Provided by Ghent University Academic Bibliography

Official journal of the American College of Medical Genetics and Genomics ORIGINAI— RESEARCH ARTICI—E

Open

Metadata, citation and similar papers at core.ac.uk

Genetics
inMedicine

Mapping the genomic landscape of inherited retinal
disease genes prioritizes genes prone to coding and
noncoding copy-number variations

Kristof Van Schil, PhD', Sarah Naessens, MSc', Stijn Van de Sompele, MSc', Marjolein Carron, MSc',
Alexander Aslanidis, PhD?, Caroline Van Cauwenbergh, PhD', Anja Kathrin Mayer, MSc3,
Mattias Van Heetvelde, MSc', Miriam Bauwens, MSc', Hannah Verdin, PhD',

Frauke Coppieters, PhD', Michael E. Greenberg, PhD* Marty G. Yang, MSc?, Marcus Karlstetter, PhD?,
Thomas Langmann, PhD?, Katleen De Preter, PhD’, Susanne Kohl, PhD?, Timothy J. Cherry, PhD>®,
Bart P. Leroy, MD, PhD"”-®, CNV Study Group® and Elfride De Baere, MD, PhD’

Purpose: Part of the hidden genetic variation in hetero-
geneous genetic conditions such as inherited retinal diseases (IRDs)
can be explained by copy-number variations (CNVs). Here,
we explored the genomic landscape of IRD genes listed in
RetNet to identify and prioritize those genes susceptible to CNV
formation.

Methods: RetNet genes underwent an assessment of genomic
features and of CNV occurrence in the Database of Genomic
Variants and literature. CNVs identified in an IRD cohort were
characterized using targeted locus amplification (TLA) on extracted
genomic DNA.

Results: Exhaustive literature mining revealed 1,345 reported
CNVs in 81 different IRD genes. Correlation analysis between
rankings of genomic features and CNV occurrence demonstrated
the strongest correlation between gene size and CNV occurrence of

INTRODUCTION

Inherited retinal diseases (IRDs) are characterized by a wide
spectrum of nonsyndromic and syndromic phenotypes all
involving visual impairment.! In addition to their clinical
heterogeneity, IRDs are characterized by extensive genetic
heterogeneity.>

Despite the large number of identified IRD genes, the
genetic basis of IRD remains unknown in 20-50% of cases
albeit analyzed by whole-exome sequencing (WES).>~ Part
of the potential missing genetic variation that may be
causative for IRD can be attributed to mutations in novel,
yet unidentified disease genes.®’ It is anticipated that another
fraction of unsolved cases can be caused by noncoding

IRD genes. Moreover, we identified and delineated 30 new CNVs in
IRD cases, 13 of which are novel and three of which affect
noncoding, putative cis-regulatory regions. Finally, the breakpoints
of six complex CNVs were determined using TLA in a hypothesis-
neutral manner.

Conclusion: We propose a ranking of CNV-prone IRD genes and
demonstrate the efficacy of TLA for the characterization of CNV's
on extracted DNA. Finally, this IRD-oriented CNV study can serve
as a paradigm for other genetically heterogeneous Mendelian
diseases with hidden genetic variation.
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sequence variations in known IRD genes, examples of which
have been increasingly reported.5-10

Several studies using different approaches demonstrated
that structural variations including copy-number variations
(CNVs) represent an additional mutation type significantly
contributing to the missing genetic variation in IRD.!"!* In
2016, Van Cauwenbergh et al. developed a high-resolution
array, arrEYE, for targeted CNV analysis of known and
candidate IRD genes.!”> Despite different algorithms devel-
oped for CNV identification using next-generation sequen-
cing (NGS) data,'®!” most NGS studies still fail to detect
them, leading to an underestimation of CNVs as under-
lying cause of IRD. Although several IRD genes like EYS,!3
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USH2A," and PCDH15% are known to be prone to CNV
formation, little is known about the contribution of CNVs to
IRD in general.

Here, we aimed to identify genomic features that are
correlated with CNV occurrence in IRD genes, and to propose
a ranking of CNV-prone IRD genes. Furthermore, we demon-
strated the efficacy of targeted locus amplification (TLA) for
the characterization of complex CNVs on extracted DNA.

MATERIALS AND METHODS
Literature mining
RetNet is a summary of genes that have been associated with
isolated and syndromic IRD. An extensive literature mining of
virtually all reported CNVs in IRD genes listed in RetNet has
been performed by manual text mining (Supplementary
Table S1 and Supplementary Text S1 online).

Search for CNV-prone IRD genes

The genomic landscape of RetNet genes has been investigated
by listing the following genomic features: gene size, number of
associated Database of Genomic Variants (DGV) variants,?!
total number of associated repeats, Alu repeats, long inter-
spersed nuclear elements (LINE), long terminal repeat
elements (LTR), and segmental duplications (SDs), using
the UCSC Table Browser (Supplementary Table S2 and
Supplementary Text S1).

The rank correlation analysis was performed using the
Kendall rank correlation coefficient or tau, which works on
ranked, nonparametric data. Calculation of the statistical
difference of the values of the different genomic features
between the group of genes with one or fewer CNVs and the
group of genes with at least two CNVs was performed using
a classic t-test. Correlations between the different genomic
features were calculated using Pearson correlation coefficients
(Supplementary Figure S1 and Supplementary Text S1).

CNV analysis in an IRD cohort

The patient study adhered to the tenets of the Declaration of
Helsinki. CNV analysis was performed in a longitudinal way
in a diagnostic IRD cohort that underwent different analyses:
multiplex ligation-dependent probe amplification (MLPA),
arrEYE,"®  single-nucleotide polymorphism (SNP) chip
analysis, conventional polymerase chain reaction (PCR) to
assess nonamplification and real-time PCR (qPCR). Patients
P6, P10, and P11 underwent WES prior to CNV screening. In
case of a heterozygous CNV in USH2A, the mutation on the
second allele was identified by targeted NGS (Supplementary
Text S1).

Characterization of identified CNVs

Based on the genomic coordinates obtained from CNV
analysis, further delineation of the breakpoint regions of each
CNV was performed by designing conventional PCR or qPCR
assays in the breakpoint regions for the homozygous and
heterozygous CNVs, respectively, and by performing iterative
delineation rounds. When both breakpoint regions were
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sufficiently delineated, junction PCR was performed by
conventional PCR, followed by Sanger sequencing of the
junction product (Supplementary Text S1).

CNVs with highly repetitive breakpoint regions or for
which no specific junction product could be obtained
were further delineated using TLA (Cergentis, Utrecht, the
Netherlands).?2 For each CNV one or more inverse PCR
primers (Supplementary Table S3) were designed in a
specific anchor region. For a deletion this is the region imme-
diately upstream or downstream of the deletion breakpoints
that is not deleted with certainty. For a duplication it is the
region close to one of both breakpoints that is duplicated with
certainty (Supplementary Text S1).

Assessing the underlying mechanisms of the identified
CNVs

For each CNV that has been delineated at the nucleotide level,
an extensive bioinformatics analysis was performed on the
breakpoint regions to try to unravel the underlying mechan-
ism, as previously described (Supplementary Text S1).23

Assessing the cis-regulatory effect of deleted noncoding
elements in the EYS and PCDH15 regions
To identify putative cis-regulatory elements in the EYS
and PCDHI5 regions, an assay for transposase-accessible
chromatin with high-throughput sequencing (ATAC-seq)
was performed according to established protocols?* on adult
postmortem human retinal tissue (T.J.C., unpublished data).
To determine that transposase-accessible regions represented
active promoters or enhancers, chromatin immunoprecipita-
tion with high-throughput sequencing (ChIP-Seq) was
performed for the H3K27ac and H3K4me2 histone marks
and transcription factors CRX, OTX2, NRL, RORB, and
MEEF2D using previously described protocols.”> RNA-seq
was performed using standard methods on RNA extracted
from nuclei, to enrich for enhancer RNAs (Supplementary
Text S1).26

Human PCDH15-associated CRX-bound region (CBR) 1
and 2 were PCR amplified from a healthy control individual
(Supplementary Table S3). CBR1 was cloned in a dsRed
expressing vector without basal promoter. CBR2 was cloned
in another dsRed expressing vector, upstream of a Rho-basal
promoter. DNA cocktails containing the PCDHI5 reporter
vectors and a pCAG-GFP vector as an electroporation control
were coelectroporated into isolated retinas of PO mice. After
8 days of in vitro organ/tissue culture, retinas were harvested,
fixed, and imaged. The detailed protocol used for the electro-
poration assays has been described previously (Supplemen-
tary Text S1).%

RESULTS
Mapping the CNV landscape in IRD genes
First, we attempted to characterize the CNV landscape in IRD
by an exhaustive literature mining of CNVs in all RetNet
genes.? This revealed 1,345 patients with a reported CNV in
one of the known IRD disease genes, more specifically 317
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unique CNVs in 81 different genes (Supplementary Table
S1). The discrepancy between the total number of CNVs and
the number of unique CNVs can be explained by the presence
of common CNVs in certain IRD genes. Supplementary
Table $4 lists the 15 top-ranked genes according to the total
CNV count, together with the number of unique CNVs in the
corresponding gene. For example, CLN3 and NPHPI have
high total but very low unique CNV counts, which can be
attributed by a common deletion of exons 7 and 8 of CLN3,%8
and a whole-gene deletion of NPHP1.2%%0 Apart from genes
with common CNVs, several genes like USH2A, OPAI, and
EYS are characterized by many different CNVs, contributing
to their high CNV load. Finally, ABCC6 is characterized by
both a common exon 23-29 deletion’! and a high number of
other less frequent CNVs.

Mapping the genomic landscape of IRD genes

Next, we assessed different genomic features for all RetNet
genes (Supplementary Table S2).> The top-ranked genes
according to each of these factors are listed in Table 1,
together with the respective number of CNVs reported in
literature and DGV. The output of gene size shows that EYS,
PCDH15, and USH2A are the largest IRD genes, which is in
agreement with the large number of reported CNVs
(Supplementary Table S4). While there are large genes for
which no disease-related CNVs have been reported up to
now, for most of them a significant number of CNVs have
been reported in DGV. The other outputs according to the
number of total and specific type of repeats in the genomic
region are different from the output based on gene size.
Although these new top-ranked genes span a smaller genomic
region, they contain a higher absolute number of repeats, or
are specifically enriched in specific types of repeats.

To assess which of these genomic features could be used
to identify and prioritize CNV-prone IRD genes, we first
performed a rank correlation analysis, comparing the rank
of the genes according to the different genomic features
and their respective rank in the literature and DGV lists
(Supplementary Figure S1). This revealed that the strongest
correlation is obtained for gene size, both according to
literature and DGV, followed by LINE and LTR repeats, and
total repeats. Importantly, the Alu repeats and SDs do not
seem to correlate with the number of CNVs. To confirm these
results the different IRD genes were divided into two groups
based on the absence or presence of at least two CNVs in a
gene according to the DGV list. For each of the features we
evaluated whether there was a significant difference between
the two groups (Supplementary Figure S1). This analysis
confirmed the previous results, showing gene size as the
feature with the most significant difference between both
groups. There was no significant difference in the number of
Alu repeats and SDs. Finally, we investigated if the different
studied genomic features are correlated with each other. This
revealed strong correlations of LINE and LTR repeats and
total repeats with gene size, while both Alu repeats and SDs
do not seem to correlate with gene size.
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Expanding the CNV mutation spectrum in IRD genes

Apart from the mapping of the CNV spectrum in IRD genes
by the literature mining, we expanded the CNV spectrum in
IRD by the identification of 30 CNVs in 29 unrelated families,
21 of which are unique and 13 of which are novel (Table 2).

Patients P6, P10, and P11 underwent WES prior to CNV
screening. In P6 this led to the identification of an apparently
homozygous nonsense mutation in MERTK: ¢.2323C>T,
p-(Arg775*). Segregation analysis demonstrated a recessive
carrier state in the mother but not in the biologically proven
father, indicating pseudohomozygosity. This was confirmed
by qPCR analysis, revealing a heterozygous whole-gene
deletion of MERTK in both the index patient and his father
(Supplementary Figure S2). In patients P10 and P11 both
arrEYE analysis and WES coverage data analysis revealed
two apparently identical homozygous deletions of PDE6G
(Supplementary Table S5). Comparison of SNP chip data in
the region surrounding this deletion revealed an identical
haplotype in both patients (Supplementary Table S6).

The main contribution to the CNVs identified in this study
comes from the USH2A gene, with 15 CNVs out of 29
patients. For all but one USH2A-mutated patients the CNV is
heterozygous and the mutation on the second allele was
initially identified by targeted NGS. This highlights the
importance of CNV screening in patients carrying only one
heterozygous pathogenic mutation in disease-associated genes
known to harbor mutations inherited under a recessive
paradigm, like USH2A.

Characterization of identified CNVs and assessment of their
underlying mechanisms

All but two of the 21 unique CNV's were further characterized
to identify the exact breakpoints. In total, we were able to fully
characterize 14 out of 19 investigated CNVs at the nucleotide
level (Table 2 and Supplementary Figure S3). A conventional
delineation strategy based on junction PCR led to the
complete characterization of eight CNVs at the nucleotide
level (Figure 1), leaving 11 CNVs not fully delineated. The
reason for this was the presence of SDs in both breakpoint
regions of the MERTK deletion, while for the 10 remaining
CNVs there were highly repetitive breakpoint regions. For all
but one sample we moved on to TLA to further characterize
the CNVs in a hypothesis-neutral manner. This approach
allowed the identification of the CNV breakpoints in six out
of nine patients (Figure 2), including a more complex CNV in
patient P3 (Figure 3).

In patient P5 conventional mutation screening of KCNV2
by PCR and Sanger sequencing revealed nonamplification of
exon 2, suggesting a homozygous deletion. After delineation
of the deletion, segregation analysis was performed in the
family using the junction PCR primers. Although both
children of the index patient are obligate carriers of this
deletion, segregation of the junction product could only be
demonstrated in one of the children. Subsequent qPCR of
exon 2 of KCNV2 in the daughter demonstrated a hetero-
zygous deletion of this exon. The most probable explanation
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Table 1 Ranking of genomic landscape of IRD genes according to gene size, number of total associated repeats, Alu repeats,
LINE and LTR repeats, and segmental duplications, together with the number of CNVs according to literature and DGV

Gene size Total repeats Alu repeats LINE and LTR repeats Segmental duplications
Gene Lit. DGV Gene Lit. DGV Gene Lit. DGV Gene Lit. DGV  Gene Lit. DGV
EYS 24 9,470 EYS 24 9,470 OPA3 0 27 EYS 24 9,470  HMX1 0 10
PCDH15 15 6,344 PCDH15 15 6,344  NMNATI 2 1 PCDH15 15 6,344  CLN3 515 18
USHZ2A 57 598 WDPCP 0 174 CLN3 5 18  WDPCP 0 174 NPHP1 75 445
WDPCP 0 174 ADGRV1 4 192 PRPF8 0 6 USH2A 57 598 CA4 0 10
ADGRV1 4 192 CDH23 3 740  CTNNAT 0 117 ADGRV1 4 192  SDCCAGS8 1 123
RIMST 0 1945  USH2A 57 598 PCYTIA 0 420  BBS9 7 897  ABCC6 235 141
BBS9 7 897 BBS9 7 897 PNPLA6 0 3 NBAS 0 59  OPNISW 0 100
HMCNT 0 723 ZNF423 0 287 CRX 1 60  RIMST 0 1,945  BBS4 13 10
CDH23 3 740  CTNNAT 0 117  PRPF3 0 3 INVS 0 53  IMPDH1 0 24
NBAS 0 59 OPA3 0 27 CDH3 1 44 ALMST 5 73 ACBD5 0 8
ZNF423 0 287 CRX 1 60 CT120RF65 0 6  HMCNT 0 723  GPR179 0 2
CTNNAT 0 17 TTLLS 0 404  DHDDS 0 11 GPR125 0 143 (B2 0 7
TTLL5S 0 404  NBAS 0 59 RAX2 0 2 TEADIT 0 148  ADIPOR1 0 0
TEAD1 0 148  CLN3 515 18 ROM1 0 ZNF423 0 287  TRPM1 7 77
SDCCAGS8 1 123 ABCC6 235 141 PRPH2 1 4 TTLLS 0 404  PCDH15 15 6,344
COLT1A1 7 60 HKT1 0 113 CEP250 0 4 CDH23 3 740  RGS9 0 2
ALMST 5 73 CDH3 1 44 FAMIT61A 0 13 PLA2G5 0 77  RBP3 0 24
AHI1 1 96 KIAA1549 0 69  ARL3 0 CC2D2A 1 149  LCA5 1

CRB1 0 43  DHDDS 0 11 ABCC6 235 141 CTNNAT 0 117  SLC24A1 0 3
INVS 0 53  DFNB31 0 53  KIF11 0 5 MYO7A 6 85 CRB1 0 43
ATF6 0 43  PCYTIA 0 420  PRCD 0 6 ATF6 0 43 NR2F1 3 21
CNGB3 0 45  RIMST 0 1,945 ZNF408 0 0 CNGB3 0 45  CDHR1 0 3
ADAMTS18 0 40 HMCNT 0 723  RPGRIP1 1 2547 KiZ 0 120 RGR 0 4
CHM 30 435  PDEGA 1 45  CLUAPI 0 2 TRPM1 7 77  CSPP1 0 55
LAMAT 1 55 INVS 0 53  SEMA4A 0 1 PITPNM3 0 20 POMGNT1 0 19
GPR125 0 143 KIF11 0 5 KIAAT1549 0 69 TIC8 0 20  PRPF6 0 67
TRPM 1 7 77  PNPLAG6 0 3 NYX 5 5 MERTK 7 90 PCYTIA 0 420
IMPG1 0 88 FAMI6TA 0 13 GPR179 0 2 PROM1 0 7 NPHP4 1 163
KIAA1549 0 69 ALMST 5 73  HK1 0 113 CEP290 2 10 CNNM4 2 171
CERKL 0 55  CEP250 0 4  BBS1 6 4  CAPN5 1 56  RPGRIPIL 0 145

CNV, copy-number variation; DGV, respective number of CNVs according to the Database of Genomic Variants; IRD, inherited retinal diseases; LINE, long interspersed
nuclear elements; Lit., respective absolute number of CNVs in patients with IRD according to literature; LTR, long terminal repeat elements.

for this finding is the occurrence of two different overlapping
heterozygous deletions, only one of which was identified
by the initial delineation. This was corroborated using
qPCR, revealing a second larger deletion overlapping with
the smaller one found in the index case and in the daughter
(Supplementary Figure S4).

To unravel the underlying mechanism of the formation of
the CNVs identified in this study, a bioinformatics analysis
was performed on both breakpoint regions of the 14
molecularly characterized CNVs (Supplementary Table S7).
Short stretches of microhomology (1-3 bp) were identified at
eight CNV junctions. Three CNV's showed a perfect transition
at their junction, accompanied by an insertion of seven
nucleotides for one of them. The three remaining CNVs
display more complex insertions, which can be explained by
multiple iterative template switches based on short stretches
of microhomology (Figure 3).>> None of the CNVs has

4

similar repetitive elements in the corresponding break-
point regions, except for the MERTK deletion, where the
presence of SDs points to nonallelic homologous recombi-
nation (NAHR) as a surmised underlying mechanism. The
presence of previously described structural variation-
associated sequence motifs in all studied breakpoint regions
can result in genomic instability and facilitate the formation
of CNVs.3%3 Visualization of microhomology and repetitive
elements and an overview of the identified sequence motifs
can be found in Supplementary Figures S5-S7.

Assessing the effect of noncoding CNVs in the EYS and
PCDH15 loci

Three CNV's were found in noncoding regions: two involving
the promoter region and the first exon of EYS (P4) and
PCDH15 (P9), respectively, previously reported as pathogenic
CNVs.2%3 The third homozygous CNV is located 214 kb
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Figure 1 Identification and characterization of a noncoding PCDH15 deletion. (a) Location of the deletion. The homozygous 1.3-Mb deletion
identified in P9 is depicted in red, removing the first noncoding exon of the PCDH15 gene, the MTRNR2L5 gene with unknown function and two
PCDH15-associated CRX-bound regions (CBR). CBR1 is situated in the promoter region, while CBR2 is located approximately 100 kb upstream. (b)
Delineation of the deletion. Further refinement of the deletion breakpoint regions by conventional PCR. Black, orange and blue shaded boxes and
connecting lines indicate nondeleted exon and introns, deleted exon, intron and upstream region, and nondeleted upstream region, respectively. Short
grey horizontal lines correspond to designed PCR amplicons, used to delineate the deletion. The black dotted line indicates the junction product. (c)
Sanger sequencing of the junction product. Delineation of the deletion at the nucleotide level, chr10: g.56478660_57777934del. (d) Electroporation
assays. In order to assess the cis-regulatory effect of CBR1 and CBR2, electroporation reporter assays were performed in mouse retinal explants. The
first construct consisted of CBR2 cloned in a dsRed expressing vector, upstream of a Rho-basal promoter, as CBR2 is located in a more distant
regulatory region. For the second construct, CBR1 was cloned in a dsRed expressing vector without basal promoter, as it is located in the promoter
region. Cis-regulatory activity could be demonstrated for the CBR2 construct, while CBR1 seems to fail in driving dsRed expression on its own. (e) Cis-
regulatory landscape of PCDH15. Epigenomic marks and transcription factor binding were assessed in human adult retina, shown here for the PCOH15
locus: ATAC-seq; ChlIP-seq for H3K27ac, H3K4me2, CRX, OTX2, NRL, RORB and MEF2D; and RNA-seq. The region of the deletion is marked with a
shaded rectangle and the putative active promoter and enhancer regions included in the deleted region are in lighter shading.

CIB2, CDHRI1, RGR, and CNNM4 overlap with the NAHR-  NAHR,*”38 leading to a list of genes highly similar to the gene
prone regions proposed by Bujakowska et al. in 2016.*  size output.

Finally, the occurrence of LINE and LTR repeats was Correlation analysis demonstrated that gene size has the
investigated, as they also have the potential to mediate strongest correlation with the presence of a CNV in that
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Figure 2 Identification and characterization of a BEST1 deletion using targeted locus amplification (TLA) on extracted genomic DNA. (a)
Location of the deletion. The heterozygous 8-kb deletion identified in P1 is depicted in red, removing the first two exons of the BESTT gene. (b) Primer
design TLA. Initial real-time polymerase chain reaction (qPCR) delineation of the deletion was hampered by highly repetitive breakpoint regions,
followed by further delineation using TLA. The minimal deleted region based on the gPCR delineation is depicted in red; the gray dotted line
corresponds to the 5" and 3’ breakpoint regions and the surrounding genomic region in black. In case of a deletion, the outward-oriented TLA primers
indicated in orange need to be designed in an anchor region that is not deleted, here in the downstream surrounding genomic region. (c) TLA read
mapping. The amplified PCR products are sequenced by next-generation sequencing (NGS), followed by mapping of the resulting reads showing one
distinct peak surrounding the anchor region. (d) Delineation of the deletion. Detailed analysis of the reads in the breakpoint regions led to the
identification of the deletion at nucleotide level: chr11:9.61711373_61719810del. The upper, middle, and lower lines represent the sequences of the
5’ wild-type (wt) region, the deletion junction product, and the 3’ wt region, respectively. Microhnomology of 3 bp is indicated in gray. The two boxes
show the mapped reads in both breakpoint regions. Green sequences are forward reads; red sequences are reverse reads. The fully colored reads are
wt reads, while the reads containing shaded sequences are junction reads spanning the deletion breakpoints. The turquoise and orange boxes highlight
the 5’ and 3’ sequences, separated by the 3 bp of microhomology.

specific gene, followed by the number of associated LINE and
LTR repeats and the number of total repeats. However, these
last two features are both highly correlated with gene size.
Although Alu repeats and SDs have been shown to play a role
in the formation of CNVs,3? the presence of these repeats does
not seem to correlate with the occurrence of CNVs. The
absence of a significant association of CNVs with Alu repeats
was previously proposed, suggesting that Alu elements do not
currently play an important role in the formation of CNVs,
while they did so in the past. This is supported by the
observation of highly significant colocalization of older SDs,

which can be seen as fixed CNVs in the population, with Alu
repeats, while this correlation is decreasing rapidly for
younger SDs and is totally absent for CNVs. This study also
demonstrated that CNVs co-occur with SDs, but that the
correlation is much smaller than may be expected, suggesting
an important contribution of other mechanisms in the
formation of CNVs.*

We correlated the results of the literature mining to the
output list of CNV-prone IRD disease genes and found
discrepancies for genes for which no associated CNVs could
be found in literature, despite a high number of CNVs in
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DGYV. One possible explanation may be that a CNV in an IRD
gene leading to loss of function is not necessarily pathogenic,
while a dominant pathogenic missense mutation in the same
gene causing a gain of function has a pathogenic effect. In
addition, some of these genes have been discovered only
recently as IRD genes, and are less prevalent in the context of
IRD. A last and important reason is that CNV screening has
not been routinely implemented, likely leading to an under-
estimation of the CNV mutational load in these genes. In this
respect, the occurrence of CNVs could be expected in
ADAMTSI18, CERKL, CNGB3, CRB1, DHDDS, FAMIG6IA,
and IMPG]I, as they are highly ranked as CNV-prone genes
according to gene size or total repeats and as mutations in
these genes are well known causes of IRD. In order to increase
CNV detection in a clinical setting, we recommend perform-
ing routine targeted CNV screening in the most prevalent 30
top-ranked IRD genes according to genomic length, such as
EYS, PCDH15, USH2A, CDH23, ALMS1, CRBI, CNGB3, and
CHM, especially for monoallelic patients in case of autosomal
recessive inheritance. The latter statement is corroborated by
the high percentage of CNVs (ie., 30%; 15/50) in the
monoallelic USH2A cohort of IRD patients screened in the
current study.

Expanding the CNV mutation spectrum in IRD genes

The proposed list of CNV-prone IRD genes was further
validated by the identification of 21 different CNVs in 29
families, affecting 10 different genes. The initial CN'V analyses
in this study were performed in subcohorts with IRD, rather
than in one general IRD cohort. Therefore, the denominators
for these different subcohorts with IRD are the following: (i)
heterozygous CNVs in patients with vitelliform macular
dystrophy screened for BEST1 mutations by sequencing of the
coding region and MLPA (2/140; 1.4%); (ii) heterozygous
CNVs in patients with optic atrophy screened for OPAI
mutations by sequencing of the coding region and MLPA
(2/234; 0.43%); (iii) heterozygous CNVs in IRD cases with
monoallelic USH2A mutation, identified by MLPA (15/50;
30%); and (iv) homozygous CNVs identified by homozygosity
mapping in an IRD cohort of consanguineous origin
(6/99; 6%).

It is striking that most CNVs were found in USH2A, which
is the third largest IRD gene. Other genes that are highly
ranked according to gene size are EYS, MERTK, OPAI, and
PCDH15. Moreover, MERTK is located in one of the recently
identified NAHR-prone regions.'* PRPH2 and PDE6G are
smaller genes, but highly enriched in Alu repeats. CNVs in
BEST1, PRPH2, and SPATA7 have previously been described
only once,**4? and for PDE6G this is the first CNV reported
in IRD. To the best of our knowledge, this is the second
PDE6G genetic defect reported in IRD after the initial
identification as an IRD gene.*?

Interestingly, we found two cases of pseudohomozygosity in
two different nonconsanguineous families: a homozygous
nonsense mutation in MERTK ¢.2323C > T, p.(Arg775*) in an
arRP family and a homozygous exon 2 deletion of KCNV2 in
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a family with arCRD. In the first family we found a
heterozygous whole-gene deletion of MERTK, overlapping
with the nonsense mutation. In the second family we showed
two different overlapping heterozygous KCNV2 deletions.
These cases of pseudohomozygosity illustrate the importance
of segregation analysis, CNV screening, and delineation in
patients with apparent homozygous mutations without
consanguineous background.

Apart from 18 coding CNVs, we identified three CNVs
located in noncoding regions. Two of these are a deletion of
the first noncoding exon and the associated promoter region
of EYS and PCDHI5, respectively, most probably affecting
transcription by the disruption of retina-specific cis-regula-
tory elements. This was supported by integration with a cis-
regulatory data set generated in human adult retina and by
in vivo studies in mouse retinal explants. For the third
noncoding deletion there is no evidence for overlap with any
of the retina-specific cis-regulatory elements. According to
DGV, several CNVs overlap with this region, as is the case for
the rest of the EYS gene, including the coding parts.
Altogether, although we could not provide evidence for a
pathogenic effect of this CNV, an effect on the chromatin
conformation of the EYS region and on EYS transcription
cannot be excluded.

Characterization of CNVs in a hypothesis-neutral manner
and identification of replicative mechanisms as major
underlying contributor

As the CNV identification study was performed in a
longitudinal setting, different targeted CNV analysis strate-
gies were used, including a customized microarray.!> Several
recent studies have reported WES as a tool to identify
both homozygous and heterozygous CNVs in IRD.!1:#445
Exact delineation of the CNVs using this approach is not
possible, however, which can be overcome by the use of
WGS.9’14’46

Apart from the conventional delineation strategies, we
introduced TLA on extracted genomic DNA to characterize
CNVs. Indeed, TLA has recently been described as a strategy
to selectively amplify and sequence entire genetic loci on the
basis of the crosslinking of physically proximal sequences.??
Advantage of the technique is that no detailed prior locus
information is needed, as is the case for other targeted
approaches. TLA has previously been shown to be effective
when applied on living cells, while here, we demonstrated for
the first time its efficacy on extracted human DNA.

In addition to the MERTK deletion that arose through
NAHR of SDs located in both breakpoint regions, the detailed
bioinformatics analyses performed for all delineated CNVs
revealed three different groups according to putative under-
lying molecular mechanisms. The largest group consisting of
eight CNVs with short stretches of microhomology may be
explained by nonhomologous end joining or a replicative-
based repair mechanism like microhomology-mediated break-
induced replication, favoring the latter because an informa-
tion scar, typical of nonhomologous end joining, was absent
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in all CNVs.>?2 Remarkably, the formation of the PDE6G
CNVs identified in this study was not mediated by the
presence of Alu repeats in the breakpoint regions, although
this gene has the second highest Alu repeat percentage
of all RetNet genes. The second group comprises three
CNVs with no reported microhomology, and the presence
of an information scar for one of them, pointing towards
nonhomologous end joining as underlying mechanism.

10

Finally, the last three CNVs are associated with more complex
insertions, characterized by microhomology at all breakpoint
junctions and most probably caused by microhomology-
mediated break-induced replication, which has been proposed
as the major mechanism for nonrecurrent structural varia-
tions.>? These results put replicative-based repair mechanisms
forward as a major underlying contributor of the CNVs
identified in this study.
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Figure 3 Identification and characterization of a complex noncoding EYS deletion using targeted locus amplification (TLA). (a) Location of
the deletion. The homozygous 16-kb deletion identified in P3 is depicted in red, located upstream of the EYS gene. (b) Delineation of complex
deletion. Due to problems using conventional polymerase chain reaction (PCR) as an initial delineation strategy, TLA was used for further
characterization of the deletion at nucleotide level. Analysis of the resulting TLA reads revealed a complex copy-number variation (CNV) consisting of a
deletion of chr6: 66,631,318-66,647,641 (hatched region), together with an insertion of a 455-bp fragment consisting of a 277-bp sequence (chr6:
66,628,168-66,628,444) located upstream of the deletion (turquoise region) joined to an inverted 178-bp fragment (chr6: 66,642,009-66,642,186)
situated in the deleted region (orange region). The upper part of the figure represents the wt sequence, while the lower part shows the resulting
mutated sequence. The underlying mutational mechanism, represented in the middle part, is most probably a replication-based mechanism. The
numbers correspond to different template switches, based on the observed microhomology in every breakpoint region. (c) Microhomology at the
breakpoints. Comparison of the sequences at the three breakpoint junctions shows microhomology at every junction, supporting microhomology-
mediated break-induced replication as the underlying mechanism. (d) Cis-regulatory landscape of EYS. Epigenomic marks and transcription factor
binding were assessed in human adult retina, shown here for the upstream EYS region: ATAC-seq; ChIP-seq for H3K27ac, H3K4me2, CRX, OTX2, NRL,
RORB and MEF2D; and RNA-seq. The region of the deletion is marked with a shaded rectangle and the putative active promoter and enhancer region
included in the deleted region are in lighter shading, for both the deletion presented in this figure (insertions/inversion indicated by black vertical lines)
and another regulatory £YS deletion identified in P2. For the latter, both the promoter and an enhancer region coincide with the CNV, whereas for the

complex CNV no cis-regulatory epigenomic marks could be seen in the affected region.

«

General conclusion and perspectives

This comprehensive study investigated the role of CNVs in
IRD. We mapped and correlated the CNV and genomic
landscape of 256 IRD genes, revealing genomic features that
point to CNV risk. We expanded the CNV mutation
spectrum in IRD genes, characterized the identified CNVs
in a hypothesis-neutral manner, and assessed their underlying
mechanisms. Our study demonstrates the importance of the
CNV mutational load in IRD and contributes to the
elucidation of the hidden genetic variation in IRD. It will be
useful for the interpretation of CNV data in future genomic
studies of IRD. Finally, this IRD-oriented CNV study can be
extrapolated to other genetically heterogeneous Mendelian
diseases with hidden genetic variation.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the
paper at http://www.nature.com/gim
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