
Approximate BER for OFDM Systems Impaired by
a Gain Mismatch of a TI-ADC Realization

Vo-Trung-Dung Huynh, Nele Noels, Heidi Steendam
Department of Telecommunications and Information Processing, Ghent University

{votrungdung.huynh, nele.noels, heidi.steendam}@ugent.be

Abstract—Time-interleaved analog-to-digital converters (TI-
ADCs) have recently been suggested for multi-Gigabit systems
because of their high sampling rate. In practice, a major
bottleneck of using a TI-ADC is mismatch occurring between
individual sub-ADCs. In this paper, we derive an approximate
bit error rate (BER) expression for high-speed pulse amplitude
modulated (PAM) and quadrature amplitude modulated (QAM)
orthogonal frequency division multiplexing (OFDM) receivers
employing a TI-ADC with gain mismatch between the sub-ADCs.
We assume an additive white Gaussian noise (AWGN) channel
and binary reflected Gray code mapping. The numerical results
show that the derived BER expression is in excellent agreement
with Monte-Carlo simulation results if the number L of sub-
ADCs is sufficiently large, but becomes less accurate for smaller
values of L.

Index Terms—BER, OFDM, TI-ADC, gain mismatch, AWGN
channel.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is
widely used for broadband wired and wireless communication
systems because of its high spectral efficiency and tolerance
against inter-symbol interference (ISI) caused by a dispersive
channel [1]. Recently, it has been suggested for fibre-optic
communication systems, in which the data rate increases to
100 Gb/s and beyond [2]. In such high-speed OFDM systems,
the analog-to-digital converter (ADC), which is placed in
front of the baseband digital signal processing (DSP) unit,
is required to operate at an extremely high sampling rate.
The operating sample rate of a regular ADC is limited by the
physical constraints of the employed technology [3]. A time-
interleaved (TI) architecture of L identical ADCs allows to
achieve a sampling rate 1

Ts
, although each individual ADC is

actually sampling at a lower rate of 1
LTs

. As illustrated in the
model shown in Fig. 1, the L sub-ADCs sample the analog
input signal in a periodic manner, with as time spacing the
ideal sampling time Ts, and produce a combined digital output
signal. A drawback of TI-ADCs is that mismatches between
the sub-ADCs can cause a system performance degradation
[4]. A particular type of mismatch in a TI-ADC is gain
mismatch which originates from differences in the capacitors’
gain as well as in the finite opamps’ gain among parallel sub-
ADCs [5]. The impact of the gain mismatch on the system
performance has recently been studied for both single-carrier
[6-8] and multi-carrier [4,9] systems. However, to the best of
our knowledge, a closed-form bit error rate (BER) expression
for OFDM systems employing a TI-ADC with gain mismatch
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Fig. 1. Block diagram of a TI-ADC and a model of the lth sub-ADC with
gain value dgl.

has not been derived yet. In this paper, we analytically derive
such a BER expression based on a Gaussian approximation
of the interference. We restrict our attention to an additive
white Gaussian noise (AWGN) channel in order to be able to
isolate the effect of the gain mismatch. Further, we assume
quadrature amplitude modulation (QAM) and bit-to-symbol
mapping based on the binary reflected Gray code (BRGC)
[10]. The accuracy of the derived BER expression is assessed
by comparing the numerical evaluations with Monte-Carlo
BER simulations. A good agreement between the theoretical
and the empirical results is observed provided that the number
L of sub-ADCs is sufficiently large.

The paper is organized as follows. Section II describes the
system model. The BER expression for a rectangular QAM
constellation is derived in Section III. The BER expressions
for square QAM and pulse amplitude modulation (PAM)
constellations are special cases thereof. Section IV provides
numerical results to validate the correctness of the derived
BER expression. Section V concludes the paper with some
final remarks.

II. SYSTEM MODEL

Fig. 2 illustrates the block diagram of the considered
OFDM system. The receiver is assumed to employ a TI-
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Fig. 2. Block diagram of an OFDM system with a TI-ADC at the receiver.

ADC in which the different sub-ADCs experience different
gain mismatch values. The input/output behavior of the lth

sub-ADC with gain mismatch value dgl is illustrated in
Fig. 1. To simplify the notations, we further consider the
transmission of a single OFDM block X. The vector X
consists of an even number N of complex-valued symbols, i.e.,

X =
(
X−N

2
, X−N

2 +1, ..., XN
2 −1

)T

, which are taken from a
unit-energy MI × MQ rectangular QAM constellation. Each
constellation symbol is formed by mapping a sequence of
(mI +mQ) information bits (mI = log2MI , mQ = log2MQ)
onto the in-phase (I) and the quadrature (Q) components of a
rectangular QAM constellation using the 2-dimensional mI -
by-mQ bit BRGC mapping rule [10]. A size-N inverse discrete
Fourier transform (IDFT) unit converts the data symbols X to
the samples sk, given by:

sk =
1√
N

N
2 −1∑

m=−N
2

Xmej2π
mk
N , k = −N

2
,−N

2
+1, ...,

N

2
−1.

(1)
Before transmission over an AWGN channel, the samples sk
from (1) are converted to a continuous-time signal by a digital-
to-analog converter (DAC) and a transmit filter is applied to
eliminate the transmitted signal’s images created by the DAC.

At the receiver, we assume perfect timing synchronization
and matched filtering. After passing through the receive filter,
a TI-ADC consisting of L parallel sub-ADCs samples the re-
ceived waveform at Nyquist rate 1

Ts
. The TI-ADC is assumed

to have a sufficiently high resolution, so the quantization noise
can be neglected [11]. Further, since in practice, the gain
values dgl of the individual sub-ADCs vary only slowly in
time [9], they will be modelled as constants over the duration
of an OFDM symbol period. Using the model from [8], the
output of the TI-ADC with gain mismatch can be written as:

rk =
L−1∑
l=0

+∞∑
q=−∞

(1 + dgl)
(√

Essk + wk

)
·δk−qL−l,

k = −N
2 ,−

N
2 + 1, ..., N

2 − 1,
(2)

where rk denotes the kth received sample, Es is the transmit-
ted symbol energy, δk denotes the discrete dirac function, sk is
defined in (1), and {wk} are independent and identically dis-
tributed (i.i.d.) AWGN noise samples with zero mean and vari-
ance σ2

w = N0

2 per I/Q dimension. The samples rk are applied
to a size-N discrete Fourier transform (DFT) unit. The output

of the DFT unit is a vector R =
(
R−N

2
, R−N

2 +1, ..., RN
2 −1

)
with

Rn = 1√
N

N
2 −1∑

k=−N
2

rke
−j2π kn

N

=
√
Es (1 +DG0)Xn +

√
Es

L
2 −1∑

i=−L
2 ,i̸=0

DGiXn−iN
L

+

L
2 −1∑

i=−L
2

DGiWn−iN
L
+Wn,

n = −N
2 ,−

N
2 + 1, ..., N

2 − 1,
(3)

where Xn are the transmitted symbols, Wn are statistically
independent Gaussian random variables with zero mean and
variance σ2

w = N0

2 , and DGi is a function of the gain
mismatch values dgl of the L parallel sub-ADCs:

DGi =
1

L

L−1∑
l=0

dgle
−j2π il

L . (4)

In (3), it is assumed for notational convenience that the
number L of sub-ADCs is a power of 2, and the ratio N

L
between the DFT size and the number of sub-ADCs is an
integer value. However, extension to non-integer values of
N
L is straightforward. The quantities Rn in (3) are used to
perform bit sequence detection by mapping them to the nearest
constellation point and applying the inverse mapping rule.

III. BER DERIVATION

The overall BER is computed as the average BER of all Nd

data-modulated sub-carriers:

BER =
1

Nd

∑
n∈Id

BERn, (5)

where BERn denotes the BER for the nth sub-carrier and
Id is the set of indices of Nd modulated sub-carriers, i.e.,
Id ⊂

{
−N

2 ,−
N
2 + 1, ..., N

2 − 1
}

. Further, as each sub-carrier
transmits a symbol taken from an unit-energy MI × MQ

rectangular constellation, which is formed by a sequence of
(mI +mQ) independent and equiprobable information bits,
the BER of the nth sub-carrier can be decomposed as:

BERn =
1

mI +mQ

∑
u,β

BERβ
n,u (Mβ , dβ) , (6)
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Fig. 3. An illustration of the decision regions and boundaries required to derive the BERβ
n,u,v (M,d) expression for M = 8, u = 3, v = 3.

where β ∈ {I,Q} refers to the in-phase and quadrature
dimensions of the signal, mβ = log2Mβ , u ∈ {1, 2, ...,mβ},
and dβ denotes the half minimum Euclidean distance in the
β−dimension [13]. In (6), BERβ

n,u (Mβ , dβ) is the BER
corresponding to the transmitted information bit bu which
is the uth bit in the β−dimension carried on the nth sub-
carrier. The demodulation of the received QAM signal is
achieved by performing two quadrature PAM demodulations.
Let us denote the β−dimension PAM constellation points
as χv (M,d), where v ∈ {0, 1, ...,M − 1}, M = Mβ and
d = dβ . We then have:

χv (M,d) = (2v + 1−M) d
∆
= Sv (M) d. (7)

Further, we denote the log2M bit sequence that corre-
sponds to the constellation point χv (M,d) as b̂(v) =(
b̂
(v)
1 , b̂

(v)
2 , ..., b̂

(v)
log2M

)
:

χv (M,d) ↔ b̂(v). (8)

Assuming the M bit sequences b̂(v) are equally probable,
BERβ

n,u (M,d) in (6) can be calculated by averaging over
all constellation points χv (M,d), resulting in:

BERβ
n,u (M,d) =

1

M

M−1∑
v=0

BERβ
n,u,v (M,d). (9)

Taking into account (3), BERβ
n,u,v (M,d) corresponds to:

BERβ
n,u,v(M,d) = Pr[(χv(M,d)(1 +DG0) +

1√
Es

Φn)
(β)

/∈ Ωu,v(M,d)|χv(M,d)],
(10)

where (z)
(β) is defined as:

(z)
(β)

=

{
ℜ{z} , if β = I
ℑ{z} , if β = Q

, (11)

and ℜ{z} and ℑ{z} denote the real and imaginary part of z,
respectively. Further, in (10), Ωu,v (M,d) indicates the interval
of 1√

Es
(Rn)

(β) from (3) for which the uth bit bu is decided

to equal the value of the uth bit b̂(v)u corresponding to the vth

constellation point (see (8)). Finally, Φn is the interference

plus noise, given by:

Φn =
√
Es

L
2 −1∑

i=−L
2 ,i̸=0

DGiXn−iN
L
+

L
2 −1∑

i=−L
2

DGiWn−iN
L
+Wn.

(12)
To further simplify (10), we exploit the fact that the map-
ping from (8) is a BRGC mapping [10]. In this case, the
bit sequence

(
b̂
(v)
1 , b̂

(v)
2 , ..., b̂

(v)
log2M

)
equals (v)2 ⊕

(⌊
v
2

⌋)
2
,

where (v)2 denotes the natural binary code of integer v, and
⌊v⌋ denotes the largest integer smaller than v. Moreover,
for the BRGC mapping rule, the boundaries of the interval
Ωu,v (M,d) in (10) can be expressed as [12] (see an example
in Fig. 3):

∆u,y (M,d)
∆
= Bu,y (M) d, (13)

where u ∈ {1, 2, ..., log2M}, y ∈
{
1, 2, ..., 2u−1

}
, and

Bu,y (M) is given by:

Bu,y (M) = (2y − 1) · 2log2M−u+1 −M. (14)

The interference plus noise term Φn from (12) consists of a
sum of random variables, i.e., Wn and DGiWn−iN

L
, which

are Gaussian distributed as the gain mismatch contribution
DGi can be considered constant, and DGiXn−iN

L
, which

depends on the interfering data symbols. When the number
L of sub-ADCs is sufficiently large, we can use the central
limit theorem to approximate the sum over the interfering data
symbols as a Gaussian random value. Hence, we model the
total noise Φn as a Gaussian random variable with zero mean
and variance σ2

β in the β−dimension (see appendix A). Note
that σ2

β does not depend on the sub-carrier index n. As also the
data contribution in (3)

√
Es (1 +DG0)Xn is independent of

the sub-carrier index, because we assume the data symbols
transmitted on the different sub-carriers belong to the same
constellation and are equally probable, BERn (5) becomes
independent of the sub-carrier index. In the following, we drop
the sub-carrier index n for notational convenience. It follows
that BERβ

n,u,v (M,d) = BERβ
u,v (M,d) from (10) is of the



following form:

BERβ
u,v (M,d)

= 1
2

Fu,v(M)∑
y=1

λu,v,y (M) erfc
(
Γu,v,y

(
M,d, σ2

β

))
+1

2

2u−1∑
y=Fu,v(M)+1

ρu,v,y (M) erfc
(
−Γu,v,y

(
M,d, σ2

β

))
.

(15)
In (15), the BER consists of two sums, corresponding to the
decision boundaries (for given u) at the left and right of the
vth constellation point, respectively. The number of terms in
the sums depend on Fu,v (M), which indicates the number
of boundaries left of the considered constellation point. For
BRGC:

Fu,v (M) =
⌊
(2v + 1) 2−(log2M−u+2) + 2−1

⌋
. (16)

Further, erfc (.) is the complementary error function (erfc-

function) defined by [14]: erfc (x) = 2√
π

∞∫
x

e−z2

dz, and the

argument Γu,v,y

(
M,d, σ2

β

)
of the erfc-function is defined as:

Γu,v,y

(
M,d, σ2

β

)
= (Du,v,y (M) + Sv (M)DG0) d

√
Es

2σ2
β

,

(17)
where Du,v,y (M) is a measure for the location of the vth

constellation point with respect to the yth bound (for given
u), and is given by:

Du,v,y (M) = Sv (M)−Bu,y (M) , (18)

with Sv (M) from (7) and Bu,y (M) from (14). Finally, the
pre-factors λu,v,y (M) and ρu,v,y (M) in (15) take the values
+1 or −1 according to:

λu,v,y (M) = (−1)
⌊2u−2−log2M (Du,v,y(M)−1)⌋

(19)

and

ρu,v,y (M) = (−1)
⌊2u−2−log2M (−Du,v,y(M)−1)⌋

. (20)

Because of the symmetry of the constellation points and
the BRGC mapping rule, it is easily verified that, for
a given u, each set (v, y), with v ∈ {0, 1, ...,M − 1}
and y ∈ {1, 2, ..., Fu,v (M)}, corresponds to a unique
set (ṽ, ỹ), with ṽ ∈ {0, 1, ...,M − 1} and ỹ ∈{
Fu,ṽ (M) + 1, Fu,ṽ (M) + 2, ..., 2u−1

}
, so that: Sv (M) =

−Sṽ (M) and Bu,y (M) = −Bu,ỹ (M), yielding: λu,v,y (M)
= ρu,ṽ,ỹ (M) and Du,v,y (M) = −Du,ṽ,ỹ (M). This results
in:

M−1∑
v=0

BERβ
u,v (M,d)

=
M−1∑
v=0

Fu,v(M)∑
y=1

λu,v,y (M) erfc
(
Γu,v,y

(
M,d, σ2

β

))
.

(21)
Substituting (6), (9) and (15) into (5), and taking into ac-
count (21) and the independence of BERβ

n,u,v (M,d) =
BERβ

u,v (M,d) on n, the BER for an unit-energy MI ×MQ

QAM constellation impaired by a gain mismatch of a TI-ADC
realization is given by:

BER = 1
(mI+mQ) ·∑

u,β,v,y

λu,v,y(Mβ)
Mβ

erfc
(
Γu,v,y

(
Mβ , dβ , σ

2
β

))
, (22)

where β ∈ {I,Q}, mβ = log2Mβ , u ∈ {1, 2, ..., log2Mβ},
v ∈ {0, 1, ...,Mβ − 1}, y ∈ {1, 2, ..., Fu,v (Mβ)}, and
Γu,v,y

(
Mβ , dβ , σ

2
β

)
, Fu,v (Mβ) and λu,v,y (Mβ) are defined

in (17), (16) and (19), respectively. The corresponding BER
expression for an Ms−ary square QAM constellation is ob-
tained by setting MI = MQ =

√
Ms and dI = dQ. Similarly,

the BER expression for an Mp−ary PAM constellation is
derived by setting MI = Mp, MQ = 1 and the sum over
the Q dimension disappears. The expression (22) provides an
efficient and fast approach to evaluate the BER performance
compared to Monte-Carlo computation which can be very time
consuming.

IV. NUMERICAL RESULTS

In order to evaluate the accuracy of the derived BER
expression, we compare the analytical results with Monte-
Carlo simulation results for various constellations and different
mismatch levels. We assume N = 2048. We generate L

independent gain mismatch values dg
(100%)
l according to a

uniform distribution over the interval [−1, 1] and keep these
fixed. These L values form the basis for all shown simulations.
They can be interpreted as 100% level gain mismatch values
corresponding to a particular TI-ADC implementation. The
level of mismatch will be varied by scaling the dg

(100%)
l gain

mismatch values, i.e., for an x% mismatch level, we use as
the gain mismatch values: dg(x%)

l = x
100dg

(100%)
l .

In Fig. 4, the BER performance for a system impaired by
a gain mismatch level of 5% or 10% is compared to the
BER performance of a system without gain mismatch. Results
are presented for rectangular QAM (dQ

dI
= 2), square QAM

(dQ

dI
= 1) and PAM constellations with different modulation

orders when the number L of sub-ADCs equals 256 (note
that in practice, the number L of sub-ADCs can be larger. For
example, 56 GSa/s 8-bit TI-ADC in 65 nm CMOS technology,
designed by Fujistu for 100 Gbps communication systems,
interleaves up to 320 successive approximation register ADCs
[15].). It can be seen that the theoretical BER curves cor-
respond well with the simulation results. Further, Fig. 4
illustrates that the BER performance degradation becomes
more severe when the mismatch level increases.

Fig. 5 shows the empirical and theoretical BER results for
16 QAM and 20% mismatch when the number L of sub-ADCs
is 4, 8, 16 and 32. It can be observed that the analytical BER
curves are not in agreement with the simulated BER curves
when L equals 4, 8 and 16. In fact, the simulated performance
is significantly better than that predicted by the theoretical
expressions. This implies that the derived BER expression
overestimates the effect of the gain mismatch. The deviation
between theory and simulation decreases with increasing L.
When L equals 32, the theoretical results match with the
simulations. The deviation between the theoretical results and
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the simulations can be explained by the fact that when L
is small, Φn in (12) can no longer be approximated as a
complex Gaussian random variable because the central limit
theorem does not hold. Although the proposed theoretical
expression for the BER does not hold for small values of L,
it can still serve as an upper bound on the BER. Taking into
account that in the coming years, the number of sub-ADCs
will rapidly increase to achieve an even higher sampling rate,
the approximate BER expression presented in this paper are
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Fig. 5. BER curves for 16 QAM and 20% mismatch when L equals 4, 8,
16 and 32.

expected to be a useful tool to evaluate the performance of
future TI-ADCs.

V. CONCLUSIONS

In this paper, we used a Gaussian approximation approach to
derive an approximate closed-form BER expression for PAM-
and QAM-OFDM systems impaired by a gain mismatch of
a TI-ADC realization, assuming AWGN channel and BRGC
mapping. The proposed BER expression is very accurate for
large L, and for a small number L of sub-ADCs, it can serve
as an upper bound on the BER performance.

APPENDIX A
THE VARIANCE σ2

β

Let us decompose the total noise Φn in (12) as:

Φn = Φ1,n +Φ2,n +Φ3,n, (23)

where Φ1,n =
√
Es

L
2 −1∑

i=−L
2 ,i ̸=0

DGiXn−iN
L

, Φ2,n =

L
2 −1∑

i=−L
2 ,i̸=0

DGiWn−iN
L

and Φ3,n = (1 +DG0)Wn, respec-

tively. It immediately follows that:

1) Φ1,n, Φ2,n and Φ3,n are statistically independent with
zero mean.

2) Φ1,n is the sum of i.i.d. random variables. Therefore,
according to the central limit theorem, when the number
L of sub-ADCs is sufficiently large, Φ1,n can be con-
sidered as a Gaussian distributed variable with variance



σ2
Φβ

1

per β−dimension, with

σ2
Φβ

1

=



Esξ

L
2 −1∑

i=−L
2 ,i ̸=0

(ℜ{DGi})2

+Es (1− ξ)

L
2 −1∑

i=−L
2 ,i ̸=0

(ℑ{DGi})2, if β = I

Esξ

L
2 −1∑

i=−L
2 ,i ̸=0

(ℑ{DGi})2

+Es (1− ξ)

L
2 −1∑

i=−L
2 ,i ̸=0

(ℜ{DGi})2, if β = Q

,

(24)
where ξ is the average energy per symbol in the I dimen-
sion of the constellation (note that since the constellation
was considered to have unit-energy, the average energy
per symbol in the Q dimension of the constellation is
1− ξ.).

3) Φ2,n and Φ3,n are Gaussian distributed random variables
with respective variances per I/Q dimension :

σ2
Φβ

2

=
N0

2

L
2 −1∑

i=−L
2 ,i̸=0

|DGi|2, (25)

and
σ2
Φβ

3

=
N0

2
(1 +DG0)

2
. (26)

In conclusion, for larger L, the quantity Φn from (12) and
(23) can be considered as a complex-valued Gaussian random
variable with independent real and imaginary components,
having zero mean and variance σ2

β in the β−dimension given
by:

σ2
β = σ2

Φβ
1

+ σ2
Φβ

2

+ σ2
Φβ

3

, (27)

where σ2
Φβ

1

, σ2
Φβ

2

, and σ2
Φβ

3

are defined as in (24), (25) and
(26), respectively.
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