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Abstract—An increasing interest in both efficient electric ma-
chines and more extensive control strategies demands evermore
faster simulation tools. In that context, Fourier-based models,
which combine low computational times with a high accuracy,
have already proven their value. However, even Fourier-based
models may encounter problems related to CPU usage. To cope
with these problems the authors present a number of simple
techniques to reduce the computational effort of Fourier-based
models for synchronous machines. The techniques are based on
simplifying the studied geometry and a qualitative analysis of
the machine’s time- and spatial-harmonic content. The proposed
techniques are validated and a benchmark test has shown that
a great reduction in computational burden can be achieved
without significant loss of accuracy. The preliminary harmonic
analysis gives, by far, the largest reduction of the computational
burden.

Index Terms—Electric machines, analytical models, har-
monic analysis

I. I NTRODUCTION

Although the importance of traditional electric machines,
such as grid-connected induction machines, is still very large,
the demand for higher efficiencies is pushing electrical engi-
neers towards new machine topologies and more complicated
control strategies. The development and implementation of
such machines requires a good understanding of their physics
and operation. Moreover, the design process of new machines
requires a fast and accurate modeling tool, suited for opti-
mization purposes. In that light, the class of Fourier-Based
(FB) models has recently gained a lot of attention [1]–[6].
The reason for its popularity is that Fourier-based modeling is
extremely suited for both the study and the design of electric
machines. Indeed, despite their analytical character, which
enables low computational times, Fourier-based models are
capable of accurately taking into account complex physical
phenomena such as eddy-current reaction field [4], [5] and
the slotting effect [5], [6]. Moreover, Fourier-based models
also give a good insight in the machine’s physics.
As already mentioned, one of the major advantages of Fourier-
based models is that they can be very fast. However, if
a demand for high accuracy is combined with complex
machine topologies, even the computational time of traditional
Fourier-based models may become unacceptably high. This
is especially true when the model is used for optimization
procedures with a large initial design space.
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Although some authors of FB models have reported on
numerical issues [3], [7], [8], to date no extensive study of
the computational time of such models has been presented.
The only available literature that discusses computational-
time reduction was presented by Ramakrishnanet al. in [9].
However, that discussion is limited to a specific class of
Fourier-based models that uses Schwarz-Christoffel mapping.
The goal of this paper is therefore to meet the need for
more computational-efficient Fourier-based models. More-
over, those lower computational times are to be obtained with
simple and very generally applicable techniques that do not
compromise the model’s accuracy. Because of their relative
importance in the segment of innovative electric machines,
the focus in this work is on Permanent-Magnet Synchronous
Machines (PMSMs).
Two techniques to reduce the FB model’s computational effort
are considered in this work; simplifying the geometry and
applying a qualitative analysis of the machine’s time- and
spatial-harmonic content. That analysis was performed by
the authors in [10]. The results are validated using a Finite-
Element Model (FEM). A benchmarking test is performed to
compare the computational time of the standard Fourier-based
model with the computationally efficient models.

A. Assumptions

Before discussing the work, some general assumptions
have to be made. As already mentioned, this paper focuses
on PMSMs. However, such machines come in a large variety.
Although the work applies to a great majority of Fourier-based
models for synchronous machines, some restrictions have to
be adopted.
A first assumption is that the end effects are neglected. This
assumption is common for analytical models and allows for
a 2D approximation.
Secondly, the applied current system is assumed to be a
balanced system with an odd number of phases.
Thirdly, the stator is wound using the Star Of Slots (SOS)
technique. This assumption allows for the vast majority of
winding topologies, ranging from simple single-layer dis-
tributed windings to multi-phase fractional-slot concentrated
windings with any number of layers.
Fourthly, as in most Fourier-based models, all materials are
assumed homogeneous. This implies that local saturation is
not taken into account.
Finally, the rotor is assumed to be rotating at synchronous
speed. This implies steady-state operation.
The above assumptions are listed as:
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• No end-effects
• Balanced system with an odd number of phases
• Winding distribution according to SOS
• Homogeneous materials
• Synchronous operation

B. Paper outline

The work is structured in three parts. Sections II and III
provide the necessary background information on Fourier-
based modeling and the time- and spatial-harmonic content
of synchronous electric machines. Next, Sections IV and V
introduce the techniques to reduce the computational effort of
FB models. These sections respectively focus on simplifying
the geometry and applying a qualitative analysis of the
machine’s harmonic content. Finally, the proposed techniques
are evaluated in Section VI and the work is concluded in
Section VII.

II. FOURIER-BASED ANALYTICAL MODELS

The goal of this section is to introduce Fourier-based
modeling. Obviously, the magnetic field is not only dependent
on space but on time as well. When building a Fourier-based
model, the time-dependency can be accounted for directly
or through time-stepping. Both techniques will briefly be
discussed in the following.

A. Fourier representation of the magnetic field

Figure 1 shows a PMSM with a Shielding Cylinder (SC).
The latter is a conductive sleeve that is wrapped around the
magnets [4], [5]. It is often used to reduce the rotor losses
at high-speed operation, but it can also be used to retain the
magnets. Although the presented work applies to a broader
range of PMSMs, as explained in Section I, the machine in
Figure 1 will be used as an example in this section.
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Fig. 1: Geometry of a machine with 12 slots and 5 pole pairs

The magnetic field in an electric machine has both a time(t)
and a spatial dependency.
It can easily be seen from Figure 1 that the shape of the
example machine lends itself to using a cylindrical coordinate

system(r, φ, z) to spatially describe the magnetic field. As
discussed in Section I-A, neglection of the end effects implies
that the magnetic field is independent from thez-coordinate.
The time-dependency can either be taken into account directly
or through time-stepping. Direct time-dependency implies
using a time-dependent expression for the magnetic field. As
this allows to account for eddy-current reaction field, it is
the most generally valid technique [4], [5], [11]–[13], but
it also implies a larger complexity. Applying time-stepping,
i.e. performing multiple time-independent calculations with
updated values of the rotor position, current value, etc., results
in a simpler model with a lower computational burden [1]–
[3], [6]. However, as directly taking into account the time-
dependency is the most general method, it will be used in the
rest of this work. Assuming synchronous rotation, the results
apply to models that use time-stepping if the time-harmonic
order (n) is assumed to be 1.
The magnetic field is mostly expressed using auxiliary quan-
tities such as the magnetic scalar potential(ψ) [1], [2] or the
magnetic vector potential(A) [3]–[6]. As already mentioned,
the magnetic field, and therebyψ and A, are independent
from z if the end effects are neglected. Moreover, neglecting
the end effects also implies thatA only has az component:

A = Az · ez = A · ez (1)

Which of both auxiliary quantities is considered has no effect
on the following discussions. In this work, the more generally
valid magnetic vector potential was chosen, but a completely
analogue reasoning can be made for the scalar potential.
Evidently, the machine has a periodicity over both time and
space. The time periodicity is the time the rotor needs to
perform one revolution(Tm), the mechanical periodicity is
2π mechanical radians. Those periodicities can be used to
express the magnetic field as a Fourier series over time and
space:

A(r, φ, t) =
∞
∑

n=−∞

∞
∑

k=−∞

An,k(r)e
j(kφ−nωmt) (2)

In (2), n is the time-harmonic order andk is the spatial-
harmonic order. The machine’s mechanical rotational speed
is denoted asωm.

ωm =
2π

Tm
(3)

Because of the fact that the magnetic field has both a time
and a spatial dependency, every Fourier coefficient (An,k(r))
depends on both the time-harmonic ordern and the spatial-
harmonic orderk. This means that the time- and spatial-
harmonic orders should not be regarded separately but as a
combination. Such a time- and spatial-harmonic combination
is referred to as(n, k).

B. Fourier-based modeling

The fact that the magnetic field can be written as a Fourier
series has been used by a great number of authors to construct
analytical models of PMSMs [1]–[6]. In these Fourier-based
models, Maxwell’s equations and the constitutive relations are
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used to formulate a differential equation for the magnetic
scalar potential or the magnetic vector potential. For the
magnetic vector potential this differential equation is written
as:

∇2A − µσ
∂A
∂t

+ µσ (v × (∇× A)) = µJext −∇× B0 (4)

whereµ is the magnetic permeability,σ is the electric con-
ductivity, v is the speed,Jext is the externally imposed current
density andB0 is the residual magnetism in the machine.
To solve (4) the subdomain technique is applied. This tech-
nique consists of two steps.
The first steps divides the machine in a number of regions,
called subdomains, in which the governing equation is greatly
simplified. Figure 2 shows the subdomains in a slotted and
in a slotless machine. They are indicated with an indexν,
ranging from 1 till 4 in the slotless machine and 1 till 5 in the
slotted machine. Note that, in slotted machines, every slot and
every slot opening is a separate subdomain. These domains
are represented by indices4i and 5i, where i refers to the
slot number. Subdomain 2 is the SC. Not every machine is
equipped with a shielding cylinder, however whether or not a
SC is present in the machine has no influence in this work.
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Fig. 2: Subdomains in slotless and slotted machines

After having obtained equations for the MVP in each of
the subdomains(A(ν)), boundary conditions are imposed to
determine the integration constants that were introduced when
solving (4):

n ·
(

∇×
(

A(ν) − A(ν+1)
))

= 0

(5a)

n ×

(

∇×

(

A(ν)

µ(ν)
−

A(ν+1)

µ(ν+1)

)

−

(

B(ν)
0

µ(ν)
−

B(ν+1)
0

µ(ν+1)

))

= Js

(5b)

whereν andν +1 are neighboring subdomains andn is the
unit vector normal to their boundary.
Note that the amount of integration constants that have to
be determined largely determines the model’s computational
burden.
The solution of the simplified differential equation is obtained
using the separation-of-variables technique. The equation for
the magnetic vector potential is thus written as the multi-
plication of ar-, a φ- and at-dependent part. The form of
these parts depends on the differential equation and the spatial

periodicity in the considered subdomain.
The actual form of ther-dependent part is not of great
importance in this work. It is however important to note
that ther-dependent part contains the integration constants,
introduced when solving (4).
In Section II-A, theφ-dependent part of harmonic combina-
tion (n, k) was written asejkφ, based on the assumption that
the magnetic field has a spatial periodicity of2π mechanical
radians. This notation holds in the subdomains that span
2π mechanical radians. However, in slotted machines the
subdomain technique introduces domains that do not span
the entire2π mechanical radians, i.e. the slot openings and
the slots. As discussed in [3], [5], [6], the magnetic fields in
these subdomains have a basic spatial period of twice their
respective opening angles,2δ for the slot openings and2ε
for the slots. Theφ-dependent part of the magnetic vector
potential is then written as:

{

ej
uπ
δ

(φ−δi) if ν = 4i

ej
vπ
ε
(φ−εi) if ν = 5i

(6)

To avoid confusion, a different notation for the spatial-
harmonic order is used;u andv instead ofk. Note as well that
the starting angles of the slot opening and the slot, shown in
Figure 1, are subtracted from the angular coordinate. This is
done to easily comply with the imposed boundary conditions
[3], [5], [6].
The spatial division of the machine’s geometry has no effect
on the basic time period. Thet-dependent part will always be
written ase−jnωmt.
The above implies that the magnetic vector potential in every
subdomain can be written as:

A(ν)(r, φ, t) =

∞
∑

n=−∞

∞
∑

k=−∞

A
(ν)
n,k(r)e

j
(

k

T (ν)
(φ−φ

(ν)
0 )−nωmt

)

(7)

WhereT (ν) is the subdomain’s spatial period, i.e.2δ in the
slot openings,2ǫ in the slots and2π in the other subdomains.
The starting angle of subdomainν, i.e.δi in the slot openings,
ǫi in the slots and0 in the other subdomains is indicated as
φ
(ν)
0 .

A more extensive description of the subdomain technique is
provided in [1]–[6] and is beyond the scope of this work.
Note that, although Sprangers [14] and Dubas [15] have
recently introduced techniques to account for finite permeabil-
ities, the Fourier-based model of this section assumes that the
permeability of slotted structures is infinite. This assumption
is more strict than the assumption of homogeneous materials
posed in Section I-A, but that doesn’t affect the validity of the
results. Moreover, the assumption of infinite permeabilities is
used in the vast majority of Fourier-based models [1]–[6].

III. H ARMONIC CONTENT IN SYNCHRONOUS ELECTRIC

MACHINES

In (7), every time- and spatial-harmonic order is con-
sidered. However, usually not every harmonic combination
is present in the machine’s magnetic field. Moreover, the
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harmonic content of synchronous electric machines can be
predicted. An extensive discussion on this prediction is pre-
sented in [10]. This section is limited to a brief introduction
on the topic so that the results can be used in Section V.
There are four aspects that define the machine’s harmonic
content; the permanent magnets, the stator currents, the
winding distribution and the machine’s geometry. These four
aspects can be divided in two categories: the source terms, i.e.
the magnets and the stator currents, and the spatial aspects,
i.e. the machine’s geometry and the winding distribution.
The source terms determine which time-harmonic orders are
present in the machine’s magnetic field. Indeed, they can only
introduce time-harmonic orders that are present in their own
harmonic spectrum;hm for the magnets andhc for the stator
currents. Based on the time harmonic content, the spatial
aspects determine the machine’s spatial harmonic content. The
latter is argued by noting that the machine’s magnetic field
will be equal but rotated over a certain angle after a given time
span. This rotational angle and time span are determined by
the machine’s spatial aspects.

A. No-load situation

The above can easily be explained for the no-load case
of a machine with identical slots. IfNs is the number of
slots, the rotor will have rotated over one slot pitch afterTm

Ns

seconds. The magnets are then rotated over2π
Ns

mechanical
radians while the flux produced by these magnets experiences
the same magnetic reluctance. This means that, from the
stator point of view, the magnetic field will be identical
but rotated over2π

Ns
radians. Note that not every electric

machine is equipped withNs equal slots. However, if the
slots are unequal there is always a repetition in the shape of
the slots. If there areNs,eq similar sets ofNt subsequent
slots, the rotational angle becomes2π

Ns,eq
radians and the

time period becomesTm

Ns,eq
seconds. This can be expressed

mathematically:

A(r, φ, t0) = A

(

r, φ+
2π

Ns,eq

, t0 +
Tm

Ns,eq

)

(8)

Moreover, the above is valid for every harmonic combination
separately:

An,k(r)e
j(kφ−nωmt0) =

An,k(r)e
j
(

k
(

φ+ 2π
Ns,eq

)

−nωm

(

t0+
Tm

Ns,eq

)) (9)

Considering thatωmTm = 2π, (9) implies a relation between
the time- and spatial-harmonic orders.

k − n = cNs,eq (10)

wherec is an integer.
This means that, for the no-load situation, the time-harmonic
orders are determined by the harmonic spectrum of the mag-
nets while the machine geometry, i.e. the slots, determine the
present spatial-harmonic orders. The harmonic combinations
then have to satisfy (10) whilen ∈ hm.

B. Armature-reaction situation

For the armature-reaction field a similar approach can be
made. The time-harmonic orders in the magnetic field are now
determined by the harmonic spectrum of the applied currents
(n ∈ hc). Letm be the number of phases andτ the machine’s
period, i.e. the greatest common divisor of the number of pole
pairs (p) and the number of slots(Ns):

τ = gcd(p,Ns) (11)

It was shown in [10] that, if the machine’s winding is
determined using the SOS, it containsςmτ slot groups (also
known as phase belts). Whereς = 1 or ς = 2, depending on
whetherNs

τ
is odd or even. The spatial shift of a slot group

corresponds to the time shift of the currents flowing through
that slot group. This means that the machine’s magnetic field
will be equal but rotated over one slot group afterTm

mτ
or

Tm

2mτ
seconds. That periodicity of the armature-reaction field

is mathematically expressed as:

An,k(r)e
j(kφ−nωmt0) =

An,k(r)e
j(k(φ+ 2π

ςmτ )−nωm(t0+ Tm
ςmτ ))

(12)

From which the following relation between the time- and
spatial-harmonic orders is obtained:

k − n = cςmτ (13)

This means that under armature-reaction conditions, the har-
monic combinations in the magnetic field have to satisfy (13)
while n ∈ hc.

C. Load situation

Finally, since saturation is neglected, the load field is
the superposition of the no-load and armature-reaction fields.
The time-harmonic orders are now introduced by both the
rotor magnets and the stator currents. As mentioned, the
effect of the geometry is already incorporated in the winding
distribution. This means that, depending on whetherNs

τ
is odd

or even, the magnetic field is identical but rotated over2π
mτ

or
π
mτ

mechanical radians afterTm

mτ
or Tm

2mτ
seconds. This implies

that the spatial-harmonic orders can again be predicted using
(13). An overview of the resulting harmonic content in all
situations is presented in Table I.

TABLE I: Harmonic content of synchronous electric ma-
chines, withhm and hc the time-harmonic spectra of the
magnets and the stator currents.

Operation Time-HO (n) Spatial-HO (k)

No load n ∈ hm k − n = cNs,eq

Armature reaction n ∈ hc k − n = cςmτ

Load n ∈ hm ∪ hc k − n = cςmτ

IV. SIMPLIFYING THE GEOMETRY

As already mentioned, a demand for low computational
time is one of the major reasons to develop a Fourier-based
model. Such models can indeed be very fast. However, their
computational time is mainly determined by the amount of
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integration constants that have to be calculated. Which, in
turn, depends on the amount of harmonic combinations that
are taken into account. Since more accuracy implies more
harmonic combinations, a strict demand for accuracy may
result in unacceptable computational times. This is especially
true for models that directly take into account the time-
dependency and for models which’ purpose is an optimization
procedure.
Apart from the required accuracy, the geometry has an impact
on the computational time as well. Indeed, in machines with
semi-closed slots, every slot opening and every slot is a sepa-
rate subdomain. Each of those subdomains implies additional
integration constants and therefore additional computational
time. This may be a reason to simplify the geometry of
machines with semi-closed slots to a similar geometry with
open slots. As illustrated in Figure 3, this is done by setting
the opening angle of the slots to that of the original slot
openings.
Evidently, this implies that the current density has to be
recalculated to keep the total current constant.

(a) Original slot (b) Simplified slot

Fig. 3: Simplification of the machine with semi-closed slots

Section VI will verify that simplifying the slots may strongly
reduce the computational time without compromising the
accuracy.

V. HARMONICS AND FOURIER-BASED MODELS

The goal of this section is to reduce the computational
time of Fourier-based models by applying the findings from
Sections II and III. In a first part the harmonic combinations
are reduced using Table I. In the second part the interdepen-
dency of the slots is discussed. Thirdly the real nature of the
magnetic vector potential is discussed.

A. Harmonic combinations

When simulating a machine using a Fourier-based model,
the number of considered time- and spatial-harmonic orders
is always limited. The cut-off harmonic orders, i.e. the highest
time- and spatial-harmonic orders that are taken into account,
have to be carefully chosen. On the one hand, a sufficient
amount of harmonic orders is required to obtain accurate
results. On the other hand, the amount of considered harmonic
orders should be as low as possible in order to avoid excessive
computational times. However, by applying the results of
Section III the amount of harmonic combinations can be
reduced without affecting the accuracy. Indeed the field com-
ponents related to harmonic combinations that do not satisfy

the requirements of Table I will be zero. These combinations
can thus be disregarded, doing so results in a first harmonic-
related reduction of the computational burden.
Note that the imposed relations between the time- and spatial-
harmonic combinations were found assuming a basic spatial
period of 2π mechanical radians. Therefore Table I is not
valid in the slot openings and the slots of a slotted machine.

B. Interdependence of the slots

Although Table I does not apply to the magnetic vector
potential in the slots and the slot openings, the time periodic-
ities found in Section III are still valid for the machine’s total
magnetic field.
Equation (8), for example, implies that under no-load con-
ditions the magnetic field in slot openingi + Nt lags the
magnetic field in slot openingi by Tm

Ns,eq
seconds. A relation

can then be found between the magnetic vector potential in
these slot openings:

A(4i)(r, φ, t0) = A(4i+Nt)

(

r, φ+
2π

Ns,eq

, t0 +
Tm

Ns,eq

)

(14)
Which is again valid for every harmonic combination sepa-
rately:

A(4i)
n,u (r)e

j(uπ
ε

(φ−εi)−nωmt0) =

A(4i+Nt)
n,u (r)e

j
(

uπ
ε

(φ+ 2π
Ns,eq

−εi+Nt
)−nωm

(

t0+
Tm

Ns,eq

)) (15)

and sinceεi+Nt
= εi +

2π
Ns,eq

:

A(4i)
n,u (r) = A(4i+Nt)

n,u (r)e
−jn 2π

Ns,eq (16)

A similar relation can be found between the Fourier coeffi-
cients of the slots:

A(5i)
n,v (r) = A(5i+Nt)

n,v (r)e
−jn 2π

Ns,eq (17)

For the armature-reaction and load fields, a similar period-
icity was found. Analogously as in the above, the following
relations can be found:

A(4i)
n,u (r) = A

(4i+ Ns
ςmτ

)
n,u (r)e−jn 2π

ςmτ (18)

and

A(5i)
n,v (r) = A

(5i+ Ns
ςmτ

)
n,v (r)e−jn 2π

ςmτ (19)

Equations (16)-(19) show a relation between the Fourier coef-
ficients of different slot openings and slots. This implies that
fewer coefficients have to be calculated using the boundary
conditions. A second harmonic-related technique to reduce
the computational time is thus to account for the relation
between integration constants of different slots. This lower
computational time is again achieved without loss of accuracy.

C. Real functions

Although (7) contains complex components, the mag-
netic vector potential as such is real. This implies that the
Fourier coefficients linked to harmonic combinations(n, k)
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and (−n,−k) have to be complex conjugate. For the magnetic
vector potential this implies:

A
(ν)
n,k(r) =

(

A
(ν)
−n,−k(r)

)

∗

(20)

Note that this is valid for every subdomain.
The above relation implies that only half of the integration
constants have to be calculated, which results in a large
reduction of the computational time.

VI. VALIDATION AND BENCHMARKING

In addition to the computational-time reduction techniques
described in the above, some authors already account for the
machine’s periodicity(τ) in order to reduce the computational
burden. This implies that, in subdomains that span the entire
2π mechanical radians, they only consider time- and spatial-
harmonic orders that are multiples ofτ . Moreover, onlyNs

τ

slots and slot openings have to be taken into account. This
approach is, in effect, a simple version of the preliminary
harmonic analysis of Section V. To evaluate the effect of
accounting for periodicity and the techniques proposed in
Sections IV and V, several example machines are simulated
using four different models:

• original model: the model presented in [5]
• slots model: the original model with simplified slots
• periodic model: the model that accounts for the ma-

chine’s periodicity
• harmonics model: the model that accounts for the pre-

liminary harmonic study

It was already mentioned that, for the sake of generality,
this work considers Fourier-based models with a direct time-
dependency. However, the vast majority of Fourier-based
models in literature still uses time stepping. Therefore, this
section also considers an application of the above for the case
of time-stepped FB models.

A. Direct time-dependency

The first example machine is a three-phase inner-rotor
PMSM with distributed windings. The second example ma-
chine has an outer-rotor topology and five phases that are
arranged in a fractional-slot concentrated winding. A cross
section of both machines is shown in Figure 4. Their pa-
rameters are listed in Table II, where RY indicates the rotor
yoke, PM the permanent magnets, SC the shielding cylinder,
AG the air gap, SO the slot openings, SL the slots and SY
the stator yoke. Note that, depending on whether no-load or
armature-reaction conditions are regarded,B0 is 1.2 or 0 T
andJ is 0 or 5 A

mm2 . The magnets are radially magnetized
and the applied current is sinusoidal.
The highest time-harmonic order is set to 130. In the circular
subdomains(ν = 1 · · · 3), the highest spatial-harmonic order
is 130 as well. In the slots and the slot openings, the highest
spatial harmonic order is set to 15. The induction in the air
gap can be calculated using the definition of the magnetic
vector potential:

B = ∇× A (21)

A

B
C

PHASES

(a) Inner-rotor machine

A

B

D

C

E

PHASES

(b) Outer-rotor machine

Fig. 4: Studied machines

TABLE II: Parameters of the two PMSM machines

Parameter Inner rotor Outer rotor

Number of slots (Ns) 12 15
Number of pole pairs (p) 2 7
Number of phases (m) 3 5
Angular span of a magnet (φm) 72.00◦ 20.57◦

Radius RY - external (r0) 0.00 mm 79.20 mm
Radius RY - PM (r1) 47.25 mm 72.20 mm
Radius PM - SC (r2) 52.25 mm 67.70 mm
Radius SC - AG (r3) 54.25 mm 66.70 mm
Radius AG - SO (r4) 57.25 mm 63.70 mm
Radius SO - SL (r5) 62.00 mm 60.70 mm
Radius SL - SY (r6) 75.20 mm 44.20 mm
Radius SY external (r7) 85.20 mm 0.00 mm
Opening angle of the slot openings (δ) 6.93◦ 5.54◦

Opening angle of the slots (ǫ) 18.78◦ 15.02◦

Residual magnetism (B0) 1.2 or 0 T
Current density in the slots (RMS) (J) 0 or 5 A

mm2

Frequency of the applied current (f) 1000 Hz
Conductivity of the SC (σSC ) 5.96.107 S

m

Table III shows the computational times of the performed sim-
ulations for both the no-load (NL) and the armature-reaction
(AR) conditions. All of the calculations were performed on a
quad core PC with a clock rate of 2.83 GHz and a memory of
8 GB. To evaluate the accuracy of the obtained solutions, they
are compared with results from a 2D finite-element model.
The% RMS deviation, with respect to the FE model, of the
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magnetic flux density in the center of the air gap is also shown
in Table III. This deviation is calculated as:

d =

2π
∫

0

|BFE(rac, φ, 0)−BFB(rac, φ, 0)|dφ

2π
∫

0

|BFE(rac, φ, 0)|dφ

· 100% (22)

Note that the computational time of the FE models strongly
depends on the modeled geometry, the number of time steps
required for the calculations to converge and even the applied
software package. In this work, computational times ranging
between 4 seconds, for the magnetostatic calculations of
Section VI-B, and over 2500 seconds, for some of the mag-
netoquasistatic calculations of Section VI-A, were required.
However, as the focus is on FB models, the computational
time of the FE models will not be discussed in detail.
It can readily be seen from Table III that there is a significant
difference in required computational time between the original
model and the model with simplified slots. Nevertheless, the
simplified model can predict the flux density in the center of
the air gap with an accuracy that is comparable to that of the
original model. However, it is evident that the effect on the
in the slots will not be negligible. Simplifying the geometry
is thus an interesting technique for FB models that study
quantities such as torque and magnet losses, i.e. quantities
that are not strongly affected by the field in the slots. One
example of a machine parameter that cannot effectively be
calculated with simplified slots is the inductance.
For the inner-rotor machine, accounting for the periodicity
has an even greater effect on the computational time. This
computational-time reduction is achieved without affecting
the model’s accuracy. This was indeed expected; the op-
timized model only avoids unnecessary calculations. This
doesn’t affect the actual result. As the periodicity of the outer-
rotor machine is 1, its computational time is not affected.
The computational gain for the model that applies the pre-
liminary harmonic analysis of Section V is by far the largest.
It can also be seen from Table III that the optimized model
has a significantly lower computational time for the armature-
reaction field than for the field at no-load conditions. The
reason is that a sinusoidal current is imposed, this implies

TABLE III: Optimized model; RMS deviation and computa-
tional time for both no-load (NL) and armature-reaction (AR)
conditions

Model RMS deviation (%) Computational time (s)
NL AR NL AR

Br Bφ Br Bφ

Inner-rotor machine

Original 0.042 2.749 0.035 0.565 515.71 517.31
Slots 0.045 2.734 0.033 0.571 335.09 335.32
Periodic 0.042 2.749 0.035 0.565 44.31 44.97
Harmonics 0.042 2.749 0.035 0.565 3.27 0.11

Outer-rotor machine

Original 0.025 0.086 0.111 0.039 635.59 636.02
Slots 0.025 0.091 0.116 0.037 439.12 438.78
Periodic 0.025 0.086 0.111 0.039 635.73 635.81
Harmonics 0.025 0.086 0.111 0.039 1.34 0.25

that hc only contains the fundamental time-harmonic order.
In contrast,hm contains much more time-harmonic orders.
Note that in slotless machines, all calculations can be per-
formed separately for every time- and spatial-harmonic com-
bination. This implies that more, but smaller, boundary-
condition matrices are to be considered. Equations (10) and
(13) will still allow to further reduce the size of the matrices.
However, as the computational time depends on the square
of the matrix size, this reduction will only result in a limited
computational-time reduction.
In addition to the comparison of Table III, Figure 5 shows the
computational times of the original model, the slots model,
the harmonics model and a model that combines simplified
slots with a harmonic analysis for different cut-off harmonic
orders. The machine under consideration is the inner-rotor
machine of Figure 4a. Note that the spatial cut-off harmonic
orders in the slots are one tenth of the cut-off harmonic orders
in the circular subdomains. This is common for Fourier-based
models, indeed the slot opening is much smaller than2π
radians. Figure 5 clearly shows that the preliminary harmonic
study, by far, has the largest effect on the computational time.
Figure 5 also shows the% RMS deviation of the original
model as a function of the amount of harmonic orders. This
figure shows that a fairly good accuracy is obtained, even at a
low cut-off harmonic order. Note that the RMS deviations of
the other models are not shown because they are very close
to that of the original model.
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Fig. 5: Comparison of the computational times and RMS
deviation at different cut-off harmonic orders

B. Time stepping

Consider the first example machine, as described by Table
II and Figure 4a. However, now the shielding cylinder is
replaced by air, the number of slots is set to 96 and the
number of pole pairs is increased to 16, while maintaining
all geometrical proportions.
The large number of slots allows to evaluate the effect that
the number of slots has on the computational time. On the
other hand, the absence of a shielding cylinder allows for
a time-stepped magnetostatic calculation. Which is, to date,
the most commonly used Fourier-based modeling technique.
Such a time-stepped magnetostatic calculation was performed
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for a single time step using all of the above four models, the
results are presented in Table IV.

TABLE IV: Optimized model; RMS deviation and computa-
tional time for both no-load (NL) and armature-reaction (AR)
conditions

Model RMS deviation (%) Computational time (s)
NL AR NL AR

Br Bφ Br Bφ

Inner-rotor machine with 16 pole pairs

Original 0.087 0.364 0.430 0.184 173.61 159.77
Slots 0.091 0.361 0.427 0.183 10.23 10.19
Periodic 0.087 0.364 0.430 0.184 1.70 1.49
Harmonics 0.087 0.364 0.430 0.184 0.72 0.60

First and foremost, it should be noted that the computational
times of Table IV are not simply comparable with those of
Table III. Whereas the calculations from the previous section
cover a complete time period of the machine, the calculations
presented here only cover a single time step.
Nevertheless, some interesting conclusions can be drawn.
Firstly, it can be seen that the technique of simplifying
the slots now results in a much larger reduction of the
computational time. The reason is that, due to their larger
number, the effect of the slots on the computational time is
much larger. Next, it can be seen that, under armature-reaction
conditions, the computational time of theharmonic model
has the same order of magnitude as that of theharmonic
modelwith direct time-dependency. This could indeed have
been expected; as the current is sinusoidal, the time-dependent
harmonic modelonly has to consider a single harmonic order.
This implies that, like for the time-stepped model, only a
single system of boundary conditions has to be solved.

VII. C ONCLUSIONS

This work started with an introduction on Fourier-based
modeling in Section II and the basics on harmonic content of
synchronous electric machines in Section III.
Using the information from these two sections and some
general considerations on the magnetic field, two major
techniques to reduce the computational burden of FB model
were proposed; simplifying the geometry and accounting for
a preliminary harmonic analysis.
Simplifying the geometry proved to result in a significant
reduction of the computational time while barely affecting
the accuracy of the flux density in the center of the air gap.
In Section V, the harmonic analysis of [10] was used to
propose three harmonic-related techniques to reduce the
computational time. A first harmonic-related technique is to
only consider the harmonic combinations that are actually
present in the magnetic field. Secondly a relation between the
magnetic field in different slots can be found. This relation
reduces the amount of integration constant that have to be
calculated. Finally, it was argued that the auxiliary quantities
that describe the magnetic field have to be real. This also
imposes a relation between different integration constants.
The above described techniques were successfully validated
using a FEM. Finally, a benchmark test was done to compare

the computational time of the standard Fourier-based model
with the optimized models. A huge reduction in computational
time was noted. Although the focus was on models that
directly take into account the time-dependency, an additional
example for time-stepped models was included. Moreover,
studying the presence of harmonic combinations also results
in a better insight in the machine’s operation.
The presented work thereby contributes to the development
of a faster simulation tool and to the understanding of
synchronous machines.
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