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Chemistry is all around us. Protons, neutrons and electrons make up elements, elements 

combine to molecules and monomeric molecules form the polymers of which our plastic bags, 

house insulation, or even our delicious French fries are made of. Life also equals chemistry. 

Other than that carbohydrate (starch) in potatoes, molecules combine to make peptides and 

lipids. Peptides, originating from information embedded in each species’ DNA code, assemble 

to bigger units: proteins. Proteins make up enzymes which regulate numerous critical 

processes such as digestion in the human body, providing it with the required energy we ingest 

from the food we consume. Phospholipids on the other hand make up the cell membrane, 

holding the cell and its constituents together.  

But what are these macromolecules chemically made of? Almost 99% of human body mass 

consists of six elements: carbon, hydrogen, oxygen, nitrogen, calcium and phosphorus. While 

water (H and O), proteins (C, H, O and N), carbohydrates and lipids (C, H, O) mainly consist 

of just four elements, other constituents of the human body contain calcium (mainly in 

hydroxyapatite, a mineral in the bone matrix) and phosphorus (again in hydroxyapatite, but 

also in DNA, RNA and phospholipids) atoms (Figure 1).1 

    

Figure 1: Elemental composition of the human body by mass (left),  
‘The Alchemist Discovering Phosphorus’ by Joseph Wright of Derby (right). 

Phosphorus was the unlucky 13th element to be discovered, more than a hundred years before 

oxygen, and first synthesized in 1669 by the German alchemist Brandt. In his unsurprisingly 

unsuccessful quest for the philosopher’s stone, a substance that would turn inexpensive 

metals such as copper or zinc into gold, Herr Doktor Brandt - as he wished to be called - found 

one night in Hamburg that upon intensively heating copious amounts of urine, a glow-in-the-

dark material was obtained (Figure 1). Unknowingly, he had prepared elemental phosphorus, 

from the phosphate excreted in urine. The glowing properties did not originate from 

phosphorescence, the phenomenon where certain materials emit light at a reduced intensity 
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after they have been charged with intense light, but from a chemiluminescent reaction. White 

phosphorus, one of the allotropes of elemental phosphorus, reacts with oxygen, 

simultaneously emitting light. Other researchers later correctly observed that phosphorus can 

be made from several other living – plant or animal – materials, such as mammals, fish, birds, 

plants and trees. The association of phosphorus with life had been demonstrated for the first 

time.2 

Phosphorus is indeed involved in important biological processes. Phosphorylation of sugars is 

the first step in their catabolism, eventually providing the cell with energy in the form of ATP.3 

ATP, adenosine triphosphate, is known as the energy carrier of the cell, as it is constantly 

being used and replenished in numerous transformations that require energy in living beings. 

The creation and scission of phosphorus-oxygen bonds in phosphates illustrates that the P-O 

bond is a highly energetic bond, which is easily hydrolysable. In organophosphorus 

compounds, at least one of those P-O bonds has been replaced by a bond between 

phosphorus and carbon, which is resistant to hydrolysis. This important feature has led to the 

development of several phosphonate-containing drugs. Twelve of the twenty-four FDA-

approved phosphorus-containing drugs belong to the family of phosphonates and phosphonic 

acids.4 

What makes organophosphorus compounds such interesting targets? First of all, 

organophosphorus natural products have been a rich source for agricultural and medicinal 

applications. Ciliatine 1, 2-aminoethyl phosphonic acid, was the first phosphonate natural 

product to be isolated (Figure 2). Between its discovery in 1959 and 2013, twenty-two more 

naturally occurring phosphonate (containing one P-C bond) and phosphinate (containing two 

P-C bonds) small molecules were isolated, every single one of them displaying biological 

activities. Bioassays showed that they inhibit bacterial and fungal growth or prevent seed 

germination. Three of those natural products – fosfomycin 2, bialaphos 3 and 

phosphinotricin 4 – have been commercialized as a drug or a biotechnological product. In 

addition to that, fosmidomycin 5 and its N-acetylated analogue FR900098 6 have been tested 

in clinical trials against Plasmodium, for the treatment of malaria.5 Very recently, an intensive 

genome mining program, allowed the isolation and identification of nineteen more 

phosphonate natural products.6 
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Figure 2: Examples of phosphonic and phosphinic acid natural products. 

Apart from phosphonate natural products, a great deal of synthetic phosphonates have been 

prepared. Because of their chelating properties, phosphonates are used as water-softening 

and anti-scaling agents in cooling water systems, preventing iron or steel corrosion.7, 8 These 

chelating properties also make them peroxide bleach stabilizers in the pulp and paper 

manufacturing industry, by complexing the metals that would otherwise inactivate the 

peroxide.9 These three features are the reason why they are widely used in detergents as 

well.10 One of the most simple phosphonates is dimethyl methylphosphonate 7 and is used 

commercially as a flame retardant (Figure 3).11 Bayer Crops Science’s ethephon 8 is the most 

widely used plant growth regulator and has greatly facilitated the production of cotton. It 

releases ethylene upon plant metabolism, which regulates plant growth and ripeness.12 

Importantly, phosphonates are characterized by low aquatic toxicities and are readily 

biodegraded, as certain soil bacteria have evolved to metabolize phosphonates, probably 

because of the presence of phosphonate natural products in the environment.13 

Another very small phosphonate is foscarnet 9, an antiviral medication approved in 1991 for 

the treatment of herpes (HSV-1 and HSV-2) and human cytomegalovirus (HCMV) retinitis and 

is particularly of interest in infections where resistance against other antiviral agents has 

developed.14-16 Bisphosphonates 10, developed in the 19th century and initially used to soften 

water in irrigation systems, were investigated in the 60s for the treatment of bone diseases 

such as osteoporosis.17 In the 90s, their mechanism of action was demonstrated, preventing 

osteoclasts from destroying bone, a process that inevitably occurs in the body upon aging. 

Currently, ten bisphosphonate drugs are marketed worldwide.18  
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Figure 3: Examples of marketed phosphonate and phosphonic acid compounds. 

Cidofovir 11, adefovir 12 and tenofovir 13 are three acyclic nucleoside phosphonates that have 

acquired a prominent position in the treatment of antiviral diseases (Figure 4). Cidofovir 11 has 

been licensed for the treatment of HCMV retinitis in AIDS patients by terminating viral DNA 

chain elongation. Adefovir 12 was eventually approved by the FDA as treatment for HBV 

infections (chronic hepatitis B). Since 2001, tenofovir 13 has been licensed for the treatment 

of HIV infections and is marketed as a single drug (Viread®) or in combinatorial therapies 

(Truvada® or Atripla™). These one pill daily drugs are considered a real breakthrough in the 

management of HIV infections, being much more effective than the twenty something pills, 

HIV-cocktails used to consist of.19 Tenofovir has also been approved for prophylactic use, 

effectively protecting individuals from contracting HIV.20 

 

Figure 4: Structures of nucleoside phosphonic acids marketed as antiviral drugs. 

Aminophosphonates are the phosphonic acid analogues of amino acids, although they differ 

in terms of acidity (more acidic than the corresponding amino acids), size (bigger steric 

hindrance) and shape (carboxylates are planar whereas phosphonates are tetrahedral). The 

phosphonate moiety successfully mimics the tetrahedral intermediate that is formed when the 

amide bond in peptides is being hydrolyzed. Aminophosphonates can thus act as inhibitors of 

these enzymes, a phenomenon that is well described for metalloproteases. This strategy has 

resulted in the development of fosinopril 14 (Figure 5), a phosphinate antihypertensive drug, 

which inhibits angiotensin I converting enzyme (ACE). The chelated complex samarium 

(153Sm) lexidronam 15 (trade name Quadramet) contains several phosphonate groups, which 
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effectively chelate a samarium radioisotope, used for pain relief when cancer has spread to 

the bone. It is preferentially absorbed where the bone has been invaded by cancer, killing 

nearby cells through emission of -particles.21, 22 Glyphosate 16 (commercialized by Monsanto 

as Roundup in the 70s) also belongs to the class of aminophosphonates, and has been used 

on an enormous scale as a herbicide.23 Although glyphosate and its formulations have been 

approved by regulatory bodies all over the world, it is still met with criticism regarding toxicity 

to mammals and environmental risks.24 At present there is no consensus about its toxicity as 

the WHO concluded in 2015 that glyphosate is “probably carcinogenic in humans”,25 while the 

EFSA’s assessment in the same year said that “the substance is unlikely to be genotoxic (i.e. 

damaging DNA) or to pose a carcinogenic threat to humans.”26 June 2017, the EFSA and 

ECHA again came to the conclusion that “there is no reason to doubt the toxicity studies stating 

that glyphosate is not carcinogenic.”27 

 

Figure 5: Examples of marketed aminophosphinates and aminophosphonic acids. 

Aminophosphonates can also irreversibly bind enzymes, as has been showcased for 

proteases with a serine residue in the catalytic center. P-Terminal amino acids and peptide 

diaryl phosphonates can transesterify the serine residue, effectively preventing the enzyme to 

interact with its normal substrate through its covalent bonding mode. This approach has 

resulted in the synthesis of inhibitors of proteases, involved in several diseases such as 

hypertension, type 2 diabetes and cancer. Diaryl aminophosphonate 17, for instance, 

successfully inhibits uPa (Urokinase-type plasminogen activator), a key serine protease 

involved in tumor cell invasion and metastasis (Scheme 1).28  

 

Scheme 1: Inhibition of uPa (urokinase-type plasminogen activator) by irreversible enzyme inhibition. 
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For almost two decades, the development of new methodologies for the synthesis of 

phosphonylated azaheterocycles and aminophosphonates has been one of the major research 

topics of the SynBioC Research Group of the Department of Sustainable Organic Chemistry 

and Technology, Faculty of Bioscience Engineering at Ghent University.29-33 This has resulted 

in the synthesis of a variety of phosphonylated compounds, such as aziridines,34, 35 

pyrrolidines,36 benzazepines,37 phosphonopyrroles,38-40 bicyclic41 and tricyclic42 

aminophosphonates, benzazocines,43 oxazolidinones and imidazolidinones,44 -lactams,45-47 

-lactams,48 benzocarbacephems,49 isoindoles50 and tetrahydroquinolines.51  

Accordingly, the aim of this work was to synthesize an innovative type of highly functionalized 

building blocks, aminoallenylphosphonates, and to explore their potential as precursors to 

innovative aminophosphonates. Allenes are highly interesting building blocks, displaying a 

broad range of reactivities owing to their unique molecular structure of cumulated double 

bonds.52, 53 They are excellent substrates for transition-metal-catalyzed cycloisomerizations 

and readily participate in cycloadditions.54 They are, however, often underused because of 

their supposed low stability. Heteroatom substituents can bring about important changes in the 

electron density on the allene. Allenes bearing an O- or N-substituent are donor-substituted 

allenes, while allenes conjugated to a carbonyl group are classified as acceptor-substituted 

allenes. Moreover, heteroatoms such as N and P are present in important natural products and 

synthetic drugs. Hence, the synthesis of an allene, decorated with both a N and P substituent, 

would be highly interesting. Would this densily functionalized small molecule 25 (Scheme 4) 

behave as an acceptor- or donor-substited allene and what kind of reactivities would be 

possible? Amino-substituted allenes react with alcohols, thiols, and secondary amines to give 

1,2-adducts55 and react in [2 + 2] or [2 + 4] cycloadditions.56 Amidoallenes, being less electron-

rich, are hydroaminated through Lewis acid activation of the proximal double bond57 or undergo 

alkoxylation at the - or -position, but usually not at the -position.58 On the other hand, 

nucleophilic addition to acceptor substituted allenes usually takes place at the -position. This 

is the case if the well-documented allenylphosphonates are reacted with nucleophiles, while 

they cyclize upon addition of electrophiles.  

In a first chapter, cyclization of these allenylphosphonates – lacking a N-substituent – with 

electrophiles will be evaluated in the design of chiral spirocyclic oxaphospholenes 22. Although 

achiral versions of these compounds have been prepared in the past, chiral spirocyclic 

oxaphospholenes have never been reported. These compounds could be of interest as novel 

chiral inducers in asymmetric synthesis, given their resemblance to BINOL phosphate 

catalysts and the configurational rigidity, produced by the spirocyclic backbone. The designed 

approach passes through allenylphosphonates 21, which would be prepared from acetylide 
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addition to chiral pool ketoterpenes 19, followed by treatment with ClP(OEt)2 (Scheme 2). Upon 

addition of a Lewis acid, cyclization should occur, producing spirocycles 22. 

Scheme 2: Strategy towards chiral spirocyclic oxaphospholenes. 

Secondly, a one-pot procedure for the preparation of bisphosphonomethyl oxazol-2-ones 24 

will be investigated (Scheme 3). This transformation was discovered in preliminary research 

and was thought to pass through an aminoallenylbisphosphonate intermediate. The original 

procedure, however, suffered from low isolated yields. Nonetheless, these 

bisphosphonomethyl oxazol-2-ones 24 are of interest as they are unprecedented compounds 

that combine two interesting structural features. The hydrogenated counterparts, 

oxazolidin-2-ones, are known for their use as chiral auxiliaries and is also the pharmacophore 

in a variety of marketed drugs, while the bisphosphonomethyl motif is of huge importance in 

bisphosphonate drugs. 

  

Scheme 3: One-pot synthesis of 5-bisphosphonomethyl oxazol-2-ones. 

The third and fourth chapter of this research focuses on the preparation of 

3- aminoallenylphosphonates 25 (Scheme 4). As not a single synthesis of these compounds 

had been reported at the start of this research, it was to be investigated if they could be 

prepared at all. A first strategy relied on the Skattebøl rearrangement, in which 

dihalocyclopropanes are transformed into allenes upon treatment with an organolithium 

reagent. The required dihalocyclopropyl aminophosphonates 26 will be prepared through 

dihalocarbene addition to enaminophosphonates. These precursors will be obtained through 

a copper-catalyzed hydroamination of alkynylphosphonates 27.59 

  

Scheme 4: Retrosynthetic approach towards 3-aminoallenylphosphonates via the Skattebøl 
rearrangement. 
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A second synthetic approach targets 3-aminoallenylphosphonates 28 through isomerization of 

3-aminoprop-1-yn-1-yl phosphonates 29 or 3-aminoprop-2-yn-1-yl phosphonates 30 (Scheme 

5). 3-Aminoprop-2-yn-1-yl phosphonates 30 should be accessible through a copper-catalyzed 

cross coupling reaction of copper acetylide 31 with a nitrogen nucleophile.60 3-Aminoprop-1-

yn-1-yl phosphonates 29 will be prepared by phosphonylation of protected propargylamines 32 

with diethyl chlorophosphate. In case these aminoallenylphosphonates 28 could be prepared, 

their reactivity will be evaluated. Since allenylphosphonates are known to undergo nucleophilic 

addition at the central -carbon, while non-phosphonylated N-containing allenes react as 

nucleophiles themselves, it is not straightforward to predict the reactivity of this densily 

functionalized small molecule. 

 
Scheme 5: Strategies towards 3-aminoallenylphosphonates starting from protected propargylamines or 

copper acetylides. 

In a last, more exploratory part of this work, the synthesis of fosmidomycin-inspired antimalarial 

analogues 33 will be investigated (Scheme 6). As the 3-carbon linker between the 

phosphonate and the amino functionalities in aminoallenylphosphonates 28 corresponds to 

the motif found in fosmidomycin 5, it was reasoned that aptly substituted 

aminoallenylphosphonates 34 could serve as a precursor to substituted fosmidomycin and 

FR900098 derivatives. This is of huge interest, given the developing resistance against 

currently available antimalarial drugs. In a retrosynthetic approach, it was anticipated that 

alkynylphosphonate precursor 35 could be prepared through phosphonylation of N-propargyl 

hydroxamate 36, which in turn should be accessible from O-benzyl hydroxamic acid 37 and 

propargylbromide. Isomerization of alkynylphosphonate precursor 35 should then yield 

aminoallenylphosphonate 34, which can ultimately be derivatized. 
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Scheme 6: Retrosynthetic approach towards new fosmidomycin analogues via an 

aminoallenylphosphonate intermediate. 
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Fifty years of 

(benz)oxaphospholene  

chemistry 
As delineated in the Introduction and Goals, this work focuses on the preparation and reactivity 

of allenylphosphonates and aminoallenylphosphonates. Since the synthesis of the latter is still 

in its infancy, a short overview of the available literature will be given at the beginning of 

chapter 3 in the Results and Discussion. Since the huge number of existing reports on 

allenylphosphonates in literature and since these allenylphosphonates will be used to produce 

oxaphospholenes in chapter 1 of the Results and Discussion, the part Literature Overview of 

this work will be devoted to the existing synthetic entries into benzoxaphospholenes and 

oxaphospholenes.  

1. Introduction 

Organophosphorus compounds have attracted since long the attention of chemists because 

of their interesting biological properties.61, 62 Aminophosphonates can serve as amino acid 

mimetics,63 several bisphosphonates are marketed for the treatment of bone diseases64 and 

phosphonate nucleoside analogues are important antiviral drugs. Tenofovir 13, for instance, is 

used in the treatment of Hepatitis B and HIV/AIDS (Figure 6).19 Phosphorus heterocycles, more 

specifically, are no longer laboratory oddities, but are of interest as ligands and as molecular 

components in electronic devices.65 Ifosfamide and cyclophosphamide 40, two phosphorus-

containing heterocycles, were introduced on the market more than thirty years ago and are still 

used to date in the treatment of cancer.4, 66 Oxaphospholenes 41-42, five-membered 

heterocycles containing one double bond, one oxygen and one phosphorus atom, could be 

useful precursors for furanose carbohydrate mimics,67 while the saturated 

oxaphospholanes 43 are bioisosteres of -butyrolactones. -Methylene- -butyrolactones are 

structural motifs often found in natural products, which are associated with numerous biological 

activities.68 Parthenolide 44 is an example of an -methylene- -butyrolactone being evaluated 

as a potential anticancer treatment.69 On the other hand, bactericidal,70 insecticidal,70 

pesticidal,70 herbicidal71 and fungistatic72 properties have been attributed to several 

benzoxaphospholes and phospholene oxides. 
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Figure 6: Structures of tenofovir, cyclophosphamide, different (benz)oxaphospholene isomers,  
an oxaphospholane and parthenolide. 

This literature review will focus on oxaphospholenes with structures 41 and 42 and 

benzoxaphospholenes with structures 45 and 46. Publications in which 

(benz)oxaphospholenes are formed as an intermediate and were not isolated, are not 

considered within the scope of this review. References dealing with the corresponding 

oxaphospholenic acids are not included either. The focus of this review is on the synthetic 

routes towards these oxaphospholenes and benzoxaphospholenes. 

2. Synthetic routes towards oxaphospholenes and 
benzoxaphospholenes 

2.1. Transesterification reactions at P 

The first type of oxaphospholenes ever mentioned in literature were benzoxaphosphole 

oxides 48, reported exactly fifty years ago (Scheme 7).73-76 These were prepared from salicyl 

alcohol 47, or from the corresponding ether or amine.  

 

Scheme 7: Preparation of benzoxaphospholenes from salicyl alcohols and phosphites. 
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It was proposed that, under these harsh conditions, substitution of the poor leaving group by 

the phosphite took place, followed by cyclization/transesterification at the phosphorus atom of 

benzylphosphonate 50 (Scheme 8). According to the authors, in the case of salicyl alcohol, 

kinetic experiments and spectral data ruled out a mechanism involving the mixed phosphite 53. 

Later however, when the mixed phosphite 53 was prepared by ethanolysis from the cyclic 

chlorophosphite 52, the mixed phosphite 53 was found to contract spontaneously to the 

corresponding benzoxaphosphole oxide 51.77  

 

Scheme 8: Plausible mechanisms for the formation of benzoxaphospholenes from salicyl alcohol and 
P(OEt)3. 

The same authors were also able to couple Stavudine (d4T), a nucleoside derivative used in 

the treatment of HIV/AIDS, to a cyclic chlorophosphite, yielding a benzoxaphosphole oxide 54, 
carrying a nucleoside containing ester moiety at the phosphonate in 10% yield (Figure 7).77 

Later, Wakselman reported on the Arbuzov reaction of trimethyl phosphite with 

2-(bromomethyl)phenol 55, giving the acyclic phosphonate 56. Heating to 190 °C resulted in 

cyclization, yielding the benzoxaphosphole oxide 57 (Scheme 9).78 

 

Figure 7: Stavudine-containing benzoxaphosphole oxide. 

 

Scheme 9: Arbuzov reaction of trimethyl phosphite with 2-(bromomethyl)phenol. 



II. Literature Overview 

15 

Benzoxaphosphole oxides 60 were prepared through addition of an aryllithium reagent to 

aldehyde 58, followed by treatment with PBr3 and triethyl phosphite (Scheme 10).79 

Benzoxaphosphole oxides were next investigated for their reactivity towards oxygen: a low 

reactivity is an essential property of a potential antioxidant. This is usually not the case for 

C-centered radicals, although lactone HP-136 61 (Figure 8) has been patented and 

commercialized as an antioxidant.80, 81 Because of the structural resemblance, a similar kind 

of behavior was expected for benzoxaphosphole oxide 60. Transient absorption spectroscopy 

experiments, following excitation of the synthesized compounds in the presence of di-tert-butyl 

peroxide, did indeed show a low reactivity towards oxygen. In follow-up experiments, it was 

demonstrated that acyclic benzylphosphonates were not reactive towards hydrogen 

abstraction.82  

 

Scheme 10: Preparation of sterically hindered benzoxaphosphole oxides. 

 

Figure 8: Structure of lactone HP-136. 

During the 90’s, Gross prepared the phenolic bisphosphonate 65 from protected 

salicylaldehyde 62 and diethyl phosphite (Scheme 11).83 After reaction with thionyl bromide, 

an Arbuzov reaction and deprotection of the benzyl protective group, the phenolic 

bisphosphonate 65 was obtained. Upon heating, transesterification occurred to give the 

phosphonylated benzoxaphospholene 66 in good yield.  
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Scheme 11: Preparation of phosphono-substituted benzoxaphosphole oxides. 

Amongst the first oxaphospholenes to be reported were compounds 68 and 69, resulting from 

the hydrolysis of lactone 67 and subsequent transesterification at the phosphorus atom 

(Scheme 12).84 Two diastereomers, epimers at the phosphorus atom, were obtained through 

a probable epoxide intermediate 71, which allowed the Z/E interconversion of the alkene 

moiety. Butenolides 67 were obtained from biacetyl and trimethyl phosphite in a first step, 

followed by reaction with carbon suboxide (C3O2). 

 

Scheme 12: Synthesis of oxaphospholenes out of lactones. 

At the end of the seventies, Saito found that 1,2-oxaphosphole-3-ene-2-oxide 78 was 

spontaneously formed out of hydroxyphosphonate 77, during column chromatography or upon 

three days of standing at room temperature (Scheme 13).85 Hydroxyphosphonate 77 was 
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prepared through partial hydrogenation of alkynylphosphonate 75, which was obtained after 

Grignard addition of the terminal alkyne 73 to dibutyl chlorophosphate followed by THP 

deprotection. 1,2-Oxaphosphole-3-ene-2-oxide 78 spontaneously hydrolyzed to the 

corresponding phosphonic monoacid 79 upon two days of standing under air at room 

temperature. When stored under nitrogen however, no such conversion took place. 

Alternatively, oxaphospholene 78 could also be obtained by partial hydrogenation of 74, 

followed by THP deprotection and simultaneous cyclization with pTsOH. 

 

Scheme 13: Synthesis of oxaphospholene out of protected propagyl alcohols. 

Sturtz showed in 1987 that diol phosphonates, prepared through dihydroxylation of 

alkenylphosphonates 80, could perform an intramolecular cyclization (Scheme 14).86 

 

Scheme 14: Dihydroxylation of allylphosphonates producing unsubstituted oxaphospholenes. 

When studying the hydrotelluration of internal alkynes, Lee found in 2000 that the produced 

telluroalkenylphosphonate 82 yielded an oxaphospholene in low yield upon treatment with 

MeMgBr and benzaldehyde (Scheme 15).87 After transmetallation of the 

telluroalkenylphosphonate 82, the intermediate allylic alcohol 83 could not be isolated and 

spontaneously cyclized to the oxaphospholene 84.  
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Scheme 15: Preparation of disubstituted oxaphospholenes from telluroalkenylphosphonates. 

This was the incentive to investigate the synthesis of oxaphospholenes 89 with an electron 

withdrawing group in the 3-position, which could be of interest as precursors for 

1,2-oxaphospholane-2-oxides 90 (Scheme 16). To that end, an acyl group was installed in 

allylic phosphonates 85, which were subsequently treated with m-CPBA.67 The expected 

epoxide 87 could not be isolated and instead the oxaphospholene 89 was obtained, in a low 

25% yield. However, this product was only recovered if MgSO4 was used during work-up. The 

authors reasoned that the formed epoxide 87 was not stable enough to be isolated, but was 

stabilized through coordination by Mg2+ in the form of the allylic alcohol 88, which then rapidly 

cyclized at the phosphorus atom. Next, a series of substituted oxaphospholenes 89 were 

prepared in good yields, without a very pronounced diastereoselectivity. The isolated 

oxaphospholene diastereomers 89 finally underwent entirely stereoselective 1,4-addition with 

cuprates to yield 1,2-oxaphospholane-2-oxides 90, which are of interest as carboyhydrate 

mimics. 

 

Scheme 16: Synthesis of 1,2-oxaphospholane-2-oxides via epoxidation of allylphosphonates. 
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2.2. Addition of phosphorus nucleophiles to carbonyl 
compounds 

Activated alkenes have provided an entry to oxaphospholenes since the end of the 60s. In 

1967, Arbuzov reported on the Michael addition of diethyl phosphite to acetyl alkenoate 91, 

which after cyclization yielded a 3H-1,2-oxaphosphole 2-oxide 92 for the first time (Scheme 

17, method A).88 The isolated yield was not reported, but later on, this product was also isolated 

as the result of a competing cyclization reaction in the acetylation of 

hydroxyallylphosphonates.89 Later, 3-ethylidene acetylacetone 93 was found to react with 

dimethyl phosphorisocyanatidite 94 to give product 92 again (Scheme 17, method B).90, 91 

3-Ethylidene acetylacetone 93 also gave rise to oxaphospholenes after reaction of its enolate 

with diethyl chlorophosphite, followed by a cyclization step (Scheme 17, method C).92 In this 

way, oxaphospholenes with a fluorine-containing ester chain could be prepared as well when 

fluorinated dialkyl phosphite was used.93 

 

Scheme 17: Preparation of oxaphospholenes from acetyl alkenoates or acetyl enones. 

Simple enones94 95 or acryloyl chlorides95 98 were shown to produce respectively methyl 

substituted or chlorinated oxaphospholenes 97 or 99 when treated with dialkyl halophosphites 

(Scheme 18). In almost the same way, thiocarbonyl compounds gave rise to oxaphospholenes 

in a reaction with trimethylsilyl dimethyl phosphite.96  

 

Scheme 18: Synthesis of oxaphospholenes via reaction of unsaturated carbonyl compounds with halo 
dialkylphosphites. 
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Addition of phosphonite 100 to diethyl mesoxolate 101 yields dicarboxyl-substituted 

oxaphospholenes 10297 as does the addition of H-phosphinates 104 to -ketoesters 10398 

(Scheme 19). Using dioxaphosphorinone 107 as a nucleophile allowed the synthesis of a 

3,5-disubstituted oxaphospholene 108 (Scheme 19).99 

 

Scheme 19: Preparation of oxaphospholenes through addition of alkynyl phosphites or phosphonites to 
carbonyl compounds. 

1,2-Addition of dialkyl phosphites to 2,6-dibenzylidene cyclohexanone 109 afforded the 

disubstituted hexahydrobenzoxaphosphole oxides 110 in good yields upon refluxing in toluene 

(Scheme 20).100  

 

Scheme 20: Addition of dialkyl phosphites to dibenzylidene cyclohexanone. 

Quite recently, an example of an oxaphospholene carrying a 4-pyrazolyl substituent was 

reported, resulting from the 1,4-addition of diethyl phosphite to enone 111 (Scheme 21).101  
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Scheme 21: Preparation of an oxaphospholene bearing a 4-pyrazolyl substituent. 

As part of a screening on antioxidant activity of S- and N-containing spirocycles, one tetracyclic 

structure 118 containing an oxaphospholene moiety was obtained in a three-step sequence 

(Scheme 22).102 Spirocyclic tricycle 116, which was obtained by condensation of indoline-2,3-

dione 113 with p-fluoro aniline 114 and 2-mercaptoacetic acid 115, was transformed into 

enone 117 via a Knoevenagel-type condensation. Treatment of 117 with diethyl phosphite and 

BF3·OEt2 eventually gave tetracycle 118 after 1,4-addition and subsequent 

transesterification/cyclization at the phosphorus center.  

 

Scheme 22: Preparation of tetracyclic oxaphospholenes. 

Only one example of an oxaphospholene substituted with long alkyl chains, is described. 

Fürmeier reported the addition of trimethyl phosphite to allenylketone halides under reflux 

conditions in toluene (Scheme 23).103 In the case of a chlorine substituent in the 4-position with 

respect to the ketone, addition of the phosphite to the central allene carbon atom results in the 

formation of a vinylogous enolate 121 according to the proposed mechanism. After elimination 

of the chloride, it dealkylates one of the methoxy groups, producing a phosphonylated enone. 

The corresponding enol 123 finally transesterifies at the phosphorus atom, yielding the 
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oxaphospholene 120. Alternatively, an SN2’ reaction can also account for the formation of 

intermediate 122. 

 

Scheme 23: Halo allenylketones as precursors for the synthesis of oxaphospholenes. 

2.3. Through cyclization of allenylphosphonates promoted by 
electrophiles 

When the cyclization of allenic carboxylic acid esters to halogenated lactones by addition of 

bromine was discovered in the mid-seventies,104, 105 it was demonstrated soon after that 

oxaphospholenes could be synthesized from the corresponding allenylphosphonates.106 

Thanks to the discovery by Mark and Boisselle in 1962 of the [2,3]-sigmatropic rearrangement 

which occurs after treatment of propargylic alcohols 124 with diethyl chlorophosphites,107, 108 a 

very convenient synthesis of allenylphosphonate precursors 125 was available. Indeed, 

allenylphosphonates cyclized just as easily as allenic carboxylic acid esters upon addition of 

electrophiles such as chlorine,109 sulfurylchloride,110-112 bromine,113, 114 iodine,115 iodine 

monohalogenides116 or KICl2117, 118 (Scheme 24). The distal, more electron-rich, double bond 

first forms a halonium intermediate, which is then attacked intramolecularly by the phosphoryl 

group. Dealkylation of one of the alkoxy groups by the corresponding halide yields the 

oxaphospholenes 126.113 When unsubstituted 1,2-propadienylphosphonates were treated with 

bromine, electrophilic addition of the dihalogen took place instead of cyclization, probably 

because of the lack of stabilization of the halonium intermediate. Under the same conditions, 

3-monosubstituted allenylphosphonates predominantly gave the oxaphospholene cyclization 

products.113 Vinyl, allyl, benzyl and propargyl substituents were well tolerated in this 

electrophilic addition/cyclization step,114, 119, 120 while allenylphosphonates carrying a cyclohexyl 

group produced spirocyclic oxaphospholenes.121 Soon, this two-step strategy became the 

method of choice to prepare oxaphospholenes 126.122-125 Later, when other synthetic entries 

to allenylphosphonates were found, the cyclization reaction of these allenylphosphonates with 
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dihalogens remained an attractive strategy to afford oxaphospholenes.126 Oxaphospholenes 

with a 3-phenylthio-,114 3-phenylseleno,114 3-hydroxymethyl,127 3-fluoromethyl,128 or an extra 

3-halo-substituent129 could be synthesized from the appropriately functionalized 

allenylphosphonates.  

 

Scheme 24: Traditional strategy for the synthesis of oxaphospholenes through preparation of 
allenylphosphonates and cyclization with an electrophile. 

In a competition experiment, 2-phosphoryl-2,3-alkadienoate 127a was treated with bromine 

and a mixture of two cyclization products was obtained (Scheme 25). Both the 

oxaphospholene 128, which was formed as the major product, and the lactone 129 were 

isolated.130 Competitive reactions also occurred when the phosphonyl group is in -position 

with respect to the carboxyl function.131 Treatment of 1-phosphoryl-1-sulfinate-2,3-

butadiene 127b similarly yielded a mixture of two heterocycles, which could each be isolated 

separately.132 

 

Scheme 25: Competition experiment of substituted allenylphosphonates yielding oxaphospholenes, 
lactones and 5H-1,2-oxathiole 2-oxides. 

Alternatively, phosphono pentadienes can serve as precursors for the electrophile-induced 

synthesis of oxaphospholenes as well. The terminal alkene in the 2-phosphonopentadiene 132 

is activated by the electrophile, which is followed by ring closure through intramolecular attack 

of the phosphoryl group onto the internal double bond (Scheme 26).133, 134 
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Scheme 26: Phosphono pentadienes as precursors for the preparation of oxaphospholenes. 

Not only halogen sources could initiate cyclization of allenylphosphonates 125. Sulfenyl-,135-139 

selenyl-110, 140-145 or tellurylhalides146, 147 efficiently gave rise to 4-chalcogeno 

oxaphospholenes 134 (Scheme 27). In reaction with sulfenylhalides, 1,3,3-trisubstituted and 

1,3-disubstituted allenylphosphonates exclusively yielded the oxaphospholene cyclization 

products 134,138, 139 while 3,3-disubstitued allenylphosphonates also gave small amounts of 

1,2-adducts 135 of the sulfenylchloride in some cases.136, 137, 139, 142, 143 Unsubstituted 

allenylphosphonates did not produce oxaphospholenic cyclization products and only yielded 

1,2-adducts 135 or 2,3-adducts 136.138, 148-152 3-Monosubstituted allenylphosphonates gave 

mixtures of oxaphospholenes and 1,2- and 2,3-adducts 135 and 136.148-150 1-Vinylsubstituted 

and 3-vinylsubstituted allenylphosphonates gave mixtures of phosphonylated thiophenes 137 

and 4-thio oxaphospholenes 134.135, 153 With sulfur dichloride the produced oxaphospholenyl 

sulfenylchlorides could further be transformed into the corresponding thioethers when reacting 

these with alkenes.154, 155  

 

Scheme 27: Variety of electrophiles capable of inducing cyclization to oxaphospholenes. 

From a mechanistic point of view, a thiiranium intermediate 138 is first formed in these 

cyclization reactions, through the reaction of the sulfenylchloride with the distal double bond of 

allenylphosphonate 125 (Scheme 28). Intramolecular attack of the phosphoryl group yields a 

phosphonium intermediate 139, which usually undergoes dealkylation swiftly. When 

bis(methylthio)sulfonium hexachloroantimonate (MDTSAN) was used as the electrophile, the 

phosphonium intermediate could be isolated and converted to the oxaphospholene upon 

heating.156  
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Scheme 28: Mechanism of the sulfenylchloride-promoted cyclization of allenylphosphonates. 

Selenylhalides, in contrast to sulfenylchlorides, selectively yielded oxaphospholenes in some 

cases,140-145 but the formation of 1,2- and 2,3-adducts could not always be avoided in non-

extensively substituted allenylphosphonates.157, 158 Phosphonylated selenophenes and 

selenium-containing bicyclic oxaphospholenes were formed as well.153, 159 Alternatively, 

phenylselenylamides could also be used as electrophiles when activated with sulfur trioxide 

pyridine complex.160 Alternatively, oxaphospholenes with a thiophosphate substituent installed 

in the 4-position were prepared through reaction of allenylphosphonates with the phosphorus 

containing pseudohalogens of structure (RO)2(O)PSCl.161 Not only allenylphosphonates, but 

also 1,3-pentadienylphosphonates could lead to oxaphospholenes when reacted with 

phenylsulfenylchloride.162 

In 1980 Mikhailova reported on the acid-promoted cyclization of allenylphosphonates to 

produce oxaphospholenes withouth a substituent in the 4-position (Scheme 29).163 

Oxaphospholenes 141 were obtained selectively when the allenylphosphonate 125 contained 

a tertiary -carbon and when the reaction was run in a polar solvent.  

 

Scheme 29: HCl-promoted cyclization of allenylphosphonates. 

In 1985 Trifonov found that allenylphosphonate 142 could be transformed into aminomethyl 

oxaphospholenes 144-145 through electrophilic addition of imine 143, activated by BF3·OEt2 

(Scheme 30).164 
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Scheme 30: Transformation of allenylphosphonates into oxaphospholenes carrying an aminomethyl 
substituent. 

In the search for new antiviral compounds, the preparation of nucleoside analogues carrying 

an oxaphospholene moiety 148 was envisioned, as the authors reasoned that the heterocyclic 

moiety may mimic the ribose unit of natural nucleosides.165, 166 Hence, 

4-chloroallenylphosphonates 146 were prepared and reacted with adenine in the presence of 

a base, to yield the alkylated adenine derivatives 147. These were subsequently cyclized with 

chlorine or bromine and eventually deprotected to give the oxaphospholenic acids 149 

(Scheme 31). 

 

Scheme 31: Preparation of an oxaphospholene with an adenine substituent. 

In 2009, the group of Ma published their findings on the halolactonization of monoesters of 

allenyl phosphonic acids with copper halides (Scheme 32).167 Reaction of the phosphonic acid 

monoesters 150, which were prepared by partial hydrolysis of the corresponding dialkyl 

phosphonates, smoothly yielded the 4-halo oxaphospholenes 151 upon addition of 

copper (II) chloride or copper (II) bromide. Not only are the copper salts easier to handle than 

the corresponding halogens, they also leave allylic substituents on the allenyl phosphonic acid 

unchanged. Fully substituted allenes all reacted in good yields, but in the case of R3 = H, the 

yield decreased considerably. When 1-monosubstituted and 3,3-disubstituted substrates were 

evaluated, no reaction occurred at all. 



II. Literature Overview 

27 

 

Scheme 32: Halolactonization of monoesters of allenylphosphonates. 

The obtained 4-halo oxaphospholenes could further be derivatized by means of a Suzuki 

coupling with organo boronic acids (Scheme 32).167 PdCl2(SPhos)2 proved to be the catalyst 

of choice, as other Pd catalysts produced the cross coupling products 152-153 only in low 

yields or not at all. Under optimized conditions, a set of 4-halo oxaphospholenes were coupled 

in moderate to near-quantitative yields. 4-Chloro oxaphospholenes reacted slower and 

required a larger excess of phenylboronic acid than their bromo counterparts to obtain the 

products in the same yields. Finally, both aryl boronic acids carrying EDGs and EWGs were 

successfully coupled, although a larger excess and longer reaction times were required and 

lower yields were obtained for electron poor aryl boronic acids. Alkenyl and alkyl boronic acids 

were also well tolerated. 

Two years later, Ma’s group reported on the same halocyclization reaction using dialkyl 

phosphonate ester substrates 154 instead of mono alkyl phosphonate esters 150, hence 

eliminating the need for an additional deprotection step in alkaline aqueous medium (Scheme 

33).168 Moreover, addition of 2.2 equivalents copperhalide - instead of 4 equivalents - was 

allowed and although the transformation worked well in a variety of solvents, the highest yields 

and fastest reaction were obtained in EtOH. Alkyl, allyl and phenyl substituents were all 

tolerated, producing the oxaphospholenes 151 in good to excellent yields. Next, reaction 

conditions were optimized as well for the CuCl2-mediated transformation. Again, a variety of 

solvents does the job, but running the reaction in toluene produced the highest yields. The 

substrate scope and yields were more or less the same as for the CuBr2-catalyzed reaction. 

One should note that for both catalytic systems, the less reactive 3,3-disubstituted, 
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1-monosubstituted or unsubstituted allenylphosphonates were not considered in the substrate 

scope. The CuCl2-mediated synthesis on the other hand, offers a good alternative access to 

4-chloro oxaphospholenes 151, as the reagent is significantly more easy to handle than 

chlorine. 

 

Scheme 33: CuBr2-mediated cyclization of allenylphosphonates. 

One example of a disubstituted allene 155 was synthesized and evaluated to check if chirality 

could be successfully transferred in the halolactonization reaction. With a larger excess of 

CuCl2 and a slightly longer reaction time, two diastereomers were obtained in excellent yield 

with a 50/50 diastereomeric ratio, efficiently transferring the axial chirality of the allene to 

central chirality in the oxaphospholenes 156-157 (Scheme 34). The second stereogenic center 

is created at the phosphorus atom at the moment dealkylation occurs. The obtained 

oxaphospholenes 156-157 could again be further derivatized by means of Suzuki cross-

coupling reactions. 

 

Scheme 34: CuCl2-mediated cyclization of allenylphosphonates. 

Very recently, the group of Virieux reported on the double cyclization of 

bisallenylphosphonates 161 (Scheme 35).169 These were prepared through a Glaser-Hay 

coupling reaction of the corresponding alkynes 158 and 159, followed by a [2,3]-sigmatropic 

rearrangement of the resulting (un)symmetrical dialkynes 160 with diethyl chlorophosphite. All 

derivatives reacted in good to excellent yields in this two-step sequence, except for the 

cyclopropyl-substituted propargyl alcohol. Although it was successfully engaged in the 

Glaser-Hay coupling reaction, the cyclopropyl group probably ring-opened during the 

sigmatropic rearrangement step and a complex mixture was obtained. The conjugated 
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bisallenes 161 could be finally cyclized upon addition of I2 to give two different products. 

Although more than one cyclization mode is possible, pathways b and c could be ruled out as 

deprotection of the ethyl phosphonic ester functions resulted in the detection of only one 

product. Before deprotection, the two singlets observed by 31P NMR spectroscopy indeed 

resulted from meso and C2-symmetric bisoxaphospholenes 163 and 164. When the 

phosphonic acid 165 is obtained, the phosphorus atom is no longer a stereogenic center and 

thus one achiral product is detected by 31P NMR spectroscopy. Moreover, the 

bisoxaphospholenic core was also confirmed by X-ray analysis.  

 

Scheme 35: Synthesis of bisoxaphospholenes from bisallenylphosphonates. 
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CuBr2 also promoted cyclization and, depending on the substrate, some dibromo-

bisoxaphospholenes 163-164 were obtained with high diastereoselectivities and in moderate 

to good yields. The dibenzosuberenyl-substituted derivative did not produce the corresponding 

bisoxaphospholene, as probably electrophilic addition preferentially took place at the double 

bond of the benzosuberenyl group. 

2.4. Through Ring-Closing Metathesis 

With the breakthrough reports of Grubbs on RCM (ring-closing metathesis) in 1992, the 

potential of this method to synthesize all kinds of cycles was soon being explored.170-172 A 

couple of years later, reports on the synthesis of oxaphospholenes through RCM were 

appearing.173, 174 Symmetrical phosphonates were cyclized with the first generation Grubbs 

catalyst, although in low yields, with high catalyst loadings, reflux conditions and long reaction 

times (Scheme 36, method A).173, 175 Moreover, the catalyst proved to be not very selective, 

resulting in the formation of mixtures of 5- and 7-membered cycles. In 2000, Timmer 

demonstrated the superiority of the second generation Grubbs catalyst, synthesizing 

oxaphospholenes 171 out of symmetrical or unsymmetrical vinyl phosphonates 170.175 These 

were easily, and often in excellent yields, accessible from bis(isopropyl)phosphine 166, which 

was treated successively with two different alcohols or with an excess of one alcohol, to yield 

unsymmetrical or symmetrical phosphonites 168. Oxidation with t-BuOOH afforded the desired 

vinyl phosphonates 169, which were subjected to RCM. Yields were increased from 25-65% 

to 92-100%, while reaction times were decreased from several days to 30 minutes, with a 

catalyst loading as low as 1% (Scheme 36, method B). Moreover, no seven-membered cycles 

were produced. 

 

Scheme 36: RCM of vinylphosphonates producing oxaphospholenes. 
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Timmer next expanded the scope of this method to construct bicylic oxaphospholene 

structures 173a-b through ene-yne metathesis.176 In the case of the symmetrical diallyl 

phosphonate 172a, the monocycle 174a was exclusively obtained (Scheme 37). Bicyclic 

oxaphospholenes 173b were only obtained if the five-membered ring was fused to a 

seven-membered ring and if the catalyst loading was increased to 5 mol%. Monocyclic six-

membered rings or bicyclic [4.4.0] ring products were not detected. 

 

Scheme 37: RCM of alkynylphosphonates producing monocyclic and bicyclic oxaphospholenes. 

2.5. Transition metal-catalyzed cyclization reactions 

2.5.1. Palladium-catalyzed coupling-cyclizations 

In 2007 Ma reported on the first Pd-catalyzed synthesis of oxaphospholenes.177 Monoesters 

of allenyl phosphonic acids 150 were found to react with allylic halides in the presence of 

5 mol% PdCl2(PhCN)2 and in the absence of a base to yield 4-allyl oxaphospholenes 176 in 

moderate to good yields (Scheme 38). Addition of a base seemed to be counterproductive, 

lowering the product yield or causing O-allylation to occur. Different alkyl substituents were 

tolerated as R1 and even a bulky t-Bu group only lowered the yield to some extent. When there 

was no substituent in the alpha position (R1 = H), the yield dropped more significantly. 

Substituents at the gamma position were well tolerated as well. Substituents at the allylic 

coupling partner were well tolerated as well since 3-chlorobut-1-ene and 2-methylallyl chloride 

were efficiently used in this coupling-cyclization reaction. The reaction time for the less reactive 

chloride coupling partners did increase however. 

 

Scheme 38: Coupling-cyclization of allenylphosphonates with allyl bromide. 
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Treatment of three derivatives 177, each carrying two allyl groups, with 5 mol% of Grubbs 

second generation catalyst swiftly yielded the corresponding tetrahydrobenzoxaphosphole 

oxides 178 through RCM (Scheme 39).177 These could be efficiently transformed into 

dihydrobenzoxaphosphole oxides 179 through DDQ-mediated oxidation.  

 

Scheme 39: Transformation of allyl-disubstituted oxaphospholenes into benzoxaphospholenes through 
RCM and oxidation. 

The same authors next investigated whether it was possible to use alkenes instead of allyl 

halides in the cyclization/coupling reactions with the monoester of allenylphosphonic 

acids 150.178 Evaluation of the PdCl2(PhCN)2 catalytic system with acrylonitrile as the coupling 

partner, CuCl2 as an oxidant and K2CO3 as the base, afforded one single isomer of the desired 

product 181, albeit in low yield, alongside some 4-chloro oxaphospholene 182 (Scheme 40). 

During optimization experiments, CuCl2 turned out not to be the best oxidant and reaction 

conditions were set as follows: a catalytic amount of NaI in air as the oxidant, no K2CO3 and 5 

mol% CaH2; yielding the desired alkenyl-substituted oxaphospholene 181 regio- and 

stereoselectively and in very good yields. A study of the scope of the reaction revealed that 

acrylates were excellent coupling partners. Less reactive alkenes, such as styrene, acrylamide 

and methyl methacrylate, proved to be more challenging substrates and the yields decreased 

significantly for those substrates. Using a stoichiometric amount of benzoquinone as the 

oxidant instead of NaI, yielded these derivatives in good yields nonetheless. On the other hand, 

different alkyl substituents on the allene were well tolerated, but yields dropped significantly 

when the allene was unsubstituted at one or multiple positions.  
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Scheme 40: Cyclization-coupling reaction of allenylphosphonate monoesters with alkenes. 

In 2013, Lee’s group found that benzylphosphonic acid monoethyl esters 183 (R2 = R3 = Me) 

could undergo C-H activation (Scheme 41).179-181 Optimization of reaction conditions showed 

that benzoxaphospholenes 184 were produced in the presence of Pd(OAc)2, NaOAc and 

PhI(OAc)2. A substrate scope study revealed that an ortho substituent was tolerated, which 

was not the case for the C-H activation of the related phenyl acetic acid.182 In the case of a 

meta substituent, the cyclization unsurprisingly took place at the less hindered ortho position. 

Benzylphosphonates with different EDGs or EWGs all reacted well under the optimized 

conditions. The Thorpe-Ingold effect was illustrated as well, as unsubstituted or mono methyl 

substituted derivatives at the benzylic position did not react. Increasing the steric bulk to two 

propyl groups at the benzylic position, afforded the benzoxaphospholenes in almost 

quantitative yield on the other hand. 

 

Scheme 41: C-H activation of benzylphosphonic acid monoethyl esters producing benzoxaphospholenes. 

Very recently, Zhao’s group found that phosphonylated propargyl alcohols 186 afforded 4-aryl 

oxaphospholenes 187 by means of a palladium-catalyzed domino addition, followed by a 

cyclization step (Scheme 42).183 The alkyne 186 first undergoes hydropalladation, after which 

a transmetallation and reductive elimination step yields a -hydroxy alkenylphosphonate. This 

intermediate ultimately transesterifies to form the phosphonate. Under optimized conditions a 

multitude of arylboronic acids 185 was efficiently coupled in high to quantitative yields, 

tolerating various electron donating substituents on the aryl boronic acid 185. Although aryl 

boronic acids containing reactive functionalities such as a carbonyl or hydroxyl group afforded 
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the desired products in lower yields, they did not require protecting groups. That steric 

hindrance had an impact on the cyclization step was demonstrated by varying the size of the 

alkoxy group of the phosphonate: diisopropyl esters of the phosphonate reacted in a lower 

47% yield, while the dimethyl esters produced the reaction products in near-quantitative yields. 

Crowding the propargylic position with extra methyl groups, required an increase of the 

temperature and reaction time, but still afforded the products in excellent yields. 

 

Scheme 42: Palladium-catalyzed domino addition of propargyl alcohols with boronic acid,  
followed by cyclization. 

In 2015, Lee’s group published another report on Pd-catalyzed C-H activation/C-O bond 

formation of phosphonate monoesters 188 (Scheme 43).184 The important feature of this 

method is that unactivated alkenes could be engaged as substrates. Mixtures of 

phosphaisocoumarins 190 and benzoxaphospholenes 191 were initially obtained. By careful 

tuning of the reaction conditions, it was possible to shift the ratio of formed products in favor of 

the phosphaisocoumarins 190. Although the reaction was selective for most substrates, some 

benzoxaphospholenes 191 were still isolated in low yields (7-17%). 

 

Scheme 43: C-H activation of phosphonate monoesters with unactivated alkenes producing of 
phosphaisocoumarins and benzoxaphospholenes. 

2.5.2. Rhodium-catalyzed cyclization 

In 2013, the group of Lee reported on the C-H activation of o-tolylphosphonic acid monoethyl 

esters 192 (Scheme 44).185 They found that when these compounds reacted with electron 

deficient alkenes in the presence of a Rh-catalyst, an oxidant (AgOAc) and a base, producing 
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two products in an almost equimolar ratio: alkenyl product 193 and benzoxaphosphole 194. It 

is clear that benzoxaphosphole 194 results from intramolecular oxa-Michael addition of 193. 

Base and solvent screening led to optimized conditions in which only the desired 

benzoxaphospholene 194 was produced in 85% isolated yield. Substrate scope determination 

revealed that a variety of electron-deficient alkenes readily reacted to give the 

benzoxaphospholenes 194 in high yields. Alkenes lacking an EWG however (styrene, 

4-phenyl-1-butene, cyclohexene, vinyltriethoxysilane, vinyltrimethylsilane) did not engage in 

this reaction. Other substituents in ortho position of the phosphonate - such as halogens, 

alkoxy and phenyl groups - were well tolerated, as well as additional substituents on the 

aromatic ring. Adding a methyl substituent on the 5-position lowered the yield of the 

benzoxaphospholene considerably though, as it is probably generating too much steric 

hindrance for the C-H activation to occur efficiently.  

 

Scheme 44: Rh-catalyzed C-H activation of o-tolylphosphonic acid monoethyl esters producing 
benzoxaphospholenes. 

When phenylphosphonic acid monoethyl ester 195 was selected as a substrate for this 

reaction, dialkenylation of both ortho-positions occurred (Scheme 45). One of the two 

subsequently underwent an oxa-Michael addition, affording 3-alkenylated-7-alkylated 

benzoxaphospholenes 196. Again, a variety of electron withdrawing or electron donating 

substituents in para-position was tolerated. Meta-substituted (R1 = Me, Br) phenyl phosphonic 

acid monoethyl esters produced monoalkenylated benzoxaphospholenes, which did not 

undergo an oxa-Michael addition, seemingly illustrating that a subtle balance between the 

electronic and steric properties of the substituents on the aromatic ring is required for the 

tandem reaction. 
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Scheme 45: Rh-catalyzed dialkenylation of phenylphosphonic acid monoethyl ester. 

2.5.3. Au-catalyzed hydroarylation 

Just a couple of months later, Lee’s group reported on the hydroarylation of 

aryl alkynylphosphonates 197 (Scheme 46).186 Phosphacoumarins 199 were consistently 

produced in moderate to excellent yields via a 6-endo-dig cyclization. However, in the case of 

certain disubstituted aryl derivatives, a 5-exo-dig cyclization mode became the dominant or 

even exclusive pathway to yield benzoxaphospholenes 198 in decent yields. 

 

Scheme 46: Au-catalyzed hydroarylation of aryl alkynylphosphonates yielding benzoxaphospholenes and 
phosphacoumarins. 

2.6. Horner-Wadsworth-Emmons-type reactions 

In their quest for new pyridazine derivatives, Shaddy’s group explored additions of stabilized 

phosphonate carbanions to a densely functionalized pyridazine 200.187 Treatment of 

pyridazine 200 with a small excess of methylthio methylphosphonate 201, afforded the dihydro 

oxaphospholo pyridazine-2-oxide 202 under microwave irradiation in good yield (Scheme 47). 

In an antibacterial (versus B. tumefaciens, S. aureus and K. pneumonia) and antifungal (versus 

A. niger, A. flavus) screening, compound 202 was found to be 1.1 to 1.6 times as active as the 

standards Streptomycin and Mycostatin. 
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Scheme 47: Synthesis of dihydro oxaphospholo pyridazine-2-oxide 202 through addition of methylthio 
methylphosphonate to a pyridazinone. 

When alkylphosphonochloridates 203 are reacted with -hydroxyesters, phosphonates 204 

are obtained in decent yields (Scheme 48).188 After deprotonation, ring closure leads to 

4-hydroxy oxaphospholenes 205 in poor yields. 

 

Scheme 48: Reaction of alkylphosphonochloridates with -hydroxyesters. 

Quite recently, the Postel group synthesized a variety of saccharidic spirocyclic 4-amino 

oxaphospholenes 210 (Scheme 49).189 These compounds were prepared as precursors for 

P-TSAO-T 207, a family of spirocyclic, phosphorus-containing nucleoside analogues of 

TSAO-T 206 (Figure 9). TSAO-T and earlier described derivatives display significant activities 

against Reverse Transcriptase Human Immunodeficiency Virus type-1 (RT-HIV-1) and 

Hepatitis C Virus (HCV).190-192 As they only differ in the heteroatom in the unsaturated ring, 

phosphorus instead of sulfur, these derivatives were of interest as new potential lead 

compounds. The difference in polarity of the P=O bond, because of the lower electronegativity 

of phosphorus, in comparison to the S=O bond, might induce important changes in the 

formation of hydrogen bonds in the binding pockets.  
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Figure 9: Structures of TSAO-T and P-TSAO-T (RT-HIV-1 and HCV inhibitors). 

The key step in this synthesis consisted of the generation of a stabilized carbanion that would 

create the second ring upon attack of the nitrile function. A screening of reaction conditions 

revealed that an extra EWG, next to the phosphonate, was required to prevent degradation. 

Thus, ribo-cyanohydrin 209 was prepared from ketose 208, an oxidized derivative of D-xylose, 

under Strecker conditions (Scheme 49). A one-pot two-step reaction with NaH and 

phosphonochloridates 210 afforded the desired spirocyclic oxaphospholenes 211 in moderate 

yields. The 3-phenyl substituted oxaphospholene could not be prepared in a one-pot sequence 

and required treatment of the phosphonate intermediate 212 with LDA to afford the 

corresponding spirocyclic oxaphospholene. 

Scheme 49: Synthesis of P-TSAO-T precursors. 

2.7. Other methods 

In 1990, Abramovitch reported on the thermolysis of azirinylmethylphosphonates 217 (Scheme 

50).193 These were prepared through addition of tetramethylguanidinium azide 214 to 

allenylphosphonates 213 and trapping of the resulting azido vinylphosphonates 215 with 

triphenylphosphine. The obtained phosphinimines 216 could be transformed into the 

corresponding azirinylmethylphosphonates 217 through photolysis in excellent yields. 
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Finally, the 4-amino oxaphospholenes 218 were obtained in moderate yields by heating in 

toluene with catalytic amounts of PdCl2(PhCN)2.  

 

Scheme 50: Thermolysis of azirinylmethylphosphonates yielding oxaphospholenes. 

A simple one-step synthesis of oxaphospholenes consists of a nucleophilic substitution 

reaction of 1,2-dibromo-3-chloropropane 219 with diethyl phosphite, first yielding a dihaloalkyl 

phosphonate intermediate 220. Intramolecular displacement of the chloride by the 

phosphonate oxygen atom is then followed by dealkylation of the resulting phosphonium 

intermediate and elimination of HBr to yield the oxaphospholene 221 (Scheme 51).194 

 

Scheme 51: Preparation of unsubstituted oxaphospholenes from 1,2-dibromo-3-chloropropane and 
diethyl phosphite. 

In 1981, Miles published a synthesis starting from arylphosphonate 222 (Scheme 52).195 After 

bromination with NBS and intramolecular displacement of the bromide in aryl 

phosphonate 223, dealkylation of the resulting phosphonium intermediate yielded 

benzoxaphospholene 224 upon refluxing in o-dichlorobenzene.  



II. Literature Overview 
 

40 

 

Scheme 52: Synthesis of benzoxaphospholenes through intramolecular reaction of o-phosphonylated 
benzyl bromides. 

Benzoxaphosphole oxides could also be prepared from salicylaldehyde 225a or from 

1-(2-hydroxyphenyl)ethan-1-one 225b in a reaction with ClP(OEt)2 or with PCl3 followed by 

ethanolysis.196, 197 Depending on the substrate, benzoxaphospholene oxides 226 or 227 were 

obtained (Scheme 53).  

 

Scheme 53: Synthesis of benzoxaphospholenes through treatment of salicaldehydes with trivalent 
phosphorus compounds. 

On prolonged heating in xylene, dinaphthyl propadienylphosphonate 228 afforded the tricylic 

structure 229 in poor yield through an intramolecular Diels-Alder reaction (Scheme 54).198 Only 

one diastereomer is formed, presumably the one experiencing the least steric repulsion. 

Diphenyl propadienylphosphonate, nor dinaphthyl 3-methyl-1,2-propadienylphosphonate 

reacted in this intramolecular Diels-Alder reaction.  

 

Scheme 54: Diels-Alder reaction of diaryl allenylphosphonates yielding tricylic benzoxapholenes. 

Quite recently, Terada described a cyclization reaction of alkynyl -ketoanilides 230. Addition 

of dialkyl phosphites to the ketone moiety gives 3,4-dihydro-2-quinolones 232 after a 

1,2-phospha-Brook rearrangement (Scheme 55).199 In the case where the alkyne bears a 

phenyl substituent (R3 = Ph), the vinylic anion attacks the phosphorus atom, eliminating one 

of the ethoxides and thus generating tricyclic structure 233. 
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Scheme 55: Preparation of tricyclic oxaphospholenes from cyclization of alkynyl -ketoanilides. 

The group of Terada looked to extend this tandem [1,2]-phospha-Brook 

rearrangement/cyclization methodology to other derivatives. The addition of diethyl phosphites 

on 2-(2’-alkynylaryl)-benzoates 236 initially produced only limited amounts of the desired 

phenanthrene derivatives 237 until optimized conditions were found (Scheme 56).200 An 

important by-product was tetracyclic oxaphospholene 241, originating from an attack of the 

vinylic anion intermediate 240 on the phosphorus center, eliminating an ethoxide. 

Compound 241 was isolated, but the yield was not reported. This side reaction was 

suppressed by switching to diisopropyl phosphite as the nucleophile and the pathway to 

tetracyclic oxaphospholenes 241 was not further explored.  
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Scheme 56: [1,2]-Phospha-Brook rearrangement-cyclization yielding phenanthrenes and tetracyclic 
oxaphospholenes. 

During their work on phosphonylated carbohydrate derivatives, the group of Suarez reported 

an SN2’ substitution reaction on phospha-1-oxo-pentofuranoses 242 by glycine methyl ester 

producing oxaphospholene 243 (one diastereomer shown) (Scheme 57).201, 202 

 

Scheme 57: SN2’ substitution reaction on phospha-1-oxo-pentofuranoses by glycine methyl ester. 

Attempting to deprotect the PMB protecting group of aminoallenylphosphonates 244 using 

CAN, the group of Rabasso discovered that a rearrangement took place, yielding spirodienone 

lactams 249 in moderate to high yields, with concomitant expulsion of diethyl phosphite 

(Scheme 58).203 
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Scheme 58: Proposed mechanism for the synthesis of spirodienone lactams upon treatment of 
PMB-protected 1-aminoallenylphosphonates with CAN. 

In some cases the spirodienone lactams 249 were produced in reduced yields or not at all. In 

three of those cases, the authors were capable of isolating tricyclic structures 251 (Figure 10). 

In the case of the aminoallenylphosphonate derived from 4-chromanone, which did not 

produce the corresponding spirodiene lactam, spirocyclic oxaphospholene 254 was obtained 

in a high yield of 84%. A plausible mechanism was proposed in which intermediate 246 

underwent intramolecular cyclization instead of the hydrolysis and subsequent diethyl 

phosphite expulsion steps. Oxidation of the resulting phosphonium ion 250 with CAN would 

lead to tricyclic oxaphospholenes 251. The authors reasoned that without the addition of water, 

increased yields should be obtained as competitive formation of the spirodienone lactams 

would not be possible. However, this was true for only one example. Additionally, one substrate 

that did give a good conversion to the spirodienone lactam 249, could also produce the tricyclic 
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oxaphospholene 255 in a fair 30% yield, when the reaction was run in the absence of water. 

Other substrates could not be engaged in this transformation. 

 

Figure 10: Prepared spirocyclic oxaphospholenes through treatment of  
PMB-protected 1-aminoallenylphosphonates with CAN. 

3. Conclusions 

Benzoxaphospholenes and oxaphospholenes have been investigated for half a century now 

with new syntheses appearing frequently. The first synthetic routes were mainly focusing on 

benzoxaphospholenes and were conducted under harsh conditions. With allenylphosphonates 

becoming easily accessible precursors, the possible transformations towards 

oxaphospholenes really boomed. Initially, difficult to handle and toxic reagents such as 

halogens, alkylsulfenyl- and alkylselenylhalides were mainly employed. Later, safer 

alternatives such as copper halides made their entry. Transition-metal catalyzed reactions 

impressively opened up the structural variety of (benz)oxaphospholenes that could be 

prepared: cross coupling reactions afforded vinyl-substituted oxaphospholenes, 

C-H activitation yielded a multitude of substituted benzoxaphospholene derivatives while an 

alternative approach to (benz)oxaphospholenes was realized through RCM. The development 

of P-TSAO-T’s as potentially new antiviral agents illustrates possible applications. With the 

emergence of more sophisticated precursors, such as bisallenylphosphonates or 

PMB-protected 1-aminoallenylphosphonates, the structural complexity of novel 

oxaphospholenes has drastically increased in recent years. New exciting studies on the design 

of novel methodologies for the preparation of oxaphospholenes with even more structural 

variety are definitely to be expected in the future. 
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1. Three-step synthesis of chiral spirocyclic 
oxaphospholenes 

1.1. Introduction 

The importance of chiral BINOL phosphate catalysts in asymmetric transformations may hardly 

be overestimated. Although many chiral catalysts have been prepared and assessed for their 

enantioselective properties, only few have been applied on a broad scope of substrates. 

Together with, amongst others, Salen complexes, bis(oxazoline) ligands and cinchona 

alkaloids, BINOL and the derived BINOL phosphates belong to the class of 'privileged chiral 

inducers'. Since the pioneering reports of the groups of Akiyama and Terada in 2004 on 

asymmetric Mannich-type reactions,204, 205 BINOL phosphoric acid derivatives have been 

deployed in asymmetric versions of numerous and important organic transformations such as 

Friedel-Crafts,206 Pictet-Spengler,207 Strecker,208 reductive amination209 and 

hydrophosphonylation reactions,210 as well as transfer hydrogenations.211, 212 The outstanding 

characteristics of BINOL phosphates to control enantioselectivities originate from the 

phosphorus containing seven-membered ring and the chiral binaphthyl moiety, locking the 

conformation of the Brønsted acid function.213 Inspired by our expertise in oxaphospholene 

chemistry,174, 214 the synthesis of phosphorus containing allenes53, 215 and heterocycles40, 41, 216, 

we envisioned the synthesis of chiral spirocyclic oxaphospholenes 22, which may be of interest 

for the design of new chiral phosphonic acid catalysts. Even though the halocyclization of 

(3-cyclohexyl)allenylphosphonates to spirocyclic oxaphospholenes has been known for a few 

decades,121, 168 this is the first example of the design of such spirocyclic compounds that are 

chiral. The synthesis we envisioned is based on three successive transformations from readily 

available chiral starting materials. Addition of an organometallic acetylide to chiral pool 

ketoterpenes 19217 will be followed by treatment of the resulting propargylic alcohols 20 with 

diethyl chlorophosphite (Scheme 59).107, 108 Subsequently, the obtained chiral 

allenylphosphonates 21 will finally be subjected to a halocyclization to give the desired chiral 

spirocyclic oxaphospholenes 22.168  

 

Scheme 59: Approach to chiral spirocyclic oxaphospholenes. 
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1.2. Synthesis of chiral spirocylic oxaphospholenes 

1.2.1. With a varying alkyne substituent 

a. Synthesis of propargylic alcohol precursors 

The first objective was the synthesis of propargylic alcohols 257 from cheap and commercially 

available chiral pool ketoterpenes 256. (-)-Menthone was selected as a model substrate and 

was reacted with ethynylmagnesium bromide to swiftly yield the corresponding propargylic 

alcohols 256a and 257a. A good diastereoselectivity was obtained and the diastereomers were 

easily separated and isolated in 87% yield (Table 1, entry 1). 

Table 1: Optimized conditions for preparation of propargyl alcohol precursors. 

 

entry R equiv acetylide t (h) dra yield (%)b 

1 H 1.3c 2 80/20 87 
2 Ph 1.8c 16 75/25 79 
3 4-MeC6H4 1.5d 24 73/27 91 
4 2-MeC6H4 1.3d 16 76/24 89 
5 n-Bu 1.5d 3 81/19 95 

a determined by GC-MS b isolated yield of separated diastereomers combined  
c commercially available Grignard reagent was used d lithium acetylide was prepared in situ with 1.6 equiv n-BuLi 

 

A series of (-)-menthone derived propargylic alcohols was consecutively prepared, making use 

of different alkynes. In each reaction, conversions were complete and the diastereoselectivities 

of the acetylide addition were comparable (entries 2-5). The acetylides were prepared in situ 

by deprotonation of the corresponding alkynes with n-BuLi, unless a Grignard reagent was 

commercially available, as in the cases of acetylene and phenylacetylene. 

b. Synthesis of allenylphosphonates 

Allenylphosphonates are traditionally prepared by phosphonylation of progargylic alcohols with 

dialkyl chlorophosphite in diethyl ether, after which the resulting dialkyl propargyl phosphite 

spontaneously rearranges to produce a thermodynamically more stable, pentavalent 

allenylphosphonate.107, 108 Recently, catalytic transformations using non-toxic dialkyl 

phosphites, have been described by the groups of Stawinski, Han and Zhao. While the latter 

two methods either failed to produce or did not report on the transfer of central-to-axis 
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chirality,218, 219 Stawinski conditions allowed a clear transfer of the chirality present in the 

propargylic starting materials.220, 221 However, the catalytic system required the propargylic 

alcohol precursors to be modified to contain a good leaving group. We considered this extra 

derivatization step as a drawback and opted to use dialkyl chlorophosphites for the direct [2,3]-

sigmatropic rearrangement using propargylic alcohols 257a-e, as it displays simultaneous 

center-to-axial chirality transfer owing to a concerted mechanism.168, 221, 222 

In a preliminary experiment, a mixture of diastereomers 257a and 258a (55/45) was treated 

with diethyl chlorophosphite and triethylamine (Table 2, one diastereomer shown). After one 

hour at room temperature, all of the 258a starting material had been consumed (entry 1). Only 

after addition of a second portion of diethyl chlorophosphite and overnight stirring at room 

temperature, phosphonylation of the sterically more demanding propargylic alcohol 257a 

started to take place. Refluxing 257a in diethyl ether with an excess of diethyl chlorophosphite 

gave a complete conversion, but only after 6 days (entry 2). The product was not purified, 

because more optimized reaction conditions were first searched for. Preforming the alkoxide 

by treatment of alcohol 257a with NaH prior to the addition of diethyl chlorophosphite, did not 

enhance the progress of the reaction at room temperature (entry 3).  

Table 2: Optimized conditions for preparation of allenylphosphonate precursors. 

 

entry t (h) T solvent 259a (%)a yield (%)b 
1c 1 

16 
0 °C to rt 

rt 
Et2O 55 

67 
- 
 

2 6 days Et2O 100 - 

3d 5 0 °C to rt Et2O 0 - 
4e 17 

2 
 THF 79 

98 
- 

43 
5f 24  THF 95 75 

a conversion determined by GC-MS b isolated yield c a 55/45 mixture of 257a/258a was used  
d NaH instead of NEt3 e 0.5 equiv ClP(OEt)2 was added after 17 h f 2 equiv ClP(OEt)2 

 

When refluxing propargyl alcohol 257a in THF in the presence of diethyl chlorophosphite and 

triethylamine, 79% conversion to the corresponding allenylphosphonate 259a was achieved 



III. Results and Discussion 
 

50 

after 17 hours. Additionally adding half an equivalent of diethyl chlorophosphite, gave complete 

conversion with complete diastereoselectivity after heating for two more hours (entry 4).  

Although Stawinski reported that racemization of allenylphosphonates may occur upon 

prolonged heating when even weakly nucleophilic chloride species are present in the reaction 

mixture,221 no epimerization was observed in our case. With an excess of diethyl 

chlorophosphite (2 equivalents, added in one portion), the allenylphosphonate 259a was 

isolated in 75% yield (entry 5). Under these optimised conditions, all of the (-)-menthone 

derived propargylic alcohols 257a-e reacted smoothly to give the allenylphosphonates 259a-e 

in yields up to 78% (Figure 11). 

 

Figure 11: Allenylphosphonates based on the (-)-menthone backbone. 

c. Cyclization to oxaphospholene spirocycles 

Ma reported the copper-mediated cyclization of allenylphosphonates, using a twofold excess 

of CuX2, to give halogenated oxaphospholenes.168 Upon addition of 2.2 equivalents of CuBr2, 

starting material 259a was indeed entirely consumed and two epimers at the phosphorus atom 

were formed, along with three unidentified products and a monobrominated product 262a, 

resulting from bromine addition followed by HBr elimination (Scheme 60). Unsurprisingly, 

purification on silicagel was unsuccessful, as oxaphospholenes are known to hydrolyse during 

chromatography.85, 173  

 

 

Scheme 60: CuBr2-mediated synthesis of spirocyclic  
oxaphospholene 261a (conversion and dr determined via 31P NMR). 

Fortunately, when simply heating a solution of allenylphosphonate 259a with one equivalent 

of I2 in chloroform for half an hour, a mixture of only two oxaphospholene epimers 263a was 

obtained (Table 3, entry 1).115, 126, 169, 223, 224 In this transformation, two stereogenic centers were 
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simultaneously created and consequently four enantiopure diastereomers could be formed. 

Interestingly, only two diastereomers were obtained. Most probably, the control of chirality was 

highly efficient at the quaternary carbon, while dealkylation of the phosphonate was 

non-selective. The two stereoisomers are only epimers at the phosphorus atom. Unfortunately, 

the product was not crystalline and consequently, the absolute configuration could not be 

determined via X-ray diffraction. In previous research, however, it has been shown that the 

axial chirality was efficiently transferred to center chirality.169 Thus, the stereochemistry 

depicted in Table 3 is mechanism-based. According to 31P NMR, 8% of side-product 264a was 

detected, probably resulting from Brønsted acid induced cyclization (HI). In order to minimize 

the moisture content in the mixture, different combinations of solvent, temperature, inert 

atmosphere and glassware were screened (entries 1-5). Heating the mixture in cyclohexane 

under nitrogen atmosphere in a dried Schlenk flask were found to be the optimal conditions. 

Attempts were made to influence the diastereomeric ratio by varying the temperature or the 

solvent (entries 1-3, 5, 6). A slightly better diastereomeric ratio was obtained, than those 

observed by Ma's copper-mediated synthesis of non-spirocyclic oxaphospholenes.168 

Table 3: Optimization of spirocyclic oxaphospholene synthesis. 

 

entry t (h) T (°C) solvent 263a (%)a dr (%)a yield (%)b 

1 0.5 110 CHCl3c 87 39/61 - 
2 0.5 100 DCEc 93 39/61 - 
3 0.5 80 DCEc 95 38/62 - 
4 0.5 80 DCEc 92 39/61 - 
5d 0.5 80 cyclohexane 100 40/60 91 
6 3.5 35 n-pentaned 70 38/62 - 
a conversion determined by 31P NMR b combined isolated yield, no purification  

c anhydrous d Ar instead of N2 atmosphere 

 

These optimized conditions were then applied to substrates 259a-e to give a series of chiral 

spirocyclic oxaphospholenes while no purification step was needed (Figure 12). Cyclization 

was not hampered by the increased steric hindrance of a phenyl or p-tolyl substituent (87-94% 

yields). It was observed that an o-tolyl substituent was equally well tolerated and the 

oxaphospholene was isolated in excellent yield (91%). Thanks to rotation of the aromatic ring, 

the o-methyl group could be oriented away from the allene, allowing iodine also in this case to 

be attacked by the distal allenyl double bond. For such compounds, steric hindrance induces 
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slow rotation of the Co-tolyl-Coxaphospholene bond and rotamers were observed in both 1H NMR and 
13C NMR. An n-butyl substituent did not pose any problems either and the 

oxaphospholene 263e was isolated in almost quantitative yield. 

 

Figure 12: Spirocyclic oxaphospholenes based on the (-)-menthone backbone. 

1.2.2. With a varying ketoterpenic backbone 

a. Synthesis of propargylic alcohol precursors 

In a second series of propargylic alcohols, the alkyne part remained unchanged while the 

ketoterpenic moiety was varied. Although commercially available, (+)-menthone was 

quantitatively prepared from the much cheaper (+)-menthol by Dess-Martin oxidation and 

subsequently transformed into the propargylic alcohol 257f with ethynylmagnesium bromide 

(Figure 13, one diastereomer shown). (-)-Fenchone and (+)-camphor reacted sluggishly with 

the Grignard reagent and dimerization was observed when switching to less mild reaction 

conditions. Nevertheless, with the in situ generated lithium trimethylsilyl acetylide, the bicylic 

propargylic alcohols 257g and 257h were obtained in good yields after TMS-deprotection.225 

Moreover, thanks to the increased steric hindrance of the bicyclic backbone, one diastereomer 

was exclusively formed in both cases. 

 

a determined by GC-MS b yield over two steps 

Figure 13: Propargyl alcohol precursors with varying terpenic backbone. 

b. Synthesis of allenylphosphonates 

Next, allenylphosphonates 259f-h with a fenchone- or camphor-based structure were 

prepared, using the earlier optimized conditions (Figure 14). All allenylphosphonates were 

easily isolated in moderate to good yields (56-75%). 
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Figure 14: Allenylphosphonates with varying terpenic backbone. 

c. Cyclization to oxaphospholene spirocycles 

 (+)-Menthone derived allenylphosphonate 259f was easily cyclized to give spirocyclic 

oxaphospholene 263f in excellent yield (Figure 15). Oxaphospholene 263g, derived from 

(+)-fenchone, was not formed under standard conditions though. As the starting material was 

recovered unchanged, the reaction temperature was increased to 110 °C. Unfortunately, a 

mixture of starting material and unidentified rearrangement products was then obtained, while 

oxaphospholene 263g was not detected. The decreased reactivity at 80 °C was probably a 

result of the increased steric hindrance around the distal double bond of 

allenylphosphonate 259g, which prevented the electrophilic attack of iodine. When reacted at 

80 °C for three hours, a mixture of at least ten phosphonylated compounds with an important 

amount of starting material was obtained. In the case of (+)-camphor derived 

allenylphosphonate 259h, the starting material was rapidly consumed at 80 °C and a complex 

mixture of phosphonylated products was obtained, in which oxaphospholene 259h was not 

present. Running the reaction at 60 °C instead, did not improve selectivity, while the starting 

material 259h was not even entirely consumed. These results were not unsurprising though, 

as camphor is known to be prone to rearrangements in acidic media, of which fenchone is an 

intermediate.226, 227 Although a stable tertiary carbocation is initially formed, isomeric 

intermediates must be formed just as easily. 

 

Figure 15: Spirocylic oxaphospholenes with varying terpenic backbone. 
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1.3. Conclusion 

In conclusion, we have exemplified for the first time that chiral spirocyclic oxaphospholenes 

can be synthesized in a three-step sequence from chiral pool ketoterpenes. Addition of metal 

acetylides gives the corresponding propargylic alcohols in high yields with good to excellent 

diastereoselectivities, depending on the steric hindrance of the substrate. All of these propargyl 

alcohols were easily converted to the corresponding allenylphosphonates with diethyl 

chlorophosphite. Upon addition of a stoichiometric amount of iodine, bicyclic oxaphospholenes 

were swiftly obtained, without the need for purification. Bridged allenylphosphonates, derived 

from camphor and fenchone, either did not react due to steric hindrance or rearrangement, 

and did not yield the desired spirocyclic oxaphospholenes in both cases. The deprotection of 

the phosphonate moiety still needs to be addressed before the chirality inducing properties of 

the spirocyclic oxaphospholenic acids can be evaluated. 
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2. Synthesis of 5-bisphosphonomethyl oxazol-2-
ones and 5-phosphonomethylidene oxazolidin-2-ones 

2.1. Introduction 

Oxazolidin-2-ones have attracted a lot of attention as chiral auxiliaries (e.g. Evans 

oxazolidinones),228 as key structural components of natural products229 and as the 

pharmacophore of antibiotics used in the treatment of multi-drug resistant infections230-234 and 

blood thinners235. Linezolid 265, for instance, was found to have the best pharmacokinetic 

properties in a series of oxazolidin-2-one antibiotics and got approved by the FDA in 2000 

(Figure 16).236 Rivaroxaban 266 was approved in 2008 by the European Commission to 

prevent thromboembolism.235 Moreover, the oxazol-2-ones are interesting building blocks 

themselves,237, 238 often used in the synthesis of natural products and their analogues.239, 240 

Bisphosphonomethyl oxazol-2-ones have never been reported before, although the 

bisphosphonomethyl moiety is a crucial motif of bisphosphonate drugs (f.i. Alendronate 267), 

used in the treatment of osteoporosis. A facile entry into compounds containing both the 

oxazolone and bisphosphonomethyl motif would be of interest for the evaluation of their 

biological properties. 

 

Figure 16: Examples of oxazolidin-2-one (left and center) and bisphosphonate (right) drugs. 

2.2. One-pot synthesis of bisphosphonomethyl oxazol-2-ones 

2.2.1. Identification and plausible reaction mechanism of bisphosphonomethyl 

oxazol-2-one 24 

The synthesis of phosphonylated azaheterocycles on the one hand and gold-catalyzed 

cyclization reactions on the other hand, have attracted our group’s interest for quite some 

time.35, 40, 41, 50, 241-244 Looking to evaluate the gold-catalyzed cyclization reaction of 

phosphonylated propargylamines, we were interested in preparing the protected 

3-amino, 3-phosphono prop-1-yn-1-yl phosphonate 268.  
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N,N-di-tert-butylprop-2-yn-1-ylimidodicarbonate 23 was synthesized from propargylamine and 

di-tert-butyl dicarbonate in 83% yield.245 Subsequently, it was treated with 2.5 equivalents of 

both LDA and diethyl chlorophosphate (Scheme 61).  

 

Scheme 61: Failed attempt to synthesize 3-phosphonopropargylamino phosphonate 268  
in a one-pot procedure. 

To our surprise, 31P NMR indicated that the major product was no alkynylphosphonate (it 

lacked a characteristic shift around -7 ppm), but appeared in the region of phosphonates 

connected to an sp2 or sp3 carbon (around 15 ppm). LC-MS analysis, however, showed that 

the mass of the desired compound (minus isobutene) was present, so it was concluded that a 

rearrangement to an isomer had occurred. After purification, the major compound was isolated 

as a crystalline material. NMR data revealed that  

 a bisphosphonate unit was clearly present (triplet in 13C NMR at 37.5 ppm, 1JCP = 

133.3 Hz, one single peak in 31P NMR at 14.2 ppm) 

 the alkyne carbons were changed to alkene carbons 

 two carbamate-like carbons were present, although only one t-Bu group was present 

in 1H NMR 

 a proton on a heteroatom was present (broad singlet at 8.20 ppm in 1H NMR) 

This led to the conclusion that a cyclization reaction had taken place, with a N to C Boc-shift. 

X-ray diffraction confirmed the structure of the rearranged product to be the 

bisphosphonomethyl oxazol-2-one 24 (Figure 17).  

 

Figure 17: Structure of the bisphosphonomethyl oxazol-2-one 24 (left) formed in the attempted one-pot 
synthesis of 3-phosphonopropargylamino phosphonate and its X-ray structure (right). 
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The confirmation of the end product’s structure allowed us to propose a plausible reaction 

mechanism. The alkyne 23 was probably first phosphonylated at the most acidic position 

(Scheme 62). The excess of base then creates a 3-aminoallenylphosphonate 271 which gets 

phosphonylated again at the carbon already carrying a phosphonate group. For a 

[1,2]-Boc-shift to occur, one of the two Boc-groups needs to be attacked. Thus, it is anticipated 

that after another deprotonation step and isomerization, the Boc-group gets installed on the 

carbon atom in -position of the nitrogen atom. Next, the aminoallenylbisphosphonate 275 is 

ready to be attacked in a 5-exo-dig fashion by the carbamate, yielding oxazole 277. Elimination 

of isobutene eventually yields the final product 24. In a control experiment, 1H NMR confirmed 

that the major product in the reaction mixture contained two t-Bu groups, while 31P NMR 

showed that it had a slightly different shift (15.5 ppm) than the product that was isolated after 

chromatography. This indicated that the product formed in the reaction mixture most probably 

was oxazole 277, which was converted to oxazol-2-one 24 when stirred with silica in ethyl 

acetate for 24 h. 

 

Scheme 62: Plausible mechanism for the formation of 5-bisphosphonomethyl oxazol-2-one 24. 
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2.2.2. Optimization of reaction conditions for the one-pot reaction 

Although compound 24 was the major product in the initial experiment (Table 4, entry 1), 

conditions were screened to increase the selectivity towards the desired compound and to 

simplify the procedure. The reaction was run at 0 °C to speed up the conversion, but 

unfortunately, the desired product was not formed and a complex mixture was obtained 

(entry 2). When n-BuLi was used instead of LDA, it attacked the Boc-group after which the 

propargylamine was phosphonylated at the N-atom, yielding the phosphoramidate 278 as the 

major product (entry 3). When repeating the original procedure, it was observed that some of 

the phosphorus-containing side-products could be evaporated at 60 °C and 2 mbar, affording 

a mixture of 83% purity (entry 4). Besides the bisphosphonomethyl oxazol-2-one 24, 

phosphoramidate 278 was detected along with phosphonomethyl oxazol-2-one 279. This 

monophosphonylated heterocycle probably results from LDA-induced dealkylation of the 

Boc-group of alkyne 269, followed by cyclization. Although the isolated yield could be improved 

to 17%, purification remained troublesome as the product partly eluted together with side-

products such as the monophosphonylated oxazol-2-one 279. 

Table 4: Screened reaction conditions for the one-pot synthesis of  
5-bisphosphonomethyl oxazol-2-one 24. 

 

entry base T (°C) t (h) 24 (%)b,c 278 (%)b 279 (%)b 

1 LDA - 78 

- 42 

rt 

1 

3 

on 

- 

- 

67 

- 

- 

0 

- 

- 

0 

2 LDA 0 

rt 

1 

3 

- 

0 

- 

5 

- 

0 

3d n-BuLi - 78 

- 42 

rt 

1 

3 

on 

- 

- 

8 

- 

- 

32 

- 

- 

0 

4 LDA - 78 

- 42 

rt 

1 

3 

on 

- 

- 

83 (17) 

- 

- 

1 

- 

- 

  2 
a no anhydrous solvent b conversion based on 31P NMR c isolated yield between brackets 

 d temperature was kept at - 78 °C for 1 h during deprotonation step 
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2.3. Stepwise synthesis of bisphosphonomethyl oxazol-2-
ones 

2.3.1. Synthesis of 3-amino prop-1-yn-1-yl phosphonate 269 

a. Via organolithium bases 

As the one-pot synthesis suffered from a low isolated yield, it was investigated whether a more 

selective reaction could be obtained through a stepwise approach.  

Table 5: Phosphonylation of N,N-di-tert-butylprop-2-ynylimidodicarbonate 23 with diethyl 
chlorophosphate. 

 

entry base T (°C) t (min) 269 (%)b,c 278 (%)b  280 (%)b 

1 n-BuLi - 78 30 54 9  10 

2 n-BuLi - 95 30 58 5  9 

3a n-BuLi - 95 10 42 1  2 

4 LDA - 95 30 41(3) 0  0 

5 LDA - 95 60 43 6  4 

6 LiHMDS - 95 30 1 28  0 
a 0.5 equiv n-BuLi, 0.5 equiv ClP(O)(OEt)2  

b conversion based on 1H NMR c isolated yield between brackets 

When N,N-di-tert-butylprop-2-ynylimidodicarbonate 23 was treated with a slight excess of both 

n-BuLi and diethyl chlorophosphate, about half of the starting material was converted to the 

phosphonylated propargylamine 269 (Table 5, entry 1). Products 278 and 280 result 

from n-BuLi-induced loss of a Boc-group, followed by N-phosphonylation. Lowering the 

temperature to - 95 °C did not result in a more selective reaction (entry 2). When only half an 

equivalent of reactants were used, selectivity did improve and a proportionally higher 

conversion was achieved (entry 3). The side-products 278 and 280 were still detected, 

indicating that these did not result from the excess n-BuLi initially used. Isolation of the desired 

alkyne 269 proved to be impossible as it eluted together with the phosphoramidate 280. When 

LDA was employed, the desired product was formed as the major product, and the side-

products 278 and 280 were not detected (entry 4). Other unseparable and unidentifiable side-

products troubled the purification again, resulting in a low isolated yield of phosphonylated 

propargylamine 269 of 3%. An important part of the starting material (55%) had not been 

consumed in the reaction with LDA, so the reaction time was increased. The resulting 
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conversion did not increase significantly though, and the side-products 278 and 280 were 

detected again (entry 5). Although all of the starting material was consumed with LiHMDS as 

base, only trace amounts of phosphonylated alkyne 269 were detected, along with, amongst 

others, phosphoramidate 278 (entry 6).  

b. Via a transition metal-catalyzed cross coupling reaction 

As it proved to be difficult to obtain the phosphonylated alkyne 269, an alternative approach 

was considered. A copper-catalyzed cross coupling reaction of alkynes with dialkyl phosphites 

under a dry air atmosphere had been reported in literature.246 N-Tosyl propargylamine was 

oxidatively coupled to diethyl phosphite in the presence of 0.1 equivalent Cu(OAc)2 and 0.2 

equivalent NEt3 in 83% yield on a scale of 0.5 mmol. A big advantage of this method is that 

diethyl phosphite is a cheap reactant and much more easy to handle than the toxic and 

moisture-sensitive diethyl chlorophosphate. 

Table 6: Copper-catalyzed oxidative phosphonylation of  
N,N-di-tert-butylprop-2-ynylimidodicarbonate 23 with diethyl phosphite. 

 

entry scale (mmol) equiv DEP equiv Cu(OAc)2 atmosphere t (h) 269 (%)c,d 281 (%)c 282 (%)c 

1a 1.8 0.83 0.083 air 16 21 9 21 

2a,b 1.8 0.83 0.083 air 16 27 4 19 

3a,b 1.8 1 0.1 air 16 47 2 3 

4 1.8 1.2 0.1 air 16 52 2 6 

5 1.8 2 0.1 air 16 74 1 1 

6 1.8 4 0.1 air 16 83 12 5 

7 10 2 0.1 air 16 3 3 0 

8 1 2 0.3 O2 (1 atm) 4 44 1 0 

9 5 3 0.1 + 0.2 O2 (1 atm) 5 87 1 0 

10 5 2 + 1 0.1 + 0.2 O2 (1 atm) 5 98 (72) 2 0 

11 10 2 + 1 0.1 + 0.2 O2 (1 atm) 5 98 (73) 2 0 
a 0.17 equiv NEt3 was used b 80 °C c conversion according to 1H NMR d isolated yield between brackets 

When these conditions were applied on substrate 23 on a slightly bigger scale, a poor and 

non-selective conversion was obtained (Table 6, entry 1). Increasing the temperature from 

55 °C to 80 °C hardly improved the conversion, nor the selectivity (entry 2). 

Vinylphosphonate 281 resulted from hydrophosphonylation of the alkyne, which occurs when 

the oxidation step is inhibited.246 Dialkyne 282 results from a Glaser-Hay coupling because the 
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dialkyl phosphite was present in a lower than equimolar amount. A clear effect was observed 

however, when the amount of diethyl phosphite was increased. A conversion of up to 83% was 

then obtained (entries 1 vs 3-6). Part of the diethyl phosphite is inevitably converted to 

hypophosphate 283, particularly when it is used in equimolar or excess amounts.247 As the 

alkyne starting material was considered to be the more valuable substrate, it was decided to 

minimize the formation of Glaser-Hay coupling product 282, and sacrifice the dialkyl phosphite 

by adding it in excess amounts. Unfortunately, when the reaction was scaled up, the 

conversion dropped significantly, indicative of a poor oxygen transfer into the medium (entry 

7). To increase the oxygen concentration in solution, oxygen gas was bubbled through the 

mixture and after merely 4 hours, almost half of the starting material was selectively converted 

(entry 8). Only trace amounts of hydrophosphonylation product 281 were formed, while the 

Glaser-Hay coupling product was not detected at all. Further optimization showed that within 

5 hours, all of the starting material was efficiently phosphonylated when three equivalents of 

diethyl phosphite and 0.3 equivalent of Cu(OAc)2 were applied, irrespective of the scale of the 

reaction (up to 10 mmol, entries 9-11). It also proved to be advantageous to add the copper 

catalyst and the diethyl phosphite in two portions (entries 10, 11). In a control experiment, 

without alkyne substrate 23, it was confirmed that under oxidative conditions in the presence 

of Cu(OAc)2 and NEt3, diethyl phosphite underwent homocoupling to yield the 

hypophosphate 283. Adding the diethyl phosphite in portions avoided it from being consumed 

all at once in this side-reaction. After purification, the phosphonylated alkyne 269 was obtained 

in 73% isolated yield, using cheap and safe reagents. 

2.3.2. Attempted synthesis of the aminoallenyl bisphosphonate 272 

Next, it was attempted to generate a second intermediate, the aminoallenyl 

bisphosphonate 272, which was thought to be involved in the formation of the 

bisphosphonomethyl oxazol-2-one 24 (Scheme 63). Thus, alkynylphosphonate 269 was 

consecutively treated with one equivalent of both LDA and diethyl chlorophosphate. After one 

hour, 48% of the starting material was converted to phosphoramidate 280, after which 

conversion changed no more overnight. The aminoallenyl bisphosphonate 272 was not 

detected. As the Boc-group was attacked again, no further attempts were made to generate 

this intermediate. 
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Scheme 63: Attempted synthesis of aminoallenyl bisphosphonate 272. 

 

2.3.3. Transition metal-catalyzed 5-exo-dig cyclization of 3-amino 

prop-1-yn-1-yl phosphonate 269 yielding 5-phosphonomethylidene 

oxazolidin-2-one 284 

Transition metal-catalyzed cyclization of N-Boc protected propargylamines has been reported 

to efficiently yield the corresponding oxazolidin-2-ones in excellent yields, short reaction times 

and low catalyst loadings.248-250 It was envisioned that a similar cyclization reaction of 

alkyne 269 would lead to 5-phosphonomethylidene oxazolidin-2-ones 284. The 

5-bisphosphonomethyl oxazolidin-2-ones 285, which would obviously be bearing the 

Boc-group at the 3-position instead of at the 4-position as in 24, would consequently be 

obtained after treatment of oxazolidin-2-one 284 with a base and diethyl chlorophosphate 

(Scheme 64). To that end, several catalysts were screened to provide 5-

phosphonomethylidene oxazolidin-2-ones 284.  

 

 Scheme 64: Strategy towards 5-bisphosphonomethyl oxazol-2-one 284  
via 5-phosphonomethylidene oxazolidin-2-one 283. 

Copper catalysts were first screened but did not produce any 5-phosphonomethylidene 

oxazolidin-2-one 284 (Table 7, entries 1-3). Palladium catalysts did afford the desired product 

with a mediocre conversion in some cases (entries 4-6). NiCl2, ZnCl2, RuCl3, InCl3 and RhCl3 

all proved to be ineffective as only the starting material 269 was recovered (entries 7-11). Gold 
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catalysts, on the other hand, afforded the oxazolidin-2-one 284 smoothly, with AuCl giving a 

faster conversion than AuCl3 (entries 12, 13). According to the Baldwin rules, both 5-exo-dig 

cyclization and 6-endo-dig cyclization modes are possible. The 6-endo-dig cyclization product 

was never observed. 

Table 7: Transition metal-catalyzed synthesis of 5-phosphonomethylidene oxazolidin-2-one 284. 

 

entry catalyst t (h) 284 (%)a,b 286 (%) 

1 CuCl 18 0 0 

2 Cu(OAc)2 24 0 0 

3 Cu(OTf)2 24 0 0 

4 Pd(dba)2 24 0 0 

5 PdCl2 18 38 2 

6 Pd(OAc)2 24 29 0 

7 NiCl2 18 0 0 

8 ZnCl2 24 0 0 

9 RuCl3 24 0 0 

10 InCl3 24 0 0 

11 RhCl3 24 0 0 

12 AuCl 1 93 (56) 7 

13 AuCl3 3 87 13 

14 AgOAc 24 0 0 

15 AgOTf 24 0 0 

16 Au(PPh3)Cl 5d 2 0 

17 AuOTf 20 min 76 0 

18 Au(PPh3)OTf 10 min 90 0 

19 Au(PPh3)NTf2 10 min 89 0 

20 Au(OTf)3 20 min 14 0 

21 HCl 24 0 0 

22 pTsOH 24 0 0 
a conversion based on 1H NMR b isolated yield between brackets 

Although silver salts and chloro(triphenylphosphine)gold(I) did not produce the desired product 

in more than trace amounts (entries 14-16), other cationic gold complexes consumed the 

starting material very quickly (entries 17-20). Several unidentifiable impurities were formed 

though. Control experiments with HCl and pTsOH on the other hand demonstrated that the 

cyclization reaction was not simply an acid-catalyzed process, as these Brønsted acids did not 

result in conversion to the oxazolidin-2-one 284 (entries 21, 22).  



III. Results and Discussion 
 

64 

Partial Boc-deprotection of the alkyne starting material 269 occurred when HCl or Cu(OTf)2 

was used (entries 3, 21). In the AuCl and AuCl3-catalyzed cyclizations, the 

oxazolidin-2-one 284 was partially deprotected as well. Oxazolidin-2-one 284 could be 

separated from the Boc-deprotected oxazolidin-2-one 286 in 56% yield. Literature data show 

that the coupling constant for the allylic carbon atom of E-vinylphosphonates is significantly 

bigger than for Z-vinylphosphonates (3JCP, E = 18-30 Hz vs 3JCP, Z = 5-13 Hz).251-256 The 

observed 3JCP coupling constant for the allylic carbon atom was 18 Hz and thus, the 

stereochemistry around the double bond was concluded to be E. 

Next, a solvent screening was performed for the Au(I)Cl-catalyzed cyclization reaction. It was 

observed that Boc-deprotection did not occur when dichloromethane or THF was used 

(Table 8). As only one product was formed, the purification step could be eliminated and the 

oxazolidin-2-one 284 was isolated in 98% yield. Moreover, the catalyst loading was easily 

lowered down to 2 mol%, still achieving fast and complete conversion to the 

oxazolidin-2-one 284 (entries 2, 3). With a catalyst loading of 1 mol% however, the reaction 

rate dropped significantly (entry 4).  

Table 8: Solvent screening for the synthesis of 5-phosphonomethylidene oxazolidin-2-one 284. 

entry catalyst (mol%) t (h) CH2Cl2 (%)a THF (%)a,b CH3CN (%)a,c 

1 15 1 ND ND 100 

2 5 1 100 100 (98) 27d 

3 2 1 

3 

100 

- 

54 

100 

ND 

- 

4 1 6 

18 

80 

100 

59 

100 

ND 

- 
a conversion based on 1H NMR b isolated yield between brackets c anhydrous d 5 days 

 

2.3.4. Attempted introduction of the second phosphonate group to 

5-phosphonomethylidene oxazolidin-2-one 284 

Oxazolidin-2-one 284 was treated with one equivalent of LDA and diethyl chlorophosphate in 

order to obtain bisphosphonomethyl oxazol-2-one 285. The starting material 284 was entirely 

consumed after one hour at - 78 °C, but unfortunately the bisphosphonomethyl 

oxazol-2-one 285 was not detected (Table 9, entry 1). Instead, a complex mixture was 

obtained. -Ketophosphonate 287 was identified as one of the products and results from 

hydrolysis of the starting material with consecutive loss of CO2 upon quenching with water. 

With NaH and KOtBu, the starting material was entirely recovered, while the diethyl 

chlorophosphate was slowly converted to tetraethyl pyrophosphate (entries 2, 3). To evaluate 

how the oxazolidin-2-one 284 behaved when treated with strong bases, the reaction was run 
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without diethyl chlorophosphate. Phosphonomethylidene oxazolidin-2-one 284 effectively 

rearranged to oxazol-2-one 279, as it was detected in low amounts upon treatment with an 

equimolar amount of n-BuLi (entry 4). Most of the product hydrolyzed to 

-ketophosphonate 287 however. When oxazolidin-2-one 284 was treated with LDA and 

quenched with MeOH-d4, it was entirely converted into oxazol-2-one 279 (entry 5). It was not 

possible however to isolate this product as it hydrolyzed upon filtration of the lithium salts over 

celite. The -ketophosphonate 287 could be isolated and spectral data were consistent with 

literature values.257, 258 No further attempts were undertaken to synthesize the 

bisphosphonomethyl oxazol-2-one 285. 

Table 9: Screened conditions for the phosphonylation of  
5-phosphonomethylidene oxazolidin-2-one 284 with diethyl chlorophosphate. 

 

entry base solvent T1 (°C) t1 (min) T2 (°C) t2 (h)  285 (%)b 287 (%)b 279 (%)b 288 (%)b 

1 LDA THF - 78 to 0 60 - 78 1 0 6 0 1 

2 NaH THF rt 1 rt 48 0 0 0 0 

3 KOtBu THF rt 0 rt 24 0 0 0 0 

4a n-BuLi Et2O - 78 5 - - 0 95 3 2 

5a LDA Et2O - 78 5 - - 0 0 100 0 
a no ClP(O)(OEt)2 added b conversion based on 31P NMR 

2.4. Conclusion 

During the synthesis of 3-amino, 3-phosphono prop-1-yn-1-yl phosphonate 268 from 

N,N-di-tert-butylprop-2-yn-1-ylimidodicarbonate 23 and an excess diethyl chlorophosphate, a 

rearrangement reaction, yielding bisphosphonomethyl oxazol-2-one 24, was observed. 

Unfortunately, in this one-pot procedure, several side-products were formed, which elute 

together with bisphosphonomethyl oxazol-2-one 24, decreasing the isolated yield to 17%. In a 

stepwise approach, 3-amino prop-1-yn-1-yl phosphonate 269 was first prepared separately. A 

copper-catalyzed cross coupling procedure of terminal alkynes with dialkyl phosphites, which 

had been recently described in literature, was improved, affording alkynyl phosphonate 269 in 

short reaction times and good yields on a 10 mmol scale. Gold-catalyzed 5-exo-dig cyclization 

smoothly yielded 5-phosphonomethylidene oxazolidin-2-one 284 in quantitative yield. The 

second phosphonate moiety however, could not be introduced at the stage of 

alkynylphosphonate 269, nor at the stage of 5-phosphonomethylidene oxazolidin-2-one 284. 
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Remarkably, 5-phosphonomethylidene oxazolidin-2-one 284 and phosphonomethyl oxazol-2-

one 279 are much more sensitive to hydrolysis than bisphosphonomethyl oxazol-2-one 24. 
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3. Attempted syntheses of 1-N,N-dialkyl 
aminoallenylphosphonates and 3-N,N-dialkyl 
aminoallenylphosphonates 

3.1. Introduction 

In the following four chapters, we explored the synthesis and unique reactivity pattern of 

allenylphosphonates bearing a nitrogen substituent. Although allenylphosphonates have been 

reported decades ago,107, 108 the first synthesis of an aminoallenylphosphonate was published 

only recently. In 2012 Rabasso found that the same [2,3]-sigmatropic rearrangement that has 

been used for the synthesis of allenylphosphonates (vide supra), produces 

1-aminoallenylphosphonates when ynamidols 290 are used instead of propargyl alcohols 

(Scheme 65).259 A copper-catalyzed coupling reaction of amines with bromopropargyl 

alcohols 289 afforded the ynamides 290 in variable yields. 1-Aminoallenylphosphonates 291 
were obtained after reaction with diethyl chlorophosphite in good yields.  

 

Scheme 65: The first synthesis of an aminoallenylphosphonate and its transformations. 

Just like their allenylphosphonate counterparts, these 1-aminoallenylphosphonates could be 

selectively hydrogenated to produce -aminovinylphosphonates 292,260 which could be further 

converted to 2-phosphono-2-pyrrolines through RCM, after the appropriate alkenyl group was 

introduced by a Mitsunobu reaction.261 The group of Rabasso also discovered that 

PMB-protected 1-aminoallenylphosphonates 291 generated a spirodienone lactam 293 upon 

treatment with CAN. Consequently, they were able to generate a library of these spirocycles 

with an impressive structural complexity as pentacyclic structures with two spirocyclic 
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connections could be obtained (Figure 18, compound 254).203 Cao and coworkers found that 

acceptor-substituted aminoallenes, such as 1-aminoallenylphosphonates 291, reacted well 

with a series of primary amines to yield persubstituted imidazoles 294. Acceptor-substituted 

imidazoles are an important class of compounds as the imidazole motif is present in a lot of 

natural products and pharmaceutical compounds,262-264 such as Olmesartan 295, which is an 

angiotensin II receptor antagonist.265  

 

Figure 18: Example of a spirodienone lactam and structure of Olmesartan (angetionsin II receptor 
antagonist). 

It is thus clear that aminoallenylphosphonates are useful building blocks for the synthesis of a 

variety of (heterocyclic) aminophosphonates. Since the first synthesis of 

aminoallenylphosphonates was reported only a couple of years ago, it is to be expected that 

the exploration of their potential is only starting. Moreover, only one isomer of 

aminoallenylphosphonates, the 1-aminoallenylphosphonates, was described. In our quest for 

alternative strategies to synthesize aminoallenylphosphonates, we mainly focused on 

preparing 3-aminoallenylphosphonates. 

3.2. Preparation of 3-amino allenylphosphonates employing 
the Skattebøl rearrangement 

A first strategy relied on the Skattebøl rearrangement, which transforms geminal dihalo 

cyclopropanes via a cyclopropylcarbene intermediate to the corresponding allene in the 

presence of an organolithium base.266 In order to obtain 3-aminoallenylphosphonates, the 

dihalo cyclopropane had to be functionalized with a phosphorus and an amino substituent. It 

was envisioned that these dihalocyclopropyl aminophosphonates 26 were accessible through 

dihalocarbene addition to -enaminophosphonates (Scheme 66). -Enaminophosphonates 

would be obtained by copper-catalyzed hydroamination of alkynylphosphonates 27,59 which in 

turn could be prepared through the copper-catalyzed oxidative coupling of commercially 

available alkynes and dialkyl phosphites.215  
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Scheme 66: Retrosynthetic approach to 3-aminoallenylphosphonates using the Skattebøl rearrangement. 

 

3.2.1. Preparation of enaminophosphonate 297 

Phenylacetylene was readily phosphonylated with diethyl phosphite to afford the phenylethynyl 

phosphonate 296 in 82% yield. Phenylethynyl phosphonate 296 was next evaluated in the 

copper-catalyzed hydroamination reaction with diethylamine.59 One day of reflux in dry THF 

only yielded trace amounts of the enaminophosphonate 297 (Table 10, entry 1). An almost 

complete conversion was reached however, when the mixture was heated during three days 

in dry methanol (entry 2). Under microwave heating to 70 °C during 16 hours, a slightly lower 

conversion was observed (entry 3). However, when the mixture was heated to 100 °C in the 

microwave, phenylethynyl phosphonate 296 was entirely converted to the 

enaminophosphonate 297 which was isolated in 75% yield (entry 4). Reaction time could be 

shortened to nine hours when the temperature was increased to 130 °C while conversion 

remained complete (entry 5). 

Table 10: Optimization of conditions for the hydroamination of alkynylphosphonate 296. 

 

entry solvent T (°C) t (h) 297 (%)b,c 

1 THF  24 traces 

2 MeOHa 72 90 

3d MeOHa 70 16 70 

4d MeOHa 100 16 100 (75) 

5d MeOHa 130 9 100 
a anhydrous b conversion based on 31P NMR c isolated yield between brackets d microwave irradiation 

 

3.2.2. Attempted synthesis of dihalocyclopropyl aminophosphonate 298 

It has been shown that geminal dihalocyclopropanes can be prepared from alkenes through 

the addition of dihalocarbenes.267-269 Thus, in a next step, enaminophosphonate 297 was 

reacted with a variety of species that can generate dihalocarbenes (Table 11). 
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Table 11: Screened conditions for the dihalocyclopropanation of enaminophosphonate 297. 

 
entry dihalocarbene source base solvent T (°C) t (d) reaction products 

1a 25 equiv CHCl3 40 equiv NaOH(aq.) heptane rt 5 SM + 299 

2a 25 equiv CHBr3 40 equiv NaOH(aq.) heptane rt 7 SM + 299 + 300 + 301 + 298 

3 25 equiv CHBr3 5 equiv KOt-Bu - rt 2 SM + 301 

4  1 equiv Cl3CCO2Na - DME  2 SM + 299 

5b - - CHBr3  1 SM 

6 2 equiv PhHgCCl3 - toluene 80 1.25 SM + 302 
a 0.04 equiv PTC (TEBAC) b 8 equiv Mg turnings 

Under phase-transfer conditions in chloroform, no conversion to the dihalocyclopropane took 

place, not even after five days (entry 1). Also Michael-type addition of the CCl3 anion, which 

was reported to take place sometimes, was not observed.267 A compound with the mass of 

diethyl (1-phenylethyl) amine 299 was found in minor amounts but was not isolated (Figure 19). 

With bromoform, the same compound 299 was present, together with trace amounts of the 

bromo alkyne 300, the bromo enamino phosphonate 301 and the desired product 298 
(entry 2). Again, Michael-type addition of the CBr3 anion did not take place270 and a longer 

reaction time (up to seven days) only resulted in a complex mixture in which the starting 

material was still the major compound. When KOt-Bu was added to a solution of the starting 

material in bromoform, an exothermic reaction took place, but disappointingly no conversion 

of the starting material was observed, not even after two days (entry 3). Only some trace 

amounts of bromo enaminophosphonate 301 were found. The base, used to generate the 

dihalocarbene, possibly competes with the olefin for reaction with the dihalocarbene.271 

Sodium trichloroacetate has been shown to be able to convert vinylphosphonates to the 

corresponding geminal dihalocyclopropyl phosphonates in the absence of a base.267 When it 

was refluxed in DME with substrate 297, a complex mixture was obtained in which only 

amine 299 could be identified (entry 4). In the case of poorly nucleophilic olefins, this method 

has been reported not to work well, as the generated dihalocarbenes rather react with the 

sodium trichloroacetate than with the alkene.272  

 
Figure 19: Structure of detected products in the dihalocyclopropanation of enaminophosphonate 297. 

However, recently it was shown that electrodeficient olefins were transformed in good yields 

to dibromocyclopropanes when treated with magnesium turnings in THF with a large excess 
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of bromoform.270 When applied to substrate 297, only starting material was recovered after 16 

hours of reaction (entry 5). The use of the Seyferth reagent (PhHgCCl3) has also been reported 

to be a source of dibromocarbenes which efficiently reacts with weakly nucleophilic olefins.269, 

271, 273, 274 When PhHgCCl3 was heated with enamino phosphonate 297 to 80 °C in toluene, 

about half of the starting material was converted to three phosphorus-containing products 

(entry 6). One of them apparently underwent a CO insertion and is proposed to have 

structure 302, the second one seems to result from the first one after dehydration. The third 

product could not be identified. Unfortunately, none of those products could be isolated, but 

NMR data – the characteristic CHP fragment was found in both 1H and 13C NMR spectra - 

supported the MS data found for structure 302. Moreover, 2D NMR data showed a quaternary 

carbonyl signal that couples to the CHP fragment, suggesting that the carbonyl group has 

indeed been introduced next to phosphonate moiety. As the options to prepare 

dihalocyclopropanes seemed to be depleted, the Skattebøl strategy was not further 

investigated.  

 
3.3. Attempted synthesis of phosphonylated (hetero)cycles 

through cycloaddition reactions with diazomethane 

3.3.1. Attempted cyclopropanation of enaminophosphonates 297 with 

diazomethane 

Since the search for new methods to synthesize aminophosphonates has been a research line 

of the research group for quite a while now,29, 32, 36, 275 it was investigated whether the earlier 

prepared enaminophosphonates of type 297 could serve as precursors to aminocyclopropyl 

phosphonates 303. Previous research in the group has focused on getting access to 

cyclopropylamines via a Simmons-Smith reaction of enamines.276 Synthetic routes towards 

molecules carrying the aminocyclopropane phosphonate motif, however, are only scarcely 

reported in literature.277-281 Although cyclopropanation of -enaminophosphonates 297 has 

never been investigated, one example of a reaction of an -enaminophosphonate with 

diazomethane has recently been reported.282 Aminocyclopropanephosphonic acid has shown 

to be a potent inhibitor of aminocyclopropanecarboxylate (ACC) deaminase from 

Pseudomonas sp. and alanine racemase from Bacillus stearothermophilus.283 The 

aminocyclopropanephosphonic moiety is also present in oligopeptides that are potent 

Hepatitis C virus (HCV) NS3 protease inhibitors.284, 285  

 

When enaminophosphonate 297 was reacted with a five-fold excess of diazomethane, trace 

amounts of aminocyclopropyl phosphonate 303 were found after one hour at room temperature 
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(Table 12, entry 1). Reaction progress was monitored for two days, but unfortunately 

conversion did not increase. Pyrazoline intermediates were not observed either. It had been 

reported that when a catalyic amount of Pd(OAc)2 was added to a solution of an alkene and 

diazomethane, cyclopropanes could be obtained.286 In our case however, no cyclopropanation 

products were detected (entry 2). The only observed product, -ketophosphonate 304, results 

from hydrolysis of the starting material upon quenching of the reaction mixture with acetic acid. 

 
Table 12: Screened conditions for the cyclopropanation of enaminophosphonate 297 with diazomethane. 

 
entry equiv CH2N2 equiv Pd(OAc)2 T (°C) t (h) conversion (%) 

1 5 - rt 48 traces 
2 1 0.02 0 1 0 
3a 20 

10 

0.01 rt 1 

2.5 + 1 

10 

4a 20 0.10  2 0 
a diazomethane is mixed with catalyst prior to addition of substrate 

On the other hand, it is decribed in literature that Pd(OAc)2 is reduced in situ by an excess of 

diazomethane, producing palladium nanoparticles which are more active than Pd(0) 

complexes, preformed nanoparticles or commercial palladium powder.287 The authors stated 

that the reactant addition sequence is of utmost importance: Pd(0) formation and high 

conversions were only obtained when the diazomethane is added to a solution already 

containing the catalyst and the olefin. Although an immediate evolution of nitrogen gas, 

indicative of Pd(OAc)2 reduction, was indeed observed when these conditions were applied, 

only 10% conversion of the starting material to unidentified reaction products was detected 

(entry 3). Increasing the amount of the catalyst did not alter the outcome (entry 4). 

 
3.3.2. Synthesis of phosphonylated pyrazoles from alkynylphosphonates and 

diazomethane 

Since the strategies to cyclopropanated products 303 were met with failure, this route was 

abandoned. However, with the easy acces to alkynylphosphonates 296 in mind, one last 

attempt was made to gain acces to phosphonylated heterocycles. One example of the reaction 

of diazomethane with an acceptor-substituted alkynylphosphonate was reported, yielding a 

mixture of phosphonylated pyrazoles regioisomers.288 Pyrazoles are known as anticancer 

agents,289 non-nucleoside HIV-1 reverse transcriptase inhibitors290 and CNS depressants291 

and the motif occurs in many drugs such as Viagra, Celebrex and Acomplia. Most of the 
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reported syntheses rely on cyclocondensation strategies of hydrazines with 1,3-difunctional 

compounds.292, 293 Only a small number of phosphonylated pyrazoles are prepared by 

cycloadditions of diazoalkanes.282, 288, 294-298 

 

Two alkynylphosphonates were screened for their reactivity with an excess of diazomethane. 

Alkyne 296 gave the 1H-pyrazole 306a and the N-methylated pyrazole 307a, next to an 

important amount of starting material (Table 13, entry 1). N-phthaloyl-protected 

propargylamine 305 gave almost complete conversions, again yielding pyrazoles 306b and 

307b which could both be isolated (entry 2). Values for the C-P coupling constants were 

consistent with literature values for 5-phosphonylated pyrazoles,299 confirming that the 

C-terminus of diazomethane had attacked the carbon atom in -position of the phosphonate. 
 

Table 13: Tested conditions for the synthesis of phosphonylated pyrazoles 306 and 307. 

 
entry R equiv CH2N2 t (h) SM (%) 306 (%)a 307 (%)b 

1 Ph 5 4 66 26 5 
2c  CH2NPhth 5 3 0 37 (2) 44 (67) 
3 Ph 1 3.5 85 11 0 

4  CH2NPhth 1 16 100 0 0 

5 Ph 2 72 86 14 0 

6 CH2NPhth 2 72 100 0 0 

7 CH2NPhth 3 72 86 6 0 

8 CH2NPhth 5 72 15 28 11 
a isolated yield after 2 consecutive pTLC steps b isolated yield after pTLC c THF instead of Et2O 

Trying to get a more selective conversion to one of the products, several conditions were 

screened. To be able to dose exactly one equivalent of diazomethane, the diazomethane 

ethereal solution was titrated.300 However, no or very poor conversions were obtained 

(entries 3, 4), even when the amount of diazomethane was doubled or if reaction times were 

increased (entries 5, 6). When larger excesses of diazomethane were used, conversions 

increased again (entries 7, 8), but as the reaction outcome was hard to reproduce and mixtures 

of at least three different products were obtained, this route was finally abandoned as well. 
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3.4. Preparation of 3-aminoallenylphosphonates through 
prototropic rearrangement 

3.4.1. Through isomerization of 3-(dibenzylamino)prop-1-yn-1-yl phosphonate 

310 

In an alternative strategy, it was attempted to get access to 3-amino allenylphosphonate 311 

via isomerization of 3-(dibenzylamino)prop-1-yn-1-yl phosphonate 310 (Scheme 67). 

Dibenzylpropargylamine 309 was prepared by treating dibenzylamine with sodium hydride and 

propargyl bromide. Oxidative cross coupling with diethyl phosphite afforded 

3-(dibenzylamino)prop-1-yn-1-yl phosphonate 310 in 57% yield. 

Scheme 67: Preparation of 3-(dibenzylamino)prop-1-yn-1-yl phosphonate 310. 

Next, isomerization of 3-(dibenzylamino)prop-1-yn-1-yl phosphonate 310 was evaluated with 

a variety of bases (Table 14). Isomerization of trifluoromethyl alkynes with an excess sodium 

hydroxide in a mixture of THF and water was reported in literature to yield the corresponding 

allenes.301 When substrate 310 was subjected to these conditions, no conversion initially took 

place. Using longer reaction times, monodealkylation of the phosphonate ester, producing 

compound 312, and dephosphonylation of the alkynylphosphonate, producing alkyne 309 and 

diethylphosphate, were observed (entry 1). Treatment with NaH resulted in complete 

recuperation of the starting material (entry 2). With one equivalent of LiHMDS, the starting 

material was entirely converted to a complex mixture of at least ten products within one hour 

at - 78 °C (entry 3). The only product that could be identified was dibenzylamine. n-BuLi also 

gave a complex mixture of at least twenty products after merely thirty seconds (entry 4). Both 

N,N-dibenzyl propargylamine 309 and n-butyl phosphonate 313 were detected, indicating that 

n-BuLi rather acted as a nucleophile. In a last attempt, the use of t-BuLi was evaluated as it 

was reasoned that the increased steric hindrance might lower the nucleophilic behaviour. 

Unfortunately, these conditions immediately resulted in a complex mixture as well (entry 5). 

Dibenzylamine was detected once more.  
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Table 14: Screened conditions for the isomerization of 3-(dibenzylamino)prop-1-yn-1-yl phosphonate 310. 

 
entry base solvent T (°C) t (h) SM (%)a 311 (%)a 312 (%)a 309 (%)a 

1b NaOH 2:1 THFc/H2O rt 19 

68 

100 

0 

0 

0 

0 

81 

0 

19 

2  NaH THF 0 to rt 3 100 0 0 0 

3 LiHMDS THF - 78 1 0 CM 

4 n-BuLi THF - 78 30 sec 0 CM 

5 t-BuLi THF - 78 60 sec 0 CM 
a based on 1H NMR b not anhydrous c 3.0 equiv base were used  

 

3.4.2. Through isomerization of 3-amino-3-phenylprop-1-yn-1-yl phosphonate 

317 

Since the isomerization of 3-(dibenzylamino)prop-1-yn-1-yl phosphonate 310 with strong 

bases was not fruitful, it was investigated if the presence of a phenyl substituent in the 

propargylic position would be favourable. Alkynes are known to isomerize more easily to the 

corresponding allenes if a phenyl group is conjugated to the newly formed double bond.52 

Consequently the isomerization of 3-amino-3-phenylprop-1-yn-1-yl phosphonate 317 would be 

evaluated (Table 15).  

 
Table 15: Conditions for the A3 coupling of substituted propargylamine 316. 

 

entry equiv 

acetylene 

equiv 

amine 

equiv 

aldehyde 

catalyst 

(mol%) 

T 

(°C) 

t 

(h) 

solvent 316 
(%)a,b 

1c 1 1 1.5 CuBr (0.05) 120 48 THF 92 

2d 1 1.3 1.6 CuI (0.15) 100 0.5 neat 100 (5) 
a conversion to 316a based on 1H NMR b isolated yield of 316b between brackets c pressure vial d microwave heating 
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A³ coupling reactions are particularly suited to provide substituted propargylamines and 

consequently, benzaldehyde, dibenzylamine and trimethylsilyl acetylene were engaged in a 

copper-catalyzed A³ coupling reaction.302-305 Almost full conversion was obtained after two 

days at 120 °C in a pressure vial (entry 1). Although the authors of the original procedure were 

able to isolate the substituted propargylamines in 15-30% yield, in our case, the product could 

unfortunately not be separated from the impurities. Under microwave conditions, the starting 

material was entirely converted after 30 minutes at 100 °C under neat conditions, and 

deprotected from the TMS-moiety with K2CO3 in MeOH (entry 2). Purification of this very apolar 

compound proved to be difficult once more and the substituted propargylamine was isolated 

in a poor 5% yield. It was next decided to repeat the reaction under those conditions and use 

the crude mixture as such in the cross coupling reaction with diethyl phosphite. The 

phosphonylated propargylamine 317 was obtained after five hours under the earlier developed 

conditions. Disappointingly, phosphonylated propargylamine 317 could not be isolated after 

meticulous purification and only a fraction of 90% purity was separated in 23% yield (yield over 

two steps). Given the difficulties encountered during the purification at both stages, further 

efforts were aborted and the isomerization reaction to the 3-phenyl-3-amino 

allenylphosphonate 318 was not evaluated.  

 

 

3.4.3. Through isomerization of 3-(dibenzylamino)prop-2-yn-1-yl phosphonate 

319 

Since the syntheses of 3-amino allenylphosphonates 311 from phosphonylated 

propargylamines 310 or 317 were problematic, the preparation of 3-(dibenzylamino)prop-2-yn-

1-yl phosphonate 319 as a precursor to 3-amino allenylphosphonate 320 was envisaged 

(Scheme 68). A literature protocol described the efficient synthesis of ynamides from copper 

acetylides and N-nucleophiles carrying an electron withdrawing group.60 Thus, the coupling of 

copper acetylide 31 with dibenzylamine was envisioned. Since copper acetylides are reported 

to be conveniently generated from the corresponding alkynes and a copper source,306, 307 the 

propargyl phosphonate would be prepared from a propargylbromide 321 with a phosphite. 
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Scheme 68: Retrosynthetic approach to 3-(dibenzylamino)propa-1,2-dienylphosphonate 320. 

Thus, propargylbromide 321a was engaged in an Arbuzov reaction with triethylphosphite 

(Table 16, entry 1). Propargyl phosphonate 322a seemed to be present in a complex mixture 

with at least six other phosphorus-containing products, probably as a result of SN’ reactions. 

When lowering the temperature to 40 °C, propargyl phosphonate 322a could no longer be 

detected (entry 2). Michaelis-Becker reaction on trimethylsilyl propargylbromide 321b did 

however yield the desired TMS-protected propargylphosphonate 322b in 41% yield after 

purification (entry 3).308  

 
Table 16: Arbuzov and Michaelis-Becker reaction on substrate 321. 

 
entry R nucleophile equiv NaHMDS solvent T (°C) t (h) 322 (%)a,b 

1 H 1.1 equiv P(OEt)3 - neat 110 20 ND 
2 H 1.1 equiv P(OEt)3 - neat 40 2 0 
3 TMS 1.0 equiv HP(O)(OEt)2 1.1 THF rt 1 90 (41) 

a conversion based on 1H NMR b isolated yield between brackets 

 

Upon deprotection of the TMS-group, instantaneous and complete rearrangement took place 

to internal alkynyl phosphonate 323 (Table 16). Trapping the acetylide anion at 0 °C with 

copper iodide in a mixture of ethanol and aqueous ammonia or in the presence of potassium 

carbonate in DMF, was unsuccessful. Once more, our efforts had to be prematurely 

discontinued. 

 

3.5. Preparation of 1-aminoallenylphosphonates through 
spontaneous prototropic rearrangement 

It was next anticipated, however, that due to the observed spontaneous rearrangement, a 

trimethylsilyl alkynylaminophosphonate 325 could provide a facile entry into 1-amino 

allenylphosphonate 324. Upon deprotection of the TMS group, the rearrangement 



III. Results and Discussion 
 

78 

would spontaneously yield 1-aminoallenylphosphonate 324, provided that 

1-amino-3-trimethylsilylprop-2-yn-1-yl phosphonate 325 could be prepared (Scheme 69). 

 
Scheme 69: Retrosynthetic approach to 1-aminoallenylphosphonates. 

At first sight, an A3 coupling reaction seemed an attractive approach to construct the alkynyl 

aminophosphonate 325,309 yet this route was not explored. The aldehyde part would in this 

case be the hydrate of formylphosphonate, which requires a three-step synthesis involving 

azides, diazo compounds and dimethyldioxirane.310 A quicker, cheaper and slightly less 

explosive alternative consists of a LiClO4-catalyzed three component Kabachnik-Fields 

reaction. In such a reaction, aminophosphonates are obtained from the corresponding 

aldehyde, an amine and a dialkyl phosphite, often in excellent yields and very short reaction 

times.311 The precursors in this case are 3-(trimethylsilyl)propiolaldehyde 326, 

diethylamine 327 and dimethyl phosphite 328a. 

 

However, upon addition of diethylamine to ynaldehyde 326 the amine reacts violently, while 
31P NMR indicated that no phosphorus-containing products other than the dimethyl phosphite 

starting material were present 8 minutes after the addition of the phosphorus nucleophile 

(Table 17, entry 1). 

 
Table 17: Screened conditions for the Kabachnik-Fields reaction of propargylaminophosphonate 325. 

 
entry order of addition R tamine (min) tphosphite (min) result 

 2 3     

1 amine 327 phosphite 328a H 2 8 333 

2 phosphite 328a amine 327 H 5 1 mixture + 329aa 

3 phosphite 328b amine 327 TMS 5 1 82% 329a + 18% 329b 
a isolated in 33% yield 

 

LC-MS analysis showed that the major compound had a mass corresponding to the 

corresponding amidinium compound 333 (Scheme 70). It is reported that in an ethereal 

solution of lithium perchlorate, iminium intermediates are easily generated and could even be 
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detected by 1H NMR.312 Presumably, a fast addition of a second molecule of diethylamine takes 

place, yielding aminal 331, resulting in the amidinium 333 after prototropic rearrangement and 

protonation. Given the immediate violent reaction between the aldehyde and the amine, it is 

not surprising that the phosphorus nucleophile did not participate in the reaction. NMR data 

confirm the presence of the double bond (doublets at 5.48 and 7.79 ppm, J = 12.6 Hz) in 

amidinium 333.  

 
Scheme 70: Plausible mechanism for the formation of amidinium 333. 

To avoid that the phosphorus nucleophile is outcompeted and to make sure it can immediately 

attack the iminium intermediate, dimethyl phosphite was mixed with ynaldehyde 326 in LPDE. 

Adding the amine to this mixture, both the phosphorus nucleophile 328a and the aldehyde 326 

are effectively consumed within five minutes, giving rise to three phosphonylated products 

(20.7 ppm, 20.2 ppm, 19.3 ppm in a 2:1:2 ratio). The amidinium product 333 is not detected in 
1H NMR (entry 2). LC-MS analysis confirmed that two isomers of product 325 were present. 

Although alkynyl aminophosphonate 325 could not be recovered after purification, alkynyl 

hydroxyphosphonate 329a was isolated in 33% yield. When diethylamine was added to a 

mixture of trimethylsilyl dimethyl phosphite 328b and ynaldehyde 326 in LPDE, all of the 

DMTMSP, which is a stronger nucleophile than DMP, had reacted with the aldehyde 326 
before the amine had the chance. A mixture of hydroxyphosphonate 329a and O-trimethylsilyl 

hydroxyphosphonate 329b was obtained (entry 3). It was thus concluded that this one-pot 

three-component reaction was not a feasible approach for the direct synthesis of 

precursor 325.  

 

Given the ease of formation of hydroxyphosphonate 329a, it was investigated if the 

mesylate 334 could be prepared (Scheme 71). By means of a substitution reaction with an 

appropriate nitrogen nucleophile, alkynyl aminophosphonate 325 could then be obtained. 

When ynaldehyde 326 was phosphonylated with DMTMSP 328b in LPDE, the starting material 

was entirely converted to an 80/20 mixture of hydroxyphosphonates 329a and 329b after 

merely one minute. Within half an hour, the TMS group had entirely hydrolyzed to give the 

hydroxyphosphonate 329a along with a small amount of DMP 328a. As the Rf value of DMP 

was almost equal to that of the product, it was evaluated whether hydroxyphosphonate could 

be purified after mesylation. One hour after the addition of mesylchloride, about 31% of the 

starting material 329a was converted to O-mesylated alkynylphosphonate 334. However, 16% 



III. Results and Discussion 
 

80 

allene 335 was detected as well. The expelled chloride anion is able to entirely deprotect the 

TMS group within four hours. Eventually, it was decided to abandon this strategy. 

 
Scheme 71: Attempted synthesis of mesylated propargyl hydroxyphosphonate 334. 

3.6. Conclusion 

In this chapter, various approaches were explored to access 3-aminoallenylphosphonates. 

First, it was tried to prepare dihalocyclopropyl aminophosphonates as substrates for the 

Skattebøl rearrangement. Oxidative cross coupling of terminal alkynes with dialkyl phosphites 

readily provided alkynylphosphonates which were hydroaminated in good yields. The resulting 

enaminophosphonates did not give dihalocyclopropyl aminophosphonates with in situ formed 

dihalocarbenes. The enaminophosphonates were successfully used to prepare 

phosphonylated pyrazoles with diazomethane, but the reaction proved to be hard to reproduce. 

Isomerization of phosphonylated propargylamines under alkaline conditions was unsuccessful. 

Preparation of copper acetylides from prop-2-yn-1-yl phosphonate, which was envisioned to 

react with amines to produce 3-amino-prop-2-yn-1-yl phosphonate precursors was not 

successful either. Finally, it was attempted to prepare 1-amino-3-trimethylsilylprop-2-yn-1-yl 

phosphonates through a Kabachnik-Fields reaction, as these substrates would probably 

rearrange to the corresponding 1-amino allenylphosphonates upon removal of the TMS group. 

Unfortunately, the 1-amino-3-trimethylsilylprop-2-yn-1-yl phosphonates were not obtained as 

the aldehyde immediately reacted with either the nitrogen or the phosphorus nucleophile to 

give amidinium or hydroxyphosphonate products. 
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4. In situ formation and -derivatization of 

3-imidoallenylphosphonates 

4.1. Introduction 

 
In the previous chapter, the syntheses of dialkylamino allenylphosphonates were 

unsuccessful. When looking closer to the non-phosphonylated counterparts, amino-substituted 

allenes are sometimes reported to be difficult to handle. They tend to polymerize even at low 

temperatures, and are sensitive to moisture.313 Amido-allenes, being less electron-rich, are 

more stable and display enamide reactivity. Dialkylamino allenylphosphonates are possibly too 

electron rich to be synthesized, so it was reasoned that the introduction of an electron 

withdrawing group on the nitrogen atom would be advantageous. Next, the isomerization 

reaction to the corresponding 3-amino allenylphosphonates would be evaluated again in order 

to study their reactivity towards nucleophiles. 

 

4.2. Towards 3-imidoallenylphosphonates 

To this end, di-Boc-protected propargylamine 23 and the commercially available N-propargyl 

phthalimide 336 were phosphonylated according to the earlier developed copper-catalyzed 

oxidative cross coupling with diethyl phosphite (Scheme 72). Although the phosphonylated 

alkynes were easily prepared on a 10 mmol scale, it was noticed that the DMSO solvent was 

oxidized under the oxidative conditions. Considerable amounts of dimethyl sulphone were 

produced and this complicated purification. Fortunately, running the reaction in DMF afforded 

the alkynylphosphonates 269 and 305 with comparable ease and in equally good yields. 

 
Scheme 72: Approach towards 3-imidoallenylphosphonates 337 and 338. 

In preliminary experiments, phosphonylated N,N-di-Boc-propargylamine 269 was used as 

starting material. At first, stoichiometric isomerization was evaluated with organolithium bases 

(n-BuLi, LDA) in aprotic media.314, 315 However, the isomeric allenic products 337 could not be 

detected (Table 18, entries 1-2). With n-BuLi the alkyne 269 was dephosphonylated, while 

LDA attacked the t-Bu group producing the carbamic acid, which cyclized to produce the 
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corresponding oxazolidinone. Accordingly, phthaloyl protected alkyne 305 was then used 

exclusively, as the Boc-groups of alkyne 269 were not stable under the previously applied 

conditions. Next, the isomerization using a milder NaH or KOtBu aprotic system was 

investigated. Using a stoichiometric amount of NaH, the 3-imidoallenylphosphonate 338 was 

detected for the first time as 32% conversion was observed within one hour,316 after which 

degradation quickly occurred (entry 3). Using a catalytic amount of NaH led to a lower 

conversion, while secondary reactions still occurred (entry 4). When performing the reaction in 

DMSO with KOtBu as the base,317 7% conversion to an addition product 339 was observed 

(entry 5). Although allene 338 was not detected, this addition product caught our interest given 

the position of the double bond. Switching the solvent to THF, and employing a stoichiometric 

amount of base318 gave the allene intermediate 338 and the addition product 339 together for 

the first time (entry 6). Providing a proton source by adding one equivalent of t-BuOH markedly 

increased the conversion of the starting material, giving approximately 50% of the allene in 

only two minutes at 0 °C (entry 7). Longer reaction times gave complex mixtures.  

 
Table 18: Optimization of isomerization and nucleophilic addition conditions. 

 
entry SM equiv base base solvent T (°C) t (min) 337/338 (%)a 339/340 (%)a 

1 269 1 BuLi Et2O - 78 60 0 0 

2 269 1 LDA Et2O 0 180 0 0 

3 305 1 NaH THF rt 60 32 0 

4 305 0.2 NaH THF  30 24 0 

5 305 0.2 KOtBu DMSO rt 5 0 7 

6 305 1 KOtBu THF rt 1 19 4 

7b 305 0.2 KOtBu THF 0 2 47 0 

8 305 1 KOtBu t-BuOH 40 5 34 25 

9 305 2 KOtBu t-BuOH 40 1 0 100 

10c 305 1 K2CO3 THFd rt 8 days 0 100 

11c 305 1 Cs2CO3 THFd rt 40 0 100 
a conversion based on 31P NMR b 1 equivalent of t-BuOH added c 1 equivalent EtOH added d not anhydrous 

 

Screening of different solvents in the KOtBu/t-BuOH system revealed that conversion to 

allene 338 was rapid but a conversion higher than 50% could not be achieved (Table 19), as 

alkyne 305 and allene 338 were most likely in equilibrium. We then decided to scavenge the 

intermediate allene 338 in order to get full conversion to the addition product 339. 
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Table 19: Solvent screening for the isomerization to imidoallenylphosphonate 338. 

 

entry solventa t (min)b 338 (%)c 339 (%)c 

1 THF 5  34 0 

2 Et2O 2  43 13 

3 CDCl3 5  10 0 

4 CH3CN 2  34 15 

5 dioxane 2 34 10 

6 toluene 2  14 15 

7 CH2Cl2 2  24 26 
a not anhydrous b reaction time indicates maximal conversion before degradation started to occur  

c conversion based on 31P NMR 

 

Performing the addition in t-BuOH instead of adding just one equivalent of t-BuOH as a proton 

source319 clearly drives addition of the nucleophile to the allene intermediate 338 (entry 8). 

Increasing the amount of KOtBu to two equivalents gave complete reaction in no more than 

60 seconds (entry 9). We next investigated whether other - and eventually non-volatile - 

nucleophiles could be added. To that end, a non-nucleophilic base, an aprotic solvent, and the 

use of a stoichiometric amount of the nucleophile were required. Hence, K2CO3 and THF were 

selected, using one equivalent of EtOH as nucleophile. The addition product 340 was obtained 

as the single product, but full conversion required eight days (entry 10). We reasoned that the 

limited solubility of the base hampered reaction progress. Thus, replacing K2CO3 with Cs2CO3 

gave a completed reaction in only 40 minutes (entry 11) and purification was superfluous. It 

was noted that when a catalytic amount of Cs2CO3 was used, full conversion could not be 

obtained. NMR disclosed a Z-configuration of the olefin based on a 2.5% NOE-enhancement 

of the vinylic proton when irradiating CH2P. No NOE-effects were observed between OCH2 

and the vinylic proton. 

 

4.3. -alkoxylation of 3-imidoallenylphosphonates 

4.3.1. Addition of O-nucleophiles 

Next, we prepared a small library of derivatives. The addition of primary, secondary, and 

tertiary alcohols was first evaluated (Scheme 73, compounds 339-351). As steric hindrance of 

the introduced nucleophile increased, the transformation proceeded more slowly, and in the 

case of t-BuOH, a complex mixture was obtained. With i-PrOH, the addition product was still 

the major product, along with some remaining alkyne and allene starting material and a 
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multitude of minor impurities. For volatile nucleophiles, the nucleophile could be applied as the 

solvent (conditions B). With EtOH, addition was rapid (60 seconds), and the addition product 

340 was isolated in 97% yield.  

Scheme 73: Substrate scope of formation of -functionalized aminophosphonates. Isolated yield and 
reaction time are indicated. 

The i-PrOH derivative 341 could similarly be obtained in 94% yield. Upon conducting the 

reaction in t-BuOH as a solvent, 82% conversion to 339 was achieved after three hours at 

40 °C. Longer reaction times gave secondary reactions that prevented isolation of 339. Other 

primary alcohols such as n-BuOH and BnOH smoothly gave the desired compounds 342 and 

344 in yields around 90% (conditions A), again without the need for purification. Phenol reacted 
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rapidly to give a mixture of two addition products 343a and 343b in a 6:1 ratio and 90% yield. 

With the sterically demanding (-)-borneol as a nucleophile, the intermediacy of the allene was 

illustrated once again, but a conversion higher than 20% to the addition product 345 could not 

be achieved, nor could 345 be isolated. The presence of an electrophilic group in the substrate, 

such as the aldehyde in 5-HMF (5-hydroxymethylfurfural), did not complicate matters giving 

full conversion to 346 in 90% crude yield in one hour. When preparing an analytical sample, 

the removal of some minor impurities required reversed phase flash chromatography causing 

partial degradation, which has been previously observed in the isolation of related HMF 

derivatives.320 The coupling of two allene moieties with ethylene glycol also proved to be easily 

achievable as all of the starting material was converted into an easily separable 91:9 mixture 

of bis-adduct 347a and mono-adduct 347b. When water was evaluated as a nucleophile, the 

formation of the corresponding ketone was expected, but we instead observed formation of a 

complex reaction mixture, probably due to aldol-type reactions. 

 

Finally, the addition of more complex and biologically relevant molecules was investigated. 

Addition of DL- -palmitin gave rise to phospholipid-type product 348. Full conversion was 

obtained in thirty minutes, resulting in four addition products (ratio 9:34:50:7 in 96% crude 

yield), which could not be separately isolated. Competition between the primary and secondary 

alcohol and E/Z isomerism accounts for the different products formed. Running the reaction at 

0 °C resulted in a slower conversion, but not in a higher selectivity. One fraction could be 

enriched in the major isomer that was formed, giving rise to spectral data that allowed clear 

assignment of all relevant signals. Moreover, HMBC data indicated that the major isomer is 

the one resulting from addition of the primary alcohol. HaHb and HdHe have a different chemical 

shift and as HdHe couples with the ester carbon in HMBC, the shift of HaHb is known. As the 

phthalimidoyl carbonyl carbon for all other derivatives couples to HaHb (and not to Hc) in their 

HMBC spectrum, it is assumed that this is the case here as well. Thus, the major isomer is the 

addition of the primary alcohol.  

 

Addition of protected amino acids resulted in side-chain O-derivatized amino acids 349 and 

350. Amino acid derivatives containing a phosphorus moiety often display important biological 

activities. Bialaphos for instance is an antibacterial metabolite, which also possesses strong 

herbicidal properties.321 Adduct 349 was isolated in 63% yield as a 9/1 Z/E mixture. Partial 

elimination of the addition product 349, giving 352 and 353 was unavoidable, even when 

running the reaction at 0 °C, and accounts for the slightly lowered yield in comparison to less 

complex nucleophiles (Scheme 74). Spectral data for elimination products 352 and 353 were 

in accordance with literature values.322 
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Scheme 74: Elimination of the N-Z-L-serine methyl ester addition product. 

N-Z-L-tyrosine methyl ester was prepared following a literature procedure.323 Addition of this 

protected amino acid did not suffer from this elimination reaction, since no appropriately 

positioned leaving group is present in the tyrosine methyl ester. As was the case with the 

addition of phenol, allylphosphonate 350a and vinylphosphonate 350b were swiftly formed in 

a 6:1 ratio in 97% crude yield, after which the regioisomers were separated from each other. 

The conformation of 350b was confirmed to be Z since a 2% NOE-effect was found on the 

vinylic proton when irradiating NCH2. Ultimately, the addition of protected uridine was 

evaluated, since phosphononucleosides like tenofovir and adefovir are used in the treatment 

of HIV. We were pleased to find that the uridine addition product 351 could be isolated in 64% 

yield. For all of the synthesized derivatives, addition selectively occurs at the central carbon 

atom. This illustrates that 3-imidoallenylphosphonates behave as acceptor substituted allenes.  

 

4.3.2. Mechanistic considerations 

Next, we investigated the mechanism of this alkoxylation reaction. Michael addition to 

alkyne 305324 would initially produce vinylphosphonate 358 which can isomerize to yield the 

allylphosphonate 357. Although vinylphosphonate 358 was never detected in NMR 

experiments, only alkoxylation of isolated allene 338 can unambiguously rule out Michael 

addition. To this end, alkyne 305 was isomerized to the allene 338 with one equivalent of 

Cs2CO3 resulting in the first ever isolation of the 3-imidoallenylphosphonate 338 in 16% yield. 

First of all, it was found to be stable for at least several days, thus countering arguments that 

these allenes display low stability. Secondly, allene 338 was indeed in equilibrium with 

alkyne 305, since 16% isomerization to 305 was found under the same conditions. 

 

Most importantly, full conversion of allene 338 to allylphosphonate 357 in the presence of 

Cs2CO3 and EtOH is smoking gun evidence for the allene being the key intermediate in this 

one-pot, two-step reaction. However, it is clear that product 358 can also be produced from 

the addition to allene 338 (Scheme 75). Whether the nucleophile adds across the C -C  or the 

C -C  double bond of the allene, it always results in the formation of a non-conjugated allyl 

anion - 354 or 356 - owing to the unique orbital structure of allenes. These non-conjugated 

anions can either be immediately protonated to give 357 or 358 respectively or they can rotate 
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around their single bond, and form the conjugated allyl anion 355. After protonation this can 

either lead again to the formation of the allylphosphonate 357 or the vinylphosphonate 358.  

 
Scheme 75. Proposed mechanism. 

During our syntheses we exclusively observed the formation of allylphosphonates 357, except 

for phenolic nucleophiles. In the case of phenol addition at room temperature, a 6:1 357:358 

ratio was found. When this addition was repeated at 0 °C we found a 12:1 357:358 ratio. This 

indicates that the addition reaction is either under kinetic control or that Michael addition to 

alkyne 305 occurs (305 to 358) and is suppressed at this lower temperature. Under the applied 

conditions (room temperature, Cs2CO3) 358 did not isomerize to 357. Furthermore, 357 was 

shown to be the thermodynamically more stable product, as 358 was entirely converted to 357 

upon eighteen hours of reflux. Moreover, it was shown that the addition was irreversible under 

the applied conditions. No exchange of the alkoxide moiety was observed upon reacting 340 

with BnOH and Cs2CO3.Thus, the formation of 358 is not a part of the major reaction pathway. 

This is in accordance with literature data as addition of NaN3 to 3-phenylpropa-1,2-

dienylphosphonate also gives the allylphosphonate, preserving the double bond conjugated to 

the aromatic group.325  

 

4.3.3. Attempted reduction and alkoxide exchange of addition product 340 

 

A peculiar reactivity was observed when reduction of the enimide 340 to -

aminophosphonate 359a was attempted. First, hydrogenation with palladium and platinum 

catalysts was evaluated and led only to recovery of the starting material 340 after prolonged 

reaction times (Table 20, entries 1, 2).326 Also upon reduction with NaBH(OAc)3 at reflux 

temperature in THF, the starting material 340 was exclusively recovered (entry 3). When 

NaBH4 was used, 19% conversion to the -aminophosphonate 359b was observed as the 
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enimido intermediate 360a was probably overreduced (entry 4). Repeating the reaction in 

methanol at room temperature, did not result in any conversion initially (entry 5). When the 

mixture was refluxed overnight however, complete conversion to the -methoxy- -

enimidophosphonate 360b had taken place. Strikingly, full and clean conversion was also 

observed when -ethoxy- -enimidophosphonate 340 was refluxed for two hours with one 

equivalent of Cs2CO3 in methanol (entry 6). Unlike under the conditions of entry 4, the 

intermediacy of enamine 360a was not possible in this case. Presumably, an addition-

elimination reaction via intermediate 361 was responsible for this reactivity. Unfortunately, this 

strategy could not be further exploited for the synthesis of -amino-

-enimidophosphonates 360c. Prolonged heating in diethylamine did not result in any 

conversion of the starting material 340, indicating that the amine is not sufficiently nucleophilic 

to react with enimide 340 (entry 7). 

Table 20: Reduction and alkoxide exchange of addition product 340. 

 
entry reducing agent catalyst base T t (h) solventa outcome 

1 5 bar H2 10 wt% Pd/C - rt 48 MeOH SM 

2 5 bar H2 10 wt% PtO2 - rt 40 MeOH SM 

3b 1.0 equiv NaBH(OAc)3 - - rt 

 

2.5 

11 

THF SM 

SM 

4 1.0 equiv NaBH4 - - rtc on THF 19% 359b 

5 1.0 equiv NaBH4 

1.0 equiv NaBH4 

- - rtc 

 

0.75 

on 

MeOH SM 

100% 360b 

6 - - 1 equiv Cs2CO3  2 MeOH 100% 360b 

(61%)d 

7 - - 1 equiv Cs2CO3  16 HNEt2 SM 
a not anhydrous b 1 equiv AcOH was added c NaBH4 added at 0 °C d isolated yield 

 

4.3.4. Attempted deprotection of the phthalimidoyl group 

It was found that phosphonylated alkynes, bearing a phthalimidoyl group, were excellent 

substrates for the preparation and -alkoxylation of 3-aminoallenylphosphonates. Next, it was 
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briefly investigated if this phthalimidoyl protective group could be easily removed. Given the 

enimide function present in allylphosphonate 340, it was anticipated that, upon complete 

removal of the phthalimidoyl moiety with hydrazine, the generated enamine would immediately 

hydrolyze and complicate matters. On the other hand, substituted phthalimides were reported 

to undergo ring opening to afford phthalamides upon treatment with primary amines at room 

temperature.327 However, no conversion took place when allylphosphonate 340 was mixed 

with n-BuNH2 or BnNH2 (Table 21, entries 1, 2). Treatment with isopropylamine did not alter 

the outcome, not even after heating at reflux temperature. When LDA is used instead, 

formation of small amounts of an unidentified compound is observed. The desired product 362 

is not detected however. The base is possibly too sterically hindered to perform nucleophilic 

attack or is consumed when deprotonating the -position of the phosphonate 340. Further 

attempts were not undertaken to deprotect the phthalimidoyl moiety.  

Table 21: Attempted deprotection of the phthalimidoyl group in allylphosphonate 340. 

 

entry nucleophile R1 R2 T (°C) t (h) solvent conversion (%) 

1 n-BuNH2 n-Bu H rt 27 neat 0 

2 BnNH2 Bn H rt 40 neat 0 

3 i-PrNH2 i-Pr H rt 

 

17 

7 

neat 0 

0 

4 LDA 

(1.0 equiv) 

i-Pr i-Pr - 40 

rt 

1.5 

1 

THF 15 

7 

 

4.4. Towards 1-enimido-2-phosphonylated tetrahydrofurans 

Next, it was investigated if cyclic structures of type 364 could be prepared by reaction of 

imidoallenylphosphonates with haloalcohols (Table 22). Half an hour after 2-chloro ethanol 

was added, 97% conversion to addition product 363a was obtained. After another hour, 

conversion was complete and an extra equivalent of cesium carbonate was added to promote 

cyclization to tetrahydrofuran 364a. After 16 hours, no conversion to tetrahydrofuran 364a was 

observed and the addition product 363a was isolated in 80% yield (entry 1). A similar result 

with 3-chloropropanol, bearing a longer linker, was obtained (entry 2). 
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Table 22: Screened conditions for the one-pot cyclization  
to substituted tetrahydrofurans and tetrahydropyrans. 

 
 

entry substrate n X additive T t (h) 363 (%)b,c 364 (%)b 

1 305 2 Cl 1 equiv Cs2CO3  

1 equiv Cs2CO3 

rt 0.5 

16 

97  

100 (80) 

0 

0 

2 305 3 Cl 1 equiv Cs2CO3 rt 2 100 (84) 0 

3 305 3 Br 

I 

I 

I 

1 equiv Cs2CO3 

1 equiv NaI 

6 equiv NaI  

- 

rt 

rt 

rt 

 

5 

16 

6 

16 

100 (21) 

traces 

100 

100 (55) 

0 

0 

0 

0 

4 363b 3 Cl 1 equiv Cs2CO3 

1 equiv AgNO3 

 

rt 

 

16 

 

- 

 

0 

5 363a 2 Cl 1 equiv KOtBu  rt 7 - d 0 

6 363a 2 Cl 1 equiv KOtBu  48 - 0 

7 363c 3 Br 1 equiv KOtBu   48 - traces 
a not anhydrous b conversion based on 31P NMR c isolated yield between brackets d 72% deuteration upon quench with D2O 

 
The use of a nucleophile carrying a better leaving group, 3-bromopropanol, did not provide the 

tetrahydrofuran product 364c either (entry 3). However, after five hours, a complete conversion 

to addition product 363c was obtained. About one third of the mixture was isolated to yield 

compound 363c in 21% yield. To the remainder of the mixture, one equivalent of NaI was 

added in order to install an even better leaving group. After reacting overnight, traces of the 

iodoalkoxylated product 363d were detected. Complete conversion to iodoalkoxylated 

product 363d was obtained after six hours of reaction with an excess of NaI. Refluxing this 

mixture overnight did not yield the cyclized product 364d either. 

 

Treatment of isolated haloalkoxylated product 363b in the presence of AgNO3 and Cs2CO3 did 

not change the outcome (entry 4). The use of a stronger base, KOtBu, did not result in 

conversion of the starting material either (entry 5). Around 75% of the starting material 363a 
was deuterated upon quench with D2O, indicating that the substrate was effectively 

deprotonated in -position of the phosphonate function. Refluxing the same substrate in THF 

with one equivalent of KOtBu for two days did not yield any conversion either (entry 6). 
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Although some traces of the tetrahydrofuran product 364c were found after refluxing the bromo 

derivative 363c for two days, it was concluded that cyclisation was not favourable (entry 7). 

 

4.5. Towards phosphonylated chromenes 

Given the ease with which alcohols reacted with the imidoallenylphosphonate 338, the addition 

of salicylaldehyde was evaluated in order to obtain phosphonylated chromenes. Chromenes 

display interesting biological activities, e.g. they inhibit tubulin polymerization which is an 

important process in apoptosis.328 At the same time they are important precursors in medicinal 

chemistry, for instance in the synthesis of the antihypertensive agent levcromakalim.329 In THF 

at room temperature, starting material 305 was entirely consumed after half an hour, giving a 

mixture of cyclized products 366-369, along with some unidentified minor compounds 

(Table 23, entry 1). Intermediate 365 was not detected. Phosphonylated chromenes 367-369 

all originate from attack of an allylic anion to the aldehyde carbonyl group, followed by 

aromatization and concomittant elimination of water. It is not surprising that both 

3-phosphonylated and 3-imidochromenes are formed, as it was illustrated earlier on that 

phenolic nucleophiles give a mixture of allyl and vinylphosphonate addition products 

(Scheme 73). Dephosphonylated chromene 366 is a result from a Horner-Wadsworth-

Emmons reaction, in which a phosphate is eliminated instead of water during aromatization. 

This dephosphonylation had previously been observed as well when salicaldehyde was 

reacted with allenylphosphonates.330, 331 Chromenes 366, 368 and 369 were all isolated, albeit 

in low yields. Chromene 367 was characterized by a singlet at 19.57 ppm in 31P NMR, a doublet 

of doublets at 5.60 ppm (J = 6.5 Hz and J = 3.5 Hz) in 1H NMR and a doublet at 101.6 ppm in 
13C NMR (1JCP = 192 Hz), but could not be isolated separately. It was observed earlier that 

allylphosphonate 357 is more selectively produced when lowering the temperature to 0 °C in 

the case of phenolic nucleophiles (vide supra). However, when keeping the temperature at 

0 °C for 7 hours, it did not result in an increased selectivity, but only in a slower reaction 

progress (entry 2). It had also been observed that vinylphosphonate addition products 358 

could be converted to allylphosphonate addition products 357 upon reflux in THF. When 

alkynylphosphonate 305 was refluxed in THF with salicylaldehyde, the starting material and 

the allene intermediate were consumed within half an hour (entry 3). The major product was 

indeed no longer the 3-imido chromene 367, but the 3-phosphonochromene 368. Moreover, 

3-imidochromene 367 proved to be interconvertible to 3-phosphonochromene 368 and a high 

61% conversion to the 3-phosphonochromene 368 was obtained after 2 hours of reflux. Further 

heating resulted in degradation and a complex mixture was obtained. Alternatively, the mixture 

was refluxed in toluene to further increase the selectivity. However, a complex mixture was 
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obtained quite fast and at no point a high conversion to one specific product was obtained 

(entry 4).  

Table 23: Screened conditions for the one-pot synthesis of phosphonylated chromenes. 

 
entry solvent T (°C) t (h) 366 (%)b,c 367 (%)b 368 (%)b,c 369 (%)b,c other (%)d 

1 THF rt 0.5 

1 

4 

6 (3) 

40 

39 

15 

26 (6) 

4 

8 (1) 

37 

22 

2 THF 0 

 

rt 

1.5 

7 

16 

0 

5 

5 

5 

26 

42 

0 

14 

21 

0 

2 

7 

0 

19 

26 

3 THF 0.5 

2 

3 

19 

9 

11 

10 

 

29 

14 

9 

 

42 

61 

51 

CM 

10 

11 

15 

 

9 

3 

14 

 

4 toluene  0.5 

6 

20 

9 

11 

 

26 

19 

 

21 

33 

CM 

5 

8 

 

40 

31 

 

5 CH3CN 65 0.5 

6 

ND 

ND 

27 

22 

12 

28 

28 

37 

10 

13 

6 dioxane 65 0.17 

6 

27 

ND 

ND 

5 

49 

26 

16 

7 

14 

11 

30 

60 

56 

13 

0 

6 

7 H2O 65 3 

6 

 0 

0 

0 

0 

0 

0 

100 

0 

8 CH2Cl2  0.5 

6 

27 

 31 

4 

5 

7 

18 

16 

23 

62 

60 

39 

17 

10 
a not anhydrous b conversion calculated based on 1H and 31P NMR integrations c isolated yield after purification  

d unidentified products, other than alkyn starting material 305 or allene intermediate 338 

 

Since the most selective reaction occurred at 65 °C in THF, solvent screening was performed 

at this temperature. In all cases, the starting material was consumed within half an hour. When 

the reaction was run in CH3CN, no pronounced selectivity was observed (entry 5), while a 

decent selectivity was obtained in dioxane (entry 6). Remarkably, the other isomer was 

predominantly formed as compared to the reaction in THF (entry 3). When water was used as 
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the solvent, the mass of the intermediate 365 was detected for the first time, while 

characteristic signals in 1H NMR and 31P NMR were found (entry 7). Unfortunately, the product 

degraded upon further heating. Refluxing in CH2Cl2 gave the same result as compared to 

dioxane (entry 8). It was concluded that the selectivity to one specific isomer was not sufficient 

and thus the synthesis of phosphonylated chromenes was not further investigated. 

 

4.6. Addition of N-nucleophiles 

In a later stage, it was investigated whether nucleophiles other than alcohols could be used in 

the one-pot synthesis and -derivatization of 3-imidoallenylphosphonates. First, the addition of 

secondary amines was evaluated. Under the same conditions as for the -alkoxylation, 

-amino vinylphosphonate 370a was obtained after one hour in 72% yield (Table 24, entry 1). 

Given the encountered difficulties with iso-propylalcohol (vide supra), conversion 

unsurprisingly proceeded sluggishly with the more sterically hindered diisopropylamine 

(entry 2). Although the addition product 370b was detected, a complex mixture was obtained 

which consisted of several dimeric products of the starting material 305. Addition of 

dibenzylamine resulted in complete consumption of the starting material 305 after 6 hours 

(entry 3). Along with two minor phosphorus-containing compounds, possibly the 

allylphosphonate 371c and a dimer of the starting material 305, vinylphosphonate 370c was 

produced. Moreover, only 40% of the dibenzylamine seemed to be consumed, which is logical 

if a dimer of the starting material is effectively formed. After purification, the product was 

isolated together with -ketophosphonate 353, indicating that the desired product was not 

stable on silica gel. When the reaction was repeated and purified via reversed phase 

chromatography, the vinylphosphonate 370c was obtained as a white crystalline material in 

28% yield (entry 4). With pyrrolidine, the starting material was entirely consumed within one 

hour, giving rise to a 4/1 mixture of the vinylphosphonate 370d and the allylphosphonate 371d, 

which were not separated (entry 5). In the case of N-methyl phenylamine, addition of the 

nucleophile proved to be slow again, probably due to a high steric hindrance (entry 6). Although 

24% of the starting material 305 was converted to the allene intermediate within 15 minutes, 

subsequent addition was hampered, after which secondary reactions started to occur. 

Eventually, a complex mixture was obtained after 6 hours, in which vinylphosphonate 370e 

was one of the many products. It was clear that secondary amines did not react as easily as 

the corresponding alcohols. Remarkably, for the amines that did react, the stereoselectivity 

was opposite to the one observed during the alkoxylation of 3-imidoallenylphosphonates. 
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Table 24: Hydroamination of in situ prepared 3-imidoallenylphosphonates.

 
entry R1 R2 t (h) 370 (%)b 371 (%)b 

1 Et  Et 1.5 100 (72)c 0 

2 iPr iPr 8 CM 

3 Bn Bn 6 84 9 

4 Bn Bn 7 80 (28)d 7 

5 (CH2)4 1 80 20 

6 Ph  Me 6 CM 
a not anhydrous b conversion based on 31P NMR c isolated yield after normal phase column chromatography 

d isolated yield after reversed phase column chromatography 

 

4.7. Addition of P-nucleophiles 

Phosphorus nucleophiles could also be added to the allene intermediate. With one equivalent 

of diethyl phosphite in THF at room temperature, a mixture of four phosphonylated products 

was obtained (Table 25, entry 1). As in the case of addition of phenol and certain amines, the 

addition of diethyl phosphite is not stereoselective. Initially, the product 372, with the double 

bond conjugated to the phthalimide moiety, is primarily formed. Overnight, compound 372 

isomerizes to the E/Z stereoisomers 373 and 374 with the double bond between the two 

phosphonate groups. Ratios do not change significantly upon longer reaction times. A fourth 

product was detected, in which two equivalents of diethyl phosphite had been incorporated. 

The compound, now containing three phosphorus atoms, is characterized by two doublets in 
31P NMR (at 16.9 ppm and -1.3 ppm with a coupling constant of 35 Hz) and one singlet (at 

21.6 ppm). Determination of its structure was not possible however, since the small amount of 

isolated product did not allow to record 13C NMR spectra. In order to shift the reaction towards 

this triple phosphonylated product 375, one equivalent of diethyl phosphite was added in 

excess (entry 2). Initially, more or less equal amounts of products 372-374 were obtained. 

Strikingly, after 7 hours, product 372 was no longer detected, while stereoisomers 373 and 374 

now accounted for almost 90% of the reaction products. Continued stirring at room temperature 

did not alter the composition of the reaction mixture. Refluxing the mixture in THF with an 

equimolar amount of diethyl phosphite, also resulted in a more stereoselective reaction, as 

compound 372 was not detected (entry 3). Adding the phosphorus nucleophile at 0 °C, it was 

attempted to avoid the formation of the triple phosphonylated product (entry 4). Unfortunately, 

this was not successful. An intermediate temperature of 12 °C did not prove to be a fruitful 

compromise either, as the reaction was slowed down too drastically while selectivity was still 

not increased (entry 5). Changing the solvent to dioxane did not alter the outcome either (entry 
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6). Remarkably, when the reaction was run at 100 °C in acetonitrile with microwave heating, 

the triple phosphonylated product is predominantly produced (entry 7). While stereoisomers 

373 and 374 seem to be convertible to compound 375, full conversion could not be achieved 

and a fifth unidentified procuct was formed. An excess diethyl phosphite or heating to 130 °C 

did not enhance the formation of compound 375 (entry 8). Further attempts were not 

undertaken, as it was too difficult to obtain one of the products selectively.  

Table 25: Hydrophosphonylation of in situ prepared 3-imidoallenylphosphonates. 

 

entry equiv HP(O)(OEt)2 solventa T (°C) t (h) 372 (%)b,c 373 (%)b,c 374 (%)b,c 375 (%)b,c 

1 1 THF  rt 0.5 

on 

48 

47 

22 

18d 

18 

45 

49 (12) 

12 

19 

20d 

13 

13 

13 (1) 

2 2 THF rt 0.5 

1.5 

7 

72 

42 

12 

0 

0 

27 

49 

65 

63 

19 

25 

24 

24 

12 

14 

11 

13 

3 1 THF  10 min 

9 

0 

0 

56 

67 

20 

11 

24 

22 

4 1 (dropwise) THF 0 1 11 3 6 2 

5 1 (dropwise) THF 12 2 6 2 2 1 

6 1 (dropwise) 1,4-dioxane 12 2 5 1 1 0 

7e 1 CH3CN 100 0.5 

5.5 

on 

0 

0 

0 

38 

8 

7 

8 

0 

0 

42 

65 

59 

8e 2 CH3CN 100 

 

130 

0.5 

5.5 

1 

0 

0 

0 

35 

32 

28 

16 

7 

5 

42 

52 

47 
a not anhydrous b conversion based on 31P NMR c isolated yield between brackets  

d compounds 372 and 374 could not be separated e microwave irradiation was applied 

 

4.8. Addition of C-nucleophiles 

To conclude, the addition of carbon nucleophiles was evaluated. With equimolar amounts of 

KCN and Cs2CO3, 13% of the starting material 305 was converted to addition product 376 
(Table 26, entry 1). Upon longer reaction times, the remaining starting material was consumed, 

but a complex mixture was obtained. The experiment was repeated with a catalytic amount of 

base so that the starting material 305 can reprotonate the addition product 376. This resulted 
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in a slow conversion of the starting material, but the desired product 376 was not detected 

(entry 2).  

Table 26: Addition of cyanide to in situ prepared 3-imidoallenylphosphonates. 

 
entry Nu t (h) 376 (%)b 

1 KCN  4 

22 

13 

CM 

2c KCN 72 0 
a not anhydrous b conversion based on 31P NMR c 0.1 equiv Cs2CO3 was used  

 

Next, diethyl malonate, a protic carbon nucleophile with a low pKa, was selected. The starting 

material 305 and the allene intermediate were consumed within 90 minutes, but afforded a 

mixture of regioisomers (Table 27, entry 1). The enimidophosphonate 377 seemed to be the 

initial addition product since it isomerizes to product 378 with the double bond conjugated to 

the malonate. After two hours, the vinylphosphonate 379 becomes the major product. On 

repetition of this reaction, vinylphosphonate 379 does not turn out to be the more stable 

product, as conversion in favour of compound 378 took place (entry 2). Enimidophosphonate 

377 is detected in important amounts at the beginning of the reaction again. As 

stereoselectivity was increased upon heating in the case of phenol addition (vide supra), this 

parameter was varied in this case again. Within ten minutes, all of the starting material was 

consumed and the major compound was indeed altered. Vinylphosphonate 379 accounted for 

half of the phosphonylated compounds detected (entry 3). Addition of malononitrile resulted in 

22% conversion to product 378 after one hour at room temperature (entry 4). Upon longer 

reaction times, at least ten other phosphonylated compounds were detected, while the starting 

material was still present. In all of the discussed cases with carbon nucleophiles, an important 

amount of unidentifiable products were detected as well and thus no further attempts were 

performed to optimise the selectivity of the addition of these nucleophiles. 
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Table 27: Addition of malonate-type nucleophiles to in situ prepared 3-imidoallenylphosphonates. 

 
entry R t (h) 377 (%)b 378 (%)b,c 379 (%)b 

1 CO2Et 10 min 

1.5 

2.25 

17 

9 

4 

4 

65 

23 

1 

17 

50 

2 CO2Et 1 

3 

on 

22 

6 

8 

12 

16 

45 (10) 

30 

45 

5 

3d CO2Et 10 min 

0.5 

1.25 

8 

5 

4 

28 

13 

17 

48 

53 

44 

4 CN 1 

31 

0 

 

22 

CM 

0 

a not anhydrous b conversion based on 31P NMR c isolated yield between brackets  
d reflux instead of rt 

 

4.9. Conclusion 

In conclusion, the first synthesis of 3-imidoallenylphosphonates was demonstrated. This 

transformation proceeds via a prototropic rearrangement under very mild conditions and the 

imidoallenylphosphonate was isolated and characterized. Moreover, it can be alkoxylated in a 

one-pot procedure in very short reaction times in excellent chemical yields. The method is 

applicable to an array of highly functionalized biologically relevant O-nucleophiles, furnishing 

these adducts in moderate to good yields. Purification on column was needed only in the case 

of the more complex nucleophiles. Treatment with haloalcohols did not afford substituted 

tetrahydrofurans, while an exchange of the alkoxide moiety was observed when the ethanol 

addition product was mixed with cesium carbonate in methanol. Addition of salicyl aldehyde 

afforded the envisioned phosphonylated chromenes, but a mixture of isomers was obtained. 

Diethylamine was easily added to the allene intermediate as well, but other N-nucleophiles 

were more challenging to add selectively. Phosphorus nucleophiles could also engage in this 

addition reaction, affording a mixture of four phosphonylated products. Carbon nucleophiles, 

such as the cyanide anion or diethylmalonate, could be introduced as well, but an incomplete 

reaction or a mixture of isomers was obtained. 
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5. Aminoallenylphosphonates as a key intermediate 
in the synthesis of new antiviral agents 

5.1. Introduction 

The interest in new antiviral compounds is huge. Yellow fever for instance is a viral disease for 

which an effective vaccin exists, but nonetheless resulted in 127 000 severe infections and 

45 000 deaths in 2013.332 As known antivirals were shown not to be successful, no cure is 

available once a person is infected. Influenza, on the other hand, is reported to result in about 

250 000 to 500 000 deaths a year,333 while in 2015 around 37 million people were living with 

HIV and 1.2 million people succumbed to AIDS-related illnesses.334, 335 Between its discovery 

in 1981 and 2014, AIDS is estimated to have been responsible for no less than 39 million 

deaths worldwide.336 In 1986, azidothymidine was approved by the FDA as the first drug for 

the treatment of HIV.337 At the same time, acyclic nucleoside phosphonic acids turned out to 

be a class of very potent antiviral compounds. In 1986 and 1987, adefovir 12 and cidofovir 11 

were discovered respectively (Figure 20).338, 339 While the former has been approved for the 

treatment of HBV infections (Hepatitis B Virus), the latter is used to treat HCMV retinitis (human 

cytomegalovirus) in AIDS patients.19 In 1993, the anti-HIV properties of tenofovir 13 were first 

described.340 In 2001 tenofovir disoproxil fumarate (TDF) was licensed by the FDA for the 

treatment of HIV infections. Since 2008 it is also approved to treat HBV infections. Moreover, 

tenofovir might also be used prophylactically in order to prevent HIV infections.19 

 

 
Figure 20: Examples of antiviral acyclic nucleoside phosphonates. 

As the straightforward addition of O-nucleophiles to 3-imidoallenylphosphonate 338 was 

demonstrated earlier, it was decided to create a set of nucleoside addition products which 

would then be tested in a broad spectrum antiviral test. Four protected nucleosides were 

selected, which were commercially available in their acetonide protected form: uridine 

acetonide 380, adenosine acetonide 381, guanosine acetonide 382 and inosine acetonide 383, 

the latter being the nucleoside which is formed when hypoxanthine is attached to ribofuranose 
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(Figure 21). Cytidine and thymidine compounds were not selected, as derivatives with easily 

removable protecting groups, such as the acetonide, were not commercially available. 

 

 
Figure 21: Commercially available nucleosides acetonides. 

The screening for antiviral activity would be assessed on two levels: virus-infected cell cultures 

– including herpes, HIV, influenza and yellow fever viruses – were to be used to test the 

nucleoside phosphonates. The deprotected phosphonic acid derivatives however are 

necessary to measure specific enzyme inhibition in enzyme assays. It was reasoned that a 

dibenzyl phosphonate precursor 384 would be a better choice than a diethyl phosphonate 

precursor 305. Benzyl phosphonates are lipophilic, which means a better uptake in the cell, 

and are known to liberate the phosphonic acids upon cytochrome P450 oxidation, a process 

which ethyl phosphonates cannot undergo.341 Also, benzylphosphonates can give the free 

phosphonic acids upon hydrogenation, which is interesting as the TMSBr deprotection method 

of dialkyl phosphonates is known to be troublesome in some cases.342 

 

5.2. Synthesis of nucleoside phosphonates 

5.2.1. Preparation of dibenzyl alkynylphosphonate 384 

In view of the synthesis of nucleoside phosphonates, N-propargyl phthalimide 336 was 

phosphonylated with dibenzyl phosphite according to the earlier developed procedure. 

However, under standard conditions and after two consecutive purification steps, the isolated 

product 384 was still contaminated with N-((benzyloxy)methyl)-N-methylacetamide 385 

(Table 28, entry 1). Probably an N-acetyl iminium intermediate was formed under the applied 

oxidative conditions, which was attacked by traces of free benzyl alcohol. An alternative solvent 

which is stable under the oxidative conditions was searched for. In sulfolane, a poor conversion 

of 37% was obtained after three hours (entry 2). In N-formyl morpholine, a better conversion 

was obtained after six hours (entry 3). A complete conversion was obtained when an equimolar 

amount of copper was used (entry 4). Adding three equivalents of the dibenzylphosphite at the 

beginning of the reaction, allowed the reaction to be completed within two hours (entry 5). 

Scaling up the reaction to a 10 mmol scale, required a slightly bigger excess of dibenzyl 
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phosphite to achieve complete conversion (entry 6). After extensive washing with brine and 

aqueous LiCl solution, followed by column chromatography, dibenzyl alkynylphosphonate 384 

was isolated in 81% yield.  

 
Table 28: Optimization of conditions for the preparation of dibenzyl alkynylphosphonate 384. 

 
 

entry solvent t (h) equiv Cu(OAc)2 equiv HP(O)(OBn)2 384 (%)a,b 

1 DMF 0 

1 

2 

0.1 

0.2 

1 

2 

 

- 

21 

77 (23) 

2 sulfolane  0 

1 

2 

3 

0.1 

 

0.2 

2 

 

1 

- 

4 

6 

37 

3 NFM 0 

1 

2 

2.5 

3.5 

4.5 

6 

0.1 

 

 

0.2 

2 

 

 

 

 

1 

- 

15 

17 

- 

63 

- 

78 

4 NFM 0 

1 

3 

4 

1 2 

 

1 

 

- 

70 

70 

100 

5 NFM 0 

2 

1 3 - 

97 

6c NFM 0 

3 

3.75 

4.5 

1 3 

 

0.5 

- 

89 

 

100 (81) 
a conversion based on 1H NMR b isolated yield between brackets c 10 mmol scale 

 

5.2.2. Addition of nucleobases to dibenzyl alkynylphosphonate 384 

Next, the addition of uridine acetonide 380 was evaluated. When an equimolar amount of 

nucleophile was used, the alkynylphosphonate 384 was entirely consumed after 6 hours, 

although the mixture contained 37% non-incorporated uridine acetonide starting material 380 
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(Table 29, entry 1). Moreover, separation on column was not successful. Although the 

transformation previously never required the use of dried solvent, the reaction was now run in 

dry THF. According to 31P NMR, the reaction was finished within 4 hours but 1H NMR showed 

that even more uridine acetonide starting material 380 remained (entry 2). Even an excess of 

alkynylphosphate 384 was consumed within three hours, while the nucleoside starting material 

was still present (entry 3). A change of solvent resulted only in a small improvement (entry 4). 

Possibly, an addition-elimination step of hydroxide (as was observed when ethanol addition 

product 340 was mixed with Cs2CO3 in methanol, vide supra), yielded the starting material 380 

and -ketophosphonate 387 (Scheme 76). Elimination product 388 (the analogue of compound 

352, which was produced when serine was added to imidoallenylphosphonate 338, vide supra) 

was not observed. The most successful conditions were repeated before the mixture was 

purified via reversed phase column chromatography (entry 4). Unfortunately, also in this way 

no analytically pure material could be obtained.  

 
Table 29: Screened conditions for the synthesis of uridine acetonide addition product 386. 

 
entry equiv alkyne 384 t (h) solvent 386 (%)a remaining SM 380 (%)b 

1 1 6 THFc  77 37 

2 1 4 THF 62 45 

3 1.5 3 THF 48 32 

4 1 2 CH3CNd 70 18 

5 1 2 CH3CNd 70 30 
a conversion based on 31P NMR b conversion based on 1H NMR c not anhydrous d anhydrous 
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Scheme 76: Possible formation of -ketophosphonate 387. 

5.2.3. Debenzylation of the dibenzyl phosphonate addition product 386 

It was then decided to deprotect the nucleoside phosphonate esters first and purify the mixture 

at the phosphonic acid stage. Treatment of nucleoside phosphonate 386 with 10 wt% Pd/C 

resulted in complete deprotection but three unidentified impurities were also formed (Table 

30). Purification by means of preparative TLC (mobile phase: 8:2 iPrOH/water) did not result 

in a cleaner product. Moreover, most of the product could not be recovered. Also reversed 

phase chromatography proved to be unsuccessful as the product did not show any affinity for 

the stationary phase, eluting immediately with 100% water (entry 2).  

 
Table 30: Deprotection and conditions for the attempted purification of  

uridine acetonide phosphonic acid aduct 389. 

 
entry purification result 

1 pTLC (8/2 iPrOH/H2O) unsuccessful 

2 RP chromatography (100% H2O) unsuccessful 

3 Wash n-hexane 

Wash ethyl acetate 

one apolar impurity removed 

loss of material in organic phase 

4 Recrystallization MeOH unsuccessful 

 

One of the three major impurities could be removed by dissolving the product in water and 

extracting the impurity with hexane (entry 3). Washing with ethyl acetate resulted in loss of the 
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product 389 in the organic phase, while the remaining product 389 in the aqueous phase was 

still contaminated with the other two impurities. Recrystallization from MeOH was also 

unsuccessful (entry 4). When the crude reaction mixture was refluxed in THF/HCl(aq.), the 

entirely deprotected target structure 390, was easily obtained (Scheme 77). An analytically 

pure sample could once again not be obtained as recrystallization in water, adding acetone as 

an antisolvent, was unsuccessful.  

 

 
a not anhydrous 

Scheme 77: Deprotection of the acetonide and phosphonate moieties. 

 

5.2.4. Deprotection of the diethyl phosphonate addition product 351 with TMSBr 

Although the uridine phosphonic acid 389 was predominantly obtained from the dibenzyl 

phosphonate 386, purification was shown to be troublesome. Consequently, the deprotection 

of diethyl nucleoside phosphonate 351 (vide supra), with TMSBr was considered nonetheless 

(Table 31). Earlier on, diethyl nucleoside phosphonate 351 had been obtained from uridine 

acetonide addition to 3-imidoallenylphosphonate 338 and was easily purified via normal phase 

chromatography. Thus, diethyl nucleoside phosphonate 351 was selected as a model 

substrate for the deprotection of the diethyl phosphonate ester moiety. Treatment of nucleoside 

phosphonate 351 with two equivalents of TMSBr resulted both in phosphonate ester and 

acetonide deprotection (entry 1). After 4 hours, 80% of the starting material 351 was 

monodeprotected at the phosphorus center, producing compounds 392 and 393. 

Unfortunately, after the addition of 1 extra equivalent TMSBr, no phosphonic acid product 394 

could be detected. When analytically pure 2’,3’-deprotected nucleoside phosphonate 391 
(preparation, vide infra) was treated with four equivalents of TMSBr, small amounts of the 

phosphonic acid nucleoside 394 were detected (entry 2). The major product was still the mono 

ethyl phosphonic acid 393. As the target phosphonic acids were hardly obtained, purification 

was not pursued. 
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Table 31: Deprotection of the phosphonate moiety in adducts 351 and 391 with TMSBr. 

 
entry equiv TMSBr t (h) starting material SMa 391 (%)a 392 + 393 (%) a,b 394 (%)a 

1 2c 

1 

 

2 

4 

5 

351 10 

10 

0 

55 

10 

30 

35 

80 

70 

0 

0 

0 

2 4c 20 391 25 - 70d 5 
a determined through LC-MS b compounds 392 and 393 co-elute c added at start of reaction d only 393 

 

5.2.5. Acetonide deprotection of dibenzyl phosphonate prodrugs 

Since no easy entry into nucleoside phosphonic acid 394 was found, it was decided to refocus 

on the preparation of dibenzyl phosphonate prodrugs 395 with a 2’,3’-deprotected ribose 

moiety (Table 32). Treatment of dibenzyl nucleoside phosphonate 386 with pTsOH in THF 

resulted in almost complete consumption of the starting material, but next to 

dibenzylphosphonate 395, monobenzyl phosphonate 396 was also detected (entry 1). The 

acetonide deprotection was as good as completed after 4.5 hours (entry 2). Deprotection of 

the phosphonate moiety only seemed to take place upon longer reaction times. Unfortunately, 

the product 395 could again not be separated from the impurities. Running the reaction at room 

temperature did not improve the selectivity and resulted in a poor conversion of the starting 

material 386 (entry 3). 
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Table 32: Deprotection of the acetonide moiety of dibenzyl phosphonate adduct 386. 

 

entry T t (h) 386b 395b 396b 397b 

1  24 5 50 40 0 

2  4.5 9 87 4 0 

3 rt 6 days 72 25 3 0 
a not anhydrous b determined through LC-MS 

 

5.2.6. Acetonide deprotection of diethyl phosphonate prodrugs 

Ultimately, it was attempted to prepare acetonide-deprotected diethyl nucleoside phosphonate 

prodrugs. Diethyl 2′,3′-O-isopropylideneuridine phosphonate 351, which had been prepared 

earlier (vide supra), did undergo selective deprotection of the acetonide moiety upon treatment 

with pTsOH.343 After one day of reflux in THF, uridine phosphonate 401 was isolated in 50% 

yield after extractive work-up (Table 33, entry 1). Deprotection of the phosphonate ester was 

not observed. Encouraged by this result, the addition of three other nucleosides and the 

subsequent deprotection step were evaluated. Reaction with 2′,3′-O-isopropylideneadenosine 

swiftly afforded the 2′,3′-O-isopropylideneadenosine phosphonate 398 after normal phase 

chromatography (entry 2). After deprotection of the 2′,3′-O-isopropylidene group, the 

adenosine phosphonate 402 was isolated, without the need for purification at this stage, in 

80% yield. When 2′,3′-O-isopropylideneinosine 382 was used, a complex mixture was 

obtained, in which the aliphatic alkoxylated addition product 399 was observed along with the 

phenolic hydroxypurinyl double addition product 405 (entry 3 and Figure 22). Double alkylation 

was observed as well when 2′,3′-O-isopropylideneguanosine 383 was used as a substrate. In 

this case, only products 400 and 407 and no other impurities were formed and consequently, 

both addition products could be isolated in low yields via preparative reversed phase 

chromatography (entry 4). Ultimately, the acetonide protecting group of both alkoxylated 

products 400 and 407 was readily deprotected. 
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Table 33: Synthesis of acetonide-deprotected diethyl phosphonate prodrugs 401-404. 

 

entry NuH 

Protected nucleoside 
phosphonates 
351, 398-400 

Deprotected nucleoside 
phosphonates 

401-404 

1 

   

2 

   

3 

   

4 

   
a not anhydrous b isolated yield 
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Figure 22: Double addition products 405 and 407 and the deprotected derivative 408. 

5.3. Biological evaluation of nucleoside phosphonates 

The antiviral properties of diethyl nucleoside phosphonates 401, 402, 404 and 408 were 

assessed at the Rega institute for Medical Research (KU Leuven) against several viruses in 

four different cell cultures (Figure 23).344 HEL cell cultures (Human Embryonic Lung fibroblast 

cells) were used to test the activity against herpes simplex virus type 1 (HSV-1), an aciclovir 

resistant strain of thymidine kinase-deficient HSV-1, herpes simplex virus type 2 (HSV-2), 

vaccinia virus, human adeno virus type 2 (Ad2) and human coronavirus (Table 34). No activity 

was observed at the highest concentrations tested for any of the viruses. 

 
Figure 23: Prepared diethylnucleoside phosphonates, used in the broad-spectrum antiviral screening. 
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Table 34: Cytotoxicity and antiviral activity in HEL cell cultures. 

compound Minimum  

cytotoxic  

concentrationa,b  

EC50a,c 

HSV-

1 

HSV-1 TK- 

ACVr 

HSV-

2 

Vaccinia 

virus 

Ad2 Human 

coronavirus 

401 
402 
404 
408 

Brivudin 

Cidofovir 

Aciclovir 

Ganciclovir 

Zalcitabine 

Alovudine 

UDAd 

Ribavirin 

>100 

>100 

>100 

>100 

>250 

>250 

>250 

>100 

>250 

>250 

>100 

>250 

>100 

>100 

>100 

>100 

0.04 

2 

0.9 

0.07 

- 

- 

- 

- 

>100 

>100 

>100 

>100 

14 

5 

100 

0.8 

- 

- 

- 

- 

>100 

>100 

>100 

>100 

>250 

5.8 

3.4 

0.4 

- 

- 

- 

- 

>100 

>100 

>100 

>100 

22 

19 

>250 

>100 

- 

- 

- 

- 

>100 

>100 

>100 

>100 

- 

10 

- 

- 

29 

22 

- 

- 

>100 

>100 

>100 

>100 

- 

- 

- 

- 

- 

- 

1.8 

146 
a concentrations expressed in μM, except for UDA: μg/mL b required to cause a microscopically detectable alteration of normal 

cell morphology c required to reduce virus-induced cytopathogenicity by 50% d Urtica dioica agglutinin 

 

Next, the antiviral activity against vesicular stomatitis virus, coxsackie virus B4 and respiratory 

syncytial virus was tested in HeLa cell cultures. Unfortunately, no activity was observed at the 

highest concentrations tested (Table 35).  

 
Table 35: Cytotoxicity and antiviral activity in HeLa cell cultures. 

compound Minimum  

cytotoxic  

concentrationa,b  

EC50a,c 

Vesicular  

stomatitis virus 

Coxsackie virus B4 Respiratory  

syncytial virus 

401 
402 
404 
408 

DS-10.000 

Ribavirin 

>100 

>100 

>100 

>100 

>100 

>250 

>100 

>100 

>100 

>100 

>100 

8.9 

>100 

>100 

>100 

>100 

34 

45 

>100 

>100 

>100 

>100 

0.4 

1.5 
a concentrations expressed in μM, except for DS-10.000: μg/mL b required to cause a microscopically detectable alteration of 

normal cell morphology c required to reduce virus-induced cytopathogenicity by 50% 

 

Antiviral activity of compounds 401, 402, 404 and 408 was investigated against para-influenza-

3-virus, reovirus-1, sindbis virus, Coxsackie virus B4, punta toro virus and yellow fever virus in 

Vero cell cultures. Again, at the highest concentrations tested, no activity was observed (Table 

36).  
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Table 36: Cytotoxicity and antiviral activity in Vero cell cultures. 

compound Minimum  

cytotoxic  

concentrationa,b  

EC50a,c 

Para- 

influenza- 

3-virus 

Reovirus-

1 

Sindbis 

virus 

Coxsackie 

virus B4 

Punta 

Toro 

virus 

Yellow 

Fever 

virus 

401 
402 
404 
408 

DS-10.000 

Ribavirin 

Mycophenolic 

acid 

>100 

>100 

>100 

>100 

>100 

>250 

>100 

>100 

>100 

>100 

>100 

100 

50 

0.5 

>100 

>100 

>100 

>100 

>100 

>250 

6 

>100 

>100 

>100 

>100 

45 

>250 

45 

>100 

>100 

>100 

>100 

20 

>250 

>100 

 

>100 

>100 

>100 

>100 

>100 

45 

2.3 

>100 

>100 

>100 

>100 

12 

>250 

2 

a concentrations expressed in μM, except for DS-10.000: μg/mL b required to cause a microscopically detectable alteration of 

normal cell morphology c required to reduce virus-induced cytopathogenicity by 50% 

 

Next, the antiviral properties of nucleoside phosphonates 401, 402, 404 and 408 were tested 

against three types of influenza in MDCK (Madin Darby canine kidney cells) cell cultures. No 

activity was observed either (Table 37).  

 
Table 37: Cytotoxicity and antiviral activity in MDCK cell cultures. 

compound Cytotoxicity EC50b 

Influenza A/H1N1 Influenza A/H3N2 Influenza B 

CC50a Minimum  

cytotoxic  

concentrationb,c 

visual CPE 

score 

MTS visual CPE 

score 

MTS visual CPE 

score 

MTS 

401 
402 
404 
408 

Zanamivir 

Ribavirin 

Amandatine 

Rimandatine 

>100 

>100 

>100 

>100 

>100 

>100 

>100 

>200 

>100 

>100 

>100 

>100 

>100 

>100 

>100 

>200 

>100 

>100 

>100 

>100 

0.1 

8.9 

20 

>200 

>100 

>100 

>100 

>100 

0.3 

18.2 

22.6 

>200 

>100 

>100 

>100 

>100 

0.4 

2.3 

0.2 

0.01 

>100 

>100 

>100 

>100 

0.01 

1.4 

0.03 

0.01 

>100 

>100 

>100 

>100 

0.4 

5.6 

>100 

>200 

>100 

>100 

>100 

>100 

0.4 

4.6 

>100 

>200 
a 50% Cytotoxic concentration, as determined by measuring the cell viability with the colorimetric formazan-based MTS assay b 

concentrations expressed in μM c Minimum compound concentration that causes a microscopically detectable alteration of normal 

cell morphology c 50% Effective concentration, or concentration producing 50% inhibition of virus-induced cytopathic effect, as 

determined by visual scoring of the CPE, or by measuring the cell viability with the colorimetric formazan-based MTS assay 

 

Finally, the anti-HIV properties of nucleoside phosphonates 401, 402, 404 and 408 were 

evaluated against the HIV-1 NL4.3 and HIV-1 BaL strains in TZM-bl cells and against the HIV-

1 NL4.3 and HIV-2 ROD strains in MT-4 cells. Disappointingly, no antiviral activity was 

observed against any of these strains in the TZM-bl or MT-4 cells (Table 38). 
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Table 38: Cytotoxicity and antiviral activity in TZM-bl cells and MT-4 cells. 

compound CC50a and EC50b in TZM-bl cells CC50a and EC50b in MT-4 cells 

 CC50a EC50b,c 

HIV-1 

NL4.3 

EC50 b,c 

HIV-1 

BaL 

CC50a EC50 b,c 

HIV-1 

NL4.3 

EC50 b,c 

HIV-2 

ROD 

401 
402 
404 
408 

AMD3100 

AMD14031 

>100 

>100 

>100 

>100 

>1000 

>1000 

>100 

>100 

>100 

>100 

1.3 

- 

>100 

>100 

>100 

>100 

- 

3.0 

>100 

>100 

>100 

>100 

>1000 

>100d 

>100 

>100 

>100 

>100 

17 

8.5d 

>100 

>100 

>100 

>100 

16 

1.5d 
a 50% cytotoxic concentration of the compound in this cell line b concentrations expressed in μM, except for AMD3100: ng/mL 

c 50% effective concentration or compound concentration producing 50% inhibtion of HIV-induced cytopathic effect 
d PMPA was used as a reference instead of AMD14031 

 

In all of the cytotoxicity tests, none of the nucleoside phosphonates were found to be cytotoxic. 

The four nucleoside phosphonates were also tested in an enzymatic assay with influenza 

PA-Nter endonuclease.345 Even at the highest concentrations tested, no inhibition of the 

influenza polymerase was observed (Table 39). 

 
Table 39: Activity in enzymatic assay with influenza PA-Nter endonuclease. 

compound IC50a,b  

401 
402 
404 
408 

DPBAc 

>500 

>500 

>500 

>500 

1.6 
a compound concentration producing 50% inhibition of PA-Nter mediated cleavage of the DNA substrate  

b concentrations expressed in μM c 2,4-dioxo-4-phenylbutanoic acid 

 

5.4. Conclusion 

In this chapter, it was investigated whether the earlier developed 3-imidoallenylphosphonate 

building block could be exploited for the synthesis of nucleoside phosphonate prodrugs and 

nucleoside phosphonic acids. Antiviral activity would be assessed in an enzymatic essay with 

influenza PA endonuclease, which required the preparation of the nucleoside phosphonic 

acids. Secondly, the nucleoside phosphonates would be tested as prodrugs in cell culture 

against a broad spectrum of viruses. To that end, a dibenzyl alkynylphosphonate precursor 

was prepared, as benzyl phosphonates can yield the corresponding phosphonic acids upon 

hydrogenation. Addition of the nucleoside occurred smoothly, but isolation of the pure 

compound proved to be cumbersome. Although the phosphonate ester and 2’,3’-O-
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isopropylidene protecting groups were both readily removed, purification at either of these 

stages was not successful. Disappointingly, the diethyl nucleoside phosphonate could not yield 

the nucleoside phosphonic acid either. However, four diethyl nucleoside phosphonate 

prodrugs could be prepared, originating from the addition of either 

2’,3’-O-isopropylideneuridine, 2’,3’-O-isopropylideneadenosine or 

2’,3’-O-isopropylideneguanosine to diethyl 3-imidoallenylphosphonate, followed by acetonide 

deprotection with pTsOH. The synthesized compounds showed no activity in a broad-spectrum 

antiviral screening in cell cultures or enzyme assays. 
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6. Applying the aminoallenylphosphonate strategy to 
the production of new fosmidomycin-based 
antimalarials 

6.1. Introduction 

Malaria is a tropical disease, spread most commonly by the female Anopheles mosquito. It 

was reported that in 2015, there were 296 million cases of malaria worldwide, probably causing 

around 731 000 deaths.334, 335 With 90% of those deaths and infections occuring in Africa, the 

disease has a huge impact on these societies and their economic development.346 Although 

several antimalarial medications exist, treatment becomes increasingly problematic because 

the parasite has developed resistance against all antimalarial drugs apart from artemisinins. 

Since treatment of malaria infections, caused by resistant strains, increasingly relied on the 

use of those last resort drugs, artemisinin resistance is developing as well.347 It is universally 

acknowledged that new antimalarial drugs are urgently needed, but the resources for the 

development of a treatment of this poverty disease are sadly enough still limited. 

Fosmidomycin 5 is a natural product, first isolated from Streptomyces lavendulae, and was 

first investigated for its antibacterial activity.348, 349 Later it was found that fosmidomycin 5 and 

its N-acetyl derivative FR900098 6, which is about twice as potent, display important activities 

against the parasite Plasmodium falciparum.350, 351 Fosmidomycin inhibits DXP 

reductoisomerase, a key enzyme in the non-mevalonate pathway. Some organisms, such as 

the malaria parasite, rely on this pathway for their isoprenoid biosynthesis. Human beings use 

the mevalonate pathway for their isoprenoid biosynthesis, rendering this approach particularly 

attractive. Although quite some - and -substituted fosmidomycin derivatives have been 

prepared,352-354 only 14 examples of -substituted fosmidomycin and FR 900098 derivatives 

have been reported in literature.348, 355-364 In previous chapters, it has been demonstrated that 

3-imidoallenylphosphonate 305 is an intermediate that can be easily prepared from 

phosphonylated N-propargyl phthalimide 336 and that it is easily derivatized at the central 

carbon atom. Oxygen nucleophiles react particularly well, in high yields, short reaction times 

and displaying good stereoselectivity. Although a decreased stereoselectivity was often 

observed, nitrogen, phosphorus and carbon nucleophiles could be introduced as well in some 

cases. Aptly substituted 3-aminoallenylphosphonate 34 could consequently serve as the 

precursor to make a small library of unsaturated -substituted fosmidomycin derivatives 39 

(Scheme 78). To effectively use the previously developed methodology, the phthalimidoyl 

group in precursor 338 had to be replaced by a masked hydroxamic acid functional group while 
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the free phosphonic acids instead of the phosphonate esters are desired in the target 

molecules. As the deprotection of diethyl phosphonates to the free phosphonic acids with 

TMSBr is often cumbersome, both ethyl and benzyl phosphonates would be prepared. The 

latter have the advantage that they can be be deprotected upon hydrogenation and ideally, the 

O-benzyl protected hydroxamic acid function would be deprotected at the same time. So, 

alkynylphosphonate precursors 35 would be prepared from successive alkylation of O-benzyl 

hydroxamic acid 37 and copper-catalyzed phosphonylation of the resulting alkyne 36 with 

dialkylphosphite. 

 
Scheme 78: Retrosynthetic approach to -substituted analogues of FR900098 and structures of 

fosmidomycin and its N-acetyl analogue FR900098. 

6.2. Synthesis of -substituted FR900098 derivatives 

6.2.1. Preparation of N-alkylated hydroxamic acid 410 

O-benzyl hydroxamic acid 37 is not commercially available but was conveniently prepared from 

O-benzyl hydroxylamine hydrochloride 409 with acetyl chloride (Scheme 79).365 O-benzyl 

hydroxamic acid 37 was isolated as a mixture of rotamers with an isolated yield of 85%.  
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Scheme 79: Preparation of O-benzyl hydroxamic acid 37. 

Alkylation with propargyl bromide predominantly gave the desired N-alkylated product 410, 

next to two O-alkylated isomers 411a and 411b (Table 40).366 Initially, N-alkylated hydroxamic 

acid 410 was isolated in 66% yield, although purification was not straightforward given the 

comparable Rf values of the products (entry 1).  

 
Table 40: Propargylation of O-benzyl hydroxamic acid 37. 

 
entry base T t (h) 410 (%)a,b 411a (%)a 411b (%)a,b 

1 K2CO3   15 86 (66) 3 11 (5) 

2 Cs2CO3  0.5 89 (42) 2 8 

3 Cs2CO3 rt 4 91 (66) 2 8 

4 K2CO3  15 ND (88)c ND ND 
a conversion based on 1H NMR b isolated yield between brackets c work-up limited to solvent evaporation 

 

To facilitate this purification step, conditions were screened in order to minimize the formation 

of the O-alkylated products 411a and 411b. Since O-allylated hydroxamic acids are known to 

undergo thermal [3,3]-rearrangement to their N-allylated counterparts,367 one of the two O-

propargyl, O’-benzyl hydroxamic acid isomers 411a or 411b was refluxed in DMF. 

E/Z isomerization was observed upon reflux in DMF for one day, but unfortunately no 

conversion to the N-propargyl hydroxamic acid 410 was observed (Scheme 80).  

 
Scheme 80: Attempted N to O thermal rearrangement. 
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With Cs2CO3 instead of K2CO3 as the base in the alkylation step, the selectivity for the desired 

isomer 410 was only marginally improved (entry 2). Because of the higher solubility of Cs2CO3, 

the reaction sped up drastically. It was consequently investigated whether regioselectivity 

would be increased when running the reaction at a lower temperature. However, at room 

temperature, O-propargylation still occurred in small amounts (entry 3). Because of the higher 

price of Cs2CO3, it was decided to use K2CO3 from then on since comparable yields were 

obtained. It was also observed that a considerable amount of product was lost during aqueous 

work-up (entries 2 and 3). Hence, work-up was limited to evaporation of the solvent prior to 

purification of the crude mixture on column. This resulted in a high 88% isolated yield of 

N-propargyl hydroxamic acid 410 (entry 4). 

 

6.2.2. Synthesis of phosphonylated hydroxamic acid precursors 412a-b 

Next, N-alkylated hydroxamic acid 410 was successfully phosphonylated with dialkyl 

phosphites, using the earlier developed procedure (Table 41). The diethyl phosphonate 

precursor 412a could be isolated in 66% yield (entry 1). Similarly, the dibenzyl 

phosphonate 412b was prepared from reaction with dibenzyl phosphite in NFM, to avoid 

reaction with the solvent (vide supra). In the latter case, an equimolar amount of catalyst was 

used in order to obtain a complete conversion on a reasonable time scale (entry 2). Dibenzyl 

phosphonate 412b was eventually isolated in 20% yield. Part of the product was probably lost 

during the extensive washing with aqueous LiCl solution, while another part eluted together 

with tetrabenzyl hypophosphate 413.  

 
Table 41: Preparation of dialkyl phosphonate precursors 412a-b. 

 
 

entry R equiv Cu(OAc)2 equiv DAP t (h) solvent 412 (%)a,b 

1c Et 0.4  2 1 DMF 97 (66) 

2 Bn 1 3 3.5 NFM 96 (20) 
a conversion based on 31P NMR b isolated yield c 0.3 equiv NEt3 was used  
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6.2.3. Attempted addition of nucleophiles to phosphonylated hydroxamic acid 

precursors 414a-b 

With the alkynylphosphonate precursor 412a-b in hand, the addition of O-nucleophiles was 

evaluated at room temperature (Table 42, entry 1). Twenty minutes after the addition of one 

equivalent ethanol, the starting material was entirely consumed, giving a complex mixture. 

After three hours, three major products were detected by 31P NMR, while signals of the 

intermediates had disappeared. 

 
Table 42: Attempted synthesis of -alkoxylated FR900098 derivatives. 

 
entry SM equiv EtOH t (h) solvent 415 (%)a 416 (%)a,b 417 (%)a 

1 412a 1  3 THF 20 54 (11) 26 

2 412b 2 1 min neat 47 37 16 

3 412b - 5 min EtOH 75 15 10 

4 412b 0 3 THF 0 60 40 
a conversion based on 31P NMR b isolated yield between brackets 

 

Minor amounts of the addition product 414a were detected, which could not be recovered after 

purification. However, oxazole 416a, which was the major product, was isolated in 11% yield. 

Spectral data were in accordance with literature values for comparable compounds.368 When 

substrate 412b was allowed to react with two equivalents of EtOH, the starting material was 

entirely consumed within one minute yielding a mixture of oxazoles 415-417 (entry 2). When 

ethanol was added in excess, the benzyl alcohol addition product still accounts for 15% 

conversion (entry 3).  

 

A plausible mechanism is suggested for the formation of oxazoles 415-417, in which an 

apparent [1,2]-shift of the alkoxy group has occurred (Scheme 81). In alkaline medium, the 

highly conjugated N-acetyl ynimine 418 is presumably produced with concomittant expulsion 

of benzyloxide (path a). The N-acetyl ynimine 418 can then yield hemiaminal 419 after an 

attack of an alkoxide. A 5-exo-dig Michael-type cyclization followed by an isomerization step 

possibly yields the oxazoles 415 or 416 (path c). Alternatively, isomerization of the 

hemiaminal 419 occurs, giving the amino allenylphosphonate 421, which yields the 

oxazoles 415 or 416 upon 5-exo-dig cyclization (path d). The intermediacy of the N-acetyl 
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ynimine 418 explains the presence of ethanol cross-over product 415. Moreover, after 20 

minutes the N-acetyl ynimine 418 is observed in 1H NMR (doublet at 7.83 ppm (JHP = 1.1 Hz)) 

and at -7.41 ppm in 31P NMR. After three hours, these signals have disappeared, indicating 

that this intermediate is further converted. In addition to that, 31P NMR data showed that P-

C(sp2) fragments were also present at the beginning of the reaction, possibly originating from 

the allene 421. The presence of the reduced oxazole 417 can be explained by cyclization of 

secondary amide 422, which could result from homolytic scission of the N-O bond (path b). 

 
Scheme 81: Plausible mechanism for the formation of oxazoles 415-417. 

In an aprotic medium, the N-acetyl ynimine 418 was observed again and evidently no ethanol 

cross-over product was observed (entry 4). Further reaction to the benzyloxy substituted 

oxazole 416 and the reduced oxazole 417 could not be prevented. 

 

6.2.4. Understanding the proposed mechanism through synthesizing 

intermediates and derivatives 

In order to eventually prevent the formation of oxazoles 415-417, proof for this pathway was 

sought for. The N-(benzyloxy)-N-(but-2-yn-1-yl)acetamide 423 was prepared to assess if the 

hemiaminal 419 is an intermediate indeed (Table 43). As the triple bond in the hemiaminal 425 
is probably not sufficiently polarized to initiate 5-exo-dig cyclization, it was anticipated that 

hemiaminal 425 would be observed. When N-(benzyloxy)-N-(but-2-yn-1-yl)acetamide 423 was 

reacted with one equivalent of Cs2CO3, the starting material was recovered, even after a long 

reaction time (entry 1). The N-acetyl ynimine intermediate 424 was not observed in 1H NMR. 

This is not surprising, as the propargylic protons in N-(benzyloxy)-N-

(but-2-yn-1-yl)acetamide 423 are probably significantly less acidic as compared to those in that 

position in the phosphonate-containing hydroxamic acid 412. When the reaction is repeated in 
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ethanol, 23% conversion to the N-(1-alkoxybut-2-yn-1-yl)acetamide 425 was detected after 

four days (entry 2). Moreover, the mass of the N-acetyl ynimine intermediate 424 was detected 

in trace amounts in LC-MS analysis. These two observations show that the hemiaminal 425 
can indeed be formed under these mild conditions, even though the propargylic protons are 

not as acidic as in the phosphonylated substrate 412. Cyclization of hemiaminal 425 did not 

occur indeed. 

 
Table 43: Preparation of the non-phosphonylated analogue 425. 

 
entry equiv Cs2CO3 t (d) solvent 423 (%)a 424 (%)a 425 (%)a 

1 1  14 THF 100 0 0 

2 2 4 EtOH 77 0 23 
a conversion based on 1H NMR 

 

Next, phosphonylated amide 422 was prepared to assess whether this proposed intermediate 
would cyclize in the presence of a mild base. Boc-protected propargylamine 23 was 

phosphonylated with diethyl phosphite, deprotected with HCl and then acetylated.245 (Scheme 

82).  

 

 
Scheme 82: Preparation and cyclization of the amide 422. 
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Upon treatment with one equivalent Cs2CO3 and one equivalent ethanol at room temperature, 

95% of the amide 422 was converted to oxazole 417a after 6 days. Spectral data are similar 

to literature values for comparable compounds.368 Allenic intermediates were not observed and 

thus it is reasonable to assume that hemiaminal 419, once formed, reacts in much the same 

way (pathway c). Given the difference in reaction rate however, the intermediacy of amino 

allenylphosphonate 421 cannot be excluded in the case of hemiaminal 419. 

 

6.2.5. Nucleophilic addition to tert-butyl (benzyloxy)(3-

(diethoxyphosphoryl)prop-2-yn-1-yl)carbamate 428 

Next, it was anticipated that the acidity of the propargylic protons in precursor 412 could be 

downregulated by replacing the acetyl group by a Boc group. O-benzyl hydroxylamine 

hydrochloride 409 was N-Boc protected and next propargylated in good yield (Scheme 83). 

Oxidative cross coupling with diethyl phosphite then yielded precursor 428. Unfortunately, 

upon treatment of precursor 428 with one equivalent of Cs2CO3, loss of the OBn and Boc 

signals was observed in 1H NMR. It was concluded that the present approach was too 

challenging and the -alkoxylation strategy was abandoned. 

 

 
Scheme 83: Preparation and -alkoxylation of O-benzyl-N-Boc protected hydroxylamine 428. 

6.2.6. Copper-catalyzed hydroamination of alkynylphosphonate 412 

As the introduction of an oxygen nucleophile in alkaline medium proved to be problematic, 

another approach for the introduction of nucleophiles was considered. In literature, the copper-

catalyzed addition of secondary amines to alkynylphosphonates has been described.59 This 

method was evaluated on substrate 412 in order to get access to -enamino fosmidomycin 
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derivatives 430 (Table 44). Applying the conditions of the original procedure afforded a 

complex mixture, in which oxazole 416a accounted for one third of the phosphorus-containing 

products (entry 1). When the reaction was run in HNEt2 as a solvent, the starting material was 

consumed after one hour (entry 2). One isomer of the addition product 430 and one isomer of 

a double addition product 431 were detected.  

 
Table 44: Screened conditions for the hydroamination of phosphonylated O-benzyl hydroxamic acid 412. 

 
entry equiv HNEt2 T (°C) t (h) solvent 430a (%)a 430b (%)a 431 (%)a 416a (%)a 

1 1  100 16 MeOH 0 0 0 33 

2 - 100 1 HNEt2 0 6 39 0 

3 - rt 20 HNEt2 7 13 39 0 

4 1 rt 8 d MeOH 0 0 32 0 

5 - - 41 4 HNEt2 15 2 47 0 
a conversion based on 1H NMR 

The latter can be explained by the intermediacy of ynamide 418, which can then undergo two 

consecutive Michael addition steps, one in the direction of the phosphonate and another in the 

direction of the imine (Scheme 84). At room temperature, a slightly more encouraging result 

was obtained as both isomers 430a-b were detected, along with the double addition 

product 431 (entry 3). At room temperature in methanol, the reaction slowed down 

dramatically, without detecting any addition product 430a-b after eight days (entry 4). In 

diethylamine at even lower temperatures, selectivity towards addition products 430a-b did not 

increase (entry 5). Eventually, this strategy was abandoned as well, as the abundancy of 

functional groups seemed to be too high for the introduction of an extra nucleophile. 

 
Scheme 84: Plausible mechanism for the formation of double addition product 431. 
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6.3. Conclusion 

In our efforts to develop new fosmidomycin-inspired antimalarials, the hydroxamate-containing 

alkynylphosphonate precursors were successfully prepared through simple acylation and 

alkylation of O-benzyl hydroxylamine, followed by oxidative phosphonylation with dialkyl 

phosphites. When the one pot isomerization to the corresponding allene and subsequent 

introduction of an O-nucleophile was attempted, oxazoles were primarily obtained. 

Presumably, an elimination-addition reaction takes place yielding an amide that is prone to 

cyclization. Moreover, the N-O bond of the hydroxamic acid moiety seems to be a sensitive 

part of the molecule as well, as a reduced oxazole was observed. Copper-catalyzed 

hydroamination of the hydroxamate-containing alkynylphosphonate precursor was not 

successful either. 
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A very efficient strategy has been developed to prepare chiral, spirocyclic oxaphospholenes in 

a three-step synthesis from ketoterpenes. To evaluate the chiral inducing properties, the 

phosphonic acid 433 is required. Treatment of phosphonate esters with LiBr is a known method 

to prepare monodealkylated phosphonate esters.369 Alternatively, treatment with silica could 

yield the phosphonic acid too, since the spontaneous hydrolysis of oxaphospholenes upon 

purification on silica has been described (Scheme 85).  

 
Scheme 85: Proposed preparation of oxaphospholenic acids  
by deprotection of the corresponding phosphonate esters. 

Although both the alkyne substituent and the ketoterpenic moiety were varied, more variation 

is still possible. Iodine was selected because it is an easy to add dihalogen. Other halogenated 

derivatives, particularly the brominated ones, would be interesting to prepare, as vinylbromides 

are widely used in cross coupling reactions (Scheme 86). Via a Suzuki coupling, additional 

structural variety can be introduced if, for instance, steric or electronic properties need to be 

altered. 

  
Scheme 86: Further exploration of the structural variety in the oxaphospholenic skeleton. 

Since the stepwise synthesis of 5-bisphosphonomethyl oxazol-2-ones suffered from the use 

of strong bases, the second phosphonate group could not introduced. This attractive class of 

compounds could possibly be accessed even so through an alternative approach. The gold-

catalyzed 5-exo-dig cyclization of Boc-protected propargylamines 437 has been described in 

literature.249 Endowing substrate 438 with this vinyl halide handle, the second phosphonate 

moiety could then be installed via a cross coupling reaction with diethyl phosphite 

(Scheme 87).370 
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Scheme 87: Alternative strategy to access 5-bisphosphonomethyl oxazol-2-ones 440 and 

5-bisphosphonomethyl oxazolidin-2-ones 441. 

In our approach to prepare 3-aminoallenylphosphonates through cross coupling of 

phosphorus-containing copper acetylides with amines, isomerization of the 

propargylphosphonate to the internal alkyne immediately occurred upon removal of the 

TMS-group. However, a direct alkynyl group transfer from silicon to copper is described in 

literature.371 If the copper acetylide can be prepared in this way, the coupling reaction with 

N-nucleophiles and ultimately the isomerization to the allene can be evaluated (Scheme 88).  

 
Scheme 88: Preparation of copper acetylide 31 through direct alkynyl group transfer from silicon  

to copper and its evaluation in the synthesis of 3-aminoallenylphosphonates. 

3-Imidoallenylphosphonates have been shown to react very efficiently with a variety of 

O-nucleophiles. N, P and C-nucleophiles have also been employed, although less successfully 

because of selectivity issues. If suitable follow-up reactions can be found that convert two or 

more isomers to one product, these transformations could still prove to be useful. 

Hydrogenation, for instance, would respectively yield aminophosphonates, bisphosphonates 

and -phosphonomalonates.  

In the case of C-nucleophiles, substrates with a low pKa were selected, given the mild 

conditions the transformation uses. Hydroarylation with aryl boronic acids and cross coupling 

with aryl halides could be interesting opportunities to further expand the scope of introducible 

C-substituents (Scheme 89). Examples of both hydroarylation372, 373 and cross coupling373 

reactions have been reported in literature for allenylphosphonate substrates. A comparison of 
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the behaviour of aminoallenylphosphonates under these conditions would definitely be of 

interest. 

 
Scheme 89: Proposed hydroarylation of 3-imidoallenylphosphonates with aryl boronic acids and cross 

coupling with aryl halides. 

The influence of different substituents on the N-atom – with the possibility for their deprotection 

at a later stage in mind – on the preparation and reactivity of 3-aminoallenylphosphonates 

remains to be explored. So far, the phthalimidoyl group of the addition products could not be 

removed, although treatment with hydrazine and a reducing agent or with NaBH4 in acidic 

medium should be evaluated (Scheme 90).374 Aminoallenylphosphonates bearing alternative 

protective groups – like tosyl, Boc and benzyl groups – should definitely be looked into since 

the preparation of their alkynylphosphonate precursors has been realized already. 

  
Scheme 90: Possible reduction methods for the deprotection of the phthalimidoyl moiety. 

The antiviral evaluation of the first set of nucleoside phosphonates was not very promising. 

Some major issues need to be addressed. First of all, the conventional purification techniques 

were not successful for the isolation of the nucleoside phosphonic acids. Other 

chromatographic techniques, like the use of a cellulose stationary phase, need to be evaluated 

since the deprotection conditions for both the acetonide deprotection and debenzylation of the 

phosphonate, have been shown to be feasible. Secondly, the phthalimidoyl protecting group 

might prove to be too big and too apolar to fit in the active site of viral enzymes. If an easily 

removable protecting group can be found – for instance a Cbz group that can be 

simultaneously deprotected with the benzyl groups of the phosphonate – a primary enamine 

would be obtained that can be reduced to the amine and, if desired, further derivatized 

(Scheme 91). The antiviral potential of this new series of derivatives can then be assessed 

again. The synthetic potential of the aminoallenylphosphonate building block and its 
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applications has definitely not been maximally explored and will be of interest in future 

research. 

 
Scheme 91: Suggested deprotection strategies for the synthesis of nucleoside phosphonic acids. 





 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Experimental Procedures 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



V. Experimental procedures 
 

130 

1. General methods 

Commercially available reagents were not purified and used as such, unless otherwise stated. 

Reactions were run in non-flame dried glassware and open to air, unless otherwise noted. Inert 

atmosphere refers to a N2 atmosphere, if not indicated otherwise. 

1.1. Solvents 

Unless otherwise noted, anhydrous THF, Et2O, CH2Cl2, n-pentane and toluene were used, 

either collected in a Schlenk tube (THF, Et2O, CH2Cl2, n-pentane and toluene) from an 

MBRAUN Solvent Purification System or either freshly distilled from sodium 

benzophenone/ketyl (THF, Et2O) or by distillation over calcium hydride (CH2Cl2).  

Other solvents like CH3CN, MeOH, EtOH, t-BuOH, dioxane, CHCl3, CHBr3, DMSO, DMF, 

DME, sulfolane, NFM and acetone were not dried before use, unless otherwise noted. 

Anhydrous methanol was obtained by heating methanol with dried magnesium turnings and 

iodine for two hours, before distillation. The distillate was stored on 4Å molecular sieves and 

under argon atmosphere. Anhydrous CHCl3 was collected in a Schlenk tube from an MBRAUN 

Solvent Purification System. Anhydrous CH3CN was distilled and stored over 4Å molecular 

sieves. 

1.2. Pressure reactions 

Hydrogenation reactions up to 5 bar H2-pressure, were executed in a Parr-flask on a stirring 

plate, shielded by an iron cage in case of explosion.  

1.3. Column chromatography 

Purification on column was performed on silica gel (particle size 70-200 μm, pore diameter 

60Å) in a glass column using appropriate mixtures of solvents, as determined by TLC. Spots 

were visualized by UV irradiation or by staining with KMnO4 or phosphomolybdic acid solution. 

Reversed phase column chromatography was performed on a Reveleris® X2 Flash 

Chromatography System with a Reveleris® C18 RP cartridge. 

1.4. Preparative TLC 

Preparative TLC was run on 2000 μm 20 x 20 cm TLC plates in an elution chamber using an 

appropriate eluent. Visualization was done by means of UV irradiation or by staining a small 

part of the plate with a KMnO4 solution. 
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1.5. Gas chromatography 

GC analyses were performed on an Agilent 6890 Series  Gas Chromatograph connected to a 

FID, using an Alltech EC-5 capillary column (30 m x 0.25 mm) having a film thickness of 0.25 

μm and using He as the carrier gas. GC-MS analyses were run on a Shimadzu QP2010 SE 

gas chromatograph-mass spectrometer (Electron Impact), using an Phenomenex ZB 5ms 

capillary column (20 m x 0.18 mm) with a film thickness of 0.18 μm and He as the carrier gas. 

1.6. Liquid chromatography 

Routine follow-up analyses were run on an Agilent 1200 Series liquid chromatograph using a 

reversed phase column (Eclipse plus C18, 50 x 46 mm, particle size 3.5 μm) connected to a 

UV-VIS detector and an Agilent 1100 Series LC/MSD type SL mass spectrometer (ESI, 70 eV) 

using a mass selective single quadrupole detector. A mixture of water (5mM NH4OAc) and 

CH3CN was used as the mobile phase, employing a gradient starting from 30% CH3CN to 

100% CH3CN. 

1.7. Preparative HPLC 

An Agilent 1100 Series liquid chromatograph with a reversed phase column (Zorbax Eclipse 

XDB-C18 column, 150 x 21.2 mm, particle size 5 μm), connected to a UV-VIS Variable 

Wavelength Detector, was used. A mixture of water and CH3CN was used as the mobile phase. 

1.8. Mass spectrometry 

Low-resolution MS analyses were run on an Agilent 1100 Series LC/MSD type SL mass 

spectrometer (ESI, 70 eC) using a mass selective single quadrupole detector. High-resolution 

mass spectra were obtained with an Agilent Technologies 6210 Time-Of-Flight mass 

spectrometer (ESI or APCI). 

1.9. NMR spectroscopy 

High-resolution 1H (400 MHz), 13C (100 MHz), 19F (376 MHz) and 31P (162 MHz) NMR spectra 

were recorded on a Bruker Avance III Nanobay 400 MHz spectrometer at room temperature, 

unless otherwise noted. DEPT, APT, COSY, HSQC, HMBC, H2BC and NOESY techniques 

were used to assign peaks. Deuterated solvents with TMS as an internal standard were used 

to dissolve samples. Chemical shifts are expressed as parts per million (ppm). 
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1.10. Infrared spectroscopy 

IR-spectra were recorded on a Perkin-Elmer Spectrum One BX FT-IR spectrophotometer with 

an ATR accessory. Samples were analyzed in neat form and selected peaks are listed. 

1.11. Melting points 

The melting point of crystalline compounds was determined on a Wagner & Munz WME 

Heizbank Kofler bench. 

1.12. Microwave irradiation 

Reactions were performed in a 10 mL thick-walled Pyrex reaction vessel in a CEM Discover 

Benchmate with a continuous power output (0 to 300 W). The vessel was closed with a snap-

cap and equipped with a stirring bar, while stirring was performed using a rotating magnetic 

plate, located at the bottom of microwave cavity. The desired temperature was reached by 

increasing the temperature within a maximum ramp time of 5 minutes and was maintained 

during the course of the reaction. An external infrared sensor was used to measure the 

temperature at the bottom of the reaction vessel and was communicated to the on-board 

computer to adjust the power output (1 W increments). When the reaction was finished, the 

vessel was cooled down using a stream of air onto the vial to cool down the vial down to 40 °C 

in approximately 2 minutes.  

1.13. Optical rotation 

Optical rotation was determined by means of a Jasco P-2000 polarimeter. 

1.14. X-ray analysis 

X-ray diffraction was performed using an Agilent Supernova Dual Source (Cu at zero) 

diffractometer, equipped with an Atlas CCD detector using CuK  radiation (l = 1.54178 Å) and 

 scans. The images were interpreted and integrated with the program CrysAlisPro (Agilent 

Technologies). Using Olex2, the structure was solved by direct methods using the ShelXL 

program package. Non-hydrogen atoms were anisotropically refined and the hydrogen atoms 

in the riding mode and isotropic temperature factors fixed at 1.2 times U (eq) of the parent 

atoms. The amide and amine hydrogen atoms were located from a difference electron density 

map and were unrestrainedly refined. All X-ray diffraction analyses were performed in 

collaboration with Prof. dr. Kristof Van Hecke, XStruct, Department of Inorganic and Physical 

Chemistry, Ghent University, Belgium.   
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2. Safety 

2.1. General safety aspects 

The practical work in this thesis was performed according to the SynBioC Research Group 

Internal Guidelines and with the aid of the internal safety document “Safety Instructions: How 

to work with chemicals”. Wherever possible, hazardous or toxic reagents were avoided and/or 

substituted by safer or greener alternatives.  

2.2. Specific safety aspects  

A list of the risks associated with each chemical is available in the corresponding safety data 

sheet (SDS), which can be found on the website of the supplier. Therein, a classification of the 

hazards was made according to the European Regulation (EC) No 1272/2008 [EU-GHS/CLP], 

which combines the Globally Harmonized System of Classification and Labeling of Chemicals 

(GHS) and Classification, Labelling and Packaging regulations (CLP). A brief overview of the 

chemicals employed in this work classified as category 1, the most severe category, of the 

respective hazard class will be given below, along with the GHS hazards and precautions.  

Alkyllithium reagents: pyrophoric liquids, substances and mixtures which in contact with 

water emit flammable gases, acute toxicity after inhalation, acute and chronic hazards to the 

aquatic environment. Keep away from heat, fire, hot surfaces, sparks and ignition sources. 

Avoid contact with air or water and work under an inert atmosphere. In case of fire use dry 

sand, dry chemical- or alcohol-resistant foam to extinguish.  

Bromoform: specific target organ toxicity. Avoid inhalation. Acute oral toxicity. 

Chloroform: specific target organ toxicity following repeated exposure. Avoid inhalation.  

Diazomethane: extremely explosive gas. Preparation and manipulation should take place 

behind a blast shield. Use rounded glassware for distillation and check for sharp edges or 

scratches on any glassware that comes into contact with the substance. Explodes when 

heating above 100 °C, when exposed to intense light or in the presence of alkali metals. Toxic 

by inhalation and through skin contact. Deaths from diazomethane poisoning have been 

reported (fulminating pneumonia). Alkylating compound, so carcinogenic. Wear gloves and 

protective clothing. 

Diethyl chlorophosphate: highly toxic through dermal absorption. Acts as a cholinesterase 

inhibitor. Wear gloves, protective clothes and respiratory protection. Wash hands immediately 
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after use. In case of contact with the skin, wash carefully with plenty of water and soap. In case 

of swallowing, immediately call a poison center. 

Diethyl chlorophosphite: specific target organ toxicity. Wear protective gloves and clothing. 

H2-gas: flammable gas, especially when compressed. Keep away from heat, fire, hot surfaces, 

sparks and ignition sources.  

Inorganic acids (HCl, H2SO4): skin corrosion, corrosive to metals. Wear protective gloves and 

clothing.  

Inorganic bases (NaOH, NaH): skin corrosion, corrosive to metals. Wear protective gloves 

and clothing. NaH releases flammable gases upon contact with water, which might ignite 

spontaneously. 

Iodine (I2): acute toxicity, skin corrosion. Avoid inhalation, wear protective gloves and clothing, 

avoid release in the environment.  

Organic acids (acetic acid, para-toluenesulfonic acid): skin corrosion. Wear protective 

gloves and clothing.  

Organic bases (NEt3, KOtBu, LDA, LiHMDS): skin corrosion. Keep away from heat, fire, hot 

surfaces, sparks and ignition sources. Avoid inhalation and wear protective gloves and 

clothing.  

Phenyl trichloromethyl mercury (PhHgCCl3): is a carcinogenic material and should be 

handled accordingly. Wear appropriate gloves, protective clothing and respiratory protection. 

Palladium-based catalysts: highly flammable solids. Keep away from heat, sparks, open 

flames or hot surfaces. 

Propargyl bromide: acute toxicity after inhalation. Avoid inhalation. 

Solvents in general: acute toxicity after inhalation, specific target organ toxicity following 

single or repeated exposure. Keep away from heat, fire, hot surfaces, sparks and ignition 

sources. Avoid inhalation and wear protective gloves and clothing. A useful tool for solvent 

selection is the “GSK solvent selection guide” which lists a wide variety of hazards associated 

with specific solvent classes as well as more benign alternatives for commonly used solvents.  

Transition metal salts: acute and chronic aquatic toxicity. Avoid release in the environment.  
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3. Biological evaluation 

3.1. Broad spectrum antiviral evaluation in cell cultures 

The antiviral activity of the compound in cell culture was assessed via cytopathic effect (CPE) 

reduction assays, using a diverse panel of viruses.344 On human embryonic lung fibroblast 

cells, the following viruses were used: herpes simplex virus type 1 (HSV-1) strain KOS, a 

thymidine kinase-deficient (TK-) HSV-1 KOS strain resistant to acyclovir, herpes simplex virus 

type 2 (HSV-2) strain G, vaccinia virus (Lederle strain), a clinical isolate of human adenovirus 

type 2 (Ad2), and human coronavirus (strain 229E). To study the antiviral effect on vesicular 

stomatitis virus (VSV), Coxsackie B4 virus and respiratory syncytial virus (RSV), human cervix 

carcinoma HeLa cells were used. African Green Monkey Vero cells were used to investigate 

the antiviral activity on para-influenza-3 virus; reovirus-1, Sindbis virus, Coxsackie B4 virus 

and Punta Toro virus. The activity against human influenza A/H1N1, A/H3N2 and B viruses 

was assessed on Madin-Darby canine kidney (MDCK) cells. Finally, human immunodeficiency 

virus type 1 and type 2 were examined on human MT-4 lymphoblast cells. At a multiplicity of 

infection of 100 CCID50 (50% cell culture infective dose) or 20 PFU (plaque forming units) per 

well, semiconfluent cell cultures were inoculated with the virus in 96-well plates. Serial dilutions 

of the test or reference compounds were added simultaneously with the virus. The plates were 

next incubated at 37°C (or 35°C in the case of influenza virus) until clear CPE was reached, 

i.e. during 3 to 6 days. Ad2 required 10 days incubation. To determine the antiviral activity 

[expressed as 50% effective concentration (EC50)] and cytotoxicity [expressed as minimum 

cytotoxic concentration (MCC)], microscopic scoring was performed. The viral effects on cell 

viability were confirmed by the colorimetric formazan-based MTS cell viability assay for a 

selection of viruses.  

 

3.2. Enzymatic assay with influenza PA-Nter endonuclease 

The pET28a(+) plasmid was used to clone the coding sequence for PA-Nter (i.e. residues 

1-217 from the PA protein of influenza virus strain A/X-31).345 The protein was obtained after 

expression in E. coli BL21-CodonPlus cells and purification by 6xHis-Ni-NTA chromatography 

followed by buffer exchange. In the enzyme assay, 1 μg of recombinant PA-Nter was incubated 

with 1 μg (16.7 nM) of single-stranded circular DNA plasmid M13mp18 (Bayou Biolabs, 

Metairie, Louisiana) in the presence of the test compounds or the reference compound 

2,4-dioxo-4-phenylbutanoic acid (DPBA), at a final volume of 25 μL. The buffer used in the 

assay, contained 50 mM Tris-HCl pH 8, 100 mM NaCl, 10 mM β-mercaptoethanol and 1 mM 
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MnCl2. After incubation at 37 °C for 2 hours, the reaction was stopped by heat inactivation 

(80 °C, 20 min). Using gel electrophoresis on a 1% agarose gel with ethidium bromide staining, 

the endonucleolytic digestion of the plasmid was visualized. ImageQuant TL software 

(GE Healthcare) was used to quantify the amount of remaining intact plasmid. GraphPad Prism 

software (GraphPad Software, La Jolla, CA) was used to plot the percentage inhibition of PA 

endonuclease activity against the compound concentration on a semi-logarithmic plot. 

Nonlinear least-squares regression analysis afforded the 50% inhibitory concentrations (IC50). 
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4. Synthetic procedures and spectral data 

4.1. Synthesis of protected propargylamines 

N,N-dibenzylprop-2-yn-1-amine 309 

N,N-dibenzylprop-2-yn-1-amine 309 was prepared according to a literature procedure and 

spectral data were in accordance with literature values.375 

1. 1H NMR (400 MHz, CDCl3) : 2.28 (1H, t, J = 2.3 Hz, CH), 3.26 (2H, d, J = 2.3 

Hz, NCH2Cq) 3.69 (4H, s, N(CH2Cq,ar)2) Yield: 80% (1214 mg), white crystals. 

N,N-di-tert-butylprop-2-yn-1-ylimidodicarbonate 23 

N,N-di-tert-butylprop-2-yn-1-ylimidodicarbonate 23 was prepared according to a literature 

procedure and spectral data were in accordance with literature values.376 

1H NMR (400 MHz, CDCl3) : 1.53 (18H, s, Cq(CH3)3), 2.18 (1H, t, J = 2.4 Hz, CH), 

4.36 (2H, d, J = 2.4 Hz, NCH2) Yield: 83%, yellow oil. 

4.2. Synthesis of phosphonylated alkynes through oxidative 
cross coupling with dialkylphosphites 

4.2.1. Procedure for the preparation of diethyl alkynyl phosphonates 

Representative example 305: A round-bottom 100 mL flask was charged with 181 mg (1 mmol) 

Cu(OAc)2, 40 mL DMF, 2.760 g (20 mmol) diethyl phosphite and 202 mg (2 mmol) 

triethylamine. An oxygen flow was allowed to bubble through the reaction mixture. Next, 1.850 

g (10 mmol) of the alkyne was added and the mixture was magnetically stirred, while keeping 

a steady oxygen flow bubbling through the mixture. After one hour, a second portion of 

Cu(OAc)2 (362 mg, 2 mmol) and diethyl phosphite (1.38 g, 10 mmol) were added. Reaction 

progress was followed by NMR. After another half an hour, the reaction was completed and 

the mixture was concentrated in vacuo, diluted in ethyl acetate and washed twice with a 1M 

aqueous solution of LiCl. The crude mixture was purified via column chromatography (1/1 

PE/EtOAc) or crystallized from ethyl acetate to give white crystals. Spectral data were in 

accordance with literature data. 

diethyl (phenylethynyl)phosphonate 296246 

1H NMR (400 MHz, CDCl3) : 1.41 (6H, t, J = 7.1 Hz, P(OCH2CH3)2), 4.16-

4.31 (4H, m, P(OCH2CH3)2), 4.49 (2H, d, 4JHP = 3.7 Hz, NCH2), 7.33-7.42 
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(2H, m, CHar), 7.43-7.49 (1H, m, CHar), 7.54-7.61 (2H, m, CHar) 31P NMR (161 MHz, CDCl3) : 

-5.98 MS (ESI, pos): m/z 239.1/240.2 (M + H+, 100/12). Rf: 0.20 (7/3 PE/EtOAc). Yield: 82% 

(1.961 mg), yellow oil. 

diethyl (3-(dibenzylamino)prop-1-yn-1-yl)phosphonate 310 

1H NMR (400 MHz, CDCl3) : 1.421 (3H, t, J = 7.1 Hz, P(OCH2CH3)), 

1.422 (3H, t, J = 7.1 Hz, P(OCH2CH3)), 3.39 (2H, d, 4JHP = 3.7 Hz, 

NCH2Cq), 3.71 (4H, s, NCH2Cq,ar), 4.21 (2H, q, J = 7.1 Hz, P(OCH2CH3)), 

4.23 (2H, q, J = 7.2 Hz, P(OCH2CH3)), 7.24-7.42 (10H, m, CHar) 13C NMR (100 MHz, CDCl3) 

: 16.2 (d, 3JCP = 7 Hz, P(OCH2CH3)2), 41.5 (d, 3JCP = 4 Hz, NCH2Cq), 57.7 (s, N(CH2Cq,ar)2), 

63.2 (d, 2JCP = 6 Hz, P(OCH2CH3)2), 75.9 (d, 1JCP = 296 Hz, PCq), 96.8 (d, 2JCP = 50 Hz, PCqCq), 

127.4 (CarH), 128.5 (CarH), 128.9 (CarH), 138.3 (Cq,ar) 31P NMR (161 MHz, CDCl3) : -6.91. MS 

(ESI, pos): m/z 372.2/373.3 (M + H+, 100/16). Rf: 0.18 (7/3 PE/EtOAc). Yield: 57% (4.229 g), 

white crystals. mp: 91-92 °C. 

 

N,N-di-tert-butyl-3-(diethoxyphosphoryl)prop-2-yn-1-ylimidodicarbonate 269 

1H NMR (400 MHz, CDCl3) : 1.36 (6H, t, J = 7.1 Hz, P(OCH2CH3)2), 1.53 

(18H, s, Cq(CH3)3), 4.11-4.19 (4H, m, P(OCH2CH3)2), 4.49 (2H, d, 4JHP = 

3.7 Hz, NCH2) 13C NMR (100 MHz, C6D6) : 16.0 (d, 3JCP = 7 Hz, P(OCH2CH3)2), 28.0 

(Cq(CH3)3), 36.0 (d, 3JCP = 5 Hz, NCH2), 63.2 (d, 2JCP = 6 Hz, P(OCH2CH3)2), 72.5 (d, 1JCP = 

293 Hz, PCq), 83.7 (Cq(CH3)3), 96.6 (d, 2JCP = 51 Hz, PCqCq), 151.1 (NC(O)) 31P NMR (161 

MHz, CDCl3) : -7.24. MS (ESI, pos): m/z 236.1/237.2 (M + H+ - Boc - C4H9), 100/16). IR (cm-

1) νmax: 1698 (C=O), 1226 (P=O), 1017 (P-O). Rf: 0.24 (65/35 PE/EtOAc). Yield: 73%, pale 

yellow oil. 

 

diethyl (3-(1,3-dioxoisoindolin-2-yl)prop-1-yn-1-yl)phosphonate 305 

1H NMR (400 MHz, CDCl3) : 1.36 (6H, t, J = 7.1 Hz, P(OCH2CH3)2), 

4.11-4.29 (4H, m, P(OCH2CH3)2), 4.58 (2H, d, 4JHP = 3.9 Hz, NCH2), 

7.78 (2H, dd, J = 5.5 Hz, J = 3.0 Hz, CHar), 7.90 (2H, dd, J = 5.5 Hz, 

J = 3.0 Hz, CHar) 13C NMR (100 MHz, CDCl3) : 16.0 (d, 3JCP = 7 Hz, 

P(OCH2CH3)2), 27.3 (d, 3JCP = 5 Hz, NCH2), 63.4 (d, 2JCP = 6 Hz, P(OCH2CH3)2), 73.4 (d, 1JCP 

= 293 Hz, PCq), 93.5 (d, 2JCP = 51 Hz, PCqCq), 123.7 (2 x CarH), 131.7 (2 x CarH), 134.5 (2 x 

CarH), 166.5 (2 x NC(O)Cq) 31P NMR (161 MHz, CDCl3) : -7.87. MS (ESI, pos): m/z 

322.1/323.2 (M + H+, 100/16). HRMS: m/z calcd for C15H17NO5P (M + H)+ 322.0839, found 
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322.0836. IR (cm-1) νmax: 2223 (C≡C), 1714 (C=O), 1260 (P=O), 1015 (P-O). Rf: 0.17 (1/1 

PE/EtOAc). Yield: 72% (2311 mg), white crystals. mp: 86-87 °C. 

diethyl (3-(N-(benzyloxy)acetamido)prop-1-yn-1-yl)phosphonate 412a 

1H NMR (400 MHz, CDCl3) : 1.35 (6H, t, J = 7.1, 

(CH3CH2O)2P), 2.11 (3H, s, CH3C(O)), 4.10-4.20 (4H, m, 

(CH3CH2O)2P), 4.47 (2H, m, JHP = 3.9 Hz, NCH2), 4.97 (2H, s, 

Cq,arCH2), 7.34-7.45 (5H, m, CHar) 13C NMR (100 MHz, CDCl3) 

: 16.1 (d, JCP = 7 Hz, CH3CH2OP), 20.5 (C(O)CH3), 37.1 (d, JCP = 4 Hz, NCH2), 63.3 (d, JCP = 

5 Hz, CH3CH2OP), 74.1 (d, JCP = 295 Hz, CqCqP), 77.9 (CH2ON ), 94.8 (d, JCP = 51 Hz, CqCqP), 

128.8 (Car), 129.2 (Car), 129.4 (Car), 134.1 (Cq,ar), 173.6 (C(O)) 31P NMR (121 MHz, CDCl3) : 

-7.66. MS (ESI, pos): m/z 340.1/341.2 (M + H+, 100/20). IR (cm-1) νmax: 1022 (P-O), 1263 

(P=O), 1678 (C=O), 2212 (C≡C) Rf: 0.22 (2/8 PE/EtOAc) Yield: 66%, yellow oil. 

tert-butyl (benzyloxy)(3-(diethoxyphosphoryl)prop-2-yn-1-yl)carbamate 428 

1H NMR (400 MHz, CDCl3) : 1.35 (6H, t, J = 7.1 Hz, (CH3CH2O)2P), 

1.51 (9H, s, Cq(CH3)3), 4.09-4.20 (4H, m, (CH3CH2O)2P), 4.24 (2H, 

d, JHP = 3.8 Hz, NCH2), 4.93 (2H, s, CH2Cq,ar), 7.30-7.47 (5H, m, 

CHar) 13C NMR (100 MHz, CDCl3) : 16.0 (d, JCP = 7 Hz, 

(CH3CH2O)2P), 28.1 (Cq(CH3)3), 40.8 (d, JCP = 4 Hz, NCH2), 63.3 (d, 

JCP = 6 Hz, (CH3CH2O)2P), 73.9 (d, JCP = 296 Hz , CqCqP), 78.0 (CH2Cq,ar), 82.9 (Cq(CH3)3), 

95.5 (d, JCP = 51 Hz, CqCqP), 128.5 (CHar), 128.7 (CHar), 129.5 (CHar), 135.2 (Cq,ar), 156.3 

(C(O)OCq(CH3)3) 31P NMR (121 MHz, CDCl3) : -7.47 MS (ESI, neg): m/z 294.1/295.1 (M + 

H+, 100/15) IR (cm-1) νmax: 1171 (P=O), 1258 (br., P-O), 1711 (C=O) Rf: 0.35 (5/5 PE/EtOAc) 

Rendement: 57%, yellowish oil. 

4.2.2. Procedure for the preparation of dibenzyl alkynyl phosphonates 

Representative example 384: A round-bottom 100 mL flask was charged with 1.81 g (10 mmol) 

Cu(OAc)2, 40 mL NFM, 7860 g (30 mmol) dibenzyl phosphite and 202 mg (2 mmol) 

triethylamine. An oxygen flow was allowed to bubble through the reaction mixture. Next, 1.850 

g (10 mmol) of the alkyne was added and the mixture was magnetically stirred, while keeping 

a steady oxygen flow bubbling through the mixture. Reaction progress was monitored by NMR 

spectroscopy and if necessary, a second partion of dibenzyl phosphite (1.31 g, 5 mmol) was 

added. After 4.5 hours, the reaction was completed and the mixture was diluted in 300 mL 

ethyl acetate and washed twenty times with a 1M aqueous solution of LiCl. The crude mixture 

was purified via column chromatography. 
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dibenzyl (3-(1,3-dioxoisoindolin-2-yl)prop-1-yn-1-yl)phosphonate 384 

1H NMR (400 MHz, CDCl3) : 4.54 (2H, d, 4JHP = 4.0 Hz, NCH2), 

5.08 (d, 2JCP = 8.7 Hz, P(OCH2)2), 7.26-7.71 (10H, m, 

P(OCH2Cq,arCHar)2), 7.74-7.82 (2H, m, CHar), 7.85-7.94 (2H, m, 

CHar) 13C NMR (100 MHz, CDCl3) : 27.3 (d, 3JCP = 5 Hz, NCH2), 

68.7 (d, 2JCP = 5 Hz, P(OCH2Cq,ar)2), 73.2 (d, 1JCP = 299 Hz, PCq), 94.4 (d, 2JCP = 51 Hz, PCqCq), 

123.7 (2 x CarH), 128.1 (4 x CarH), 128.56 (2 x CarH), 128.59 (4 x CarH), 131.8 (2 x Cq,ar), 134.5 

(2 x CarH), 135.2 (d, 3JCP = 7 Hz, 2 x Cq,ar), 166.4 (2 x NC(O)Cq). 31P NMR (161 MHz, CDCl3) 

: -7.43. MS (ESI, pos): m/z 446.1/44.72 (M + H+, 100/27). Rf: 0.19 (65/35 PE/EtOAc). Yield: 

81% (2311 mg), white solid.  

dibenzyl (3-(N-(benzyloxy)acetamido)prop-1-yn-1-yl)phosphonate 412b 

1H NMR (400 MHz, CDCl3) : 2.09 (3H, s, CH3), 4.43 (2H, d, 

JHP = 3.9 Hz, NCH2), 4.91 (2H, s, CH2ON), 5.06 (2H, s, POCH2), 

5.09 (2H, s, POCH2), 7.28-7.34 (10H, m, CHarCH2OP), 7.34-

7.43 (5H, m, CHarCH2ON).13C NMR (100 MHz, CDCl3) : 20.5 

(CH3), 37.1 (d, JCP = 3 Hz, NCH2), 68.6 (d, JCP = 5 Hz, POCH2), 73.7 (d, JCP = 300 Hz, CqP), 

77.9 (CH2ON), 95.9 (d, JCP = 51 Hz, CqCqP), 128.0 (CHar), 128.61 (CHar), 128.62 (CHar), 128.8 

(CHar), 129.2 (CHar), 129.4 (CHar), 134.1 (CHar), 135.3 (Cq,ar), 135.4 (Cq,ar), 137.6 (Cq,ar), 173.6 

(C(O)) 31P NMR (121 MHz, CDCl3) : -7.18. MS (ESI, pos): m/z 464.2/465.3 (M + H+, 100/30) 

IR (cm-1) νmax: 1263 (P=O), 1674 (C=O), 2210-2349 (C≡C) Rf: 0.20 (4/6 PE/EtOAc) Yield: 
20%, yellow oil. 

4.3. Synthesis of 5-bisphosphonomethyl oxazol-2-ones and 5-
phosphonomethylidene oxazolidin-2-ones 

4.3.1. Procedure for the one-pot synthesis of 5-bisphosphonomethyl oxazol-2-

ones 24 

A 100 mL round-bottom flask, equipped with a Claisen piece is flame dried under inert 

atmosphere. Next, the flask is charged with 1.87 mL distilled diisopropylamine (12.5 mmol) 

and 5 mL ether. After the mixture is cooled down to – 78 °C, 12.5 mmol n-butyllithium is added. 

The mixture is allowed to warm to 0 °C and is cooled down to – 78 °C again after one hour. 

Next, a solution of 1.278 g (5.0 mmol) N,N-di-tert-butylprop-2-ynylimidodicarbonate in 15 mL 

ether, is added and mixed for one hour at 0 °C. Subsequently, 1.82 mL (12.5 mmol) diethyl 

chlorophosphate is added at – 78 °C. After one hour at – 78 °C and three hours at – 42 °C, the 

mixture is left to stir at room temperature for another 24 hours. After addition of 30 mL of a 
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saturated NaHCO3 solution, the organic phase is washed with 5 mL of water, dried over 

MgSO4. After filtration and removal of the solvent in vacuo, volatile side-products can be 

removed by additional heating for one hour at 60 °C at 1 mbar. A dark viscous oil is obtained, 

which is redissolved in diethyl ether and stirred overnight with 300 mg silica. After column 

chromatography, orange crystals are obtained. Recrystallization in diethyl ether, the 

bisphosphonomethyl oxazol-2-one is finally obtained in 17% yield as white crystals (385 mg). 

tert-butyl 5-(bis(diethoxyphosphoryl)methyl)oxazolon-4-carboxylate 24 

1H NMR (400 MHz, CDCl3) : 1.35 (12H, t, J = 6.8 Hz, P(OCH2CH3)2), 

1.55 (9H, s, Cq(CH3)3), 4.20-4.30 (8H, m, P(OCH2CH3)2), 4.80 (1H, t, 

PCHP, 2JHP = 24.8 Hz), 8.77 (1H, br. s, NH). 13C NMR (100 MHz, CDCl3) 

: 16.3 (d, 3JCP = 6 Hz, P(OCH2CH3)2), 28.1 (Cq(CH3)3), 37.5 (t, 1JCP = 

133 Hz, PCHP), 63.7 (d, 2JCP = 6 Hz, P(OCH2CH3)), 63.8 (d, 2JCP = 7 Hz, 

P(OCH2CH3)), 84.3 (OCq(CH3)3), 117.5 (t, 3JCP = 10 Hz, CqNH), 138.4 (t, 2JCP = 14 Hz, OCqCH), 

152.8 (OC(O)N), 157.3 (t, 4JCP = 3 Hz, (O)COCq(CH3)3). 31P NMR (161 MHz, CDCl3) : 14.15. 

MS (ESI, pos): m/z 416.1 (M + H+ - C4H9), 472.2 (M + H+). IR (cm-1) νmax: 1780 (C=O), 1716 

(C=O), 1257 (P=O), 1022 (P-O). Rf: 0.12 (40/60 PE/EtOAc). Yield: 17%, white crystals. 

 

4.3.2. Procedure for the gold-catalyzed cyclization towards 5-

phosphonomethylidene oxazolidin-2-ones 283 

A 25 mL round-bottom flask, equipped with a Claisen piece is flame dried under inert 

atmosphere. Next, 30 mg (0.125 mmol) Au(I)Cl, 10 mL THF and 978 mg (2.5 mmol) N,N-di-

tert-butyl-3-(diethoxyphosphoryl)prop-2-ynylimidodicarbonate 269 were added. After stirring 

the mixture for one hour at room temperature, it is filtered twice over a pasteur pipette, filled 

with silica. After concentration of the filtrate in vacuo, a yellow viscous oil is obtained with an 

isolated yield of 98% (802 mg).  

tert-butyl (Z)-5-((diethoxyphosphoryl)methylene)-2-oxooxazolidine-3-carboxylate 283 

1H NMR (400 MHz, CDCl3) : 1.353 (3H, t, J = 7.1 Hz, P(OCH2CH3)), 

1.354 (3H, t, J = 7.1 Hz, P(OCH2CH3)), 1.55 (9H, s, Cq(CH3)3), 4.14 (2H, 

q, J = 7.0 Hz, P(OCH2CH3)), 4.16 (2H, q, J = 7.0 Hz, P(OCH2CH3)), 4.58 

(2H, dd, 4JHP = 4.8 Hz, 4JHH = 2.1 Hz, NCH2), 4.97 (1H, dt, 2JHP = 5.8 Hz, 
4JHH = 2.1 Hz, CHP). 13C NMR (100 MHz, C6D6) : 16.7 (d, 3JCP = 6 Hz, P(OCH2CH3)2), 28.0 

(Cq(CH3)3), 47.9 (d, 3JCP = 18 Hz, NCH2), 62.1 (d, 2JCP = 6 Hz, P(OCH2CH3)2), 84.0 (Cq(CH3)3), 

90.9 (d, 1JCP = 197 Hz, CHP), 147.8 (CHPCqOC(O)N or (CH3)3CqOC(O)N), 148.5 
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(CHPCqOC(O)N or (CH3)3CqOC(O)N), 154.4 (d, 2JCP = 4 Hz, (OCqCH2). 31P NMR (161 MHz, 

CDCl3) : 12.07. IR (cm-1) νmax: 1022 (P-O), 1272 (P=O), 1678 (C=O), 1834 (C=O). MS m/z 
(%): (ESI, pos) 336 (M + H+). Yield: 98%. 

 

4.3.3. Procedure for the synthesis of -ketophosphonate 287 

A 10 mL round-bottom flask, equipped with a Claisen piece, is flame dried under inert 

atmosphere. After addition of 0.073 ml (0.50 mmol) distilled diisopropylamine, dissolved in 5 

mL ether, 0.50 mmol n-butyllithium is added at – 78 °C. After stirring for one hour at 0 °C, 168 

mg (0.50 mmol) tert-butyl (Z)-5-((diethoxyphosphoryl)methylene)-2-oxooxazolidine-3-

carboxylate 283 was added at – 78 °C. After 10 minutes at – 78 °C, the mixture is quenched 

with two drops of water, filtered over silica and concentrated in vacuo. A slightly yellow oil is 

obtained with an isolated yield of 38% (120 mg).  

tert-butyl (3-(diethoxyphosphoryl)-2-oxopropyl)carbamate 287 

1H NMR (400 MHz, CDCl3) : 1.34 (6H, t, J = 7.1 Hz, P(OCH2CH3)2), 

1.45 (9H, s, Cq(CH3)3), 3.12 (2H, d, 2JHP = 22.9 Hz, PCH2), 4.05-4.28 

(6H, m, NCH2, P(OCH2CH3)2), 5.30 (1H, br. s, NH). 13C NMR (100 

MHz, CDCl3) : 16.3 (d, 3JCP = 6 Hz, P(OCH2CH3)2), 28.3 (Cq(CH3)3), 39.8 (d, 1JCP = 128 Hz, 

CHP), 51.3 ppm (CH2N), 62.9 (d, 2JCP = 6 Hz, P(OCH2CH3)2), 80.0 (Cq(CH3)3), 155.6 

((O)CqOCq(CH3)3), 198.1 (d, 2JCP = 6 Hz, C(O)CH2). 31P NMR (161 MHz, CDCl3) : 18.75. IR 

(cm-1) νmax: 3304 (NH), 1711 (C=O), 1246 (P=O), 1022 (P-O). MS m/z (%): (ESI, pos) 254 (M 

+ H+ - C4H9). Yield: 38%.  

 

4.4. Synthetic entry into N,N-dialkylamino 
allenylphosphonates 

4.4.1. Procedure for the synthesis of -enaminophosphonate 297 

-Enaminophosphonate 297 was prepared according to a literature procedure and spectral 

data were in accordance with those literature values that were available.59 The compound had 

not entirely been characterized however, and is hence described. 
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diethyl (Z)-(2-(diethylamino)-2-phenylvinyl)phosphonate 297 

1H NMR (400 MHz, CDCl3) : 1.08 (6H, t, J = 7.0 Hz, N(CH2CH3)2), 1.10 (6H, 

t, J = 7.1 Hz, P(OCH2CH3)2), 3.00-3.21 (4H, m, N(CH2CH3)2), 3.62-3.88 (4H, 

m, P(OCH2CH3)2), 4.21 (2H, d, 4JHP = 5.2 Hz, CHP), 7.28-7.42 (5H, m, CHar) 
13C NMR (100 MHz, CDCl3) : 12.7 (N(CH2CH3)2), 16.1 (d, 3JCP = 7 Hz, P(OCH2CH3)2), 43.6 

(N(CH2CH3)2), 41.5 (d, 3JCP = 4 Hz, NCH2Cq), 60.4 (d, 2JCP = 6 Hz, P(OCH2CH3)2), 77.1 (d, 1JCP 

= 218 Hz, PCH), 127.6 (CarH), 128.5 (CarH), 129.0 (CarH), 136.0 (d, 3JCP = 5 Hz, Cq,ar), 162.2 

(d, 2JCP = 19 Hz, PCHCq) 31P NMR (161 MHz, CDCl3) : 25.08 MS (ESI, pos): m/z 312.2/313.3 

(M + H+, 100/16). Yield: 75% (971 mg), yellowish oil. 

 

4.4.2. Synthesis of phosphonylated pyrazoles 

An excess of a freshly distilled ethereal solution of diazomethane (+/-2.5 mmol) is added to a 

solution of diethyl (3-(13-dioxoisoindolin-2-yl)prop-1-yn-1-yl)phosphonate 305 (0.5 mmol) in 5 

mL THF and allowed to stir at room temperature. Reaction progress was monitored by NMR 

spectroscopy and LC-MS analysis and the mixture was quenched with acetic acid after 4 hours 

until the yellow color of diazomethane had disappeared. Next, 20 mL ethyl acetate was added 

and the organic phase was washed with 5 mL of a saturated NaHCO3 solution. The aqueous 

phase was extracted once with 5 mL ethyl acetate and the combined organic layers were dried 

over MgSO4 and concentrated in vacuo. Purified via pTLC (98/2 EtOAc/MeOH). After a first 

purification via pTLC (3/7 PE/EtOAc) pyrazole 307b could be obtained. Pyrazole 306b was 

isolated together with some impurities, but could be obtained as a pure compound after a 

second purification via pTLC (98/2 EtOAc/MeOH).  

diethyl (4-((1,3-dioxoisoindolin-2-yl)methyl)-1H-pyrazol-5-yl)phosphonate 306b 

1H NMR (400 MHz,CDCl3):  1.33 (6H, t, J = 7.0 Hz, P(OCH2CH3)2), 4.01-

4.26 (4H, m, P(OCH2CH3)2), 5.08 (2H, s, NCH2), 7.37 (1H, d, J = 2.0 Hz, 

NCHar), 7.70-7.77 (2H, m, CHar), 7.82-7.99 (2H, m, CHar), 7.91 (1H, d, 3JCP = 

1.9 Hz, NCHar), 11.14 (1H, br. s, NH) 13C NMR (100 MHz,CDCl3): : 16.3 (d, 
3JCP = 7 Hz, P(OCH2CH3)2), 34.1 (NCH2), 62.2 (d, 2JCP = 5 Hz, P(OCH2CH3)2), 

105.1 (d, 1JCP = 219 Hz, PCq), 123.5 (CarH), 132.1 (CqC(O)), 134.1 (CarH), 

138.6 (d, 3JCP = 22 Hz, NCarH), 147.7 (d, 2JCP = 16 Hz, PCqCq), 168.0 (N(C(O))2) 31P NMR (161 

MHz, CDCl3) : 13.55 MS (ESI, pos): m/z 364.1/365.2 (M + H+, 100/15). Yield: 2% (4 mg), 

yellowish oil. 
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Both 3-phosphonopyrazoles and 5-phosphonopyrazoles can arise from cycloaddition. 

However, the observed coupling constants in 13C NMR are a perfect match with literature 

values for 5-phosphonopyrazoles.299  

diethyl (4-((1,3-dioxoisoindolin-2-yl)methyl)-1-methyl-1H-pyrazol-5-yl)phosphonate 
307b 

1H NMR (400 MHz,CDCl3):  1.38 (6H, t, J = 7.1 Hz, P(OCH2CH3)2), 4.05 

(3H, s, NCH3), 4.11-4.35 (4H, m, P(OCH2CH3)2), 5.06 (2H, s, NCH2), 7.37 

(1H, d, J = 2.0 Hz, NCHar), 7.68-7.77 (2H, m, CHar), 7.82-7.90 (2H, m, CHar) 
13C NMR (100 MHz,CDCl3): : 16.2 (d, 3JCP = 7 Hz, P(OCH2CH3)2), 32.4 

(NCH2), 39.5 (NCH3), 62.8 (d, 2JCP = 5 Hz, P(OCH2CH3)2), 123.3 (CarH), 126.1 

(d, 2JCP = 20 Hz, PCqCq), 127.7 (d, 1JCP = 212 Hz, PCq), 132.1 (CqC(O)), 134.0 

(CarH), 138.0 (d, 3JCP = 17 Hz, NCarH), 167.9 (N(C(O))2) 31P NMR (161 MHz, CDCl3) : 5.64 

MS (ESI, pos): m/z 378.1/379.2 (M + H+, 100/16). Yield: 67% (126 mg), yellowish oil. 

 

4.4.3. Procedure of the A³ coupling affording N,N-dibenzyl-1-phenylprop-2-yn-

1-amine 316b 

N,N-dibenzyl-1-phenylprop-2-yn-1-amine 316b was prepared according to a literature 

procedure.377 Full conversion was obtained and the crude mixture was purified via flash 

chromatography (100/0 PE/EtOAc to 98/2 PE/EtOAc). 

N,N-dibenzyl-1-phenylprop-2-yn-1-amine 316b 

1H NMR (400 MHz, CDCl3) : 2.65 (1H, d, J = 2.3 Hz, CHCq), 3.44 (2H, d, JAB = 

13.5 Hz, N(CHaHb)2), 3.73 (2H, d, JAB = 13.5 Hz, N(CHaHb)2), 4.72 (1H, d, J = 2.0 

Hz), 7.18-7.46 (13H, m, CHar), 7.60-7.73 (2H, m, CHar) MS m/z (%): (ESI, pos) 

312.2/313.3 (M + H+ 100/24). Yield: 5%.  

 

4.4.4. Procedure for the synthesis of diethyl (3-(trimethylsilyl)prop-2-yn-1-

yl)phosphonate 322b 

Diethyl (3-(trimethylsilyl)prop-2-yn-1-yl)phosphonate 322b was prepared according to a 

literature procedure.308 Spectral data were in accordance with literature values. 
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diethyl (3-(trimethylsilyl)prop-2-yn-1-yl)phosphonate 322b 

1H NMR (400 MHz, CDCl3) : 0.15 (9H, s, Si(CH3)3), 1.36 (6H, t, J = 7.1 

Hz, P(OCH2CH3)2), 2.81 (2H, d, 2JHP = 22.2 Hz, PCH2), 4.12-4.32 (4H, 

m, P(OCH2CH3)2) 31P NMR (161 MHz, CDCl3) : 20.97 MS (ESI, pos): 

m/z 249.1/250.2 (M + H+, 100/11). Rf: 0.19 (6/4 PE/EtOAc). Yield: 41% (673 mg), transparent 

oil. 

4.5. Synthesis of -functionalized -aminophosphonates 

4.5.1. Synthesis of -alkoxylated derivatives 

Method A 

In a typical experiment, 250 mg (0.78 mmol) alkyne 305 was dissolved in 3 mL THF in a 10 

mL flask. 254 mg (0.78 mmol) Cs2CO3 and one equivalent (0.78 mmol) of the alcohol were 

added. The reaction progress was monitored via TLC or NMR. After completion of the reaction, 

the mixture was quenched with water, concentrated in vacuo, three times extracted with ethyl 

acetate, dried over MgSO4 and concentrated to give the desired product. Adducts 339-351 

were purified via chromatography. 

Method B 

In a typical experiment, 250 mg (0.78 mmol) alkyne 305 was dissolved in 3 mL of the alcohol 

in a 10 mL flask. 254 mg (0.78 mmol) Cs2CO3 was added and the reaction progress was 

monitored via TLC. After completion of the reaction, the mixture was quenched with water, 

concentrated in vacuo, three times extracted with ethyl acetate, dried over MgSO4 and 

concentrated to give the desired product.  

diethyl (Z)-(3-(1,3-dioxoisoindolin-2-yl)-2-ethoxyallyl)phosphonate 340 

1H NMR (400 MHz, CDCl3) : 1.28 (3H, t, J = 7.2 Hz, CqOCH2CH3), 

1.32 (6H, t, J = 7.1 Hz, P(OCH2CH3)2), 3.29 (2H, d, 2JHP = 20.9 Hz, 

PCH2), 4.09-4.20 (4H, m, P(OCH2CH3)2), 4.33 (2H, q, J = 7.1 Hz, 

CqOCH2CH3), 7.10 (1H, d, 4JHP = 3.7 Hz, NCH), 7.51 (1H, td, J = 7.5 

Hz, J = 1.3 Hz, CHar), 7.56 (1H, td, J = 7.6 Hz, J = 1.6 Hz, CHar), 7.72 (1H, dd, J = 7.5 Hz, J = 

1.4 Hz, CHar), 7.85 (1H, dd, J = 7.4 Hz, J = 1.3 Hz, CHar). 13C NMR (100 MHz, CDCl3) : 14.0 

(CqOCH2CH3), 16.4 (d, 3JCP = 6 Hz, P(OCH2CH3)2), 24.4 (d, 1JCP = 145 Hz, PCH2), 61.6 

(CqOCH2CH3), 62.6 (d, 2JCP = 7 Hz, P(OCH2CH3)2), 126.4 (d, 3JCP = 7 Hz, NCH, Cq,ar), 129.1 

(CarH), 129.2 (CarH), 130.0 (CarH), 130.8 (CarH), 132.2 (Cq,ar), 143.8 (d, 2JCP = 8 Hz, OCq), 160.2 

(d, 5JCP = 2 Hz, NC(O)Cq), 168.1 (NC(O)Cq). 31P NMR (161 MHz, CDCl3) : 21.54. MS (ESI, 
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pos): m/z 367.9/368.9 (M + H+, 100/19). HRMS: m/z calcd for C17H23NO6P (M + H)+ 368.1258, 

found 368.1269. IR (cm-1) νmax: 1721 (C=O), 1256 (P=O), 1019 (P-O). Yield: 92%, orange oil. 

 

diethyl (Z)-(3-(1,3-dioxoisoindolin-2-yl)-2-isopropoxyallyl)phosphonate 341 

1H NMR (400 MHz, CDCl3) : 1.28 (6H, d, J = 6.3 Hz, OCH(CH3)2), 

1.32 (6H, t, J = 7.1 Hz, P(OCH2CH3)2), 3.29 (2H, d, 2JHP = 21.0 Hz, 

PCH2), 4.09-4.19 (4H, m, P(OCH2CH3)2), 5.21 (1H, sept, J = 6.2 Hz, 

OCH(CH3)2), 7.10 (1H, d, 4JHP = 3.6 Hz, NCH), 7.48-7.58 (2H, m, 

CHar), 7.69-7.74 (1H, m, CHar), 7.80-7.85 (1H, m, CHar). 13C NMR (100 MHz, CDCl3) : 16.4 

(d, 3JCP = 6 Hz, P(OCH2CH3)2), 21.7 (OCH(CH3)2), 24.5 (d, 1JCP = 145 Hz, PCH2), 62.6 (d, 2JCP 

= 7 Hz, P(OCH2CH3)2), 69.1 (OCH(CH3)2), 126.4 (d, 3JCP = 7 Hz, NCH, Cq,ar), 129.1 (CarH), 

129.2 (CarH), 130.0 (CarH), 130.7 (CarH), 132.6 (Cq,ar), 143.8 (d, 2JCP = 8 Hz, OCq), 160.3 (d, 
5JCP = 2 Hz, NC(O)Cq), 167.6 (NC(O)Cq). 31P NMR (161 MHz, CDCl3) : 21.56 MS (ESI, pos): 

m/z 381.9/382.9 (M + H+, 100/19). HRMS: m/z calcd for C18H25NO6P (M + H)+ 382.1414, found 

382.1412. IR (cm-1) νmax: 1720 (C=O), 1257 (P=O), 1019 (P-O). Yield: 94%, orange oil. 

 

diethyl (Z)-(2-butoxy-3-(1,3-dioxoisoindolin-2-yl)allyl)phosphonate 342 

1H NMR (400 MHz, CDCl3) : 0.92 (3H, t, J = 7.4 Hz, CH2CH2CH3), 

1.32 (6H, t, J = 7.1 Hz, P(OCH2CH3)2), 1.37 (2H, sext., J = 7.6 Hz, 

CH2CH2CH3), 1.58-1.68 (2H, m, CH2CH2CH3), 3.29 (2H, d, 2JHP = 

20.9 Hz, PCH2), 4.09-4.19 (4H, m, P(OCH2CH3)2), 4.28 (2H, t, J = 6.7 

Hz, OCH2CH2), 7.09 (1H, d, 4JHP = 3.6 Hz, NCH), 7.48-7.59 (2H, m, CHar), 7.68-7.74 (1H, m, 

CHar), 7.83-7.88 (1H, m, CHar). 13C NMR (100 MHz, CDCl3) : 13.6 (CH2CH2CH3), 16.3 (d, 3JCP 

= 6 Hz, P(OCH2CH3)2), 19.0 (CH2CH2CH3), 24.4 (d, 1JCP = 145 Hz, PCH2), 30.4 (CH2CH2CH3), 

62.5 (d, 2JCP = 7 Hz, P(OCH2CH3)2), 65.4 (OCH2CH2), 126.3 (Cq,ar), 126.4 (d, 3JCP = 7 Hz, NCH) 

128.9 (CarH), 129.1 (CarH), 130.0 (CarH), 130.7 (CarH), 132.1 (Cq,ar), 143.8 (d, 2JCP = 8 Hz, OCq), 

160.1 (d, 5JCP = 2 Hz, NC(O)Cq), 168.2 (NC(O)Cq). 31P NMR (161 MHz, CDCl3) : 21.53. MS 

(ESI, pos): m/z 395.9/396.9 (M + H+, 100/22). HRMS: m/z calcd for C19H27NO6P (M + H)+ 

396.1571, found 396.1553. IR (cm-1) νmax: 1723 (C=O), 1256 (P=O), 1020 (P-O). Yield: 83%, 

orange oil. 
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diethyl (Z)-(3-(1,3-dioxoisoindolin-2-yl)-2-phenoxyallyl)phosphonate 343a 

1H NMR (400 MHz, CDCl3) : 1.28 (6H, t, J = 7.1 Hz, P(OCH2CH3)2), 

3.28 (2H, d, 2JHP = 20.9 Hz, PCH2), 4.05-4.15 (4H, m, P(OCH2CH3)2), 

7.13 (1H, d, 4JHP = 3.6 Hz, NCH), 7.21-7.30 (3H, m, CHar), 7.41 (2H, 

t, J = 7.9 Hz, CHar), 7.58 (1H, ~t, CHar), 7.64 (1H, ~t, CHar), 7.87 (1H, 

d, J = 7.4 Hz, CHar), 7.94 (1H, d, J = 7.3 Hz, CHar). 13C NMR (100 MHz, CDCl3) : 16.3 (d, 3JCP 

= 6 Hz, P(OCH2CH3)2), 24.4 (d, 1JCP = 145 Hz, PCH2), 62.6 (d, 2JCP = 7 Hz, P(OCH2CH3)2), 

121.3 (2 x CarH), 125.9 (CarH), 126.5 (Car,q), 126.6 (d, 3JCP = 7 Hz, NCH), 129.1 (CarH), 129.4 

(3 x CarH), 130.1 (CarH), 131.2 (Cq,ar), 131.4 (CarH), 144.2 (d, 2JCP = 8 Hz, OCq), 150.9 (OCq,ar), 

159.8 (d, 5JCP = 2 Hz, NC(O)Cq), 166.6 (NC(O)Cq). 31P NMR (161 MHz, CDCl3) : 21.47. MS 

(ESI, pos): m/z 415.8/416.8 (M + H+, 100/23). HRMS: m/z calcd for C21H23NO6P (M + H)+ 

416.1258, found 416.1253. IR (cm-1) νmax: 1743 (C=O), 1244 (P=O), 1020 (P-O). Rf: 0.17 (1/9 

PE/EtOAc). Yield: 47%, orange oil. 

 

diethyl (Z)-(3-(1,3-dioxoisoindolin-2-yl)-2-phenoxyprop-1-en-1-yl)phosphonate 343b 

1H NMR (400 MHz, CDCl3) : 1.34 (6H, t, J = 7.1 Hz, P(OCH2CH3)2), 

4.09-4.19 (4H, m, P(OCH2CH3)2), 4.49 (1H, d, 2JHP = 4.3 Hz, PCH), 

5.17 (2H, d, 4JHP = 1.5 Hz, NCH2), 6.95 (2H, d, J = 7.7 Hz, CHar), 7.19 

(1H, t, J = 7.4 Hz, CHar), 7.34 (2H, t, J = 7.4 Hz, CHar), 7.70-7.76 (2H, 

m, CHar), 7.85-7.91 (2H, m, CHar) 13C NMR (100 MHz, CDCl3) : 16.3 (d, 3JCP = 7 Hz, 

P(OCH2CH3)2), 37.9 (d, 3JCP = 2 Hz, NCH2), 61.7 (d, 2JCP = 5 Hz, P(OCH2CH3)2), 89.9 (d, 2JCP 

= 201 Hz, PCH), 121.7 (2 x CarH), 123.4 (2 x CarH), 126.0 (CarH), 130.0 (2 x CarH), 132.1 (Car,q), 

134.1 (2 x CarH), 152.9 (Car,q), 167.7 (d, 2JCP = 24 Hz, OCq), 167.9 (2 x NC(O)Cq). 31P NMR 

(161 MHz, CDCl3) : 19.35. MS (ESI, pos): m/z 415.9/416.8 (M + H+, 100/23). IR (cm-1) νmax: 

1716 (C=O), 1209 (P=O), 1021 (P-O). Rf: 0.26 (1/9 PE/EtOAc). Yield: 4%, orange oil. 

 

diethyl (Z)-(2-(benzyloxy)-3-(1,3-dioxoisoindolin-2-yl)allyl)phosphonate 344 

1H NMR (400 MHz, CDCl3) : 1.30 (6H, t, J = 7.1 Hz, P(OCH2CH3)2), 

1.37 (2H, sext., J = 7.6 Hz, CH2CH2CH3), 3.15 (2H, d, 2JHP = 20.8 Hz, 

PCH2), 4.06-4.16 (4H, m, P(OCH2CH3)2), 5.32 (2H, s, OCH2Cq), 7.04 

(1H, d, 4JHP = 3.7 Hz, NCH), 7.34 (5H, br. s, CHar), 7.51(1H, t, J = 7.4 

Hz, CHar), 7.56 (1H, t, J =7.3 Hz, CHar), 7.73 (1H, d, J = 7.4 Hz, CHar), 7.86 (1H, d, J = 7.6 Hz, 

CHar). 13C NMR (100 MHz, CDCl3) : 16.3 (d, 3JCP = 6 Hz, P(OCH2CH3)2), 24.2 (d, 1JCP = 145 
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Hz, PCH2), 62.5 (d, 2JCP = 7 Hz, P(OCH2CH3)2), 67.3 (OCH2Cq), 126.4 (d, 3JCP = 8 Hz, NCH) 

128.2 (CarH), 128.3 (2 x CarH), 128.5 (2 x CarH), 129.1 (CarH), 129.1 (CarH), 130.0 (CarH), 131.0 

(CarH), 131.7 (2 x Cq,ar), 135.5 (Cq,ar), 144.0 (d, 2JCP = 8 Hz, OCq), 160.0 (d, 5JCP = 2 Hz, 

NC(O)Cq), 167.9 (NC(O)Cq). 31P NMR (161 MHz, CDCl3) : 21.58. MS (ESI, pos): m/z 

429.8/430.8 (M + H+, 100/23). HRMS: m/z calcd for C22H25NO6P (M + H)+ 430.1414, found 

430.1413. IR (cm-1) νmax: 1725 (C=O), 1255 (P=O), 1020 (P-O). Yield: 89%, orange oil. 

 

diethyl (Z)-(3-(1,3-dioxoisoindolin-2-yl)-2-((5-formylfuran-2-yl)methoxy)allyl) 
phosphonate 346 

1H NMR (400 MHz, CDCl3) : 1.32 (6H, t, J = 7.1 Hz, P(OCH2CH3)2), 

3.30 (2H, d, 2JHP = 20.9 Hz, PCH2), 4.08-4.21 (4H, m, P(OCH2CH3)2), 

5.35 (2H, s, CqCH2O), 6.63 (1H, d, J = 3.5 Hz, CHarCq,arCH2), 7.05 

(1H, d, J = 3.8 Hz, CHarCq,arCHO), 7.21 (1H, d, J = 3.6 Hz, NCH), 7.51 

(1H, td, J = 7.6 Hz, J = 1.2 Hz, CHar), 7.58 (1H, td, J = 7.6 Hz, J = 1.2 

Hz, CHar), 7.71 (1H, dd, J = 7.7 Hz, 0.9 Hz, CHar), 7.87 (1H, d, J = 7.5 

Hz, CHar), 9.63 (1H, s, CHO) 13C NMR (100 MHz, CDCl3) : 16.3 (d, 3JCP = 6 Hz, P(OCH2CH3)2), 

24.4 (d, 1JCP = 145 Hz, PCH2), 58.9 (OCH2Cq,ar), 62.6 (d, 2JCP = 7 Hz, P(OCH2CH3)2), 112.9 

(CHCqCH2O), 121.8 (br. s, CarHCq,arCHO), 126.3 (Cq,arC(O)N), 126.5 (d, 3JCP = 8 Hz, NCH), 

129.0 (CarH), 129.1 (CarH), 130.0 (CarH), 130.8 (Car,qC(O)N), 131.2 (CarH), 144.1 (d, 2JCP = 9 

Hz, OCqCH2P), 152.8 (CqCHO), 155 (CqCH2), 160 (d, 5JCP = 1 Hz, NC(O)Cq), 167.5 (NC(O)Cq), 

177.7 (CHO). 31P NMR (161 MHz, CDCl3) : 21.55. MS (ESI, pos): m/z 448.2/449.3 (M + H+, 

100/22). HRMS: m/z calcd for C21H23NO8P (M + H)+ 448.1156, found 448.1156. Yield: 33%, 

yellow oil. 

The product was obtained after purification by reversed phase chromatography (5 CVs 5/95 

CH3CN/H2O, over 9 CVs to 12% CH3CN, over 6 CVs to 30% CH3CN, 4 CVs 30% CH3CN, over 

3 CVs to 50% CH3CN, 6 CVs 50% CH3CN). 
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diethyl ((Z)-2-(2-(((Z)-3-(diethoxyphosphoryl)-1-(1,3-dioxoisoindolin-2-yl)prop-1-en-2-
yl)oxy)ethoxy)-3-(1,3-dioxoisoindolin-2-yl)allyl)phosphonate 347a 

1H NMR (400 MHz, CDCl3) : 1.30 (12H, t, J = 7.1 Hz, 2 x 

P(OCH2CH3)2), 3.22 (4H, dd, 1JHP = 20.9 Hz, 3JHH = 0.8 Hz, 2 x 

PCH2), 4.10 (4H, q, 3JHP = 7.1 Hz, 2 x P(OCHaHbCH3)2), 4.12 (4H, 

q, 3JHP = 7.1 Hz, 2 x P(OCHaHbCH3)2), 4.53 (4H, s, OCH2CH2O), 

6.99 (2H, d, 4JHP = 3.8 Hz, 2 x NCH), 7.50 (2H, td, 3JHH = 7.6 Hz, 
4JHH = 1.3 Hz, CHar), 7.56 (2H, td, 3JHH = 7.6 Hz, 4JHH = 1.4 Hz, 

CHar), 7.65 (2H, dd, 3JHH = 7.6 Hz, 4JHH = 1.2 Hz, CHar), 7.86 (2H, d, 3JHH = 7.8 Hz, 4JHH = 1.0 

Hz, CHar) 13C NMR (100 MHz, CDCl3) : 16.3 (d, 3JCP = 6 Hz, 2 x P(OCH2CH3)2), 24.2 (d, 1JCP 

= 144 Hz, 2 x PCH2), 62.5 (d, 2JCP = 7 Hz, 2 x P(OCH2CH3)2), 63.0 (2 x OCH2), 126.1 (2 x Car,q), 

126.4 (d, 3JCP = 8 Hz, 2 x NCH), 128.8 (2 x CarH), 128.9 (2 x CarH), 129.9 (2 x CarH), 130.9 (2 

x CH), 131.4 (2 x Car,q), 143.9 (d, 2JCP = 9 Hz, OCq), 159.7 (2 x NC(O)Cq), 167.8 (2 x 

NC(O)Cq
31P NMR (161 MHz, CDCl3) : 21.50. MS (ESI, pos): m/z 705.3/706.3/707.3 (M + H+, 

100/33/9). HRMS: m/z calcd for C32H39N2O12P2 (M + H)+ 705.1973, found 705.1990. Yield: 
74%, yellow oil. 

The product was obtained after purification by reversed phase chromatography (2 CVs 30/70 

CH3CN/H2O, over 20 CVs to 100% CH3CN, 2 CVs 100% CH3CN). 

diethyl (Z)-(3-(1,3-dioxoisoindolin-2-yl)-2-(2-hydroxyethoxy)allyl)phosphonate 347b 

1H NMR (400 MHz, CDCl3) : 1.34 (6H, t, J = 7.1 Hz, P(OCH2CH3)2), 

3.33 (2H, dd, 2JHP = 21.0 Hz, 4JHP = 0.8 Hz, PCH2), 3.82-3.91 (2H, m, 

CH2OH), 4.10-4.21 (4H, m, P(OCH2CH3)2), 4.46-4.53 (2H, m, CH2O), 

7.08 (1H, d, J = 3.8 Hz, NCH), 7.50-7.60 (2H, m, CHar), 7.64-7.69 (1H, 

m, CHar), 7.90-7.95 (1H, m, CHar) 13C NMR (100 MHz, CDCl3) : 16.4 (d, 3JCP = 6 Hz, 2 x 

P(OCH2CH3)2), 24.5 (d, 1JCP = 145 Hz, 2 x PCH2), 60.7 (CH2O), 62.8 (d, 2JCP = 7 Hz, 2 x 

P(OCH2CH3)2), 67.3 (CH2OH), 125.1 (Car,q), 126.3 (d, 3JCP = 8 Hz, NCH), 128.7 (CarH), 128.8 

(CarH), 130.3 (CarH), 130.7 (CarH), 132.1 (Car,q), 144.1 (d, 2JCP = 2 Hz, OCq), 159.9 (d, 5JCP = 2 

Hz, NC(O)Cq), 168.8 (NC(O)Cq
31P NMR (161 MHz, CDCl3) : 21.44. MS (ESI, pos): m/z 

384.2/385.2 (M + H+, 100/19). HRMS: m/z calcd for C17H23NO7P (M + H)+ 384.1207, found 

384.1217. Yield: 13%, yellow oil. 

The product was obtained after purification by reversed phase chromatography (2 CVs 30/70 

CH3CN/H2O, over 20 CVs to 100% CH3CN, 2 CVs 100% CH3CN). 
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(Z)-3-((3-(diethoxyphosphoryl)-1-(1,3-dioxoisoindolin-2-yl)prop-1-en-2-yl)oxy)-2-
hydroxypropyl palmitate 348 (major isomer) 

1H NMR (400 MHz, CDCl3) : 0.83-0.92 (3H, m, CH3), 1.18-1.38 

(30H, m, (CH2)12, P(OCH2CH3)2), 1.52-1.70 (2H, m, CH2), 2.23-

2.41 (2H, m, CH2), 3.30 (2H, d, 2JHP = 20.9 Hz, 3JHH = 2.7 Hz, 

PCH2), 4.04-4.29 (7H, m, P(OCH2CH3)2, Hc, Hd, He), 4.30-4.44 

(1H, m, Ha), 4.45-4.52 (1H, m, Hb), 4.57 (1H, br. s, OH), 7.03-

7.12 (1H, m, NCH), 7.46-7.71 (3H, m, CHar), 7.83-7.98 (1H, m, CHar) 13C NMR (100 MHz, 

CDCl3) : 14.1 (CH3), 16.4 (d, 3JCP = 6 Hz, P(OCH2CH3)2), 22.7 (CH2), 24.4 (d, 1JCP = 145 Hz, 

PCH2), 24.9 (CH2), 29.1 (CH2), 29.3 (CH2), 29.3 (CH2), 29.5 (CH2), 29.6 (CH2), 29.6-26.7 (m, 

5 x CH2), 31.9 (CH2), 34.1 (CH2), 62.8 (d, 2JCP = 7 Hz, P(OCH2CH3)), 62.8 (d, 2JCP = 7 Hz, 

P(OCH2CH3)), 64.8 (OCHdHe), 66.8 (OCHaHb), 67.7 (OCHc), 125.0 (Cq,ar), 126.4 (d, 3JCP = 8 

Hz, NCH), 128.7 (CarH), 128.7 (CarH), 130.3 (CarH), 130.7 (CarH), 130.8 (Car,qC(O)N), 131.8 

(Cq,ar), 144.1 (d, 2JCP = 10 Hz, OCqCH2P), 152.8 (CqCHO), 159.8 (d, 5JCP = 3 Hz, NC(O)Cq), 

168.6 (NC(O)Cq), 173.7 (C(O)O). 31P NMR (161 MHz, CDCl3) : 21.34. MS (ESI, pos): m/z 

652.5/653.5/654.5 (M + H+, 100/42/9). HRMS: m/z calcd for C34H55NO9P (M + H)+ 652.3609, 

found 652.3608. Crude yield: 92%, orange oil. 

 

methyl (Z)-N-((benzyloxy)carbonyl)-O-(3-(diethoxyphosphoryl)-1-(1,3-dioxoisoindolin-
2-yl)prop-1-en-2-yl)serinate 349 

1H NMR (400 MHz, CDCl3) : 1.29 (3H, t, J = 7.0 Hz, P(OCH2CH3)), 

1.29 (3H, t, J = 7.0 Hz, P(OCH2CH3)), 1.37 (2H, sext., J = 7.6 Hz, 

CH2CH2CH3), 3.17 (2H, d, 2JHP = 20.9 Hz, PCH2), 3.72 (3H, s, OCH3), 

4.04-4.18 (4H, m, P(OCH2CH3)2), 4.61 (1H, dd, 2JHH = 11.2 Hz, 3JHH = 

3.9 Hz, OCH2), 4.69 (1H, td, 3JNH =8.4 Hz, 3JHH = 3.9 Hz, OCH), 4.90 

(1H, dd, 2JHH = 11.2 Hz, 3JHH = 3.9 Hz, OCH2), 5.14 (2H, s, OCH2Cq), 6.71 (1H, d, J = 8.6 Hz, 

NH), 6.97 (1H, d, 4JHP = 3.8 Hz, NCH), 7.29-7.40 (5H, m, CHar), 7.45-7.59(3H, m, CHar), 7.86-

7.96 (1H, m, CHar) 13C NMR (100 MHz, CDCl3) : 16.4 (d, 3JCP = 6 Hz, P(OCH2CH3)2), 24.3 (d, 

1JCP = 145 Hz, PCH2), 52.7 (OCH3), 53.7 (OCH), 62.6 (d, 2JCP = 6 Hz, P(OCH2CH3)), 62.6 (d, 
2JCP = 7 Hz, P(OCH2CH3)), 64.8 (OCH2), 67.1 (OCH2Cq), 125.1 (Cq), 126.7 (d, 3JCP = 8 Hz, 

NCH) 128.2 (CarH), 128.3 (2 x CarH), 128.5 (3 x CarH), 128.6 (CarH), 130.1 (CarH), 130.8 (CarH), 

131.4 (Cq,ar), 136.2 (Cq,ar), 143.9 (d, 2JCP = 10 Hz, OCq), 156.2 (NC(O)O), 159.4 (d, 5JCP = 2 Hz, 

NC(O)Cq), 168.2 (NC(O)Cq), 170.0 (C(O)O). 31P NMR (161 MHz, CDCl3) : 21.30. MS (ESI, 

pos): m/z 575.3/576.3/577.3 (M + H+, 100/30/6). HRMS: m/z calcd for C27H32N2O10P (M + H)+ 
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575.1789, found 575.1773. Rf: 0.19 (2/8 PE/EtOAc). Yield: 63%, yellow oil. [ ]D = -5.4° (c 0.4, 

acetone) 

 

methyl (Z)-2-(((benzyloxy)carbonyl)amino)-3-(4-((3-(diethoxyphosphoryl)-1-(1,3-
dioxoisoindolin-2-yl)prop-1-en-2-yl)oxy)phenyl)propanoate 350a 

1H NMR (400 MHz, CDCl3) : 1.28 (6H, t, J = 7.1 Hz, 

P(OCH2CH3)2), 3.05 (2H, m, CHCH2Cq), 3.26 (2H, d, 2JHP = 20.9 

Hz, PCH2), 3.73 (3H, s, OCH3), 4.04-4.20 (4H, m, 

P(OCH2CH3)2), 4.66 (1H, m, CHNH), 5.11 (2H, s, OCH2Cq), 5.29 

(1H, d, J = 8.0 Hz, NH), 7.08-7.22 (5H, m, NCH, CHar), 7.28-7.41 (5H, m, CHar), 7.58 (1H, td, 

J = 7.5 Hz, J = 1.4 Hz, CHar), 7.58 (1H, td, J = 7.6 Hz, J = 1.5 Hz, CHar), 7.84 (1H, dd, J = 7.6 

Hz, J = 1.3 Hz, CHar), 7.93 (1H, dd, J = 7.5 Hz, J = 1.1 Hz, CHar). 13C NMR (100 MHz, CDCl3) 

: 16.3 (d, 3JCP = 6 Hz, P(OCH2CH3)2), 24.4 (d, 1JCP = 144 Hz, PCH2), 37.4 (CHCH2Cq), 52.5 

(OCH3), 54.9 (CHNH), 62.6 (d, 2JCP = 7 Hz, P(OCH2CH3)2), 66.8 (OCH2Cq), 121.4 (CarH), 126.4 

(Cq,ar), 126.6 (d, 3JCP = 7 Hz, NCH), 128.0 (CarH), 128.1 (CarH), 128.5 (2 x CarH), 129.1 (CarH), 

129.4 (CarH), 130.1 (CarH), 130.2 (2 x CarH), 131.2 (Cq,ar), 131.4 (CarH), 133.8 (Cq,ar), 136.3 

(Cq,ar), 144.2 (br. s, OCq), 150.0 (OCq,ar), 155.1 (NC(O)O), 159.8 (br. s, NC(O)Cq), 166.5 

(NC(O)Cq), 171.9 (C(O)O). 31P NMR (161 MHz, CDCl3) : 21.43. MS (ESI, pos): m/z 

651.3/652.3/653.3 (M + H+, 100/37/9). HRMS: m/z calcd for C19H27NO6P (M + H)+ 396.1571, 

found 396.1553. Rf: 0.19 (4/6 PE/EtOAc). Yield: 52%, dark yellow oil. [ ]D = 0.0° (c 0.3, 

acetone) 

 

methyl (Z)-2-(((benzyloxy)carbonyl)amino)-3-(4-((1-(diethoxyphosphoryl)-3-(1,3-
dioxoisoindolin-2-yl)prop-1-en-2-yl)oxy)phenyl)propanoate 350b 

1H NMR (400 MHz, CDCl3) : 1.33 (6H, t, J = 7.1 Hz, 

P(OCH2CH3)2), 3.02 (1H, dd, J = 13.7 Hz, J = 6.1 Hz, 

CHaHbCHN), 3.11 (1H, dd, J = 14.0 Hz, J = 5.7 Hz, CHaHbCHN), 

3.69 (3H, s, OCH3), 4.08-4.19 (4H, m, P(OCH2CH3)2), 4.46 (1H, 

d, 2JHP = 5 Hz, PCH), 4.56-4.67 (1H, m, CHNH), 5.06 (2H, s, 

OCH2Cq), 5.15 (2H, d, J = 1.5 Hz, CHNH), 5.21 (1H, d, J = 8.2 Hz, NH), 6.85 (2H, d, J = 8.5 

Hz, CHar), 7.06 (2H, d, J = 8.4 Hz, CHar), 7.27-7.38 (5H, m, CHar), 7.72 (2H, dd, J = 5.5 Hz, J 

= 3.1 Hz, CHar), 7.87 (2H, dd, J = 5.5 Hz, J = 3.0 Hz, CHar). 13C NMR (100 MHz, CDCl3) : 16.3 

(d, 3JCP = 7 Hz, P(OCH2CH3)2), 37.6 (CHCH2Cq), 37.8 (d, 3JCP = 2 Hz, NCH2), 52.4 (OCH3), 

54.8 (CHNH), 61.7 (d, 2JCP = 5 Hz, P(OCH2CH3)2), 67.0 (OCH2Cq), 90.0 (d, 3JCP = 201 Hz, 
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CHP), 121.8 (2 x CarH), 123.4 (2 x CarH), 128.1 (2 x CarH), 128.2 (CarH), 128.5 (2 x CarH), 130.1 

(2 x CarH), 132.1 (2 x Cq,ar), 133.7 (Cq,ar), 134.1 (2 x CarH), 136.1 (Cq,ar), 151.9 (OCq,ar), 155.5 

(NC(O)O), 167.6 (d, 2JCP = 24 Hz, OCq), 167.9 (2 x NC(O)Cq), 171.7 (C(O)O). 31P NMR (161 

MHz, CDCl3) : 19.24. MS (ESI, pos): m/z 651.3/652.3/653.3 (M + H+, 100/37/9). Rf: 0.19 (4/6 

PE/EtOAc). Yield: 9%, dark yellow oil. [ ]D = 0.0° (c 0.2, acetone) 

 

diethyl ((Z)-2-(((3aS,4S,6S,6aS)-6-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2,2-
dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)methoxy)-3-(1,3-dioxoisoindolin-2-
yl)allyl)phosphonate 351 

1H NMR (400 MHz, CDCl3) : 1.33 (6H, t, J = 7.1 Hz, P(OCH2CH3)2), 

1.33 (3H, s, CqCH3), 1.55 (3H, s, CqCH3), 3.29 (1H, dd, 2JHP = 20.7, 

Hz, 3Jab = 16.5 Hz, PCHaHb), 3.36 (1H, dd, 2JHP = 21.1 Hz, 3Jab = 16.5 

Hz, PCHaHb), 4.10-4.22 (4H, m, P(OCH2CH3)2), 4.40-4.49 (1H, m, 

OCHCH2), 4.49-4.63 (2H, m, OCH2CH), 4.76 (1H, dd, J = 6.4 Hz, J = 

3.4 Hz, NCHCHO or OCH2CHCHO), 4.79 (1H, dd, J = 6.4 Hz, J = 2.1 

Hz, NCHCHO or OCH2CHCHO), 5.44 (1H, dd, 3JHH = 8.0 Hz, 4JNH = 1.1 Hz, CHC(O)), 5.71 

(1H, d, J = 2.1 Hz, NCHO), 7.07 (1H, d, 4JHP = 3.6 Hz, NCH), 7.20 (1H, d, 3JHH = 8.1 Hz, 

CHCHC(O)), 7.48-7.67 (3H, m, CHar), 7.91 (1H, td, J =7.8 Hz, J = 0.9 Hz, CHar), 8.89 (1H, br. 

s, NH). 13C NMR (100 MHz, CDCl3) : 16.3 (d, 3JCP = 6 Hz, P(OCH2CH3)2), 24.3 (d, 1JCP = 145 

Hz, PCH2), 25.2 (CqCH3), 27.1 (CqCH3), 62.7 (d, 2JCP = 6 Hz, P(OCH2CH3)2), 65.2 (OCH2CH), 

81.0 (OCH2CHCHO), 84.5 (NCHCHO), 84.8 (OCHCH2), 93.8 (NCHO), 102.3 (CHC(O)), 114.2 

(Cq(CH3)2), 123.4 (Cq,ar), 126.4 (d, 3JCP = 7 Hz, NCH), 128.7 (CarH), 128.9 (CarH), 130.2 (CarH), 

131.1 (CarH), 131.3 (Cq,ar), 141.6 (CHCHC(O)), 144.3 (d, 2JCP = 8 Hz, OCq), 150.2 (NCONH), 

160.0 (d, 5JCP = 2 Hz, NC(O)Cq), 163.6 (CHC(O)), 167.8 (NC(O)Cq). 31P NMR (161 MHz, 

CDCl3) : 21.60. MS (ESI, pos): m/z 606.3/607.3/608.3 (M + H+, 100/30/7). Rf: 0.16 (99/1 

EtOAc/MeOH). Yield: 64%, white foam.  

 

4.5.2. Synthesis of 3-imidoallenylphosphonate 338 

64 mg (0.20 mmol) phosphonylated alkyne was dissolved in 3 mL of the THF in a 10 mL flask. 

65 mg (0.20 mmol) Cs2CO3 was added and the reaction progress was monitored via NMR. 

After 3 hours the mixture was quenched with water, concentrated in vacuo, three times 

extracted with ethyl acetate, dried over MgSO4 and concentrated. The 3-

aminoallenylphosphonate was isolated in 16% yield after preparative TLC. 
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diethyl (3-(1,3-dioxoisoindolin-2-yl)propa-1,2-dien-1-yl)phosphonate 338 

1H NMR (400 MHz, CDCl3) : 1.36 (3H, t, J = 6.8 Hz, P(OCH2CH3)), 1.38 (3H, t, 

J = 6.8 Hz, P(OCH2CH3)), 4.15-4.28 (4H, m, P(OCH2CH3)2), 6.08 (1H, dd, 3JHH = 

6.4 Hz, 2JHP = 1.7 Hz, PCH), 7.21 (1H, dd, 4JHP = 12.8 Hz, 3JHH = 6.4 Hz, NCH), 7.76 (2H, dd, 

J = 5.5 Hz, J = 3.0 Hz, CHar), 7.89 (2H, dd, J = 5.5 Hz, J = 3.1 Hz, CHar) 13C NMR (100 MHz, 

CDCl3) : 16.3 (d, 3JCP = 7 Hz, P(OCH2CH3)), 16.4 (d, 3JCP = 7 Hz, P(OCH2CH3)), 62.7 (d, 2JCP 

= 6 Hz, P(OCH2CH3)), 62.9 (d, 2JCP = 6 Hz, P(OCH2CH3)), 89.9 (d, 3JCP = 17 Hz, NCH), 90.8 

(d, 1JCP = 194 Hz, PCH), 123.8 (CarH), 131.9 (CarH), 134.6 (CarH), 164.9 (NC(O)Cq), 209.6 

(CHCqCH) 31P NMR (161 MHz, CDCl3) : 11.47. MS (ESI, pos): m/z 322.1/323.2 (M + H+, 

100/14). Rf: 0.33 (2/8 PE/EtOAc). Yield: 16%, orange oil. 

 

4.5.3 Procedure for the alkoxide exchange reaction 

Phosphonate 340 (101 mg, 0.28 mmol) was dissolved in 4 mL MeOH. After addition of 90 mg 

(0.28 mmol) Cs2CO3, the mixture was refluxed and reaction progress was monitored via 1H 

NMR. After 2 hours, the mixture was quenched with 1 mL water. The solvent was evaporated 

under reduced pressure and 1 mL water and 10 mL EtOAc were added. The organic layer was 

separated and dried over MgSO4. After evaporation of the solvent in vacuo, the desired product 

was obtained in 61% yield. 

diethyl (Z)-(3-(1,3-dioxoisoindolin-2-yl)-2-methoxyallyl)phosphonate 360b 

1H NMR (400 MHz, CDCl3) : 1.32 (6H, t, J = 7.0 Hz, P(OCH2CH3)2), 

3.30 (2H, dd, 2JHP = 21.1 Hz, 4JHH = 0.9 Hz, PCH2), 3.69 (3H, s, 

CqOCH3), 4.08-4.20 (4H, m, P(OCH2CH3)2), 7.09 (1H, d, 4JHP = 3.6 

Hz, 4JHH = 1.0 Hz, NCH), 7.51 (1H, td, J = 7.4 Hz, J = 1.3 Hz, CHar), 

7.56 (1H, td, J = 7.5 Hz, J = 1.4 Hz, CHar), 7.68-7.72 (1H, m, CHar), 7.85-7.90 (1H, m, CHar). 
31P NMR (161 MHz, CDCl3) : 21.54. MS (ESI, pos): m/z 354.1/355.2 (M + H+, 100/17). Yield: 

61%, orange oil. 

 

4.5.4. Procedure for the addition of haloalcohols 

In a typical experiment, 160 mg (0.50 mmol) alkyne 305 was dissolved in 1.5 mL THF in a 10 

mL flask. 163 mg (0.50 mmol) Cs2CO3 and 33 μL (0.50 mmol) of the haloalcohol were added 

at room temperature. Reaction progress was monitored via NMR spectroscopy. After 

completion of the reaction, the mixture was quenched with water, concentrated in vacuo, three 
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times extracted with ethyl acetate, dried over MgSO4 and concentrated to give the desired 

product. 

diethyl (Z)-(2-(2-chloroethoxy)-3-(1,3-dioxoisoindolin-2-yl)allyl)phosphonate 363a 

1H NMR (400 MHz, CDCl3) : 1.32 (6H, t, J = 7.1 Hz, P(OCH2CH3)2), 

3.30 (2H, d, 2JHP = 20.9 Hz, PCH2), 3.73 (3H, t, J = 5.8 Hz, 

OCH2CH2Cl), 4.06-4.22 (4H, m, P(OCH2CH3)2), 4.54 (2H, t, J = 5.8 

Hz, OCH2CH2Cl), 7.09 (1H, d, 4JHP = 3.7 Hz, NCH), 7.52 (1H, td, J = 

7.5 Hz, J = 1.3 Hz, CHar), 7.58 (1H, td, J = 7.4 Hz, J = 1.4 Hz, CHar), 7.73 (1H, dd, J = 7.56Hz, 

J = 1.2 Hz, CHar), 7.87 (1H, dd, J = 7.5 Hz, J = 1.1 Hz, CHar). 13C NMR (100 MHz, CDCl3) : 

16.4 (d, 3JCP = 6 Hz, P(OCH2CH3)2), 24.5 (d, 1JCP = 145 Hz, PCH2), 41.2 (OCH2CH2Cl), 62.6 

(d, 2JCP = 7 Hz, P(OCH2CH3)2), 65.1 (OCH2CH2Cl), 126.4 (Cq,ar ), 126.5 (d, 3JCP = 8 Hz, NCH), 

129.07 (CarH), 129.13 (CarH), 130.1 (CarH), 131.1 (CarH), 131.3 (Cq,ar), 144.0 (d, 2JCP = 8 Hz, 

OCq), 159.9 (d, 5JCP = 2 Hz, NC(O)Cq), 167.8 (NC(O)Cq). 31P NMR (161 MHz, CDCl3) : 21.49. 

MS (ESI, pos): m/z 402.1/404.1 (M + H+, 100/32). Yield: 80%, yellow oil. 

 

diethyl (Z)-(2-(3-chloropropoxy)-3-(1,3-dioxoisoindolin-2-yl)allyl)phosphonate 363b 

1H NMR (400 MHz, CDCl3) : 1.32 (6H, t, J = 7.1 Hz, P(OCH2CH3)2), 

2.12 (2H, quint, J = 6.1 Hz, CH2CH2Cl), 3.31 (2H, d, 2JHP = 21.0 Hz, 

PCH2), 3.55 (t, J = 6.5 Hz, CH2Cl), 4.06-4.21 (4H, m, P(OCH2CH3)2), 

4.43 (2H, t, J = 6.0 Hz, CqOCH2), 7.10 (1H, d, 4JHP = 3.7 Hz, NCH), 

7.52 (1H, td, J = 7.7 Hz, J = 1.4 Hz, CHar), 7.57 (1H, td, J = 7.8 Hz, J = 1.4 Hz, CHar), 7.69 (1H, 

dd, J = 7.4 Hz, J = 1.3 Hz, CHar), 7.86 (1H, dd, J = 7.6 Hz, J = 1.1 Hz, CHar). 13C NMR (100 

MHz, CDCl3) : 16.3 (d, 3JCP = 6 Hz, P(OCH2CH3)2), 24.3 (d, 1JCP = 145 Hz, PCH2), 31.4 

(CH2CH2Cl), 41.2 (CH2Cl), 62.2 (CqOCH2), 62.5 (d, 2JCP = 7 Hz, P(OCH2CH3)2), 126.0 (Cq,ar), 

126.4 (d, 3JCP = 7 Hz, NCH) 128.87 (CarH), 128.89 (CarH), 130.0 (CarH), 130.8 (CarH), 132.2 

(Cq,ar), 144.0 (d, 2JCP = 9 Hz, OCq), 159.9 (d, 5JCP = 2 Hz, NC(O)Cq), 168.0 (NC(O)Cq). 31P NMR 

(161 MHz, CDCl3) : 21.41. MS (ESI, pos): m/z 416.1/418.1 (M + H+, 100/33). Yield: 84%, 

yellow oil. 
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diethyl (Z)-(2-(3-bromopropoxy)-3-(1,3-dioxoisoindolin-2-yl)allyl)phosphonate 363c 

1H NMR (400 MHz, CDCl3) : 1.33 (6H, t, J = 7.1 Hz, P(OCH2CH3)2), 

2.12 (2H, quint, J = 6.3 Hz, CH2CH2Br), 3.31 (2H, dd, 2JHP = 21.0 Hz, 
3JHH = 0.8 Hz, PCH2), 3.41 (t, J = 6.6 Hz, CH2Br), 4.14 (2H, q, J = 7.2 

Hz, P(OCH2CH3)), 4.16 (2H, q, J = 7.2 Hz, P(OCH2CH3)), 4.35 (2H, t, 

J = 5.9 Hz, CqOCH2), 7.11 (1H, d, 4JHP = 3.8 Hz, NCH), 7.52 (1H, td, J = 7.4 Hz, J = 1.3 Hz, 

CHar), 7.57 (1H, td, J = 7.4 Hz, J = 1.3 Hz, CHar), 7.69 (1H, dd, J = 7.4 Hz, J = 1.5 Hz, CHar), 

7.86 (1H, dd, J = 7.3 Hz, J = 1.5 Hz, CHar). 13C NMR (100 MHz, CDCl3) : 16.4 (d, 3JCP = 6 Hz, 

P(OCH2CH3)2), 24.5 (d, 1JCP = 145 Hz, PCH2), 29.6 (CH2CH2Br), 31.7 (CH2Br), 62.6 (d, 2JCP = 

7 Hz, P(OCH2CH3)2), 63.3 (CqOCH2), 126.2 (Cq,ar), 126.6 (d, 3JCP = 8 Hz, NCH) 128.98 (CarH), 

129.01 (CarH), 130.1 (CarH), 130.9 (CarH), 131.8 (Cq,ar), 144.0 (d, 2JCP = 8 Hz, OCq), 160.0 (d, 
5JCP = 2 Hz, NC(O)Cq), 168.2 (NC(O)Cq). 31P NMR (161 MHz, CDCl3) : 21.47. MS (ESI, pos): 
m/z 460.1/462.1 (M + H+, 100/97). Yield: 22%, yellow oil. 

 

4.5.5.  Procedure for the synthesis of iodopropoxy derivative 363d 

302 mg (1.98 mmol) NaI was added to a mixture of diethyl (Z)-(2-(3-bromopropoxy)-3-(1,3-

dioxoisoindolin-2-yl)allyl)phosphonate 363c in THF at room temperature. Reaction progress 

was monitored via NMR spectroscopy. After completion of the reaction, the mixture was 

quenched with water, concentrated in vacuo, three times extracted with ethyl acetate, dried 

over MgSO4 and concentrated to give the desired product. 

diethyl (Z)-(2-(3-iodopropoxy)-3-(1,3-dioxoisoindolin-2-yl)allyl)phosphonate 363d 

1H NMR (400 MHz, CDCl3) : 1.33 (6H, t, J = 7.1 Hz, P(OCH2CH3)2), 

2.18 (2H, quint, J = 6.4 Hz, CH2CH2I), 3.18 (t, J = 6.9 Hz, CH2I), 3.32 

(2H, dd, 2JHP = 21.0 Hz, 3JHH = 0.6 Hz, PCH2), 4.13 (2H, q, J = 7.1 Hz, 

P(OCH2CH3)), 4.15 (2H, q, J = 7.1 Hz, P(OCH2CH3)), 4.42 (2H, t, J = 

6.0 Hz, CqOCH2), 7.10 (1H, d, 4JHP = 3.8 Hz, NCH), 7.52 (1H, td, J = 7.5 Hz, J = 1.3 Hz, CHar), 

7.57 (1H, td, J = 7.5 Hz, J = 1.3 Hz, CHar), 7.69 (1H, dd, J = 7.5 Hz, J = 1.4 Hz, CHar), 7.86 

(1H, dd, J = 7.5 Hz, J = 1.4 Hz, CHar). 13C NMR (100 MHz, CDCl3) : 1.33 (CH2I), 16.4 (d, 3JCP 

= 7 Hz, P(OCH2CH3)2), 24.6 (d, 1JCP = 145 Hz, PCH2), 32.4 (CH2CH2I), 62.6 (d, 2JCP = 7 Hz, 

P(OCH2CH3)2), 65.2 (CqOCH2), 126.2 (Cq,ar), 126.6 (d, 3JCP = 7 Hz, NCH) 128.97 (CarH), 128.99 

(CarH), 130.0 (CarH), 130.9 (CarH), 131.8 (Cq,ar), 144.0 (d, 2JCP = 9 Hz, OCq), 160.0 (d, 5JCP = 3 

Hz, NC(O)Cq), 168.1 (NC(O)Cq). 31P NMR (161 MHz, CDCl3) : 21.46. MS (ESI, pos): m/z 
508.0/509.0 (M + H+, 100/20). Yield: 55%, yellow oil. 
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4.5.6. Procedure for the preparation of phosphonylated chromenes 

In a typical experiment, 160 mg (0.50 mmol) alkyne 305 was dissolved in 1.5 mL THF in a 10 

mL flask. 163 mg (0.50 mmol) Cs2CO3 and 61 mg (0.50 mmol) salicylaldehyde were added at 

room temperature. Reaction progress was monitored via NMR spectroscopy. After completion 

of the reaction, the mixture was quenched with water, concentrated in vacuo, three times 

extracted with ethyl acetate and dried over MgSO4. Chromenes 366 and 368-369 were purified 

via pTLC (3/7 PE/EtOAc). 

2-((2H-chromen-2-ylidene)methyl)isoindoline-1,3-dione 366 

1H NMR (400 MHz, CDCl3) : 5.47 (1H, s, mi), 5.81 (1H, d, J = 1.3 Hz, 

Ma), 6.14 (1H, d, J = 10.0 Hz, Ma), 6.33 (1H, d, J = 9.8 Hz, mi), 6.61 (1H, 

d, J = 9.8 Hz, Ma), 6.83 (1H, d, J = 8.1 Hz, mi), 6.90-7.01 (2H, m, Ma), 

7.04-7.10 (2H, m, mi), 7.14 (1H, td, J = 7.8 Hz, J = 1.3 Hz, mi), 7.23 (1H, td, J = 7.8 Hz, J = 1.3 

Hz, Ma), 7.71-7.80 (3H, m), 7.85-7.94 (3H, m) MS (ESI, pos): m/z 290.1/291.2 (M + H+, 

100/21). Yield: 3%, transparent liquid. 

A mixture of E/Z isomers was obtained. The predominant stereoisomer is described as Ma 

(Major), the other one as mi (minor). The stereoisomers were isolated in a 78/22 ratio. 

Assignment of the stereoisomerism was not possible. Given the low amount of isolated 

product, no complete characterization could be done.  

 

diethyl (2-((1,3-dioxoisoindolin-2-yl)methylene)-2H-chromen-3-yl)phosphonate 368 and 

369 

1H NMR (400 MHz, CDCl3) : 1.17 (6H, t, J = 7.2 Hz, P(OCH2CH3)2), 

3.83-4.01 (4H, m, P(OCH2CH3)2), 5.93 (1H, t, 4JHP = 1.5 Hz, C10H), 

6.97 (1H, d, J = 8.2 Hz, C8H), 7.03 (1H, td, J = 7.5 Hz, J = 1.0 Hz, 

C6H), 7.22 (1H, dd, J = 7.6 Hz, J = 1.4 Hz, C5H), 7.36 (1H, td, J = 7.9 

Hz, J = 1.4 Hz, C7H), 7.71 (1H, d, J = 19.5 Hz, C3H), 7.70-7.80 (2H, m, C13H), 7.83-7.94 (2H,m, 

C14H). 13C NMR (100 MHz, CDCl3) : 15.9 (d, 3JCP = 6 Hz, P(OCH2CH3)2), 63.0 (d, 2JCP = 5 Hz, 

P(OCH2CH3)2), 98.9 (C10), 115.2 (C8), 118.9 (d, 1JCP = 189 Hz, C2), 119.0 (d, 3JCP = 15 Hz, C4), 

123.0 (C6), 123.2 (2 x C13), 128.7 (C5), 132.9 (2 x C12), 133.3 (C7), 133.9 (C14), 140.3 (d, 2JCP= 

7 Hz, C3), 144.1 (d, 2JCP = 6 Hz, C1), 153.9 (d, 4JCP = 2 Hz, C9), 168.3 (2 x C11). 31P NMR (161 

MHz, CDCl3) : 13.99. MS (ESI, pos): m/z 426.1/427.2 (M + H+, 100/24). Yield: 1%, 

transparent liquid. 
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1H NMR (400 MHz, CDCl3) : 1.44 (6H, t, J = 7.1 Hz, P(OCH2CH3)2), 4.17-

4.32 (4H, m, P(OCH2CH3)2), 6.05 (1H, s, C10H), 6.82 (1H, d, J = 8.2 Hz, 

C8H), 7.00 (1H, t, J = 7.4 Hz, C6H), 7.19 (1H, dd, J = 7.7 Hz, J = 1.3 Hz, 

C5H), 7.27 (1H, td, J = 11.7 Hz, J = 1.4 Hz, C7H), 7.56 (1H, d, J = 18.9 

Hz, C3H), 7.70-7.81 (2H, m, C13H), 7.84-7.98 (2H,m, C14H). 13C NMR (100 

MHz, CDCl3) : 16.3 (d, 3JCP = 7 Hz, P(OCH2CH3)2), 62.8 (d, 2JCP = 4 Hz, 

P(OCH2CH3)2), 96.6 (C10), 115.5 (C8), 118.9 (d, 1JCP = 187 Hz, C2), 119.1 (d, 3JCP = 15 Hz, C4), 

123.3 (C6), 123.4 (2 x C13), 128.5 (C5), 132.5 (2 x C12), 132.6 (C7), 134.1 (C14), 140.3 (d, 2JCP= 

6 Hz, C3), 145.6 (d, 2JCP = 19 Hz, C1), 153.4 (d, 4JCP = 1 Hz, C9), 166.4 (2 x C11). 31P NMR (161 

MHz, CDCl3) : 13.46. MS (ESI, pos): m/z 426.1/427.2 (M + H+, 100/24). Yield: 6%, 

transparent liquid. 

Both stereoisomers are described, but the stereochemistry of the double bond was not 

determined. 

 

4.5.7.  Procedure for the synthesis of -hydroaminated products 

In a typical experiment, 250 mg (0.78 mmol) alkyne 305 was dissolved in 3 mL THF in a 10 

mL flask. 254 mg (0.78 mmol) Cs2CO3 and 57 mg (0.78 mmol) diethylamine were added at 

room temperature. Reaction progress was monitored via NMR spectroscopy. After completion 

of the reaction, the mixture was quenched with water, concentrated in vacuo, three times 

extracted with ethyl acetate, dried over MgSO4 and concentrated to give 283 mg (0.56 mmol) 

of the desired product. Dibenzylamine addition product 370c required purification. As 

hydrolysis occurred during normal phase column chromatography, the mixture was purified via 

reversed phase column chromatography (5 CV 90/10 H2O/CH3CN, 20 CV 90/10 to 70/30 

H2O/CH3CN, 10 CV 70/30 H2O/CH3CN). Only small amounts of product were obtained, which 

did not allow a full characterization. 

diethyl (Z)-(2-(diethylamino)-3-(1,3-dioxoisoindolin-2-yl)prop-1-en-1-yl)phosphonate 
370a 

1H NMR (400 MHz, CDCl3) : 0.99 (3H, t, J = 7.0 Hz, N(CH2CH3)2), 

1.33 (6H, t, J = 7.1 Hz, P(OCH2CH3)2), 3.14 (4H, q, J = 7.0 Hz, 

N(CH2CH3)2), 4.03-4.21 (5H, m, P(OCH2CH3)2, PCH), 5.10 (2H, s, 

NCH2), 7.68-7.73 (2H, m, CHar), 7.79-7.87 (2H, m, CHar). 13C NMR 

(100 MHz, CDCl3) : 12.0 (N(CH2CH3)2), 16.3 (d, 3JCP = 7 Hz, P(OCH2CH3)2), 36.9 (d, 2JCP = 4 

Hz, NCH2), 43.2 (N(CH2CH3)2), 60.8 (d, 2JCP = 4 Hz, P(OCH2CH3)2), 80.2 (d, 1JCP = 211 Hz), 

123.1 (2 x CarH), 134.0 (2 x CarH), 131.7 (2 x Cq,ar), 156.7 (d, 2JCP = 19 Hz, NCq), 167.4 (2 x 
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NC(O)Cq). 31P NMR (161 MHz, CDCl3) : 24.96. MS (ESI, pos): m/z 395.2/396.3 (M + H+, 

100/18). Yield: 72%, transparent liquid. 

 

diethyl (Z)-(2-(dibenzylamino)-3-(1,3-dioxoisoindolin-2-yl)prop-1-en-1-yl)phosphonate 
370c. 

1H NMR (400 MHz, CDCl3) : 1.26 (6H, t, J = 7.1 Hz, P(OCH2CH3)2), 

4.48 (4H, s, J = 7.0 Hz, N(CH2Cq,ar)2), 3.96-4.12 (4H, m, 

P(OCH2CH3)2), 4.25 (1H, d, J = 5 Hz, PCH), 5.33 (2H, d, J = 1.0 Hz, 

NCH2), 6.96-7.07 (6H, CHar), 7.07-7.17 (4H, CHar), 7.53-7.63 (4H, m, 

CHar). 31P NMR (161 MHz, CDCl3) : 23.68. MS (ESI, pos): m/z 519.2/520.3 (M + H+, 100/31). 

Yield: 28%, white crystals. 

 

4.5.8.  Procedure for the synthesis of hydrophosphonylated products 

In a typical experiment, 80 mg (0.25 mmol) alkyne 305 was dissolved in 1.0 mL THF in a 10 

mL flask. 81 mg (0.25 mmol) Cs2CO3 and 35 mg (0.25 mmol) diethyl phosphite were added at 

room temperature. Reaction progress was monitored via NMR spectroscopy. After completion 

of the reaction, the mixture was quenched with water, concentrated in vacuo, three times 

extracted with ethyl acetate and dried over MgSO4. The mixture was purified via pTLC (4/6 

PE/EtOAc). Compounds 372 and 374 were obtained as a 38/62 mixture in a combined 18% 

yield and spectral data were easily extracted from the NMR spectra of the mixture of the two 

regioisomers. 

diethyl (Z)-(3-diethylphosphoryl-1-(1,3-dioxoisoindolin-2-yl) prop-1-en-2-
yl)phosphonate 372 

1H NMR (400 MHz, CDCl3) : 1.08-1.34 (12H, m, 2 x P(OCH2CH3)2), 

2.75 (2H, ddd, 2JHP = 21.1 Hz, 3JHP = 3.7, Hz, 4JHH = 1.2 Hz, PCH2), 

3.87-4.25 (8H, m, 2 x P(OCH2CH3)2), 6.38 (1H, ddd, 3JHP = 2.6 Hz, 
4JHP = 1.4 Hz, 4JHH = 1.4 Hz, NCH), 7.53-7.68 (2H, m, CHar), 7.75-

7.90 (2H, m CHar). 13C NMR (100 MHz, CDCl3) : 16.1-16.8 (m, 2 x P(OCH2CH3)2), 25.0 (d, 

1JCP = 145 Hz, PCH2), 62.5 (d, 2JCP = 4 Hz, P(OCH2CH3)), 62.6 (d, 2JCP = 4 Hz, P(OCH2CH3)), 

64.7 (d, 2JCP = 7 Hz, P(OCH2CH3)), 64.9 (d, 2JCP = 4 Hz, P(OCH2CH3)), 99.8 (d, 1JCP = 208 Hz, 

PCq), 107.8 (d, JCP = 9 Hz, NCH), 125.3 (2 x CarH), 132.7 (d, JCP = 3 Hz, 2 x Cq,ar), 133.8 

(CarH),165.0 (d, JCP = 6 Hz, NC(O)Cq), 166.6 (d, JCP = 2 Hz, NC(O)Cq). 31P NMR (161 MHz, 

CDCl3) : 11.06, 21.32. MS (ESI, pos): m/z 460.1/461.1 (M + H+, 100/20).  
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tetraethyl (3-(1,3-dioxoisoindolin-2-yl)prop-1-ene-1,2-diyl)bis(phosphonate) 374 

1H NMR (400 MHz, CDCl3) : 1.08-1.34 (12H, m, 2 x P(OCH2CH3)2), 

3.87-4.25 (8H, m, 2 x P(OCH2CH3)2), 4.28 (1H, ddd, 2JHH = 15.9 Hz, 
3JHP = 4.2, Hz, J = 1.4 Hz, NCHaHb), 4.58 (1H, ddd, 2JHP = 7.5 Hz, J = 

1.4 Hz, CHP), 4.65 (1H, ddd, 2JHH = 15.7 Hz, 3JHP = 3.0 Hz, 4JHH = 1.0 

Hz, NCHaHb), 7.53-7.68 (2H, m, CHar), 7.75-7.90 (2H, m CHar). 13C NMR (100 MHz, CDCl3) : 

16.1-16.8 (m, 2 x P(OCH2CH3)2), 48.1 (d, 2JCP = 17 Hz, NCHaHb), 61.6 (d, 2JCP = 6 Hz, 

P(OCH2CH3)), 61.7 (d, 2JCP = 6 Hz, P(OCH2CH3)), 64.4 (d, 2JCP = 2 Hz, P(OCH2CH3)), 64.5 (d, 
2JCP = 2 Hz, P(OCH2CH3)), 84.4 (d, 1JCP = 196 Hz, CHP), 125.0 (CarH), 125.4 (CarH), 131.8 

(CarH), 131.7 (d, 4JCP = 4 Hz, Cq,ar), 133.6 (CarH), 140.7 (d, 4JCP = 9 Hz, Cq,ar), 144.0 (dd, 1JCP = 

254 Hz, 2JCP = 9 Hz, PCq), 166.4 (d, JCP = 2 Hz, NC(O)Cq). 172.9 (d, JCP = 10 Hz, NC(O)Cq). 
31P NMR (161 MHz, CDCl3) : 11.66, 14.97. MS (ESI, pos): m/z 460.1/461.1 (M + H+, 100/20).  

diethyl (Z)-(2-(diethylamino)-3-(1,3-dioxoisoindolin-2-yl)prop-1-en-1-yl)phosphonate 
373. 

1H NMR (400 MHz, CDCl3) : 1.23 (3H, t, J = 7.1 Hz, P(OCH2CH3)), 1.28 

(3H, t, J = 7.1 Hz, P(OCH2CH3)), 1.30 (3H, t, J = 7.1 Hz, P(OCH2CH3)), 1.33 

(3H, t, J = 7.0 Hz, P(OCH2CH3)), 3.93-4.30 (8H, m, 2 x P(OCH2CH3)2), 4.44 

(1H, dt, 2JHH = 16.9 Hz, J = 2.6 Hz, NCHaHb), 5.00 (1H, dt, J = 7.5 Hz, J = 

1.8 Hz, CHP), 5.18 (1H, ddd, 2JHH = 17.0 Hz, J = 2.8 Hz, J = 1.6 Hz, NCHaHb), 7.62-7.74 (2H, 

m, CHar), 7.84-7.90 (1H, m, CHar), 7.92-7.99 (1H, m, CHar). 13C NMR (100 MHz, CDCl3) : 

16.2-16.5 (m, 2x P(OCH2CH3)2), 47.5 (NCH2), 43.2 (N(CH2CH3)2), 61.6 (d, JCP = 5 Hz, 

P(OCH2CH3)), 61.7 (d, JCP = 5 Hz, P(OCH2CH3)), 64.5 (d, 2JCP = 3 Hz, P(OCH2CH3)), 64.6 (d, 
2JCP = 3 Hz, P(OCH2CH3)), 84.7 (d, 1JCP = 204 Hz), 98.0 (d, 1JCP = 208 Hz), 125.0 (CarH), 125.4 

(CarH), 131.9 (CarH), 132.0 (d, 4JCP = 3 Hz, Cq,ar), 133.7 (CarH), 140.5 (d, 4JCP = 10 Hz, Cq,ar), 

170.3 (d, 2JCP = 25 Hz, NC(O)Cq), 172.8 (NC(O)Cq). 31P NMR (161 MHz, CDCl3) : 12.25, 

18.51. MS (ESI, pos): m/z 460.1/461.1 (M + H+, 100/20). Yield: 12%, transparent liquid. 

 

4.5.9 Procedure for the synthesis of malonate addition products 

In a typical experiment, 160 mg (0.50 mmol) alkyne 305 was dissolved in 1.5 mL THF in a 10 

mL flask. 163 mg (0.50 mmol) Cs2CO3 and 80 mg (0.50 mmol) diethyl malonate were added 

at room temperature. Reaction progress was monitored via NMR spectroscopy. After 

completion of the reaction, the mixture was quenched with water, concentrated in vacuo, three 

times extracted with ethyl acetate and dried over MgSO4. The mixture was purified via pTLC 

(3/7 PE/EtOAc). 
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diethyl 2-(1-diethoxyphosphoryl)-3-(1,3-dioxoisoindolin-2-yl) propan-2-
ylidene)malonate 378 

1H NMR (400 MHz, CDCl3) : 1.23-1.40 (12H, m, 2 x C(O)OCH2CH3, 

P(OCH2CH3)2), 3.39 (2H, d, 2JHP = 24.6 Hz, PCH2), 4.01-4.19 (4H, m, 

P(OCH2CH3)2), 4.25 (2H, q, J = 7.1 Hz, C(O)OCH2CH3), 4.31 (2H, q, J = 

7.1 Hz, C(O)OCH2CH3), 4.77 (2H, d, 4JHP = 2.5 Hz, NCH2), 7.68-7.79 (2H, 

m, CHar), 7.81-7.92 (2H, m, CHar). 13C NMR (100 MHz, CDCl3) : 13.94 

(C(O)OCH2CH3), 13.97 (C(O)OCH2CH3), 16.3 (d, 3JCP = 6 Hz, 

P(OCH2CH3)2), 29.5 (d, 2JCP = 133 Hz, PCH2), 39.9 (d, 3JCP = 1 Hz, NCH2), 61.4 

(C(O)OCH2CH3), 61.7 (C(O)OCH2CH3), 62.4 (d, 2JCP = 7 Hz, P(OCH2CH3)2), 123.6 (2 x CarH), 

130.3 (d, 3JCP = 12 Hz, Cq(C(O))2), 132.0 (Cq,ar), 134.3 (CarH), 143.2 (d, 2JCP = 12 Hz, PCH2Cq), 

164.2 (d, 4JCP = 4 Hz, C(O)), 164.9 (d, 4JCP = 4 Hz, C(O)), 167.9 (2 x NC(O)Cq). 31P NMR (161 

MHz, CDCl3) : 23.36. MS (ESI, pos): m/z 482.3/4.83.3 (M + H+, 100/23). Yield: 10%, 

transparent liquid. 

 

4.6. Synthesis of diethyl nucleosides phosphonate prodrugs 

4.6.1. Preparation of acetonide-protected nucleoside phosphonates 

In a typical experiment, 321 mg (1.00 mmol) alkyne 305 was dissolved in 8 mL THF in a 25 

mL flask. 326 mg (1.00 mmol) Cs2CO3 and 323 mg (1.00 mmol) acetonide-protected 

nucleoside were added. The reaction progress was monitored via NMR spectroscopy. After 

completion of the reaction, the mixture was quenched with water, concentrated in vacuo, three 

times extracted with ethyl acetate, dried over MgSO4 and concentrated. Adenosine derivative 

398 was purified via normal phase column chromatography. Guanosine derivatives 400 and 

407 were purified via preparative LC. 

diethyl ((Z)-2-(((3aR,4R,6R,6aR)-6-(6-amino-9H-purin-9-yl)-2,2-
dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)methoxy)-3-(1,3-dioxoisoindolin-2-
yl)allyl)phosphonate 398 

1H NMR (400 MHz, CD3OD) : 1.32 (6H, t, J = 7.1 Hz, 

P(OCH2CH3)2), 1.40 (3H, s, CqCH3), 1.60 (3H, s, CqCH3), 3.46 (2H, 

d, 2JHP = 20.9 Hz, PCH2), 4.08-4.23 (4H, m, P(OCH2CH3)2), 4.40-

4.62 (3H, m, OCHCH2, OCH2CH), 4.99 (1H, dd, J = 6.2 Hz, J = 2.6 

Hz, NCHCHO or OCH2CHCHO), 5.45 (1H, dd, J = 6.2 Hz, J = 2.1 

Hz, NCHCHO or OCH2CHCHO), 6.15 (1H, d, J = 2.1 Hz, NCHO), 
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7.08 (1H, d, 4JHP = 4.0 Hz, NCH), 7.54-7.69 (3H, m, CHar), 7.77-7.82 (1H, m, CHar), 8.12 (1H, 

s, CHar), 8.13 (1H, s, CHar). 13C NMR (100 MHz, CD3OD) : 16.7 (d, 3JCP = 6 Hz, P(OCH2CH3)2), 

24.3 (d, 1JCP = 144 Hz, PCH2), 25.6 (CqCH3), 27.4 (CqCH3), 64.2 (d, 2JCP = 7 Hz, P(OCH2CH3)2), 

66.4 (OCH2CH), 83.0 (NCHCHO or OCH2CHCHO), 85.4 (NCHCHO or OCH2CHCHO), 86.0 

(OCHCH2), 92.5 (NCHO),115.3 (Cq(CH3)2), 120.5 (Cq,ar), 127.20 (Cq,ar), 127.22 (d, 3JCP = 9 Hz, 

NCH), 130.25 (CarH), 130.34 (CarH), 131.6 (CarH), 132.4 (Cq,ar), 132.6 (CarH), 141.2 

((N)CHNCHO), 146.2 (d, 2JCP = 10 Hz, OCq), 150.1 (Cq,ar), 153.9 (NCHNCq,arN), 157.2 (Cq,ar), 

161.8 (d, 5JCP = 3 Hz, NC(O)Cq), 168.7 (NC(O)Cq). 31P NMR (161 MHz, CD3OD) : 26.67. MS 

(ESI, pos): m/z 629.2/630.3 (M + H+, 100/30). Rf: 0.18 (9/1 EtOAc/MeOH). Yield: 35%, white 

foam.  

 

diethyl ((Z)-2-(((3aR,4R,6R,6aR)-6-(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)-2,2-
dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)methoxy)-3-(1,3-dioxoisoindolin-2-
yl)allyl)phosphonate 400 

Due to low amounts of product, not all signals could be observed and assigned. 

1H NMR (400 MHz, CD3OD) : 1.30 (3H, t, J = 7.0 Hz, 

P(OCH2CH3)), 1.31 (3H, t, J = 7.0 Hz, P(OCH2CH3)), 1.37 (3H, 

s, CqCH3), 1.56 (3H, s, CqCH3), 3.44 (2H, d, 2JHP = 20.9 Hz, 

PCH2), 4.07-4.20 (4H, m, P(OCH2CH3)2), 4.35-4.48 (2H, m), 

4.55-4.64 (1H, m), 5.00 (1H, dd, J = 6.1 Hz, J = 3.0 Hz), 5.33 

(1H, dd, J = 6.1 Hz, J = 1.4 Hz), 5.98 (1H, d, J = 1.4 Hz, NCHO), 

7.08 (1H, d, 4JHP = 4.0 Hz, NCH), 7.53-7.69 (3H, m, CHar), 7.74 (1H, s, CHar), 7.77-7.84 (1H, 

m, CHar). 13C NMR (100 MHz, CD3OD) : 16.7 (d, 3JCP = 6 Hz, P(OCH2CH3)2), 24.3 (d, 1JCP = 

144 Hz, PCH2), 25.7 (CqCH3), 27.5 (CqCH3), 64.2 (d, 2JCP = 7 Hz, P(OCH2CH3)2), 66.6 

(OCH2CH), 83.1 (NCHCHO or OCH2CHCHO), 85.5 (NCHCHO or OCH2CHCHO), 86.2 

(OCHCH2), 92.1 (NCHO), 115.1 (Cq(CH3)2), 118.2 (Cq,ar), 127.15 (NCH), 127.23 (Cq,ar), 130.3 

(CarH), 130.5 (CarH), 131.7 (CarH), 132.4 (Cq,ar), 132.6 (CarH), 146.2 (d, 2JCP = 10 Hz, OCq), 

152.2 (Cq,ar), 155.3 (Cq,ar), 159.5 (Cq), 161.2 (d, 5JCP = 3 Hz, NC(O)Cq), 168.8 (NC(O)Cq). 31P 

NMR (161 MHz, CD3OD) : 22.80. MS (ESI, pos): m/z 645.2/646.3 (M + H+, 100/29). Yield: 

5%, white foam.  
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diethyl ((Z)-2-(((3aR,4R,6R,6aR)-6-(2-amino-6-(((Z)-3-(diethoxyphosphoryl)-1-(1,3-
dioxoisoindolin-2-yl)prop-1-en-2-yl)oxy)-9H-purin-9-yl)-2,2-dimethyltetrahydrofuro[3,4-
d][1,3]dioxol-4-yl)methoxy)-3-(1,3-dioxoisoindolin-2-yl)allyl)phosphonate 407 

Due to low amounts of product, no 13C NMR data could be collected. 

1H NMR (400 MHz, CD3OD) : 1.24-1.34 (12H, m, 2 x 

P(OCH2CH3)2), 1.36 (3H, s, CqCH3), 1.56 (3H, s, CqCH3), 

3.46 (2H, d, 2JHP = 20.9 Hz, PCH2), 3.47 (2H, d, 2JHP = 

20.9 Hz, PCH2), 4.01-4.24 (8H, m, P(OCH2CH3)2), 4.30-

4.41 (1H, m), 4.46.-4.62 (2H, m), 4.91-4.99 (1H, m), 5.37 

(1H, d, J = 6.1 Hz), 5.98 (1H, br. s, NCHO), 7.09 (1H, d, 
4JHP = 3.9 Hz, NCH), 7.13 (1H, d, 4JHP = 4.0 Hz, NCH), 

7.54-7.81 (7H, m, CHar), 8.00 (1H, s, CHar), 8.03-8.11 (1H, 

m, CHar). 31P NMR (161 MHz, CD3OD) : 22.64. MS (ESI, pos): m/z 966.3/967.4 (M + H+, 

100/45). Yield: 2%, white foam.  

 

4.6.2. Preparation of acetonide-deprotected nucleoside phosphonates 

In a typical experiment, 36 mg (0.06 mmol) addition product 351 was dissolved in 3 mL of a 

1/1 THF/H2O mixture in a 10 mL flask. 14 mg (0.07 mmol) pTsOH∙H2O was added before the 

mixture was refluxed. The reaction progress was monitored via NMR spectroscopy. After 

completion of the reaction, the mixture was washed with 2 mL of a saturated NaHCO3 solution. 

The aqueous phase was extracted three times with 5 mL CH2Cl2, dried over MgSO4 and 

concentrated under reduced pressure to afford 17 mg (0.03 mmol) of the deprotected 

nucleoside phosphonate.  

diethyl ((Z)-2-(((2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-
dihydroxytetrahydrofuran-2-yl)methoxy)-3-(1,3-dioxoisoindolin-2-yl)allyl)phosphonate 
401 

1H NMR (400 MHz, CDCl3) : 1.21 (3H, t, J = 7.1 Hz, P(OCH2CH3)2), 

1.22 (3H, t, J = 7.1 Hz, P(OCH2CH3)2), 3.41 (2H, d, 2JHP = 20.9 Hz, 

PCH2), 3.88-3.98 (2H, m, OCH2CHCHO, NCHCHO), 3.98-4.11 (5H, 

m, P(OCH2CH3)2, OCHCH2), 4.41-4.52 (2H, m, OCH2CH), 5.18 (1H, 

dd, 3JHH = 8.1 Hz, CHC(O)), 5.70 (1H, d, J = 3.6 Hz, NCHO), 7.03 

(1H, d, 4JHP = 4.0 Hz, NCH), 7.39 (1H, d, 3JHH = 8.1 Hz, CHCHC(O)), 

7.52-7.65 (2H, m, CHar), 7.66-7.77 (1H, m, CHar), 7.91 (1H, m, CHar). 13C NMR (100 MHz, 
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CDCl3) : 16.7 (d, 3JCP = 6 Hz, P(OCH2CH3)2), 24.3 (d, 1JCP = 145 Hz, PCH2), 64.3 (d, 2JCP = 7 

Hz, P(OCH2CH3)2), 65.7 (OCH2CH), 71.2 (OCH2CHCHO), 75.3 (NCHCHO), 82.8 (OCHCH2), 

91.6 (NCHO), 102.5 (CHC(O)) 127.3 (Cq,ar), 127.4 (d, 3JCP = 8 Hz, NCH), 130.32 (CarH), 130.34 

(CarH), 131.9 (CarH), 132.7 (CarH), 132.9 (Cq,ar), 141.9 (CHCHC(O)), 146.4 (d, 2JCP = 10 Hz, 

OCq), 150.1 (NCONH), 161.6 (d, 5JCP = 3 Hz, NC(O)Cq), 165.9 (CHC(O)), 169.0 (NC(O)Cq). 
31P NMR (161 MHz, CDCl3) : 22.83. MS (ESI, pos): m/z 566.1/567.2 (M + H+, 100/25). Yield: 

50%, white foam.  

 

diethyl ((Z)-2-(((2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-
yl)methoxy)-3-(1,3-dioxoisoindolin-2-yl)allyl)phosphonate 402 

1H NMR (400 MHz, CD3OD) : 1.20-1.36 (6H, m, P(OCH2CH3)2), 

3.43 (2H, d, 2JHP = 20.9 Hz, PCH2), 4.04-4.19 (4H, m, 

P(OCH2CH3)2), 4.25-4.32 (1H, m, OCHCH2 or NCHCHO or 

OCH2CHCHO), 4.39 (1H, t, J = 5.2 Hz, OCHCH2 or NCHCHO or 

OCH2CHCHO), 4.45 (1H, dd, JAB = 12.2 Hz, J = 3.8 Hz, 

OCHAHBCH), 4.63 (1H, dd, JAB = 12.2 Hz, J = 3.8 Hz, OCHAHBCH), 

4.67 (1H, t, J = 4.8 Hz, OCHCH2 or NCHCHO or OCH2CHCHO), 6.00 (1H, d, J = 4.2 Hz, 

NCHO), 7.07 (1H, d, 4JHP = 3.9 Hz, NCH), 7.54-7.75 (3H, m, CHar), 7.80-7.89 (1H, m, CHar), 

8.08 (1H, s, CHar), 8.12 (1H, s, CHar). 13C NMR (100 MHz, CD3OD) : 16.6 (d, 3JCP = 6 Hz, 

P(OCH2CH3)2), 24.3 (d, 1JCP = 144 Hz, PCH2), 64.2 (d, 2JCP = 7 Hz, P(OCH2CH3)2), 66.0 

(OCHAHBCH), 71.8 (OCHCH2 or NCHCHO or OCH2CHCHO), 75.2 (OCHCH2 or NCHCHO or 

OCH2CHCHO), 83.3 (OCHCH2 or NCHCHO or OCH2CHCHO), 90.4 (NCHO), 120.4 (Cq,ar), 

127.2 (d, 3JCP = 8 Hz, NCH), 127.4 (Cq,ar), 130.38 (CarH), 130.40 (CarH), 131.7 (CarH), 132.7 

(CarH), 132.7 (Cq,ar), 140.3 ((N)CHNCHO), 146.1 (d, 2JCP = 10 Hz, OCq), 150.5 (Cq,ar), 153.9 

(NCHNCq,arN), 157.2 (Cq,ar), 161.7 (d, 5JCP = 2 Hz, NC(O)Cq), 169.0 (NC(O)Cq). 31P NMR (161 

MHz, CD3OD) : 22.83. MS (ESI, pos): m/z 589.2/590.3 (M + H+, 100/26). Yield: 80%, white 

foam.  
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diethyl ((Z)-2-(((2R,3S,4R,5R)-5-(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)-3,4-
dihydroxytetrahydrofuran-2-yl)methoxy)-3-(1,3-dioxoisoindolin-2-yl)allyl)phosphonate 
404 

1H NMR (400 MHz, CD3OD) : 1.30 (3H, t, J = 7.1 Hz, 

P(OCH2CH3)), 1.31 (3H, t, J = 7.2 Hz, P(OCH2CH3)), 3.44 (2H, 

d, 2JHP = 20.9 Hz, PCH2), 4.07-4.18 (4H, m, P(OCH2CH3)2), 

4.18-4.25 (1H, m, OCHCH2), 4.37 (1H, t, J = 5.4 Hz, 

OCH2CHCHO or NCHCHO), 4.47-4.69 (3H, m, OCH2CH + 

OCH2CHCHO or NCHCHO), 5.82 (1H, d, J = 4.4 Hz, NCHO), 

7.08 (1H, d, 4JHP = 4.0 Hz, NCH), 7.56-7.76 (4H, m, CHar), 7.81-7.87 (1H, m, CHar). 13C NMR 

(100 MHz, CD3OD) : 16.7 (d, 3JCP = 6 Hz, P(OCH2CH3)2), 24.3 (d, 1JCP = 144 Hz, PCH2), 64.3 

(d, 2JCP = 7 Hz, P(OCH2CH3)2), 66.3 (OCH2CH), 72.0 (NCHCHO or OCH2CHCHO), 75.1 

(NCHCHO or OCH2CHCHO), 83.2 (OCHCH2), 90.2 (NCHO), 118.1 (Cq,ar), 127.2 (NCH), 127.3 

(Cq,ar), 130.46 (CarH), 130.48 (CarH), 131.8 (CarH), 132.72 (CarH), 132.74 (Cq,ar), 138.0 (CarH), 

146.2 (d, 2JCP = 10 Hz, OCq), 152.9 (Cq,ar), 155.2 (Cq,ar), 159.3 (NCq(O)), 161.8 (d, 5JCP = 3 Hz, 

NC(O)Cq), 169.1 (NC(O)Cq). 31P NMR (161 MHz, CD3OD) : 22.88. MS (ESI, pos): m/z 

605.2/606.3 (M + H+, 100/27). Yield: 87%, white foam.  

 

diethyl ((Z)-2-(((2R,3S,4R,5R)-5-(2-amino-6-(((Z)-3-(diethoxyphosphoryl)-1-(1,3-
dioxoisoindolin-2-yl)prop-1-en-2-yl)oxy)-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-
yl)methoxy)-3-(1,3-dioxoisoindolin-2-yl)allyl)phosphonate 408 

Due to low amounts of product, no 13C NMR data could be collected. 

1H NMR (400 MHz, CD3OD) : 1.22-1.35 (12H, m, 2 x 

P(OCH2CH3)2), 3.43 (2H, d, 2JHP = 20.9 Hz, PCH2), 3.45 

(2H, d, 2JHP = 21.1, Hz, PCH2), 4.02-4.16 (8H, m, 

P(OCH2CH3)2), 4.17-4.23 (1H, m), 4.30-4.35 (1H, m), 

4.44-4.61 (3H, m), 5.89 (1H, d, J = 4.4 Hz, NCHO), 7.04 

(1H, d, 4JHP = 4.2 Hz, NCH), 7.10 (1H, d, 4JHP = 4.2 Hz, 

NCH), 7.56-7.74 (6H, m, CHar), 7.78-7.88 (2H, m, CHar), 

7.96 (1H, s, CHar), 8.02-8.09 (1H, m, CHar). 31P NMR (161 

MHz, CD3OD) : 22.69, 22.82. MS (ESI, pos): m/z 926.3/927.4 (M + H+, 100/42). Yield: 70%, 

white foam.  
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4.7. Synthetic entry into fosmidomycin-inspired antimalarial 
analogues 

4.7.1. Procedure for the synthesis of N-(benzyloxy)acetamide 37 

N-(benzyloxy)acetamide was prepared according to a literature procedure.365 The desired 

compound was obtained as a mixture of rotamers (major rotamer depicted as M, minor rotamer 

depicted as m). Spectral data were in accordance with literature values. 

N-(benzyloxy)acetamide 37 

1H NMR (400 MHz, CDCl3) : 1.72-1.97 (3H, br. s, CH3, M), 1.97-2.22 (3H, 

br. s, CH3, m), 4.63-4.87 (2H, br. s, CH2, m), 4.87-5.02 (2H, s, CH2, M), 7.30-

7.48 (5H, br. s, CHar), 7.65-7.91 (1H, br. s, NH, m), 7.91-8.14 (1H, br. s, NH, 

M) MS (ESI, pos): m/z 166.1/167.2 (M + H+, 100/9). Rf: 0.25 (1/1 PE/EtOAc) 

Yield: 82%, yellow oil. 

 

4.7.2.  Procedure for the alkylation of N-(benzyloxy)acetamide N-(benzyloxy)-N-

(prop-2-yn-1-yl)acetamide 37 

In a typical experiment, 2.607 g N-benzyloxyacetamide 37 (15.8 mmol) is dissolved in 25 ml 

acetone in a 50 ml round-bottom flask. To this solution, 2.184 g K2CO3 (15.8 mmol, 1.0 equiv) 

and 2.1 mL (18.9 mmol) of a 80% propargyl bromide solution in toluene was added. The 

mixture is refluxed until the starting material disappears according to TLC analysis. The solvent 

is removed in vacuo and the crude mixture is purified on column. N-(benzyloxy)-N-(prop-2-yn-

1-yl)acetamide is isolated in 75% yield. 

N-(benzyloxy)acetamide N-(benzyloxy)-N-(prop-2-yn-1-yl)acetamide 410 

1H NMR (400 MHz, CDCl3) : 2.10 (3H, s, CH3), 2.27 (1H, t, J = 2.5 Hz, 

CqCH), 4.38 (2H, d, J = 2.4 Hz, NCH2), 5.00 (2H, s, CH2O), 7.35-7.51 (5H, 

m, CHar). 13C NMR (100 MHz, CDCl3) : 20.6 (CH3), 36.7 (NCH2), 72.1 

(CqCH), 77.6 (Cq,arCH2O), 78.2 (CqCH), 128.7 (CHar), 129.1 (CHar), 129.4 

(CHar), 134.4 (Cq,ar), 173.4 (C(O)) MS (ESI, pos): m/z 204.1/205.2 (M + H+, 100/15) HRMS: 
m/z calcd for C12H13NO2 (M + H)+ 204.0946, found 204.1026. IR (cm-1) νmax: 1666 (C=O) Rf: 

0.18 (9/1 PE/EtOAc) Yield: 75%, yellow oil. 

  



V. Experimental procedures 
 

166 

N-(benzyloxy)-N-(but-2-yn-1-yl)acetamide 423. 

The desired compound was obtained as a mixture of rotamers (major rotamer depicted as M, 

minor rotamer depicted as m). 

1H NMR (400 MHz, CDCl3) : 1.83 (3H, t, J = 2.4 Hz, CqCH3, M), 1.86 

(3H, t, J = 2.4 Hz, CqCH3, m), 1.97 (3H, s, C(O)CH3, m), 2.08 (3H, s, 

C(O)CH3, M), 4.34 (2H, m, NCH2, M), 4.56 (2H, q, J = 2.4 Hz, NCH2, m), 

4.94 (2H, s, Cq,arCH2, m), 4.98 (2H, s, Cq,arCH2, M), 7.29-7.48 (5H, m, 

CHar). 13C NMR (100 MHz, CDCl3) : 0.02 (CqCqCH3, m), 3.7 (CqCqCH3, M), 13.6 (C(O)CH3, 

m), 20.6 (C(O)CH3, M), 37.0 (NCH2, M), 55.0 (NCH2, m), 73.3 (CqCqCH3 of CqCqCH3), 75.8 

(Cq,arCH2O, m), 77.5 (Cq,arCH2O, M), 79.7 (CqCqCH3 of CqCqCH3), 127.7 (CHar, m), 128.26 

(CHar, m), 128.35 (CHar, m), 128.7 (CHar, M), 129.0 (CHar, M), 129.4 (CHar, M), 134.5 (Cq,ar), 

173.2 (C(O)) MS (ESI, pos): m/z 218.1/219.2 (M + H+, 100/15) IR (cm-1) νmax: 1672 (C=O) 

2000-2300 (C≡C) Rf: 0.16 (9/1 PE/EtOAc) Yield: 27%, white solid. 

 

4.7.2. Procedure for the preparation of oxazole 416a 

A 10 mL round-bottom flask was flame dried under inert atmosphere and shielded from 

moisture, using a CaCl2-tube. After dissolving 339 mg (1.0 mmol) dibenzyl (3-(N-

(benzyloxy)acetamido)prop-1-yn-1-yl)phosphonate 412a in 5 mL THF, 326 mg Cs2CO3 (1.0 

mmol) was added and stirred at room temperature. Reaction progress was followed by NMR 

spectroscopy and after complete consumption of the starting material, the mixture was 

quenched with 2 mL H2O. The mixture is diluted in 30 mL EtOAc en washed three times with 

5 mL H2O. After drying over MgSO4 and filtration, the filtrate is concentrated under reduced 

pressure. Purification on column finally yields the desired product. 

diethyl ((4-(benzyloxy)-2-methyloxazol-5-yl)methyl)phosphonate 416a 

1H NMR (400 MHz, CDCl3) : 1.28 (6H, t, J = 7.1 Hz, (CH3CH2O)2P), 2.38 

(3H, d, J = 2.1 Hz, CqCH3), 3.10 (2H, d, JHP = 19.6 Hz, CH2P), 4.08 (4H, 

m, J = 7.3 Hz, (CH3CH2O)2P), 5.17 (2H, s, CH2Cq,ar), 7.26-7.43 (5H, m, 

CHar) 13C NMR (100 MHz, CDCl3) : 14.5 (d, JCP = 1 Hz, CqCH3), 16.3 (d, JCP = 6 Hz, CH3CH2O), 

22.4 (d, JCP = 146 Hz, CH2P), 62.3 (d, JCP=7 Hz, CH2OP), 72.2 (CH2Car), 122.9 (d, JCP = 14 Hz, 

PCH2Cq ), 127.9 (CHar), 128.1 (CHar), 128.4 (CHar), 136.9 (Cq,ar), 150.4 (d, JCP = 10 Hz, 

OCq,arCq,arN), 157.4 (d, JCP = 3.6 Hz , OCar,q(CH3)N) 31P NMR (121 MHz, CDCl3) : 22.48. MS 

(ESI, pos): m/z 340.1/341.2 (M + H+, 100/18) HRMS: m/z calcd for C16H22NO5P (M + H)+ 
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340.1236, found 340.1298. IR (cm-1) νmax: 966 (P-O), 1022 (P=O) Rf: 0.10 (2/8 PE/EtOAc) 

Yield: 22%, brownish oil. 

4.7.3. Preparation of amide intermediate 422 

Diethyl (3-aminoprop-1-yn-1-yl)phosphonate hydrochloride was prepared according to a 

literature procedure. Spectral data were in accordance with literature values.376 A 10 mL round-

bottom flask, equipped with a Claisen piece, is flame dried under inert atmosphere. Next, 455 

mg (2.0 mmol) of the diethyl (3-aminoprop-1-yn-1-yl)phosphonate hydrochloride and 0.56 mL 

(4.0 mmol) NEt3 are dissolved in 10 mL CH2Cl2 at room temperature. After 15 minutes, the 

mixture is cooled to 0 °C and 0.14 mL (2.0 mmol) AcCl is added dropwise. The mixture is 

allowed to warm to room temperature and reaction progress is followed by TLC analysis. After 

complete consumption of the starting material, 1 mL H2O is added and the mixture is diluted in 

25 mL EtOAc. The organic layer is washed five times with 3 mL of a saturated NaHCO3 

solution, dried over MgSO4 and concentrated under reduced pressure. Purification on column 

finally yielded the desired product. 

diethyl (3-acetamidoprop-1-yn-1-yl)phosphonate 422 

1H NMR (400 MHz, CDCl3) : 1.37 (6H, t, J = 7.1 Hz, (CH3CH2O)2P), 

2.02 (3H, s, CH3), 4.09-4.29 (6H, m, NCH2 and (CH3CH2O)2P), 7.02-

7.26 (1H, br. s, NH) 13C NMR (100 MHz, CDCl3) : 16.0 (d, JCP=7 Hz, 

CH3CH2OP), 22.8 (CH3), 29.2 (d, JCP = 4 Hz, NCH2), 63.5 (d, JCP = 6 

Hz, CH3CH2OP), 72.1 (d, JCP = 297 Hz, CqCqP), 97.7 (d, JCP=51 Hz, CqCqP), 170.2 (C(O)) 31P 

NMR (121 MHz, CDCl3) : -7.41. MS (ESI, pos): m/z 234.1/235.2 (M + H+, 100/11) IR (cm-1) 

νmax: 1258 (P-O), 1660 (C=O), 2210 (C≡C), 3275 (NH) Rf: 0.27 (9/1 EtOAc/MeOH) Yield: 50%, 

yellowish oil.  

 

4.7.4. Preparation of Boc-protected hydroxamic acids 

tert-butyl (benzyloxy)carbamate 426 

Tert-butyl (benzyloxy)carbamate 426 was prepared according to a literature procedure. 

Spectral data are in accordance with literature values.378 

1H NMR (400 MHz, CDCl3) : 1.48 (9H, s, Cq(CH3)3), 4.86 (2H, s, CH2), 

7.01-7.13 (1H, br. s, NH), 7.28-7.47 (5H, m, CHar) Yield: 69%, yellow 

oil.  
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tert-butyl (benzyloxy)(prop-2-yn-1-yl)carbamate 427 

Tert-butyl (benzyloxy)(prop-2-yn-1-yl)carbamate was prepared according to a literature 

procedure. Spectral data were in accordance with literature values.379 

1H NMR (400 MHz, CDCl3) : 1.50 (9H, s, Cq(CH3)3), 2.24 (1H, t, J = 2.4 

Hz, CqCH), 4.13 (2H, d, J = 2.4 Hz, NCH2), 4.90-4.98 (2H, br. s, 

CH2Cq,ar), 7.28-7.48 (5H, m, CHar) Rf: 0.26 (95/5 PE/EtOAc) Yield: 78%, 

yellow oil. 

 

4.8. Synthetic entry into chiral spirocyclic oxaphospholenes 

4.8.1.  Procedure for the synthesis of (+)-menthone 

A three-necked flask, equipped with a dropping funnel was charged with 2.970 g (7.0 mmol) 

Dess-Martin periodinane, dissolved in 30 mL dry dichloromethane.380 Next, a solution of (+)-

menthol (0.780 g, 5.0 mmol) in 20 mL dry dichloromethane was added dropwise over fifteen 

minutes at room temperature. After one hour the reaction was completed as indicated by GC-

MS analysis and was poured into 80 mL of a 1M NaOH(aq.) solution. 100 mL diethylether was 

added and the organic phase separated. The aqueous phase was extracted with 100 mL 

diethylether. After combination of both organic phases, they were washed twice with 50 mL 

water, dried over MgSO4, filtered and concentrated in vacuo to give 770 mg (5.0 mmol) (+)-

menthone as a yellowish oil. No purification was needed and the (+)-menthone could be used 

as such in the next step. Spectral properties were in accordance with literature values.381  

 1H NMR (400 MHz, CDCl3) : 0.85 (3H, d, J = 6.6 Hz, CH(CH3)(CH3)), 0.91 (3H, 

d, J = 6.8 Hz, CH(CH3)(CH3)), 1.00 (3H, d, J = 6.3 Hz, CHCH3), 1.30-1.46 (2H, 

m, CHdHe, CHfHg), 1.77-2.21 (6H, m, CHaHb, CHc, CHdHe, CHfHg, CHh, 

CH(CH3)2), 2.35 (1H, ddd, J = 12.9 Hz, J = 4.0 Hz, J = 2.3 Hz, CHaHb) Yield: 

100% (770 mg), yellowish oil.  

 

4.8.2.  Procedure for the preparation of propargylic alcohols  

Method A: representative example 257a 

30 mL commercially available ethynylmagnesium bromide solution (0.26 M in THF, 7.8 mmol) 

was added to 1 mL THF in a 50 mL round-bottom flask, before the addition of 1.04 mL L-

menthone (6.0 mmol). The reaction was allowed to proceed at room temperature. After 
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complete consumption of the starting material, as indicated by GC-MS analysis, the reaction 

was quenched with water after which the reaction mixture was extracted three times with 

dichloromethane. The combined organic layers were dried over MgSO4, filtered and eventually 

the solvent was removed under reduced pressure. The two diastereoisomers could be 

chromatographically separated. 

Method B: representative example 257e 

A round-bottom flask was charged with 20 mL THF and cooled to -84 °C, before 1.72 mL 1-

hexyne (15.0 mmol) was introduced. Next, 11.2 ml of n-BuLi (16 mmol, 1.43 M in hexanes) 

was added dropwise. The mixture was allowed to warm to room temperature while stirring for 

15 minutes. After the addition of L-menthone at - 84 °C, the mixture was allowed warm to room 

temperature again and reaction progress was monitored by GC-MS analysis. After completion 

of the reaction, the reaction was quenched with water after which the mixture was extracted 

three times with dichloromethane. The combined organic layers were dried over MgSO4, 

filtered and eventually the solvent was removed under reduced pressure. The two 

diastereoisomers could be chromatographically separated. 

(1S,2S,5R)-1-ethynyl-2-isopropyl-5-methylcyclohexan-1-ol 257a 

 1H NMR (400 MHz, CDCl3) : 0.84-0.97 (1H, m, CHdHe), 0.88 (3H, d, J = 6.3 

Hz, CHCH3), 0.94 (3H, d, J = 7.1 Hz, CH(CH3)(CH3)), 0.97 (3H, d, J = 7.1 Hz, 

CH(CH3)(CH3)), 1.26-1.55 (4H, m, CHaHb, CHfHg, CHh), 1.59 (1H, br. s, OH), 

1.66-1.83 (2H, m, CHc, CHdHe), 1.93-2.02 (1H, m, CHaHb), 2.34-2.49 (1H, m, 

CH(CH3)2), 2.46 (1H, s, CH) 13C NMR (100 MHz, CDCl3) : 18.6 (CH(CH3)2), 

20.3 (CHfHg), 21.9 (CHCH3), 23.9 (CH(CH3)2), 27.2 (CHc), 28.3 (CH(CH3)2), 34.7 (CHdHe), 50.1 

(CHaHb), 50.3 (CHh), 71.5 (CH), 71.8 (OCq), 88.7 (OCqCq) HRMS: m/z calcd for C12H19 (M - 

H2O + H) 163.1487, found 163.1486. [ ]23
D = +8.85 (c 2.26, CH2Cl2) Rf: 0.17 (95/5 

cyclohexane/EtOAc). Yield: 66% (717 mg), yellow liquid.  

 

(1R,2S,5R)-1-ethynyl-2-isopropyl-5-methylcyclohexan-1-ol 258a 

 1H NMR (400 MHz, CDCl3) : 0.74-0.86 (1H, m, CHdHe), 0.92 (3H, d, J = 6.2 

Hz, CHCH3), 0.98 (3H, d, J = 6.7 Hz, CH(CH3)(CH3)), 1.00 (3H, d, J = 6.6 Hz, 

CH(CH3)(CH3)), 1.17-1.39 (3H, m, CHaHb, CHfHg, CHh), 1.58 (1H, br. s, OH), 

1.66-1.83 (3H, m, CHc, CHdHe, CHfHg), 1.94-2.01 (1H, m, CHaHb), 2.12-2.24 

(1H, m, CH(CH3)2), 2.49 (1H, s, CH) 13C NMR (100 MHz, CDCl3) : 18.3 

(CH(CH3)2), 21.8 (CHCH3), 24.0 (CH(CH3)2), 24.3 (CHfHg), 26.5 (CH(CH3)2), 30.6 (CHc), 34.7 
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(CHdHe), 51.3 (CHaHb), 52.7 (CHh), 71.8 (OCq), 74.5 (CH), 86.5 (OCqCq) HRMS: m/z calcd for 

C12H21O (M + H) 181.1592, found 181.1593. [ ]23
D = -26.67 (c 0.30, CH2Cl2) Rf: 0.10 (95/5 

cyclohexane/EtOAc). Yield: 21% (223 mg), yellow liquid.  

One proton not correctly assigned in literature data.217 CHd was reported to resonate at 1.41-

1.58 ppm, but HSQC shows it resonates at 0.83-0.96 ppm.  

(1S,2S,5R)-2-isopropyl-5-methyl-1-(phenylethynyl)cyclohexan-1-ol 257b 

 1H NMR (400 MHz, CDCl3) : 0.83-0.96 (1H, m, CHdHe), 0.90 (3H, d, J = 

6.3 Hz, CHCH3), 0.97 (3H, d, J = 6.8 Hz, CH(CH3)(CH3)), 1.01 (3H, d, J = 

6.6 Hz, CH(CH3)(CH3)), 1.35-1.59 (4H, m, CHaHb, CHfHg, CHh), 1.61 (1H, 

br. s, OH), 1.72-1.88 (2H, m, CHc, CHdHe), 2.00-2.14 (1H, m, CHaHb), 2.40-

2.56 (1H, m, CH(CH3)2), 7.28-7.33 (3H, m, CHar), 7.38-7.45 (2H, m, CHar) 
13C NMR (100 MHz, CDCl3) : 18.9 (CH(CH3)2), 20.8 (CHfHg), 22.0 (CHCH3), 24.0 (CH(CH3)2), 

27.4 (CHc), 28.6 (CH(CH3)2), 34.9 (CHdHe), 50.1 (CHaHb), 50.7 (CHh), 72.3 (OCq), 83.5 

(CqCq,ar), 94.0 (OCqCq), 123.0 (CqCq,ar), 128.1 (CHar), 128.3 (2 x CHar), 131.7 (2 x CHar) HRMS: 

m/z calcd for C18H23 (M - H2O + H) 239.1800, found 239.1802. [ ]23
D = +4.88 (c 0.82, CH2Cl2) 

Rf: 0.11 (95/5 cyclohexane/EtOAc). Yield: 54% (821 mg), transparent liquid.  

 

(1R,2S,5R)-2-isopropyl-5-methyl-1-(phenylethynyl)cyclohexan-1-ol 258b 

 1H NMR (400 MHz, CDCl3) : 0.74-0.85 (1H, m, CHdHe), 0.94 (3H, d, J = 

6.5 Hz, CHCH3), 1.02 (3H, d, J = 7.1 Hz, CH(CH3)(CH3)), 1.04 (3H, d, J = 

7.1 Hz, CH(CH3)(CH3)), 1.22-1.46 (3H, m, CHaHb, CHfHg, CHh), 1.55 (1H, 

br. s, OH), 1.66-1.91 (3H, m, CHc, CHdHe, CHfHg), 2.02-2.12 (1H, m, 

CHaHb), 2.21-2.33 (1H, m, CH(CH3)2), 7.28-7.34 (3H, m, CHar), 7.38-7.46 

(2H, m, CHar) 13C NMR (100 MHz, CDCl3) : 18.3 (CH(CH3)2), 22.0 (CHCH3), 24.0 (CH(CH3)2), 

24.2 (CHfHg), 26.4 (CH(CH3)2), 30.8 (CHc), 34.8 (CHdHe), 51.4 (CHaHb), 53.8 (CHh), 72.2 (OCq), 

86.4 (CqCq,ar), 92.0 (OCqCq), 123.1 (CqCq,ar), 128.2 (CHar), 128.3 (2 x CHar), 131.2 (2 x CHar) 

HRMS: m/z calcd for C18H23 (M - H2O + H) 239.1800, found 239.1803. [ ]23
D = -14.29 (c 0.84, 

CH2Cl2) Rf: 0.05 (95/5 cyclohexane/EtOAc). Yield: 25% (387 mg), yellow needles.  
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(1S,2S,5R)-2-isopropyl-5-methyl-1-(p-tolylethynyl)cyclohexan-1-ol 257c 

 1H NMR (400 MHz, CDCl3) : 0.90 (3H, d, J = 6.3 Hz, CHCH3), 0.93-

1.00 (1H, m, CHdHe), 0.97 (3H, d, J = 6.8 Hz, CH(CH3)(CH3)), 1.00 

(3H, d, J = 7.1 Hz, CH(CH3)(CH3)), 1.36-1.57 (5H, m, CHaHb, CHfHg, 

CHh, OH), 1.73-1.85 (2H, m, CHc, CHdHe), 2.00-2.10 (1H, m, CHaHb), 

2.34 (1H, s, CH3Cq,ar), 2.47 (1H, quintd, J = 6.9 Hz, J = 2.0 Hz, CH(CH3)2), 7.10 (2H, d, J = 7.8 

Hz, CH3CqCHar), 7.31 (2H, d, J = 8.1 Hz, CqCq,arCHar) 13C NMR (100 MHz, CDCl3) : 18.9 

(CH(CH3)2), 20.8 (CHfHg), 21.5 (CH3Cq,ar), 22.1 (CHCH3), 24.0 (CH(CH3)2), 27.4 (CHc), 28.5 

(CH(CH3)2), 34.9 (CHdHe), 50.2 (CHaHb), 50.7 (CHh), 72.3 (OCq), 83.6 (CqCq,ar), 93.4 (OCqCq), 

120.0 (CqCq,ar), 129.0 (CH3Cq,arCHar), 131.6 (CqCq,arCHar), 138.2 (CH3Cq,ar) HRMS: m/z calcd 

for C19H25 (M - H2O + H) 253.1956, found 253.1958. [ ]23
D = +3.28 (c 1.22, CH2Cl2) Rf: 0.17 

(95/5 cyclohexane/EtOAc). Yield: 58% (473 mg), yellow liquid.  

 

(1R,2S,5R)-2-isopropyl-5-methyl-1-(p-tolylethynyl)cyclohexan-1-ol 258c 

 1H NMR (400 MHz, CDCl3) : 0.85-0.97 (1H, m, CHdHe), 0.93 (3H, 

d, J = 6.6 Hz, CHCH3), 1.01 (3H, d, J = 6.8 Hz, CH(CH3)(CH3)), 1.03 

(3H, d, J = 6.8 Hz, CH(CH3)(CH3)), 1.22-1.46 (3H, m, CHaHb, CHfHg, 

CHh), 1.64-1.89 (3H, m, CHc, CHdHe, CHfHg), 2.02-2.09 (1H, m, 

CHaHb), 2.18 (1H, br. s, OH), 2.21-2.26 (1H, quintd, J = 7.0 Hz, J = 2.5 Hz, CH(CH3)2), 2.34 

((1H, s, CH3Cq,ar), 7.08-7.14 (2H, m, CH3Cq,arCHar), 7.28-7.34 (2H, m, CqCq,arCHar) 13C NMR 

(100 MHz, CDCl3) : 18.2 (CH(CH3)2), 21.5 (CH3Cq,ar), 22.0 (CHCH3), 24.0 (CH(CH3)2), 24.2 

(CHfHg), 26.4 (CH(CH3)2), 30.8 (CHc), 34.8 (CHdHe), 51.4 (CHaHb), 53.8 (CHh), 72.2 (OCq), 86.6 

(CqCq,ar), 91.1 (OCqCq), 120.0 (CqCq,ar), 129.1 (CH3Cq,arCHar), 131.4 (CqCq,arCHar), 138.3 

(CH3Cq,ar) HRMS: m/z calcd for C19H25 (M - H2O + H) 253.1956, found 253.1956. [ ]23
D = -

12.50 (c 0.32, CH2Cl2) Rf: 0.07 (95/5 cyclohexane/EtOAc). Yield: 33% (271 mg), yellow liquid. 

 

 (1S,2S,5R)-2-isopropyl-5-methyl-1-(o-tolylethynyl)cyclohexan-1-ol 257d 

 1H NMR (400 MHz, CDCl3) : 0.87-1.05 (1H, m, CHdHe), 0.91 (3H, d, J 

= 6.3 Hz, CHCH3), 0.98 (3H, d, J = 6.8 Hz, CH(CH3)(CH3)), 1.00 (3H, 

d, J = 7.1 Hz, CH(CH3)(CH3)), 1.36-1.56 (4H, m, CHaHb, CHfHg, CHh), 

1.67 (1H, br. s, OH), 1.75-1.87 (2H, m, CHc, CHdHe), 2.03-2.13 (1H, m, 

CHaHb), 2.42 (1H, s, CH3Cq,ar), 2.54 (1H, quintd, J = 6.9 Hz, J = 1.8 Hz, 

CH(CH3)2), 7.08-7.22 (3H, m, CHar), 7.36-7.41 (1H, m, CHar) 13C NMR (100 MHz, CDCl3) : 



V. Experimental procedures 
 

172 

18.8 (CH(CH3)2), 20.7 (CHfHg), 20.8 (CH3Cq,ar), 22.0 (CHCH3), 24.0 (CH(CH3)2), 27.4 (CHc), 

28.6 (CH(CH3)2), 34.9 (CHdHe), 50.3 (CHaHb), 50.8 (CHh), 72.6 (OCq), 82.4 (CqCq,ar), 98.2 

(OCqCq), 122.8 (CqCq,ar), 125.6 (CHar), 128.2 (CHar), 129.4 (CHar), 132.0 (CHar), 140.1 

(CH3Cq,ar) HRMS: m/z calcd C19H25 (M - H2O + H) 253.1956, found 253.1957. [ ]23
D = -3.08 (c 

1.30, CH2Cl2) Rf: 0.20 (95/5 cyclohexane/EtOAc). Yield: 75% (405 mg), transparent liquid.  

 

(1R,2S,5R)-2-isopropyl-5-methyl-1-(o-tolylethynyl)cyclohexan-1-ol 258d 

 1H NMR (400 MHz, CDCl3) : 0.84-0.99 (1H, m, CHdHe), 0.95 (3H, d, J 

= 6.6 Hz, CHCH3), 1.04 (3H, d, J = 6.8 Hz, CH(CH3)(CH3)), 1.04 (3H, 

d, J = 7.0 Hz, CH(CH3)(CH3)), 1.23-1.49 (3H, m, CHaHb, CHfHg, CHh), 

2.33 (1H, br. s, OH), 1.67-1.91 (3H, m, CHc, CHdHe, CHfHg), 2.04-2.12 

(1H, m, CHaHb), 2.25 (1H, quintd, J = 6.9 Hz, J = 2.8 Hz, CH(CH3)2), 

2.43 (1H, s, CH3Cq,ar), 7.09-7.22 (3H, m, CHar), 7.36-7.41 (1H, m, CHar) 13C NMR (100 MHz, 

CDCl3) : 18.5 (CH(CH3)2), 20.9 (CH3Cq,ar), 22.0 (CHCH3), 24.0 (CH(CH3)2), 24.5 (CHfHg), 26.8 

(CH(CH3)2), 30.9 (CHc), 34.8 (CHdHe), 51.6 (CHaHb), 53.1 (CHh), 72.6 (OCq), 85.4 (CqCq,ar), 

95.9 (OCqCq), 122.8 (CqCq,ar), 125.6 (CHar), 128.2 (CHar), 129.4 (CHar), 132.0 (CHar), 140.0 

(CH3Cq,ar) HRMS: m/z calcd for C19H25 (M - H2O + H) 253.1956, found 253.1960. [ ]23
D = -

20.00 (c 0.20, CH2Cl2) Rf: 0.10 (95/5 cyclohexane/EtOAc). Yield: 14% (74 mg), transparent 

liquid.  

 

(1S,2S,5R)-1-(hex-1-yn-1-yl)-2-isopropyl-5-methylcyclohexan-1-ol 257e 

 1H NMR (400 MHz, CDCl3) : 0.84-1.01 (1H, m, CHdHe), 0.86 (3H, d, 

J = 6.6 Hz, CHCH3), 0.91 (3H, t, J = 7.2 Hz, CH3CH2), 0.92 (3H, d, J = 

6.8 Hz, CH(CH3)(CH3)), 0.95 (3H, d, J = 6.8 Hz, CH(CH3)(CH3)), 1.22-

1.58 (9H, m, CHaHb, CHfHg, CHh, CH3CH2, CH3CH2CH2, OH), 1.65-

1.79 (2H, m, CHc, CHdHe), 1.87-1.97 (1H, m, CHaHb), 2.20 (2H, t, J = 

6.9 Hz, CH2CqCq), 2.32-2.47 (1H, m, CH(CH3)2) 13C NMR (100 MHz, CDCl3) : 13.6 (CH3CH2), 

18.4 (CH2CqCq), 18.7 (CH(CH3)2), 20.6 (CHfHg), 21.9 (CH3CH2), 22.0 (CHCH3), 23.9 

(CH(CH3)2), 27.3 (CHc), 28.2 (CH(CH3)2), 30.9 (CH3CH2CH2), 34.9 (CHdHe), 50.5 (CHaHb), 50.7 

(CHh), 71.9 (OCq), 83.8 (OCqCqCq
 or OCqCqCq), 85.0 (OCqCqCq

 or OCqCqCq) HRMS: m/z calcd 

for C16H27 (M - H2O + H) 219.2113, found 219.2111. [ ]23
D = +6.12 (c 1.96, CH2Cl2) Rf: 0.12 

(99/1 pentane/EtOAc). Yield: 76% (537 mg), transparent liquid.  
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(1R,2S,5R)-1-(hex-1-yn-1-yl)-2-isopropyl-5-methylcyclohexan-1-ol 258e 

 1H NMR (400 MHz, CDCl3) : 0.75-0.89 (1H, m, CHdHe), 0.87 (3H, d, 

J = 6.0 Hz, CHCH3), 0.88 (3H, t, J = 7.1 Hz, CH3CH2), 0.93 (3H, d, J 

= 6.8 Hz, CH(CH3)(CH3)), 0.94 (3H, d, J = 6.9 Hz, CH(CH3)(CH3)), 

1.07-1.53 (7H, m, CHaHb, CHfHg, CHh, CH3CH2, CH3CH2CH2), 1.53-

1.77 (3H, m, CHfHg, CHc, CHdHe), 1.84-1.92 (1H, m, CHaHb), 2.17 (2H, 

t, J = 6.9 Hz, CH2CqCq), 2.07-2.23 (2H, m, CH(CH3)2, OH) 13C NMR (100 MHz, CDCl3) : 13.6 

(CH3CH2), 18.2 (CH(CH3)2), 18.5 (CH2CqCq), 21.9 (CHCH3), 22.0 (CH3CH2), 24.0 (CH(CH3)2), 

24.3 (CHfHg), 26.4 (CH(CH3)2), 30.7 (CHc), 30.8 (CH3CH2CH2), 34.8 (CHdHe), 51.6 (CHaHb), 

52.9 (CHh), 71.9 (OCq), 82.5 (OCqCqCq
 or OCqCqCq), 86.7 (OCqCqCq

 or OCqCqCq) HRMS: m/z 

calcd for C16H27 (M - H2O + H) 2119.2113, found 219.2112. [ ]23
D = -13.33 (c 0.30, CH2Cl2) Rf: 

0.03 (99/1 pentane/EtOAc). Yield: 19% (133 mg), transparent liquid.  

 

(1R,2R,5S)-1-ethynyl-2-isopropyl-5-methylcyclohexan-1-ol 257f 

 1H NMR (400 MHz, CDCl3) : 0.85-0.94 (1H, m, CHdHe), 0.87 (3H, d, J = 6.6 

Hz, CHCH3), 0.93 (3H, d, J = 6.8 Hz, CH(CH3)(CH3)), 0.96 (3H, d, J = 6.8 Hz, 

CH(CH3)(CH3)), 1.27-1.55 (4H, m, CHaHb, CHfHg, CHh), 1.62 (1H, br. s, OH), 

1.65-1.81 (2H, m, CHc, CHdHe), 1.92-2.02 (1H, m, CHaHb), 2.33-2.48 (1H, m, 

CH(CH3)2), 2.46 (1H, s, CH) 13C NMR (100 MHz, CDCl3) : 18.6 (CH(CH3)2), 

20.3 (CHfHg), 21.9 (CHCH3), 23.9 (CH(CH3)2), 27.3 (CHc), 28.3 (CH(CH3)2), 34.8 (CHdHe), 50.1 

(CHaHb), 50.3 (CHh), 71.5 (CH), 71.9 (OCq), 88.7 (OCqCq) HRMS: m/z calcd for C12H19 (M - 

H2O + H)+ 163.1487, found 163.1485. [ ]23
D = -10.53 (c 0.38, CH2Cl2) Rf: 0.18 (95/5 

hexane/EtOAc). Yield: 55% (443 mg), transparent liquid.  

 

(1S,2R,5S)-1-ethynyl-2-isopropyl-5-methylcyclohexan-1-ol 258f 

 1H NMR (400 MHz, CDCl3) : 0.76-0.88 (1H, m, CHdHe), 0.89 (3H, d, J = 6.6 

Hz, CHCH3), 0.95 (3H, d, J = 6.8 Hz, CH(CH3)(CH3)), 0.96 (3H, d, J = 7.0 Hz, 

CH(CH3)(CH3)), 1.14-1.37 (3H, m, CHaHb, CHfHg, CHh), 1.59-1.81 (3H, m, CHc, 

CHdHe, CHfHg), 1.92-2.00 (1H, m, CHaHb), 2.17 (1H, septd, J = 6.9 Hz, J = 2.8 

Hz, CH(CH3)2), 2.32 (1H, br. s, OH), 2.47 (1H, s, CH) 13C NMR (100 MHz, 

CDCl3) : 18.3 (CH(CH3)2), 21.8 (CHCH3), 24.0 (CH(CH3)2), 24.2 (CHfHg), 26.5 (CHc), 30.5 

(CH(CH3)2), 34.7 (CHdHe), 51.3 (CHaHb), 52.7 (CHh), 71.8 (OCq), 74.5 (CH), 86.5 (OCqCq) 
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HRMS: m/z calcd for C12H19 (M - H2O + H)+ 163.1487, found 163.1486. [ ]23
D = +18.18 (c 0.22, 

CH2Cl2) Rf: 0.19 (95/5 hexane/EtOAc). Yield: 17% (138 mg), transparent liquid.  

(1R,2R,4S)-2-ethynyl-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol 257g 

A literature protocol was followed. The two diastereomers were present in a 98/2 ratio and the 

mixture was used as such in the next step. Spectral properties were in accordance with 

literature data.382 

 1H NMR (400 MHz, CDCl3) : 0.96 (3H, s, C(CH3)(CH3)), 1.08-1.17 (2H, m, 

CHdHe, CHfHg), 1.15 (3H, s, C(CH3)(CH3)), 1.20 (3H, s, CH2CCH3), 1.35-1.47 

(1H, m, CHbHc), 1.65-1.78 (3H, m, CHa, CHfHg, CHbHc), 1.85-1.95 (1H, m, 

CHdHe), 2.56 (1H, s, CH) Yield: 72% (168 mg), transparent liquid.  

 

(1R,2S,4R)-2-ethynyl-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol 257h 

Standard protocol B afforded a mixture of two diastereomers, which were present in a 98/2 

ratio. These were recovered in the same ratio after column chromatography (Rf: 0.30 (97.5/2.5 

hexane/EA)) in 55% yield. Next, the alkyne (546 mg, 2.18 mmol) was dissolved in 15 mL MeOH 

and refluxed with K2CO3 (177 mg, 0.33 m%). After 90 minutes, the reaction was quenched with 

water and the solvent was evaporated under reduced pressure before 20 mL of diethylether 

and 5 mL of brine were added. The aqueous phase was extracted twice with 10 mL of 

diethylether. The combined organic layers were dried over MgSO4 and the solvent removed in 

vacuo. The two diastereomers were present in a 98/2 ratio and the mixture was used as such 

in the next step. Spectral properties were in accordance with literature data.383  

 1H NMR (400 MHz, CDCl3) : 0.88 (3H, s, C(CH3)(CH3)), 0.96 (3H, s, 

C(CH3)(CH2)), 1.06 (3H, s, C(CH3)(CH3)), 1.10-1.18 (1H, m, CHbHc), 1.42-1.52 

(1H, m, CHfHg), 1.53-1.64 (1H, br. s, OH), 1.65-1.75 (1H, m, CHbHc), 1.77 (1H, 

t, J = 4.4 Hz, CHa), 1.84-1.95 (1H, m, CHfHg), 1.88 (1H, d, J = 13.6 Hz, CHdHe), 

2.23 (1H, dt, J = 13.4 Hz, J = 3.8 Hz, CHdHe), 2.46 (1H, s, CH) Yield: 58% (278 mg, two steps), 

white needles.  

 

4.8.3. Synthesis of chiral allenylphosphonates 

Diethylchlorophosphite (0.58 mL, 4.0 mmol) was added to a solution of propargylic alcohol 

257b (512 mg, 2.0 mmol) in 20 mL THF at room temperature. After the addition of triethylamine 

(0.32 mL, 2.2 mmol), the mixture was refluxed for 24 hours. The reaction was quenched with 

20 mL of water and brine. Next, the mixture was extracted three times with 20 mL diethylether, 
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the organic layers were combined and dried over MgSO4. After concentration of the mixture in 

vacuo and purification via flash chromatography, enantiomerically pure allenylphosphonate 

259b (481 mg, 1.28 mmol) was obtained.  

(S)-diethyl (2-((2S,5R)-2-isopropyl-5-methylcyclohexylidene)-vinyl)phosphonate 259a 

 1H NMR (400 MHz, CDCl3) : 0.90 (3H, d, J = 6.8 Hz, CH(CH3)(CH3)), 0.93 

(3H, d, J = 6.3 Hz, CHCH3), 0.94 (3H, d, J = 6.6 Hz, CH(CH3)(CH3)), 0.94-

1.06 (1H, m, CHdHe), 1.17-1.30 (1H, m, CHfHg), 1.33 (6H, t, J = 7.2 Hz, 

P(OCH2CH3)2), 1.53-1.94 (6H, m, CHc, CHaHb, CH(CH3)2, CHh, CHdHe, 

CHfHg), 2.30-2.36 (1H, m, CHaHb), 4.02-4.18 (4H, m, P(OCH2CH3)2), 5.25 

(1H, td, 2JPH = 7.5 Hz, 5JHH = 3.8 Hz, PCH) 13C NMR (100 MHz, CDCl3) : 16.4 (d, 3JPC = 2 Hz, 

P(OCH2CH3)), 16.4 (d, 3JPC = 2 Hz, P(OCH2CH3)), 18.9 (CH(CH3)2), 22.0 (CH(CH3)2), 22.0 

(CHCH3), 28.1 (d, 5JPC = 5 Hz, CHfHg), 29.4 (CH(CH3)2), 33.6 (d, 5JPC = 4 Hz, CHc), 34.5 

(CHdHe), 39.6 (d, 4JPC = 7 Hz, CHaHb), 46.3 (d, 4JPC = 5 Hz, CHh), 61.9 (d, 2JPC = 6 Hz, 

P(OCH2CH3)), 62.1 (d, 2JPC = 6 Hz, P(OCH2CH3)), 79.5 (d, 1JPC = 201 Hz, PCH), 107.3 (d, 3JPC 

= 18 Hz, PCHCqCq), 207.7 (PCHCqCq) 31P NMR (161 MHz, CDCl3) : 16.62. HRMS: m/z calcd 

for C16H30O3P (M + H) 301.1933, found 301.1935. [ ]23
D = -2.90 (c 1.38, CH2Cl2) Rf: 0.19 (3/7 

cyclohexane/EtOAc). Yield: 75% (441 mg), yellow liquid.  

 

(S)-diethyl (2-((2S,5R)-2-isopropyl-5-methylcyclohexylidene)-1-phenyl-
vinyl)phosphonate 259b 

 1H NMR (400 MHz, CDCl3) : 0.88 (3H, d, J = 6.7 Hz, CH(CH3)(CH3)), 0.92 

(3H, d, J = 6.8 Hz, CH(CH3)(CH3)), 0.96 (3H, d, J = 6.3 Hz, CHCH3), 0.99-

1.13 (1H, m, CHdHe), 1.24-1.38 (1H, m, CHfHg), 1.29 (6H, t, J = 7.0 Hz, 

P(OCH2CH3)2), 1.52-1.94 (6H, m, CHc, CHaHb, CH(CH3)2, CHh, CHdHe, 

CHfHg), 2.40-2.50 (1H, m, CHaHb), 4.01-4.21 (4H, m, P(OCH2CH3)2), 7.19-

7.24 (1H, m, CHar), 7.28-7.36 (2H, m, CHar), 7.52-759 (2H, m, CHar) 13C NMR (100 MHz, CDCl3) 

: 16.3 (d, 3JPC = 2 Hz, P(OCH2CH3)), 16.4 (d, 3JPC = 2 Hz, P(OCH2CH3)), 19.0 (CH(CH3)2), 

22.0 (CH(CH3)2), 22.1 (CHCH3), 28.0 (d, 5JPC = 4 Hz, CHfHg), 29.9 (CH(CH3)2), 33.5 (d, 5JPC = 

4 Hz, CHc), 34.5 (CHdHe), 39.9 (d, 4JPC = 6 Hz, CHaHb), 47.1 (d, 4JPC = 5 Hz, CHh), 62.1 (d, 2JPC 

= 6 Hz, P(OCH2CH3)), 62.3 (d, 2JPC = 6 Hz, P(OCH2CH3)), 96.6 (d, 1JPC = 193 Hz, PCqCqCq), 

109.7 (d, 3JPC = 15 Hz, PCqCqCq), 127.0 (CarH), 127.4 (CarH), 127.5 (CarH), 128.4 (2 x CarH), 

133.3 (d, 2JPC = 6 Hz, Cq,ar), 207.2 (d, 2JPC = 5 Hz, PCqCqCq) 31P NMR (161 MHz, CDCl3) δ: 

16.58. HRMS: m/z calcd for C22H34O3P (M + H) 377.2246, found 377.2244. [ ]23
D = -23.81 (c 

0.84, CH2Cl2) Rf: 0.19 (7/3 cyclohexane/EtOAc). Yield: 64% (481 mg), transparent liquid.  
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(S)-diethyl (2-((2S,5R)-2-isopropyl-5-methylcyclohexylidene)-1-(p-tolyl)-
vinyl)phosphonate 259c 

 1H NMR (400 MHz, CDCl3) : 0.86 (3H, d, J = 6.5 Hz, CH(CH3)(CH3)), 

0.90 (3H, d, J = 6.5 Hz, CHCH3), 0.94 (3H, d, J = 6.5 Hz, 

CH(CH3)(CH3)), 0.99-1.08 (1H, m, CHdHe), 1.24-1.29 (7H, m, 

P(OCH2CH3)2, CHfHg), 1.62-1.90 (6H, m, CHc, CHaCHb, CH(CH3)2, 

CHh, CHdCHe, CHfCHg), 2.30 (3H, s, CH3Cq,ar), 2.41-2.46 (1H, m, 

CHaCHb), 4.00-4.18 (4H, m, P(OCH2CH3)2), 7.10 (2H, d, J = 8.3 Hz, CHar), 7.43 (2H, d, J = 8.3 

Hz, CHar) 13C NMR (100MHz, CDCl3) : 16.3 (P(OCH2CH3)) 16.4 (P(OCH2CH3)), 19.0 

(CH(CH3)2), 21.1 (CH3Cq,ar), 21.9 (CH(CH3)), 22.0 (CHCH3), 28.0 (d, 5JPC = 4 Hz, CHfHg), 29.8 

(CH(CH3)2), 33.5 (d, 5JPC = 5 Hz ,CHc), 34.5 (CHdHe), 39.9 (d, 4JPC = 6 Hz, CHaHb), 47.1 (d, 4JPC 

= 6 Hz ,CHh), 61.9 (d, 2JPC = 6 Hz, P(OCH2CH3)), 62.1 (d, 2JPC = 6 Hz, P(OCH2CH3)), 96.3 (d, 
1JPC = 193 Hz, PCqCqCq), 109.5 (d, 3JPC = 15 Hz, PCqCqCq), 127.3 (d, 3JPC = 6 Hz, CarH), 129.1 

(CarH), 130.2 (d, 2JPC = 10 Hz, Cq,ar), 136.4 (Cq,ar), 206.2 (d, 2JPC = 4 Hz, PCqCqCq). 31P NMR : 

16.70. HRMS: m/z calcd for C23H36O3P (M+H)+ 391.2402, found 391.2396. [α]D
20 = -18.39 (c 

2.04, CH2Cl2) Rf: 0.20 (4/6 EtOAc/n-hexane). Yield: 72% (280 mg), yellow oil. 

 

(S)-diethyl (2-((2S,5R)-2-isopropyl-5-methylcyclohexylidene)-1-(o-tolyl)-
vinyl)phosphonate 259d 

 1H NMR (400 MHz, CDCl3) : 0.84 (3H, d, J = 6.6 Hz, CH(CH3)(CH3)), 

0.94 (3H, d, J = 6.7 Hz, CH(CH3)(CH3)), 0.92-1.04 (1H, m, CHdHe), 0.96 

(3H, d, J = 5.6 Hz, CHCH3), 1.19-1.32 (7H, m, CHfHg, P(OCH2CH3)2), 

1.57-1.91 (6H, m, CHc, CHaHb, CH(CH3)2, CHh, CHdHe, CHfHg), 2.37 (3H, 

br. s, CH3Cq,ar), 2.43-2.51 (1H, m, CHaHb), 3.94-4.15 (4H, m, 

P(OCH2CH3)2), 7.11-7.22 (3H, m, CHar), 7.30-7.37 (1H, m, CHar) 13C NMR (100 MHz, CDCl3) 

: 16.37 (d, 3JPC = 4 Hz, P(OCH2CH3)), 16.44 (d, 3JPC = 4 Hz, P(OCH2CH3)), 18.9 (CH(CH3)2), 

20.5 (CH3Cq,ar), 22.1 (CH(CH3)2), 22.2 (CHCH3), 28.1 (d, 5JPC = 4 Hz, CHfHg), 29.7 (CH(CH3)2), 

33.8 (d, 5JPC = 4 Hz, CHc), 34.7 (CHdHe), 39.6 (d, 4JPC = 7 Hz, CHaHb), 46.8 (d, 4JPC = 5 Hz, 

CHh), 62.2 (d, 2JPC = 7 Hz, P(OCH2CH3)), 62.3 (d, 2JPC = 7 Hz, P(OCH2CH3)), 95.3 (d, 1JPC = 

196 Hz, PCqCqCq), 107.3 (d, 3JPC = 16 Hz, PCqCqCq), 125.6 (d, JPC = 2 Hz, CarH), 127.6 (d, JPC 

= 2 Hz, CarH), 130.0 (d, JPC = 4 Hz, CarH), 130.3 (CarH), 132.9 (d, JPC = 8 Hz, Cq,ar), 133.3 (d, 

JPC = 6 Hz, Cq,ar), 205.0 (d, 2JPC = 6 Hz, PCqCqCq) 31P NMR (161 MHz, CDCl3) : 15.91 HRMS: 

m/z calcd for C23H36O3P (M + H) 391.2402, found 391.2401. [ ]23
D

 = +17.05 (c 2.33, CH2Cl2) 

Rf: 0.20 (7/3 pentane/EtOAc). Yield: 66% (514 mg), yellow liquid.  
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(S)-diethyl (1-((2S,5R)-2-isopropyl-5-methylcyclohexylidene)-hex-1-en-2-
yl)phosphonate 259e 

 1H NMR (400 MHz, CDCl3) : 0.86-1.07 (13H, m, CH(CH3)2, CHCH3, 

CHdHe, CH3CH2), 1.17-1.29 (1H, m, CHfHg), 1.31 (6H, t, J = 7.1 Hz, 

P(OCH2CH3)2), 1.31-1.39 (2H, m, CH3CH2CH2), 1.41-1.50 (2H, m, 

CH3CH2CH2), 1.60-1.65 (CHc), 1.67-1.73 (2H, m, CHaHb, CHh) 1.73-1.78 

(CH(CH3)2), 1.78-1.88 (2H, CHdHe, CHfHg), 2.08-2.18 (2H, m, 

CH2CqCqCq), 2.23-2.37 (1H, m, CHaHb), 3.98-4.19 (4H, m, P(OCH2CH3)2) 13C NMR (100 MHz, 

CDCl3) : 14.0 (CH3CH2), 16.4 (d, 3JPC = 2 Hz, P(OCH2CH3)), 16.5 (d, 3JPC = 2 Hz, 

P(OCH2CH3)), 19.0 (CH(CH3)(CH3)), 21.96 (CH(CH3)(CH3) + CHCH3), 22.3 (CH3CH2CH2), 

27.9 (d, 5JPC = 5 Hz, CHfHg), 28.6 (d, 2JPC = 9 Hz, CH2CqCqCq), 29.5 (CH(CH3)2), 30.7 (d, 3JPC 

= 7 Hz, CH3CH2CH2), 33.5 (d, 5JPC = 4 Hz, CHc), 34.5 (CHdHe), 40.2 (d, 4JPC = 7 Hz, CHaHb), 

46.6 (d, 4JPC = 5 Hz, CHh), 61.6 (d, 2JPC = 6 Hz, P(OCH2CH3)), 61.9 (d, 2JPC = 7 Hz, 

P(OCH2CH3)), 93.1 (d, 1JPC = 197 Hz, PCq), 108.1 (d, 3JPC = 17 Hz, PCqCqCq), 204.1 (d, 2JPC = 

6 Hz, PCqCqCq) 31P NMR (161 MHz, CDCl3) : 19.61. HRMS: m/z calcd for C20H38O3P (M + H) 

357.2559, found 357.2561. [ ]23
D = -15.44 (c 2.05, CH2Cl2) Rf: 0.18 (7/3 pentane/EtOAc). 

Yield: 78% (555 mg), transparent liquid.  

 

(R)-diethyl (2-((2R,5S)-2-isopropyl-5-methylcyclohexylidene)-vinyl)phosphonate 259f 

 1H NMR (400 MHz, CDCl3) : 0.87 (3H, d, J = 6.7 Hz, CH(CH3)(CH3)), 0.91 

(3H, d, J = 6.0 Hz, CHCH3), 0.92 (3H, d, J = 6.7 Hz, CH(CH3)(CH3)), 0.96-

1.01 (1H, m, CHdHe), 1.17-1.30 (1H, m, CHfHg), 1.30 (6H, t, J = 7.2 Hz, 

P(OCH2CH3)2), 1.52-1.85 (6H, m, CHc, CHaHb, CH(CH3)2, CHh, CHdHe, 

CHfHg), 2.29-2.32 (1H, m, CHaHb), 4.01-4.14 (4H, m, P(OCH2CH3)2), 5.22 

(1H, dt, 2JPH = 7.4 Hz , 5JHH = 3.7 Hz, PCH). 13C NMR (100MHz, CDCl3) : 16.3 (d, 3JPC = 1 Hz, 

P(OCH2CH3)), 16.3 (d, 3JPC = 1 Hz, P(OCH2CH3)), 18.9 (CH(CH3)2), 21.8 (CH(CH3)2), 21.8 

(CHCH3), 28.1 (d, 5JPC = 5 Hz, CHfHg), 29.3 (CH(CH3)2), 33.6 (d, 5JPC = 4 Hz, CHc), 34.4 

(CHdHe), 39.5 (d, 5JPC = 7 Hz, CHaHb), 46.3 (d, 4JPC = 6 Hz, CHh), 61.8 (d, 2JPC = 6 Hz, 

P(OCH2CH3)), 61.9 (d, 2JPC = 6 Hz, P(OCH2CH3)), 79.5 (d, 1JPC = 201 Hz, PCH), 107.2 (d, 3JPC 

= 17 Hz, PCHCqCq), 207 (PCHCqCq). 31P NMR (161 MHz, CDCl3) : 16.54 HRMS: m/z calcd 

for C16H30O3P (M+H)+ 301.1933, found 301.1913. [α]D
20 = +2.27 (c 2.07, CH2Cl2), Rf: 0.17 (4:6 

EtOAc/n-hexane). Yield: 56% (336 mg), yellow oil. 
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(S)-diethyl (2-((1R,4S)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ylidene)-vinyl)phosphonate 
259g 

 1H NMR (400 MHz, CDCl3) : 1.01 (3H, s, C(CH3)(CH3)), 1.16 (3H, s, 

C(CH3)(CH3)), 1.20 (3H, s, CH3CqCHaHb), 1.30-1.35 (1H, m, CHaHb), 1.33 

(6H, t, J = 7.1 Hz, P(OCH2CH3)2), 1.46-1.58 (3H, m, CHcHd, CHfHg), 1.69-

1.75 (1H, m, CHaHb), 1.77-1.84 (1H, m, CHcHd), 1.87-1.92 (1H, m, CHe), 

3.99-4.20 (4H, m, P(OCH2CH3)2), 5.42 (1H, d, J = 8.6 Hz, CHP) 13C NMR 

(100 MHz, CDCl3) : 15.3 (P(OCH2CH3)), 15.4 (P(OCH2CH3)), 17.9 (CH3CqCHaHb), 24.31 

((CH3)(CH3)Cq), 24.34 (CHcHd), 27.7 (d, 5JPC = 6 Hz, (CH3)(CH3)Cq), 34.1 (d, 5JPC = 7 Hz, 

CHfHg), 43.3 (d, 4JPC = 6 Hz, CqCHe), 44.0 (d, 5JPC = 1 Hz, CHaHb), 46.8 (CHe), 49.1 (d, 4JPC = 

5 Hz, CqCHaHb), 60.8 (d, 2JPC = 3 Hz, P(OCH2CH3)), 60.9 (d, 2JPC = 3 Hz, P(OCH2CH3)), 83.0 

(d, 1JPC = 200 Hz, PCH), 121.7 (d, 3JPC = 18 Hz, PCHCqCq), 203.6 (PCHCqCq) 31P NMR (161 

MHz, CDCl3) : 16.70 HRMS: m/z calcd for C16H28O3P (M + H) 299.1776, found 299.1779. 

[ ]23
D = -65.77 (c 2.12, CH2Cl2) Rf: 0.17 (5/5 EtOAc/n-hexane). Yield: 67% (598 mg), 

transparent liquid.  

 

(R)-diethyl (2-((1R,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene)-vinyl)phosphonate 
259h 

 1H NMR (400 MHz, CDCl3) : 0.89 (3H, s, C(CH3)(CH3)), 0.91 (3H, s, 

C(CH3)(CH3)), 0.94 (3H, s, CH3CqCHdHe), 1.19-1.26 (1H, m, CHbHc), 1.31 

(3H, t, 3JHH = 7.0 Hz, P(OCH2CH3)), 1.32 (3H, t, 3JHH = 7.1 Hz, 

P(OCH2CH3)), 1.44-1.50 (1H, m, CHgHf), 1.62-1.71 (1H, m, CHeHd), 1.75-

1.85 (2H, m, CHbHc, CHa), 2.05-2.12 (1H, m, CHfHg), 2.56-2.66 (1H, m, 

CHeHd), 3.99-4.12 (4H, m, P(OCH2CH3)2), 5.26-5.30 (1H, m, PCH). 13C NMR (100MHz, CDCl3) 

: 13.0 (CH3CqCHdHe), 16.3 (P(OCH2CH3)), 16.4 (P(OCH2CH3)), 18.6 (C(CH3)(CH3)), 19.7 

(C(CH3)(CH3)), 27.7 (CHbHc), 34.5 (d, 4JPC = 6 Hz, CHfHg), 34.9 (d, 5JPC = 6 Hz, CHdHe), 44.9 

(CHa), 48.6 (d, 5JPC = 2 Hz, C(CH3)(CH3)), 52.5 (d, 4JPC = 5 Hz, CH2CCH3), 61.8 (d, 2JPC = 6 Hz, 

P(OCH2CH3)), 61.9 (d, 2JPC = 6 Hz, P(OCH2CH3)), 81.9 (d, 1JPC = 198 Hz, PCH), 112.8 (d, 3JPC 

= 17 Hz, PCHCqCq), 205.9 (PCHCqCq). 31P NMR (161 MHz, CDCl3) : 16.50. HRMS: m/z calcd 

for C16H28O3P (M+H)+, 299.1776, found 299.1771. [ ]23
D = -99.80 (c 9.98, CH2Cl2) Rf: 0.19 

(5:5 EtOAc/n-hexane). Yield: 59% (351 mg), yellow oil. 
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4.8.4. Synthesis of chiral spirocyclic oxaphospholenes 

Iodine (84 mg, 0.3 mmol) was added to a Schlenk tube, charged with a solution of 

allenylphosphonate 259b (100 mg, 0.3 mmol) in cyclohexane. The reaction was stirred for 30 

minutes at 80 °C, after which 10 mL dichloromethane, Na2S2O5 and few drops of water were 

added and stirred until completely decolorization. The organic layer was eventually dried over 

MgSO4 and the solvent evaporated under reduced pressure to immediately give the desired 

spirocyclic oxaphospholenes 263b (121 mg, 0.31 mmol) as a mixture of diastereomers at the 

phosphorus atom.  

(5S,6S,9R)-2-ethoxy-4-iodo-6-isopropyl-9-methyl-1-oxa-2-phosphaspiro[4.5]dec-3-ene 
2-oxide 263a  

dr: 61/39  

1H NMR (400 MHz, CDCl3) : 0.75-1.02 (10 H, m, CH(CH3)2, CHCH3, CHdHe), 

1.32 (3H, t, J = 7.1 Hz, POCH2CH3), 1.43-1.94 (8H, m, CHc, CHaHb, CH(CH3)2, 

CHh, CHdHe, CHfHg), 3.95-4.37 (2H, m, POCH2CH3), 6.56 (1H, d, 2JPH = 26.3 

Hz, PCH) 13C NMR (100 MHz, CDCl3) : 16.7 (d, 3JPC = 5 Hz, POCH2CH3), 

17.5 (CH(CH3)2), 21.1 (CHfHg), 22.0 (CHCH3), 23.8 (d, 5JPC = 4 Hz, CH(CH3)2), 

26.5 (CHc), 28.5 (d, 4JPC = 4 Hz, CH(CH3)2), 34.3 (CHdHe), 45.3 (CHaHb), 46.9 (d, 3JPC = 4 Hz, 

CHh), 63.1 (d, 2JPC = 7 Hz, POCH2CH3), 94.6 (d, 2JPC = 4 Hz, OCq), 127.5 (d, 1JPC = 156 Hz, 

PCH), 127.7 (d, 2JPC = 27 Hz, ICq) 31P NMR (161 MHz, CDCl3) : 33.47 HRMS: m/z calcd for 

C14H25IO3P (M + H) 399.0586, found 399.0587. Yield: 91% (108 mg), yellow liquid. 

 

(5S,6S,9R)-2-ethoxy-4-iodo-6-isopropyl-9-methyl-3-phenyl-1-oxa-2-
phosphaspiro[4.5]dec-3-ene 2-oxide 263b 

dr: 61/39 

 1H NMR (400 MHz, CDCl3) : 0.81-1.05 (10 H, m, CH(CH3)2, CHCH3, 

CHdHe), 1.16 (3H, t, J = 6.6 Hz, POCH2CH3), 1.51-1.97 (8H, m, CHc, CHaHb, 

CH(CH3)2, CHh, CHdHe, CHfHg), 3.95-4.30 (2H, m, POCH2CH3), 7.33-7.45 

(3H, m, CHar), 7.50-7.60 (2H, m, CHar) 13C NMR (100 MHz, CDCl3) : 16.6 

(d, 3JPC = 5 Hz, POCH2CH3), 17.7 (CH(CH3)2), 21.2 (CHfHg), 22.1 (CHCH3), 

23.9 (d, 5JPC = 4 Hz, CH(CH3)2), 26.6 (CHc), 28.5 (CH(CH3)2), 34.3 (CHdHe), 46.0 (s, CHaHb), 

46.7 (d, 3JPC = 4 Hz, CHh), 63.4 (d, 2JPC = 7 Hz, POCH2CH3), 92.6 (d, 2JPC = 4 Hz, OCq), 125.2 

(d, 2JCP = 39 Hz, ICq), 128.3 (d, 4JCP = 6 Hz, CHar,o), 128.6 (2x CHar,m), 129.0 (d, 6JCP = 1 Hz, 

CHar,p), 132.6 (d, 2JCP = 11 Hz, Cq, ar), 136.6 (d, 1JPC = 151 Hz, PCq) 31P NMR (161 MHz, CDCl3) 
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: 33.47 HRMS: m/z calcd for C20H29IO3P (M + H) 475.0899, found 475.0898. Yield: 94 % 

(133 mg), yellow liquid. 

 

(5S,6S,9R)-2-ethoxy-4-iodo-6-isopropyl-9-methyl-3-(p-tolyl)-1-oxa-2-
phosphaspiro[4.5]dec-3-ene 2-oxide 263c 

dr: 62/48 

 1H NMR (400 MHz, CDCl3) : 0.85-0.98 (10H, m, CH(CH3)2, CHCH3, 

CHdHe), 1.18 (3H, t, J = 7.1 Hz, POCH2CH3), 1.53-2.06 (8H, m, CHc, 

CHaHb, CH(CH3)2, CHh, CHfHg, CHdHe), 2.37 (3H, s, CH3Cq,ar), 3.98-

4.22 (2H, m, P(OCH2CH3)), 7.22 (2H, J = 7.9 Hz, CHar), 7.45-7.51 (2H, 

m, CHar). 13C NMR (100MHz, CDCl3) : 16.5 (d, 3JPC = 5 Hz, 

P(OCH2CH3)), 17.7 (CH(CH3)(CH3)), 21.1 (CHfHg), 21.4 (CH3Cq,ar), 22.0 (CH(CH3)(CH3)), 23.8 

(CHCH3), 26.5(CHc), 28.5 (CHh), 34.4 (CHdHe), 46.0(CHaHb), 46.6(CH(CH3)2), 63.3 (d, 2JPC = 7 

Hz, P(OCH2CH3)), 92.4 (d, 2JPC = 4 Hz, OCq), 124.2 (d, 2JPC = 40 Hz, PCqCqI), 127.9 (d, 3JPC = 

6 Hz, CarH), 129.2 (CarH), 129.5 (d, 2JPC = 10 Hz, PCqCq,ar), 136.0 (d, 1JPC = 150 Hz, PCq), 139.0 

(d, 5JPC = 1 Hz, Cq,arCH3). 31P NMR (161 MHz, CDCl3) : 28.87 HRMS: m/z calcd for C21H31IO3P 

(M+H)+ 489.1056, found 489.1043. Yield: 87% (127 mg), yellow oil. 

 

(5S,6S,9R)-2-ethoxy-4-iodo-6-isopropyl-9-methyl-3-(o-tolyl)-1-oxa-2-
phosphaspiro[4.5]dec-3-ene 2-oxide 263d 

For each epimer, a pair of rotamers is observed at room temperature, due to hindered rotation 

around the Coxaphospholene - Co-tolyl bond. When recording the 1H NMR spectrum at 60 °C, the 

signals for the benzylic protons of each epimer merge together, appearing as one, almost 

entirely superimposed broad singlet. At 75 °C, carbon signals sufficiently sharpened to reduce 

hindered rotation and one epimer could be described as was the case for the previous 

derivatives. In 31P NMR, a hump of broadened signals was observed. An accurate 

measurement of the diastereomeric ratio could not be obtained. 

1H NMR (400 MHz, DMSO-d6, 60 °C) : 0.88-0.99 (10H, m, CH(CH3)2, 

CHCH3, CHdHe), 1.00-1.14 (3H, m, P(OCH2CH3)), 1.46-1.91 (8H, m, 

CHc, CHaHb, CH(CH3)2, CHh, CHfHg, CHdHe), 2.26 (3H, s, CH3Cq,ar, 

major), 2.27 (3H, s, CH3Cq,ar, minor), 3.92-4.08 (2H, m, P(OCH2CH3)), 

6.90-7.10 (1H, m, CHar), 7.22-7.35 (3H, m, CHar). 13C NMR (100MHz, 

DMSO-d6, 75 °C) : 16.7 (d, 3JCP = 4 Hz, P(OCH2CH3)), 17.8 (CH(CH3)(CH3)), 19. (d, 3JCP = 1 
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Hz, CH3Cq,ar), 21.4 (CHfHg), 22.1 (CH(CH3)(CH3)), 24.1 (CHCH3), 26.7 (CHc), 28.5 (CHh), 34.4 

(CHdHe), 46.0 (CHaHb), 47.2 (CH(CH3)2), 63.2 (d, 2JPC = 7 Hz, P(OCH2CH3)), 92.8 (d, 2JPC = 4 

Hz, OCq), 126 (CarH), 128.6 (CarH), 129.1 (CarH), 129.7 (d, 2JPC = 37 Hz, PCqCqI), 130.0 (d, 1JPC 

= 170 Hz, PCq), 130.8 (CarH), 138.0 (PCqCq,ar), 139.5 (PCqCqCq,ar). 31P NMR (161 MHz, DMSO-

d6, 60 °C) : 28.0-30.7 (broadened peaks). HRMS: m/z calcd for C21H31IO3P (M+H)+ 489.1056, 

found 489.1035. Yield: 91% (133 mg), yellow oil. 

 

(5S,6S,9R)-3-butyl-2-ethoxy-4-iodo-6-isopropyl-9-methyl-1-oxa-2-
phosphaspiro[4.5]dec-3-ene 2-oxide 263e 

dr = 57/43 

 1H NMR (400 MHz, CDCl3) : 0.87 (3H, d, J = 6.7 Hz, CH(CH3)(CH3) or 

CH3CHc), 0.89-1.02 (1H, m, CHdHe), 0.898 (3H, d, J = 6.7 Hz, 

CH(CH3)(CH3) or CH3CHc), 0.904 (3H, d, J = 7.1 Hz, CH(CH3)(CH3) or 

CH3CHc), 0.94 (3H, t, J = 7.3 Hz, CH3CH2), 1.32 (3H, t, J = 7.1 Hz, 

POCH2CH3), 1.21-1.99 (12H, m, CH3CH2, CH3CH2CH2, CHc, CH(CH3)2, 

CHgCHf, CHdHe, CHaHb, CHh), 2.21-2.48 (2H, m, CH2CqP), 4.08-4.33 (2H, m, POCH2CH3) 13C 

NMR (100 MHz, CDCl3) : 12.8 (CH3CH2), 15.7 (d, 3JPC = 5 Hz, POCH2CH3), 16.6 ((CH3)2CH) 

or CH3CHc), 20.0 (CH3CH2 or CH3CH2CH2 or CHgCHf), 21.0 ((CH3)2CH) or CH3CHc), 21.50 

(CH3CH2 or CH3CH2CH2 or CHgCHf), 22.8 ((CH3)2CH) or CH3CHc), 25.4 (CHc or CH(CH3)2), 

27.5 (CHc or CH(CH3)2), 28.6 (CH3CH2 or CH3CH2CH2 or CHgCHf), 30.5 (d, 2JPC = 12 Hz, 

CH2CqP), 33.4 (CHdHe), 44.7 (CHaHb), 45.9 (d, 3JPC = 4 Hz, CHh), 61.7 (d, 2JPC = 7 Hz, 

POCH2CH3), 91.1 (d, 2JPC = 4 Hz, OCq), 124.8 (d, 2JCP = 40 Hz, ICq), 135.4 (d, 1JPC = 148 Hz, 

PCq) 31P NMR (161 MHz, CDCl3) : 30.98 HRMS: m/z calcd for C18H33IO3P (M + H) 455.1212, 

found 455.1211. Yield: 95 % (129 mg), transparent liquid. 

 

(5R,6R,9S)-2-ethoxy-4-iodo-6-isopropyl-9-methyl-1-oxa-2-phosphaspiro[4.5]dec-3-ene 
2-oxide 263f 

dr: 64/36  

1H NMR (400 MHz, CDCl3) : 0.81-0.97 (10H, m, CH(CH3)2, CHCH3, CHdHe), 

1.33 (3H, t, 3J = 7.1 Hz, P(OCH2CH3)), 1.49-1.68 (6H, m, CHc, CHaHb, 

CH(CH3)2, CHh, CHfHg), 1.81-1.85 (2H, m, CHdHe, CHaHb), 4.14-4.23 (2H, m, 

P(OCH2CH3)), 6.57 (1H, 2JPH = 26.5 Hz, CHP). 13C NMR (100MHz, CDCl3) : 

16.5 (d 3JPC = 5 Hz, POCH2CH3), 17.5 (CH(CH3)(CH3)), 21.0 (CHCH3), 21.9 
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(CHfHg), 23.7 (CH(CH3)(CH3)), 26.3 (CHc), 28.3 (CH(CH3)2), 34.3 (CHdHe), 45.4 (CHaHb), 46.8 

(d, 3JPC = 4 Hz, CHh), 63.0 (P(OCH2CH3)), 94.5 (POC), 127.4 (d, 2JPC = 30 Hz, CqI), 127.5 (d, 
1JPC = 155 Hz, PCH). 31P NMR : 33.4 HRMS: m/z calcd for C14H25IO3P (M+H)+ 399.0586, 

found 399.0596. Yield: 92% (109 mg), yellow oil. 
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In order to explore the potential of novel reactive intermediates bearing a phosphonate moiety, 

a synthetic transformation of allenylphosphonates iv towards chiral, spirocyclic 

oxaphospholenes v was designed. Upon deprotection, these chiral spirocyclic 

oxaphospholenes could make up for interesting chiral inducers. Like BINOL phosphate 

catalysts, which are configurationally restricted because of hindered rotation around the 

binaphthyl bond, the spirocyclic connection locks the configuration in the case of the spirocyclic 

oxaphospholenes. The chirality in the products was introduced from chiral pool ketoterpenes. 

So first, a series of acetylides was added to (+)-menthone in excellent yields and good 

diastereoselectivities (Scheme 92) 

 

Scheme 92: Addition of acetylides to ketoterpenes, yielding the corresponding propargyl alcohols. 

Propargylic alcohols are known to spontaneously rearrange to the corresponding 

allenylphosphonates upon treatment with diethyl chlorophosphite. Thus, using this 

[2,3]-sigmatropic rearrangement, an array of menthone-based allenylphosphonates iva-e were 

easily obtained (Scheme 93). Next, cyclization of the allenylphosphonates with a Lewis acid 

was found to be very effective. While a copper-catalysed procedure gave a mixture of the 

desired oxaphospholenes together with some other compounds, simple addition of an 

equimolar amount of iodine smoothly afforded the target compounds va-e as a mixture of 

epimers at the phosphorus atom in a 40/60 ratio in almost quantitative yields. Solvent 

screening revealed that Brønsted acid-catalysed cyclization could be avoided when the 

reaction was run in cyclohexane. No purification was needed at this stage. Different 

substituents on the allene were well tolerated, as even an ortho-methyl group did not prevent 

the iodine from being attacked by the distal double bond of the allene. 
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Scheme 93: Treatment of propargyl alcohols with diethyl chlorophosphite followed by cyclization of the 
resulting allenylphosphonates to yield chiral spirocyclic oxaphospholenes. 

In a second series of derivatives, an ethynyl moiety was introduced to different ketoterpenic 

substrates. The (-)-menthone derived propargylic alcohol was isolated in excellent yield once 

again, while addition of the acetylide to (+)-fenchone and (-)-camphor occurred with almost 

perfect diastereoselectivity because of the increased steric hindrance. Under the optimized 

conditions the corresponding allenes were all obtained in decent yields. Although the 

(-)-menthone derivative reacted with similar ease as the first series of allenylphosphonates, 

(+)-fenchone and (-)-camphor based allenylphosphonates only reacted reluctantly. Increased 

steric hindrance around the double bond in the case of (+)-fenchone was thought to hamper 

the electrophilic addition, while rearrangements immediately occurred in the case of 

(-)-camphor. The created carbocation was found to be very prone to rearrangement, before 

the internal phosphonate nucleophile could intercept the carbocation. 

In a second part of this work, a one-pot procedure for the synthesis of 5-bisphosphonomethyl 

oxazol-2-ones was discovered (Scheme 94). The bisphosphonomethyl motif is present in 

important antiosteoporotic drugs, while the saturated counterparts of oxazol-2-ones, 

oxazolidin-2-ones, are pharmacophores in numerous other marketed drugs. Treatment of 

N,N-di-tert-butylprop-2-yn-1-ylimidodicarbonate vi with an excess of LDA and diethyl 

chlorophosphate afforded the 5-bisphosphonomethyl oxazol-2-one vii as the major product. 

Difficult purification resulted in a low 17% isolated yield and hence a stepwise approach was 

evaluated. 

 

Scheme 94: One-pot synthesis of 5-bisphosphonomethyl oxazol-2-ones. 

Treatment of N,N-di-tert-butylprop-2-yn-1-ylimidodicarbonate vi with a slight excess of 

organolithium base and diethyl chlorophosphate did afford the desired phosphonylated 

alkyne viii, but not very selectively (Scheme 95). Moreover, the phosphonylated alkyne could 

not be entirely separated from the other reaction products during purification. However, a 
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copper-catalyzed oxidative cross coupling of N,N-di-tert-butylprop-2-yn-1-ylimidodicarbonate 

with diethyl phosphite did yield the phosphonylated alkyne viii. With an excess of diethyl 

phosphite and a sufficient supply of oxygen, this literature procedure could be improved to 

produce phosphonylated alkynes on a 10 mmol scale in good yields. With 2 mol% Au(I)Cl, this 

intermediate was very efficiently cyclized to 5-phosphonomethylidene oxazol-2-ones ix in 

quantitative yield. Unfortunately, a second phosphonate group could not be introduced on the 

5-phosphonomethylidene oxazol-2-one ix, nor on the alkynylphosphonate viii. 

 
Scheme 95: Attempted stepwise preparation of 5-bisphosphonomethyl oxazol-2-ones. 

While an aminoallenylbisphosphonate x was thought to be an intermediate in the one-pot 

synthesis of 5-bisphosphonomethyl oxazol-2-one vii, this could not be confirmed 

experimentally. It was next investigated in the third chapter if aminoallenylphosphonates, which 

had never been reported at the start of this research, could be prepared and isolated. A 

Skattebøl rearrangement, converting dihalocyclopropanes to the corresponding allenes, was 

the key step in the first approach. Phosphonylated alkyne xii was easily accessible from the 

earlier improved literature procedure and was readily hydroaminated in good yield (Scheme 

96). Unfortunately, the obtained enaminophosphonate xiii did not afford the dihalocyclopropyl 

aminophosphonate xiv upon treatment with various dihalocarbene sources. 

 
Scheme 96: Attempted preparation of dihalocyclopropyl aminophosphonates. 

In a second approach, the isomerization of phosphonylated propargylamine xvi was evaluated 

(Scheme 97). None of the investigated bases was able to produce the 

3-aminoallenylphosphonate xvii. Introduction of a phenyl group could favour the alkyne-allene 

isomerization step, but the preparation of the corresponding precursor via an A³ coupling was 
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not straightforward and efforts were cancelled even before the isomerization could be 

investigated. 

 

Scheme 97: Attempted synthesis of 3-aminoallenylphosphonates via 3-aminoprop-1-yn-1-
ylphosphonates. 

Alternatively, it was observed that the acetylide of prop-2-yn-1-yl phosphonate rearranged to 

the internal alkyne upon removal of the TMS group at the terminal alkyne. This spontaneous 

rearrangement would, however, be interesting to produce 1-aminoallenylphosphonates xviii if 
the TMS-protected alkyne xix could be aptly substituted (Scheme 98). To that end, a 

Kabachnik-Fields reaction between an ynaldehyde, a secondary amine and a dialkyl phosphite 

was evaluated. Irrespective of the order of the addition of the reagents, the three component 

reaction failed to produce the aminophosphonate xix. 

Scheme 98: Retrosynthetic approach towards 1-aminoallenylphosphonates. 

As it was reasoned that N,N-dialkylaminoallenylphosphonates might be too electron rich to be 

formed, it was decided to study the isomerization of phthaloyl protected alkyne xxiii. A series 

of bases was evaluated and the 3-imidoallenylphosphonate xxiv was almost immediately 

detected in important amounts. With KOt-Bu, addition of tert-butoxide to the 

imidoallenylphosphonate xxiv was noticed. When focussing on this one-pot isomerization and 

-alkoxylation, it was found that O-nucleophiles could add extremely easily under very mild 

conditions, in short reaction times and high yields (Scheme 99). More complex nucleophiles 

such as amino acids, monoglycerides and nucleobases could be coupled in similar fashion. 



VI. Summary 
 

188 

 

Scheme 99: Preparation of 3-imidoallenylphosphonates and in situ -alkoxylation. 

Next, it was investigated if substituted tetrahydrofurans xxvi could be obtained when treating 

the same precursor with haloalcohols (Scheme 100). Haloalcohols efficiently participated in 

the one-pot alkoxylation, although ring-closure did not occur. Ring-closure could be realized, 

on the other hand, when salicylaldehyde was used as a nucleophile. Three phosphonylated 

chromene isomers xxviia-c were produced, along a dephosphonylated chromene xxviid, 

originating from a Horner-Wadsworth-Emmons reaction. However, no conditions could be 

found that brought about a sufficient selectivity towards one of the reaction products. 

N-nucleophiles could be introduced as well, although not in each case with the same ease as 

O-nucleophiles. Diethylamine selectively yielded one regioisomer, while pyrrolidine and 

dibenzylamine gave a mixture of regioisomers. Diisopropylamine and N-methylphenylamine 

gave complex mixtures. Addition of diethylphosphite afforded novel imido-substituted vicinal 

bisphosphonates xxvxa-c and one product in which two equivalents of diethyl phosphite had 

been incorporated. Unfortunately, no conditions could be found that allowed the selective 

synthesis of one of these compounds. Carbon nucleophiles reacted as well, but only limited 

conversion was observed for the introduction of the cyanide anion. Diethyl malonate did 

efficiently add to the 3-imidoallenylphosphonate xxiii, but no selective conversion to one of the 

three regioisomers xxxia-c could be obtained. 



VI. Summary 

189 

 
Scheme 100: Overview of the nucleophiles reacted with 3-imidoallenylphosphonates. 

In a fifth chapter, it was investigated whether 3-imidoallenylphosphonates could be applied for 

the synthesis of new nucleoside phosphonates (Scheme 101). These nucleosides would be 

tested in a broad-spectrum antiviral test and should preferably have a deprotected ribose and 

phosphonic acid unit. Because dibenzyl phosphonates can give the corresponding phosphonic 

acid upon hydrogenation, addition of uridine acetonide to dibenzyl alkynylphosphonate xxxii 
was first evaluated. This was successful but the addition product could not be separated from 

the impurities. Purification at the stage of the deprotected ribose phosphonate or at the stage 

of the fully deprotected nucleoside phosphonic acid xxxv, both failed as well.  
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Scheme 101: Preparation of diethyl nucleoside phosphonate prodrugs. 

Except in the case of inosine addition, the diethyl nucleoside phosphonates xxxvia-b and 

xxxvid were successfully prepared, purified and accordingly treated with pTsOH. Eventually, 

four new diethyl nucleoside phosphonate prodrugs were obtained and screened for their 

biological properties. No antiviral activity of the nucleoside phosphonates was detected in cell 

cultures against any of the selected viruses – including HSV-1, HSV-2, para-influenza-3-virus, 

HIV-1, HIV-2 and yellow fever virus – at the highest concentrations tested. Influenza PA-Nter 

endonuclease was not inhibited by any of the four compounds either. On the other hand, the 

compounds were not found to be cytotoxic. 

In the last chapter, a strategy towards new -substituted fosmidomycin derivatives was 

explored, in which an aminoallenylphosphonate would be the key intermediate. Hydroxamic 

acid xxxix was obtained from O-benzyl hydroxylamine hydrochloride after acylation with acetyl 

chloride and alkylation with propargyl bromide (Scheme 102). The earlier developed cross 

coupling procedure with dialkyl phosphites could be applied once more, yielding the 

phosphonylated alkynes xla-b.  

 



VI. Summary 

191 

Scheme 102: Preparation of aminoallenylphosphonate precursors through acylation and alkylation of 
O-benzylhydroxylamine hydrochloride, followed by oxidative cross coupling with dialkyl phosphites. 

When the introduction of ethanol was attempted, the addition product xli could be detected but 

not isolated (Scheme 103). Moreover, a cyclization reaction occurred, producing oxazoles 

xlii-xliv. A mechanism was proposed which explains the formation of these products and 

presumably starts with the elimination of the benzyloxy moiety. A few intermediates of this 

pathway could be obtained.  

Scheme 103: Attempted preparation of -substituted fosmidomycin derivatives.  

Downregulating the acidity of the propargylic protons by replacing the N-acetyl group with a 

N-Boc group was not successful either, as loss of the benzyloxy group was observed again. 

In a final attempt to obtain -substituted fosmidomycin derivatives, substrate xla was evaluated 

in the copper-catalyzed hydroamination reaction with diethylamine. Minor amounts of the 

desired product were detected in a complex mixture, but a double Michael addition seemed to 

have taken place. This route was finally abandoned as well. 

In retrospect, it was illustrated that chiral allenylphosphonates with a ketoterpenic skeleton 

bring about an elegant entry into chiral spirocyclic oxaphospholenes. Further efforts should be 

made to produce the corresponding phosphonic acids in order to gauge their chiral inducing 

properties in asymmetric transformations. A second pinnacle was the first ever synthesis of 

3-imidoallenylphosphonates. These hynod functionalized small molecules were prepared 

under extremely mild conditions from simple precursors and were swiftly functionalized at the 

central carbon atom with a variety of nucleophiles. Several transformations were characterized 

by a mediocre selectivity and their potential has to be elaborated in further research. In the 

search for novel antiviral lead compounds, these 3-imidoallenylphosphonates have 

engendered novel nucleoside phosphonates, while they were also evaluated in the design of 

novel fosmidomycin analogues.  
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Om het potentieel van nieuwe reactieve intermediairen met een fosfonaatgroep te 

onderzoeken, werd een synthetische transformatie van allenylfosfonaten iv naar chirale, 

spirocyclische oxafosfolenen v ontworpen. Na ontscherming kunnen deze verbindingen 

dienen als interessante chirale inducers. Zoals BINOL-fosfaatkatalysatoren, die 

configurationeel beperkt zijn vanwege de gehinderde rotatie rond de binaftylbinding, legt ook 

de spirocyclische connectie in deze chirale molecule de configuratie vast. De chiraliteit in deze 

verbindingen werd geïntroduceerd gebruikmakende van ketoterpenen uit de chiral pool. 

Zodoende werd in eerste instantie een reeks acetyliden geaddeerd aan (+)-menthon met 

uitstekende rendementen en een goede diastereoselectiviteit (Schema 104). 

 

Schema 104: Addtie van acetyliden aan ketoterpenen om de overeenkomstige propargylalcoholen te 
bekomen.  

Propargylische alcoholen ondergaan spontaan een omlegging tot de overeenkomstige 

allenylfosfonaten wanneer ze behandeld worden met diëthylchloorfosfiet. Gebruikmakende 

van deze [2,3]-sigmatrope omlegging, werd op eenvoudige wijze een verzameling menthon-

gebaseerde allenylfosfonaten iva-e bekomen (Schema 105). Een Lewiszuurgemedieerde 

ringsluiting bleek zeer doeltreffend te zijn. Hoewel een CuBr2-gemedieerde procedure een 

mengsel van de gewenste oxafosfolenen gaf samen met enkele onzuiverheden, leverde het 

toevoegen van een equimolaire hoeveelheid dijood de doelstructuren va-e bijna kwantitatief 

als een mengsel van epimeren aan het fosforatoom. Brønstedzuurgekatalyseerde ringsluiting 

kon worden vermeden als de reactie uitgevoerd werd in cyclohexaan. Opzuivering was 

overbodig na deze reactiestap. Een verscheidenheid aan substituenten op het alleen werd 

goed getolereerd, aangezien zelfs een ortho-methylgroep de elektrofiele additie van jood aan 

de dubbele binding niet verhinderde.  
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Schema 105: Behandeling van propargylalcoholen met diëthylchloorfosfiet, gevolgd door cyclisatie van 
de bekomen allenylfosfonaten om chirale spirocyclische oxafosfolenen te bekomen. 

In een tweede reeks derivaten werd een ethynylgroep geïntroduceerd op een aantal 

verschillende ketoterpeensubstraten. Het propargylisch alcohol, afgeleid van (-)-menthon, kon 

opnieuw geïsoleerd worden met een uitstekend rendement, terwijl de additie van het acetylide 

aan (+)-fenchon en (-)-kamfer dankzij de grote sterische hinder met een bijna perfecte 

diastereoselectiviteit verliep. Onder de eerder geoptimaliseerde omstandigheden konden de 

overeenkomstige allenylfosfonaten opnieuw geïsoleerd worden met degelijke rendementen. 

Het (-)-menthonderivaat leverde, volledig analoog aan de vorige gevallen, het oxafosfoleen, 

maar de op (+)-fenchon- en (-)-kamfergebaseerde allenylfosfonaten reageerden slechts 

moeizaam in de cyclisatiestap. In het geval van (+)-fenchon verhinderde de grote sterische 

hinder rond de distale dubbele binding vermoedelijk de elektrofiele additie, terwijl er meteen 

allerhande omleggingen optraden in het geval van (-)-kamfer. Deze omleggingen vonden 

plaats voordat het gecreëerde carbokation door het interne nucleofiel onderschept kon 

worden.  

In een tweede hoofdstuk werd de one-pot-procedure voor de synthese van 5-bisfosfonomethyl 

oxazol-2-onen vii onderzocht (Schema 106). Het bisfosfonomethylmotief vindt men terug in 

geneesmiddelen, gebruikt voor de behandeling van osteoporose, terwijl de verzadigde 

tegenhangers van de oxazol-2-onen, oxazolidin-2-onen, de farmacofore eenheid vormen van 

verschillende andere geneesmiddelen. Behandeling van N,N-di-tert-butylprop-2-yn-

1-ylimidodicarbonaat vi met een overmaat aan LDA en diëthylchloorfosfaat leverde het 

5-bisfosfonomethyloxazol-2-on vii als het voornaamste reactieproduct. Een moeilijke 

opzuivering resulteerde echter in een laag rendement van 17% en bijgevolg werd een 

stapsgewijze benadering overwogen. 

 

Schema 106: One-pot synthese van 5-bisfosfonomethyl oxazol-2-onen. 
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Via behandeling van N,N-di-tert-butylprop-2-yn-1-ylimidodicarbonaat vi met een lichte 

overmaat aan organolithiumbase en diëthylchloorfosfaat werd het gefosfonyleerd alkyn viii 
bekomen, maar niet op een selectieve manier (Schema 107). Bovendien kon het gewenste 

product tijdens opzuivering niet volledig gescheiden worden van andere onzuiverheden. Een 

koper-gekatalyseerde oxidatieve cross-koppelingsreactie van N,N-di-tert-butylprop-2-yn-1-

ylimidodicarbonaat vi met diëthylfosfiet leverde echter wel het gefosfonyleerde alkyn viii. Met 

behulp van een overmaat diëthylfosfiet en voldoende zuurstofgas kon deze literatuurprocedure 

geoptimaliseerd worden zodat gefosfonyleerde alkynen eenvoudig op een 10 mmol-schaal 

bereid konden worden. Dit intermediair kon vervolgens eenvoudig en kwantitatief ringsluiting 

ondergaan tot het 5-fosfonomethinoxazol-2-on ix door middel van 2 mol% Au(I)Cl. Helaas kon 

een tweede fosfonaatgroep niet ingevoerd worden, niet op het niveau van het 

5-fosfonomethinoxazol-2-on ix, noch in de reactie met alkynylfosfonaat viii. 

 
Schema 107: Poging tot stapsgewijze bereiding van 5-bisfosfonomethyl oxazol-2-onen. 

Hoewel vermoed werd dat aminoallenylbisfosfonaat x een intermediair was in de one-pot-

synthese van 5-bisfosfonomethyloxazol-2-on vii, kon dit niet experimenteel bewezen worden. 

In het derde luik van dit werk werd onderzocht of aminoallenylfosfonaten, waarvan bij het begin 

van dit onderzoek nog nooit een synthese gerapporteerd was, bereid en geïsoleerd konden 

worden. Een Skattebøl omlegging, een reactie die dihalocyclopropanen omzet in de 

overeenkomstige allenen, was de cruciale stap in deze eerste benadering. Gefosfonyleerde 

alkynen konden nu eenvoudig bereid worden dankzij de eerder ontwikkelde koppelingsreactie 

met dialkylfosfieten (Schema 108). Alkyn xii kon vlot gehydroamineerd worden. Helaas gaven 

de bekomen enaminofosfonaten xiii geen aanleiding tot de vorming van 
dihalocyclopropylaminofosfonaten xiv, wanneer deze eerste behandeld werden met 

verschillende dihalocarbeenprecursoren.  
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Schema 108: Poging tot bereiding van dihalocyclopropyl aminofosfonaten. 

In een tweede strategie werd de isomerisatie van gefosfonyleerde propargylamines xvi 
geëvalueerd (Schema 109). Geen enkele van de onderzochte basen was in staat om het 

3-aminoallenylfosfonaat xvii te genereren. Het invoeren van een extra fenylgroep zou de 

daaropvolgende isomerisatie gunstig kunnen beïnvloeden, maar de bereiding van precursor 

via een A³ koppelingsreactie bleek niet voordehandliggend te zijn. Uiteindelijk werd deze 

strategie verlaten voordat de isomerisatiereactie onderzocht kon worden.  

 

Schema 109: Poging tot synthese van 3-aminoallenylfosfonaten via 3-aminoprop-1-yn-1-ylfosfonaten. 

Anderzijds werd vastgesteld dat het acetylide van prop-2-yn-1-ylfosfonaat zich spontaan 

omlegde tot het intern alkyn wanneer de TMS-groep op het eindstandig alkyn ontschermd 

werd. Deze spontane omlegging zou echter op een elegante manier aanleiding kunnen geven 

tot 1-aminoallenylfosfonaten als het TMS-beschermd alkyn xix met de gepaste substituenten 

uitgerust zou kunnen worden (Schema 110). Daarom werd de Kabachnik-Fieldsreactie tussen 

een ynaldehyde, een secundair amine en een dialkylfosfiet onderzocht. Onafhankelijk van de 

volgorde waarin de reagentia toegevoegd worden, kon het aminofosfonaat xix niet bereid 

worden. 

 
Schema 110: Retrosynthetische benadering tot 1-aminoallenylfosfonaten. 

Vermoedelijk zijn de N,N-dialkylaminoallenylfosfonaten te elektronenrijk om gevormd te 

worden. Daarom werd beslist om de isomerisatiereactie van het ftaloylbeschermd alkyn xxiii 
te bestuderen. Het gebruik van een aantal verschillende basen werd geëvalueerd en bijna 

onmiddellijk kon het 3-imidoallenylfosfonaat xxiv gedetecteerd worden in belangrijke 

hoeveelheden. Wanneer KOt-Bu gebruikt werd, trad additie van tert-butoxide op aan het 

imidoallenylfosfonaat xxiv. Wanneer de focus op deze one-pot isomerisatie en -alkoxylering 
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gelegd werd, bleken O-nucleofielen zeer snel, onder zeer milde omstandigheden, en met 

uitstekende rendementen te adderen (Schema 111). Complexere nucleofielen zoals 

aminozuren, monoglyceriden en nucleosiden konden op dezelfde manier gekoppeld worden. 

 

Schema 111: Bereiding van 3-imidoallenylfosfonaten en in situ -alkoxylering. 

Vervolgens werd onderzocht of gesubstitueerde tetrahydrofuranen xxvi bereid konden worden 

bij behandeling van dezelfde precursoren met haloalcoholen (Schema 112). Deze 

haloalcoholen reageren weldegelijk in deze one-pot-alkoxylering, hoewel er geen ringsluiting 

optrad. Ringsluiting was wel mogelijk wanneer salicylaldehyde gebruikt werd als nucleofiel. 

Drie gefosfonyleerde chromeenisomeren xxviia-c werden gevormd, in combinatie met een 

gedefosfonyleerd chromeen xxviid als resultaat van een Horner-Wadsworth-Emmonsreactie. 

Er konden geen reactieomstandigheden gevonden worden die leidden tot de selectieve 

vorming van één van deze producten. N-nucleofielen konden ook geïntroduceerd worden, 

hoewel deze niet allemaal even vlot reageerden als O-nucleofielen. Diëthylamine gaf selectief 

één regioisomeer, terwijl pyrrolidine en dibenzylamine een mengsel van regioisomeren 

leverden. Di-isopropylamine en N-methylfenylamine leidden tot complexe mengsels. Additie 

van diëthylfosfiet leverde nieuwe imido-gesubstitueerde vicinale bisfosfonaten xxxa-c en een 

product waarbij twee equivalenten diëthylfosfiet ingebouwd werden. Helaas werden geen 

reactieomstandigheden gevonden die de selectieve synthese van één van deze producten 

mogelijk maakte. Koolstofnucleofielen konden ook ingezet worden, hoewel er slechts een 

beperkte conversie waargenomen werd in het geval van het cyanide-anion. Diëthylmalonaat 

reageerde vlot met 3-imidoallenylfosfonaat xxiii, maar de reactie kon niet selectief naar één 

van de drie bekomen regioisomeren xxxia-c gestuurd worden.  
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Schema 112: Overzicht van de nucleofielen die reageren met 3-imidoallenylfosfonaten. 

In een vijfde hoofdstuk werd onderzocht of 3-imidoallenylfosfonaten ingezet konden worden 

voor de synthese van nieuwe nucleosidefosfonaten. Omdat deze nucleosidefosfonaten later 

getest zouden worden op hun activiteit in een breed-spectrum antivirale test, dienen deze bij 

voorkeur te beschikken over ontschermde ribose- en fosfonaateenheden. Aangezien 

dibenzylfosfonaten de vrije fosfonzuren kunnen geven via hydrogenatie, werd eerst de additie 

van uridineacetonide geëvalueerd aan dibenzylalkynylfosfonaat xxxii (Schema 113). Dit trad 

op met goed gevolg, maar het additieproduct kon niet gescheiden worden van enkele 

onzuiverheden, gevormd in deze reactie. Opzuivering na ontschermen van enkel de ribose-

eenheid of na ontschermen van zowel de ribose-eenheid als het fosfonaat, slaagde evenmin.  
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Schema 113: Bereiding van diethyl nucleosidefosfonaat prodrugs. 

Diëthylnucleosidefosfonaten xxxvia-b en xxxvia-d konden wel met succes opgezuiverd 

worden en werden nadien behandeld met pTsOH. Uiteindelijk werden vier nieuwe 

diëthylnucleosidefosfonaat prodrugs bekomen en vervolgens gescreend op hun biologische 

activiteit. Helaas werd in celcultuur voor geen enkele van deze verbindingen antivirale activiteit 

tegen de geselecteerde virussen gedetecteerd. HSV-1, HSV-2, para-influenza-3-virus, HIV-1, 

HIV-2 en gelekoortsvirus behoorden onder andere tot het panel van de breed-spectrum 

antivirale test. In een enzymassay werd ook influenza PA-Nter endonuclease niet geïnhibeerd 

door één van de vier nucleosidefosfonaten. De verbindingen bleken wel niet cytotoxisch te 

zijn.  

In het laatste hoofdstuk werd een strategie voor de toetreding tot -gesubstitueerde 

fosmidomycinederivaten onderzocht, waarin het aminoallenylfosfonaatintermediair centraal 

stond. Hydroxamaat xxxix werd bekomen na acylering van O-benzylhydroxylamine 

hydrochloride met acetylchloride en alkylering met propargylbromide (Schema 114). De eerder 

ontwikkelde cross-koppelingsreactie met dialkylfosfieten kon opnieuw toegepast worden, 

zodat de gefosfonyleerde alkynen xla-b met succes bekomen werden.  
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Schema 114: Bereiding van aminoallenylfosfonaatprecursoren door acylering en alkylering van O-benzyl 
hydroxylamine hydrochloride, gevolgd door oxidatieve cross koppeling met dialkylfosfieten. 

Wanneer gepoogd werd ethanol te introduceren, kon het additieproduct xli wel gedetecteerd 

maar niet geïsoleerd worden (Schema 115). Bovendien trad een ringsluitingsreactie op tot 

oxazolen xlii-xliv. Een reactiemechanisme werd voorgesteld dat de vorming van deze 

producten kan verklaren en vermoedelijk startte met de eliminatie van een benzyloxygroep. 

Enkele intermediairen konden gesynthetiseerd worden die deze hypothese ondersteunen.  

Schema 115: Poging tot bereiding van -gesubstitueerde fosmidomycine derivaten. 

Het verlagen van de zuurtegraad van de protonen in de propargylische positie, door 

vervanging van de N-acetylgroep door een N-Boc-groep, was niet succesvol en verlies van de 

benzyloxygroep werd opnieuw geobserveerd. In een ultieme poging om -gesubstitueerde 

fosmidomycinederivaten te bekomen, werd substraat xl bestudeerd in de koper-

gekatalyseerde hydroamineringsreactie met diëthylamine. In het bekomen complex mengsel 

werden kleine hoeveelheden van product xli gedecteerd, naast een product dat een dubbele 

Michael-additie ondergaan leek te hebben. Uiteindelijk werd ook deze strategie verlaten.  

Samenvattend werd aangetoond dat chirale allenylfosfonaten met een ketoterpeenskelet op 

elegante wijze toetreding verlenen tot chirale spirocyclische oxafosfolenen. Verdere 

inspanningen moeten gevoerd worden om de corresponderende fosfonzuren vrij te stellen 

zodat hun chiraliteitsinducerende eigenschappen in asymmetrische transformaties beoordeeld 

kunnen worden. Centraal stond ook de bereiding van de nooit eerder gerapporteerde 

3-imidoallenylfosfonaten. Deze sterk gefunctionaliseerde kleine moleculen konden bereid 

worden onder zeer milde omstandigheden uit eenvoudige precursoren en reageerden zeer 

vlot met een verscheidenheid aan nucleofielen. Een aantal transformaties vertoonden slechts 

een matige selectiviteit en hun potentieel moet in verder onderzoek bestudeerd worden. 

Zoekende naar nieuwe antivirale lead compounds, hebben deze sleutelbouwsteen een aantal 
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nieuwe nucleosidefosfonaten voortgebracht terwijl ze ook onderzocht werden voor het 

ontwerpen van nieuwe fosmidomycine analoga. 
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