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... if Nature had given a scope for things 
To be forever broken more and more, 

By now the bodies of matter would have been 
So far reduced by breakings in old days 

That from them nothing could, at season fixed, 
Be born, and arrive its prime end of life. 

Lucretius, Rerum Natura (50 B.C.) 
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Chapter 1 

OUTLINE OF THE THESIS 

In this work, the development and demonstration of novel oxidation processes in combination 

with existing biological treatments (anaerobic digestion and fermentation) was aimed at for 

the enhanced valorisation of renewable organic waste. This valorisation is situated both at the 

level of biofuel production from renewable materials as well as the reuse of industrial process 

waters. The total concept of the dissertation is given in Figure 1.1. 

Organic waste 

CHAPTER2 

Wet oxidation pre- CHAPTER3 Valorisation of 
treatment (EAOP and process 

A WO process) wastewaters 

+ CHAPTER 5 & 6 

Anaerobic digestion/Simultaneous Valorisation of 
saccharification and fermentation biogas/bio-ethanol 

A~ 

Biological/thermal/wet .. oxidation post-
~ 

treatment (A WO 
CHAPTER4&6 

process) 

CHAPTER 7 

Valorisation of waste 
nutrients 

Figure 1.1. Conceptual framework of the thesis 



Clmpter 1 : Outline of tlw t/wsis 

Chapter 2 summarizes all relevant literature with regard to both existing treatment 

technologies and management options for organic waste with main emphasis on biowaste. 

Particularly non-biological pretreatments and post-treatments are discussed in the light of the 

existing biological treatment technologies for solid biowaste. 

In a first experimental phase, an electrochemical wet oxidation method based on newly 

developed boron-doped diamond electrodes (Electrochemical Advanced Oxidation Process or 

EAOP process, Figure 1.1) was investigated for its ability to partially or completely 

mineralise biologically recalcitrant organic compounds. The results of this work are given in 

Chapter 3, where the electrochemical degradation of chelating agents (EDTA, NTA) and 

surfactants (sodium dodecylbenzenesulfonate and hexadecyltrimethyl ammonium chloride)

commonly occurring pollutants in organic waste- is highlighted. 

The main theme in Chapters 4, 5 and 6 was the advanced energy recovery from biowaste 

under the form of biogas or bio-ethanol (Chapter 5) by employing existing fermentation 

processes in combination with new thermal treatment methods either under oxidative 

(Alkaline Wet Oxidation or AWO process, Figure 1.1) (Chapters 5 and 6) or non-oxidative 

(Chapter 4) conditions. 

In Chapter 5, the A WO process was investigated as a pre-treatment for the simultaneous 

saccharification and fermentation of biowaste into ethanol. In Chapters 4 and 6, it was 

hypothesized that the biogas production from biowaste can considerably be increased (> 25% 

increase) when conventional anaerobic digestion is coupled to advanced thermal treatment 

methods. The main emphasis here was the enhancement of both the enzymatic and anaerobic 

biodegradability of the lignocellulose fraction contained in the waste. In Chapter 4, this 

hypothesis was placed in the context of a life support programm for space applications 

whereas Chapter 6 aimed at developing a novel integrated process for increased and 

sustainable biogas recovery from biowaste on earth. 

The general discussion in Chapter 7 focuses in first instance on the technical merits of the 

work and an estimation of the economical costs involved in the proposed EAOP and A WO 

process is given. Second, the potential applications of both technologies are discussed in the 

light of sustainable integrated waste management. Finally, some future perspectives for 

sustainable organic waste management relative to the Kyoto agreements are proposed with 

anaerobic digestion as a key technology. 

2 



Chapter 2 

LITERATURE REVIEW 

2.1. INTEGRATED ORGANIC WASTE MANAGEMENT 

Organic solid waste is an inevitable product of human society. As far in history as the ftrst 

living creatures on earth appeared, the earth resources have been exploited by living 

organisms to support life with the resulting disposal of wastes. The assimilation process or 

return of organic wastes to nature is fundamental to sustain the elemental cycles of life and 

largely depends on the amount of land, air and water available per capita or living organism 

(Tchobanoglous et al., 1993). The increasing population worldwide and the subsequent 

increased pressure on the natural resources in a technologically-based society have caused an 

exceedance of the natural assimilative capacity in many places. In this regard, integrated 

waste management is an essential tool to save the environment for the future generations. 

This chapter provides an insight into the principles and practices of integrated waste 

management applied to organic waste generation. The goals of the various aspects of 

integrated waste management will be discussed with special emphasis on the need for 

valorisation of organic waste under the form of energy and materials recycling in European 

perspective. In a second part, the solid waste sources and their composition are given and the 

currently applied waste transformation processes into biofuels (biogas and bio-ethanol 

mainly) are explained. Special attention will be given to existing pre-and post-treatments in 

addition to anaerobic digestion of organic waste. 

To conclude, the current European policy on renewable energy from biomass is clarified. 

2.1.1. Definitions 

2.1.1.1. Organic waste 

The EEA (European Environment Agency) defmes waste as "materials that are not prime 

products for the market for which the generator has no further use in terms of his/her own 

3 



Chapter 2 : Literahtre review 

purposes of production, transformation or consumption, and of which he/she wants to 

dispose''. 

Waste can also shortly be defmed as "materials with lack of use or value" (White et al., 1995). 

This defmition underlines the most important aspect of dealing with waste, namely the fact 

that once value is restored to waste, it is no longer "waste''. In fact, waste has in many cases a 

similar (elementar) composition as the useful products from which it is derived but in a less 

appealing or less safe form (e.g., due to mixing or due to the unknown composition). In this 

regard, separation of waste is an important processing step to restore the value of waste. 

According to the EEA, organic waste is "waste containing carbon compounds". Because of 

the broadness of the term organic waste, municipal solid waste (MSW) is more often used 

which is "solid waste from households, as well as other solid waste which, because of its 

nature or composition, is similar to solid waste from households". Due to its very 

heterogenous composition (glass, metal, paper, plastics and organics), the organic fraction of 

municipal solid waste (OFMSW) is then defmed as the organic or biodegradable fraction of 

municipal solid waste. 

2.1.1.2. Integrated solid waste management 

Integrated environmental management is according to the EEA officially defmed as "a 

philosophy that prescribes a code of practice for ensuring that environmental considerations 

are fully integrated into all stages of the development process in order to achieve a desirable 

balance between conservation and development". This defmition can be applied to integrated 

waste management, which is a waste management practice which integrates all types and 

sources of solid wastes, is market-oriented, is flexible to meet social, economic and 

environmental conditions and is applied on a large scale and regional basis (White et al., 

1995). This implies that conversion technologies are chosen which restore the value of the 

waste (waste valorisation) by the production of marketable products. 

2.1.1.3. Biodegradable waste 

"Any waste that is capable of undergoing anaerobic or aerobic decomposition" is defmed as 

biodegradable waste. Bioconversion is the microbial transformation and upgrading of various 

organic wastes to products ofhigh(er) value (Gajdos, 1998). 

4 



Chnpter 2 : Liternture review 

2.1.1.4. Waste recovery 

Under waste recovery is understood "the act of regaining energy from waste'·. Related to but 

different from recovery are the terms reuse and recycling . Both terms imply the use of a waste 

product for use as raw material in the same production process. In waste management, reuse 

of waste is however prefened above recycling since the former does not require structw-al 

changes to the waste product. 

2.1.2. Environmental impacts of organic waste 

The management and sustainable disposal of solid organic waste is needed for two major 

reasons: conservation of resow-ces and the prevention of pollution of the environment (White 

et al. , 1995). Today, the conservation of our natw-al resow-ces is confmed in sustainable 

development, defmed in the Brundtland Report (WCED, 1987) as "development that meets 

the needs of the present without compromising the ability of future generations to meet their 

own needs". This concept meets the overall objectives of integrated waste management, 

namely to further increase the economic wellfare and well-being of society while, at the same 

time, reducing resource requirements to a level consistent with the natw-al carrying capacity 

of ecosystems (EEA, 2003 ). 

The most important effects of solid waste on the environment can be summarized as follows 

(Sonesson et al. , 2000): 

• acidification and eutrophication potential 

• climate change and greenhouse effect 

• human health and pollution of natural resources 

2.1.2.1. Acidification and eutrophication potential 

Acidification and eutrophication of soils and groundwaters is a process caused by air photo

oxidants and acidifying pollutants such as NO., SOx and NH3 which are emitted mainly from 

agricultw-e, energy industries and transport and to a lesser extent from the waste sector 

(Barton and Atwater, 2002 ; EEA, 2003). Contributions of the waste sector are for example 

flue-gas compounds from waste incineration and landfill emissions. Acidification leads to 

acid rain, one of the most important environmental concerns in this regard (EEA, 2002a). 

5 



Chapter 2 : Literahtre review 

Another important environmental concern is the excessive enrichment of water resources with 

nutrients derived from organic waste (e.g., MSW) or eutrophication. This effect partially 

originates from organic waste landfills due to the high nitrogen loading of leachates (Jokela et 

al., 2002). 

2.1.2.2. Climate change and greenhouse effect 

Due to the emissions of greenhouse gases, the global mean temperature on earth has increased 

by 0.6°C (in Europe even by 1.2°C) over the past 100 years. There is stronger and stronger 

evidence that the temperature rise over the past 50 years is attributable to human activities and 

that global warming will continue increasing by 1.4-5.8°C from 1990 to 2100 (EEA, 2003). 

This change will have large impacts on natural resources and world economy. 

The generation and disposal of solid waste contributes to global climate change by the 

emission of greenhouse gases such as water vapour, C02, N20 and C~. However, the most 

significant man-made greenhouse gas emission contributing to global warming is carbon 

dioxide (C02) that is released into the atmosphere when fossil fuels are burned. Contrary to 

fossil fuels which have been formed over thousands of generations, biomass or organic waste 

is carbon neutral because the amount of carbon which is released during processing or 

degradation is equal to the amount of carbon adsorbed during the life time of the biomass (or 

the raw materials from which the waste is derived) (Figure 2.1 ). Hence, the relative 

contribution of organic waste in the release of net C02 in the atmosphere is only minor 

compared to the emissions caused by the use of fossil fuels (Wuebbles and Hayhoe, 2002). 

Figure 2.1. 
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Chapter 2: Literature revie'W 

The waste sector contributes with 3-5% to the total greenhouse gas emissions in Europe of 

which the main source is methane resulting from solid waste disposal on land (EEA, 2003). 

Methane gas (Cftt) is the most abundant greenhouse gas in the troposphere after water vapour 

and C02• Furthermore, C~ is much more effective as a greenhouse gas than C02 due to its 

reactivity with OH radicals leading to other greenhouse and oxidative gases (e.g., C02, 0 3). 

Based on current estimates, worldwide human-related biogenic and fossil fuel-related sources 

for methane are 43 .3 tons and 16.2 tons CHJI.E.year while total natural sources are around 

160 Tg CHJyear or corresponding to 25.2 tons CM.E.year (Wuebbles and Hayhoe, 2002). 

The contribution of organic waste decomposition to the waste-related CH4 is shown in Figure 

2.2. 

Figure 2.2. 

Fossil fuels 29% 
( 16.2 tons/I.E.) 

Waste 
decomposition 

17% 

(9.6 tons/I.E.) 

Domestic 
ruminants 23% 
( 12.8 tons/I. E.) 

Rice cultivation 
17% 

(9 .4 tonsil. E.) 

Contribution of individual sources to total anthropogenic methane emissions on a 

yearly basis (Wuebbles and Hayhoe, 2002) 

Ln order to decrease C~ and other gaseous emissions to the atmosphere from organic waste 

generation, sustainable waste processing technologies are needed. It is predicted that methane 

emissions from the waste sector will decrease much further by increasing the use of methane 

and energy recovery and the diversion of biodegradable waste from incinerat ion to 

composting or anaerobic treatment (EEA, 2003). It should however be remarked that waste 

transformation processes require extra energy and hence use of fossil fuel s. It is therefore 

assumed that the risk of increased C02 production is acceptable to defined levels provided 

that other more powerfull greenhouse gases such as CH.t can be curbed down (Verstraete, 

2002). 
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2.1.2.3. Human health and pollution of natural resources 

The increased urbanization in many parts of the world has resulted in increased waste 

generation at a small available surface (Moore et al., 2003). Inefficient waste management can 

place human health at risk because the natural assimilative capacity for pollutants and 

pathogens associated with the waste is exceeded. 

Pollutants present in organic waste affect air, soil and water quality. Numerous examples of 

dangerous pollutants exist of which heavy metals, dioxines and chlorinated compounds are 

among the most investigated. Other pollutants which commonly occur in source separated 

MSW are di-ethylhexyl-phtalate (DHEP), polyaromatic hydrocarbons (PAH) and linear alkyl 

benzene sulfonates (LAS) (Moeller and Reeh, 2003). 

Biodegradable waste is a major contributor to the generation of leachate, landfill gas, odour 

and other nuisances in landfills. Landfill leachate for instance contains pollutants that can be 

categorized into four groups (dissolved organic matter, inorganic macrocomponents, heavy 

metals, and xenobiotic organic compounds). Most recent studies in this field have shown that 

release of ammonia constitutes one of the major problems related to MSW landfills (Kjeldsen 

et al., 2002). 

Organic waste is known to contain many pathogenic bacteria such as Salmonella species and 

other microorganisms mainly from faecal origin that may pose a health risk for both people 

and animals. The biosecurity risk associated with the handling and reuse of treated waste as 

fertiliser can therefore not be neglected (Sahlstrom, 2003). 

2.1.3. Integrated waste management: the holistic approach 

A waste management system typically consists of several steps: waste collection and sorting, 

pre-processing, treatment and final disposal. An integrated system includes waste collection 

and sorting, followed by one or more treatment options (White et al., 1995): 

• recovery of secondary materials or recycling 

• biological treatment of organics 

• thermal treatment 

• landfilling 
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The sustainable handling and treatment of waste can mostly not be guaranteed by a single 

treatment but a range of the above treatment options. Hence, several interconnected waste 

treatment steps are needed which affect each other significantly. It is therefore necessary to 

consider the whole management system in a holistic way, whereby an overall system that is 

economically and environmentally sustainable can be reached (Figure 2.3). 

Figure 2.3. The interconnection of an integrated solid waste management system. Shaded area 

represents waste-to-energy technologies (White et al., 1995) 

The global thinking on dealing with waste follows a priority listing of waste management 

options in decreasing order of priority: waste minimisation, reuse, recycling, energy recovery, 

incineration and landfilling (White et al., 1995). 

Considering organic waste, recycling and energy recovery by biological treatment is 

considered to be the most promising treatment leading to sustainability. The high amount of 

plant nutrients and bioenergy (biochemically bound energy) in organic waste can be upgraded 

in bioconversion systems, whereby plant nutrients can be recycled and bioenergy can be used 

(Gajdos, 1998). 

The cultivation of raw materials for food production, being based on the consumption of 

fossil fuels, has a great impact on the environment. By recycling organic waste, a 

considerable amount of fossil-fuel derived energy could be saved and replaced by nutrients 

and energy derived by direct recycling (Figure 2.4). This way, the elements contained in 
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organic waste could be efficiently recycled in completely closed local bioconversion systems, 

thereby decreasing pollution and saving waste materials. The concept shown in Figure 2.4 

forms a real challenge since municipal waste is one of the hardest waste sources to manage 

due to its very heterogenous composition (Gajdos, 1998). 

Figure 2.4. 

Raw 
materials 

Integrated waste management applied to organic waste 

2.2. MUNICIPAL SOLID WASTE MANAGEMENT IN EUROPE 

2.2.1. General overview 

Disposal of 
residues 

Total waste quantities continue to increase worldwide. In Western Europe, the major waste 

producing sectors with their relative percentage are: energy production (4%), municipal waste 

(14%), industrial waste (15%), mining and quarrying (24%), construction and demolition 

(31%) and not declared waste (2%) (EEA, 2003 ). 

According to recent statistics of the European Environment Agency, about 1.3 billion tons of 

municipal waste is generated annually within the European Union of which at least 40 million 

tons are of hazardous nature. This represents a daily municipal solid waste (MSW) production 

of 400,000 tons in Europe (Mata-Alvarez et al., 2000). Besides, 700 million tons of 

agricultural wastes are produced yearly within the EU. Another troublesome waste stream is 

thickened municipal sewage sludge, of which yearly 9.4 million tons dry matter are to be 

disposed of by 2005. Finally, grey waste or residual refuse make up a relatively new waste 

stream for AD and encompasses all waste fractions that remain after source separation (e.g., 
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sludge and fibers ). These fractions are currently mostly landfilled or incinerated. All these 

abundantly produced waste streams represent a challenge for sustainable and cost-effective 

disposal. 

2.2.2. Municipal solid waste management in European perspective 

Municipal solid waste production in Europe is large and still continues to increase. In 2000, 

estimations showed that on average 550 kg/capita was produced in Western Europe which 

corresponds to 14% of the total waste production in the EU. More than 306 million tonnes are 

estimated to be collected each year, or an average of 415 kg/capita over the whole of Europe. 

From the collected MSW, about 44% is landfilled, 30% is incinerated with energy recovery 

and the remaining 26% is recovered (EEA, 2002b ). 

From the total MSW production in the year 2000, about 107 million tons or 330 kg/capita of 

biodegradable waste were generated in the EU and Norway. It is expected that the organic 

waste production in Europe will continue to increase with 10% every 5 years. 

Most European countries and regions still employ traditional "bagged mixed waste" 

collection whereas only a limited number of countries separately collect OFMSW. In fact, 

only in Belgium (Flanders), Austria, the Netherlands, Denmark and Norway, more than 30% 

of the biodegradable fraction of MSW is separately collected and treated (EEA, 2001). In 

these countries, the separately collected OFMSW is currently treated by incineration, 

composting or recycling. 

The majority (66%) of OFMSW in Europe is still being landfilled. Other employed 

management routes for OFMSW are incineration without or with energy recovery, central 

composting, recycling, anaerobic digestion and mechanical-biological pretreatment. Despite 

the increasing amount ofMSW that is recycled in the EU (11% during 1985-90 up to 29% in 

2000), plenty of recycling and recovery opportunities still exist in almost all European 

countries (EEA, 2003). As a result, the creation of market opportunities and increased public 

acceptance of biodegradable MSW is expected to increase dramatically in the near-future. 
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2.2.3. European landfill directive targets for biodegradable municipal solid waste 

To decrease the quantities of biodegradable municipal waste (BMW) going to landfill, a new 

European Directive has been defmed (1999/31/EC) which obliges the member states to 

challenge increased recycling of organic municipal waste. The Directive states that based on 

the BMW produced in 1995, the BMW going to landfill must be reduced to 75% by 2006, to 

50% by 2009 and to 35% by 2016 (EEA, 2001a). Today, most countries still send the 

majority of their BMW to landfill and thus have a long way to go to reach the targets. Only 

Denmark, Austria and the Netherlands have constituted sufficient landfill diversion capacity 

to the point that the targets set by the Directive have been met. 

Importantly, the chosen treatment options as an alternative to landfilling of BMW largely 

depend on the way in which the waste is collected. Table 2.1 summarizes the alternative 

treatments ofBMW for different waste sources as recommended by the EEA (EEA, 2001a). 

Table 2.1. Alternative treatment options for diverting biodegradable MSW away from landfill 

(EEA. 200la) 

Waste stream .. = = = c2 .s: t>JI 
.~ = ;= 0 .s .~ -l)l)t = t>JI 

:1:1 ..... "' ~ = = :1:1 .::>o = .. -·~ bll ~ ~ .Q .!::::.:., "' o:.: = "' ~:;,s .. "' 0 .. "' "' = .. c 0 ="' .. =- .. .. .... ~ ; -5 s .5 ·;; .. .. 0 .. e ~t>JI "' Cl: .... u =-"' =·- ~ ~ .. "' "' ~ Cl. e"' 0 <"' ~= = [.!) u .... e e 
Bagged mixed 

>1 >1 waste 
Refuse Derived 

>1 Fuel (RDF) 

Food and garden >1 >1 

Food >1 >1 

Garden >1 >1 

Paper >1 >1 >1 >1 >1 >1 

Textiles >1 >1 >1 >1 >1 

Wood >1 >1 >1 >1 >1 

12 



Cltapter :2 : Literahtre review 

It can be deducted from Table 2.1 that the amount of alternative treatments with high 

recycling potential is mostly larger for separately collected waste streams. However, in the 

light of integrated waste management, the fmal decision on the most appropriate treatment 

technology does not only depend on the collection technology and its environmental impact 

but also on the availability of the markets for the recovered materials. 

2.3 MUNICIPAL SOLID WASTE SOURCES AND CHARACTERISTICS 

2.3.1. Composition and properties of municipal solid waste 

2.3.1.1. Main waste fractions ofmunicipal solid waste 

Municipal solid waste composition is largely variable from country to country due to inherent 

differences in collection and sorting procedures. The main components of MSW are: paper, 

paperboard and paper products, plastics, glass, metals, food and garden waste and other 

undefmed sources. Overall, packaging waste represents about 1/3 of the MSW content in the 

EU, with paper and cardboard (63 kg/capita) being the largest fraction followed by glass (35 

kg/capita), plastics (29 kg/capita) and metals (9 kg/capita). The other 2/3 of the MSW amount 

generated in the EU consitutes the biodegradable fraction, with an average production of 160-

560 kg/capita per year (EEA, 1999). 

2.3.1.2. Physicochemical characteristics of the organic fraction of municipal solid waste 

The composition of OFMSW is highly dependent on the collection and separation procedure. 

Cecchi et al. (2003) reviewed the literature on the composition of three OFMSW sources: 

mechanically sorted from unsorted municipal waste (MS-OFMSW), separately collected 

OFMSW (SC-OFMSW) (e.g., food waste from markets, canteens ... ) and domestic source

sorted OFMSW (SS-OFMSW). The average physicochemical characteristics of the three 

waste streams are compared in Table 2.2. 

Mechanically sorted OFMSW 

Due to the mixed waste collection approach in the past, mechanical sorting technology was 

predominantly used the past 20 years to separate the organic fraction and a highly calorific 

RDF fraction (Refuse Derived Fuel) from MSW streams. As can be expected, the MS

OFMSW characteristics largely depend on the sorting plant. Overall, the MS-OFMSW still 
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contains 33% of inerts and 1.8% of plastics on TS basis. The readily biodegradable fraction or 

putrescible fraction has been reported to be only 59% on TS basis (Cecchi et al., 2003). 

Due to the incomplete separation of OFMSW from inert materials, the total solids content 

(TS) of MS-OFMSW is much higher while the TVS content is much lower(< 50% of TS) 

compared to OFMSW from other sources (Table 2.2). This results in a comparatively lower 

anaerobic biodegradability of MS-OFMSW (on average 0.3-0.38 m3 CHJkg of TVS) 

compared to separately collected OFMSW (0.4-0.5 m3 CHJkg TVS) (Cecchi et al., 2003). 

Table 2.2. Physicochemical characteristics of MS-OFMSW. SC-OFMSW and SS-OFMSW 

(Cecchi et al.. 2003) 

Parameter* MS-OFMSW SC-OFMSW" SC-OFMSW6 SS-OFMSW 

TS (glkg) 763.0 256 81.8 200 
TVS (%TS) 43.9 96.5 81.9 88 
TCOD(TS) 596 307 81.8 220 
TOC(%TS) 19.3 
IC (%TS) 1.3 
TKN(%TS) 2.2 3.2 2.1 3.2 
P ~%TS~ 0.11 0.2 2.8 0.4 

*TS = total solids; TVS = total volatile solids; TCOD = total chemical oxygen demand; TOC = total organic 
carbon; IC =inorganic carbon; TKN =total Kjeldahl nitrogen; P =total phosphorus. 
• SC-OFMSW food waste, b SC-OFMSW fruit and vegetable waste 

Separately sorted OFMSW 

The typical total solids content of separately sorted OFMSW is in the range of 15-25% while 

the total volatile solids content varies from 70-90% on TS basis (Table 2.2). 

The nutrient content of mechanically sorted OFMSW and separately collected OFMSW is 

relatively similar and varies from 2.5-3.5% TS for total nitrogen and 0.5-1% TS for total 

phosphorous (Cecchi et al., 2003). The average production of at least 280 kg of OFMSW per 

European citizen per year then corresponds to a nutrient content of 1.5-4 kg of nitrogen, 1-2.5 

kg of potassium and 0.2-0.5 kg of phosphorous (Gajdos, 1998). 

2.3.1.3. Microbiological aspects of the organic fraction of municipal solid waste 

The biosafety risks associated with biowaste (municipal waste and animal waste) should be 

carefully considered in case the recycling of the treated residue is envisaged. Since raw 

organic waste contains considerable numbers of (opportune) pathogenic bacteria, the ability 
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of the waste treatment technology to reduce the pathogenic bacteria to acceptable levels is of 

major importance (Sahlstrom, 2003). 

Pathogenic bacteria in biowaste originate from both infected sources (e.g., diseased people) 

but also from the excreta (faeces, urine and exudates) of healthy organisms. The most 

important pathogenic organisms present in solid organic waste are enteric pathogens derived 

from soil and excreta from living organisms (Santamaria and Toranzos, 2003). They are 

summarized in Table 2.3. 

Table 2.3. Concentration range and infectious dose of pathogenic agents potentially present in 

raw organic municipal waste (adapted from Sahlstrom, 2003; Santamaria and 

Toranzos, 2003 : Hassen et al., 2001 : Gaspard and Schwartzbrod. 2003) 

Agent Concentration Infectious Disease 
(number/g waste dose 

dry weight 

Bacteria 107-108 

Salmonella spp. 104-107 Salmonellosis 
Listeria monocytogenes unknown Listeriosis 
E. coli 106-1010 Gastro-enteritis 
Shigella 10-200 Dysentery 
Mycobacterium paratuberculosis unknown Crohn's disease 
Vibrio cholerae 103-107 Cholera 
Campylobacter jejuni 400-500 Campylobacteriosis 
Staphylococcus aureus 1-1010 Toxic infections 
Clostridium spp. 1-1010 Perfringens 
Yersinia enterolitica 106 Gastro-enteritis 

Enteric viruses 10-103 1-10 
Y easts and fimgi 106-107 unknown Pneumonia 
Protozoa 102-104 

Entamoeba histolytica 20 Amebiasis 
Giardia intestinalis < 10 Giardiasis 
Cryptosporidium parvum 1-10 Cryptosporidiosis 

Helminths 
Ascaris lumbricoides UJ2 to 1.3 esss 1-10 Ascariasis 

Viruses are the most hazardous infectious agents and have some of the lowest infectious doses 

of any of the enteric pathogens. Examples are hepatitis A, hepatitis E, enteric adenoviruses, 

poliovirus types 1 and 2, multiple strains of echoviruses and coxsackievirus (Santamaria and 

Toranzos, 2003). Other hazardous agents are spore-forming bacteria such as Clostridium 
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perfringens, which have been reported to survive mesophilic anaerobic digestion and 

subsequent storage of the residue (Bujoczek et al., 2002). Finally, ascaris eggs have been 

reported to be one of the most persistent pathogens and can hence be used as a hygienic 

indicator of treated excreta (Gaspard and Schwartzbrod, 2003). As a result, the biosafety of 

compost from digested MSW cannot be guaranteed for reuse purposes if no other post

treatments are considered. 

Another emerging biosafety issue on biowaste concerns the risks associated with BSE 

(Bovine Spongiform Encephalopathy) contaminants related to category 1 waste materials. 

Due to the very persistent character of BSE infected material, a new EU Directive 1774/2002 

has been implemented since May 2003 which defines the criteria of an alkaline hydrolysis 

treatment. Only after this treatment, recycling of the potentially infected material is possible 

(European Commission Regulation, 2003). 

2.3.1.4. Lignocellulose composition and biodegradability of municipal solid waste 

Lignocellulose is a collective term for the main building blocks of plant material. It consists 

of three major biopolymers, namely cellulose, hemicellulose and lignin (Figure 2.5). 

Due to its abundance in nature and its use in many daily life products (e.g., paper), 

lignocellulose forms the main matrix of municipal solid waste. On average, MSW contains 

40-50% cellulose, 5-20% hemicellulose and 10-27% lignin by dry weight (Chynoweth and 

Pullammanappallil, 1996). The main sources oflignocellulose in MSW are paper, paperboard, 

yard waste and food waste. Theoretically, cellulose and hemicellulose make up over 90% of 

the biochemical energy (or roughly corresponding to 90% of the TVS content) contained in 

MSW. Other constituents that are determining for the biochemical energy content of MSW 

are lipids (0-7%), proteins (3-10%), pectins (< 4%), starch (0.5-1%) and other soluble sugars 

(< 1%) (Chynoweth and Pullammanappallil, 1996). 

The biodegradability of lignocellulose is the major factor determining the biodegradability of 

MSW and thus crucial for the amount of energy that can be gained from it. While pure 

cellulose and hemicellulose can be easily biologically converted and the energy recovered, 

their bioavailability in lignocellulose is generally low due to the architectural design of the 

lignocellulose matrix. The rate and extent of utilization of the embedded polysaccharides 

present in lignocellulose is severely limited due to the intense cross-linking of cellulose with 

hemicellulose and lignin (Lynd et al., 2002). The cell walls of plants consist of cellulose 
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microfibrils embedded in a layer of hemicellulose and lignin defmed as the middle lamella. 

Individual cells are glued together by a 1-2 micron thick layer of lignin that also serves as a 

barrier to microbial and enzymatic attack on the carbohydrate portion of the cell wall. 

Moreover, the crystalline structure of cellulose also largely prevents penetration by enzymes 

or microorganisms and even by small molecules such as water (Lynd et al. , 2002). 

Figure 2.5. 
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Composition of lignocellulose. the principal building block of mmticipal solid waste 

While cellulose is a homogenous linear high molecular weight polymer (10,000 units on 

average) of P-l,4linked glucose, hemicellulose is much shorter(< 200 units) and has a much 

more heterogenous nature which is represented in the different sugars, side-branches and 

substituted sugars. Bacterial hydrolases degrade cellulose to yield a soluble disaccharide 

called cellobiose which on further hydrolysis results in D-glucose (Figure 2.5). Cellulose 

hydrolyzing-enzymes from different microbial species have been isolated and investigated. 

The most abundant sugars in hemicellulose are the xylan chains of P-1,4 linked xylose units. 

Depending on the kind of biomass, the xylan chains can be acetylated (e.g., up to 70% of the 
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xylans in wood). Beside acetylation, the xylan is substituted with different side-groups of 

which arabinose- and glucuronic derivatives are the most important (Bjen·e et al., 1996). The 

hemicellulose fraction also contains pectines, which are dominantly present in young plant 

tissues. Clostridia species have been described to be the most important cellulose and 

hemicellulose degrading organisms in bioconversion processes. Despite its branched 

structure, hemicellulose is more rapidly degraded than cellulose in anaerobic bioconversion 

processes (Chynoweth and Pullammanappallil, 1996). 

Lignin is considered to be a 3-dimensional network of phenolic compounds mainly based on 

three aromatic alcohols, namely coniferyl, sinapyl and p-coumaryl alcohol. Lignin is attached 

to cellulose and hemicellulose by mainly ether linkages with the hydroxyl groups of the 

cellulose and hemicellulose polysaccharides. Because lignin does not consist of repeating 

monomeric units, this lignocellulose fraction is the most heterogenous and most difficult to 

characterize (Dorrestijn et al., 2000). Though anaerobic bacteria are capable of degrading the 

monomeric units that make up the lignin molecule, it is assumed that lignin depolymerization 

(or degradation) under anaerobic conditions in digesters is low or even non-existing 

(Chynoweth and Pullammanappallil, 1996). Lignin can only be degraded by fungi and is 

therefore limited to aerobic conditions (Sanders et al., 2003). 

2.3.2. Sources, properties and biodegradability of hazardous components in municipal 
waste 

2.3.2.1. Heavy metal recycling and chelating agents 

Heavy metals are one of the major environmental concerns with regard to the reuse and 

recycling of treated muncipal solid waste under the form of compost. The frequent application 

of compost to soil systems is of great concern because it can lead to accumulation of heavy 

metals in the soil and hence cause harmfull effects to humans and the environment (Veeken 

and Hamelers, 2002). 

Heavy metals in organic municipal waste are derived from a variety of sources such as food 

products, plant material and soil organic matter (Veeken and Hamelers, 2002) but also from 

xenobiotics such as detergents and plastics. Due to the relative loss of organic material during 

most waste treatment technologies (e.g., composting or incineration), the heavy metal content 

of the waste is enriched for certain metals (e.g., Zn, Cd and Pb ). This often leads to an 

exceedance of the legal metal concentrations in the end-product (e.g., compost and fly ashes) 

(Veeken and Hamelers, 2002; Hong et al., 2000; Zorpas et al., 2000). 
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Efforts for the recycling of heavy metals present in municipal solid waste are only minor sofar 

due to the fact that source separation of MSW is still uncomplete. Moreover, the heavy metal 

content ofMSW is rather low (as low as 1 mg to few grams/kg of dry solids waste) compared 

to industrial waste streams and hence too diluted to recover metals in a cost-effective way for 

most metal recovery technologies (EU report, 2002). 

Generally, if heavy metal recovery from MSW is envisaged, heavy metals are extracted from 

the waste by leaching and electrokinetic technologies. Organic and inorganic acids, bases, 

chelating agents and tensio-active agents (surfactants) are usually used to leach out the metals. 

Several researchers found that EDTA (ethylenediaminetetraacetic acid) (Figure 2.6) has the 

greatest potential for heavy metal recovery from soils and solid waste due to its stability and 

superior chelating properties (reviewed by Korolewicz et al., 2001). Hence, EDTA or other 

chelating agents are often used to lower the heavy metal content of both compost and fly 

ashes to make them suitable for recycling or to meet the guidelines for landfilling (Hong et 

al., 2000). Electrokinetic methods are based on the solubilization of metals by EDTA and the 

subsequent recovery of the metals at an anode (Korolewicz et al., 2001). 

Figure 2.6. Ideal octahedral structure of metal-NTA and metal-EDTA complexes (Bucheli

Witschel and Egli, 2001) 

Besides its use in soil and solid waste remediation, chelating agents are widely used in 

household and industrial applications where concentrations of metal ions have to be 

controlled or undesirable metal contaminants have to be inactivated (e.g., in detergents) 

(Henneken et al., 1995 ; Bucheli-Witschel and Egli, 2001 ). The annual EDT A consumption in 

Westem-Europe alone was about 32,550 tonnes in 1997 and is expected to further increase 
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worldwide (Nottemann, 1999). Besides its use in pharmaceuticals, detergents and food 

conservatives, the main consuming sectors of EDTA are the paper and pulping industry, 

textile and photography industry, electro-plating processes and nuclear industry (Bucheli

Witschel and Eggli, 2001 ; Eklund et al., 2002). 

The main drawback of chelating agents such as EDT A is its limited biodegradability. EDT A 

has been reported to be the organic compound occuring at the highest concentrations (up to 

2.5 g/L in wastewater effluent) in many surface waters, thereby leading to eutrophication and 

disturbing the natural metal cycles (Bucheli-Witschel and Egli, 2001). Although a number of 

recent studies showed that biodegradation of EDTA in wastewater treatment plants is 

possible, the reaction conditions need to be well-defmed such as a long sludge retention time 

and a pH > 7. Furthermore, the initital cleavages of EDTA are considered to be the rate

limiting step in biological EDTA breakdown (Sillanpaa and Pirkanniemi, 2001; Nortemann, 

1999). As a result, EDTA is a recalcitrant compound that is normally not removed by 

conventional biological or physicochemical treatment technologies used in municipal waste 

treatment (Henneken et al., 1995). 

2.3.2.2. Other organic pollutants in municipal organic waste 

Other important hazardous compounds in municipal organic waste are DEHP (di-ethylhexyl

phthalate) and polyaromatic hydrocarbons (P AH) derived from plastics and linear 

alkylbenzene sulfonates (LAS) derived from detergents (Hartmann and Ahring, 2003 ; 

Moeller rand Reeh, 2003 ). 

LAS are the most widely used (anionic) surfactants worldwide and have many domestic and 

industrial applications with an estimated consumption of 2 million tonnes per year worldwide 

(Jensen, 1999). Their basic structure is depicted in Figure 2.7. 

CH3-(CH~n-CH-(C~111-CH3 9 .... ~, 
S03Na 

Figure 2.7. Structure oflinear alkylbenzene sulphonate (LAS) 
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LAS tend to easily adsorb onto organic matter (e.g., MSW) and to primary sludge in 

wastewater treatment plants. As a result, LAS concentrations in solid wastes from surfactant 

rich wastewater tend to be high (up to 30-35% of the LAS present in sewage) (Jensen, 1999). 

Although LAS in MSW can be significantly degraded during oxidative aerobic conditions 

(e.g., during composting and subsequent land application), their biodegradation during 

anaerobic treatment is mostly limited or they even show inhibitory effects towards the 

degrading bacteria (reviewed by Jensen, 1999). Gavala and Ahring (2002) and Mensah and 

Forster (2003) showed that LAS present in primary sludge from municipal wastewater 

exhibited inhibition to anaerobic digestion of the sludge. It was proposed that the biomass 

specific LAS concentration of 14 mg LAS/g TVS should not be exceeded in the anaerobic 

digestion of primary sludge (Gavala and Ahring, 2002). 

Despite the high concentrations of LAS in compost and primary sewage sludge, the rapid 

biological aerobic degradation of LAS (1-3 weeks) will most likely prevent that LAS will 

pose a threat to terrestrial ecosystems on a long term basis (Jensen, 1999). The threat rather 

comes from the toxicity the LAS exhibit towards methanogens in the anaerobic digestion of 

solid wastes (Gavala and Ahring, 2002). 

2.4. CURRENT TECHNOLOGIES FOR MSW TREATMENT 

2.4.1. Corn posting and anaerobic digestion of municipal solid waste 

Composting is the controlled aerobic biological degradation of organic material to stabilise 

organic waste and to convert it into humus-like material for fertilizer purposes. Apart from 

this, a significant mass reduction (~50%) of the waste is provided (EEA, 2001b). During 

composting, the temperature in the piled waste becomes thermophilic (55-75°C) within a few 

days which provides a sanitation effect for most pathogens and weed seeds. 

In practice, composting can be carried out without or with forced aeration for a period of 3-18 

months. Furthermore, composting is subdivided in static and agitated composting, whereby in 

the latter case the compost is turned weekly or monthly. 

Composting can be applied as sole treatment or as post-treatment to anaerobic digestion. 

Sofar, industrial anaerobic digestion facilities for the treatment of biodegradable municipal 

waste have mainly relied upon a short-term anaerobic digestion phase (typically 15-20 days), 
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followed by composting of the remaining non-digested solids (Verstraete et al., 2000; De 

Baere. 2000; Lissens et al., 2001; Van Lier et al., 2001). Hence, mostly one or more (aerobic) 

post-treatments are necessary to obtain a high-quality digestion product that can be reused for 

agricultural purposes (Mata-Alvarez et al., 2000). 

Composting bears the advantage that the digested residue mostly has a very slow biological 

turnover, given adequate soil conditions (Mata-Alvarez et al., 2000). This way, the soil can 

function as a sink of highly sequestered carbon. However, despite its suitability as an option 

to divert MSW away from landfills, composting has several drawbacks. One of them 

constitutes the fact that the post-composting step counteracts the advantages of AD in a way 

that composting is a net energy consumer that moreover results in high emission of VOC 

(volatile organic compounds), high nutrient losses (20-40% of nitrogen as ammonia) and 

carbon dioxide release. Moreover, the lack of quality of the compost often hinders the 

application of compost for fertilizer purposes (EEA, 2001b). Edelmann et al. (2001) showed 

that, based on LCA (Life Cycle Analysis) tools applied to biowaste treatment, AD has the 

advantage over composting, incineration or combination of digestion and composting because 

of the much better energy balance of AD. The overall energy and product yields of AD and 

composting are illustrated in Figure 2.8. Due to the high capital costs, AD is however still a 

factor 1.2-1.5 more expensive than composting, one of the main reasons for the common 

practice of composting. 
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matter I 
I 
I 35 kg anaerobic I .....-. I 
I compost + 

60 kg aerobic lOO kg OFMSW 
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+ I ......... 22 k Wh electricity 
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I 
I 
I 
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COMPOSTING ANAEROBIC DIGESTION 

Figure 2.8. Product and energy yields of composting versus anaerobic digestion in OFMSW 

treatment (Mata-Alvarez, 2003a) 
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2.4.2. Thermal treatment methods and landfilling 

2.4.2. 1. Thermal treatment methods 

The most known thermal treatment methods for MSW are incineration, gasification and 

pyro(ysis. 

incineration of MSW proceeds in a furnace at a temperature of at least 850°C, thereby 

reducing the MSW to about 2-5% of its original weight. Obviously, besides the generation of 

flue gas, fly ashes are produced which have to be deposited by landfilling. Both waste streams 

contain pollutants (toxic air emissions and heavy metals, respectively) and hence have to be 

treated before ultimate disposal. Although energy can be efficiently recovered (- 85% of the 

heat) during incineration, neither nutrients nor organic matter are recovered since incineration 

aims at a total destmction and sanitation of the waste. Other disadvantages of the process are 

the extensive capital costs (EEA, 200 I b). 

As indicated in Table 2.1 , thennal treatments are generally not applied to the biodegradable 

fraction of MSW but preferably to the high-calorific components of MSW (e.g., wood, 

plastics). This is due to the high moisture content (e.g., 5-35% dry matter) of biodegradable 

waste in general and their concomitantly relative low energy content, leading to low 

incineration efficiency and higher emissions. Therefore, incineration of OFMSW requires 

extensive energy-input prior to incineration and the energy yield is low. 

Pyrolysis and gas(fication are refined incineration processes and have in common that they 

transform the waste into a gas as energy carrier for the powering of boilers or gas engines. 

Pyrolysis involves the thermochemical conversion of the waste into hydrocarbons (gas and 

oil) and solid char (carbon residue) in the absence of air at temperatures between 500-700°C 

and a retention time of 0.5-1 h. In gasification, temperatures of 800-11 00°C are applied 

whereby also the carboneous fraction is gasified to a syngas by carefully controlling the 

amount of oxygen present. Similar to incineration, in both processes nutrients and organic 

matter are not recovered, high capital costs are involved and only pre-dried waste strean1s (in 

absence of oxygen) can be treated (e.g., wood chips). Another main drawback is the formation 

of carcinogenic and toxic compounds in the oil, gas and char fractions (EEA, 200 I b). 

2.4.2.2. Landjilling 

Landfilling is the deposition of waste for long-term storage of inert materials along with the 

relatively uncontrolled decomposition of biodegradable waste. The main advantage of 
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landfilling is that it can deal with all solid waste materials. The three essential outputs of a 

landfill are landfill gas, leachate and (inert) solid waste. Although methane formed during the 

(anaerobic) degradation of the waste can be partially recovered, in a number of studies 

landfills have been shown to be the least sustainable disposal method for biodegradable 

municipal solid waste (Ni et al., 2002 ; Mendes et al., 2003). 

2.5. ANAEROBIC BIOCONVERSION TECHNOLOGIES FOR RECYCLING AND 
ENERGY RECOVERY FROM MUNICIPAL WASTE 

2.5.1. Anaerobic digestion key principles 

2. 5.1.1. Fundamentals of anaerobic digestion 

Biodegradation pathways 

Anaerobic digestion (AD) is a biological process in which organic matter (either in liquid or 

solid phase) is decomposed by a syntrophic association of bacteria in the absence of oxygen. 

The main products formed during AD are methane gas (--65%) and carbon dioxide (~35%), 

the main constituents of biogas. Although AD as a treatment for waste was known already in 

the 19th century, significant progress in anaerobic digestion as an energy recovery method 

from waste only started since the 1970's, stimulated by the energy crises in that period (Mata

Alvarez, 2003b ). Since then AD has become a mature technology for the treatment of a whole 

variety of domestic, agricultural and industrial wastes such as manure, wastewaters, sludge, 

etc. 

Generally, the amount of organic matter present in the waste expressed as COD (Chemical 

Oxygen Demand) converted into biogas lies in between 50 and 75% for full-scale digesters 

while only a few percent of the organic matter is used for the growth of new biomass 

(Verstraete et al., 1996). Figure 2.9 shows the conversion pathway of particulate organic 

material during anaerobic digestion into eventually methane (and carbon dioxide). 

Hydrolysis of complex polymers (mainly lignocellulose, proteins and lipids) by hydrolytic 

organisms is the first and one of the most important steps in the bioconversion of organic 

waste. Despite the hydrolytic capabilities of many anaerobic bacteria by secretion of 

exocellular enzymes or attachment of the concerned bacteria to the solid substrate, this step is 

considered to be most rate-limiting for the digestion of solid waste and is mostly also yield-
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limiting in AD (Mata-Alvarez et al., 2000). This is particularly true for lignocellulosic 

substrate due to its inherent rigid structure. As a result, the hydrolysis of organic waste and 

hence the bioconversion into methane is mostly incomplete at normal retention times (15-20 

days) in anaerobic digesters (Sanders et al., 2000). 

Figure 2.9. 
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Overview of the biodegradation steps of complex organic matter in anaerobic 

digestion (Mata-Alvarez, 2003a) 

The subsequent step in AD is the fermentation of monomeric soluble organic substances (e.g., 

sugars) into volatile fatty acids (VFA), acetate, hydrogen and carbon dioxide (Figure 2.9). 

Besides, ammonia and amines are produced as a hydrolysis product from proteins. This step is 

one of the fastest conversion steps in AD. The long chain fatty acids (LCFA) and VFA 

produced are subsequently converted by the obligate hydrogen producing acetogens (OHPA) 

into three sole products, namely acetate, carbon dioxide and hydrogen. The fmal step then 

consists of the conversion of acetate and hydrogen gas into methane gas by acetoclastic and 

hydrogenotrophic methanogens (Garcia-Heras, 2003). Syntrophic interactions of acetate-, Hr, 
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and formate-producing bacteria with methane-producing archaea are known to be one of the 

most thermodynamically difficult reactions in anaerobic bioconversion of organic matter. 

Hence, this symbiotic interaction, which is absolutely required to sustain the 

thermodynamically unfavourable reactions of the syntrophs, is another important rate-limiting 

step in the process and its balance is decisive for the stability of the reactor (Verstraete et al., 

1996). Most of the methane ( ~ 70% of the total production) is generated by the methanogenic 

acetoclastic bacteria (AMB) such as Methanosarcina and Methanothrix (Mata-Alvarez et al., 

2003a). 

Hydrolysis kinetics in anaerobic digestion 

The rate of conversion of solid organic waste into methane and carbon dioxide largely 

depends on the rate of depolymerization (Chynoweth and Pullammanappallil, 1996). 

Several researchers calculated the first order hydrolysis constants (k values) of several waste 

components (reviewed by Mata-Alvarez et al., 2000) (Table 2.4). It should be remarked that 

the carbohydrate fraction needs to be separated in glucose, starch and cellulose, of which the 

hydrolysis constants can vary with a factor of 8 (Table 2.4 ). 

Apart from the reactor configuration, the hydrolysis rate of solid organic waste mainly 

depends on intrinsic process parameters such as the digestion temperature, pH and hydraulic 

retention time (HRT). Since an increase of the hydrolysis rate generally results in increase in 

biodegradability, it has been suggested that the rate of hydrolysis of particulate matter is 

determined by the adsorption of hydrolytic enzymes to the biodegradable surfaces (Mata

Alvarez et al., 2000). 

Table 2.4. First order kinetic constant values for hydrolysis of different biowaste materials (after 

Mata-Alvarez et al., 2000) 

Component 

Lipids 
Proteins 
Carbohydrates 
Food wastes 
Solid wastes 
Biowaste components 
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Hydrolysis constants 

0.005-0.010 
0.015-0.075 
0.025-0.200 
0.4 
0.012pH- 0.042 
0.03-0.15 (20°C), 0.24-0.47 (40°C) 
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2.5.1.2. Operational and stability parameters in the control of anaerobic digesters 

The most important operational parameters in AD are the hydraulic retention time (HRT) in 

[days], the solids retention time (SRT) in [days], the organic loading rate (OLR) in [kg 

substrate/m3.day ], the specific gas production or biogas yield (SGP) in [m3 biogas/kg 

substrate], the gas production rate (GPR) in [m3 biogas/kg substrate.day] and the substrate 

removal efficiency in [% TVS removed]. These parameters largely influence the petformance 

of the digester in terms of biogas yield and reactor stability. 

The HRT is related to the reactor volume (V) and the feed flow rate (Q). Furthermore, the 

reactor volume is also related to the OLR as summarized by equation 2.1: 

OLR= Q.So =~ 
V HRT 

(2.1) 

In practice, the biogas yield and hence the substrate removal efficiency of a substrate will 

increase with increasing HRT untill a maximum biogas yield is reached (ultimate biogas 

potential). The unconverted organic fraction in the effluent then corresponds to the non

biodegradable fraction of the influent. The OLR criterion is important due to its relationship 

with the substrate concentration So, affecting both physical petformance (substrate viscosity) 

and biochemical petformance (reactor stability) of the reactor (Garcia-Heras, 2003). Both the 

HRT and OLR are selected by taking into account the digester volume of the reactor. 

Following parameters are usually monitored to determine the stability of the AD process: 

• reactor pH and temperature 

• alkalinity and VF A concentration 

• biogas production and composition 

The interrelated pH, alkalinity and VF A concentration are of major importance with regard to 

the stability of the AD process. Since methanogenic microorganisms have a much lower 

growth rate compared to fermentative bacteria, an increase in VF A concentration (e.g., caused 

by an increase in OLR) could provoke an unbalanced development of the trophic chain. 

Whether the reactor pH and hence also the biogas yield will eventually drop or not is largely 

determined by the alkalinity of the digester, the latter being fimction of the presence of 

buffering species in the reactor such as (bi)carbonates and their counterions (e.g., Ca2
+, Mg2+, 

NH/) (Cecchi et al., 2003). 
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The digestion temperature can be either mesophilic (~34°C) or thermophilic (~55°C). The 

hydrolysis rate of solid waste materials (e.g., cellulose) is generally higher under thermophilic 

conditions. Hence, most studies with OFMSW have been carried out with thermophilic 

reactors although this phenomenon is not reflected in full-scale applications. 

2.5.2. Biogas utilization for renewable energy production 

The energy content of biogas, with a calorific value of 17-25 MJ/m3 (or about 10% lower than 

natural gas), is usually recovered by means of diesel stationary engines or dual-fuel engines 

with a thermal efficiency in the range of 30-38% (Bilcan et al.. 2003; Henham and Makkar, 

1998). Smaller engines(< 200 kWh) generally have an electrical conversion efficiency of less 

than 25% while larger engines(> 600 kWh) can reach efficiencies as high as 38%. However, 

in case hot water and steam from the engine's exhaust and cooling systems is recovered, an 

overall conversion efficiency of more than 80% can be reached (Ross et al., 1996). Possible 

alternatives for the production of electricity from biogas are gas turbines, direct carbonate fuel 

cells (Katikaneni et al., 2002) or solid oxide fuel cells (Staniforth and Ormerod, 2002). 

If it is assumed that on average 250 m3 biogas is produced from 1 ton TVS waste (50% 

bioconversion efficiency) and 2 kWh can be produced from 1 m3 biogas, then 500 kWh per 

ton dry solids waste can be generated or approximately 160 kWh/ton wet waste. 
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2.5.3. Anaerobic digestion reactor configurations for full-scale municipal waste 
. 1 processmg 

ABSTRACT 

The most common types of anaerobic digesters for solid wastes have been compared based on 

biological and technical performance and reliability. Batch systems have the simplest designs and are 

the least expensive solid waste digesters. They have high potential for application in developing 

countries. Two-stage systems are the most complex and most expensive systems. Their greatest 

advantage lies in the egalisation of the organic loading rate in the first stage, allowing a more 

constant feeding rate of the methanogenic second stage. Two-stage systems with biomass 

accumulation devices in the second stage display a larger resistance toward toxicants and inhibiting 

substances such as ammonia. However, the large majority of industrial applications use one-stage 

systems and these are evenly split between 'dry' systems (wastes are digested as received) and 'wet' 

systems (wastes are slurried to about 12% total solids). Regarding biological peiformance, this study 

compares the different digester systems in terms of organic loading rates and biogas yields 

considering differences in input waste composition. As a whole, 'dry' designs have proven reliable due 

to their higher biomass concentration, controlled feeding and spatial niches. Moreover, from a 

technical viewpoint the 'dry' systems are more robust and flexible than 'wet' systems. 

Keywords: biogas yield, biological peiformance, grey waste, inhibition, OFMSW, organic loading 

rate, total solids 

1 Redrafted after: 
Lissens, G., Vandevivere, P., De Baere, L., Biey, E.M. and Verstraete, W. (2001) Solid waste digestors: 
process performance and practice for municipal solid waste digestion. Water Science and Technology 44 (8): 91-
102. 
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INTRODUCTION 

The discussion and evaluation of reactor designs generally depend on biological, technical, 

environmental and last but not least, economical aspects. This paper strives to address the 

technical and biological viewpoints in depth and highlights a few environmental and fmancial 

issues. 

The scope of this paper is limited to feedstocks consisting mainly of the organic fraction of 

municipal solid wastes (OFMSW) sorted mechanically in central plants or organics separated 

at the source, referred to here as biowaste (the vegetable-fruit-garden, or VFG fraction). 

Necessary pretreatment steps may include magnetic separation, comminution in a rotating 

drum or shredder, screening, pulping, gravity separation (dry separation) or pasteurization 

(Figure 2.10). As post-treatment steps, the typical sequence involves mechanical dewatering, 

aerobic maturation, and water treatment but possible alternatives exist such as biological 

dewatering or wet mechanical separation schemes wherein various products may be 

recovered. 

The two main parameters chosen to classify the realm of reactor designs are the number of 

stages and the concentration of total solids (% TS) in the fermenter because these parameters 

have a great impact on the cost, performance and reliability of the digestion process. Of each 

of the discussed reactor systems, a short general theoretical approach will be given. 

Subsequently, practical considerations will be made with respect to reactor performance and 

compared with expected results from literature. Finally, future perspectives for the digestion 

of OFMSW are given. 

ONE-STAGE SYSTEMS 

The biomethanization of organic wastes is accomplished by a series of biochemical 

transformations, which can be roughly separated into a ftrst step where hydrolysis, 

acidification and liquefaction take place and a second step where acetate, hydrogen and 

carbon dioxide are transformed into methane. In one-stage systems, all these reactions take 

place simultaneously in a single reactor, while in two- or multi-stage systems, the reactions 

take place sequentially in at least two reactors. 

About 90 % of the full-scale plants currently in use in Europe for anaerobic digestion of 

OFMSW and biowastes rely on one-stage systems, approximately evenly split between 'wet' 
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and 'dry' operating conditions (De Baere. 1999). This is probably due to the lower cost of one

stage systems compared to two-stage systems . 
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Figure 2.10. Overview of possible pre- and post-treatment technologies in OFMSW digestion 

One-stage 'wet' complete mix systems 

Technical evaluation 

Under the term 'solid waste', one generally understands organic biodegradable waste with 

more than 15% TS. In 'wet' complete mix systems the organic solid waste is diluted with 

water via pulping and slurrying to less than 15% TS. Consequently, digesters of the CSTR

type (completely stirred tank reactor) are mostly used in this type of application. 

One of the first full-scale plants for the treatment of biowastes, built in the city of Waasa, 

Finland, in 1989, is based on this principle (Figure 2.11 ). 

A pulper with three vertical auger mixers is used to shred, homogenize and dilute the wastes 

in sequential batches. To this end, both fresh and recycled process water are added to attain 

10-15 % TS. The obtained slurry is then digested in large completely mixed reactors where 

the solids are kept in suspension by vertical impellers (Figure 2.11 ). 
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Figure 2.11. Typical design of a one-stage 'wet' system 
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Many technical aspects need actually be taken into account and solved in order to guarantee a 

satisfactory process performance (Westergard and Teir, 1999; Fameti et al. , 1999). First of all, 

one should realise that the origin and kind (composition) of organic solid waste have a 

significant influence on biodegradability and consequently on biogas yields. Moreover, the 

selective removal of coarse contaminants from the mainstream can be difficult to achieve. 

Therefore, a complicated plant is required involving the use of screens, pulpers, dmms, 

presses, breakers, and flotation units. These pretreatment steps inevitably result in a 15-25% 

loss of volatile solids, with a consequent proportional drop in biogas yield (Fameti et al. , 

1999). Secondly, slunied wastes do not always keep a homogenous consistency because 

heavier fractions and contaminants tend to sink. A floating scum layer generally forms during 

the digestion process due to foam producing substances present in plant materials. This results 

in the formation of three layers of distinct densities in the reactor. It is therefore necessary to 

foresee means to extract periodically the light and heavy fractions from the reactor to avoid 

damage to pumping equipment. 

A fmal technical drawback of the complete mix reactor is the occun·ence of short-circuiting, 

i.e. the passage of a fraction of the feed through the reactor with a shorter retention time than 

the average retention time of the bulk stream. This generally results in a decreased biogas 

production and less kill-off of microbial pathogens. 

Biological performance 

A useful tool for the characterisation of biological performance is the maximum sustainable 

reaction rate, which can be expressed as a rate of substrate addition, i.e. the maximum organic 
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loading rate (OLRmax expressed in kg VS/m3 reactor.d), or as a rate of product formation, i.e. 

the volume of dry biogas or, better, of methane (under standard conditions of pressure and 

temperature) produced per unit time per unit reactor volume (m3 CRJm3 reactor.d). Another 

parameter of use to quantify the rate is the retention time, which is roughly the inverse of the 

OLR when the OLR is expressed as mass wet substrate instead of mass substrate (VS). The 

best way to compare the biological performance of different reactor designs requires however 

the use of all three indicators simultaneously. 

Typical OLR.nax values for one-stage 'wet' digestion of OFMSW are in the range of 5-10 kg 

VS/m3.d. These values are particularly dependent on the origin and composition of the 

biowaste. As a whole, the pulping of the solid waste results in a better hydrolysis and 

homogenisation of the waste (Stroot et al., 2001). Consequently, one may expect higher 

biogas yields applying one-stage 'wet' digestion in comparison with one-stage 'dry' digestion 

since bacteria have better access to the substrate. However, the technical drawbacks (loss of 

biodegradable material when removing coarse materials, scum layer and heavies) compensate 

this effect resulting in a similar or even lower biogas yield compared to one-stage 'dry' 

systems for the same solid waste feed. 

Economical and environmental issues 

The slurrying of the solid wastes brings the economical advantage that cheaper equipment 

may be used (e.g., pumps and piping) relative to solid materials. This advantage is however 

balanced by the higher investment costs resulting from larger reactors with internal mixing, 

larger dewatering equipment, and necessary pre- and post-treatment steps. Overall, 

investment costs are comparable to those for one-stage 'dry' systems. 

One drawback of ecological and economical significance is the incomplete biogas recovery 

due to the loss of biodegradable organics with the removal of the floating scum layer and the 

heavy fraction. Another one is the relatively high water consumption necessary to dilute the 

wastes (about 1 m3 tap water per ton solid waste). 

One-stage 'dry' systems 

Research during the 80's demonstrated that biogas yield and production rate were at least as 

high in systems where the wastes were kept in their original solid state, i.e. not diluted with 

water (Spendlin and Stegmann, 1988; Baeten and Verstraete, 1993; Oleszkiewicz and Poggi-
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Varaldo, 1997). The new plants erected during the last decade are evenly split between the 

wet and the dry systems (De Baere, 1999). 

Technical evaluation 

In dry systems, the fermenting mass within the reactor is kept at a solids content in the range 

20-40% TS. Consequently, only very dry substrates (> 60% TS) need to be diluted with 

process water (Oleszkiewicz and Poggi-Varaldo, 1997). The physical characteristics of the 

wastes at such high solids content impose technical approaches in terms of handling, mixing 

and pretreatment which are fimdamentally different from those of wet systems. 

Transport and handling of the wastes is carried out with conveyor belts, screws, and powerful 

pumps especially designed for highly viscous streams. This type of equipment is more 

expensive than the centrifugal pumps used in wet systems. However, it is also more robust 

and flexible since wastes with solid contents between 20 and 50 % can be handled and 

impurities such as stones, glass or wood do not cause any hindrance. The only pretreatment 

which is necessary before feeding the wastes into the reactor is the removal of the coarse 

impurities larger than ea. 40 mm. This makes the pretreatment of dry systems somewhat 

simpler than that of their wet counterparts and very attractive for the biomethanization of 

OFMSW which typically contains 25% by weight of heavy inerts. 

Due to their high viscosity, the fermenting wastes move via plug flow inside the reactors, 

which offers the advantage of technical simplicity as no mechanical devices need to be 

installed within the reactor. At least three designs have been demonstrated effective for the 

adequate mixing of solid wastes at industrial scale (Figure 2.12). 

A. B. 

Feed Dtgested 
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,....._ Inoculum recycle 
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recirculation 

Figure 2.12. Different digester designs used in 'dry' systems (A illustrates the Dranco design, B the 

Kompogas and BRV designs, and C the Valorga design) 
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In the Dranco process, the mixing occurs via recirculation of the wastes extracted at the 

bottom end, mixing with fresh wastes (one part of fresh waste for six parts of digested waste), 

and pumping to the top of the reactor. This simple design has been shown effective for the 

treatment of (bio) wastes ranging from 20 to 50 % TS. 

The Kompogas process works similarly, except that the plug flow takes place horizontally in 

cylindrical reactors. The horizontal plug flow is aided by slowly-rotating impellers inside the 

reactors, which also serve for homogenization, degassing, and resuspending heavier particles. 

This system requires careful adjustment of the solid content aroWld 23 % TS inside the 

reactor. At lower values, heavy particles such as sand and glass tend to sink and accumulate 

inside the reactor while higher TS values cause excessive resistance to the flow. 

The Valorga system is quite different in that the horizontal plug flow is circular in a 

cylindrical reactor and mixing occurs via biogas injection at high pressure at the bottom of the 

reactor. This biogas injection takes place every 15 minutes through a network of injectors 

(Fruteau de Laclos et al., 1997). Due to mechanical constraints, the volume of the Kompogas 

reactor is fixed and the capacity of the plant is adjusted by building several reactors in 

parallel, each one with a treatment capacity of either 15,000 or 25,000 tons/year (Thurm and 

Schmid, 1999). Possible drawbacks of this system are the clogging of the gas injection ports 

and the overall maintenance. 

Biological performance 

In terms of extent of VS destruction, the three 'dry' reactor designs discussed above perform 

very similarly, with biogas yields ranging from 90m3/ton fresh garden waste to 150m3/ton 

fresh food waste (Fruteau de Laclos et al., 1997; De Baere, 1999). These yields correspond to 

210-300 m3 CHJton VS, i.e. 50-70% VS destruction. 

Differences among the dry systems are more significant in terms of sustainable OLR. The 

Valorga plant at Tilburg, The Netherlands, treats waste peaks of 1,000 ton VFG wastes per 

week in two digesters of 3,000 m3 each at 40 oc (Fruteau de Laclos et al., 1997). This 

corresponds to an OLR of 5 kg VS/m3.d, a value comparable to the design values of plants 

relying on wet systems. Optimized 'dry' systems may however sustain much higher OLR such 

as the Dranco plant in Brecht, Belgium, where OLR values of 15 kg VS/m3.d were maintained 

as an average during a one-year period (De Baere, 1999). 

When comparing 'dry' and 'wet' one-stage systems in terms of biological performance, 

OLRmax and biogas production need to be considered simultaneously. In the digestion of 
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OFMSW, the OLRmax will be largely determined by the growth rate of the acid producing and 

hydrolyzing bacteria and the growth rate of the methanogenic bacteria. This is particularly 

true for the VFG-fraction which generally has a very high biodegradability resulting in high 

acid production and high biogas yields. 

As a whole, higher OLR are being achieved in both bench scale and full scale applications of 

one-stage 'dry' systems compared with water diluted 'wet' systems. Moreover, slightly higher 

biogas yields (< 10%) are to be expected in 'dry' systems compared to 'wet' systems since 

neither heavy inerts nor scum layer need to be removed before or during digestion (De Baere, 

1999; Weiland, 1992). 

Since inhibitors (mainly ammonia for OFMSW) often limit the OLR max of reactors treating 

OFMSW, the sensitivity of reactor designs towards inhibition is of particular concern. One

stage 'wet' reactors generally suffer from the disadvantage that the reactor content is fully 

homogenized. This results on the one hand in the elimination of spatial niches wherein 

bacteria may be protected from high concentrations of inhibitors. On the other hand, the 

slurrying of the waste might also lead to an increased solubilization of nitrogen resulting in 

higher free ammonia levels in the reactor. However, the slurrying of solid waste also results in 

a dilution of the ammonia concentration. Kayhanian (1999) showed that by adding fresh water 

to high-solids waste, the ammonia inhibition effect could be mitigated. In general, for solid 

wastes with a C/N ratio above 20, the ammonia inhibition effect can be compensated by the 

dilution effect of water which lowers the concentration of potential inhibitors. 

Economical and environmental issues 

The economical differences between the 'wet' and 'dry' systems are small, both in terms of 

investment and operational costs. The higher costs for the sturdy waste handling devices 

required for 'dry' systems are compensated by a cheaper pretreatment and reactor, the latter 

being several times smaller than for 'wet' systems. The smaller heat requirement of 'dry' 

systems does not usually translate in fmancial gain since the excess heat from gas motors is 

rarely sold to the industry (Baeten and Verstraete, 1993). 

Differences between the 'wet' and 'dry' systems are more substantial on environmental issues. 

While 'wet' systems typically consume one m3 fresh water per ton OFMSW treated, the water 

consumption of their 'dry' counterparts is ea. 10-fold less. Moreover, better hygienization can 

be achieved with 'dry' thermophilic plug flow systems (Baeten and Verstraete, 1993). 
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TWO-STAGE SYSTEMS 

The rationale of two- and multi-stage systems is that the overall conversion process of 

OFMSW to biogas is mediated by a sequence of biochemical reactions which do not 

necessarily share the same optimal environmental conditions. Optimizing these reactions 

separately in different stages or reactors may lead to a larger overall reaction rate and biogas 

yield (Ghosh et al., 1999). Typically, two stages are used where the ftrst constitutes the 

liquefaction-acidiftcation compartment, with a rate limited by difficult anaerobically 

degradable substrates such as the hydrolysis of lignocellulose complexes. The second stage 

constitutes the acetogenic and methanogenic compartment, with a rate limited by the slow 

microbial growth rate of the methanogenic bacteria (Liu and Ghosh, 1997; Palmowski and 

Muller, 1999). With these two steps occurring in distinct reactors, it becomes possible to 

increase the rate of methanogenesis by designing the second reactor with a biomass retention 

scheme or other means (Weiland, 1992; Kiibler and Wild, 1992). However, the main 

advantage of a two-stage system is not its higher biogas yield or rate but rather its increased 

biological stability for wastes which cause unstable performance in one-stage systems (i.e. 

cellulose-poor wastes with C/N ratios lower than 10). 

Without biomass retention 

Technical evaluation 

The most simple design, used primarily in laboratory investigations, are two completely 

mixed reactors in series (Pavan et al., 1999; Scherer et al., 1999), where wastes are shredded 

and diluted with process water to ea. 10 % TS before entering the ftrst digester. Another 

possible design is the combination in series of two plug-flow reactors, either in the 'wet-wet' 

or 'dry-dry' mode, as illustrated by the Schwarting-Uhde (Figure 2.13) and BRV processes, 

respectively. Both fermenters are upwardly through-flowing cylindrical reactors, in which a 

plug-flow occurs. This is achieved by fttting perforated sheets, which result in a defmed 

residence time. In the ftrst cycle, the tank level in the fermenter is raised within a short time 

by means of two-way impulse pumps ('in grey', Figure 2.13). This results in a liquid level 

drop in the equalizing tank. In this way, local intermixing is forced and gas bubbles which 

have already been formed are ensured. The more heavy particles sink to the bottom of the 

reactor and are removed (Trosch and Niemann, 1999). A drawback of this technique is the 
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potential occurrence of methanogenesis in the first reactor when hydrolysis becomes rate

limiting. 

Diluted 
fmely
crushed 
influent 

Tank level 

Equalizing tank 

Biogas 

-+++--

Heavies 

Figure 2.13. The Schwarting-Uhde process, a two-stage 'wet-wet' plug-flow system applicable to 

source-sorted biowastes, finely-choped (ea. 1 mm) and diluted to 12% TS 

In the BRV process, the source-separated biowastes, adjusted to 34 % TS, pass through an 

aerobic upstream stage where organics are partially hydrolyzed and ea. 2 % organics are lost 

through respiration. The reason for conducting the hydrolysis stage under microaerophilic 

conditions is that the loss of COD due to respiration is more than compensated by a higher 

extent of liquefaction, which, moreover, proceeds faster than under anaerobic conditions 

(Wellinger et al., 1999; Capela et al., 1999). After a two-day retention time, the pre-digested 

wastes are pumped through methanogenic reactors in a horizontal plug flow mode. The 

digestion is set at 25 days at 55 oc and 22% TS (after dilution). 

Biological performance 

As already indicated, the main advantage of the two-stage system is the greater biological 

stability it affords for very rapidly degradable wastes like fruits and vegetables (Pavan et al., 

1999). For instance, short-lived fluctuations of the applied OLR for highly biodegradable 

kitchen waste will be better buffered with two-stage systems compared to one-stage systems. 

However, in cases where special care is taken to mix the feed thoroughly and dose it at 

constant OLR, one-stage 'wet' systems are as reliable as two-stage systems, even for highly 

degradable organic wastes. 
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h1 tem1s of biogas yields and OLRmax, little difference can be noted between one- and two

stage systems, at least for two-stage systems without a biomass retention system. For 

example, the BRV plant in Heppenheim is designed with an OLR of 8.0 kg VS/m3.d while the 

Schwarting-Uhde process can sustain an OLRmax up to 6 kg VS/m3.d (Trosch and Niemann, 

1999). The average biogas yields for the BRV-process and the Schwarting-Uhde process are 

also similar. 

With a biomass retention scheme 

Technical evaluation 

ill order to increase rates and resistance to shock loads or inhibiting substances, it is desirable 

to achieve high cell densities of the slowly-growing methanogenic consortium in the second 

stage. There are two basic ways to achieve this. The first method to increase the concentration 

of methanogens in the second stage is to uncouple the hydraulic and solids retention time, 

thereby raising the solid content in the methanogenic reactor. These accumulated solids 

represent active biomass only when the wastes do not leave more than 5-15% of their original 

solid content as residual suspended solids inside the reactor. One way to uncouple the solid 

and hydraulic retention times is to use a contact reactor with internal clarifier (Weiland, 

1992). Another way is to filter the solid waste of the second stage on a membrane and return 

the concentrate in the reactor in order to retain the bacteria (Madokoro et al. , 1999). A last 

method to increase the concentration of slowly-growing methanogens in the second stage is to 

design the latter with support material allowing attached growth, high cell densities and high 

sludge age. 

m the BT A 'wet-wet' process, methanogenic bacteria are enriched by means of a fixed film 

loop reactor. The 10% TS pulp leaving the pasteurization step is dewatered and the liquor is 

directly sent to the methanogenic reactor. The major drawback of this system though is its 

technical complexity as several reactors are necessa1y to achieve what other systems achieve 

in a single reactor. 

Biological performance 

m two-stage designs with attached growth, greater resistance toward inhibiting chemicals is 

achieved. While the one-stage system failed at OLR of 4 kg VS/m3.d for those wastes which 

yielded ea. 5 g NH/11 due to ammonium inhibition, the same wastes could be processed in the 

two-stage system at OLR of 8 kg VS/m3.d without impairment of methanogenesis (Weiland, 
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1992). It was stated that for residues with a C/N-ratio above 15 the one-step process should be 

used preferably, whereas protein-rich residues with a C/N-ratio below 10 can be treated only 

in the two-step process. For the different agro-industrial residues (mainly vegetable matter) it 

was fOlmd that about 50-70 % of the organic matter can be degraded within retention times of 

I 0 - 20 days. The biogas production was typically 300 - 500 m3 per ton of dry organic matter 

(Weiland, 1992). 

Another consequence of two-stage systems with biomass retention is the possibility of 

applying higher OLR in the methanogenic reactor, with values up to 10 and 15 kg VS/m3.d 

reported for the BTA and Biopercolat processes, respectively (Kiibler and Wild, 1992; 

Wellinger et al. , 1999). 

BATCH SYSTEMS 

In batch systems, digesters are filled once with fresh wastes, with or without addition of seed 

material, and allowed to go through all degradation steps sequentially either in the 'dry' mode, 

i.e. at 30-40% TS, or in the 'wet' mode (15% TS or less). Though batch systems may appear 

as a landfill-in-a-box, they in fact achieve 50- to 1 00-fold higher biogas production rates than 

those observed in landfills because of two basic features . The first is that the leachate is 

continuously recirculated, which allows the dispersion of irmoculant, nutrients, and acids, and 

in fact is the equivalent of partial mixing. The second is that batch systems are run at higher 

temperatures than those normally observed in landfills. 

Technical evaluation 

In the single-stage batch design, the leachate is recirculated to the top of the same reactor 

where it is produced. This is the principle of the Biocel process, which is in1plemented in a 

full-scale plant in Lelystad, The Netherlands. treating 35,000 tons/year source-sorted biowaste 

(ten Brurnmeler, 1999). The waste is loaded with a shovel in fourteen concrete reactors, each 

of 480 m3 effective capacity and run in parallel. The leachates, collected in chambers under 

the reactors, are sprayed on the top surface of the fermenting wastes. A typical shortcoming of 

batch systems is the clogging of the perforated floor, resulting in the blockage of the leaching 

process. This problem can be remediated by limiting the thickness of the fermenting wastes to 

four meters in order to decrease compaction and by mixing the fresh wastes with bulking 

material (e.g., wood chips) (ten Brummeler, 1992). 
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In the sequential batch design, the leachate of a freshly-filled reactor, containing high levels 

of organic acids, is recirculated to another more mature reactor where methanogenesis takes 

place (Figure 2.14 ). The leachate of the latter reactor, free of acids and loaded with pH 

buffering bicarbonates, is pumped back to the new reactor. 

E Single-stage r· Sequential batch 

Figure 2.14. Configuration ofleachate recycle patterns in different batch systems 

Finally, in the hybrid batch-UASB design, the mature reactor where the bulk of the 

methanogenesis takes place is replaced by an upflow anaerobic sludge blanket (UASB) 

reactor. The UASB reactor, wherein anaerobic microflora accumulates as granules, is well 

suited to treat liquid effluents with high levels of organic acids at high loading rates. 

Biological performance 

The Biocel plant in Lelystad achieves an average yield of 70 kg biogas/ton source-sorted 

biowaste. This biogas yield is circa 40% smaller than that obtained in continuously-fed one

stage systems treating the same type of waste (De Baere, 1999). This low yield is the result of 

leachate channeling, i.e. the lack of uniform spreading of the leachate which invariably tends 

to flow along preferential paths. The design OLR of the Lelystad plant is 3.6 kg VS/m3.d at 37 

oc. Waste peak values of 5.1 kg VS/m3.d during summer months can be handled (ten 

Brummeler, 1999). 

Economical and environmental issues 

Because batch systems are technically simple, the investment costs are significantly (ea. 40 

%) lower than those of continuously-fed systems (ten Brummeler, 1992). The land area 

required by batch processes is however considerably larger than that for continuously-fed 'dry' 

systems, since the height of batch reactors is about five-fold less and their OLR two-fold less, 
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resulting in a ten-fold larger required footprint per ton treated wastes. Operational costs, on 

the other hand, are comparable to those of other systems (ten Brummeler, 1992). 

CONCLUSIONS 

A remarkable evolution has occurred in the attitude towards in-reactor digestion of solid 

wastes. The scepticism with respect to the feasibility has changed towards a general 

acceptance that various digester types are functioning at full scale in a reliable way. 

Since most existing full-scale plants were originally designed as one-stage systems, it can be 

expected that this trend will continue but with improved reactor designs related to specific 

substrates. However, it is expected that two-stage systems with a high temperature step will 

start playing a more important role in the near-future to increase sanitation and hydrolysis of 

certain wastes (e.g., industrial waste to be combined with biowaste ). 

As a whole, it must be recognized that anaerobic digestion of solid wastes (particularly 

OFMSW) still has to compete vigorously with aerobic composting. This is in part related to 

the fact that composting is a long-established technology which generally requires less initial 

investment. However, current energy prices and targetted reduction of fossil fuel combustion 

in the coming decades will draw increasingly more attention towards anaerobic digestion. 

2.5.4. Pretreatments for enhancement of anaerobic digestion of organic waste2 

In recent years, considerable efforts have been made to improve the anaerobic conversion of 

solid wastes, mostly by means of a pretreatment. This is due to the fact that there is an 

obvious link between the extent of hydrolysis (solubilization) and the biodegradation (and 

hence biogas yield) of solid organic waste. Solid organic waste contains high amounts of 

lignocellulose, of which the rate and extent of utilization of the embedded polysaccharides is 

severely limited due to the intense cross-linking of cellulose with hemicellulose and lignin. 

By enhancing the biodegradation and thus enhancing the expoitation of the biochemical 

energy contained in solid waste, AD can be made more enviromnentally sound. However, the 

economical aspect of such a pretreatment, which is in integrated waste management equally 

2 Redrafted after : 
Lissens, G., Ahring B.K. and Verstraete, W. (2003) Pretreatment technologies for enhanced energy and 
material recovery of agricultural and municipal organic wastes in anaerobic digestion. European Biogas 
Workshop 2003, University of Southern Denmark, Esbjerg, Denmark. 
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important, is a point that has not been addressed in most of the reported studies (reviewed by 

Mata-Alvarez et al., 2000 and Delgenes et al., 2003). In this sub-chapter, only the most 

succesfull biological, mechanical and physicochemical treatments for enhanced biogas and 

bio-ethanol production from biowaste are highlighted. 

2.5.4.1. Biological pretreatments 

Several biological pretreatments have been tested recently of which precomposting, 

pretreatment with digester percolate, hydrolytic enzyme addition and use of thermophilic 

bacteria are the most important ones (Mata-Alvarez et al., 2000). The number of studies 

dedicated to the use of commercial cellulases (e.g., from the fi.mgi Trichoderma resei) or 

biomass-grown enzymes (Thygesen et al., 2003) is high (Delgenes et al., 2003). These 

methods bear the advantage that they are usually straightforward and do not require major 

capital investments. However, the main drawback of using enzymes is that generally high 

doses have to be added to achieve a significant increase in biogas or bio-ethanol yield. 

Another approach is the application of cellulolytic bacteria from hydrolytic ecosystems such 

as the rumen of ruminants. This has been successfully shown by Gijzen et al. ( 1988) with pure 

cellulose, although it can be expected that the achieved biogas enhancement would be 

significantly lower with lignocellulosic substrate. 

A fmal promising method is the use of aerobic thermophilic organisms in a pretreatment step, 

whereby several authors reported significantly higher biogas yield in subsequent 

methanogenesis. This increase in biogas yield could be attributed to better solubilization of 

particulate biodegradable solids and bio-oxidation of inhibitory pollutants sorbed onto the 

solids (Delgenes et al., 2003). However, this method implies high costs due to the large 

oxygen demand and heat requirement. 

2.5.4.2. Mechanical and chemical pretreatments 

Mechanical disintegration and maceration has been applied to sewage sludge and to fibers 

contained in manure (Angelidaki and Ahring, 2000). As a rule of thumb, the smaller the fibers 

(< 0.35 mm), the higher the gain in methane potential (up to 20% gain) of the macerated 

manure. This method seems to be one of the most economical and promising to increase the 

biogas potential of manure and possibly other solid waste streams (Delgenes et al., 2003). 

Other mechanical treatments are stirred ball milling, ultrasound treatment and high-pressure 

homogenizing. However, the economic feasibility of the techniques was mostly not addressed 

and can be questioned, seen the relatively low increase in biogas yield relative to the extra 
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investment costs made. The same holds true for purely chemical pretreatment methods, which 

are based on the solubilizing power of acidic or alkaline chemicals (e.g. , NaOH or H2S04). 

These methods generally need high doses and costly and unsustainable neutralization steps 

afte1wards. Moreover, acidic pretreatment methods mostly lead to a considerable oxidation of 

the organic matter to C02, which is undesirable in tenns of green energy recovery. 

2.5.4.3. Physicochemical pretreatments 

Many different physicochemical methods have been explored to enhance the hydrolysis of 

particulate matter (mostly lignocellulose) as a prior step to the production of biogas, and in 

particular to the production of bio-ethanol from biomass. These methods can be roughly 

divided into purely thermal treatments or often refen-ed to as thermal hydrolysis and 

thermochemical treatments, the latter involving the use of dilute acid (e.g., H2S04) or alkaline 

(e.g., NaOH) addition in the presence or absence of a (oxidative) catalyst (e.g., H20z, 02). 

Mostly, temperatures equal or below 240°C and pressures varying from 3-40 bar are applied. 

When biomass is treated with water or steam alone, or with a small amount of acid (0.1-2% 

typically), the process is also refen-ed to as prehydrolysis, autohydrolysis , steaming and steam 

explosion (in case a sudden depressurization is applied). When high-pressure oxygen or air is 

present at elevated temperature and pressure, the process is called wet oxidation (Bjen-e and 

Schmidt, 1997). 

Hydrothermal processes 

Thermal hydrolysis and steam explosion disruption are by far the most commonly studied 

pretreatments prior to biogas and bio-ethanol production (Schieder et al. , 2000; Liu et al., 

2002). Compared to other them1al treatments, hydrothermal processes bear the advantage that 

they do not involve the use of chemicals and that heat recovery from steam or water is fairly 

simple. Beside a solubilization effect, steam processes rely predominantly on a physical 

disruption of the fibers and higher temperatures (150-230°C typically) are applied than in 

oxidative them1al treatments, the latter mainly due to the absence of a catalyst. Therefore, 

these processes lead to significantly higher amounts of fermentation inhibitors such as 2-

furfural and 5-hydroxymethyl-2-furfural (Bjen-e et al. , 1996). These compounds, which are 

formed by dehydration reactions from respectively pentose and hexose sugars, are together 

with soluble aromatic lignin derivatives and Maillard compounds known to be potentially 

inhibitory in subsequent anaerobic conversion (Delgenes et al. , 2003). 
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Mechanistically, hydrothermal processing is based on the autohydro(vsis reaction that is 

initially generated during the course of the process by the catalytic action of hydronium ions 

from water autoionization but mainly by the formation of acetic acid derived from acetylated 

xylan chains present in hemicellulose. Because the heterocyclic ether bonds ofhemicelluloses 

are most susceptible to autohydrolysis, hydrothermal processing generally results in a high 

solubilization degree of the hemicellulose fraction whereas the lignin and cellulose fraction 

remain unaltered in the solids (Garrote et al., 1999; Garrote et al., 2001a). Consequently, this 

strong species-specific preference limits the applicability of hydrothermolysis for AD of 

heterogenous mixed waste. 

Besides application on lignocellulosic wastes (mostly wood), hydrothermolysis has been 

extensively studied as a conditioning process for raw or digested sludges and also to improve 

dewaterability of such wastes (Delgenes et al., 2003). For that particular waste stream, the 

hydrothermal temperature optimum seemed to be lower ( 140-180°C) compared to 

lignocellulosic waste. While several authors found that the most significant enhancement in 

biogas yield was achieved under alkaline conditions (pH = 11-12), others stated that 

hydrothermal processing under alkaline conditions severely promotes the formation of toxic 

lignin derivatives and Maillard compounds (reviewed by Delgenes et al., 2003 ). 

A more exotic category of hydrothermal processes encompass sub-, near- and supercritical 

thermal treatments relative to the critical temperature of water (T = 374°C). The critical 

temperature of a substance is the temperature at and above which vapour of the substance 

cannot be liquefied, no matter how much pressure is applied. Due to the high pressures (up to 

300 bar) and temperatures (up to 450°C) applied, water will act as a solvent and as a catalyst 

for the acid-mediated hydrolysis reactions of the substrate. One successful! example is the 

study of Quitain et al. (2002), who applied sub-critical hydrothermal treatment in the presence 

and absence of H20 2 as an oxidant to produce low-molecular-weight carboxylic acids from 

organic wastes. These authors found high lactic acid production under reductive conditions 

while mostly acetic acid was formed under oxidative conditions (Quitain et al., 2002). 

Wet oxidation and AOP's 

Wet oxidation (WO) involves the use of air or oxygen as a catalyst in the liquid phase under 

elevated pressure and temperature (typically 0.5-150 bar, 150-370°C). Wet oxidation is for 

semi-solid (2-20% total solids) waste the counter process of what is called advanced 
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oxidation processes (AOP's), which are water treatment processes being based on the 

generation of hydroxyl radicals (OH·) to initiate destruction of organics at near ambient 

temperature and pressure. Due to the relatively high costs compared with conventional 

biological water treatment, AOP's play a role in the abatement of toxic or persistent 

substances which cannot or only slowly be degraded biologically. The most important AOP's 

are summarized in Table 2.5 with their reaction mechanism and the chemicals involved from 

which the OH- are derived. 

Table 2.5. Overview of AOP's with the involved oxidants and their reaction mechanisms 

Advanced oxidation process 

Ozonisation (+UV) 
Hydrogen peroxide!UV 
Ozone + hydrogen peroxide 
Fenton's reagent 
Photooxidation 
Photocatalysis 
Electrochemical oxidation 
Electron beam irradiation 
Sono lysis 

Oxidants 

03 
H202 

03+ H202 
03 and Fe(II) 

hv+ 03 + H202 
hv+ Ti02 + 02 

H20 
e 

H20 

Reaction mechanism 

03 + H20---+ 02 + 20H· 
H202+hv---> 2 OH· 

203 + H202 ---+ 2 OH· + 302 
Fe(II) + H20 2 ---+ Fe(III) + Olf + OH· 

hv+ 203 + H202---> 2 OH·+ 302 
excitation ofTi02 catalyst---+ OH· 

H20--> OH-+ e·+If' 
H20+ e·----> OH·+ H- + e·aq 
H20 + energy---+ OH-+ H· 

Electrochemical oxidation or anodic oxidation is an AOP whereby electrical power is used to 

partially or completely decompose organics at the anode. This technology has been reported 

to have several advantages over other AOP's (Rajeshwar et al., 1994; Kraft et al., 2003): 

• No need for the addition and handling of chemicals 

• No background losses and no reported toxicity of effluents 

• Amenable to automation: only two system variables (current and voltage) 

• High energy efficiency due to the development of doped diamond electrodes 

~ Purposes of the use of wet oxidation and AOP's 

The purpose of applying wet oxidation or AOP's is two-fold: either the total destruction or 

oxidation of a waste stream to C02 is aimed at (-incineration) or WO or AOP is used as a 

detoxification or modification step of a waste stream before or after fmal polishing or 
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biological degradation. In wet oxidation, the main decisive parameter in this regard is the WO 

temperature with a critical value of 200-250°C (incineration > 250°C versus modification < 

250°C), depending on the characteristics of the waste stream employed. In AOP's, the critical 

parameters are rather the concentration of oxidative hydroxyl radicals derived from the 

oxidative species employed in relation with the contact or retention time. Furthermore, wet 

oxidation and AOP 's are versatile processes that can provide complete sanitation and 

disinfection of waste streams. 

~ Oxidation reaction mechanism 

The hydroxyl radical is the most powerful, non-selective chemical oxidant known (Table 2.6) 

and consequently reacts much faster than other oxidative species such as ozone or hydrogen 

peroxide. 

Table 2.6. Relative oxidation power of some oxidizing species (Vogelpohl, 2001) 

Oxidant Molecule Oxidation power 

Hydroxyl radical OH- 2.05 
Atomic oxygen Oz 1.78 
Ozone 03 1.52 
Hydrogen Peroxide HzOz 1.31 
Permanganate Mno4- 1.24 
Chlorine Ch 1.00 

The reactions that take place during wet oxidation are still not completely understood. During 

treatment, molecular o.>..ygen is dissolved in the wastewater and reacts with the substrate. The 

oxidizing power of the system is based on the high solubility of oxygen at the employed 

reaction conditions. It is proposed that a chain reaction mechanism based on the production of 

various radical species (hydroxyl. hydroperoxyl and organic hydroperoxy free radicals) 

evolved from oxygen is responsible for the oxidation (Thomsen, 1999). As the reaction 

progresses, the oxygen and formed radicals also start reacting with oxidation intermediates 

causing an increased oxidation rate during the course of the process (Kolackzkowski et al. , 

1999). Thomsen (1999) stated that decarboxylation is an in1portant part of the wet oxidation 

mechanism, which is highly accelerated in an acidic environment. 
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The overall reaction oxidation rate in WO is govemed by two steps, being 1) the mass transfer 

of oxygen from the gas to the liquid and 2) the oxidation reaction occun-ing in the liquid 

phase. Whereas the first step is relatively easily controllable by the reaction conditions 

(temperature, pressure and reaction time), the second step largely depends on the nature of the 

biomass employed. Because an increase in reaction temperature will also increase water 

vapourisation (and consequently less liquid available for reaction), the total operating pressure 

also needs to be increased to control oxygen pat1ial pressure (Kolackzkowski et al. , 1999). 

The hydroxyl racidal mediated reactions that occur in electrochemical oxidation are 

principally the same as the bulk oxidation reactions in wet oxidation but under ambient 

temperature and pressures. Based on the anode material, the applied potential and the 

composition of the medium, either direct or indirect oxidation can be the main oxidation 

mechanism (Figure 2.15). 

DTRECT OXIDA TTON 

e· t Organics 

Decomposed 
de 

organics 

INDIRECT OXTDA TTON 

Oxidation / 

in the bulk"'. 
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Decomposed 
organics 

Figure 2.15. Scheme of electrocbemical organics decomposition through direct anodic oxidation 

and indirect bulk oxidation (after Chiang et aL 1995) 

In direct anodic oxidation, the organics are decomposed at the surface of the anode itself or 

by free radical species associated with the anode surface (Comninellis, 1994). Distinction can 

be made between active and non-active electrodes of which the oxidation mechanism is 

shown in Figure 2.16. 

The oxidation of organics at non-active electrodes (e.g., Pb02, Sn02, doped diamond 

electrodes) proceeds directly with physisorbed hydroxyl radicals whereas at active electrodes 

(Ru02, Pt, Ir02) , the hydroxyl radicals are scavenged away by the formation of an M/MO 

couple. The MO species then selectively reacts further with substrate (Figure 2.16, a). As a 

result, non-active electrodes have been reported to be ideal electrodes for organics destruction 

and combustion in wastewater (Comninellis and Pulgarirt, 1993). In case er is present in the 
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medium, the oxygen transfer at non-active electrodes is mediated by adsorbed hypochlorite 

species (Figure 2.16 .. b) (Bonfatti et al., 2000). 

(a) (b) 

M 

(~··· 
R 

M ("OH) MO M (·OH) M (HOC!)""" 

"X er 

Figure 2.16. (a): direct anodic oxidation of organics (R) at the anode (M) with simultaneous 

oxygen evolution. Pathway 3 represents the mechanism at non-active electrodes, 

pathway 2 and 4 represents the mechanism at active electrodes. (b) direct anodic 

oxidation at non-active electrodes in chloride-containing media (Comninellis, 1994 : 

Boufatti et al. , 2000) 

In indirect oxidation, mostly chlorine and hypochlorite have been used as electrochemically 

generated oxidants from chloride ions (Chiang et al., 1995). The production of these oxidants 

is highest at active electrodes and therefore they can be used for chlorination purposes 

(Comninellis and Nerini, 1995). However. the possible formation of toxic halogenated 

compounds bears major concerns for the potential application of this process. 

);> Applications of wet oxidation 

The WO process technologies and reactor designs have been thoroughly reviewed by 

Kolaczkowski et al. (1999). Although the first WO process already dates back to the late 

1950s (Zimpro process), wet oxidation has only recently been developed in Europe mostly for 

the treatment of sewage sludge or toxic wastewaters (Lendormi et al. , 2001 a; Lendormi et al. , 
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200lb). Other impo11ant WO processes for sludge treatment in Europe are the VerTech, 

Wetox, Kenox and Oxyjet system (Kolaczkowski et al. , 1999). These processes mostly aim at 

a high COD reduction (> 80%) and further biological treatment of the oxidized products 

(apm1 from C02 mainly VFA and ammonia) (Lend01mi et al. , 2001a). 

Another emerging and more recent research area is the application of mild WO ( < 250°C) to 

lignocellulosic biomass as a pretreatment for bio-ethanol production (Bjen·e et al. , 1996; 

Bjerre and Schmidt, 1997; Klinke et al. , 2001 ; Klinke et al. , 2002). The reactor configuration 

for this purpose most closely resembles the one of the Wetox process (Figure 2.17). 

Cornpr~;'ii~Or 

(1\ ir or Ox.ygl•n) 

Figure 2.17. Scheme of the Wetox process for sewage sludge processing 

The Wetox reactor is a horizontal autoclave which consists of 4-6 compartments that act as a 

series of continuous stirred tank reactors (CSTR). The reactor can be made plug flow in case a 

higher number of compartments is provided. The main benefits of this design are the 

improved oxygen transfer (from air or pure oxygen) to the waste. Due to the exothermic 

character of the WO reaction (13.5 kJ/g COD treated), the temperature progressively 

increases when the waste further moves in the reactor. The reactor configuration moreover 

allows for reusing the effluent heat to wa1m up the influent and for oxygen gas recovery from 

the vapour phase. It is stated that for concentrated wastes (up to 20% TS), the reactor can be 

operated in autothermal operation (Kolaczkowski et al. , 1999). 

At temperatures below 200°C, WO has been successfully applied to pre-treat biomasses (e.g., 

corn stover, wheat straw) to enhance the biodegradability of the lignocellulose for subsequent 
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bio-ethanol production (Varga et al.. 2003; Bjerre et al., 1996). Due to the presence of 

oxygen, WO particulary enhances the formation of low molecular weight organic acids that 

are recalcitrant to further oxidation and C02 from liberated sugars and lignin (Garrote et al., 

1999). The wet oxidation effect on lignin has been reported to be most pronounced under 

alkaline conditions (pH ~12) due to promotion of the step-wise one-electron transfer process 

under these conditions (Verenich and Kallas, 2002; Dorrestijn et al., 2000). Dilute NaOH has 

already previously been reported to cause a saponification effect or breaking of the cross

linkings in lignin and hence to facilitate enzymatic attack and anaerobic bionconversion of 

lignocellulose (Datta, 1981 ). 

In WO at T > 200°, nutrients are also converted to their highest oxidation state (e.g., sulfur to 

sulfate, halogens to halides, phosphorous to phosphate) and are predominantly transferred to 

the aqueous phase forming inorganic salts and acids. At T < 200°C, nitrogen compounds are 

largely transferred into ammonia while at higher temperatures, more oxidative species can be 

formed (N2, N03·, NO) (Kolackzkowski et al., 1999). Besides, the relatively low temperature 

( < 200°C) does not demand for expensive corrosion-resistant alloys in wet oxidation. 

Y Applications of electrochemical oxidation 

The presented electrochemical oxidation process has been extensively studied for a wide 

variety of organic pollutants and effluents with different anode materials. Examples are the 

treatment of landfill leachates (Chiang et al., 1995), textile dye solutions (Vlyssides et al., 

2000) and olive oil manufacturing wastewaters (Saracco et al., 2001). Electrolysis has also 

been applied for the removal of inorganic species from water such as nitrite and ammonia 

(Lin and Wu, 1996) and also for disinfection purposes. With regard to the latter, disinfective 

chemicals can be produced in situ which have been proven to be effective against virusses, 

bacteria and protozoa (V enczel et al., 1997). However, the succes of most of these studies has 

been limited due to low current efficiencies (and hence high operational costs), low electrode 

stability or the formation of toxic compounds. 

Recently, doped diamond electrodes have been developed which have unique properties for 

the decomposition of a variety of organics. The material has shown very high current 

efficiencies (> 90%) in the electrochemical mineralisation for many target compounds such as 

phenol, benzoic acid, pyridine, polyacrylates and dyes (reviewed by Kraft et al., 2003). These 

authors concluded that diamond anodes can very efficiently produce hydroxyl radicals, 
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resulting in much higher current efficiencies compared to other materials. These efficiencies 

are high as long as mass transport of organic compounds to the anode is not a limiting factor 

(Kraft et al., 2003). Doped diamond electrodes have much higher overvoltages for oxygen 

evolution (- 2.8 V) compared to other materials and hence much higher efficiencies for 

hydroxyl radical production can be reached. Besides, diamond is very resistant to corrosion, 

heat and radiation, optically transparent and thermally conductive. In order to make diamond 

electrically conductive, these anodes are usually doped with boron by a hot-filament vapour 

deposition process (Troster et al., 2002). These unique characteristics of boron-doped 

diamond electrodes can render electrochemical oxidation one of the most interesting AOP's 

for the future (Kraft et al., 2003). Diamond doped electrodes have recently found their way 

into commercial applications for the disinfection and fmal polishing of process water and 

drinking water (DiaCell™ technology). 

2.6. EUROPEAN POLICY ON RENEW ABLE ENERGY FROM BIOMASS 

2.6.1. Biomass as a source for renewable energy production 

Renewable energy includes the separate or combined production of electricity and heat from 

renewable energy sources. Defmed renewable energy sources are solar, wind, biomass and 

waste, hydropower (large and small schemes) and geothennal. Biomass has several important 

advantages over other renewable sources such as its whidespread availability and its 

versatility (e.g., high diversity of plant species and wastes) (Nath and Das, 2003). Hence, 

biomass is considered to be one of the most emerging renewable sources on a global scale. 

2.6.2. Renewable electricity policy in Europe 

In 2001, about 6% of the energy use was renewable while the EU's indicative target is set at 

12% renewable energy use by the year 2010, corresponding to raising renewables' share of 

EU electricity consumption to 22.1% (de Vries et al., 2003). This directive, which is 

obligatory to all EU member states, implies that the EU annual rate of growth in renewable 

energy needs to more than double (to 7%) from 2000 to 2010 compared to the growth rate 

before 2000. 

To meet this directive, a number of policy instruments are in place to promote renewable 

energy, either affecting the supply or demand of renewable electricity (Figure 2.18). The three 
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main instruments are feed-in tariffs for supply of renewable electricity to the grid, quota 

obligations in combination with a green certificate system, and tendering/bidding schemes. 

Besides, investment subsidies and fiscal measures can be taken. 

One of the most important instruments for the promotion of electricity generated from biogas 

is the provision of feed-in tariffs to the electricity supplier. A feed-in tariff is used for a 

minimum guaranteed price per unit (kWh) of produced electricity to be paid to the producer 

(including a premium in addition to market electricity prices). The feed-in tariffs for 

renewable energy from biomass (and hence biogas) vary between the EU member states with 

a factor of 7 with the lowest tariff for Belgium (7.3 €ct/kWh) and the highest for Austria and 

Germany (10-16.5 €ct/kWh) (de Vries et al., 2003). 

Supply side 

Generation based (kWh) 

Feed-In tariffs 

Fiscal measures 

Bidding systems 

(Subsidies} 

Quota obligations I 
green certificates 

(Fiscal measures) 

---------+---------Demand side 

Investment subsidies 

(Fiscal measures) 

(Quota obligations) 

Capacity based (kW) 

Figure 2.18. Scheme of policy instruments to promote renewable energy 

2.7. IMPORTANT RESEARCH QUESTIONS 

Anaerobic digestion of organic waste is a technology being applied for a few decades on 

industrial scale. Despite its maturity, its applicability on a large scale has only recently started 

as proven by a 10-fold increase in digestion capacity from 1990 to 2000 (Mata-Alvarez et al., 

2000). The reasons for this delay in expansion are inherently connected to the knowledge 
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gained or still missing in both the management and performance of the AD process. In order 

to further promote AD as a key technology in sustainable waste management, a few important 

research questions can be formulated: 
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• Knowledge with regard to the controlled degradation of xenobiotic compounds 

under anaerobic conditions is still lacking, contrary to aerobic degradation which is 

often better studied. An example here-of is the biological degradation of chelating 

agents. 

• Studies on the development of (biological or physicochemical) technologies that 

can enhance the digestion of organic waste are only limited or uncomplete. For the 

reported technologies, mostly the economical aspect is not considered and thus the 

usefulness of the work is considerably impaired. 

• The recent EU directives on landfilling as well as the Kyoto agreements can 

possibly provoke an enormous growth market for AD. However, the current AD 

management practice largely impairs this expansion due to the low value of the 

solid end-product (compost). Further research should be dedicated to develop 

technologies in conjunction with AD that allow the separation of the digested 

waste in better defmed recycable fractions (biogas, liquid and solids). These 

recyclable fractions should then have a higher purity degree than compost and 

hence more marketing value. 



Chapter 3 

ADVANCED ELECTROCHEMICAL OXIDATION AND 
DEACTIVATION OF XENOBIOTIC ORGANIC POLLUTANTS IN 

WASTEWATER 

3.1. ELECTROCHEMICAL DEGRADATION OF COMMON SURF ACT ANTS IN 
MUNICIPAL WASTEWATER1 

ABSTRACT 

The electrochemical oxidation of anionic (sodium dodecylbercenesulfonate) and cationic 

(hexadecyltrimethyl ammonium chloride) aqueous dilute swf actant solutions at a BDD (boron-doped 

diamond) electrode has been studied by batch electrolysis experiments and potentiodynamic 

measurements. In the potential region of water decomposition (E > 2.3 V vs. SHE), surfactants could 

be deactivated and oxidi::ed with TOC (Total Organic Carbon) removals up to 82% by the action of 

intemzediates of water discharge (e.g., hydroxyl radicals) . Of the investigated process parameters, the 

initial electrolyte pH had the highest impact on surfactant oxidation. An initial pH of 10 significantly 

enhanced the electrochemical oxidation of both swf actants. The process was not diffusion-co/1/rol/ed 

and instantaneous current ejjiciencies (ICE) f or TOC removal were in all cases low, varying f rom 5-

12% on average. 

The surfactant deactivation and oxidation potential of the BDD was compared with other carbon

based electrodes. Applying an equal electrode swface, the BDD electrode showed much higher 

surfactant removals compared to plane graphite. Graphite granules and carbon felt suffered f rom 

abrasion, leading to additional carbon loading of the surf actant solutions. 

Based on the current electrolysis configuration, the specific energy requirement with the BDD 

electrode for the electrochemical oxidation of surfactallls was estimated at 10-20 kWh m·3 effective 

wastewater. 

Keywords: household surfactallf; boron-doped diamond electrode: carbon electrode; electrochemical 

combustion of organics; surfactant deactivation 

1 Redrafted after : 
Lissens, G., Pieters, J., Verhaege, M., Pinoy, L. and Verstraete, W. (2002). Electrochemical degradation of 
surfactants by intermediates of water discharge at carbon-based electrodes. Electrochimica Acta 48(12): 1655-
1663. 
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INTRODUCTION 

Recent studies have shown that the electrochemical abatement of xenobiotic organic 

compounds (XOC's) present in wastewaters is a promising alternative in addition to 

conventional wastewater treatment techniques (Panizza et al., 2000; Chiang et al., 1997; 

Wang et al., 1996). So far, electrochemical treatment has been applied successfully for the 

partial or complete oxidation of various organic pollutants, particularly for concentrated 

electrolytes (Pakalapati et al., 1996; F6ti et al., 1999; Kirk et al., 1985; Comninellis and 

Pulgarin. 1993; Oturan, 2000; Rodrigo et al., 2001). In some studies, the oxidation of organic 

pollutants with various anode materials was compared (Johnson et al., 2000). A wide variety 

of electrode materials have been suggested: dimensionally stable anodes (DSA ®) (e.g., Ru02 

or Zr02 coated Ti), thin film oxide anodes (Pb02, Sn02), noble metals (e.g., platina) and 

carbon-based anodes. The latter encompass, besides the traditional graphite electrodes (e.g., 

carbon felt, graphite granules and glassy carbon), also the recently developed synthetic boron

doped diamond (BDD) thin film electrodes. Particularly the BDD electrodes received great 

attention recently due to their high efficiency to combust organic pollutants partially or 

completely (Panizza et al., 2001a; Panizza et al., 200Ib; Iniesta et al., 2001a; Iniesta et al., 

2001b; Gandini et al., 2000). 

Household surfactants account for the majority of the chemical oxygen demand (COD) 

present in washing wastewater (e.g., laundry water). The major compounds are surfactants 

used in detergents, dishwashing liquids and hygienic products such as shampoos and soaps 

(Eriksson et al., 2003 ). The most common surfactants present in household water are the 

negatively charged linear alkyl sulfonates (LAS). As a result, their fate in the environment has 

been studied widely (Beltran et aL. 2000a; Beltran et al., 2000b; Leu et al., 1998). Other 

frequently used surfactants with low biodegradability are cationic (e.g., hexadecyltrimethyl 

ammonium chloride) and non-ionic (e.g., alkylphenol ethoxylates) species. In wastewater 

treatment plants, persistent surfactants or intermediate products thereof (e.g., aromatics) can 

give rise to foaming, adsorption onto microbial sludge and loading of the purified effluents in 

concentrations up to the ppm-range (Eriksson et al., 2003 ). 

Although the electrochemical oxidation of organic species is relatively well documented, less 

attention has been paid to the electrochemical oxidation of surfactants. In the study of Leu et 

al. (1998), the complete indirect oxidation of linear alkyl sulfonates (LAS) and alkylbenzene 

sulfonates (ABS) at conventional bipolar DSA ®anodes was investigated. These authors could 

achieve a complete surfactant removal with an electrolyte addition of 0.05 M NaCl at a 
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current density of 16.8 mA cm·2 applying an electrochemical oxidation process in conjooction 

with chemical coagulation. Ciorba et al. (2000) also performed an electro-coagulation process 

with an aluminium electrode and achieved a 40 to 60% surfactant removal on COD basis. 

In this work, both the electrochemical deactivation and oxidation of two common household 

surfactants was investigated in dilute aqueous electrolytes at a BDD electrode and to a lesser 

extent at other carbon-based electrodes. Most of the attention has been paid to the behaviour 

of the BDD electrode as this material is frequently mentioned as a stable, chemically inert and 

electrochemically very efficient material for the combustion of organics. The influence of 

several process parameters such as initial pH, bulk amooot of surfactant, electrolyte 

conductivity, flow rate and current density on surfactant removal for this material has been 

evaluated. 

MATERIALS AND METHODS 

Reagents 

Two aqueous surfactant solutions (20 mg dm-3
) were prepared with tap water (pH= 7.1): a 

0.07 mM hexadecyltrimethyl ammonium chloride solution (Fluka) (cationic surfactant, molar 

weight (M)= 284) and a 0.0615 mM sodium dodecyl benzenesulfonate solution (Riedel-de 

Haen) (anionic surfactant, M= 325). All chemical reagents used were analytical grade. The 

anionic surfactant was chosen as a common representative of the linear alkyl sulfonates 

(LAS) surfactants. The cationic surfactant, also a common household surfactant, was selected 

because of its poor biodegradability (Eriksson et al., 2003). 

Surfactant solutions were made alkaline (pH = 10) or acid (pH = 4) by means of sodium 

hydroxide and sulfuric acid addition respectively. 

Electrolysis and electrode materials 

The boron-doped diamond electrode was prepared by hot filament chemical vapour 

deposition (HF CVD) on Niobium sheet and was kindly supplied by Magneto Special Anodes 

(Netherlands). The graphite granules had an average diameter of 0.4 cm and filled up the 

anode compartment (V= 0.080 dm3
) completely. The open-cell glassy carbon foams with a 

total porosity of more than 90% (reticulated vitreous carbon) were tested in two grades (100 

pores per inch (ppi) and 500 ppi, V= 0.080 dm3
) and were received from Destech Corporation 
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(U.S.). Optional high-temperature ftring yielded electrically conductive glassy carbon foam. 

Woven carbon felt (GFA10- SGL Carbon, Germany) with a thickness of 0.8 cm was also 

tested. All flat electrode materials had a visual surface area of 0.50 dm2 (1 dm x 0.5 dm) 

unless otherwise stated. A few experiments were performed with a BDD anode and a plane 

flat graphite anode with a higher visual surface (70 cm2
) for both electrodes. In all 

experiments, a stainless steel (316 L) sheet was used as cathode (50 cm2 unless otherwise 

stated). 

Batch oxidation of surfactants was performed in an Wldivided electrolytic cell under 

galvanostatic conditions (0.2 A) (Figure 3.1). The inter-electrode spacing was 0.10 dm and 

the total cell volume was 0.165 dm3
• Batch experiments were performed with different 

electrolyte volumes (0.150 dm3 to 1 dm3
). 

Figure 3.1. Scheme of the electrolysis equipment used. (a) experimental set-up: (1) stirred vessel, 

(2) peristaltic pump, (3) power supply, (4) electrochemical cell. (b) Electrochemical 

cell: (5) anode, (6) cathode electrical connection, (7) electrolyte inlet, (8) electrolyte 

outlet 

Two types of batch experiments were performed: low volume batch tests operated by just 

ftlling the electrolytic cell and batch experiments with higher electrolyte volumes of up to 1 

dm3
, where the electrolyte was recycled from a holding vessel at a pump rate of 0.25 dm3 

min·1
• The former will be denoted as "static test", the latter as ''recycling test". 

Analytical procedures and calculations 

The COD content and pH of all solutions and samples was determined according to Standard 

Methods for the examination of water and wastewater (Greenberg et al., 1992). TOC (Total 
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Organic Carbon) analysis was carried out by means of a Shimadzu TOC-5000A Total 

Organic Carbon Analyser. Surfactant activity was monitored spectrophotometrically by 

means of Dr. Lange cuvette tests (Germany) for both anionic (MBAS or methylene blue

active substances) and cationic surfactants (bromophenol blue-active substances). 

Potentiodynamic measurements were performed in a conventional three-electrode cell (T = 

20°C, stirred 0.150 dm3 reactor) with a Princeton Applied Research 263A Potentiostat at a 

scan rate of 10 mV s·1
• The working electrode was tested with an exposed apparent area of 

0.01 dm2 with a Ag/AgCl reference electrode and aPt counter electrode. 

The instantaneous current efficiency (ICE) was calculated according to the defmition of 

Panizza et al. (2001a): 

ICE = { COD decrease ) ( Volume of solution ) 

( Mass of oxygen equivalent to electricity ) 
F V ( COD, -COD t+t.t ) ( 1) 

8IM 

where COD1 and CODr+AJ are the COD values at times t and t+Llt (g 0 2 dm"\ respectively, I 

is the applied current (A), F is the Faraday constant ( 96 487 C mol"1
) and V is the volume of 

electrolyte (dm\ The average current efficiency was then calculated as the average of the 

ICE-values. The current efficiency for the anodic combustion of both surfactants was also 

calculated using Faraday's law (2) and after defming the current efficiency (3): 

i = m n 96500 (2) 
Mt 

i 
Pkl%! =--100 (3) 

I cell 

Equation (2) shows the theoretical current i (A) required to oxidize m gram of the compound. 

M is the molar mass (g) of the compound, n the number of electrons involved and t the 

applied electrolysis time (s). Equation (3) represents the current efficiency Pk!%! defmed as the 

ratio of the theoretical amount of current i required to oxidize one mole of the compound (g) 

over the applied current Ice//· 

The specific energy consumption SEC (kWh kg-1 oxidized compound) was then estimated: 

~ 26.8 
SEC= M (4) 

-;- 0.01 Pk<%> 
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with V; the applied cell voltage (V), M the molecular mass (g) of the oxidized compound, n 

the number of electrons involved and Pk!%! the current efficiency. 

The required electrode area to combust organics at the surface of a BDD electrode was 

calculated according to 

A= 4F X p (5) 
Jce/117 

with A the required electrode area (cm\ F the Faraday constant, X the target COD 

conversion, P the given organic loading (mol COD s·1
), feel/ the applied current density (A 

cm·2
) and 17 the average current efficiency during electrochemical combustion (Panizza et al., 

2001a). 

RESULTS AND DISCUSSION 

Anodic degradation of surfactants at a BDD electrode 

The electrochemical oxidation of both the anionic and cationic surfactant to carbon dioxide 

was followed as a function of time by means ofTOC-analysis (Total Organic Carbon) (Figure 

3.2). In the batch tests, both surfactants could be oxidized to a large extent, with 83% TOC 

removal for the anionic surfactant and 68% TOC removal for the cationic surfactant after an 

applied charge of 2.7 Ah dm-3 solution. For both solutions, a sharper decrease of both the 

TOC and TIC (Total Inorganic Carbon) was obtained in the initial phase of electrolysis. 

Simultaneously, it was visually observed that a white-grey layer was formed on the stainless 

steel cathode. This layer was most probably the result of the precipitation of (bi)carbonates 

causing a decrease of the TIC. 

In Figure 3.3, the ICE values (Instantaneous Current Efficiencies) for the electrochemical 

combustion of both surfactants are shown. COD contents were 2.5 times and 3.2 times higher 

then the TOC content for the anionic and cationic surfactant, respectively. ICE values were 

found to be low with an average current efficiency of 6% for the anionic surfactant and 12% 

for the cationic surfactant during the first period (1 Ah) of electrolysis. 

From Figure 3.2 and Figure 3.3, it can be derived that the electrochemical combustion 

(expressed in TOC) and the ICE values of the cationic surfactant showed a rather sharp 

decrease in the first phase of electrolysis (1 Ah) whereas this trend was less pronounced for 

the anionic surfactant. Other studies, in which the electrochemical combustion of various 

organic pollutants (e.g., 2-naphtol (Panizza et al., 2001b), 3-methylpyridine (Iniesta et al., 
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2001 b)) was studied on BDD electrodes, also showed a higher electrochemical degradation 

rate during the initial phase of electrolysis. 
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TOC removal of anionic (a) and cationic (b) surfactant solution during electrolysis at a 

BDD electrode. Key: Total Carbon (TC) ( • ), Total Inorganic Carbon (TIC) ( • ), 

Total Organic Carbon (TOC) (.&). Electrolyte: 0.0615 mM sodium dodecylbenzene 

sulfonate solution, 0.07 mM hexadecyltrimethyl ammonium chloride solution, i = 4 

mAcm-2 

Surfactant activity measurements largely showed a similar trend as the TOC results (Figure 

3 .4 ). In the recycling experiments, up to 80% of the surfactant activity could be removed for 
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both surfactants at an applied charge of 2.5 Ah. Similar to the TOC results, the decrease of the 

cationic surfactant activity showed a higher initial decrease rate compared to the anionic 

surfactant. 

Figure 3.3. 

100 
90 

~ 80 
!!..- 70 
~ 
> 60 u 
CO 50 c 

40 ~ 
~ 30 
::J 20 m 

10 
0 

Figure 3.4. 

62 

w 
Q 

0 

cationic 

Charge passed/ Ah dm-3 
2 

ICE values during the electrolysis at a BDD electrode of anionic and cationic 

surfactant solution. Electrolyte: 0.0615 mM sodium dodecylbenzenesulfonate solution; 

0.07 mM hexadecyltrimethyl ammonium chloride solution, i = 4 mA cm-2 
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Surfactant deactivation during electrolysis at a BDD electrode. Key: anionic surfactant 

solution (A.), cationic surfactant solution (x), i = 4 mA cm-2 



Chapter 3: Arlvnuced e/ectrocl!emicnl oxidntiou ofwnstewnter poll11tnuts 

The electrochemical oxidation of the cationic surfactant clearly proceeded at the highest rate 

during the initial electrolysis period 0-0.5 Ah (Figure 3.2) at ICE-values as high as 35-40% 

(Figw-e 3.3). The percentage TOC removal in the next period 0.5-2.5 Ah for the cationic 

sUJfactant, however, was low (1-2%), whereas the percentage TOC removal for the anionic 

surfactant was stiU rugh (50-55%) (Figw-e 3.2). 

Due to their different chemical nature, the electrochemical oxidation of the smfactants can be 

assumed to be strongly dependent on their interaction with specific electro-oxidative species 

which are fmmed in the tap water medium throughout electrolysis. The fonnation of hydroxyl 

radicals and other oxidative species such as active chlorine substances in combination with 

the electrolyte pH (see 3.3) probably play an important role (Rodrigo et al. , 2001). As a matter 

of fact , various dissolved and electroactive chlorine species (chlorine, hypochlorous acid, 

hypochlorite) can be formed at BDD electrodes in dilute chloride media at a neutral-weakly 

alkaline pH, even with high selectivity and rugh faradaic yields (Feno et al. , 2000). In this 

respect, it is assumed that the rugher rate of TOC removal for the cationic surfactant is due to 

the extra input of chlorides, causing two effects. The frrst effect is to be situated on the level 

of bulk oxidation. The electronegative chlorine substances evolving from chloride will most 

probably react instantaneously with the cationic smfactant, causing an irritially higher 

oxidation and smfactant deactivation rate compared to the anionic surfactant (Figure 3.2a vs. 

Figure 3.2b). Secondly, the lower water solubility of the formed chlorinated compounds and 

the lower molecular weight of the cationic sUJfactant are factors which are known to enhance 

the adsorption on hydrophobic carbon surfaces (e.g. , on a BDD electrode) (Polcaro and 

Palmas, 1997). Both effects might explain the higher irritial oxidation rate and sw-factant 

deactivation rate of the alkyl ammoniun1 chloride (cationic) compared to the alkyl sulfonate 

(anionic). 

Influence of initial surfactant amount and surfactant concentration 

A series of batch experiments and recycling experiments with varying electrolyte volumes 

and initial surfactant concentrations at constant current density were performed to derive the 

influence on the absolute TOC removal and the reaction rate. 

The irritial absolute amount of surfactant (expressed as m g) varied with a factor 6.6 for the 

small static experiment (0.15 dm3 electrolyte) compared to the recycling experiments ( I dm3 

electrolyte). Despite the lower applied charge per unit electrolyte volume in recycling mode, 

the absolute smfactant oxidation was higher at irritially rugher electrolyte volumes and 
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consequently also at higher initial surfactant amounts (Figure 3.5). Moreover, it was found 

that a decrease of the initial surfactant concentration gave rise to a decrease in reaction rate 

and absolute surfactant removal. As a matter of fact, the absolute surfactant removal for a 

given applied charge of a 20 mg dm-3 solution was 3-4 fold lower compared to a 200 mg dm-3 

concentrated solution with the same electrolyte volume and current density (not shown). 
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Electrolyte volume/ dm3 

Influence of electrolyte volume on the absolute surfactant removal of cationic 

surfactant solution at a BDD electrode for an applied charge of 0.4 Ah ( • ) in 

recycling mode (20 mg dm-3 initial surfactant). Electrolyte: 0.07 mM 

hexadecyltrimethyl armnonium chloride solution, i = 4 mA cm·2 

In another study on the electrochemical decomplexing of common chelating agents at a BDD 

electrode, the initial chelator amount also played an important role (Lissens et al., 2003). In 

that particular study, high decomplexing and COD removal yields could be achieved 

simultaneously in static mode (0.15 dm3 electrolyte) while in recycling mode (1 dm3 

electrolyte), a high decomplexing yield was still observed despite poor COD removal. 

Influence of the electrolyte pH on surfactant oxidation yield 

A significant difference in surfactant degradation was noted between electrolysis with an 

electrolyte under initially neutral, acid (pH= 4) or alkaline (pH= I 0) conditions (Figure 3.6). 
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Influence of initial pH on the electrochemical TOC removal of the anionic surfactant 

solution in recycling mode, Key: 0.2 Ah ( •) and OA Ah ( • ). Electrolyte: 0.0615 mM 

sodium dodecylbenzenesulfonate, i = 4 mA cm"2 

While almost no degradation took place at an initial pH of 4, alkaline conditions clearly 

promoted the electrochemical combustion of surfactants at the BDD electrode. Leu et al. 

( 1998) also concluded that an initial pH of 7 or higher is optimal for the electro-coagulation of 

surfactants with addition of H20 2• Beltran et al. (2000a) found that the removal of sodium 

dodecylbenzenesulfonate by ozonation, also involving the production of hydroxyl radicals, 

proceeds especially fast at pH 10. 

The influence of the pH mainly acts on the level of the oxidation mechanism. Rodrigo et al. 

(2001) suggested that the oxidation of organics at BDD electrodes in the potential region of 

water decomposition is due to the action of physisorbed hydroxyl radicals. In this way, the 

oxidation of sodium dodecylbenzenesulfonate and hexadecyltrimethyl ammonium chloride is 

promoted by an alkaline pH and can be written as follows, respectively: 

(CizHzs)(CJ-it)S03. + 137 oH·~ 18 Co/· +SOt+ 83 HzO + 100 e· (6) 

(C16H33)~(CH3)3 + 153 OH" ~ 19 eo/·+ NH3 + 96 HzO + 114 e· (7) 

Both in the static experiments (0.15 dm3 electrolyte) and recycling experiments (1 dm3 

electrolyte), the pH during electrolysis gradually decreased from a value of 8 to a value of 3 

and 6, respectively. This pH drop can to a major extent be explained by the precipitation of 

(bi)carbonates from the solution as measured by TIC analysis (Figure 3.2). Moreover, the 
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electrochemical oxidation of organics also resulted in an acidification of the surfactant 

solutions (equations 6 and 7). 

Influence of other process parameters and process optimisation 

Additional parameters investigated were flow rate, conductivity of the electrolyte (Na2S04 

addition), and current density. 

Firstly, the flow rate (0.05 dm3 min-1 vs. 0.250 dm3 min-1
) had no significant effect on 

e1ectrochemica1 surfactant removal indicating that in the examined range of flow rates for the 

recycling experiments, the reaction was not under diffusion control. Without diffusion 

limitation, the organic compounds are first transformed into organic intermediates before 

being combusted to C02 (Panizza et al., 2001a). This effect is caused by a stabilising 

adsorption reaction between adsorbed hydroxyls due to water oxidation and the electrode 

surface (Ferro et al., 2000). Therefore, a theoretical consideration can be made by applying 

Langmuir adsorption kinetics. The results presented in this study support the idea that the rate 

of adsorption, being dependent on 1) the rate of arrival of molecules at the electrode surface 

and 2) the proportion of incident molecules which undergo adsorption, is limiting for the 

surfactant oxidation rate. The rate of adsorption R.ds (expressed as molecules m·2 s·1
) can then 

be expressed as (Jung and Campbell, 2000): 

(8) 

with S the sticking probability and Js the incident molecular flux or collision frequency 

(molecules m·2 s· 1
). While the sticking probability S is mainly dependent on the concentration 

of adsorbed species (n) and the presence of any activation barrier to adsorption, the incident 

molecular flux Js can be expressed as (Jung and Camp bell, 2000): 

(9) 

with Cs the concentration of the solute in the liquid nearest to the surface, ks the Boltzmann's 

constant, Tthe electrolyte temperature and m the mass of the adsorbate molecule. 

Equations 8 and 9 explain why higher reaction rates and higher current efficiencies are found 

at higher electrolyte volumes (recycling mode) and higher surfactant concentrations (Figure 

3.5). In the presence of higher amounts of surfactant, both the sticking probability S and 
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collision frequency J,. are affected, subsequently leading to a higher adsorption rate Rads· At 

lower electrolyte volumes (static mode) and lower surfactant concentrations, the adsorption 

rate is lower and side-reactions (e.g., due to recombination of hydroxyl radicals) become more 

pronounced resulting in lower current efficiencies. 

Secondly, an increase of the conductivity (addition of 1 g dm-3 Na2S04) had only a minor 

effect on TOC removal (7% increase) of both surfactants (not shown) but the required voltage 

dropped 3-fold compared to the experiments without electrolyte addition. These conditions 

were considered to be suitable for an estimation of the SEC (specific energy consumption) for 

electrochemical treatment of a surfactant solution because of its representative conductivity 

for effective household sewage. Taking into account an overall current efficiency of 6 to 12% 

for both surfactants, an energy demand of 10-20 kWh m·3 surfactant solution was needed in 

the present configuration to electrochemically combust 70-80% of the TOC of a wastewater 

containing 20 mg dm'3 surfactants and 1 g dm-3 Na2S04• Alternatively, 3 times more energy 

would be required for an aqueous surfactant solution with only 20 mg dm-3 surfactant. These 

values were found to be competitive with other oxidation techniques such as ozonisation 

(Gattrell and Kirk, 1990). 

Finally, the current density was investigated as a parameter in a range from 4 mA cm'2 to 20 

mA cm·2
• The TOC removal at the 5-fold higher current density only increased with 7-10% 

for both surfactants. 

As a whole, several measures can be taken at the level of cell design (e.g., inter electrode 

distance) or electrolysis parameters to optimise an electrolytic process. Important electrolysis 

parameters with regard to oxidation efficiencies are the current density and the exposed 

electrode area. With regard to the latter, the equation of Panizza et al. (200 1 a) can be applied 

to calculate the required electrode area (eq. 5). It can be derived that the required electrode 

area A in the recycling mode would need to be 3 to 4-fold higher compared to the batch 

experiments to achieve the same % TOC removal for a given applied charge. In fact, only the 

organic loading P and to a lesser extent the average current efficiency 17 differs for both 

experiments. A higher current density could make an increase of the electrode surface area 

largely superfluous but would result in higher energy consumption due to increased water 

decomposition. As a result, it might be more convenient for larger electrolyte volumes to 

increase the electrode area A at constant current density I instead of increasing the current 

density at constant electrode area. This way, more adsorption sites will be available for a 

given amount of surfactant molecules and higher oxidation yields could be achieved. 
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Surfactant removal at graphite-based electrodes 

Figure 3. 7 shows the TOC removal of both surfactants for graphite granules, carbon felt and 

the BDD anode during the first phase (0-0.5 Ah). Glassy carbon foam (lOO ppi and 500 ppi) 

became available during the course of the testing period and was also tested. The TOe

removal was clearly higher for the graphite-based materials compared to the BDD electrode 

for both surfactants. The current density obtained for the porous graphite electrodes could not 

be calculated but was obviously much lower than the one of the BDD electrode (4 mA cm-2
) 

due to its high porosity and 3-dimensional structure. While the BDD electrode was a flat 

rectangular plate, the graphite granules and the glassy carbon foam completely filled up the 

anode compartment assuring a much higher contact surface with the liquid. 
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Figure 3.8 shows the impmtance of the exposed electrode area on the TOC removal yields. 

From Figure 3.8, it can be deducted that the BDD electrode had a much higher oxidation 

power towards both surfactants compared to a plane graphite electrode with the same exposed 

surface area. In fact, the superior TOC removal of the 3-dimensional graphite-based 

electrodes is largely related to the decreased electrolyte volume to electrode surface ratio for 

these materials. 
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% TOC decrease with increasing charge during electrolysis of cationic and anionic 

surfactant (20 mg dm"3
) with plane graphite and BDD anode (equal electrode surface 

of 70 cm2
) in recycling mode. Key: anionic surfactant with BDD anode ( • ), cationic 

surfactant with BDD cathode ( • ), anionic surfactant with graphite anode (x), cationic 

surfactant with graphite anode (A.) 

A minor adsorption effect (2%) of the surfactants to the graphite surface could be noticed in 

the absence of electrical current. This physicochemical adsorption effect was most 

pronounced with the carbon felt material, probably due to its high porosity and rough surface 

(not shown). Other authors also stated fouling and adsorption of various carbon electrodes 

during electrolysis (Gattrell et al., 1990). Kuramitz et al. (2002) recently reported a novel 

electrochemical polymerisation treatment with a carbon fibre anode for the removal of p

nonylphenol, a common endocrine disruptor frequently encountered in non-ionic surfactants. 

It could be shown that in dilute solutions, the formation of the adsorbed film on the carbon 

fibre electrode was the result of the electrochemical oxidation of p-nonylphenol at low current 

density and was the cause for the high removal efficiency (Kuramitz et al., 2002). It is 

therefore assumed that, considering the low current densities and high contact surface area 
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applied, the high surfactant removal on the graphite-based electrodes in this study might have 

been not only the result of electrochemical oxidation as such but also due to electrochemical 

adsorption. Therefore, a strict comparison in tenns of electro-oxidative TOC removal between 

the BDD anode and the 3-dimensional carbon electrodes could not be made. 

Finally, the carbon felt and graphite granules clearly showed abrasion, leading to additional 

TOC loading of the surfactants solutions. This effect was taken into account when calculating 

TOC removals by perfonning electrolysis in the absence of surfactants. 

Potentiodynamic measurements 

Potentiodynamic measurements were perfonned to detennine the activity of a conventional 

planar graphite anode and a BDD anode in both aqueous surfactant solutions (Figure 3.9). 
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Anodic polarisation curves for plane graphite and BDD electrode in anionic (a) and 

cationic (b) surfactant solution. Key (for each material): full line; cycle 1, dotted line; 

cycle 2, marked full line; cycle 3. Scan rate 2,5 m V s-1, T = 20°C 

The polarisation curves obtained for the anionic surfactant solution (Figure 3.9a) were very 

similar to the ones observed for the cationic surfactant solution (Figure 3.9b) for both 

materials. The BDD electrode shows a stable electrode activity: cycle 2 and cycle 3 even 
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show a very high simila1ity for the BDD electrode. indicating no electrode activity loss at all. 

For the graphite electrode. cycle 2 and cycle 3 showed a relatively high similarity, indicating 

little loss in electrode activity in the potential region of water stability. 

Both the graphite and BDD electrode show a consistent electrode activity in the lower region 

of water discharge (E > 2.3 V vs. SHE). Given the noticed current densities, the rate of 

oxygen evolution on the BDD electrode in the region of water discharge is lower than on a 

plane graphite electrode, and occurs at higher electrode potentials. This is consistent with the 

experience that a BBD electrode has indeed a broader electrochemical operating window. The 

decrease of BDD electrode activity around 2 V (vs. SHE) for the BDD anode (Figure 3.9) 

might also indicate the f01mation of polymeric adhesive products at lower voltages. However, 

in the region of water discharge (£ > 2.3 V vs. SHE), these polymeric substances can be 

removed again involving besides oxygen evolution also the production of hydroxyl radicals 

(Comninellis and Pulgarin, 1991 ; Rodrigo et al. , 2001 ; Iniesta et al. , 200Jb). In fact, the 

diamond electrodes have been observed to be chemically inert and microstructurally stable in 

a wide variety of acidic and alkaline electrolytes in the potential window of water 

decomposition (Fryda et al. , 1999a; Fryda et al. , 1999b). 

CONCLUSIONS 

The electrochemical stability of a BDD electrode and its ability to oxidize and deactivate 

cationic and anionic surfactants were the focus of this study. At a given charge of 2.7 Ah, 

TOC removals as high as 83% and 68% could be reached in the potential region of water 

decomposition for a dilute aqueous sodium dodecylbenzenesulfonate- and hexadecyltrimethyl 

ammonium chloride solution (20 mg dm.\ respectively. The initial electrolyte pH and initial 

surfactant an10unt were found to be major influencing parameters for electrochemical 

swfactant degradation. 

The BDD electrode showed the highest electrochemical surfactant removal compared to a 

plane graphite anode with equal electrode surface. However, 3-dimensional graphite-based 

electrodes with very high contact surface showed highest TOC removal towards the tested 

sw-factants, which is presumably the result of combined electrochemical oxidation and 

electrochemical adsorption. The use of the graphite-based electrodes is limited due to the 

additional loading of the solutions as a result of abrasion. 

Results presented in this study also show that the process is rate-limited by adsorption at 

molecular level and that the process is not under diffusion control. Attention should be given 
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to the optimisation of the required electrode area of the BDD electrode at relatively low 

current density (4-20 mA cm-2
) for the surfactant deactivation and/or complete surfactant 

combustion of larger electrolyte volumes. 

This study shows that the electrochemical oxidation of surfactants with BDD electrodes has 

potential to be competitive with other oxidation processes such as ozonisation (e.g., as a 

pretreatment) and that the process can be used as an alternative for the treatment of non

biodegradable molecules such as surfactants present in recalcitrant wastewaters. 
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3.2. ELECTROCHEMICAL DECOMPLEXING AND OXIDATION OF COMMON 
CHELATING AGENTS IN MUNICIPAL AND INDUSTRIAL WASTEWATER2 

ABSTRACT 

The electrochemical decomplexing and oxidation of two ji-equently used complexing agents in swface 

treatment and metal finishing - EDTA (ethylene-diamine-tetra-acetic acid) and NTA (nitrilo-tri-acetic 

acid) - and of organic non-complexing additives used in nickel-plating baths was the subject of this 

study. By means of a Ti-RuOJ electrode. a partial indirect oxidation by in-situ electrochemical 

generation of chlorine compounds could be achieved for EDTA and NTA . However. at a boron-doped 

diamond (BDD) electrode, complete decomplexing and high COD (Chemical Oxygen Demand) and 

TOC (Total Organic Carbon) (up to 95%) removal occun-ed at an average current density o.f2 A dm.J. 

It is shown that direct electrochemical oxidation at a BDD electrode resulted in lower energy 

consumption and higher treannent rates than indirect oxidation at a Ti-RuO! elecn-ode. Decomplexing 

at the BDD electrode occurred at high current ejjiciencies ranging f rom 71% to 95% with 

decomplexing rates in the order of 3.13 mmol (Ah)'1 and 5.13 mmol (A h)'1 for EDTA and NTA 

respectively. COD removal rates obtained were 0.090 g (A h)'1 f or EDTA , 0.100 g (A h)'1 for NTA and 

0. 205 g (A h/ for the nickel-plating additives. 

Electrochemical decomplexing and oxidation of common chelating agents can render the subsequent 

metal precipitation and biological waste water treatment of surface treatment and metal finishing 

ejjluents more efficient. 

Keywords: electrochemical decomplexing, electrochemical oxidation, chelating agents. BDD 

electrode 

2 Redrafted after : 
Lisseos, G., Verbaege, M., Pinoy, L. and Verstraete, W. (2003). Electrochemical decomplexing and oxidation 
of organic (chelating) additives in effluents from surface treatment and metal finishing. Journal of Chemical 
Technology and Biotechnology 78(1 0) : I 054-1060. 
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INTRODUCTION 

Chelating additives such as EDT A and NT A are widely used in the plating industry for 

various goals. By means of strong complexing agents, a high metal content in the plating bath 

can be achieved which leads to more energy efficient plating and/or to higher plating rates. 

They also have a beneficial effect on the throwing power (coating distribution) of the plating 

bath (Murphy, 1997). Other additives are used to achieve defmed mechanical or visual 

characteristics (brightheners, levelling agents) of the plated surface. Plating baths and 

effluents (rinse solutions) containing these complexing agents need to be carefully monitored 

and their entering into the fmal waste water treatment unit needs to be prevented. This is 

necessary as these complexing molecules inhibit metal precipitation, leading to exceedingly 

high metalloadings of the fmal waste water effluent. 

Special means and practices are currently employed to pretreat metal effluents, varying with 

the type and strength of the complexing agent. The use of suitable chemical precipitants, 

metered into the complexed waste stream or into the neutralisation tank is effective. Applied 

chemical precipitants include dithiocarbamates, dithiocarbonates, starch and cellulose

xanthates, poly-quaternary amines and ozone/hydrosulfite (Murphy, 1997). However, 

precipitation chemicals are generally difficult to dose, show relatively low settling rates and 

both the chemical itself and its by-products are highly toxic ( Craig, 2001 ). Moreover, the EP A 

recommends no detectable residuals of chemical precipitants in the effluent, impeding 

additional post-treatments such as chlorination or peroxide treatment. 

Many chelating agents and non-complexing organic additives (e.g., nickel-plating additives) 

are inert to biological degradation. In the study of Hinck et al. ( 1997) it was shown that none 

of the four tested enriched microbial inoculants were able to degrade EDTA or DTPA 

(diethylene-triamine-penta-acetic acid) aerobically. Only at higher concentrations (e.g., for 

EDT A > 0.5 g dm"\ rapid biological degradation could be achieved. Since effluent 

concentrations are mostly in the lower ppm-range, biological degradation of complexing 

species is insignificant, leading to considerable pollution of surface waters (Nowack et al., 

1996). Complexing agents such as EDT A for instance can redissolve toxic heavy metals 

trapped in underwater sediments, allowing them to re-enter in the food chain (Sillanpaa and 

Ramo, 2001). 

In recent years, the electrochemical destruction of dissolved organic molecules in aqueous 

effluents has been studied intensively. The attention has mainly been focussed on the 

treatment of discharge wastewater from the textile industry, tannery industry and from landfill 
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leachates (Rao et al., 2001; Vlyssides and Israilides, 1998). These effluents carry a large 

ammmt of non- or poorly biodegradable organic pollutants and consequently have a high 

CODIBOD ratio (Chiang et al., 1997; Wang et al., 2001). Intense research on the 

electrochemical oxidation of specific organic molecules ( e.g aniline, phenol, EDTA, 3-methyl 

pyridine) has been carried out recently (Kirk et al., 1985; Comninellis and Pulgarin, 1991; 

Pakalapati et al., 1996; Iniesta et al., 2001a). 

For indirect oxidation with in situ generated oxidants such as chlorine or ozone, precious 

metal coated electrodes (e.g., Pt-Ti) and titanium coated with RuOz (RuOz-Ti) have been 

proposed. For direct oxidation of organic pollutants, a broad range of anode materials has 

been tested. However, some of them presented a rapid loss of activity due to surface fouling 

(glassy carbon), release of toxic ions (Pb02 anodes) or limited service life (Sn02 anodes) 

(Gattrell and Kirk, 1999; Tahar and Savall, 1998; Correa-Lozano et al., 1997). In the study of 

Kusakabe et al. (1986), EDTA and NTA could be electrochemically oxidized at platinum

plated titanium pellets but only moderate COD removals (25-41%) could be reached. 

One of the most promising materials developed recently is the boron-doped diamond (BDD) 

coating. This coating offers exciting new possibilities as electrode material for 

electrochemical systems. The unique properties of this material being its ( 1) extreme 

hardness, (2) corrosion resistance, (3) optical transparency, (4) heat and radiation resistance, 

and (5) high thermal conductivity make this an attractive electrode material for the 

electrochemical oxidation of organic pollutants in wastewater (Panizza et al., 2001a; Rodrigo 

et al., 2001). 

In this work, an electrochemical oxidation method is proposed for decomplexing and 

oxidation (TOC/COD) of three commonly used (chelating) organic additives in an undivided 

electrolytic cell containing a Ti and a BDD electrode. An electrochemical pretreatment of the 

complexing agents as proposed in this contribution could result in easier fmal treatment 

practice, as additional chemicals to decrease the complexing power of the chelating chemicals 

are superfluous. 

EXPERIMENTAL 

Reagents 

In this work three types of synthetic solutions have been investigated. The first two contained 

commonly used complexing agents: EDTA (ethylene-diamine-tetra-acetic acid) and NTA 
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(nitrilo-tri-acetic acid); the third solution contained a mixture of additives industrially used in 

nickel-plating baths. 

EDT A and NT A solutions were made up by dissolving appropriate amounts of Kestranal 2S 

(di-sodium salt ofEDTA) and Kestranal I (VEL, Belgium) in demineralised water. Based on 

effective industrial applications, their initial concentrations were ~ 0.01 M for EDTA and~ 

0.02 M for NTA. The solution containing additives for nickel-plating was made up according 

to the technical information provided by Atotech (the Netherlands). The composition was as 

follows: Supreme BE (brightener- 2 cm3 dm-3
), NPA (wetting agent- 2 cm3 dm-\ NLC 

(brightness carrier- 20 cm3 dm-3
) and ZDA (secondary additive- 6 cm3 dm-\ The Supreme 

BE solution contained heterocyclic sulfabetain derivatives and unsaturated ethoxylated 

alcohols. For proprietary reasons, no further information is available about the chemical 

structure of these products. This solution will be denoted as SUP. The SUP solution had no 

complexing power towards metals. 

Electrolysis and electrode materials 

Electrolysis was performed in a one-compartment electrolytic cell in galvanostatic mode ( 1 

Ampere). A boron-doped diamond coated Nb-electrode (BDD electrode) and a Ti-Ru02 

electrode were used similar to the ones described in section 3.1 of this chapter. The cathode 

was a plain titanium sheet (Good Fellow, U.K.). 

All electrolysis experiments were carried out similarly to the procedure described in section 

2.1 of this chapter (static and recycling experiments). Static mode resulted in a lowering of 

the liquid level with 3 mm in the electrolysis cell and consequently decreased the contact 

surface area by 6 % per sampling action. Clearly, since the cell current was maintained 

throughout the experiments at 1 A, the current density increased by the same amount after 

each sampling action. Small batch electrolysis with the Ti-Ru02 anode was performed: once 

with pure chelating solutions and once with solutions to which 1 g dm-3 of NaCl had been 

added. fu all other experiments, no additions were made. 

Analytical procedures and calculations 

All chemical analyses were carried out as described in section 2.1 of this chapter. The 

concentrations ofEDTA and NTA were determined by titration in a buffered solution (pH 10) 

against ZnS04 (0.01 M). The equivalence point was detected potentiometrically (Hg drop-
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Hg/Hg2S04/K2S04 sat.) by means of a Metrohm Titrino DMP785 titrator. As the 

concentration of EDT A and NT A is directly related to the metal complexing power of the 

solution, the decrease of the EDT A and NT A content as a function of the electrical power 

input (Ah), has been defmed as the decomplexing rate. 

The electrochemical decomplexing and oxidation efficiencies were determined by the 

equations given in Materials and Methods under point 3.1 of this chapter. 

RESULTS 

Electrocbemical oxidation at a Ti-Ru02 anode 

A Ti-Ru02 electrode (DSA ®) was first tested in the batch static mode with respect to its 

oxidation behaviour (TOC removal) towards EDTA, NTA and SUP. A TOC-removal of about 

60% was achieved for EDTA (0.01 M) and NTA (0.02 M) after passing an electrical charge 

of 2.8 Ah. Under the same conditions, no TOC-removal was obtained for the SUP solution. 

On average, EDTA and NTA were oxidized with an overall oxidation rate of0.0063 g (Ah)" 1 

dm-3 electrolyte. 

It is known that Ti-Ru02 is very efficient for the "in situ" production of chlorine compounds 

in chloride containing electrolytes. These compounds can subsequently oxidize organic 

species in the solution (Fryda et al., 1999a). Addition of 1 g dm"3 sodium chloride resulted in 

10-20% higher TOC removals after passing 2.8 Ah of electrical charge for all species that 

were studied. Indirect oxidation of these species by in situ generation of chlorine compounds 

as already described for other organic compounds (F6ti et al., 1999; Ferro et al., 2000) can 

thus be considered, especially if chloride is present in the electrolyte. However, direct 

oxidation at a BDD electrode is far more effective as will be shown. 

Electrocbemical decomplexing and oxidation at a BDD anode 

Batch static experiments 

Similar experiments as with the RuOz-Ti electrode have been performed with a BDD 

electrode. In this case, however, no additions were done in any of the solutions. For all 

investigated electrolytes, TOC gradually decreased with increasing charge input (Figure 

3.10). At a constant current density of 2 A dm-2
, the TOC included in the chelating solutions 

ofEDTA and NTA could be completely removed when exceeding a cumulative charge of 1.6-
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2 Ah (Figure 3.10). Similar observations were made with regard to the COD decrease of the 

tested solutions. COD-removal rates were calculated taking into account the change in 

volume caused by the successive sample withdrawals. EDT A could be oxidized at a rate of 

0.097 g (Ahr1 while NTA was removed at 0.163 g (Ahr1
• The average ICE-values for COD

removal were 38.4% for EDTA and 54.5 %for NTA. An energy supply of 164 kWh kg·1 

EDTA and 94 kWh kg·1 NTA was needed to completely remove the COD from the respective 

electrolytes. 
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Figure 3.10. % TOC removal as a function of cumulative electrical charge input for EDTA, NTA 

and SUP with a BDD anode (batch static experiment; 0.15 dm3 electrolyte) 

The TOC removal rate was clearly lower for the solution containing the nickel-plating bath 

additives (SUP) compared to EDTA and NTA (Figure 3.10). COD removal as a function of 

electrical charge input for the SUP solution is shown in Figure 3.11. The overall COD

removal rate was 0.199 g (Ahr1 and the ICE-value reached was 83.6 %. While the Ti-Ru02 

electrode showed no affmity for the SUP-solution, a total COD removal of 98.7 % could be 

achieved with the BDD electrode after passing a charge of2.5 Ah (Figure 3.11). 

The change of the complexing power of EDT A and NT A was determined and compared to 

the COD decrease of both solutions. For both EDTA and NTA, decomplexing initially 

proceeded at high rates but gradually slowed down after a charge input of 0.5 Ah. The overall 

decomplexing rate amounted to 9.3 mmol (Ah)"1 for EDTA (0.01 M) and 14.2 mmol (Ahr1 

for NTA (0.02 M). The electrical energy required for complete destruction of the complexing 
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power was 42.5 kWh kg· 1 for EDTA (average ICE of 35.8% for 50 min) and 33 .9 kWh kg· 1 

for NTA (average ICE of 40% for 50 m in) for a noticed cell voltage of 20 V in both cases. 

5000 

4000 
'? 
E 3000 -o 
Ol 

.s 2000 
0 
0 

R
2
= 0.98 () 1000 

0 0 

0 0.5 1.5 2 2.5 

O COD Ah 

Figure 3.11. Evolution of the COD content as a fimction of charge of a solution containing uickel 

plating bath additives (SUP) with a BDD anode (batch static experiment) 

The current efficiencies were the highest during the first period of decomplexing for both 

EDTA (98%) and NTA (82%). Decomplexing efficiencies for both chelating agents however 

rapidly dropped after passing 0.5 Ah to average values of 7-10%. During the ftrst phase of 

electrolysis (0-0.5 Ah), also high differences in decomplexing efficiency could be noticed for 

EDTA (28%) compared to NTA (80%). This difference is probably mainly to be attributed to 

the different initial concentrations of the species (0.01 M for EDTA versus 0.02 M for NTA). 

ln all static batch experiments, a gradual increase of the temperature and a decrease of the pH 

could be noticed. The temperature increase (from room temperature to 40 oc for NT A and 

60°C for EDTA at the end of each experiment) was a result of the ohmic resistance of the 

solution. The electrochemical decomposition of water and the consumption of 01-f by the 

eletrochemical oxidation reaction of the organics caused a 1-3 units decrease of the pH. 

Batch recycling experiments 

By continuously recycling 1 dm3 of electrolyte through the electrolysis cell, complete 

decomplexing by electrochemical treatment without any chloride addition was possible after 

passing a charge of 3 Ah for EDTA (0.01 M) and 4 Ah for NTA (0.02 M). The overall 

decomplexing rate was found to be 3.13 mmol (Ah)" 1 dm-3 EDTA solution and 5.02 mmol 

(Ah)"1 dm"3 NTA solution. Both EDTA and NTA solutions could be decomplexed with high 
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current efficiencies. The average ICE-value for complete decomplexing was 71% for EDTA 

and 95% for NTA. Assuming the need of 8 e· per molecule of EDT A and 6 e· per molecule of 

NTA to achieve complete decomplexing (Pakalapati et al., 1996), the estimated energy 

requirement was calculated: 20.9 kWh kg·1 for EDTA and 18 kWh kg"1 for NTA at a cell 

voltage of 20 V and a current density of 2 A dm-2
• Assuming realistic industrial wastewater 

concentrations of 2.88 g dm-3 (0.01 M) and 3.76 g dm-3 (0.02 M) for EDTA and NTA 

respectively, this corresponds to an average energy requirement of 60 kWh m·3 and 67 kWh 

m·3 for complete decomplexing ofEDTA and NTA solution, respectively. 

The change of COD in these experiments showed a gradual linear decrease. The COD

removal rate was 0.090 g (Ahr1 ctm·3
, 0.100 g (Ahr1 ctm·3 and 0.205 g (Ahr1 ctm·3 for EDTA, 

NTA and SUP respectively. The average current efficiencies for COD-removal were 30.2 %, 

33.5 % and 73% during the first 3 hours of electrolysis for EDTA, NTA and SUP, 

respectively. The ICE-values were in good correspondence with the Faraday current 

efficiency (27.4% for EDTA and 30.3% for NTA). The pH of all three chelating solutions 

remained practically constant within the course of the recycling experiments. 

Characterisation and activity of the electrodes 

Scanning Electron Microscopy (SEM) analysis of the surface of the BDD electrode and the 

Ti-Ru02 electrode revealed clear visual differences in structure (Figure 3.12 ). While the Ti

Ru02 electrode showed a rather smooth surface with microscopic cracks, the BDD electrode 

surface had an amorphous and rather rough structure (Figure 3.12). 

Figure 3.12. SEM of the surface of a Ti-Ru02 electrode (left) and a BDD electrode (right) 
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By means of anodic polarisation, the electrochemical activity of the BDD electrode was 

studied in the potential range of0-4 V (vs. the SHE). For both EDTA and SUP, a small loss in 

electrode activity around 1.5 V was noticed in the second cycle. This observation can be 

explained as a result of modification of the electrode surface due to the formation of less 

conductive oxygen containing functional groups (Van Hege et al., 2002) and indicates that 

electrode fouling occurs during the 1st cycle. The fouling layer can be removed by further 

anodic polarisation in the potential region of electrochemical water decomposition at the BDD 

electrode, resulting in a higher activity in the 2nd cycle. Other authors also stated that in the 

region of electrolyte decomposition, electrode fouling at the BDD electrode is inhibited 

(Rodrigo et al., 2001; Panizza et al., 2001b). 

DISCUSSION 

COD removal rates obtained in the batch recycling experiments were 0.090 g (Ah)"1 dm"3
, 

0.100 g (Ah)"1 dm"3 and 0.205 g (Ah)"1 dm.3 for EDTA, NTA and SUP, respectively. Chiang 

et al. (1997) found a COD removal rate of 0.100 g (Ah)"1 dm.3 in their study of EDTA 

destruction in a one-compartment cell containing a Pb02/Ti anode. The removal rate of 

EDT A calculated from our data corroborate well with this value. Pb02 electrodes, however, 

suffer from slight release of Ph, indicating lack of stability (Tahar and Savall, 1998). 

Kusakabe et al. (1986) obtained COD removal rates which are quite higher: 0.263 g (Ah)"1 

dm.3 and 0.194 g (Ah)"1 dm.3 for EDTA and NTA, respectively. These results were obtained 

by feeding the electrolyte in the anode compartment (filled up with Pt-plated Ti pellets) in a 

packed-bed membrane reactor and using Na2S04 as a background electrolyte. No information 

is available on the long term performance of this membrane cell. From our results and the 

information available from other authors, long term stable operation with BDD electrodes can 

be guaranteed (Fryda et al., 1999a; Panizza et al., 2001b). 

We have shown that more than 80% of TOC removal can be achieved after passing ~10 Ah 

dm.3 for the EDT A and NT A solutions while 13 Ah dm"3 were needed for the SUP solution 

(Figure 3.10). The nickel-plating additive mixture (SUP) could be readily oxidized on 

diamond electrodes as a COD removal of 98.7% and an average current efficiency of 84 % 

was obtained (Figure 3.11). This corresponds to an average specific energy consumption of 

97 kWh kg·1 COD for the SUP solution. These results confirm the earlier fmdings that 

electrochemical destruction at BDD electrodes is worth to be considered for industrial 

application when organic pollutants have to be eliminated. 
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From the static batch experiments, it was shown that the difference in energy requirement 

between complete COD destruction and decomplexing is about four times and two times 

higher for EDTA and NTA, respectively. This is worth to be kept in mind when dealing with 

metal containing effluents. Indeed, when electrochemical oxidation is considered a 

pretreatment operation for more efficient metal precipitation, only decomplexing by breaking 

down the carboxy lie acid groups of EDT A and NT A is necessary and a lot of energy can be 

saved if there is no requirement for further COD removal. 

From the results of the batch static experiments and the batch recycling experiments, it is also 

obvious that applying high current densities have a detrimental effect on current efficiency 

and consequently on energy consumption. This is clearly illustrated in Table 3.1, which 

contains a compilation of the most important results of both types of experiments. 

Table 3.1. Compilation of the most important results obtained for electrochemical oxidation of 

organic chelating additives EDTA and NTA. Cathode Ti; anode BDD 

Batch static experiments Batch recycling experiments 

EDTA NTA EDTA NTA 

COD removal rate 0.097 0.163 0.090 0.100 

g(Ah)"l 

Decomplexing rate 9.3 14.2 3.13 5.02 

mmol (Ah)"1 

ICE ( decomplexing) 35.8 40 71 95 

% 

Energy requirement 42.5 33.9 20.9 18.9 

kWhkg-1 

Considering decomplexing, it was shown from the batch recycling experiments that complete 

decomplexing could be achieved at an energy input of 18-20 kWh kg-1
, which is similar to the 

values obtained by Kusakabe et al. (1986). Due to the high oxygen overpotential of the BDD 

electrode compared to a DSA ® electrode (e.g., Ti- Ru02 electrode), decomplexing and 

electrochemical mineralisation is more efficient with the former. 

In this paper the attention has been focussed on the electrolytic anodic destruction of the 

organic species. Industrial effluents containing these chemicals usually also contain metal 

82 



Cllllpter 3 : Advauced electrochemical oxidatiou of wastewater pollutauts 

ions and salts. The presence of metals (forming metal chelates) seems to have no effect on the 

electrochemical destruction of complexing agents such as EDTA (Kusakabe et al., 1986). Salt 

content lowers the ohmic resistance of the solution and consequently should lower energy 

consumption. 

CONCLUSIONS 

It was shown that, using a simple one-compartment electrolysis cell with a Ti cathode and a 

BDD anode, complete decomplexing and substantial COD removal ofNTA and EDTA was 

possible without addition of chemicals. Decomplexing ofEDTA and NTA could be achieved 

with high current efficiency (up to 95%) and CODffOC removal with moderate efficiency 

(38-55%) at a current density of 2 A dm"2
• Complete electrochemical mineralisation of a 

typical solution containing nickel-plating additives has also been demonstrated. 

From the results presented in this study, it can be concluded that electrochemical 

decomplexing and oxidation of common recalcitrant chelating agents and organic additives at 

a BDD electrode is feasible. Furthermore, it is shown in Chapter 7 that the electrochemical 

oxidation process for this type of application involves lower operational costs compared to 

other advanced oxidation processes (AOP's). This study shows that the technology is highly 

suited as a pretreatment operation for metal precipitation and has the potential to enhance the 

biological degradation of industrial effluents (e.g., from the metal plating industry). 
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Chapter 4 

ADVANCED ANAEROBIC BIOCONVERSION OF 
LIGNOCELLULOSIC WASTE INTO BIOGAS FOR 

BIOREGENERA TIVE LIFE SUPPORT 

4.1. MELiSSA: A BIOREGENERATIVE LIFE SUPPORT SYSTEM FOR ORGANIC 
WASTE RECOVERY 

MELiSSA (Micro-Ecological Life Support System Alternative), developed by the ESA 

(European Space Agency), has been conceived as a micro-organism and higher plants based 

artificial system intended as a tool to mimic the earth ' s natural ecosystem. MELiSSA 

functions as a frame for the development of technologies for future regenerative life support 

for long term manned space missions. The driving element of MELiSSA is the maximum 

recovery of the generated organic waste and its complete biosafe conversion into edible 

biomass and other renewables (e.g. , clean water, oxygen and minerals). 

Figure 4.1. 

No a Hill le Parts of Higher Pbats 

PIYJI:lheterotrophic Bacteria 
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Rhodospirillum rub rum 

The four essential compartments of MELiSSA 
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MELiSSA comprises 4 compartments with each their specific organisms (Figure 4.l).The 

first compartment of the loop is responsible for the anaerobic biodegradation of the waste 

(generated by the crew) and thus its performance largely determines the conversion efficiency 

of the total MELiSSA cycle. In the compartment as presented in Figure 4.1, the waste is 

converted (or liquefied) into dominantly volatile fatty acids, ammonia and salts which are 

further transported to the next compartment. However, with this compartment, only moderate 

liquefaction yields in the range of 60-65% could be reached with only 55% liquefaction 

efficiency for sugars and fibrous material (Lasseur and Paille, 200 I). In addition, due to the 

lack of sanitation steps in the loop, absolute biosafety for the crew cannot be guaranteed. 

To improve the performance of the first compartment, a European project was carried out 

whereby a series of biological and physicochemical treatments were tested for maximum (C, 

N, P ... ) recycling and bioconversion of the waste in closed cycle perspective (treatments 

summarized in Figure 4.2). Secondly, the project also aimed at providing maximum biosafety 

in terms of exclusion of possible contamination of the recycled products by potentially 

dangerous propagates such as pathogenic micro-organisms. The results of this project are 

described in section 4.2. 

Biosafe pathogen 
free liquid rich in 

nutrients to 
nitrification 

compartment 

Particulate organic 
matter-fibrous material 

Jlj •••••••••••••••••• 

: Biogas for : 
• food biomass : 
: production : . . . . . . .................... 

Figure4.2. Possible configuration of novel pre- and post-treatments in conjunction with anaerobic 

digestion for maximum bioconversion of organic waste in a life support context 
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4.2. A TOTAL CONVERTING AND BIOSAFE LIQUEFACTION COMPARTMENT 
FOR THE RECOVERY OF WASTE IN A LIFE SUPPORT CONTEXT

1 

ABSTRACT 

The feasibility of nearly-complete conversion of lignocellulosic waste (70% food crops, 20% faecal 

matter and 10% green algae) into biogas was investigated in the context of a life support project. The 

treatment comprised a series of processes, i.e. a mesophilic laboratory' scale CSTR (continuously 

stirred tank reactor), an upjlow biofilm reactor, a jiber liquefaction reactor employing the rumen 

bacterium Fibrobacter succinogenes and a hydrothermolysis system in near-critical water. 

By the one-stage CSTR, a biogas yield of 75% with a specific biogas production of0.37 l biogas g-1 of 

VSS (volatile suspended solids) added at a RT (hydraulic retention time) of 20-25 d was obtained. 

Biogas yields could not be increased considerably at higher RT. indicating the depletion of readily 

available substrate after 25 d. The solids present in the CSTR-ej]luent were subsequently treated in 

two ways. 

Hydrothermal treatment (T- 310-350°C, p - 240 bar) resulted in effective carbon liquefaction (50-

60% without and 83% with carbon dioxide saturation) and complete sanitation of the residue. 

Application of the cellulolytic Fibrobacter succinogenes converted remaining cellulose contained in 

the CSTR-ej]luent into acetate and propionate mainly. 

Subsequent anaerobic digestion of the hydrothermolysis and the Fibrobacter hydrolyzates allowed 

conversion of 48-60% and 30%, respectively. Thus, the total process yielded biogas corresponding 

with conversions up to 90% of the original organic matter. 

It appears that particularly mesophilic digestion in corifunction with hydrothermolysis at near-critical 

conditions offers interesting features for (nearly) complete and hygienic carbon and energy recovery' 

from human waste in a bioregenerative life support context. 

Keywords: biogas, biosolids, carbon cycling, food waste, hydrothermolysis 

1 Redrafted after : 
Lissens, G., Verstraete, W., Albrecht, T., Brunner, G., Creuly, C., Seon, J., Dussap, G. and Lasseur, Ch. 
(2003). Advanced anaerobic bioconversion oflignocellulosic waste for bioregenerative life support following 
thermal water treatment and biodegradation by Fibrobacter succinogenes. Biodegradation. In Press. 
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INTRODUCTION 

In bioregenerative LSS (life support systems), lignocellulosic crop residues and biosolids 

(e.g., faeces) represent an important source of biochemical energy both for energy recovery 

and for the subsequent production of foods in space (Kohlmann et al. 1995; Strayer and 

Atkinson 1997; Fulget et al. 1999; Kudenko et al. 2000). Microbial cellulose utilization in 

natural environments is responsible for one of the largest material flows in the biosphere and 

is of great interest in relation to carbon cycling at global and local scales (e.g., life support) 

(Lynd et al. 2002). 

On earth, anaerobic digestion of various organic wastes is a well-established technology in 

which part of the energy can be recovered in the form ofbiogas (Schober et al. 1999; Zhang 

& Zhang 1999; Stroot et al. 2001; Liu et al. 2002). The anaerobic decomposition process can 

be divided in four steps of which the first step, the hydrolysis of particulate biopolymers (e.g., 

cellulose, hemicellulose), is considered the rate-limiting step for the overall process (Schieder 

et al. 2000; Sanders et al. 2000). Because certain cellulosic polymers are shielded by lignin in 

a solid and water-insoluble structure, these polymers have little bioavailability for many 

fermenting microorganisms (Ahring et al. 1999; Liu et al. 2002). 

Various (thermo) chemical and biochemical hydrolysis methods that split plant biopolymers 

into water-soluble and biodegradable short-chain compounds have been the subject of 

investigation in recent years (Delgenes et al. 2000; Schieder et al. 2000; Kim & Hong 2001; 

Liu et al. 2002). By employing pretreatments, biogas yields and conversion rates from organic 

waste can be enhanced and retention times can be lowered, allowing for more compact 

digester systems. 

Thermal hydrolysis technologies have been explored as pre-and post-treatment for the 

anaerobic digestion of lignocellulose. These technologies can be divided into wet oxidation 

(Schmidt et al. 2002), steam explosion (Saddler et al. 1993) and hydrothermolysis (Schieder 

et al. 2000). During treatment, lignocellulose is (partially) degraded into smaller fragments 

(cellulose, hemicellulose, lignin and sugar derivatives) by the action of hot water or steam 

under moderate pressures (e.g., 5-50 bar) and temperatures (180-325°C}, either in the absence 

or presence of a catalyst (e.g., pressurised oxygen) (Schmidt & Thomsen 1998; Lendormi et 

al. 200 I a; Lendormi et al. 2001 b; Bonmati et al. 2001 ). The thermal prehydrolysis step also 

offers other advantages such as complete sanitation of the waste and a decrease of the 

methane reactor volume (Schieder et al. 2000). 
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In biochemical hydrolysis processes, enzymes (e.g., cellulases) or (metabolically engineered) 

fennenting microorganisms are used to conve11 cellulosic compounds into monomeric sugars 

and/or organic acids at ambient temperatures and pressures. In this respect, ruminant 

cellulolytic bacteria are able to digest cellulose and produce organic acids such as succinate 

and acetate at high rates (Fields et al. 2000). The bacterium Fibrobacter succinogenes is 

widely considered one of the most active and most important cellulose-digesting anaerobic 

bacteria in the rumen (Martin & Martin 1998). 

The objective of the present study was to determine the anaerobic digestion efficiency of a 

dilute organic substrate (2% ± 0.2 dry mass) composed of food crops, faeces and green algae 

by means of anaerobic digestion completed by hydrothermolysis and cellulolytic digestion by 

Fibrobacter succinogenes. The study furthermore explores the potential of digester residue 

liquefied by a tubular near-critical (Tent = 374°C, Pent = 221 bar) high temperature/high 

pressure reactor. The carbon liquefaction power and fiber degradation of the hydrothermolysis 

and Fibrobacter succinogenes digestion was evaluated by a series of batch anaerobic 

digestion tests on the residual solids derived from primary CSTR anaerobic digestion. The 

overall biogas yield for anaerobic digestion in combination with hydrothermolysis and 

Fibrobacter succinogenes digestion was determined and the applicability of the system for 

life support was evaluated. 

MATERIALS AND METHODS 

Substrate composition and preparation 

The substrate was composed in such a way that it resembled a concentrated organic waste 

stream produced by humans in a LSS (Fulget et al. 1999). On DM (dry mass) basis the 

organic waste consisted of 70% crop residues ( 1/3 chopped wheat straw, 1/3 green cabbage, 

1/3 soya waste), 10% of green algae (Spirulina platensis) and 20% of faecal matter. All 

components were suspended in tap water to obtain a fmal DM concentration of 2-3%. The 

suspension was stored at 4°C. 

Prior to anaerobic digestion, all substrate components except wheat straw were ground under 

wet conditions with a conventional kitchen grinder to obtain millimetre-sized particles. Wheat 

straw was ground in dry state with a rotary cutter that yielded straw particles in the millimetre 

range (1-3 mm). The characteristics of the individual substrate compounds are given in Table 
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4.1. The total substrate suspension (2% DM) had the following properties: COD= 21 g r 1 

(chemical oxygen demand), TAN = 0.41 g r1 (total ammonia nitrogen), Kj-N (Kjeldahl

nitrogen) = 1.4 g rl, VSS = 24 g rl, ash-content= 4.4 g rl, total fibers = 35%, (%)cellulose= 

21%, (%)hemicellulose= 10% and(%) lignin= 4%. 

Table 4.1. Composition of the compounds of the organic substrate in terms ofDM (dry matter), 

COD (chemical oxygen demand), TC (total carbon) and TN (total nitrogen) 

Mass-% DM-content COD TC TN 

[gDM gDM-1
] [gDMg-1

] (gcOD gDM-1
] (gc gDM-1

] (gN gDM-1
] 

Straw 0.23 0.93 1.30 0.39 0.0087 

Soya 0.23 0.88 1.21 0.39 0.0166 

Cabbage 0.23 0.08 1.26 0.37 0.045 

Algae 0.1 0.95 1.49 0.42 0.1027 

Faeces 0.2 0.2 n.d. n.d. n.d. 

After anaerobic digestion, the CSTR effluent solids were separated by centrifugation of the 

CSTR effluent at 7000 g for 15 min. Subsequently, the solids were recovered by decantation 

and were dried for at least 24 h. These solids were then further treated in two ways (Figure 

4.3). 

Influent 

Figure 4.3. 
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ln process sequence 1, the CSTR solids were treated either by hydrothem1olysis or 

Fibrobacter fermentation followed by a second separate digestion for the sake of comparison 

of the biogas yields of the two treatments. ln process sequence 2, the CSTR solids were first 

treated by Fibrobacter fennentation followed by hydrothermolysis and fmally diverted to a 

second digestion (Figme 4.3). 

The CSTR solids were subjected to additional size reduction steps prior to hydrothennolysis. 

Due to the small intemal diameters of the high temperatme/high pressme tubular reactor, the 

solid residues had to be ground to a sufficiently small particle diameter in order to prevent 

clogging of the apparatus. This was accomplished by means of a rotary cutter using two 

sieves in succession, having a mean mesh size of 1000 11m and 250 11m, respectively. The 

resulting material was additionally treated in a conventional coffee mill. 

CSTR methanogenic reactor 

A cylindrical 10 1 PVC methanogenic reactor of CSTR-type was incubated at a constant 

temperatw-e of 34°C and was continuously shaken at 70 rpm (New Brunswick INNOVA, 

U.K.). The pH in the reactor was at a constant value of 7.3-7.4. The reactor contained 7.5 ± 11 

mixed liquow- and was seeded with active methanogenic granular sludge from an anaerobic 

digester of a potato-processing flrm (Primetrr, Belgium). The produced biogas volume was 

meastrred daily and the biogas composition on a weekly basis. 

Because of the particulate natme of the substrate, the reactor was fed manually and fed-batch 

wise. Prior to sampling, the content of the reactor was homogenized to prevent build-up of 

solids. The volumetric loading rate (B,.) of the mesophilic CSTR ranged from 1.5-2.5 g of 

COD r 1 day" 1 over a period of 12 months. The hydraulic retention time (RT) of the reactor 

was set at 20 d. Batch fermentation tests were performed with raw substrate at reaction times 

varying from less than 10 days to 65 days and at an initial concentration of 0-2.8 g r 1 COD to 

derive the influence of the initial concentration (g r1 COD) and the RT (d). 

High temperature/high pressure tubular reactor 

The main building blocks of the tubular reactor are depicted in Figme 4.4. The high-pressme 

reaction unit is designed as a stainless steel tubular reactor (o.d.= 6.35 mm, i.d.= 3.05 mm) 

with a variable volume up to 100 m! and capable of withstanding operating pressures up to 

300 bar and temperatmes up to 450°C. 
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Before entering the reaction unit the feed suspension was moderately preheated in an 

upstream coil, which has an inner volume ofVPre = 38 ml. The reaction was started by mixing 

the feed suspension with a pure water stream (under nitrogen atmosphere), which was 

delivered into the system by a high-pressure membrane pump and heated to high temperatures 

in a second preheater. The preheater and the tubular reactor were electrically heated by means 

of heating jackets, which could be adjusted separately by a temperature control system (Horst 

HT-60 controller). In order to decrease the heat losses to the surroundings, the complete high 

temperature section of the apparatus was thermally insulated. The substrate suspension 

containing the particulate matter was fed into the system by means of a high-pressure 

membrane pump (LEWA EKlN metering pump). Carbon dioxide was delivered from a 

storage tank, liquefied in a cooler and processed to an autoclave by means of an air-driven 

pump. Passing a filter unit, the carbon dioxide was introduced into the system by means of a 

HPLC pump. The amount of carbon dioxide was measured by a mass flow meter. 
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Fibrobacter succinogenes cultivation and fermentation 

Fibrobacter succinogenes S85 (ATCC 19169) was originally isolated from the bovine rumen 

(Bryant & Doetsch 1954). A pure culture of this strain was grown anaerobically under 100% 

C02 in a sterile basal medium containing (1"1
): 450 mg KHzP04, 450 mg KzHP04, 900 mg 

NaCl, 1.8 g (~)2804, 90 mg MgS04, 90 mg CaCb, 3 mg MnS04.6HzO, 0.3 mg 

CoCh.6H20, 8 mg FeS04.7H20, 0.25 mg biotin, 0.005 mg para-aminobenzoic acid, 500 mg 

cystein, 4 g Na2C03 and a volatile fatty acid mixture (Gaudet et al, 1992). Of this pure 

culture, 400 ml was used to inoculate a stirred (100 rpm) fermentor (4 1) after a redox 

potential reduction at -350 mV and temperature equilibration at 39°C. The pH, temperature 

and redox potential were measured on-line. Na2C03 was added (4 g l"1
) by each substrate 

addition to stabilize the pH to a value of 6.9. Sterilised residual solids from the CSTR-reactor 

were added in batches (44 g in 2.8 1 basal medium) at 1.5% DM to the basal Fibrobacter 

medium. F ermentations were performed for a period of 16 d. 

Fermentation of hydrothermolysis and Fibrobacter hydrolyzates 

Following process sequence 1 (Figure 4.3}, batch digestion tests were performed with both 

the hydrothermolysis and Fibrobacter hydrolyzates in erlenmeyer flasks containing either 400 

ml (small batch tests) or 800 ml (large batch tests) mixed liquour of the CSTR-reactor 

(depending on the organic strength of the substrate applied). The reaction times in the batch 

tests varied from 15 to 75 days. In all batch fermentation tests, a control was included which 

only contained mixed liquour from the CSTR main digester. The Fibrobacter hydrolyzate and 

hydrothermolysis hydrolyzate were added at various COD-concentrations (g COD l"1
) and 

fermented at various reaction times (d). The residues were added only once at the start of the 

experiment in amounts ranging from 40-150 ml, representing a COD of 0.1-2.7 g per test 

bottle. The biogas production and pH were continuously measured for each bottle. 

Following process sequence 2 (Figure 4.3), a mesophilic 1.5 1 fixed-bed biofilm reactor was 

employed to determine the biogas yield of the hydrothermolysis hydrolyzate. The reactor was 

filled with 1 dm3 of polypropylene carriers, with a specific surface of ea. 500 m2 m-3
• To 

initiate the biofilm formation, 1 l of tapwater and 500 ml of sludge from the CSTR were 

added. Subsequently, the liquid was continuously recycled at an upflow velocity of 2 m h-1 

and at daily basis 5 g of COD l"1.day"1 was dosed during a period of 10 weeks. After 

establishment of the biofilm, the hydrolyzates were added to the fixed-bed biofilm reactor and 
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continuously recirculated with an upflow velocity of 2 m h-1
• The biogas production and 

parameters as COD~. COD., VF A and pH were followed on a daily basis, during a total period 

of 21 days per experiment. 

Analytical procedures and calculations 

V an Soest analysis was performed for the quantitative determination of cellulose, 

hemicellulose and lignin fraction (Van Soest 1963; Van Soest et al. 1991). The COD, Kj-N, 

TAN, TSS (total suspended solids), VSS and ash-content of the digester influents and 

effluents were determined according to Standard methods (Greenberg et al. 1992). Biogas 

yields (%) were calculated on the basis of COD and VSS mass balances. 

The volumetric biogas production was monitored by means of an electronic gas counter 

(Bergedorf, Hamburg-Harburg, Germany) with a resolution of 1 ml and by means of 

(acidified) calibrated water displacement columns for the CSTR digester and the batch tests, 

respectively. Biogas was analyzed for methane and carbon dioxide composition using a 

Varian 3800 gas chromatograph (PoraPLOT Q column (25 m, I.D. 0.53 mm, 20 ~m), helium 

flow of 7 ml min·', isothermal 40°C) equipped with a universal dual channel TCD-detector. 

Individual VF A concentrations (acetic, propionic, butyric, isobutyric, valeric, isovaleric, 

caproic, isocaproic) were measured with a GC-FID AS800 gas chromatograph equipped with 

a FID-detector and N2 as carrier gas. The column used was an Alltech (Deerfield, USA) EC-

1000 (30 m, I.D.: 0.32 mm, dr: 0.25 ~m). Formic acid was measured by means of ion

exchange chromatography (Macherey und Nagel EC 200/4 Nucleosil 100 5NH2 column) 

equipped with a RI-detector. The analyses were conducted isothermally at 40°C with an 

eluent mixture of78% acetonitrile and 22% water at a flow rate of0.7 ml min·'. 

The IC (inorganic carbon) buffer of the digester substrate and effluent was measured by 

means of titration with a Titrino 716 titrator (Metrohm, Switzerland). The sample was titrated 

as such with 0.1 N HCl (down titration profile) from the actual pH to pH 2.5 and data were 

automatically acquired and analysed (Van Vooren et al. 1999; Van de Steene et al. 2002). 

S042
- -S and PO/- -P concentrations were measured before and after fermentation with a 

Metrohm IC 761 ion-chromatograph (IC) (metrosep A supp 5 (150 x 4 mm) column) with 

conductivity detector. Both influent -and effluent samples were diluted lOO-fold after 

centrifugation and filtered over a 0.45 ~m filter prior to injection. 

Elementary composition analysis was performed with a CNS-analyser at 11 00°C (Leco-CNS-

2000-Analyser). The dissolved carbon was determined by means of a TOC-analyser 
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(Elementar "HighTOC + TNb"). The liquefaction degree of the solids was then calculated by 

dividing the dissolved carbon after liquefaction by the total influent carbon. 

HPLC analysis with a ligand exchange chromatography (LEC) column (L = 300 m, i.d. = 7.8 

mm) (Macherey Nagel, Nucleogel Sugar: RI detector) with an isothermal oven temperature of 

72°C (distilled water as eluent at 0.5 ml min-1
) was performed tO determine the COmposition 

of the hydrothermolysis hydrolyzate with respect to sugars and degradation products (e.g., 

hydroxymethylfurfural) thereof. 

RESULTS 

CSTR-digester performance and biogas yield 

Table 4.2 summarizes the digestion parameters for the bioconversion of the raw substrate. 

The digester pH remained constant and total VF A concentrations during operation were low, 

indicating a stable digester performance for the given loading rate (1.5-2.5 g of COD l"1 

day-1
). Cellulose removal corresponded well with VSS and COD removal yields and 

amounted to 72% on average. The digester efficiently converted the majority (78% on VSS 

basis) of the organic substrate into biogas with average methane content of 65%. The specific 

gas production at a RT of 20 d was found to be relatively high (0.37 I of biogas g-1 of VSS 

added). In terms of nitrogen mass balances, an increase of the TAN-level in the effluent was 

observed while the Kj-N present in the influent (1.4 g l"1
) and the effluent (1.2 g l"1

) was 

nearly the same (Table 4.2). Hence, the majority of the organically bound nitrogen (mainly 

proteins) present in the raw substrate could be converted into ammonium species at a 

retention time of20 days (Table 4.2). 

Simulation and identification of the IC buffer titration results showed the presence of an IC 

buffer peak at a pH of 6.3 for both the digester influent and effluent. The bicarbonate 

concentration increased from 39 mM to 175 mM during biological treatment, whereas the 

ammonia nitrogen concentration increased from 0.4 to I g l"1
. For the influent, a third peak 

was observed but could not be identified (around pH-value 3.3), probably referring to the 

presence of high-weight proteins and/or acids. 

Overall, the PO/- -P (mg l"1
) concentration of the raw substrate was high (500 mg l"1

) relative 

to domestic sewage. Influent sol·-s concentrations were moderate and resulted in 0.7% H2S 

of the volume biogas produced. V an Soest analysis showed that fibers accumulated in the 

mixed liquour of the digester, leaving a solid digester residue consisting of about 49% of 
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fibrous matter (cellulose, hemicellulose and lignin). This fibrous solid residue, which 

accounted for 15-20% of the raw substrate on VSS and COD basis, was the subject of further 

liquefaction and subsequent biomethanisation (see Figure 4.3). 

Table 4.2. Performance data for the CSTR during operation at an average volumetric loading rate 

of 1.5-2.5 g of COD r 1 dai1 and aRT= 20 d 

Parameter CSTR 

Retention time (d) 20 
Methane(%) 65%±3 

Specific gas production 0.37 ± 0.02 
(I biogas g-1 ofVSS added) 

Volatile fatty acids: 
(mg r 1) 
Acetate 30± 5 

Propionate 3±1 
Butyrate 1 ± 1 

I so butyrate 1± 1 
Valerate 0 

I so valerate 10±2 
Capronate 0 

Isocapronate 1± 1 
Total VFA (digester) 46± 7 

pH 7.4 ± 0.2 

Mass balance parameters Influent Effluent Removal 
(g rl) (g rl) (%) 

TSS 28 7.5 73 ±2 
vss 24 4.8 78±2 
COD 21 5.9 80±8 

Cellulose 5.9 1.6 72 ± 10 
Total Kjeldahl Nitrogen 1.4 1.2 14±4 

Total Ammonia Nitrogen 0.4 I -150 ± 2 

Batch fermentation tests with raw substrate showed that for an applied initial concentration of 

1.85 g r 1 of COD, biogas yields on COD and DM analysis varied from 25% for 10 d to 90% 

for 65 d reaction time. The increase in biogas yield as a result of an increase of the retention 

time was most pronounced for the lower retention times (10-20 days) (results not shown). The 

lower bioconversion found in the batch tests (70%) was not significantly different from the 
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conversion yield found during continuous operation of the CSTR (78%) for the same reaction 

time (23 d). 

Figure 4.5 shows the CSTR biogas yield at different retention times. At a lower RT (15 d), 

only 35-50% of the COD of the raw substrate could be transfonued into methane. For a more 

conventional RT of 20-25 d, on average 70-78% of the raw feed could be converted into 

biogas. At a RT as high as 60-75 d, the raw substrate was converted into biogas with a yield 

of80-85%. 
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CSTR biogas yield from raw substrate at 3 different retention times. 100% biogas 

yield corresponds to a conversion of0.5 1 biogas for 1 g COD. Standard deviations are 

based on the biogas yields at 3 different initial concentrations (1.1. 1.8 and 2.8 gll of 

COD) 

Fiber liquefaction by hydrothermolysis 

Despite the variable temperatures and pressures applied, the carbon liquefaction efficiencies 

for one and the same batch of CSTR solids varied between a relatively narrow range of 44-

57% (Table 4.3 , run No 2-6). Experiments No 2 and No 3 show that the reproducibility of the 

thermal reactor was high (less than 2% difference). The fourth experiment was performed at a 

lower temperature of 300°C and yielded a significantly lower degree of liquefaction of 45%, 

though the residence time of 87 s was much longer than for the other runs. Even an increase 
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in temperature to 406°C (experiment No 6), which is well above the critical temperature of 

pure water, did not result in a higher degree of liquefaction within the residence time 

employed in the experiments. This implies that for this particular batch, about 40 % of the 

carbon was very difficult to liquefy without a further increase in residence time. However, a 

significantly higher carbon liquefaction yield was reached for experiment No 1. This 

demonstrates that the solids batch used for No 1 presumably contained less inert material 

compared to the solids batch used for No 2-7. 

In order to increase the degree of conversion, carbon dioxide was added to the system (No 7) 

by which the pH of the influent was considerably lowered. Carbon liquefaction yields higher 

than 80% could be reached with the same solids batch as No 2-6 by equilibrating the liquor 

with 50% C02 (Table 4.3). 

Table 4.3. 

No 

1 

2 

3 

4 

5 

6 

7 

Carbon liquefaction efficiencies of the CSTR effiuent solids at various conditions (T = 

301-406°C, p = 233-264 bar). No 1-6: carbon liquefaction of various effiuent solid 

batches without C02 saturation; No 7: carbon liquefaction of effiuent solids with 50% 

C02 saturation. All experiments were performed with the same batch of CSTR solids 

except experiment No 1 

T [OC] P [bar] RT [s] 
Carbon liquefaction 

[%]* 

360 240 25.1 73.9 

366 238 39.7 56.4 

360 233 38.8 57.1 

301 250 87.2 44.8 

319 247 45.2 58.7 

406 264 > 35 57.2 

341 238 50 83.4 

* calculated as Csoluble ou/Cm * 100 

HPLC analysis of the hydrolyzates at a hydrothennolysis temperature of 310°C and 350°C 

showed that saccharides were present only in very small concentrations (< 50 mg r1
). 

Raffmose, maltose, fructose, glucose, pyranose, and hydroxyl-methylfurfural, could be 

detected at 310°C. For these conditions, distinct peaks were fotmd at residence times shorter 

than that of raffmose, which are due to the formation of oligo-saccharides. For the 350°C 
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hydrolyzate, oligo-and mono-saccharides could not be detected. Instead, pyranose and 

hydroxymethylfurfural were produced in significantly higher amounts. Beside sugars, formic 

and acetic acid accounted for up to 20% of the total soluble carbon. The concentrations of 

higher acids were negligible. Due to the production of acidic degradation products during 

hydrothermolysis, the pH of all thermally treated influents decreased to values of 4.1-4.4. 

Essentially all nitrogen (95-100%) initially present in the solid phase (measured by 

elementary analysis) could be converted to water-soluble components in the course of the 

hydrothermal degradation. NH/-N and N03--N amounted to about 60% of the total nitrogen 

detected in the liquid phase after hydrothermolysis. The remaining nitrogen fraction (40%) 

could not be identified but it is assumed that this fraction is present in the form of other 

oxidized nitrogen species. The contribution of free amino acids to this unidentified fraction 

can be considered to be very minor, since it was shown that amino acids are instable and 

subject to consecutive reactions at the temperatures applied in the experiments (Waiter et al. 

1967). This fmding was supported by own studies on the decomposition behaviour of bovine 

serum albumin in near-critical water. 

With regard to the gas phase, no other components than nitrogen (added at the start) and 

carbon dioxide could be detected in any of the experimental runs. As can be inferred from the 

results of these measurements, the amount of carbon in the gas phase had only a minor 

contribution (2-3%) to the total carbon introduced into the system. In accordance with the 

high temperatures and pressures applied, the effluents of the hydrothermal treatment were 

found to be completely sterile. 

Fiber fermentation by Fibrobacter succinogenes 

Fed-batch fermentations were performed by the rumen bacterium Fibrobacter succinogenes 

on the CSTR-effluent solids. The overall liquefaction yield for the recalcitrant digester solids 

was found to be 41% on DM-basis (data not shown). 

Figure 4.6 shows the typical profile of degradation products formed during Fibrobacter 

fermentation of the CSTR-effluent solids with substrate addition at 0 hand 180 h. During the 

first hours of culture, mainly succinate and acetate were produced as sole metabolites causing 

a concomitant small decrease in pH (0.3-0.5 units). After 24 hours, the production of 

succinate stopped and other VF A began to be produced (mainly acetate and propionate). Final 

VF A concentrations were highest for acetate and propionate corresponding to values up to 3 g 

r 1 and 1.1 g r 1 respectively. 
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Gas analysis showed that C02 was the only gaseous compound produced during Fibrobacter 

fermentation in quantities representing less than I 0% of the input carbon. 
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Production of organic acids during Fibrobacter succinogenes fermentation on CSTR

effluent solids at 15 g r 1
• Key: • = acetate, • =propionate,+= succinate 

Biogas yields of hydrothermolysis and Fibrobacter hydrolyzates 

CSTR conversion efficiencies for the hydrothermolysis hydrolyzate were significantly higher 

compared to the Fibrobacter effluent (Figure 4.7). For the hydrothermolysis hydrolyzate, 

biogas yields of 48% and 60% were observed at a reaction time of 20 days and 40 days 

respectively. As can be derived from Figure 4.5, about 30% of the COD of the Fibrobacter 

residue could be converted into biogas at a reaction time of 20 days or more. Hence, the 

transformation of the hydrothermolysis hydrolyzate was dependent on the retention time and 

proceeded at a higher efficiency compared to the Fibrobacter hydrolyzate. 

Figure 4.8 shows the COD removal and biogas production of the hydrothermolysis 

hydrolyzate following process sequence 2 (Figure 4.3) employing an upflow biofilm reactor. 

During the first 7 days, 59.5% of the influent COD could be converted into biogas (Figure 

4.8a) with an average methane content of 65%. The VF A-content of the hydrolyzate was low 

(VFAtotai = 87 mg r 1
) and was completely removed after 1 day of fermentation. The 

cumulative biogas production mounted to 0.75 1 after 7 days or an average biogas production 

rate of nearly 0.5 1 per g COD removed (Figure 4.8b ). 
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Biogas yields of the undiluted hydrothermolysis hydrolyzate ( •) and the Fibrobacter 

hydrolyzate (+)in batch fermentation tests at various reaction times (triplicate tests). 

Initial concentrations applied were 0.2-0. 75 g r 1 of COD for the hydrothermolysis 

hydrolyzate and 2-3 g r 1 of COD for the Fibrobacterhydrolyzate 
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Figure 4.8a. Anaerobic mesophilic digestion of diluted hydrothermolysis hydrolyzate with an 

upflow methanogenic biofilm reactor. The hydrolyzate was recycled through the 

biofilin reactor for a period of 21 days at an upflow velocity of 2 m h-1
- Left Y-axis; + 

= COD101a1, • = CODsoluble, right Y--oxis; .6. =Total VFA 
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Figure 4.8b. Cumulative biogas production corresponding to Figure 4.8a 

Based on the biogas yields from the raw substrate and the liquefied CSTR solids by 

hydrothermolysis and Fibrobacter fermentation, the overall conversion efficiencies for the 

raw substrate were calculated (Figure 4.9). 
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Biogas yield of raw substrate for mesophilic digestion (A), mesophilic digestion 

combined with Fibrobacter fermentation (B), mesophilic digestion combined with 

hydrothermolysis (C) and mesophilic digestion combined with Fibrobacter 

fermentation and hydrothermolysis (D). Key: Light grey = biogas yield of CSTR; 

Dark grey = biogas yield after Fibrobacter fermentation and/or hydrotherrnolysis. 
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By applying the sequence CSTR digestion/ Fibrobacter succinogenes digestion/CSTR 

digestion, an overall biogas yield of 82% could be reached. The use of hydrothermolysis in 

combination with CSTR digestion (column C and D) increased the biogas production with 

10%, giving rise to an overall biogas yield of 90%. The overall biogas yield found in column 

D (92%) following process sequence 2 (Figure 4.3) was however not significantly higher 

compared to column C (Figure 4.9). 

DISCUSSION AND CONCLUSIONS 

In this work, the nearly-complete anaerobic conversion of a life support substrate consisting 

of food waste, green algae and faeces was studied. It was shown that a VSS decrease of 78% 

and a specific gas production of on average 0.37 I biogas per g of VSS added could be 

reached by means of a one-stage CSTR-type mesophilic digester (RT = 20 d). These 

performance data are in good accordance with reported conversion. efficiencies for non 

pretreated biosolids (e.g., manure) and lignocellulosic waste (e.g., rice straw) with biogas 

yields around 50% on COD basis (or 0.2-0.251 ofC~ g·1 ofVSS) (Bonmati et al. 2001) and 

specific biogas productions in the range of 0.39 L of biogas g'1 of VSS (Zhang & Zhang 

1999 ), respectively. 

The biogas yield of the CSTR during continuous operation (78%) was statistically in the same 

range compared to the biogas yields calculated from the batch fermentations (70%). The 

slightly lower value for the batch test was most probably caused by the subtracted value from 

the control (mixed liquor without COD loading) used in the batch tests. 

The organic waste employed had a high nutrient content with a C/N ratio in the range of 10, 

mainly due to the presence of faecal matter (20% DM) and the green alga Spirulina platens is 

(10% DM). Hansen et al. (1998) reported that anaerobic digestion of pig manure was 

inhibited at a pH of 8 corresponding to a free ammonia concentration of 1.1 g r 1 or more 

which caused a decrease in methane yield. Despite the relatively high TAN concentrations in 

the effluent (1 g r 1
), methanogenesis was never inhibited at the applied OLR, presumably 

because of the lower digester pH (7.4 on average). The IC buffer constituted together with the 

total ammonia (NH3 and~+) a high buffer capacity in the digester, which explained the pH 

stability of the digester. Since the average pH of the reactor was 7.4, part of the total ammonia 

(TAN) was present as ammonia and could possibly be transferred to the gas phase. However, 

it is generally accepted that up to a pH of 7 the total ammonia is only present under the form 
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ofNH/ (Perrin, 1965). Moreover, no significant losses in nitrogen could be detected by TAN 

-and Kj-N analysis. Therefore, it is assumed that nitrogen losses by means of the produced 

biogas were minor. 

A significant amount of ortho-phosphate was taken up in the digester since the effluent ortho

phosphate concentration was only 1/3 of the influent concentration. Phosphorous is generally 

much less mobile than nitrogen and can be strongly adsorbed to organic matter and/or sludge 

(Nowack & Saladin 2000). The enrichment of ortho-phosphate in the digester might thus be 

explained by adsorption on particulate matter. 

The pronounced influence of the RT on the biogas yield (Figure 4.5) gives evidence that after 

the first 20 d of digestion, the biogas production significantly reduces due to the exhaustion of 

readily available substrate (day 25-40). Since the digester substrate contained a considerable 

amount of lignocellulose, it can therefore be hypothesized that the hydrolysis of particulate 

organic matter (e.g., lignocellulose) became rate-limiting during the course of digestion. 

Hydrothermolysis of the CSTR solids resulted in high carbon liquefaction yields, varying 

between 44-83% (Table 4.3). Sakaki et al. (1996) also showed that cellulose decomposes very 

rapidly in catalyst free hot compressed water of around 300-400°C, and that the resulting 

water-soluble products quickly decomposed. The data suggest that adding carbon dioxide to 

the influent might stimulate hydrolysis kinetics, as can be inferred from the increased degree 

of liquefaction (Table 4.3). Due to the increased solubility of carbon dioxide in water at 

elevated temperatures and pressures, the addition of carbon dioxide can serve as a means to 

lower the pH-value without the need of mineral acids. By decreasing the pH, many acid 

catalysed reactions like the hydrolysis of glycosidic bonds can be greatly accelerated 

(Lehninger 1975). This approach bears the advantage of easily recovering the carbon dioxide 

in the gas phase, such that additional downstream unit operations like neutralisation and 

precipitation steps become superfluous (Liu 2000). 

The hydrolysis temperature during hydrothermolysis played a major role in the formation of 

degradation products. The production of hydroxymethyl furfural, which is known to be a 

potential inhibitor of methanogenesis (Rivard & Grohmann 1991), was promoted at higher 

temperatures. Other potential fermentation inhibitors could however not be detected. 

Subsequent digestion efficiencies for the undiluted hydrothermolysis hydrolyzate were 

significantly higher at higher RT (Figure 4.7). Different from CSTR fermentation, the 

digestion of the diluted hydrolyzate derived from the most recalcitrant solids occurred without 

any lag phase in the upflow biofilm reactor with a COD removal of 59% (Figure 4.8a) and a 

high biogas yield (Figure 4.8b ). These results indicate that the toxicity of the 

104 



Clmpter 4: Advnuced nunerobic biocouversiou ofliguocellulosic waste for bioregeuerntive life support 

hydrothermolysis hydrolyzates to the bactetial conso1tia in both methane reactors was of no 

concem for the reliability of the system within the tested time limits. Addition of carbon 

dioxide to lower the pH of the influent suspension seems to have a catalyzing effect on the 

hydrolytic degradation and will therefore be systematically investigated in further studies by 

varying the operating condition, including different degrees of carbon dioxide saturation. 

The rumen bacterium Fibrobacter succinogenes followed by subsequent methanogenesis was 

able to convert 30% of the CSTR solids into biogas (Figure 4.7). Initially, Fibrobacter 

succinogenes mainly produced acetate and succinate as dominant fermentation products 

(Figure 4.6). In other studies, where Fibrobacter was grown in cellobiose-limited conditions 

(5 mM), also succinate and acetate were produced (Maglione and Russell 1997; Fields et al. 

2000). However, the reconsumption of succinate and the production of large amounts of 

acetate (up to 3 g r 1
) and propionate (1.1 g r1) are rather unusual. The production by 

Fibrobacter succinogenes of large amounts of acetate from succinate has already been 

demonstated by in vivo 13C NMR studies (Bibollet et al, 2000). This phenomenon of 

reversion of the succinate pathway was observed as well in adherent and non-adherent cells 

and was favoured by high nitrogen concentration. 

The presented thermal/biochemical conversion system demonstrates that a life support 

organic waste can nearly be completely converted (90% biogas yield) into energy-rich 

methane gas, leaving a mineral -and nutrient rich effluent and carbon dioxide suitable for the 

growth of secondary foods in space. 

Due to its efficiency, the presented system is highly attractive for life-support systems where 

hygienic, rapid and total conversion of organic waste is of major importance (Fulget et al. 

1999). The recovery of energy from the the high temperature hydrothermolyis step is in 

principle feasible, the heat integration of the complete system being an issue that has to be 

solved in future work. 
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Chapter 5 

ALKALINE WET OXIDATION PRETREATMENT OF ORGANIC 
MUNICIPAL WASTE FOR SIMULTANEOUS SACCHARIFICATION 

AND FERMENTATION INTO ETHANOL1 

ABSTRACT 

The feasibility of efficient ethanol production from the cellulose fraction of food waste enriched with 

wheat straw and woody yard waste by means of simultaneous saccharification and fermentation (SSF) 

by Saccharomyces cerevisae was investigated after (thermal) wet oxidation pretreatment. The effects 

of varying wet oxidation parameters (e.g., temperature (1 85-200 'C), pH, and oxygen pressure (3-12 

bar)) on the enzymatic cellulose and hemicellulose degradation of the organic waste were evaluated 

by means of enzyme assays with commercial cellulases and fJ-glucosidase. 

The SSF procedure at 10% dry solids (DS) revealed cellulose to ethanol conversion efficiencies 

ranging from 50-70%for the food waste and 40-79%for the yard waste at cellulase loadings varying 

from 5-25 FPU (filter paper units) g-1 ofDS, corresponding to 22 and 24 g L"1 ethanol for the highest 

enzyme loading. At moderate enzyme loadings (15 FPU g-1 of DS), the ethanol yield was 65% and 

69% of the theoretical yield for the food and yard waste, respectively. It could be unambiguously 

shown that the wet oxidized filtrates did not exhibit any toxicity to the yeast, a frequently encountered 

phenomenon observed during ethanol production from various biomasses. 

Finally, carbon mass balances illustrated that 66% and 49% of the lignin could be converted into 

biodegradable fatty acids (mainly acetate) for the food and yard waste respectively, making the SSF 

residue suitable for further biological treatment. 

This study shows that carbohydrate recovery from organic lignocellulosic waste in the form of ethanol 

is feasible from a biotechnological point of view, leaving a low-value residue potentially suitable for 

methane recovery. 

Keywords: municipal waste, wheat straw, cellulose conversion efficiency, simultaneous 

saccharification and fermentation, wet oxidation 

1 Redrafted after : 
Lissens G., Klinke, H., Verstraete, W., Abring B.K., Tbomsen, A.B. Wet oxidation treatment of organic 
household waste enriched with wheat straw for simultaneous saccharification and fermentation into ethanol. 
Environmental Technology. Accepted for publication. 
Lissens G., Klinke, H., Verstraete, W., Abring B.K., Thomsen, A.B. Wet oxidation pretreatment of woody 
yard waste: parameter optimization and enzymatic digestibility for ethanol production. Journal of Chemical 
Technology and Biotechnology. Accepted for publication. 
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INTRODUCTION 

Municipal solid waste (MSW) is produced abundantly and its disposal is of ever growing 

concern worldwide. Cellulose and hemicellulose (holocellulose), derived from e.g., yard 

waste, food waste, and paper waste, are the principal biodegradable components of municipal 

waste and are found together with lignin in rigid hemicellulose complexes. These two 

polysaccharides, which can make up to 80% of lignocellulose for some refuse components 

(i.e. paper), are of particular interest for the production ofbio-ethanol from biomass (Bjerre et 

al., 1996). 

The rate and extent of microbial degradation of MSW -associated lignocellulose is severely 

limited due to the shielding effect of lignin on holocellulose (Liu et al., 2002). Various MSW 

refuse components have been reported to have moderate to high lignin levels (11-44%) 

(Eleazer et al., 1997). The lignin concentration and structure are major factors determining the 

rate ofbiological degradation ofMSW (Eleazer et al., 1997). Woody yard waste for instance 

can contain up to 30% lignin on DS basis (Gellens et al., 1995). However, also the crystalline 

structure of cellulose plays a role as it prevents penetration by enzymes or microorganisms 

and even by small molecules such as water (Lynd et al., 2002). 

The natural availability of the native materials is an important parameter in the overall 

feasibility of a biofuel process. MSW is a ubiquitous byproduct from human activity and is 

either source-separated collected (e.g., yard and kitchen waste) or separated from the non

organic fraction in grey waste processing plants (De Baere, 2000; Gellens et al., 1995). 

In order to make holocellulose accessible during fermentation, a pretreatment of the waste is 

required. The biochemical utilization of lignocellose for bio-ethanol production requires the 

fractionation or separation of the cellulose, hemicellulose and lignin prior to fermentation, 

often referred to as the "biorefmery approach". Biological pretreatments most often involve 

the use of lignin-degrading organisms and cellulose-degrading enzymes derived from 

cellulolytic bacteria and mostly filamentous fungi (Curling et al., 2002; Thygesen et al., 

2003 ). These methods are promising due to their high specificity for cellulose or 

hemicellulose (Thengerdy and Szakacs, 2003). However, in many cases chemical treatment is 

required to enhance the enzymatic efficiency in subsequent saccharification and fermentation 

(Bjerre et al., 1996). Moreover, biological pretreatment does not ensure sanitation of 

contaminated lignocellulosic waste (i.e. MSW) prior to fermentation. 

Thermal pretreatments with or without catalysts have the benefit to render lignocellulose 

more accessible to enzymatic attack by solubilizing part of the hemicellulose and lignin 
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fraction and to decrease the cellulose crystallinity (Schrnidt and Thomsen, 1998). Thermal 

treatments involving steam (i.e. steam explosion) (Liu et al., 2002) and thermal hydrolysis 

(Schieder et al., 2000) are by far the most investigated processes for pretreatment of the MSW 

and yard waste prior to biomethanation or bio-ethanol production (Emmel et al., 2003; 

Garrote et al., 200la; Garrote et al., 2001b; Garrote and Parajo, 2002; Josefsson et al., 2002; 

Sawada and Nakamura, 2001; Tengborg et al., 2001). Some studies also involved the addition 

of acidic reagents (mostly H2S04) to achieve acid-catalyzed hydrolysis of the waste (Nguyen 

et al., 1999). Although these studies have demonstrated enhanced fermentation yields, the 

utilization of hemicellulose hydrolyzates after the steaming processes is often restricted due to 

the presence of dehydrated degradation products of both sugar and lignin, i.e., 2-furfural and 

5-hydroxymethyl-2-furfural (Bjerre et al., 1996). 

Alternatively, wet oxidation mostly in combination with alkaline addition has been 

investigated as a pretreatment for wood (Schrnidt et al., 2002; Chang et al., 2001a; Chang et 

al., 2001 b) and other cellulosic substrates such as wheat straw (Klinke et al., 2002; Chang et 

al., 200la; Chang et al., 2001b). Wet oxidation has been reported to have significant 

advantages over other thermal pretreatment technologies such as lower production of sugar 

degradation products (i.e. furan derivatives) and significant decrease of cellulose crystallinity 

(Schrnidt and Thomsen, 1998). Furthermore, wet oxidation under alkaline conditions has been 

reported to permit fast lignin fragmentation and therefore greatly favours biomass 

biodegradability (Verenich and Kallas, 2002). 

In this study, the wet oxidation process as a pretreatment for bio-ethanol production was 

applied to two carbohydrate-rich waste fractions, namely food waste enriched with wheat 

straw and woody yard waste. The influence of three wet oxidation process parameters (T, 0 2 

pressure and initial pH) on the enzymatic convertibility for ethanol production was studied 

and the optimal wet oxidation conditions were determined by means of a cellulase 

convertibility assay. Simultaneous saccharification and fermentation (SSF) was performed on 

the enzyrnatically most accessible wet oxidized wastes at different enzyme loadings in 

function of the ethanol yield. 
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MATERIALS AND METHODS 

Raw substrate 

Food waste was collected from a municipal waste plant in Frederikssund (Denmark) during 

wintertime. The food waste consisted of source-sorted kitchen waste mainly and was 

collected in plastic bags. During treatment in the waste plant, the waste was shredded ( < 1 

cm) and plastics were removed using a rotating drum. Shredded wheat straw was added to the 

drum at a final concentration of8% of the total DS (dry solids) content of the MSW. This was 

done to increase the DS content and for stabilising the waste. Fresh woody yard waste was 

collected from a local site in Denmark (DTU) during wintertime and was composed of small 

branches (< 2 cm diameter) of different kinds of trees (mainly oak and birch). Both wastes 

were used for the study after air drying until a DS content of 95-96% and after subsequent 

cutting of the waste into millimetre (mm) particle size with a cutting-knife mill. 

Wet oxidation reactor and sample preparation 

WO (wet oxidation) experiments were carried out in a high-pressure autoclave with a tubular 

loop and an impeller constructed at Riso National Laboratory as described by Bjerre et al. 

(1996). The autoclave was designed as a cylindrical vessel (V= 1890 ml) made of Sandvik 

Sanicro 28 (27% Cr, 31% Ni, 3.5% Mo, 1% Cu) with an impeller that continuously pumped 

the liquid through the tubular loop (Figure 5.1 ). 

Figure 5.1. Wet oxidation reactor with tubular loop constructed at Riso National Laboratory 
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Prior to heating, the reactor lid was closed and oxygen pressure was supplied from a gas 

cylinder. The autoclave was mounted on a rack, facilitating temperature control by raising or 

lowering it in a heating bath. After wet oxidation, the reaction was terminated rapidly ( < 3 

min) by immersing the reactor in a water bath. 

WO experiments were performed batch-wise by suspending 60 g DS of substrate in 1 litre of 

deionized water (6% DS). To determine the effects of temperature, initial pH and oxygen 

pressure, four wet oxidation conditions were tested (Table 5.1 and Table 5.2) for both wastes 

whereby 2 parameters were changed per experiment. The holding time (I 0 min for food waste 

and 15 min for yard waste) was kept constant during all experiments. Because of the good 

heat-transfer conditions of the reactor, both the heating and cooling period could be restricted 

to approximately 2.5 minutes. The initial pH of the 6% DS solution was made alkaline by 

addition of 2 g r 1 Na2C03 (sodium carbonate) prior to closure and pressurization of the 

autoclave with oxygen. The pH of the solutions was measured before and after wet oxidation. 

After WO, the wet oxidized solids and the filtrate were separated by vacuum filtration. 

Subsequently, the solids were washed with deionized water and dried in a climate chamber at 

20°C and 65% relative humidity. After drying, the solids were stored in paper bags. Wet 

oxidized filtrates were stored at -l8°C. 

Table 5.1. Wet oxidation pretreatment conditions for the food waste. All wet oxidation 

experiments were performed at 6% DS 

WO condition A B c D 

Temperature (0 C) 185 185 195 195 

Time (min) 10 10 10 10 

Oxygen Pressure (bar) 3 12 3 12 

Na2C03 addition (g r 1
) 0 2 2 0 

pH before wet oxidation 4.8 7.2 7.2 4.8 

pH after wet oxidation 4.4 4.6 5.1 4.0 
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Table 5.2. Wet oxidation pretreatment conditions for the yard waste. All oxidation experiments 

were performed at 6% DS 

WO condition A B c D 

Temperature (0 C) I85 I85 200 200 

Time (min) I5 I5 I5 15 

Oxygen Pressure (bar) 3 12 3 12 

Na2C03 addition (g 1"1) 0 2 2 0 

pH before wet oxidation 6.3 9.5 9.5 6.3 

pH after wet oxidation 3.4 3.7 4.2 2.7 

Chemical analysis 

Analysis of the solid fiber fraction 

The solid fractions derived from WO were shredded and hammer milled to pass a I mm 

screen prior to analysis. The wet oxidized solids and raw waste were analysed for their 

contents of glucan, xylan, arabinan, K.lason lignin and ash after strong acid hydrolysis (72% 

w/w H2S04 at 30°C for 60 min) followed by dilute acid hydrolysis (4% w/w H2S04 at I2I oc 
for 60 min) (Gilbert et al., 1952). Subsequent sugar analysis was carried out by HPLC 

analysis (Klinke et al., 2002). 

For the raw materials, the non-cell wall material was characterised by two methods. First, a 

triple extraction procedure according to Puis (I993) was performed prior to strong and dilute 

acid hydrolysis. The method consisted of extracting the I mm sieved substrate by means of 

soxhlet extraction with petrol-ether/acetone/70% methanol (in water) for a period of 3 h for 

each solvent. The removal of the different non-cell wall compounds (i.e. fats, waxes, resins) 

was determined gravimetrically. Second, the water solubles, pectin/NCWM (non-cell wall 

material) and resins/fats/waxes fraction of the raw material were determined by a modified 

gravimetric grass fiber analysis method (Browning, 1967) by extracting the raw wastes with 

water (30 min, 25°C} to remove the water solubles, and 3% EDTA at pH 3.3 (4 h, 84 oq to 

extract the pectin and NCWM fraction. 
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Analysis of the liquidfraction and strong acid hydrolyzates 

Total glucose, xylose and arabinose concentrations (sum ofmonomeric and polymeric sugars) 

in the wet oxidized filtrates were determined after dilute sulfuric acid hydrolysis (4% w/w 

H2S0 4 at 121 oc for 10 min) (Gilbert et al. , 1952). Quantification of free monomeric sugars 

and carboxylic acids present in the wet oxidized filtrates was carried out after pH adjustment 

to pH 2-2.3 with 0.1 M H2S04. Sulfate ions were precipitated by an equivalent an1ount of 

barium hydroxide (Ba(OHh) and separated by centrifugation. Samples were filtered (0.45 

IJ.m) prior to HPLC analysis and diluted 10-fold with HPLC eluent (4 mM H2S04) when 

necessary. 

Glucose, xylose, arabinose, ethanol and total carboxylic acids (sum of malic, succinic, 

glycolic, formic and acetic acid) as well as furan derivatives (sum of 5-hydroxy-2-

methylfurfural (5-HMF) and 2-furfural) were quantified by HPLC analysis according to 

Klinke et al. (2002). 

The total reducing sugar concentration of the WO filtrates, acid hydrolyzates and 

enzymatically treated samples were analyzed spectrophotometrically by a dinitrosalicylic acid 

(DNS) assay according to Miller ( 1959) using xylose as a standard. Samples were diluted 2.5-

25 fold depending on the concentration of the hydrolyzates measured. 

Carbohydrate recovery calculations 

Carbohydrate recoveries (cellulose and hemicellulose) were calculated to estimate their losses 

during WO following 

[ ] 
(Carbohydrate ) 

Carbohydrate recovery % w I w = HPLC 

Carbohydrate ,."' Msw 
(i) 

with carbohydrateHPLC being the glucan concentration (for cellulose) or the sum ofxylan and 

arabinan (for hemicellulose) concentration for the liquid phase (recovery liquid phase) or for 

the solid phase (recovery solid phase) in % DS. Carbohydrateraw MSW represents the glucan or 

arabinoxylan content of the raw material(% DS). 
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Enzymatic hydrolysis 

A modified enzymatic convertibility assay (Varga et al., 2003) based on commercial cellulase 

(Celluclast 1.5 L from Trichoderma reesei) and ~-glucosidase (Novozym 188) (Novozymes 

A/S, Denmark) was used for both wastes to determine the efficiency of the four WO 

pretreatment conditions tested. The celluclast enzyme activity was previously determined to 

be 67 FPU (filter paper units) rn1·1 (Thygesen et al., 2003). Enzymatic conversion of WO 

solids was performed at 2% DS either in the presence of 0.2 M acetate buffer (pH= 4.8) or 

WO filtrate with an adjusted pH of 4.8. Enzymatic hydrolysis was carried out in triplicate in 

10 rnl test tubes, which were placed in an incubator at 50°C and were shaken at 150 rpm. 

Applied enzyme loadings were 25 FPU g·1 of DS for all assays. The total hydrolysis time was 

72 h with 3 sampling times (24, 48 and 72 h). Samples were withdrawn under sterile 

conditions, centrifuged (4000 rpm, 5 min), 10-fold diluted with HPLC eluent and filtered over 

a 0.45 11m filter before HPLC analysis. 

The enzymatic convertible cellulose (ECC) expressed as% DS was calculated as 

ECC = (GlucoseHPLc) xl00x0.9 (ii) 
DS 

with glucoseHPLC being the measured glucose concentration after the assay (g r 1 
), DS the dry 

solid content during the assay (g DS r 1
) and a molar weight multiplication factor for 

conversion of glucose to cellulose concentration. The cellulose conversion efficiency(%) was 

calculated as 

ECC 
Conversion%= xlOO (iii) 

Cellulosefiltercake 

with ECC being the enzymatic convertible cellulose (% DS) and cellulosefiltercake the total 

cellulose amount present in the WO solids (% DS). 

Conversion efficiencies for the assay including the WO filtrates were calculated following 

C . 01 GlucoseHPLc- Glucosemtrate xlOO onvers10n ;o = -----=~----""'=---
( Cellulose,olids + Cellulosefiltrate )xl.ll 

(iv) 

114 



Clmptrr 5: Alknliue wet oxidatiou preh·eatmeut of orgauic llllmicipal waste for bioetlmuol productiou 

with glucoseHPLC being the measured glucose concentration after hydrolysis (g r 1 
), 

glucosemtrate the free monomeric glucose present in the filtrate (g r 1 
), cellulosesolids the 

cellulose content of the WO solids, cellulosefiltrate the polymeric glucose present in the filtrate 

(g r 1
) and a hydrolysis factor for conversion of cellulose to glucose concentration. Conversion 

efficiencies and ECC values for the hemicellulose fraction were calculated similarly by 

replacing glucose by xylose in the formula and by taking into account the hydrolysis loss 

factors for pentose sugars. 

Simultaneous saccharification and fermentation (SSF) 

A SSF method was developed to determine the ethanol yield from the cellulose fraction of the 

wet oxidized and raw wastes. The method consisted of two steps: enzymatic prehydrolysis of 

cellulose (and hemicellulose) to sugar monomers and fermentation by Saccharomyces 

cerevisiae of the glucose fraction to ethanol (theoretical yield of 0.51 g ethanol g·1 glucose). 

(I) Prehydrolysis (11) SSF 

H(CsH100s)nOH + n H20 • n CsH120s .. 2n C2HsOH + 2n C02 

Cellulose 

(162}0 

Water 

WO pretreatment 

Glucose 

180 

Enzymes 

Ethanol 

2 x46 

Carbon dioxide 

2 x44 

Prehydrolysis (presaccharification) and SSF was performed in lOO ml fermentation flasks at 

increased DS content (10% DS) because of the low carbohydrate content of the waste 

employed. Prehydrolysis (liquefaction) of the WO solids was performed at 50°C for 24 h at 5 

FPU g·1 of DS with the same celluclast mix (Varga et al., 2003). After liquefaction, the 

fermentation flasks were supplemented with a second batch of enzymes at an enzyme loading 

ofO, 5, 10 and 20 FPU g"1 ofDS and inoculated with 0.16 g yeast. During the fermentation, 

0.24 ml of sterile filtered urea ( 16 mM) was supplemented as a source of nitrogen along with 

the yeast. In a second assay, the ethanol yield of wet oxidized food waste pretreated for 10 

min and 15 min during WO was compared while for the yard waste, additional nutrients were 

supplied under the form of yeast extract (Difco, USA) and bacto tryptone (casein extract, BD, 

France). In all assays, the headspace of each fermentation flask was flushed with nitrogen and 

sealed with a yeast lock filled with glycerol. Duplicate flasks were incubated at 32°C for 8 

days and were shaken at 90 rpm to prevent mass transfer limitation. 

' 
.... -----~-~ 
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The cellulose to ethanol conversion was monitored gravimetrically by C02 loss. The ethanol 

yield during fermentation was calculated by multiplication ofthe molar ratio ofEtOH/C02 (= 

1.045) with the C02 loss. The final ethanol concentration was also determined by HPLC 

analysis (as described earlier). The cellulose to ethanol conversion efficiency (ethanol yield) 

was determined following 

EtOH . ./HPLC EtOHyield= gravnnetnc x100 (v) 
Totalglucanllaskx0.51 

with EtOHgravimetriciHPLC being the ethanol amount per flask (g) and total glucan11ask the total 

glucose amount per flask (g), multiplied with the theoretical ethanol conversion factor. 

RESULTS 

Wet oxidation pretreatment 

The experimental conditions for wet oxidation of MSW were chosen based on the wet 

oxidation of wheat straw for high cellulose convertibility and recovery (Klinke et al., 2002). 

For all conditions, a pH decrease was observed with 0.4-2.6 units for the food waste and 3-5.8 

units for the woody waste (Table 5.1 and Table 5.2). 

To evaluate the effect of the WO pretreatment on the carbon mass balances of both wastes, 

chemical analysis was carried out before and after WO. The composition of the raw food 

waste on DS basis was as follows: 28% water solubles (non-cell wall material such as salts 

and protein), 4.3% pectin, 15.6% resins/fats/waxes, 20.1% glucose, 7.2% xylose, 0.9% 

arabinose, 21.8% lignin and 1.9% total ash. The raw woody waste contained 5% water 

solubles (non-cell wall material such as salts and protein), 7% pectin, 27.4% 

resins/fats/waxes, 24.8% glucose, 11.5% xylose, 2.2% arabinose, 22% lignin and O.l% total 

ash. The effect of the WO experimental conditions on the material mass balances is shown in 

Figure 5.2 for the food waste and Figure 5.3 for the yard waste. 

For both wastes, the solid fraction significantly increased in cellulose content (up to 125% for 

yard waste and up to I 00% for food waste) as a result of hemicellulose and lignin 

solubilization. The cellulose content of the WO food waste ranged from 39.4 to 45.7 % DS 

compared to 20.1 % DS for the untreated waste. Cellulose enrichment of the WO solids was 
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highest for condition B for both wastes. Total cellulose recovery (glucan) was in all cases 

nearly complete and varied from 89-99% (Figure 5.2 and Figure 5.3). 
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Characteristics of the WO food waste solids (solid fraction) and the WO filtrates 

(liquid fraction) after wet oxidation (g/100 g of DS raw solids). Error bars represent 

standard deviations on triplicate samples 

As a whole, the extent of hemicellulose solubilization was considerably higher for the woody 

yard waste whereas cellulose solubilization was higher for the food waste. Figure 5.2 shows 

that the amount of solubilized hemicellulose for the food waste was comparable for 

conditions A, B and C but was much higher for the most severe condition D (high 

temperature, high 0 2 pressure and acidic pH). This could also be confrrmed by measuring the 

total reducing sugar content of the filtrates by means of the dinitrosalicylic acid (DNS) assay. 

Overall, the total hemicellulose recovery was more than 95% for condition A and B but was 

significantly lower at 195°C (Figure 5.2). Besides hemicellulose solubilization, considerable 

amounts of cellulose (up to 36% for condition A) and lignin (up to 67% for condition B) were 
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solubilized during wet oxidation pretreatment Cellulose was most efficiently solubilized 

under acidic conditions (A and D). Delignification of the waste was much higher at high 

oxygen pressure (12 bar) and neutral to alkaline pH (condition B) compared to the other 

conditions tested (Figure 5.2). 
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Characteristics of the WO yard waste solids (solid fraction) and the WO filtrates 

(liquid fraction) after wet oxidation (g/100 g of DS raw solids). Error bars represent 

standard deviations on triplicate samples 

For the yard waste, high amounts of original hemicellulose could be solubilized during WO, 

ranging from 70% (condition D) to 95% (condition A) (Figure 5.3). The total hemicellulose 

recovery was in the range of 88-100% for conditions A, B and C but was significantly lower 

for the most severe WO conditions (D). Beside the temperature, hemicellulose recovery was 

also influenced by the oxygen pressure and was consistently lower at higher oxygen pressure 

(12 bar). WO condition A resulted in the highest hemicellulose recovery and solubilization. 

Similar to the food waste, delignification of the woody solids during WO was lowest for 

condition A (38%) and was highest for condition B (49%). Lignin removal generally 

increased with increasing oxygen pressure (condition Band D). The high hemicellulose and 
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lignin recovery for condition A related with the total carboxylic acid concentration, being 

significantly lower (3.1 g per 100 g DS) for condition A compared to the other WO 

conditions. 

The total free acids concentration in the WO filtrates were highest at alkaline pH (condition B 

and D) and varied from 2.2-7.4% on DS basis with the highest values for the woody waste 

(data not shown). For both wastes, the production of 5-HMF and 2-furfural was stimulated at 

higher WO temperature and oxygen pressure. However, the concentration of furan derivatives 

was in all cases low (0.08-0.9% DS) as measured by HPLC analysis. 

Enzymatic convertibility of the wet oxidized solids and filtrates 

Food waste 

In a first assay, the enzymatic accessibility of the washed WO solids ofboth wastes in acetate 

buffer was evaluated for the four WO experimental conditions at 2 different incubation times. 

Figure 5.4 shows the enzymatic conversion efficiency for the glucan and xylan fraction of the 

raw and wet oxidized food waste. The conversion yields of cellulose and hemicellulose did 

not further increase after 24 h of incubation (data not shown). Hence, maximum cellulose and 

hemicellulose enzymatic digestibility at 25 FPU g·1 ofDS was reached after 24 h. 

The extent of enzymatic cellulose conversion of the solids in acetate buffer was relatively 

similar for all conditions tested with slightly higher conversion efficiencies for conditions C 

and D (Figure 5.4). However, the hemicellulose conversion was far lower for condition D 

compared to the other conditions. This was due to the comparatively lower hemicellulose 

content of the WO solids of condition D as a result of increased hemicellulose solubilization 

at these conditions (Figure 5.2). Overall, up to 72% of the glucan (condition D) in the food 

waste could be enzymatically hydrolyzed into monomeric sugars. The enzymatic conversion 

efficiency of the raw waste was far lower compared to the treated waste, with a conversion 

efficiency of 36-46% for cellulose and hemicellulose, respectively (Figure 5.4 ). 

By replacing the acetate buffer with the WO filtrates (second assay), the conversion 

efficiencies of the polymeric sugars present in the WO filtrates could be evaluated along with 

the enzymatic conversion efficiencies of the WO solids. Figure 5.4 shows the enzymatic 

conversion efficiencies for the enzymatic assay including the filtrates. Again, the difference in 

conversion yield for WO conditions A, Band C was relatively small(< 10%). The enzymatic 

digestibilities for cellulose and hemicellulose were generally in the same range for the WO 
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filtrate assay compared to the acetate buffer assay. The DNS-numbers of the enzymatically 

hydrolyzed WO showed the same tendency (data not shown). 

As a whole, the enzymatic digestibilities of both assays did not differ more than 9% from 

each other for the 4 WO conditions tested except for the xylan fraction in the wet oxidized 

slurry assay, which was significantly lower for conditions A and C. Based on the analytical 

error (± 5%) made in the various sample preparation steps, the differences in enzymatic 

conversion yield were found not to be statistically significant. Hence, it was decided to 

perform a simultaneous saccharification and fermentation procedure (SSF) at 10% DS with 

the WO solids and filtrate of condition B because of the lowest amount of furan derivatives 

and the highest total hemicellulose recovery found for this condition. 
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Yard waste 

Similar to the food waste, a first assay in acetate buffer was perfom1ed. Whereas the 

enzymatic convertibility for the different WO conditions was rather minor for the food waste, 

the enzymatic conversion for condition B was on average 24-29% and 28-33% higher 

compared to the other conditions for the cellulose and hemicellulose fraction, respectively 

(Figure 5.5). The cellulose to glucose convertibility mounted to 68.6% after 48 h incubation 

time for WO condition B. This WO condition also resulted in a high enzymatic accessibility 

of 83% of the remaining hemicellulose contained in the WO solids. These observations could 

also be confl.l11led by DNS analysis of the enzymatic hydrolyzates (data not shown). 

The enzymatic conversion efficiency of the native wood was far less compared to the WO 

solids. Only about 20% of the cellulose and hemicellulose contained in the raw material could 

be efficiently liquefied into the corresponding monomeric sugars if no pretreatment was 

considered. 

A second enzyrnatic assay was set up in which the acetate buffer was replaced by the WO 

filtrates (Figure 5.5). While the cellulose conversion efficiencies are 3-11% lower for the 

filtrate assay compared to the acetate buffer assay, no similar straightforward statement can be 

made regarding the hemicellulose conversion efficiencies. However, the largest increase in 

hemicellulose conversion efficiency was observed for condition A and C when including the 

WO filtrates in the assay. Sinlilar with the first assay, condition B showed the highest 

enzymatic convertibility. 
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Enzymatic conversion efficiency (%) for glucan and xylan of the raw and wet 

oxidized yard waste (condition A, B, C and D) in acetate buffer and of the wet 

oxidized slurry. Enzyme loading: 25 FPU g-1 of DS. Error bars represent standard 

deviations on triplicate test tubes 

Simultaneous saccharification and fermentation (SSF) 

Food waste 

It was found that during prehydrolysis at 5 FPU g-1 ofDS, on average 33% of the total glucan 

contained in the fermentation flask could be hydrolyzed into hexose sugars (data not shown). 

The liquefaction step decreased the viscosity of the slurry considerably and produced readily 

fermentable carbohydrates (17 -18 g t 1 of glucose) suitable for fermentation. 

Different cellulase loadings were tested during SSF to optimize the enzyme loading in 

function of the ethanol yield. Depending on the total enzyme loading during SSF (5-25 FPU 

i 1 ofDS), fmal ethanol concentrations in the range of 16.5 (5 FPU g-1 ofDS) up to 22 g r1 

(25 FPU g-1 of DS) could be reached after 8 days incubation time (Figure 5.6). The 

fermentation curves as depicted in Figure 5.6 show a typical growth pattern common for yeast 

sugar fermentation. In fact, more than 80% of the ultimate ethanol yield was already achieved 

after 48 h of fermentation for a11 enzyme loadings tested. The glucose concentrations of the 

slurries after SSF were in all flasks lower than 0_15 g r 1
, indicating that the yeast fermented 

virtually all solubilized glucan. 
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The ethanol yield increased with higher cellulase loading (Figure 5.6). However, an increased 

enzyme loading (5-25 FPU g·1 of DS) did not provide an equally proportional increase in the 

ethanol yield. 
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Ethanol production by Saccharomyces cerevisiae during simultaneous 

saccharification and fermentation of wet oxidized solids (condition B) of food waste 

dissolved in wet oxidized filtrate at 10% DS (solids were prehydrolyzed before 

inoculation at 5 FPU g-1 of DS for 24 h at 50°C for all enzyme loadings tested) . 

Enzyme loadings are expressed per g DS. Data points are average values of duplicate 

samples 

Figure 5. 7 shows the ethanol yield of the treated waste at the different total enzyme loadings 

tested as well as the corresponding decrease in cellulose content of the WO solids. The 

ethanol yield increased with total cellulase loading and mounted to a yield of 70% for 25 FPU 

g·1 of DS. The cellulose to ethanol conversion efficiency ranged between 50% and 70% for a 

total enzyme loading of 5 FPU g·1 of DS and 25 FPU g·1 of DS, respectively. Moreover, the 

ethanol yields at 10 and 15 FPU g·1 of DS were very similar, namely 62% and 65%, 

respectively. Even at a very low enzyme loading of 5 FPU g' 1 of DS, an ethanol yield of 50% 

was still achieved. A second SSF assay with WO MSW slurry oxidized for 15 min instead of 

10 min retention time showed on average a 5-10% lower ethanol yield (data not shown). 

Hence, a longer pretreatment time did not improve the ethanol yield. 
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Ethanol yield (%) during SSF of wet oxidized solids (condition B) offood waste by 

different enzyme loadings after 8 days of incubation. Error bars represent standard 

deviation on triplicate samples. Ethanol yields are average values of duplicate samples 

During prehydrolysis of the WO yard waste (condition B), it was found that at 5 FPU g- 1 of 

DS, on average 22% of the total glucan could be hydrolyzed into monomeric glucose (data 

not shown). 

Similar to the food waste, different enzyme loadings were tested during SSF with respect to 

ethanol yield and cellulose conversion efficiency. Depending on the total enzyme loading 

during SSF ( 5-25 FPU g·1 of DS ), fmal ethanol concentrations in the range of 11.7 ( 5 FPU g·1 

of DS) up to 24.4 g r 1 (25 FPU g·1 of DS) could be reached at 8 days incubation time. 

However, it was found that the fermentation was characterized by a typical lag phase. 

Effectively, ethanol production at higher enzyme loadings only increased significantly after 

an incubation time of 48 h (data not shown). Hence, further experiments were made with 

respect to inhibition of the filtrate and/or nutrient requirements of the yeast. 

A second SSF was carried out at 25 FPU g-1 of DS under exactly the same conditions as the 

first assay except that extra nutrients and minerals were added prior to SSF under the form of 

yeast and casein extract. As can be inferred from Figure 5.8, an ethanol concentration of 20 g 
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r 1 could already be reached after 68 h in the presence of the extra nutrients while more than 

120 h were needed in the first assay to reach the same ethanol level. The fermentation curves 

also show a typical growth pattern reaching a maximum ethanol concentration of 22 g r 1 after 

approximately 150 h of fermentation (Figure 5.8). Final glucose concentrations of the SSF 

filtrates were in all flasks that were supplemented with extra nutrients lower than 0.2 g r 1
, 

indicating that the yeast fermented virtually all solubilized glucan (data not shown). 
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Ethanol production by Saccharomyces cerevisiae during simultaneous 

saccharification and fermentation of wet oxidized solids (condition B) of yard waste 

dissolved in wet oxidized filtrate at different dilutions. Applied enzyme loading was 5 

FPU g·1 of DS during prehydrolysis and 20 FPU g·1 of DS during SSF. Key: X: 

undiluted filtrate, no yeast/casein extract; •: undiluted filtrate, with yeast/casein 

extract; •: 1:1 diluted filtrate, with yeast/casein extract; A: 1:2 diluted filtrate, with 

yeast/casein extract 

Figure 5.8 also shows the fermentation pattern of SSF flasks to which diluted WO filtrates 

(1:1 and 1:2) had been added. Ethanol production proceeded at a similar rate with the 

undiluted and 1:1 and 1 :2 diluted filtrates. 

Figure 5.9 shows that the ethanol yield exponentially increased with total enzyme loading and 

was highest for 25 FPU g·1 ofDS (maximum yield of79%). However, at a total loading of 15 

FPU g·1 of DS, cellulose to ethanol conversion efficiency of 69% was still achieved (Figure 

5.9). Total cellulase loadings equal or lower than 10 FPU g'1 ofDS resulted in ethanol yields 
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lower than 60%. The cellulose contents of the WO solids after SSF matched very well with 

the calculated ethanol yields. 
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Cellulose conversion efficiency into ethanol during SSF of wet oxidized solids of yard 

waste (condition B) after 8 days incubation. Key: •: ethanol yield (left Y -axis), .A: 

cellulose content of solids after SSF as determined by strong acid hydrolysis (right Y

axis). Error bars represent standard deviation on triplicate samples. Ethanol yields are 

average values of duplicate samples 

DISCUSSION 

Effects on carbohydrate mass balances 

In this study, wet oxidation was investigated as a means to increase the enzymatic 

convertibility for bio-ethanol production of carbohydrate-rich waste fractions, namely food 

waste enriched with wheat straw and woody yard waste. 

The oxidative conditions caused a consistent pH decrease for all tested WO conditions as a 

result of carboxylic acid production from the hemicellulose and lignin fraction (Klinke et al., 

2002; Kolaczkowski et al., 1999). For both wastes, the most proncounced pH-decrease could 

be observed under alkaline conditions (condition B and C) and can be explained by increased 

lignin oxidation as a result of the addition of alkaline under the form of Na2C03 (Verenich 

and Kallas, 2002) (Table 5.1 and Table 5.2). The delignification of lignocellulosic biomass 

under oxidative conditions proceeds most efficiently at alkaline pH (pH> 9), causing a higher 
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production of hydroxyl radicals and low molecular acids (Klinke et al., 2002). For the food 

waste, the fmal filtrate pH was however very similar (around 4-5) for all 4 WO conditions 

tested and can probably be attributed to the high buffer effect of the treated slurry, created by 

soluble salts (i.e. sodium) present in the waste combined with weak acids (i.e. acetic acid) 

formed during WO. This weak acid-salt buffering system together with the relatively low 

hemicellulose content of the raw food waste largely explains the relatively high filtrate pH 

after WO compared to other cellulosic biomasses, i.e. corn stover (Varga et al., 2003). In this 

respect, Bjerre and Serensen (1992) stated that the presence of catalysts such as salts 

promotes the further oxidation of carboxylic acids such as formate into bicarbonate during 

WO, causing a second buffering effect in the reaction mixture. This oxidation effect probably 

caused the low total carboxylic acid content (< 4.5 % DS) of the food waste WO filtrates 

despite the relatively high oxidative lignin removal (54-67%) (Figure 5.2). 

In general, oxidative hemicellulose degradation and solubilization was highest at higher WO 

temperature and lower pH. Hence, hemicellulose solubilization was much higher for 

condition D compared to the other conditions (Figure 5.2 and Figure 5.3). Oxidative 

hemicellulose degradation was promoted at a higher oxidation temperature in first instance 

(condition C and D). Klinke et al. (2002) also found significantly lower hemicellulose 

recoveries for wheat straw at 195°C compared to 185°C. Total hemicellulose recovery was 

lowest for condition D and was linked to the production of furan derivatives, which were 

highest for condition D (0.2-0.9% on DS basis). 

The hemicellulose solubilization was much higher for the yard waste compared to the food 

waste. This phenomenon was probably due to an enhanced autohydrolysis reaction, which is 

mainly generated by the formation of acetic acid derived from acetylated xylan chains present 

in hemicellulose (Garrote et al., 200 I b). This mechanism is particularly important during 

hydrothermolysis of hardwood because of its high acetyl content that provides increased 

catalytic action (Biermann et al., 1984). 

The lower cellulose reactivity (linear configuration, high polymerization degree and 

crystalline structure) compared to the reactivity of the highly branched hemicellulose and 

lignin during wet oxidation caused a relatively low solubilization of cellulose and a high total 

cellulose recovery. Thermal cellulose degradation by loss of chemical water is believed only 

to occur at temperatures higher than 200°C (Scheirs et al., 2001). Cellulose solubilization was 

significantly higher for the food waste compared to the yard waste, which was probably due 

to the higher amount of soluble and more accessible carbohydrates present in the food waste. 
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Oxidative lignin removal was moderate (49% for the yard waste) to high (67% for the food 

waste) at 185°C and under alkaline conditions (condition B). Oxidative (lime) alkaline 

treatment was previously found to enhance lignin removal and enzymatic digestibility for 

wheat straw and high-lignin poplar wood (Bjerre et al., 1996; Chang et al., 2001 b). 

Furthermore, Verenich and Kallas (2002) also stated that wet oxidation under alkaline 

conditions is more effective to break up lignin in biodegradable compounds and remarked that 

this process does not impair high organic losses (to C02). Hence, alkaline wet oxidation at 

185°C was very suitable for the selective removal and oxidation of lignin from carbohydrate

rich waste into low weight carboxylic acids and C02• 

Effects on enzymatic convertibility and ethanol yield 

For the food waste, the enzymatic cellulose (and hemicellulose) conversion efficiency 

between the different WO conditions only displayed small differences up to 9% (Figure 5.4). 

In all cases, enzymatic digestibility ranged from 70-78% for the WO slurries and from 63-

72% for the acetate buffer assay. This is rather contradictory to previous studies applied to 

pure feedstocks (i.e. cornstover) where the differences in conversion efficiency for the various 

WO conditions tested were more pronounced (V arga et al., 2003 ). Hence, it is assumed that 

the heterogeneous carbohydrate composition of the different refuse components level out the 

effect of the different WO conditions. In this respect, one can expect that the highly variable 

and season-dependent composition of organic waste is crucial for further optimization of 

ethanol production from household waste. However, the enzymatic degradation for the yard 

waste fractions showed more distinct differences (Figure 5.3 ). Chang et al. (200 I b) also found 

that combining oxidative and alkaline conditions enhanced enzymatic accessibility 

extensively. In this respect, it can be assumed that alkaline conditions favoured in particular 

deacetylation, thereby enhancing the enzyrnatic digestibility of the yard waste. 

Enzymatic conversion and fermentation yields of thermally pretreated biomass are generally 

higher when the WO liquid fraction is omitted due to the presence of inhibitory compounds, 

particularly at high dry matter content (> 5% DS ). Therefore, most described SSF and 

enzymatic procedures have been carried out with only (washed) WO solids (Spindler et al., 

1991). However, this study shows that the presence of the WO filtrates in the enzyrnatic and 

SSF procedure did not exhibit any inhibition or toxicity towards Saccharomyces cerevisiae, 

even at a high solids content of 10% DS. In fact, enzymatic conversion efficiencies including 

the WO filtrates were in the same range as the conversion yields found in the absence of the 
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filtrates. Alkaline wet oxidation pretreatment results in comparatively lower sugar 

degradation product levels and more biodegradable WO filtrates compared to other (mostly) 

steam-based pretreatments. In this respect, Nguyen et al. (1999) reported that up to 10% of 

the xylan contained in mixed solids waste was converted into furfural by applying steam 

explosion and dilute-acid pretreatment. In this study, only 0.08-0.9% DS of the original raw 

solids was converted into furan derivatives during WO. It was also shown that the wet 

oxidized food waste contained all necessary nutrients and minerals for subsequent 

fermentation whereas extra nutrients had to be supplied to ferment the wood carbohydrates. 

Furthermore, a longer WO retention time of 15 min did not result in a higher ethanol yield for 

the food waste. This shows that the WO reaction occurred mainly during the ftrst 10 minutes, 

giving rise to the formation of compounds (e.g., carboxylic acids) which are recalcitrant to 

further oxidation (Verenich and Kallas, 2002). 

At moderate enzyme 1oadings (1 0-15 FPU g-1 DS ), 60-70% of the cellulose present in wet 

oxidized food and yard waste could be converted into ethanol whereas for the raw wastes, 

only 18-45% of the cellulose could be enzymatically converted at 25 FPU g-1 DS. Further 

research is however warranted on the development of more speciftc cellulolytic enzymes for 

the production of ethanol from cellulosic biomass and waste. 

CONCLUSIONS 

This work shows that wet oxidation (T = 185-195°C, 0 2 pressure = 3-12 bar, 2 g r 1 of 

Na2C03 and 10 min) is an effective pretreatment for the simultaneous sacchariftcation and 

fermentation of food and yard waste into ethanol. The effect of high oxygen pressure under 

alkaline conditions showed to be decisive parameters for extensive delignification (up to 

67%) of organic waste during wet oxidation. Solubilized lignin was further oxidized into non

toxic degradation products, namely low weight carboxylic acids and C02• 

By applying an SSF procedure with Saccharomyces cerevisiae and commercial cellulases at 

10% DS, it was shown that a fmal ethanol concentration of 16.5-24 g r 1 of ethanol can be 

reached from the WO slurry at a cellulose conversion efficiency of 50-79% and a total 

cellulase loading of5-25 FPU g·1 ofDS. Moderate enzyme loadings of 10-15 FPU g-1 ofDS 

still resulted in 60-70% ethanol yields from the cellulose fraction of the wastes. The WO 

filtrate did not exhibit any toxicity to the yeast during fermentation. 

This study shows that alkaline wet oxidation can considerably decrease the enzyme loading 

and hence decrease the operational costs in the production of ethanol from carbohydrate-rich 
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wastes. Furthermore, the presented wet oxidation process could be particularly attractive for 

the treatment of fibrous, carbohydrate-rich and source-separated municipal waste for the 

production ofbio-ethanol. 

ACKNOWLEDGEMENTS 

The authors would like to thank the EU-commission (Coproduction Biofuel ENK6-CT-2002-

00650) and the FWO-Flanders (Fonds Wetenschappelijk Onderzoek) for fmancial support. 

Thomas Femqvist and lngelis Larsen are gratefully acknowledged for technical and analytical 

support. 

130 



Chapter 6 

ENHANCEMENT OF THE ANAEROBIC DIGESTION PROCESS OF 
RAW AND DIGESTED BIOWASTE BY ALKALINE WET OXIDATION1 

ABSTRACT 

Anaerobic digestion of solid biowaste generally results in relatively low methane yields of 50-60% of 

the theoretical maximum. Increased methane recovery from organic waste would lead to reduced 

handling of digested solids, lower methane emissions to the environment and higher green energy 

profits. The objective of this research was to enhance the anaerobic biodegradability and methane 

yields from different biowastes (food waste, yard waste, and digested biowaste already treated in a 

full-scale biogas plant (DRANCO, Belgium)) by assessing thermal wet oxidation. The biodegradability 

of the waste was evaluated by using biochemical methane potential assays and continuous 3-L 

methane reactors. Wet oxidation temperature and oxygen pressure (T. 185-220°C; 02 pressure, 0-12 

bar; t, 15 min) were varied for their effect on total methane yield and digestion kinetics of digested 

biowaste. Measured methane yields for raw yard waste, wet oxidized yard waste, raw food waste, and 

wet oxidized food waste were 345, 685, 536, and 571 mL ofCH.Ig of volatile suspended solids (VSS). 

respectively. Higher oxygen pressure during wet oxidation of digested biowaste considerably 

increased the total methane yield and digestion kinetics and permitted lignin utilization during a 

subsequent second digestion. The increase of the specific methane yield for the full-scale biogas plant 

by applying thermal wet oxidation was 35-40%, showing that there is still a considerable amount of 

methane that can be harvested from anaerobically digested biowaste. 

Keywords: biogas. lignin degradation, digested biowaste, food waste, yard waste, wet oxidation 

1 Redrafted after: 
Lissens G., Thomsen, A.B., De Baere, L., Verstraete, W. and Ahring B.K. Thermal wet oxidation improves 
anaerobic biodegradability of raw and digested biowaste. Environmental Science & Technology. Accepted for 
publication. 

131 



Chapter 6: Enlmncemeut of tlze anaerobic digestion process by alkaline wet oxidation 

INTRODUCTION 

Recent estimates show that about 1.3 billion tons of organic waste and 700 million tons of 

agricultural wastes are produced annually within the European Union (EU). This represents a 

yearly biodegradable fraction of municipal solid waste (MSW) production of 107 million tons 

of dry matter or approximately 2.2 tons of dry organic matter per European citizen, of which 

more than 60% is stilllandfilled (EEA, 2002b ). 

In recent years, the EU policy is diverting the disposal of organic waste away from disposal 

routes such as landfilling because of the production of (toxic) leachates and greenhouse gas 

emissions (e.g., methane) (Eleazer et al., 1997) and because organic waste is increasingly 

regarded as a potentially valuable resource for renewable and green electricity production 

(Gellens et al., 1995; De Baere, 2001 ). It is generally recognized that anaerobic digestion is a 

more controlled and sustainable way of treating organic waste as compared to other disposal 

routes (i.e., landfilling or composting) (Verstraete et al., 2000). Despite the higher investment 

and treatment costs, anaerobic digestion is expected to gain considerable importance soon due 

to its valuable energy recovery in the form of biogas (Mata-Alvarez et al., 1999). So far, full

scale anaerobic digestion facilities have often relied upon a 15-20 days digestion phase 

transforming the readily biodegradable fraction, followed by a post-digestion stabilization of 

the remaining lignocellulosic solids (De Baere, 2000; Lissens et al., 2001; Van Lier et al., 

2001; Liu et al., 2002). Hence, post-treatments (typically composting) are necessary to obtain 

a high-quality stable digestion product that can be stored and reused for agricultural purposes. 

Cellulose and hemicellulose (holocellulose) are the principal biodegradable components of 

biowaste and are found together with lignin in rigid hemicellulose complexes (Ress et al., 

1998). The degradation of these lignocellulose complexes, which can make up to 80% of the 

fiber content for some refuse components (e.g., paper), is however, limited to yields of at 

most 50% ( < 200 mL of CHJdry g) of those achievable with the pure carbohydrates (Eleazer 

et al., 1997). This is due to the shielding effect of lignin on holocellulose and the low 

biodegradability of lignin under anaerobic conditions (Ress et al., 1998). Hence, in the light of 

the EU green electricity certificates, additional treatments that enhance the biodegradability of 

waste carbohydrates and lignin could lead to a considerable increase in methane yields from 

renewable feedstocks. 
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Thermal treatments have been reported to fractionate the lignocellulose by solubilizing part of 

the hemicellulose and lignin fraction, to decrease the cellulose crystallinity and to hygienize 

the lignocellulose during pretreatment (Schmidt and Thomsen, 1998; Klinke et al., 2002). 

Thermal treatments involving steam (e.g. steam explosion) (Liu et al., 2002) and thermal 

hydrolysis (Schieder et al., 2000) are the most investigated processes for pretreatment of 

biowaste prior to digestion. Alternatively, wet oxidation, mostly in combination with alkaline 

addition has been investigated as a pretreatment for other pure biomasses such as wheat straw 

for the production of bio-ethanol (Klinke et al., 2002; Chang et al., 2001a; Chang et al., 

2001b). Wet oxidation (WO) has been reported to have significant advantages over other 

thermal pretreatment technologies such as lower production of toxic sugar degradation 

products, significant decrease of cellulose crystallinity and high delignification potential 

(Schmidt and Thomsen, 1998). 

In this study, the anaerobic biodegradability of three wet oxidized wastes (raw food waste, 

digested biowaste and raw yard waste) was compared with the untreated organic wastes by 

measuring methane yields in batch and continuous tests. For digested biowaste originating 

from a full-scale anaerobic digester (DRANCO, DRy ANaerobic COmposting), WO 

parameters (temperature, oxygen pressure) were optimized for maximum enhancement of the 

methane yield during a second digestion of the biowaste and the results were compared 

relative to the methane yield achieved during the first full-scale digestion. 

MATERIALS AND METHODS 

Seed preparation and adaptation 

A blended seed from a pig manure digester and a food waste digester in a 2:1 ratio was used 

as a starter seed in two 3-L reactors. The seed was gradually adapted to food waste for a 

period of 1 month by using an increasing feeding ratio of food waste to pig manure. Next, 

both digesters were run in parallel for a period of 1 month with the food waste. During this 

time, seed from the 3-L reactors was used for the BMP (Biochemical Methane Potential) 

assays. Seeds were subsequently adapted to digested biowaste from a full-scale plant over a 

period of several weeks. Finally, to compare the methane yield and the reactor performance in 

continuous mode, reactor 1 was fed with untreated digested biowaste and reactor 2 was fed 

with WO digested biowaste for a period of2 weeks. 
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Organic waste sources 

Raw source-separated biowaste was collected from a municipal waste plant in Frederikssund 

(Denmark) during wintertime. The waste consisted mainly of source-sorted food waste 

(hereafter called food waste) collected in plastic bags. Upon collection in the waste plant, the 

waste was shredded (< 1 cm) and plastics were removed using a rotating drum. Shredded 

wheat straw was added to the drum at a fmal concentration of 8% of the total dry matter (DM) 

content of the food waste to increase the DM content and to bind the wet waste together for a 

better removal of the plastics. 

Fresh woody yard waste was collected from a university campus (DTU, Denmark) during 

wintertime and was composed of small branches ( < 2 cm diameter) of different kinds of trees 

(mainly oak and birch). Both raw food waste and raw yard waste were air-dried for 48 hand 

ground to 3 mm particle size with a cutting-knife mill prior to WO and digestion. Prior to 

anaerobic digestion, the ground particulates were suspended in tap water to a fmal 

concentration of 50 g!L and 34 giL of dry matter (DM) for raw food waste and raw yard 

waste, respectively. 

Digested biowaste was collected during springtime from a full-scale anaerobic digester 

(DRANCO, Belgium) in which 50,000 tons/year of source-separated biowaste (yard and food 

waste) is treated. The digester residue was screw pressed on the site and was subsequently 

shredded in the lab with a slow-speed meat mincer to obtain a uniform sample size no greater 

than about 5 cm long by 2 cm wide. Next, tap water was added to the shredded waste to 40 

g!L of total suspended solids (TSS). All suspensions were stored at 4°C prior to WO. 

Wet oxidation (WO) equipment and sample preparation 

Raw yard waste and food waste were oxidized under the same conditions (except the WO 

time) (Table 6.1), while the digested biowaste was oxidized under four different conditions 

(referred to as A-D). WO experiments with digested biowaste were performed batch-wise 

(duplicate) at 40 g/L of TSS. The WO conditions for the raw food waste and raw yard waste 

as well as the four experimental conditions performed on the digested biowaste (A-D) are 

summarized in Table 6.1. For the digested biowaste, the reaction time was set at 15 min for all 

experiments. For experiment D, the initial pH was made alkaline by the addition of 2 g/L of 

Na2C03 prior to closure and pressurization of the autoclave with oxygen. The pH of the 

solutions was measured before and after wet oxidation (Table 6.1 ). 
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Table 6.1. Wet oxidation (WO) conditions and oxidative losses for raw yard waste, for raw food 

waste. and for digested biowaste (Conditions A-D) 

Parameter Yard waste Food waste Digested biowaste 

WO conditions A B c D 

Temperature (0 C) 185 185 185 185 185 220 

Time (min) 15 10 15 15 15 15 

Oz Pressure (bar) 12 12 0 3 12 12 

NazC03 (g!L) 2 2 0 0 0 2 

pHbeforeWO 9.5 7.2 8.3 8.3 8.3 10.1 

pH after WO 3.7 4.6 7.3 6.6 4.4 6.4 

CODffSSNSSarter WO 

COD total (g/L) 27.2 26.1 25 20.7 

COD soluble (g!L) 2.3 3 4.8 5.9 

TSS (g!L) 31 44 38 32 30 26 

VSS (g!L) 30 37 19 18 17 13 

%total COD loss(%)* 9 13 16 31 

%total VSS loss{%)* 9 10 9 14 20 32 

* losses based on (CODNSS before wo- CODNSS after wo)/(COD/ VSS before wo) * I 00 

WO experiments were carried out in a high-pressure autoclave with a tubular loop and an 

impeller constructed at Ris0 National Laboratory (Bjerre et al., 1996). The autoclave was 

designed as a cylindrical vessel (V= 1890 mL) made of Sandvik Sanicro 28 (27% Cr, 31% 

Ni, 3.5% Mo, and 1% Cu) with an impeller that continuously pumped the liquid through the 

tubular loop. Prior to heating, the reactor lid was closed and oxygen pressure was supplied 

from a gas cylinder. The autoclave was mounted on a rack, facilitating temperature control by 

raising or lowering it in a heating bath. After WO, the reaction was terminated rapidly {< 2 

min) by immersing the reactor in a water bath. 

After WO, the solids of the wet oxidized slurry of the ftrst batch were separated by vacuum 

filtration. Subsequently, the solids were washed with deionized water, dried in a climate 

chamber at 20°C and 65% relative humidity and stored in paper bags for analysis. The wet 

oxidized filtrates were stored at -18°C for analysis. The second batch was stored at 4 oc 
without solids separation. 
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Biochemical methane potential assays 

All organic wastes were wet oxidized in duplicate batches, and the enhancement in methane 

yield and kinetics was measured. For the raw food waste and raw yard waste, WO parameters 

had already been optimized previously (Lissens et al., 2004a; Lissens et al., 2004b ). For 

digested biowaste, four WO conditions were tested for their effect on methane yield and 

kinetics. To compare the actual methane yield of the reference and wet oxidized materials, 

BMP assays were conducted in quadruplicate 100 mL serum flasks sealed with rubber 

stoppers. The BMP assays allowed selecting for the WO conditions resulting in the highest 

cumulative methane yield in subsequent digestion. The seed (from 3-L reactors) made up 33% 

wt% of the content of each flask and the organic loading of each flask was set at 0.5 g of 

volatile suspended solids (VSS). A 2.6 g/L of bicarbonate solution was added to each flask to 

bring the volume of each flask to 60 mL and to ensure an initial pH of 7-8. Four control flasks 

containing seed and bicarbonate only were used to measure background methane production. 

Quadruplicate flasks were incubated at 55°C for a period of 28 days. Methane analysis was 

performed daily during the first 12 days and every two days from day 12 to day 28. All flasks 

were monitored until no further significant gas production was detected. For the WO 

conditions resulting in the highest cumulative methane yield in the BMP assays, the methane 

potential of the reference and WO digested biowaste was determined by employing two 

continuous 3-L anaerobic reactors (see next section). 

Anaerobic reactors 

Two stainless steel 3-L reactors manufactured at the Technical University of Denmark (DTU, 

Denmark) were used for continuous feeding of digested biowaste (Reactor 1) and WO 

digested biowaste (Reactor 2) (Angelidaki and Ahring, 1993). The reactors contained an 

automatic internal stirring device, which stirred the reactor for 3 min every 5 min. Reactor 

inlets and outlets were constructed from PVC-piping with 1 cm diameter. Reactors were fed 

manually once a day with a 50 mL syringe, thereby causing a simultaneous withdrawal of the 

same volume of effiuent by liquid displacement. The reactors were kept at a constant 

temperature of 55 ± 1 oc by means of external water heating jackets connected to a Heto 

(Denmark) warm water bath. The reactor loading rate (B,) was on average 2.6 g of VSSIL of 

reactor volume per day for raw food waste and varied between 0.9 and 1.1 g of VSSIL of 

reactor volume per day for the WO materials. Biogas was collected at the top of each reactor 
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and was monitored by means of an electronic liquid displacement column with an accuracy of 

10 mL (modified version as described by Angelidaki et al., 1992) (DTU, Denmark). The COD 

(Chemical Oxygen Demand), Kj-N (Kjeldahl-Nitrogen), TSS, VSS, and ash content of the 

digester influent and effluent were determined according to Standard methods ( Greenberg et 

al., 1992). VFA (volatile fatty acid) and biogas composition (carbon dioxide and methane) of 

both reactors were determined on a daily basis and weekly basis, respectively. Individual 

VFA concentrations (acetic, propionic, butyric, isobutyric) were measured with a 5890 series 

II Hewlett-Packard HPLC with Helium as the carrier gas. Biogas analysis was performed with 

a Shimadzu 8A GC-FID with Nitrogen as the carrier gas. 

Analytical procedures 

The solid fractions derived from WO were shredded and hammer-milled to pass a 1-mm 

screen prior to analysis. The WO solids and raw waste were analyzed for their contents of 

glucan, xylan, arabinan, Klason lignin, and ash after strong acid hydrolysis (72% w/w H2S04 

at 30°C for 60 min) followed by dilute acid hydrolysis (4% w/w H2S04 at 121 oc for 60 min) 

(Gilbert et al., 1952). Subsequent sugar analysis was carried out by HPLC analysis (Klinke et 

al., 2002). 

Total glucose, xylose (including galactose and mannose) and arabinose concentrations (sum 

ofmonomeric and polymeric sugars) in the WO filtrates were determined after dilute sulfuric 

acid hydrolysis (4% w/w H2S04 at 12PC for 10 min) (Gilbert et al., 1952). Quantification of 

free monomeric sugars and carboxylic acids present in the wet oxidized filtrates was carried 

out after pH adjustment to pH 2-2.3 with 0.1 M H2S04• Sulfate ions were precipitated by an 

equivalent amount of Ba(OH)z and separated by centrifugation. Samples were filtered (0.45 

~m) prior to HPLC analysis and diluted 10-fold with HPLC eluent (4 mM H2S04) when 

necessary. 

Glucose, xylose, arabinose, ethanol and total carboxylic acids (sum of malic, succinic, 

glycolic, formic, and acetic acids) were quantified by HPLC analysis according to Klinke et 

al. (2002). 
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Carbohydrate recoveries (cellulose and hemicellulose) were calculated to estimate their losses 

during WO following 

[ ] 
(Carbohydrate ) 

Carbohydrate recovery %( w I w) = HPLc 

Carbohydrate raw waste 

with carbohydratt:Jmc being the glucan concentration (for cellulose) or the sum ofxylan and 

arabinan (for hemicellulose) concentration for the liquid phase (recovery liquid phase) or for 

the solid phase (recovery solid phase) in g/1 00 g of DM. Carbohydratemw waste represents the 

glucan or arabinoxylan content of the raw material (g/100 g ofDM). 

RESULTS 

Wet oxidation treatment 

Table 6.1 shows the pH of the three waste suspensions (food waste, yard waste and digested 

biowaste [conditions A-D]) before and after WO. For all cases, the WO treatment caused a pH 

drop from 1 to 5.8 units, with the most pronounced decrease in pH at the highest oxygen 

pressure (conditions C and D). The fmal pH for caseD was not as low as for case C because 

of the addition of a buffering agent prior to WO. The decrease in pH was related to total 

carboxylic acid production during WO, with increasing VFA concentrations at higher oxygen 

pressure (A, 0.28 g!L; B, 0.58 g/L; C, 1.41 g!L; and D, 2.29 g/L). Furthermore, Table 6.1 

shows that generally 9-20% of the VSS contained in the waste or 9-16% of the COD content 

of the waste is oxidized during wet oxidation at a WO temperature of 185°C. At a WO 

temperature of 220°C, approximately 32% of the organic content is oxidized during WO 

(Table 6.1 ). These losses were based on the fact that the raw yard waste, raw food waste, and 

digested biowaste originally contained 33, 41, and 21 g of VSSIL, respectively. The COD of 

the untreated digested biowaste was 30 g/L. Table 6.1 also shows that the degree of 

liquefaction, measured as the CODsoluble of the WO digested biowaste, was significantly 

higher at higher oxygen pressure (conditions C and D). 

In Table 6.2, the carbohydrate composition of the raw wastes and digested biowaste before 

WO are given, as well as the effect of the variable WO conditions (A-D) on the carbohydrate 

composition of the digested biowaste after WO. 
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Table 6.2. Characteristics of the WO treated and untreated wastes (solids and liquid fraction) 

(g/1 00 g of solids) 

BEFORE WO (g/100 g DM raw waste) 

Raw Yard Waste Raw Food Waste Digested Biowaste 

Glucan 24.8 20.1 5.2 

Arabinoxylan 13.7 8.1 2.5 

Lignin 22 21.8 16.5 

DIGESTED BIOWASTE AFTER WO (g/100 g DM raw waste) 

SOLID FRACTION LIQUID FRACTION 

Po~vm. sugars A B c D Monom. sugars A B c D 

Solids recovery 66.7 58.3 30 25 Glucose 0.12 0.31 0.69 0.86 

Glucan 4.2 4.4 4.1 2.7 Arabinoxylan 0.02 0.09 0.41 0.12 

Arabinoxylan 1.11 0.83 0.36 0.28 Polym. sugars 

Lignin 17 13.7 5.9 4.33 Glucose 0.17 0.21 0.11 0 

Ash 40.8 40.2 32.7 38.9 Arabinoxylan 1.12 1.41 1.45 0.18 

Total free acids 0.70 1.45 3.54 5.74 

Recovery (%) Recovery (%) 

Glucan 80.7 84.6 78.8 51.9 Glucan 5.6 10.0 15.4 16.6 

Arabinoxylan 44.4 33.2 14.4 11.2 Arabinoxylan 45.3 60 74.4 11.8 

Lignin 100 83 35.7 26.2 Lignin 

TOTAL recovery(%) 

A B c D 

Glucan 86.3 94.6 94.2 68.5 

Arabinoxylan 89.7 93.2 89.1 23 

For all conditions tested, WO solids after WO increased considerably in cellulose content 

with increasing oxygen pressure (6.3 and 13.7 g/100 g ofDM WO solids for condition A and 

C, respectively). However, due to the comparatively lower solids recovery at higher oxygen 

pressure, the cellulose content expressed per 100 g of raw digested solids was 4.1-4.4 g/1 00 g 

ofDM raw solids for WO conditions A-C, which is comparable with the untreated waste (5.2 
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g/100 g of DM raw solids). Only for WO condition D, the cellulose recovered in the solid 

phase was much lower (Table 6.2). 

The higher solubilization effect for conditions C and D was also reflected in their 

comparatively low lignin content after WO (Table 6.2). Up to 64% and 74% of the original 

lignin present in the digested biowaste could be solubilized for conditions C and D, 

respectively. At lower oxygen pressure (0-3 bar), however, the majority of the lignin(> 80%) 

was recovered in the solid fraction. As a whole, the glucan recovery in the liquid fraction 

during WO was low and averaged from 6 to 17% for glucan whereas the arabinoxylan 

solubilization was 12-74% (Table 6.2) with highest values for WO condition C. The total 

glucan and arabinoxylan recoveries were high for conditions A-C (WO temperature of 185°C) 

and varied between 86 and 95%. However, for condition D, the total carbohydrate recovery 

was much lower, which indicates that the majority of the arabinoxylan fraction (77%) and 

part of the cellulose fraction (32%) was oxidized (Table 6.2). 

Concomitantly with a lower total hemicellulose recovery and high lignin solubilization, the 

production of total free acids during WO in the liquid phase was highest for conditions C and 

D (Table 6.2). Acetic acid was the principal carboxylic acid found in the WO hydrolyzates 

(data not shown). 

Anaerobic biodegradability of wet oxidized yard waste and food waste 

In Figure 6.la, the cumulative methane yields of raw food waste and raw yard waste are 

compared with the yields of the corresponding WO materials in the BMP assays. A fmal 

methane yield of 685 mL of methane/g of VSS could be achieved for the WO yard waste 

while 345 mL of methane/g of VSS was reached for the untreated yard waste. This 

corresponds to a doubling of the methane yield following wet oxidation pretreatment. For the 

food waste, the methane yield of the WO waste was only 7% higher as compared to the 

untreated waste. For both wastes, the fermentation started at a lower initial rate for the WO 

materials but proceeded at a comparatively higher rate compared to the untreated materials 

after a lag period of about 5 days. 
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Figure 6.1a. Cumulative methane production in the BMP assays of the raw wastes. Error bars: 

standard deviations on quadruplicate serum flasks (error bars may be too small to be 

visible on the figure). Key:-£- Yard waste, -•- Food Waste, -/1- WO Yard waste, 

- o- WO Food Waste 

Anaerobic biodegradability of wet oxidized digested biowaste 

Figure 6.1b and Table 6.3 show the cumulative methane yields of the Wltreated digested 

biowaste as compared to the WO digested biowaste for the four experimental WO conditions 

tested (A-D). Taking into accoWlt an oxidative loss of 9-32% of the organic content during 

WO (Table 6.1 ), the specific methane yields in the BMP assays were 50-76% higher for the 

WO digested biowaste as compared to the Wltreated biowaste in the second digestion (Table 

6.3). The highest methane yield was reached for conditions C and D, despite the higher 

oxidative losses inherent to a higher oxygen pressure (12 bar). As a whole, the methane yields 

were 15-20% higher for conditions C and D as compared to conditions A and B. However, a 

higher oxygen pressure during WO provoked a lag phase of about 5 days before methane 

production started (Figure 6.1b). Next, a rapid burst of methane production was observed for 

conditions C and D for a period of about 10 days. Alternatively, the methane production for 
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the digested biowaste of conditions A (0 bar oxygen) and B (3 bar oxygen) was instantaneous, 

very similar, and increased more gradually (Figure 6.1 b). 
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Figure 6.1b. Cumulative methane production in the BMP assays of the digested biowaste. Error 

bars: standard deviations on quadruplicate serum flasks (error bars may be too small to 

be visible on the figure). Key: ·+·Untreated Biowaste, ·A· WO Biowaste [B], -o

WO Biowaste [A], -•- WO Biowaste [C], -•- WO Biowaste [D] 

Relative to the specific methane yield in the first digestion (0.25 L of CHJg of VSS raw 

biowaste ), a gain in methane production of up to 60-62% could theoretically be reached in the 

second digestion by applying the WO conditions C or D (Table 6.3). At lower WO oxygen 

pressures (0-3 bar), a gain of 52% in methane yield could be achieved (Table 6.3). For the 

untreated waste, 36% increase in methane yield was reached relative to the first digestion. 

Table 6.4 summarizes the methane yields and the reactor performance of the two 3-L reactors 

on raw food waste and on the first (DRANCO) and second digestions (3-L reactors) of the 

biowaste (Figure 6.2a). 
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Table 6.3. Enhanced cumulative methane yields in the BMP assays (28 days) of WO digested 

biowaste for the second digestion only (BMP Assays) and including the first digestion 

Parameter Unit Control A B c D 

Second digestion 

Specific C~ yield LCHJgWOVSS 0.20 0.21 0.25 0.29 

Specific C~ yield LCHJgVSS 0.12 0.18 0.19 0.21 0.22 

digested biowaste* 

Increase in yield % 50 51 72 76 

First + second digestion 

Gain in specific C~ yield LCHJgofVSS 0.09 0.13 0.13 0.15 0.16 

raw biowaste** 

Total specific C~ yield LCHJgofVSS 0.34 0.38 0.38 0.40 0.41 

raw biowaste*** 

Increase in yield % 36 52 52 60 62 

*Values calculated from the COD losses shown in Table 6.1 

**1 g VSS digested biowaste = 1.37 g ofVSS rawbiowaste (Table 6.4) 

***Specific CR. yield in first digestion= 0.25 L of CRJg ofVSS raw biowaste (Table 6.4) 

For the raw food waste (days 0-22, Figure 6.2a), the specific methane yield averaged aronnd 

0.35 L of methane/g of VSS, which was about 1.5 times lower than the specific methane yield 

fonnd in the BMP assays (0.54 L of methane/g of VSS).This corresponded to an average 

biogas production rate of 3.8 Llday (Figure 6.2a) with an average methane content of 59% 

and a TSSNSS removal in the range of 50%. The reactor performance was stable with a pH 

of 8.0 and a low total VF A concentration ( < 2 mM) (Table 6.4 ). The standard deviations for 

both reactors were determined on at least 4 samples taken at regular time intervals (Table 6.4 ). 

During days 22-35 (Figure 6.2a), the seeds of both reactors were gradually adapted for 2 

weeks with digested biowaste by using a blended feed of raw food waste and digested 

biowaste and from day 35 on a feed of 100% digested biowaste (Figure 6.2a). 

From days 35-46 (Figure 6.2a and 6.2b), a second digestion of the WO digested biowaste was 

performed by using reactor 1 as a control reactor ( nntreated waste) and using reactor 2 for the 

WO waste (Table 6.4). 
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Table6.4. Methane yields and performance data of the 3-L reactors during digestion of raw food waste (day 0-22) and for the first (DRANCO) and second ~ 

0\ 

(day 35-46) digestion of the biowaste. For lhe biowaste : Reactor I, Untreated Waste; Reactor 2, WO Waste .. 
t!'1 
~ 
~ 
[ 

Parameter Units Raw Food Waste (day 0-22) First digestion Second digestion (day 35-46) -Q., 

if 
Reactor 1 Reactor2 DRANCO Digester Reactor I Reactor2 :::. 

5 
Daily VSS loading rate gVSS/L.day 2.1 2.1 7-14 1.45 0.9-1.2 ~ 

<::> 

"'" ;:;· 
Retention time d 20 20 15-25 15 15 !:>.. 

c>q· 

"' "' % Methane in biogas % 59± I 59± l 50-60 22±5 46±6 :::-. 
g 

Specific methane production LCRJgVSS 0.35 ± 0.03 0.35±0.03 0.25 0.26±0.03* 0.34±0.02* ~ 
R 
"' Acetate mM as HAc 0.9± 0.5 0.9±0.5 3 ± 1.4 2 ± 1.2 "' - "'" '<: 

Propionate mM as HAc 0.6±0.2 0.6±0.2 
a 

- 2±0.8 1.3 ± 1 §: 
Butyrate mM as HAc 0 0 0.5 ±0.2 0.2 ±0.1 

~ - ~ 
Isobutyrate mM as HAc 0.3 ±0.2 0.3 ±0.2 0.3 ±0.1 0.23 ± 0.1 <::> - H 

§: 
Total VFA (digester) mM as HAc 1.8 ± l 1.8± 1 - 5.8±2 3.7 ± 1.7 g· 
pH s.u. 8±0.2 8±0.2 8 7.7 ±0.2 7.8±0.2 

TSS removal % 45±4 45 ±4 25 26* 35* 

VSSremoval % 56±3 56±3 37 39* 50* 

*Total values for firs~ and second digestion 
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Figure 6.2a. Biogas production rate with raw food waste (days 0-22), with a blend of raw food 

waste and digested biowaste (days 22-35) and digested biowaste (days 35-46) for 

reactor I ( o) and reactor 2 ( •) 

In Figure 6.2b, the biogas production rate as well as the cumulative biogas yield of both 

reactors for the second digestion is depicted from day 35 to day 46. The sharp decrease in 

biogas production from day 35 on for both reactors (Figure 6.2a) was due to the change of the 

feed from a mixture of digested and raw waste to only digested waste. Furthermore, the 

loading rate of the reactors at day 35 was decreased from 150 mL to 100 mL. During second 

digestion, reactors 1 and 2 generated a daily biogas production of 350 mL and 950 mL of 

biogas, respectively. The average methane content of the biogas was 22% for reactor 1 and 

46% for reactor 2. Taking into account an average VSS removal of 37% during the first 

digestion (Table 6.4), these figures corresponded to an extra specific methane production of 

0.01 L ofmethane/g ofVSS raw biowaste for the untreated biowaste (Reactor 1) and 0.09 L 

of methane/g of VSS raw biowaste for the WO biowaste (Reactor 2). Compared to the 

specific methane yield during first digestion (0.25 L of methane/g of original VSS), the wet 
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oxidation treatment followed by a second digestion increased the total specific methane yield 

by approximately 35-40% (0.34 L of methane/g of original VSS). Without WO treatment, the 

second digestion resulted in only 4-6% gain in methane yield (0.26 L of methane/g of original 

VSS) (Table 6.4). The methane yields obtained with the 3-L reactors were approximately 1.1-

1.3 times lower as compared to the yields found in the BMP assays. During days 35-46, the 

biogas production for conditions C (first week) and for D (second week) did not differ 

significantly (data not shown). The VFA concentrations in both reactors were low(< 10 mM 

total VFA) (Table 6.4). 
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Figure 6.2b. Subset of Figure 6.2a: cumulative biogas yield for the untreated digested biowaste ( o) 

and the WO digested biowaste (•) (days 35-46) 

Discussion 

Effects of wet oxidation on carbohydrate mass balances 

Wet oxidation treatment of the different organic wastes resulted in clear effects on the 

carbohydrate composition of the materials. The 0 2 pressure and temperature during W 0 were 
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decisive parameters for the material mass balances and for the subsequent anaerobic 

biodegradability of the wastes (Tables 6.1 and 6.2). WO involves a chain reaction mechanism 

in which oxygen and (hydroxyl) free radicals actively participate (Kolaczkowski et al., 1999; 

Robert et al., 2002). Due to the oxidative conditions, a decrease in the pH could be noticed for 

all tested WO conditions as a result of the production of acids from the hemicellulose and 

lignin fraction (Table 6.1) (Klinke et al., 2002; Kolaczkowski et al., 1999). The most 

pronounced pH decrease (up to 5.8 units) could generally be observed for the highest oxygen 

pressure (12 bar) mainly due to the enhanced lignin oxidation (Klinke et al., 2002). The lignin 

oxidation was much higher (64-74%) for oxygen pressurized WO (conditions C and D) as 

compared to WO at low oxygen pressure (17%, condition B) or in the absence of oxygen (0%, 

condition A). This can be explained by the occurrence of high amounts of phenoxy! linkages 

in lignin, which are excellent radical mediators during oxidative processes (Dorrestijn et al., 

2000). The main degradation products of lignin after wet oxidation have been reported to be 

carboxylic acids and partially C02 (Lissens et al., 2004a; Lissens et al., 2004b ). Hence, the 

total free acid concentrations were highest for conditions C and D. Apart from the higher 

oxidation temperature, the superior lignin oxidation for condition D was due to the addition of 

Na2C03 since alkaline treatment was previously found to enhance lignin oxidation for other 

biomasses (Chang et al., 2001b). 

Hemicellulose solubilization, and to a lesser extent cellulose solubilization, was also 

promoted at higher oxygen pressure and oxidation temperature (Table 6.2). The lower 

cellulose reactivity (linear configuration, high polymerization degree and crystalline structure) 

compared to the reactivity of the highly branched hemicellulose and lignin during wet 

oxidation caused a high enrichment of the WO solids in cellulose (Table 6.2) and a high total 

cellulose recovery. Only for condition D, the majority of the hemicellulose fraction was 

oxidized to C02 and possibly to sugar degradation products such as furan derivatives. It is 

assumed that the carbohydrate losses were due to oxidation to C02, which coincided with the 

high COD loss (33%) for condition D. For the other conditions, thermal cellulose degradation 

was insignificant since it is generally believed only to occur at temperatures higher than 

200°C (Scheirs et al., 2001). 

The release of soluble organic material (COD) was also significantly higher for the WO runs 

at high oxygen pressure as compared to the WO runs at low oxygen pressure. Compared to 

the controls, the soluble COD level was 4.7-5.8 times higher at high oxygen pressure whereas 

it was only a factor 2.3-3 times higher for low pressure (Table 6.1 ). These solubilization 
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levels are higher compared to the ones found by Liu et al. (2002), who found a factor 3 

increase for steam pressure disruption applied to primary digestate ofMSW. 

Effects of wet oxidation on anaerobic biodegradability of raw waste 

Figure 6.1 shows the effect of the composition of a waste stream (Figure 6.1a) as well as the 

effect of the applied WO conditions (Figure 6.1 b) on the anaerobic biodegradability of raw 

and digested waste after assessing WO. While a doubling of the methane yield was achieved 

for WO yard waste compared to the reference, a minor increase (7%) in methane yield was 

observed in case raw food waste was subjected to WO. These observations can be explained 

by inherent differences in lignocellulose composition and characteristics of the lignin fraction 

of both wastes. Although it was previously shown that both wastes have a similar lignin 

content (21-22 g/100 g) and also rather similar cellulose and hemicellulose content (Table 

6.2) (Lissens et al., 2004a; Lissens et al., 2004b ), it can be assumed that the amount of readily 

biodegradable and soluble organics in the food waste is much higher as compared to the 

woody yard waste (Eleazer et al., 1997). Hence, the WO pretreatment could provoke a 

substantial beneficial effect on the biodegradability of the fibrous yard waste while this was 

not the case for the food waste. 

Effects of wet oxidation on anaerobic biodegradability of digested biowaste 

The oxygen pressure during WO was a decisive parameter for the subsequent anaerobic 

biodegradability of digested biowaste (Figure 6.2). Higher oxygen pressure (conditions C and 

D) during WO greatly promoted the methane formation from digested biowaste. Hence, since 

the characterized VSS fraction of digested biowaste consisted of mainly lignin (Table 6.2), 

the oxygen pressure during WO is a crucial parameter to convert lignin into biodegradable 

low-molecular compounds and to enhance lignin utilization during anaerobic digestion. The 

generally low lignin conversion under anaerobic conditions and the potential toxicity of its 

principal components to many organisms support the assumption that lignin degradation 

products may have caused the delay in methane production observed for conditions C and D 

(Liu et al., 2002). However, the release of significant amounts of bacterial inhibitors during 

WO was very unlikely due to the rapid burst of methane after 5 days in the BMP assays, the 

high feed-to-seed ratio ( 1: 1 to 1.5: I) in the BMP assays, and the satisfactory reactor 

performance of the 3-L reactors. Moreover, it has been shown that (alkaline) wet oxidation 
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does not produce substances that are inhibitory to yeast in bio-ethanol production from 

biomass (Klinke et al., 2002; Bjerre et al., 1996). Therefore, it is more likely that the low pH 

of the WO wastes caused the delay in methane production. 

As a whole, the specific methane yields found in the BMP assays for raw food waste and 

digested biowaste were approximately a factor 1.1-1.5 higher than the ones found for the 3-L 

reactors (Tables 6.3 and Table 6.4). This was most likely caused by the longer retention time 

in the BMP assays (28 d versus 15-20 d). 

Extrapolation to fuU-scale enhanced methane production 

On the basis of the methane yields achieved with the 3-L reactors, a theoretical gain of about 

35-40% in methane production can be expected if WO (12 bar oxygen pressure) followed by 

a second digestion would be applied on digested biowaste from the full-scale DRANCO plant 

(Table 6.4). Liu et al. (2002) also reported an improved methane yield of 40% for MSW after 

steam disruption and a second digestion However, they applied a longer digestion retention 

time (22-30 days) and the digested solids contained a comparatively higher amount of VSS 

(cellulose and hemicellulose) and lower lignin levels. Furthermore, Liu et al. (2002) reported 

that the digested MSW after the second digestion was substantially enriched in lignin, thereby 

postulating that lignin conversion in the second digestion was rather low. This conftrms the 

fmding that pressurized oxygen during thermal pre- or intermediate treatment of organic 

waste acts as a catalyst to make lignin bio-available during subsequent digestion. This 

partially explains the much higher improvement in methane yield compared to previously 

reported physicochemical and biological procedures with reported beneftcial yields in the 

range of mostly 10-25% (Mata-Alvarez et al., 1999). 

The extrapolation of the results in this study to the full-scale DRANCO plant (50,000 tons of 

organic waste per year) would impair that the gain in methane yield expressed as electrical 

power (at 3.98 kWh/m3 of methane) needs to be weighed off against the estimated costs made 

for the wet oxidation pretreatment (on raw waste) or intermediate treatment (on primary 

digested waste). The ftrst scenario refers to wet oxidation as a pretreatment for primary 

digestion, giving rise to an estimated increase of the total methane yield of 70% (based on raw 

yard waste). At an average European feed-in tariff of 0.068 € for each kilowatt hour provided 

into the grid (Cerveny and Resch, 1998), the beneftcial electricity production would 

correspond to 11 €/ton of original input waste. Applying the second scenario (WO as an 

intermediate treatment followed by a second digestion) at an estimated increase of the total 
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methane yield with 40% (Table 6.4), the electricity profit would mooot to 6 €/ton of original 

input waste (at 75% of the original input tonnage). The operational costs made for WO 

encompass the use of chemicals (mainly pressurized oxygen) and electricity conswnption. 

The electricity requirement can be considered to be minor as only energy is required to heat 

up the reactor (once) to 150°C. Beyond that temperature, the WO reaction is exothermic 

(Kolaczkowski et al., 1999; Lendormi et al., 2001) and consequently generates heat 

corresponding to 4100 kJ/kg of DM biomass (Thomsen, 2003). Hence, the effect of oxygen 

pressure on the operational cost is rather high, whereas the effect of treatment time and 

temperature ( 185°C vs 220°C) is rather minor due to the self-sustaining character of the WO 

reaction above 150-160°C. Furthermore, it has previously been foood that only l/12 of the 

oxygen supply is effectively conswned during the process (Thomsen, 2003 ). Hence, the 

recovery and reuse of oxygen during the process can considerably decrease the oxygen supply 

costs. Considering both the operational and capital costs (depreciation time of 15 years) of the 

WO ooit, a first estimation shows that the gain in beneficial electricity production might cover 

the total costs made for WO treatment. Further pilot-scale studies are required to determine 

the effect of heat and oxygen recovery during WO on the economical feasibility of the process 

and to evaluate the plausibility to omit the conventional oxygen-requiring aerobic post

treatment after digestion (Liu et al., 2002). The decrease in the amooot of solids after the 

second digestion will further lower the cost of solids handling and the WO process will ensure 

a full sanitation of the effluent. 

In current full-scale applications, typically only 50% of the organic content present in the 

organic waste is converted into biogas. In light of the Kyoto agreements and the EU green 

electricity certificates, additional technologies to enhance the methane yield from various 

wastes and to ensure a biologically safe digested product are needed. The WO process as 

presented in this work was shown to enhance methane yields by approximately 35-70% from 

raw and digested lignocellulosic biowaste. Wet oxidation has a higher techno-economical 

feasibility as compared to other pretreatment technologies for anaerobic digestion due to the 

low oxygen conswnption for the presented WO conditions, the self-sustaining character of the 

WO reaction, and the opportooity for heat and oxygen recovery. Pilot-scale studies are 

currently carried out to establish the technical and economical benefits of the WO technology 

in addition to methane and ethanol recovery from various biomasses and wastes. 
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Chapter 7 

GENERAL DISCUSSION, FUTURE PERSPECTIVES AND 
CONCLUSIONS 

7.1. THE VERSATILITY OF WET OXIDATION IN MSW TREATMENT 

Biological treatment is by far the most applied method for the purification of wastewater and, 

to a lesser extent, for the conversion of solid organic waste. This is due to the fact that it is 

generally less expensive compared to non-biological treatments. Furthermore, from an 

operational point of view, biological treatment of waste mostly involves straightforward 

processes at ambient pressures and temperatures and it can handle a wide variety of wastes. 

As a whole, anaerobic biodegradation of organic waste is even slower than aerobic 

degradation and hence conversion or removal efficiencies are lower. This results in relatively 

carbon-rich and recalcitrant effluents requiring further processing prior to reuse and recycling. 

Clearly, biological treatment methods cannot efficiently cope with all wastes. This is reflected 

in the slow or incomplete degradation of certain fractions and the left-over of slowly 

biodegradable and recalcitrant by-products. Moreover, toxic substances (e.g., xenobiotics) can 

inactivate microorganisms and in case they can be biologically degraded, the time needed for 

complete biodegradation is mostly longer than the retention times typically applied in 

biological treatment. In addition, biological safety of treated effluents for direct reuse 

purposes can often not be guaranteed by biological treatment alone. 

In this context, non-biological treatments play a significant role. In this discussion chapter, the 

significance of wet oxidation processes in both wastewater and solid waste treatment is 

discussed in the light of Chapters 3, 5 and 6 of this work. In a second part, the meaning of 

bioregenerative life support in organic waste treatment (Chapter 4) is given and the lessons 

learned from it for integrated waste management are illustrated. In a last part, the future 

opportunities for wet oxidation technology in integrated waste management and for biofuel 

production are highlighted. 
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7.1.1. The role of advanced oxidation processes (AOP's) in wastewater treatment 

Advanced oxidation processes have in common that they produce highly reactive hydroxyl 

radicals which are useful for two purposes: the oxidation of chemical substances and the kill

off of waterbome living organisms. The oxidation reaction of the radicals with organics is 

mostly non-selective and is based on hydrogen abstraction (Kraft et al., 2003). This is one of 

the main differences with biological degradation, whereby organic substances can be 

degraded selectively by specific enzymatic reactions. Because of their non-selective 

behaviour, AOP's can be applied for the destruction of a wide range of hazardous organic 

(e.g., halogenated hydrocarbons, aromatic compounds, phenols and pesticides) and inorganic 

(ammonia, cyanide, sulfide and nitrite) compounds in water (reviewed by Vogelpohl, 2001). 

Because of the broad spectrum action of AOP's, the main issue consists of the application of 

oxidation processes either as a stand-alone treatment process or as a post-or pretreatment step 

to (mostly biological) conventional processes as part of an integrated treatment system. The 

success of AOP's as single treatment processes to raw wastewaters has mostly been seriously 

impaired by the high operational costs(> 5 €/kg COD removed) involved. This is due to the 

non-selectiveness of the technique, namely that organic substances different from the target 

molecules also react with the generated hydroxyl radicals and hence considerably decrease the 

efficiency of the process. Therefore, Scott and Ollis (1995) and Ollis (2001) suggested that 

the potential advantages for water treatment via process integration are larger than for single 

technology processing. These authors suggested that the treatment of four types ofwastewater 

can benefit from an integrated process approach: 

• Biorecalcitrant or totally non-biodegradable wastewaters 

• Wastewaters containing insoluble compounds 

• Wastewaters containing polymeric compounds with high molecular weight 

• Biologically inhibitory wastewaters 

7.1.1.1. Selection of most emerging AOP's in wastewater treatment 

More than 100 examples in literature have been described that indicate the plausibility and 

sometimes the utility of sequential chemical and biological oxidation of recalcitrant 
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wastewaters (Ollis, 2001). Besides the earlier mentioned studies on (mostly) synthetic 

wastewaters containing single recalcitrant compounds (Vogelpohl, 2001), numerous studies 

have been applied to industrial multicomponent feed streams such as efiluents from the 

textile, paper, tannery. vinasse, olive, pesticide and metal plating industry (Vogelpohl et al., 

2001). 

Undoubtedly, one of the most successful applications of AOP's sofar both as single treatment 

and as a combination with biological treatment have been described with efiluents from the 

textile wet-processing industry (Vandevivere et al., 1998; Li and Zhao, 1999). The main 

reason for this success is the very recalcitrant character of textile efiluents and hence its 

limited biological degradation, containing a wide range of hazardous compounds (dyes, 

chelating agents, lignin, surfactants, AOX and heavy metals). Other promising applications 

are situated within the pesticide industry and metal plating industry where heterogeneous 

photocatalysis (e.g., with Ti02 catalyst) and the photo-Fenton process have been successfully 

applied on pilote-scale to combust pollutants (pesticides, EDTA) at a high yield(> 90%) by a 

solar energy driven process (Vogelpohl, 2001; Babay et al., 2001; Blanco and Malato, 2001). 

Because of their intrinsic advantages over other AOP's, the most emerging technologies in the 

field are ozonisation. photoassisted Fenton oxidation, photocatalysis and electrolysis. 

Only for these technologies, pilote scale and even full-scale studies have been reported 

(V andevivere et al., 1998; Vogelpohl et al., 2001 ). However, the photocatalysis technology 

can only be applied as a fmal polishing step as the process efficiency is seriously impaired by 

the presence of suspended solids and other competitive organics. Although ozonisation is a 

well-established technology for a wide variety of wastewaters, the production of toxic 

intermediates recalcitrant to further biological treatment (e.g., aldehydes), the short half-life of 

ozone and its high total cost (4-8 €/kg of COD removed of which up to 75% of the total costs 

are due to electricity needs) limit its competitiveness (Vandevivere et al., 1998). Despite the 

promising results for photoassisted Fenton reaction (Acero et al., 2001; Aplin et al., 2001) and 

the consequent decrease in the production of iron sludge, this relatively new Fenton process 

still involves the handling and consumption of high amounts of excess hydrogen peroxide 

(COD:H20z ratio of 1:1) (Kim et al., 1997). 

Until recently, the electrolysis process has seriously been impeded by low electrode lifespan 

and anode materials with low oxygen overpotential (De Francesco and Costamagna, 2002). 

However, due to the development of a new type of electrode material (boron-doped diamond 
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anodes), the electrochemical oxidation process is suggested to become one of the most 

emerging AOP's in the near-future (Kraft et al., 2003). 

7.1.1.2. The electrochemical advanced oxidation process (EAOP) 

In Chapter 3 of this work, the application potential of a newly developed electrode material, 

namely boron-doped diamond thin film electrodes, was illustrated for both the partial 

decomposition and complete oxidation of chelating agents and surfactants. This material has 

clear advantages over other electrodes as discussed in Chapter 2 and therefore is one of the 

most attractive electrode materials in wastewater treatment applications (Kraft et al., 2003 ). 

Table 7.1 shows the operational costs of the EAOP's involved in this work (Chapter 3) and an 

operational cost calculation with BDD electrodes based on equation 1 (Kraft et al., 2003): 

C _ Pcoo x(Uec +Gxd)/0) ( ) 
E- (298.5mg0 2/Ah)xllxEC 

1 

with CE the energy consumption for COD removal (€), Pcoo the eliminated COD (g Oz), Uec 

the cell voltage (V), j the current density (mA/cm2
), d the electrode distance (cm), n the 

conductivity of the solution (mS/cm), l] the current efficiency for COD removal and EC the 

electricity cost (€/kWh). According to the law of Faraday, 298.5 mg 0 2/Ah are produced. 

Table 7.1. Comparison of the operational cost (at 0.1 €/k:Wh) for the electrochemical treatment of 

surfactants and chelating agents in aqueous medium and raw industrial wastewater 

Surfactants Chelating agents Wastewater 

(Chapter 3) (Chapter 3) (Kraft et al., 2003) 

Deactivation COD removal Decomplexing COD removal COD removal 

kWh/kgCOD kWh/kgCOD kWh!kgCOD kWh!kgCOD kWhlkgCOD 

50-100 50-100 18-20 30-45 16.8 

€/kg COD €/kg COD €/kg COD €/kg COD €/kg COD 

5-10 5-10 1.8-2 3-4.5 1.7 

It can be deducted that on average, the operational costs for the electrochemical decomplexing 

and removal of chelating agents approaches the figure (16.8 kWh/kg of COD) found by Kraft 
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et al. (2003) the most. This is evident since the current efficiencies fo1Uld for the chelating 

agents (71-95%) were closest to the 90% current efficiency assumed by Kraft et al. (2003). 

The much lower current efficiencies fo1llld in the surfactant study (5-12%) caused the 3-6 fold 

higher energy consumption compared to the study of Kraft et al. (2003). As discussed in 

Chapter 3, the very low surfactant concentrations employed in the surfactant study resulted in 

mass transfer limitations (decreased adsorption rate onto the BDD surface). Hence, to treat 

wastewaters with very low COD values ( < 200 mgll), the use of three dimensional diamond 

anodes (e.g., spheres) is inevitable (Kraft et al., 2003; Fryda et al., 2000). Indeed. at increased 

anode surface the current density will drop, resulting in less unwanted side reactions of the 

hydroxyl radicals at low COD concentrations and thus higher current efficiency. Furthermore, 

the hydrodynamic operating conditions in the cell should favour a turbulent wastewater flow 

near the electroQ.e surface rather than a laminar flow (Truster et al., 2002). 

When it comes to investments costs, the major capital cost involved in the EAOP process is 

the BDD anode. Because the BDD film deposition process is still under up-scaling 

development (Troster et al., 2002), the prices for diamond electrodes are still very high and 

are in the range of 10 €/cm2 surface at this stage (Kraft et al., 2003). Therefore, the application 

potential for the EAOP process appears to be highest for moderately concentrated (mostly 

industrial) wastewaters (COD of a few g/1) with a high amount of toxic and/or persistent 

organics, for which lower BDD anode areas are required compared to very concentrated or 

diluted solutions. Equation 2 shows which parameters are determining for the calculation of 

the required electrode area in the EAOP process: 

A= CCOD X V (2) 
((298.5 mg 0 2/Ah) x TJ)/j 

with A the diamond anode area ( cm2
), Ccon the COD concentration which should be removed 

(g 0 2/l) and v the flow through velocity of the water to be treated (1/h) (Kraft et al., 2003). For 

highly concentrated wastewaters (e.g., COD of> 5 gll), the required anode area and thus the 

cost proportionally rises with the organic loading and with the flow. For very dilute solutions 

(< 200 mg/1 of COD), larger anode areas are needed in order to avoid mass transfer 

limitations. Furthermore, cell design parameters such as the electrode distance ( d, equation 1) 

also need to be optimized to lower the overall cost of the process. 
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If we assume a cUITent efficiency of 80-90% and an applied cUITent density of 30 mA/cm2
, a 

BDD anode surface of at least 1 m2 would be required to efficiently treat a wastewater with I 

g/1 of COD at an average flow rate of 100 m3/hour (100 kg COD/hour). This would 

correspond to an investment cost of about 0.5 €/kg of COD for the BDD anode (1000 €/100 

cm2 of BDD surface according to DiaCell®) over a 2 year depreciation time. Besides, a 

second important capital cost is the requirement of a rectifier to produce direct cUITent from 

alternate cUITent, which is estimated at maximum 0.1 €/kg of COD for a payback time of 2 

year. Together, this would correspond to an estimated investment cost of 0.5-1 €/kg of COD 

for a payback time of 2 years. These costs are lower than ozonisation, for which the capital 

costs are typically 1-2 €/kg of COD (or 25-40% of the total costs) removed at a comparable 

depreciation time. Furthermore, the life time of BDD electrodes is much higher compared to 

other electrodes because they are resistant to corrosion and fouling (Troster et al., 2002). 

In Table 7.2, the operational cost of the EAOP process is compared with two other common 

AOP's. While ozonisation clearly involves higher operational and total costs, H20 2 based 

processes such as the Fenton process show comparable costs with the EAOP process. 

However, the fact that handling with chemicals becomes superfluous, that no (toxic) sludges 

are produced and that the EAOP process is highly suitable for automation can make the 

EAOP process one of the most promising AOP's for the future. 

Table 7.2. Comparison of the operational cost of biological treatment and three most promising 

AOP's 

Biological treatment Ozonisation H202 based AOP EAOP process 

(Munter, 2001) (Munter, 2001) (Kraft et al., 2003) 

kWh/kgCOD kWh/kgCOD kWh/kgCOD kWh!kgCOD 

1-3 40-60 15-30 15-20 

€/kg COD €/kg COD €/kg COD €/kg COD 

0.1-0.3 4-6 1.5-3 1.5-2 

To conclude, the EAOP process with DiaChem® electrodes (Troster et al., 2002) shows that 

full-scale industrial applications are on their way. Most likely, the process will be applied in a 

two-step process whereby the EAOP process is followed by a biological treatment. This way, 

the costs involved in EAOP can be reduced (Table 7.2). One of the most promising 
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applications in this regard is the treatment of metal plating effluents containing high amounts 

of EDT A and NT A. Meanwhile, the EAOP process on the chelating agents in this work 

(Chapter 3) has also been investigated by other authors with promising indications for a two

step process (Kraft et al., 2003; Troster et al., 2002). 

Another but so far less studied application field of BDD electrodes is the fmal polishing 

(tertiary treatment) of biologically treated effluents. Whereas disinfection of drinking and 

process waters (only when COD is sufficiently low) by means of diamond coated electrodes 

has been established successfully on an industrial scale (E-disinfector, Ecodis NV, Belgium), 

the simultaneous removal of recalcitrant organic matter is less obvious. Indeed, the practical 

implication of the EAOP process for removal of low concentrations of residual organic matter 

is ruled by mass transfer conditions and is largely determined by the BDD surface area. 

7 .1.2. The role of alkaline wet oxidation in organic waste treatment and management 

Wet oxidation (WO) in solid and semi-solid waste treatment is a well-known technology 

already for years (Kolaczkowski et al., 1999). Nevertheless, full-scale applications of the WO 

process have been limited to the complete oxidation and destruction of mostly organic wastes 

(e.g., sewage sludge) under severe conditions. In none of these applications, recovery or reuse 

of materials was aimed at but the WO process was rather used as an "end-of-pipe" technology 

to get rid of hazardous materials. 

The results in Chapters 5 and 6 show that the WO process operated under mild conditions (T 

< 220°C, p < 20 bar) is a versatile technology that can be used for completely other purposes, 

namely the increased recovery of biofuels from organic wastes. This was illustrated for two 

cases, namely the production of bio-ethanol from raw carbohydrate-rich municipal waste 

(Chapter 5) and the enhanced production of biogas from lignin-rich raw and digested 

biowaste (Chapter 6). Since biological pretreatments are mostly substrate-specific, slower 

than non-biological pretreatments and do not ensure a complete sanitation of the waste, 

biologically-based treatments (e.g., enzymes or thermophilic bacteria) to open up the 

lignocellulosic complexes from municipal waste were not considered to be appropriate. 

Instead, it was decided to investigate a thermochemical pretreatment to sanitize and open up 

the lignocellulose at the same time. Because of the heterogeneous substrates involved, the 

process needed to have a broad non-specific substrate spectrum, a high automation potential 
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and should result in low production of fermentation inhibitors. Furthermore, the thermal 

treatment should not involve the use of expensive corrosion resistant alloys and should 

preferentially allow the recovery of process heat and used chemicals. To meet all of these 

criteria, inspiration was sought and found at the Riso National Lab of Denmark where a mild 

wet oxidation process for the production of bio-ethanol from feedstock biomass (e.g., corn 

stover, bagasse and wheat straw) had been developed in collaboration with the Technical 

University of Denmark over the last 10 years (Bjerre et al., 1996). 

7.1.2.1. The advanced wet oxidation process (AWO) 

As discussed in Chapters 5 and 6, one of the most important features of the A WO (alkaline 

wet oxidation) process compared to other physicochemical pretreatments (Weemaes et al., 

2000; Liu et al., 2002) is its ability to largely convert polymeric lignin into soluble 

monomeric lingo-aromatic compounds and short-chain carboxylic acids. Most likely, this 

delignification effect was the major contributor in the enhanced bioethanol and biogas 

production from the investigated wastes. 

Chandler et al. ( 1980) formulated a mathematical correction for bioavailability of an organic 

substrate based on its lignin content: 

B =- 0.028 X+ 0.830 (2) 

with B the biodegradable fraction of the volatile solids and X the % lignin of the volatile 

solids. This formula provides evidence that the bioavailability of a substrate linearly decreases 

with the lignin content of that substrate. This means that for an average lignin content of 15-

20% (e.g., wood and municipal solid waste), the biodegradable fraction under anaerobic 

conditions would only be 30-45% (Chandler et al., 1980). 

The study ofHealy and Young (1979) demonstrated already in 1979 that more than half of the 

organic carbon contained in ligno-aromatic compounds (e.g., catechol, cinnamaldehyde, 

vanillic acid and syringaldehyde) derived from heat treatment under alkaline conditions can 

be converted into methane gas. These authors concluded already at that time that the amount 

of Iigno-aromatic wastes needing disposal can be reduced by their biological conversion into 

a useful product, namely methane gas (Healy and Young, 1979). The lack of a clear waste 

management policy on biowaste at that time however retarded further research in that 

direction. 
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Apart from waste management policies and environmental concerns, the potential application 

of the A WO process will largely be determined by the economical costs of the process. 

Partially based on personal communication (Thomsen, 2003; Haagensen, 2003; De Baere, 

2003), a cost estimation was made of the A WO process when applied at a regional scale in 

conjunction with an anaerobic digestion plant treating 50,000 tons biowaste/year (AD) (Table 

7.3). A cost calculation of the AWO process for bio-ethanol production from raw waste 

(Chapter 5) was not considered because of the involved scaling effects in bio-ethanol 

production. 

As suggested in Chapter 6, the A WO process can be applied before or after AD. Based on the 

enhanced biogas yields when applying the A WO process before ( 1. 7-2-fold increase in biogas 

for A WO-AD process) or after AD (up to 1.4-fold increase in biogas for AD-A WO-AD 

process), an economical comparison was made between the profit in biogas yield (kWh/ton or 

€/ton input waste) and the opemtional costs made for the AWO process (€/ton input waste) 

(Table 7.3). 

Table 7.3. Comparison of the total costs (euro) in conventional AD process with the A WO-AD 

and the AD-A WO-AD process for an AD plant treating 50,000 tons biowaste/year 

Cost AD A WO-AD AD-A WO-AD 

(€/ton input waste) 

Digestion 60-70 60 70 

Composting* 8 8 (1.6) 8 (4.8) 

Electricity recovery** -15 -26 -21 

A WO total cost*** I 11.2 6.7 

TOTAL cost 58 53.2 (47) 63.7 (60.5) 

* Numbers between brackets: composting costs for proportionally lower digester amoWits at enhanced 
methane yields 
** The enhanced electricity recovery is based on 80% and 40% increase in methane production for the 
A WO- AD process and AD-A WO-AD process, respectively. 
***Total cost based on the operational cost and the capital cost (depreciation time of 15 years) 

Based on an average tonnage of 50,000 tons/year, an AD plant treats biowaste at an average 

cost of 60-70 €/ton input waste. The post-digestion step involves composting, which is 

usually only 5-10% of the anaerobic digestion cost or 5-8 €/ton waste (Table 7.3).ln case the 

A WO process is applied prior to AD (A WO-AD process), a gain of 180 kWh/ton waste or 11 
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€/ton waste (at an average feed-in tariff of 0.068 €/kWh green electricity) can be achieved. 

For the AD-A WO-AD process, on average 80-90 extra kWh/ton waste or 7 €/ton waste can be 

recovered. Compared to the AD process, it is assumed that the total digestion costs for the 

A WO-AD and the AD-A WO-AD process are 10-15% lower and higher, respectively (Table 

7.3). This difference can be attributed to the loss of organic material in the A WO-AD process 

(10-20%) and the increased input flow in the digester for the AD-A WO-AD process. 

The major cost involved in the A WO process is the operational cost and more specifically the 

use of oxygen. Based on a total oxygen requirement of 0.25 g 0 2/g DM waste to create 12 bar 

oxygen pressure, the operational cost (including Na2C03 costs and maintenance) for the 

A WO-AD process mounts to 9 €/ton waste and for the AD-A WO-AD process to 3.7 €/ton 

waste. For both processes, the capital costs for the A WO unit are about 2-3 €/ton waste. 

If the total costs made for the A WO process are compared with the gain in methane yield, it 

can be derived that the costs of the integrated A WO processes are in the same range (up to 5 

€/ton waste difference) as the costs of the sole AD process (Table 7.3). However, when it is 

assumed that the composting costs proportionally decrease with the gain in methane yield or 

that composting could be completely omitted, an overall profit on the total costs can 

potentially be achieved. Furthermore, the calculation made in Table 7.3 did not take into 

account the potential oxygen and heat recovery ( exothermic process) during A W 0 treatment 

as discussed before in Chapter 6. 

From these perspectives, it can be concluded that both the technical, environmental and 

economical data of the integrated A WO process justify tests at pilot-scale. Important issues of 

the A WO process that are currently under investigation are the application of much higher dry 

matter contents (up to 30% DM) and the integrated production of bio-ethanol, biogas and 

hydrogen from selected biomass. 

7.1.2.2. Advanced biogas, bioethanol or hydrogen production from biowastes? 

The presented A WO process offers new perspectives for the advanced production of biogas, 

bio-ethanol and hydrogen gas from biowastes. When it comes to the selection of a biofuel 

process for a determined biomass or waste, three important considerations have to be made: 
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The total calorific yield for each of the biofuels is partially based on their (theoretical) 

stoechiometric reactions during fermentation: 

Bio-ethanol: 

C6H1206 --.... ~ 2 CzHsOH + 2 C02 

Biogas: 

c~12o6 --.... ~ 3 c~ + 3 co2 

Hydrogen gas: 

Based on mass weight, the theoretical and practical yield for bio-ethanol production is clearly 

highest (Table 7.4). The practical yields shown in Table 7.4 are based on reported average 

substrate to biofuel conversion efficiencies, namely 50-80% for methane (Liu et al., 2002), 

50-90% for bio-ethanol (Bjerre et al., 1996) and 15-33% for hydrogen gas (Logan, 2004). The 

lower efficiencies count for conversion of slowly biodegradable lignocellulose (e.g., in 

agricultural and household waste) whereas efficiencies higher than 80% are reached with 

cellulolytic food crops. Despite the much higher energy content of hydrogen gas, the total 

calorific yield is about 3 times lower for hydrogen gas production from glucose (Table 7.4) 

than for methane (biogas) and bio-ethanol production. 

Table 7.4. The theoretical and practical yields of conversion of glucose into biogas. bio-ethanol 

and hydrogen gas during fermentation. The total calorific yield is based on the yield in 

practice and the energy content of each of the biofuels (after Lay et al., 1999: Logan, 

2004) 

Methane Bio-ethanol Hydrogen gas 

Theoretical yield Theoretical yield Theoretical yield 

(g/g glucose) (gig glucose) (gig glucose) 

0.27 0.51 0.13 

Yield in practice Yield in practice Yield in practice 

(gig glucose) (gig glucose) (gig glucose) 

0.14-0.22 0.3-0.46 0.02-0.04 

Total calorific yield* Total calorific yield* Total calorific yield* 

(kJ/g glucose) (kJ/g glucose) (kJ/g glucose) 

7.8-12.2 8-12.3 2.4-4.9 
*Energy content: 55.5 kJ/g methane; 26.7 kJ/g ethanol; 122 kJ/g hydrogen; 15.6 kJ/g glucose 
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The volumetrically based calorific yield of biogas is much higher than the calorific hydrogen 

yield because of the nearly 10-fold lower gas density of hydrogen gas compared to methane 

gas. This implies the need for much larger storage volumes of hydrogen gas compared to 

other biofuels. It must be mentioned that other non-biological process routes for hydrogen 

production from biomass have proven to result in considerable higher hydrogen yields and 

lower costs: Nath and Das (2003) compared all of the processes including the fermentative 

process and concluded that apart from natural gas-steam reforming, biomass gasification and 

pyrolysis are the most economical processes for renewable hydrogen production from (semi-) 

solid biomass. Besides, methanol production by catalytic hydrogenation of carbon from 

biomass is also expected to become a competitive fuel of tomorrow (Hamelinck and Faaij, 

2002). 

Hence, biological hydrogen production is expected to be rather limited to low-cost 

carbohydrate-rich wastes (e.g., from the food industry), unless high-performance hydrogen 

producing strains are developed in the future (> 60% efficiency). Nevertheless, hydrogen 

production from wastewater might be an interesting option because the market value of 

hydrogen gas is nearly 20 times higher per kg of hydrogen gas compared to methane gas 

(Logan, 2004) and because of the "negative cost" ofwastewater. 

Compared to biogas, bio-ethanol has the main advantage that it is a liquid fuel with high 

performance in internal combustion engines. Despite its decreasing production cost over 

recent years thanks to the development of more efficient pretreatment methods and enzymes, 

bio-ethanol production even from refmed materials (e.g., sugar cane or pure starch) is still not 

cost competitive with gasoline production. The main cost involved in the process is the need 

for high enzyme loadings during the simultaneous saccharification and fermentation process 

( Sheehan and Himmel, 200 1 ). The distillation costs have already decreased considerably and 

will probably further decrease in the future because of increased heat recovery (Seeman, 

2003). While the difference in costs between gasoline and bio-ethanol from crop-based 

cellulosic biomass has become relatively small, bio-ethanol production costs from organic 

waste are still considerably higher due to its inherent lignocellulosic structure. However, it is 

predicted that cellulosic compounds from municipal waste will also be utilized in the future, 

provided that they can be efficiently separated from the waste matrix (Askew, 2003). 

The biogas production process is a well-established technology and can undoubtedly handle 

the widest variety of all kinds of wastes. Furthermore, the anaerobic digestion technology is 
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straightfmward which makes it also very suitable for downstream processing. This is 

illustrated in a suggested scheme in Figure 7.1 where the A WO process is integrated in an 

overall biofuel production scheme from biowaste. 

From an economical point of view, it is preferred that the high calorific compounds (e.g., 

starch, cellulose and hemicellulose) of presorted organic wastes are converted into high value 

biofuels such as hydrogen gas and bio-ethanol whereas the low-value residues (ligno-aromatic 

compounds, carboxylic acids) can be further converted into biogas (Figure 7.1). Both the 

hydrogen production from the liquid phase and the ethanol production from the solid phase 

benefit from the A WO pretreatment: the A WO process completely sanitizes the waste and 

leaves a liquid phase rich in soluble carbohydrates and lignin derivatives whereas the 

cellulose contained in the solids can be used for ethanol production. The hydrogen and 

ethanol produced from both fractions could be sold to the market (e.g., transportation fuel) 

whereas the biogas and heat are locally recovered and reused (by combustion) in the system. 

Presorted 
organic ~ 
waste 

Liquid phase 

I 
AWO 

Hydrogen 
production 

-------------process 

I Ethanol 
Solid phase production 

Liquid residue 

___ .,. 
~ 

Biogas 
production 

t 
Solid residue 

--+ Residue 

Figure 7.1. Conceptual process scheme for the maximization of valuable biofuel production from 

solid organic waste 

Alternatively, it was shown in Chapter 6 that the AWO process can be applied either before or 

after anaerobic digestion for the enhancement of biogas production only. This option would 

be most beneficial when treating lignin-rich mixed waste since anaerobic digestion in 

combination with A WO is the only biological way to efficiently recover energy from this type 

of waste. Hence, the A WO-AD process can become a main competitor of composting, which 

is at the moment the most common technology to deal with lignin-rich waste (EEA, 200lb). 

Although the total cost of AD is 1.1-1.3 times higher than composting, the enhanced biogas 

yield, the considerably smaller amount of end-product (solids) and the prevention of harmful 

emissions are key drivers in diverting biowaste away from composting. 
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7.2. BIOREGENERATIVE LIFE SUPPORT FOR ORGANIC WASTE RECYCLING 

A life support system can be defmed as ''any natural or human-engineered system that 

furthers the life of the biosphere in a sustainable fashion. The fundamental attribute of life 

support systems is that together they provide all of the sustainable needs required for 

continuance of life." (according to Encyclopedia ofLife Support Systems, EOLLS). 

In this defmition, it is crucial that the fimctions of the earth are duplicated or mimicked 

without the benefit of the earth's large buffer systems: oceans, atmosphere and land mass 

(Lasseur, 2002). This implies that there is no "dilution effect" and that all elements are cycled 

in a closed waste-to-food and food-to-waste materials loop from and towards the crew on a 

short time basis. From an engineering point of view, this requires a very close control of the 

internal mass balances of such a system and the guarantee of a (nearly) 100% complete and 

biosafe turn-over of all elements. 

With regard to space applications such as manned long-term space flights (2-3 years), this last 

element is crucial since external food supplies will not be available during the flight and the 

original food supply taken from the earth will not last for the whole journey (Silverstone et 

al., 2003). Hence, all elements present in the waste generated by the crew need to be 

thoroughly recycled in a life support system and reconverted into elementary food 

components. 

7.2.1. The role of biological life support systems in advanced organic waste treatment 

In Chapter 4, an integrated system for the advanced bioconversion of waste generated by the 

crew into biogas was proposed. This system, which is based on microbiological as well as 

thermal treatment technologies, was developed over a period of 2 years by also gathering the 

knowledge and expertise of other research groups within France (University ofBlaise-Pascal) 

and Germany (Technical University of Hamburg). 

The system, which is based on a unique integrated combination of anaerobic digestion, 

fermentation by the cellulolytic Fibrobacter succinogenes and thermal treatment at near

critical conditions, shows for the frrst time that a dilute lignocellulosic substrate can be 

converted into energy-rich methane gas and carbon dioxide at a biogas yield of 90-95% of the 

theoretical yield (Chapter 4). While the technical merits of the work are clear, the remaining 

issues are the potential use of methane gas in space, the overall energy balance of the system 

and the behaviour of the system in micro-gravity. 
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The technology to achieve high-quality single cell protein (SCP) from methane gas by 

methanotrophic bacteria is well-established and documented (Litchfield, 1983 ). This 

technology however requires oxygen and thus extra supply of energy (e.g., electrolytic 

production of oxygen). Another interesting option remains the conversion of methane gas into 

electricity and carbon dioxide by the use of combustion engines or direct carbonate fuel cell 

technology (Katikaneni et al., 2002). 

In all cases, the overall energy balance of the system is negative due to high heat requirements 

of the thermal liquefaction unit (at least 120 kJ/g of solids treated based on 4.2 kJ energy 

needed to heat 1 !iter of water with 1 °C) compared to the comparatively small gain in 

methane (1.7 kJ/g solids treated). Assuming that no process heat would be recovered, this 

implies that about 70 times more energy has to be provided to the system than there is energy 

recovered under the form of extra methane (20% increase at 55 kJ/g methane). However, in 

case heat recovery is considered and external energy supply can be provided from space (e.g., 

UV radiation), it can be concluded that the proposed system in Chapter 4 has potential 

applicability for manned long-term space flights to recycle all essential elements in a 

complete, fast and safe way. 

The well-functioning of the system on earth is however no guarantee for the reliability of the 

system in micro-gravity. Before a system like MELiSSA (see Chapter 4) can be effectively 

applied in space, the main challenge will first consist of a long-term demonstration on earth. 

7 .2.2. Bioregenerative life support: lessons learned for integrated waste management 

Efficient planning for integrated municipal solid waste (MSW) management requires 

accounting for the complete set of environmental effects and costs associated with the entire 

life cycle ofMSW. In integrated waste management, this means that no real side-products are 

generated but that all materials and energy contained in the waste are reused and recycled 

(Gajdos, 1998). Hence, the residue generated after the integrated biofuel process depicted in 

Figure 7.1 needs to be further processed for recycling purposes. 

Artificial life support systems show that biowaste can be efficiently recycled on a regional 

scale. This is important since the transport costs associated with the collection of organic 

waste can make up to 50% of the total costs of a biofuel production process (Askew, 2003). 

At local scale, biogas is the most preferred biofuel since electricity and heat can be locally 

recycled, whereas hydrogen and bio-ethanol need more expensive equipment and thus 

centralised large-scale installations (Nath and Das, 2003; Sheehan and Himmel, 2001). 
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7.3. FUTURE OPPORTUNITIES FOR ANAEROBIC DIGESTION AND THE A WO 
PROCESS IN SUSTAINABLE ORGANIC WASTE MANAGEMENT 

7.3.1. The AD-A WO-AD approach for enhanced carbon recycling from biowaste 

Figure 7.2 shows a sequential anaerobic digestion approach for the conversion of organic 

waste into biogas by intermediate A WO treatment. 

Raw waste 
(6-30% DM) 

Figure 7.2. 
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Integrated anaerobic digestion of organic waste for enhanced biogas recovery and 

sanitation 

The AD process represented in Figure 7.2 involves the use of a CSTR type of reactor in the 

first digestion while a UASB reactor with a much shorter hydraulic retention time is used to 

further convert the soluble organic matter released during A WO in a second stage. 

The use of wet oxidation as an intermediate treatment bears the advantage that the first 

dig estate has a high buffer capacity with a pH of typically 8-9 units. This approach allows the 

readily available organic matter to be converted into biogas and only the more recalcitrant 

organic material to be subjected to wet oxidation. The solids after wet oxidation, which 

largely consist of cellulose, could be returned to the main digester for biogas conversion. The 

wet oxidation liquid contains the majority of the nutrients and salts, solubilized hemicellulose 

(xylose), lignin degradation products (e.g., acids) and possible pollutants (e.g., di (2-

ethylhexyl) phthalate (DEHP) from MSW). A UASB reactor could subsequently be employed 

to stabilize the liquid and to convert remaining carbon into biogas or the solids could be 

recycled to the first digester. The fmal effluent would be rich in nutrients and organic salts, 

suitable for nutrient and salt recovery. The remaining solid fraction would largely consist of 

inert recalcitrant matter such as lignin residues and ash and would be much smaller compared 

to the solid fraction after conventional composting. 
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Alternatively, the wet oxidation process could be applied as a pretreatment to the raw waste. 

This option might be particularly attractive for more pure lignocellulosic biomasses such as 

woody waste (e.g., yard waste), as it is known that the methane yield of these materials in AD 

is only of the order ofO.OS-0.211 CRJg VSS added (Owens and Chynoweth, 1993). 

7 .3.2. The AD-A WO-AD approach for enhanced nutrient recycling from biowaste1 

To make anaerobic digestion (AD) a real player in the main stream of waste management, it 

appears warranted to step away from its thus far positioning. Indeed, at present, AD is 

pictured as an omnipotent total recycling process. However, the reality is that one of its major 

end-products, i.e. stable organic matter (e.g., compost, humotex) has no real demand in many, 

not to say most industrialised countries nowadays. The key feature of AD consists of the 

recovery of green energy (kWh) and mineral fertilizer (N and P) from organic matter. The 

first is already receiving recognition in the context of the Kyoto agreements and is in a 

number of countries sold to the grid at a good price (0.07-0.17 €/kWh). Since both ammonia 

and phosphate represent fuel equivalents, one should also strongly strive to obtain recognition 

of these materials in the framework of the Kyoto agreements (see Chapter 2). Hence, within 

the context of sustainable environmental management, guaranteed price supporting systems 

for green kWh, green N and green P should be obtained Once this is achieved, there is a 

major potential for large scale AD of organic wastes in which the AD permits to deliver 3 

green products. Moreover, AD can decrease with 50-90% the amount of organic matter which 

at the end has to be disposed of by incineration. 

7.3.2.1. Market shifts 

At present, biowaste from households is subjected to anaerobic digestion to generate green 

kWh and an organic residue which is marketed as compost. However, mainly due to the 

stringent quality and regulatory reuse standards as discussed in Chapter 2 of this thesis, 

market demands are shifting away from the production of a residue to be used as an organic 

fertilizer. A new approach consists of the unsorted collection, drying, separation and recycling 

1 Redrafted after : 
Verstraete, W., Rabaey, K., Fernando, M., Aiyuk, S. and Lissens, G. Anaerobic digestion as a core 
technology in sustainable management of organic waste. Closing lecture at the J(Jh World Congress Anaerobic 
Digestion, 29 August- 2 September 2004, Montreal, Canada. 
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or digestion of the MSW and burning of the RDF (refuse derived fuel) e.g., in the cement 

industry. This approach does however not allow to optimally recover the energy and nutrient 

potential of the material. This is partially due to comparatively high emissions and losses of 

organic material during the drying and separation steps. 

In a modem market economy driven by the consumer, AD should be entirely positioned in the 

framework of the growing demand of green energy and clean nutrients. As a matter of fact, 

the mineral nutrients present in biowaste can be expressed in terms of energy equivalents. 

Indeed, the fossil fuel based fertilizer production is responsible for about 1.2% of the world 

energy consumption or 1/3 of the energy use in industrial agriculture. This is due to the fact 

that 1.1-1.6 L of gasoil (11-16 kWh equivalent) is used for the manufacturing of 1 kg of 

ammonia from natural gas for N fertilizer and 0.2-0.4 L of gasoil (1.4-2.6 kWh equivalent) for 

the production of 1 kg of phosphoric acid for P fertilizer from phosphate ore, respectively 

(Helsel, 1992; Kongshaug, 1998). 

7.3.2.2. The green energy and clean nutrient concept 

Figure 7.3 shows the proposed default scheme with AD as a key technology for the recovery 

of 3 green products from source separated organic waste, namely green kWh, green N and 

greenP. 

Biowaste 

Figure 7.3. 
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Integrated concept for green energy recovery (kWh) and green nutrient recovery from 

biowaste. A WO: thermal alkaline wet oxidation (T: 185-200"C, p02: 12 bar, Na2C03: 

0-6 glkg of waste, t: 15 min) 

Biogas is collected and converted into electricity at an efficiency of3.98 kWh/m3 C~ (Figure 

7.3). The NH3 could be recovered free of contaminants via stripping from the liquor while 

P04
3" can be selectively precipitated (e.g., with iron or aluminium salts) in an acceptable 
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form. It must be stressed that source separated collection (SSC) of the waste is a prerequisite 

to avoid contamination of the recovered phosphorous. The concept proposes to subject the 

residual solids to total destruction by eo-incineration. 

To optimize AD in the proposed default scheme, technologies that can increase the energy 

and nutrient recovery from organic waste are welcome. A WO (Alkaline Wet Oxidation) has 

been shown to enhance the biogas yield of source separated biowaste with 40% (Chapter 6). 

Apart from increased energy recovery, AWO can enhance N and P recovery and guarantees 

absolute sanitation of recovered P. Furthermore, A WO could permit the sanitation and thus 

disposal of slaughterhouse wastes category 1&2 (Chapter 2). 

Energy based calculations show that the gain in energy production from extra green energy 

recovery (up to 1.2 GJ/ton waste considering the omission of the composting step) and fossil 

fuel savings by green nutrient recovery (0.3-0.5 GJ/ton biowaste) can compensate for the 

extra costs made for the A WO treatment, theN and P recovery steps, the dewatering and the 

incineration of the residue. Based on experimental results and literature data, the digestion of 

I ton biowaste (25% DM) following the default scheme would add an extra 40 m3 of biogas 

or 159 kWh to the average 100m3 biogas/ton waste. Furthermore, assuming that 80% of theN 

and P can be recovered (presume 1% Nand 0.3% P on DM basis for biowaste), 90-140 kWh 

(6-10 €) equivalent for ~-N recovery and 3-6 kWh (0.2-0.4 €) equivalent for P04
3--P 

recovery can potentially be saved for every ton waste treated. Hence, including the omission 

of the composting step, the total gross recovery for the 3 green products mounts to 350 kWh 

(24.5 €)/ton biowaste. 

Obviously, the acceptability of the 3 green AD products by the public has also to be 

investigated. Incentives for the incineration industry to step into the default scheme will have 

to be explored. Finally, with regard to organic farming and soil health, green and perfectly 

safe N and P can be applied to these soils to grow so-called soil organic matter enriching 

crops with soil improving characteristics. 

This new AD concept, focusing on 3 green recovery products but totally abandoning the reuse 

of organic matter, warrants in depth evaluation and particularly overall economic appraisal. It 

offers an alternative treatment route which is, although somewhat complicated, rigorously 

safe in terms of unwanted chemical and biological agents. It also is an ethically sound 

treatment path for SSC biowaste. 
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Figure 7.4. 
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The biorefinery concept as an alternative to the petrochemical refinery. The term 

biomass comprises energy-crops (e.g. , sugar cane), agr icultural wastes (e.g. , bagasse) 

and organic waste (e.g. , biowaste) 

Eventually, the integrated anaerobic digestion approach will be positioned in the context of 

the rapidly growing biorefineries (Lynd et al. , 1999). The biochemical (e.g., fermentation 

technology) and thermochemical (e.g., wet oxidation) processing routes at all biomass quality 

levels (from high grade such as starch derived from corn to low grade such as mixed 

biowaste) will never reach such a strong synergy as in the presented biorefinery concept. In 

biorefineries, the fractionation of agricultural feedstocks into intermediate basic products and 

further into final products is put forward . This approach will place waste management and 

treatment technologies in a completely new perspective whereby the total reuse and recycling 

of biowaste wi ll become evident. 
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In the year 2000, a European citizen produced on average 330 kg of biodegradable municipal 

waste. This represents for the EU-15 a yearly total biodegradable waste production of 107 

million tons, an enormous amount of waste which is expected to increase with 2% per year. 

The majority of this biodegradable waste in Europe is still being landfilled (66%) or 

incinerated, while only a minor fraction(< 15%) is recycled by biological treatment. Due to 

the serious threats that landfilling poses to the environment (acidification, eutrophication, 

climate change, human health and pollution), the EU landfill directive of 1999 (1999/31/EC) 

states that the biodegradable municipal waste (BMW) going to landfill must be decreased to 

75% by 2006, to 50% by 2009 and to 35% by 2016 based on the BMW produced in 1995. 

Incineration of BMW requires extensive energy-input prior to incineration due to the high 

moisture content of the waste and the overall energy yield is thus low. 

Up to now, one of the most economical and thus most applied biological treatments for BMW 

is aerobic composting or a combination of anaerobic digestion of 15-20 days followed by 

short-term aerobic composting. The latter approach is currently the most sustainable, since the 

plant nutrients (N, P and K) and bioenergy (biochemically bound energy) in organic waste are 

upgraded in controlled bioconversion systems, whereby plant nutrients and digested organics 

are recycled under the form of compost and bioenergy under the form of methane gas can be 

used. The digestion efficiency of BMW is however limited to methane yields of typically 50-

60% because of the slow or incomplete degradation of certain fractions (e.g. lignocellulosic 

fibers). Moreover, toxic substances (e.g. xenobiotics) can inactivate microorganisms and in 

case they can be biologically degraded, the time needed for complete biodegradation is mostly 

longer than the retention times typically applied in biological treatment. In addition, the 

biological safety of treated effluents and solids (e.g. compost) for direct reuse purposes can 

often not be guaranteed by biological treatment alone. 

The wet oxidation technology was originally developed in the 80's as an end-of-pipe 

technology for the complete destruction and oxidation of hazardous waste streams (e.g. 

sewage sludge). Similarly, advanced oxidation processes were first explored to completely 
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oxidize and remove hazardous pollutants in wastewater. The high costs involved for both 

technologies however prevented their widespread application. 

The approach of this work consisted of the exploration of wet oxidation technologies and a 

non-oxidative thermal treatment coupled to biological treatment for the recycling of 

municipal waste. From an integrated waste management perspective, this coupling was 

investigated from a technical, environmental and economical point of view. 

In a first part, the anodic electrochemical oxidation of commonly occurring pollutants in 

municipal and industrial organic waste was investigated at newly developed boron-doped 

diamond (BDD) electrodes. More specifically, the deactivation and oxidation of cationic 

(hexadecyltrimethyl ammonium chloride) and anionic (sodium dodecylbenzenesulfonate) 

surfactants as well as the decomplexing and oxidation of common chelating agents (EDT A 

and NTA) was studied in what was called the EAOP process (electrochemical advanced 

oxidation process). In both studies, the BDD electrodes showed a higher stability in the 

investigated solutions (e.g. graphite) and superior oxidation and deactivation rates of the 

target molecules compared to other carbon-based electrodes. The current efficiencies during 

decomplexing and oxidation of EDT A and NT A were very high (> 90%) whereas the current 

efficiencies for electrochemical surfactant removal were low (5-12%). The latter was due to 

the low surfactant concentrations used in the study, causing mass transfer limitations of the 

molecules towards the anode surface. 

The second and largest part of this work consisted of the exploration of novel wet oxidation 

technologies and a non-oxidative high temperature treatment in addition to bioconversion 

processes for the complete sanitation and increased energy recovery from organic waste. In 

the context of the life support system MELiSSA (Micro-Ecological Life Support Alternative), 

a total converting and biosafe anaerobic digestion system was developed for the complete 

reuse of dilute organic waste in space. Several pre- and post-treatments complementary with 

anaerobic digestion were investigated, of which a high temperature (310-350°C) and high 

pressure (240 bar) hydrothermal treatment resulted in the highest total biogas yield. Overall, 

up to 90-95% of the biochemical energy contained in the dilute organic substrate could be 

recovered under the form of energy rich biogas. The hydrothermal treatment could provide 

complete sanitation of the waste, largely liquefy the residual recalcitrant organic matter and 

increase its anaerobic biodegradability with approximately 20%. 
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In a next phase, the alkaline wet oxidation (AWO) process was investigated for increased 

sanitation and biofuel production from organic biowaste. Carbohydrate-rich organic wastes 

such as food waste and yard waste were subjected to A WO and their bio-ethanol potential 

was subsequently evaluated by means of enzyme assays and simultaneous saccharification 

and fermentation with yeast. The most optimal AWO conditions were a temperature of 180-

1900C, a treatment time of 10-15 minutes, an 0 2 pressure of 12 bars (1.2 Mpa) and an 

alkalinity of about 3 g Na2C03 per 100 g of DM waste. The study showed that on average 65-

70% of the cellulose contained in the wastes could be converted into ethanol at a DM content 

of 10%, corresponding to 20-25 g/L of ethanol. Furthermore, the lignin fraction of both 

wastes, known to be rate-limiting in anaerobic fermentation processes, could be largely 

degraded during A WO into biodegradable fragments such as carboxylic acids. 

In a fmal phase of this work, the AWO process was applied to raw organic waste (food waste, 

yard waste) and to digested biowaste already treated in a full-scale anaerobic digestion (AD) 

plant (DRANCO, Belgium) to enhance the anaerobic biodegradability and methane yields of 

the wastes. The specific methane yield could be doubled for the yard waste (from 345 to 685 

mL CHJg ofVSS) by using AWO as a pretreatment before anaerobic digestion whereas the 

methane yield of the food waste could only be increased with 7% (from 536 to 571 mL Cfit/g 

of VSS). This finding supported the idea that the lignin content and the characteristics of the 

wastes are very important for their biodegradability after A WO treatment. In addition, it was 

shown that for the digested biowaste, the specific methane yield could be further increased 

with 35-40% (from 0.25 to 0.34 L Cfit/g ofVSS) by applying AWO followed by a second 

digestion. This showed that there is still a considerable amount of methane that can be 

harvested from anaerobically digested biowaste. 

An economical analysis for the EAOP and A WO process demonstrated that the application of 

both processes would be impaired by high costs in case they would be positioned as stand

alone processes. However, this work showed that the EAOP process has an affordable total 

cost ( 1-3 €/kg COD removed) for difficult waste streams, particularly when it would be 

coupled to biological treatment. The process is amenable for automation and shows high 

potential to detoxify recalcitrant waste streams such as metal plating and textile effluents. The 

total costs involved in the A WO process are largely determined by the oxygen consumption 

(1-5 €/ton waste) and the investment cost (2-3 €/ton waste). It was concluded that for mixed 
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biowaste, the benefits made in terms of extra green energy production by applying A WO and 

a second digestion can potentially cover the total cost of the A WO process ( 5-11 €/ton waste). 

Moreover, the composting costs proportionally decrease with the gain in methane yield and 

heat can be recovered from the exothermic A WO process. At the end, the overall economic 

balance of the A WO process in combination with anaerobic digestion provides good 

indications that an overall profit on the total costs of 1-10 €/ton input biowaste can be 

reached. 

This work demonstrated that wet oxidation technologies can considerably improve the 

performance of biological processes for wastewater and solid waste recycling and reuse. This 

can lead to reduced handling of waste end-products, lower emissions to the environment and 

higher green energy profits. 
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In het jaar 2000 produceerde elke Europeaan gemiddeld 330 kg biodegradeerbaar 

huishoudelijk afval (BHA). Dit komt overeen met een totale jaarlijkse productie van 107 

miljoen ton biodegradeerbaar afval in Europa, een enorme hoeveelheid waarvan verwacht 

wordt dat ze in de toekomst met 2% per jaar zal stijgen. 

Het merendeel van dit afval wordt in Europa nog steeds gestort (66%) of verbrand terwijl 

slechts een kleine fractie (< 15%) wordt gerecycleerd door biologische behandeling. Doordat 

stortplaatsen een emstige bedreiging vormen voor het milieu (verzuring, eutrofiering, 

klimaatsverandering en vervuiling), stelt de EU in de stortplaatsrichtlijn van 1999 

(1999/31/EC) dat het gestorte BHA moet gereduceerd worden tot 75% tegen 2006, tot 50% 

tegen 2009 en tot 35% tegen 2016, gebaseerd op de productie anno 1995. Bovendien vergt 

verbranding van BHA veel energie door het hoge vochtgehalte ervan en dus is de netto

energieopbrengst laag. 

Tot dusver is aerobe kompostering of een combinatie van anaerobe vergisting ( 15-20 dagen) 

gevolgd door een korte kompostering een van de goedkoopste en dus een vaak toegepaste 

biologische behandeling voor BHA. De 1aatste benadering (vergisting + kompostering) is 

momenteel de meest duurzame, omdat de nutrienten (N, P en K) en de biochemisch gebonden 

energie in het afval worden opgewerkt in gecontroleerde biologische systemen tot 

respectievelijk kompost en energierijk methaangas. De vergistingsefficientie van BHA is 

echter beperkt tot een methaanrendement van typisch 50-60% door de trage en onvolledige 

vertering van bepaalde afvalfracties (bv. lignocellulose vezels). Bovendien hebben toxische 

verbindingen in het afval (bv. xenobiotica) een inactiverende werking op de microorganismen 

en in het geval deze verbindingen toch kunnen worden afgebroken gebeurt dit meestal over 

een langere tijdsspanne dan de verblijftijden toegepast in biologische behandeling. Tot slot 

kan de bioveiligheid van het biologisch behandeld afval bestemd voor hergebruik niet l 00% 

gegarandeerd worden. 

De natte oxidatietechnologie werd in de jaren '80 ontwikkeld als een einde-van-de-pijp 

technologie voor de komplete destructie en oxidatie van problernatische afvalstromen (bv. 

spuislib). Op een gelijkaardige wijze werden geavanceerde oxidatieprocessen (AOP's) 
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geexploreerd voor de volledige oxidatie en verwijdering van problematische polluenten in 

afvalwater. De hoge kosten die beide processen met zich meebrachten verhinderden echter 

een wijdverspreide toepassing. 

De benadering van dit werk bestond uit de exploratie van natte oxidatietechnologieen en een 

niet-oxidatieve thermische behandeling gekoppeld aan biologische behandeling voor de 

recyclage van BHA. Vanuit een gei"ntegreerd afvalbeheersperspectief werd deze koppeling 

onderzocht op technisch, milieukundig en economisch vlak. 

In een eerste deel werd de anodische elektrochemische oxidatie van vaak voorkomende 

polluenten in huishoudelijk en industrieel afval onderzocht aan nieuw ontwikkelde boor

gedopeerde diamant (BDD) elektrodes. Meer specifiek werd de deactivatie en oxidatie van 

kationische (hexadecyltrimethyl ammoniumchloride) en anionische (natrium dodecyl

benzeensulfonaat) surfactanten alsook de decomplexatie en oxidatie van chelaatvormende 

agentia (EDTA en NTA) bestudeerd in wat later het EAOP proces werd genoemd 

( elektrochemisch geavanceerd oxidatieproces ). In beide studies vertoonden de BDD 

elektrodes een hogere stabiliteit in de onderzochte oplossingen in vergelijking met andere 

koolstof-gebaseerde elektrodes (bv. grafiet) en een hogere oxidatie- en deactivatiesnelheid 

van de doelmolecules. De stroomefficienties gedurende decomplexatie en oxidatie van EDT A 

en NTA waren zeer hoog (> 90%) terwijl de stroomefficienties voor elektrochemische 

surfactantverwijdering laag waren (5-12%). Dit laatste was te wijten aan massa transfer 

beperkingen van de molecules naar het anode-oppervlak door de lagere surfactant 

concentraties gebruikt in de studie. 

Het tweede en grootste deel van dit werk was de exploratie van nieuwe natte 

oxidatietechnologieen en een niet-oxidatieve hoge temperatuursbehandeling ter aanvulling 

van bioconversieprocessen voor de komplete sanitatie en verhoogde energierecuperatie van 

organisch afval. Binnen de context van een levensondersteunend systeem genaamd MELiSSA 

(Micro-Ecologisch Levensondersteunend Altematief) werd een totaal converterend en 

bioveilig anaeroob vergistingssysteem ontwikkeld voor volledig hergebruik van verdund 

organisch afval in de ruimte. Verscheidene voor- en nabehandelingen complementair met 

anaerobe vergisting werden onderzocht waarvan een hydrothermale behandeling onder hoge 

temperatuur (310-350°C) en hoge druk (240 bar) resulteerde in het hoogste totale 

biogasrendement. In totaal kon 90-95% van de biochemische energie vervat in het verdund 
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organisch substraat worden gerecupereerd onder de vorm van energierijk biogas. De 

hydrothermische behandeling kon volledige sterilisatie van het afval bewerkstelligen, het 

overblijvend organisch materiaal grotendeels oplossen in de vloeistoffase en de anaerobe 

biodegradeerbaarheid met ongeveer 20% doen stijgen. 

In een volgende fase werd het alkalisch natte ox.idatieproces (AWO) bestudeerd voor 

verhoogde sanitatie en bio-brandstofproductie van organisch bio-afval. Organisch afval rijk 

aan carbohydraten zoals voedselafval en tuinafval werden onderworpen aan A WO en hun bio

ethanolpotentieel werd vervolgens geevalueerd d.m.v. enzymatische essays en gelijktijdige 

saccharificatie en ferrnentatie met gist. De meest optimale A WO condities waren een 

temperatuur van 180-l90°C, een behandelingstijd van 10-15 minuten, een zuurstofdruk van 

12 bar (1,2 Mpa) en een alkaliniteit van 3 g Na2C03 per 100 g droge stof afval. De studie 

toonde aan dat gemiddeld 65-70% van de cellulose in het afval omgezet kon worden in 

ethanol bij een droge stof gehalte van 10%, overeenkomstig met 20-25 g/L ethanol. De 

ligninefractie van beide afvalstromen, welke snelheidslimiterend is in anaerobe 

ferrnentatieprocessen, kon tijdens A WO grotendeels afgebroken worden tot biodegradeerbare 

fragmenten zoals carboxylzuren. 

In een laatste fase van dit werk werd het A WO proces toegepast op onbehandeld organisch 

afval (voedsel- en tuinafval) en op vergist bio-afva1 reeds behande1d in een volwaardige 

vergistingsinstallatie (DRANCO, Be1gie) om de anaerobe biodegradeerbaarheid en het 

methaanrendement van het afval te verhogen. Door A WO te gebruiken als een 

voorbehandeling van anaerobe vergisting kon het specifieke methaanrendement worden 

verdubbeld voor het tuinafval (van 345 tot 685 mL CHJg VSS) terwijl het methaanrendement 

van het voedselafval slechts met 7% verhoogde (van 536 tot 571 mL CHJg VSS). Deze 

bevinding bevestigde dat het ligninegehalte en de karakteristieken van het afval zeer 

belangrijk zijn voor de biodegradeerbaarheid na A WO behandeling. V oor het vergiste bio

afval kon het specifiek methaanrendement verder verhoogd worden met 35-40% (van 0,25 tot 

0,34 L CRt/g VSS) door A WO toe te passen gevolgd door een tweede vergisting. Dit toonde 

aan dat er uit anaeroob vergist afval nog een grote hoeveelheid methaangas kan gerecupereerd 

worden. 
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Sameuvatting 

Een economische analyse van het EAOP- en A WO proces leidde tot de conclusie dat de 

toepassing van beide processen hoge kosten met zich meebrengen indien ze als alleenstaande 

technologieen worden ingezet. Uit dit werk kan worden afgeleid dat het EAOP proces een 

aanvaardbare kostprijs heeft voor problematische afvalstromen, vooral indien het gekoppeld 

zou worden aan een biologische behandeling. Het proces is eenvoudig te automatiseren en is 

geschikt om toxische of recalcitrante afvalstromen te ontgiftigen zoals afvalwaters uit de 

metallurgie- en textielnijverheid. De totale kostprijs van het A WO proces wordt grotendeels 

bepaald door het zuurstofverbruik (1-5 €/ton afval) en door de investeringskost (2-3 €/ton 

afval). Uit dit werk kon worden geconcludeerd dat de winst in groene energie productie als 

gevolg van A WO behandeling en een tweede vergisting tenminste de totale kost van het 

A WO proces ( 5-11 €/ton afval) kunnen compenseren. Bovendien daalt de kost voor 

kompostering proportioneel met de winst in methaanrendement en zou warmte van het 

exotherme A WO proces kunnen gerecupereerd worden. Dit kan uiteindelijk resulteren in een 

netto-winst van 1-10 €/ton bio-afval. 

Dit werk toonde aan dat natte oxidatietechno1ogieen de performantie van bio1ogische 

processen voor afvalwater- en vaste afvalbehandeling gevoelig kunnen verbeteren. Dit kan 

leiden tot een verminderde omgang met eindproducten van afvalbehandeling, lagere emissies 

naar het milieu en hogere groene energierendementen. 
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