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Abstract

Microbial single cells can be characterized by
their phenotypic properties using flow cytom-
etry. Therefore flow cytometry can be used
to analyze various aspects of environmental
microbial communities. In recent years, re-
searchers have focused on fully exploiting the
multivariate data that such analyses gener-
ate. As they are interested in the diversity of
an environmental sample, we need a proper
estimation of the number of species and their
abundances. We modified a recently pub-
lished algorithm to estimate the microbial di-
versity based on flow cytometry data. Af-
ter giving a brief sketch of the problem set-
up, we will review this algorithm alongside
its various implementations. Moreover we
will present our current implementation com-
bined with future challenges we foresee.

1. Introduction

Scientists are leaning more and more towards to the
use of flow cytometry (FCM) to analyze microbial
communities in an environmental context (De Roy
et al., 2012; Props et al., 2016). Using FCM, phe-
notypic properties of single cells can be measured us-
ing scatter signals and fluorescence intensity (Müller &
Nebe-von Caron, 2010), resulting in a multiparametric
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description of every cell.

Microbiologists and environmentalists are interested in
measuring the biodiversity of a sample, expressed by
the number of species and by the evenness of a species
community, which can be calculated from the relative
abundances. Opposed to synthetic microbial commu-
nities, we often do not know which species to encounter
in environmental samples. This means that in order
to determine the diversity of an environmental com-
munity, we are left with unsupervised methods such
as clustering in order to make an estimation. A vari-
ety of algorithms already exists in the FCM literature
(Aghaeepour et al., 2013), however most of them are
developed in a medical context. A recent study has
shown that these state-of-the-art FCM clustering al-
gorithms do not achieve optimal results when applied
to time series of environmental flow cytometry data
(Hyrkas et al., 2016).

Recently an algorithm able to deal with non-spherical
clusters of varying sizes was proposed (Rodriguez &
Laio, 2014). Although the general approach is in-
tuitive, various implementations exist, and the most
optimal implementation seems to be domain-specific.
Therefore, a brief review of the algorithm will be given
in the next part. Conclusively our current implemen-
tation is presented, for which preliminary results are
promising.

2. Algorithm overview

The algorithm is built in terms of the local density ρ
and the distance to the nearest point with a higher
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density δ. The basic assumption of the algorithm is
that different density peaks resemble with different
clusters. Peaks are identified having both large ρ and
δ, quantified by a decision function γ = ρ× δ. Points
are next assigned according to a walk down the hill
principle, i.e., to those clusters to which their nearest
neighbor with higher density is assigned to.

Whereas the general principles are quite clear, varia-
tions in implementation appear on two levels. First,
ρ can be determined in various ways. Whereas the
original implementation uses a hard threshold, alter-
native implementations already exist to implement a
soft threshold, e.g. by using a Gaussian kernel function
(Du et al., 2016; Wang et al., 2016), or by perform-
ing a kernel density estimation (KDE) (Wang & Xu,
2015).

Second, there are two main problems concerning the
recognition of genuine density peaks As (Liang &
Chen, 2016) note:

• There is no quantitative way of determining a
‘peak-distinguishing’ threshold for γ.

• γ might identify so-called ‘pseudo’ cluster centers,
points which have a large value for γ but in fact
do not constitute peaks.

Several solutions have been proposed (Wang & Xu,
2015; Chen et al., 2016; Cheng et al., 2016; Jia et al.,
2016), all which seem suitable for the application the
method is applied to, but these criteria do not seem
sufficient or applicable to our problem set-up. In the
next section we will illustrate our implementation of
the algorithm and motivate choices we made along the
way.

3. Current implementation &
preliminary results

1. Data preprocessing. During the data preprocess-
ing step, data is often transformed and normalized
(O’Neill et al., 2013). We perform a hyperbolic
arcsine transformation after which we standard-
ize our data.

2. Dimensionality reduction. In our case we have
data in 12 dimensions. In order to cope with
the curse of dimensionality, we first perform a
dimensionality reduction technique. For now we
have gained the best results using Kernel Princi-
pal Component Analysis (Scholkopf et al., 1998),
using the first three or four components.

3. Density estimation ρ. As a density estimation we
choose to perform KDE with a Gaussian kernel in

Figure 1. Decision graph ρ − δ for one sample taken from
(Props et al., 2016).

combination with a grid search in order to obtain
an optimal bandwidth h. In this way we obtain a
continuous density function. A future implemen-
tation might follow the method suggested by (Du
et al., 2016), which uses k-nearest neighbors to in-
corporate more local properties when estimating
ρ.

4. Calculate δ. Having estimated ρ, it is straight-
forward to determine δ. For now we use the Eu-
clidean distance to determine the nearest neigh-
boring point with higher density, however a dif-
ferent distance metric might also be used. Having
calculated ρ and δ (and after normalizing them),
we are able to visualize the decision graph ρ− δ,
see Fig. 1.

5. Discerning density peaks and clustering the data.
So far we have not found a suitable decision func-
tion or decision criteria. Using available metadata
we can fit a threshold for δ above which points are
identified as peaks. Using this approach we are
able to achieve comparable results as reported by
the fingerprinting method in (Props et al., 2016).

4. Future challenges

The current challenge lies in optimizing the decision
boundary of the decision graph ρ − δ for the identifi-
cation of actual peaks. As the number of species in an
environmental sample can be bigger than 100 species,
and as the abundances can vary up to three orders
of magnitude, a more sophisticated implementation of
the algorithm will be needed, as the goal is to retain
to a fully unsupervised learning approach.
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