Depuydt et al., 2014).
These metabolic patterns seem all part of an ancient ge-
netic program that allows small organisms with limited
mobility to undergo anhydrobiosis and survive repetitive
drought/rehydration cycles (Alpert, 2006; Erkut et al.,
2016). In C. elegans IIS mutants, this non-mammalian ge-
netic program is switched on heterochronously in adults,
making these worms stress resistant and long-lived in a
way that cannot be directly achieved in humans. Neverthe-
less, detailed functional knowledge of this elaborate pro-
gram may lead to future medical or pharmaceutical appli-
cations that may support human longevity or reduce frailty
at advanced age.
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