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Abstract. Extending a previous paper, we present a generalization in dimension 3 of

the traditional Szebehely-type inverse problem. In that traditional setting, the data

are curves determined as the intersection of two families of surfaces, and the problem

is to find a potential V such that the Lagrangian L = T −V , where T is the standard

Euclidean kinetic energy function, generates integral curves which include the given

family of curves. Our more general way of posing the problem makes use of ideas of

the inverse problem of the calculus of variations and essentially consists of allowing

more general kinetic energy functions, with a metric which is still constant, but need

not be the standard Euclidean one. In developing our generalization, we review and

clarify different aspects of the existing literature on the problem and illustrate the

relevance of the newly introduced additional freedom with many examples.

Keywords: Szebehely’s equation, inverse problem of dynamics, inverse problem of the
calculus of variations

1 Introduction

In a previous paper [6], we observed that the extensive literature on the so-called Szebe-
hely inverse problem of dynamics (sometimes also referred to as Suslov’s or Joukovsky’s
problem, see e.g. [7]) apparently has overlooked a more general way of posing the prob-
lem, leading to more general solutions as well as cases that have no solutions otherwise.
Our analysis made clear that the nature of the problem very much depends on the di-
mension n of the underlying space and we restricted ourselves in [6] for this reason to
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the case n = 2. We refer to [6] for general references and comments about the history of
the problem. In the present paper, about the case n = 3, references will be restricted as
much as possible to those which are of direct relevance to our analysis or examples.

For completeness, we start with a brief sketch of the traditional problem in R
3 (see e.g.

[2]) and again explain the motivation for our proposed generalization. We implicitly
assume that all functions are smooth on some open set of R

3. Consider a family of
curves determined by two given families of surfaces, specified as level sets, say

φ(x, y, z) = c1, ψ(x, y, z) = c2, with dφ ∧ dψ 6= 0. (1)

The traditional question is to find a potential function V (x, y, z) such that the set of
integral curves of the classical mechanical system

ẍ = −∂V
∂x

, ÿ = −∂V
∂y

, z̈ = −∂V
∂z

, (2)

contains the given family (1). Equivalently, the idea is to construct a Lagrangian L =
T − V whose Euler-Lagrange equations have the given family as part of its integral
curves. But why should the kinetic energy function in such a construction come from the
standard Euclidean metric? Our suggestion therefore was to bring this other well-known
inverse problem into the picture, namely the question (with index notation now): for a
second-order dynamical system ẍi = F i(x, ẋ) with given forces F i, find a non-singular
symmetric multiplier matrix gij such that

gij(ẍ
j − F j) ≡ d

dt

(

∂L

∂ẋi

)

− ∂L

∂xi
, (3)

for some Lagrangian function L(x, ẋ). In view of the data in the current context, we
consider only the case that the forces do not depend on the velocities and equally restrict
the unknown multiplier matrix to one which does not depend on velocities. As explained
in [6], it then follows that the gij actually have to be constants. Note that there have
been studies in the literature where the Szebehely type problem was addressed with
a non-Euclidean and non-constant metric gij(x) in the kinetic energy term (see e.g.
[4]). But in those studies, the metric was assumed to be given from the outset and of
course, through the connection coefficients of the Levi-Civita connection, it gives rise
to extra force terms which are quadratic in the velocities. So there is room for further
generalizations, in principle, but once the idea is that given forces are not strictly dictated
by an as yet undetermined potential, this becomes an entirely different story all together.
The interest of the generalization we propose is that it is still about purely conservative
forces, but introduces (for n = 3) six additional free parameters which can significantly
enlarge the class of solvable problems: essentially, from the point of view of finding a
potential V , the requirement

F i(x) = −∂V
∂xi

is replaced by gijF
j(x) = −∂V

∂xi
,

for some symmetric, non-degenerate matrix gij .
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The scheme of the paper is as follows. In Section 2, we present details of the formulation
of the problem and our general approach to it in the generic case that a constant po-
tential is not a solution, i.e. that the given curves (1) are not all straight lines. We also
discuss one of the possible ways of addressing the problem, which amounts to solving
one first- and one second-order partial differential equation for V . In Section 3, a full
integrability analysis of the original system of first-order equations is carried out, leading
to a classification in various subcases. We further explain how the presence of the six
additional unknown parameters in our formulation makes this integrability scheme par-
ticularly relevant. In Section 4, we prove that one of the naturally arising subcases in our
integrability classification turns out to be void. A representative selection of examples
from the literature is discussed from our broader perspective in Section 5. We present
some new examples in Section 6, with particular attention for cases which are shown to
have a solution in our generalized approach, while having no solution in the standard
Euclidean case.

2 The amalgamated inverse problem for n = 3

A preliminary remark concerning our approach: although the problem to be addressed
in the end boils down to solving partial differential equations, we think it is important
to work with well defined geometrical objects in the formulation of the problem, so that
its nature does not change when we pass to other coordinate representations.

A vector field Z on R
3 is tangent to the curves (1) if it satisfies Z(φ) = Z(ψ) = 0.

The way to ensure that the given curves become (projections of) integral curves of an
associated second-order vector field Γ on the tangent bundle TR3 goes as follows. The
lifts to TR3 of the given curves are integral curves of the complete lift Zc of Z, which
has the coordinate expression

Zc = Zi(x)
∂

∂xi
+ ẋj

∂Zi

∂xj
∂

∂ẋi
.

However, Zc is not a second-order vector field; such a vector field is of the form

Γ = ẋi
∂

∂xi
+ F i ∂

∂ẋi

for some ‘forces’ F i, and the requirement that its integral curves contain the relevant
ones of Zc amounts to imposing that

Zc|ImZ
= Γ|ImZ

or explicitly Z(Zi) = Zj ∂Z
i

∂xj
= F i|ImZ

. (4)

Since the Z(Zi) are functions of the xi only we can restrict ourselves to forces F i with
the same property and then we can simply write F i in (4).

The next element in our construction is that Γ should be the normal form representa-
tion of a set of Euler-Lagrange equations. The nature of the functions F i we have in
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mind entails that the as yet undetermined kinetic energy metric g must be constant and
together with the unknown potential must satisfy the relations

gijZ(Z
j) = −Vxi . (5)

We now pass to a basis consisting of a vector tangent to the given curves and two others
spanning the orthogonal complement (with respect to the unknown g). The vector Z we
start from can be any tangent vector, so we put Z = hZ0 and choose Z0 to be the vector
field

Z0 = (φyψz − φzψy)
∂

∂x
+ (φzψx − φxψz)

∂

∂y
+ (φxψy − φyψx)

∂

∂z
. (6)

In more geometrical terms, if ω0 denotes the standard volume form on R
3, Z0 is deter-

mined by
iZ0
ω0 = dφ ∧ dψ. (7)

A few comments are in order here. Perhaps it would seem more appropriate in the present
context to use the volume form ω =

√
det g ω0 for defining Z0. It also may look appealing

to actually normalize Z0 to be a unit vector with respect to g, or alternatively, to make
it the Euclidean unit tangent vector and continue the subsequent analysis in terms of
the Frenet frame (as was done, for example, by Puel [5] for the standard problem).
For computational reasons, however, we avoid normalizing various vector fields because
it leads to coefficients with unwieldy denominators in partial differential equations. In
fact, for the same reason, we do not stick to the specific form (6) in applications either,
but freely make use of rescalings when appropriate.

Two vectors which span Z⊥
0
, the orthogonal complement to Z0, are defined by

Z1 g = dφ, Z2 g = dψ. (8)

The coordinate expression of their components is given by

Zi
1 = gikφxk , Zi

2 = gikψxk ,

and we have the obvious properties

g(Z0, Z1) = g(Z0, Z2) = 0, g(Z1, Z2) = Z2(φ) = Z1(ψ). (9)

Since the metric g is constant, the functions Z0(Z
i
0
) appearing in (5) are simply the

components of the covariant derivative ∇Z0
Z0, which we will write as ∇Z0 if there is no

danger for ambiguity.

An equivalent representation of the conditions (5), which amounts to passing from the
basis of coordinate vector fields to the basis {Z0, Z1, Z2}, is obtained by multiplying the
equation for Vxi with the i-th component of each of these vector fields and summing
over i. Knowing that Z(Zj) = 1

2
Z0(h

2)Zj
0
+h2Z0(Z

j
0
), the combination leading to Z0(V )

gives
Z0(

1

2
h2g(Z0, Z0) + V ) = 0. (10)
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Proceeding in the same way for Z1 and Z2, we can write the remaining conditions in the
form

Z1(V ) = −h2∇Z0(φ), (11)

Z2(V ) = −h2∇Z0(ψ), (12)

where we have used the fact that

g(Z1,∇Z0) = ∇Z0(φ) and g(Z2,∇Z0) = ∇Z0(ψ). (13)

If a solution exists, and that involves finding a g and a V and fixing the parametrization
h, it is clear that the condition (10) expresses that the total energy function E :=
1

2
gij ẋ

iẋj + V , when restricted to the image of the vector field Z, must be a function,
possibly constant, of φ and ψ:

E|ImZ
= E(φ,ψ). (14)

In dimension 2, there is only one equation such as (11) or (12). The procedure to arrive
at a Szebehely-type equation then consists of solving that equation for h2 and substitut-
ing the result into the integrated form of (10). Clearly, the situation in dimension 3 is
different, because there are two equations for h2 and naturally these have to be compat-
ible. Leaving aside the exceptional situation that both right-hand sides of (11,12) vanish
identically, which will be shown to correspond to the case of straight lines in the next
section, the compatibility requirement is that

X(V ) = 0, where X := ∇Z0(ψ)Z1 −∇Z0(φ)Z2. (15)

As an aside it trivially follows from (9) that g(X,Z0) = 0 and from (13) that g(X,∇Z0) =
0. In other words, whenever Z0 and ∇Z0 are independent, they span the orthogonal
complement of X.

The equation X(V ) = 0 is a linear, homogeneous first-order partial differential equation
for V. But of course, in our generalized formulation of the problem, the vector field X
depends on the as yet undetermined constant multiplier matrix (gij). In principle, if this
equation can be integrated, and rescaling X may again be helpful for that purpose, one
should solve the condition (11) for Z1(V ) (or (12) for Z2(V )) algebraically for h2. The,
after substitution of that expression into the result about the energy function, try to pin
down the remaining freedom in V and g by addressing the newly obtained linear (but
inhomogeneous) first-order partial differential equation for V , which moreover contains
the as yet undetermined function E. Defining

A := 1

2

g(Z0, Z0)

∇Z0(φ)
, (16)

then this remaining equation is

AZ1(V ) = V − E. (17)
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A full integrability analysis of the equations (15) and (17) is presented in the next section.
But some further comments are in order, first about the dependence on the dimension
of the space. It is clear that the whole picture will be very different for n > 3. There
would then be n−2 linear, homogeneous equations of the type (15), requiring a separate,
preliminary integrability analysis.

There is a direct approach to solving the problem which, if implementable, makes an
integrability analysis redundant. Indeed, after solving (15) and obtaining an expression
for h2, one can substitute it directly into (10) (instead of using the integrated form (17));
this generates a second-order equation for V of the form

AZ0Z1(V ) = Z0(V )− Z0(A)Z1(V ). (18)

Following the terminology introduced in [1] for the standard Euclidean metric, we will call
this the ‘energy free approach’. The way to search for the solution then goes as follows:
(i) solving X(V ) = 0 specifies V as an arbitrary function of two variables, (u, v) say;
(ii) selecting a third variable w in an appropriate way, a coordinate change from (x, y, z)
to (u, v, w) may transform the second-order equation (18) into a polynomial expression
in w whose coefficients have to vanish separately and produce this way a number of
conditions which lead to a solution for V . If this procedure works, it should of course
be implemented. In practice, however, there will often be a number of computational
obstacles. To begin with, in our case with a non-Euclidean but constant g, the presence
of up to six free parameters in the coordinate expression of the vector field X makes
it very unlikely that the variables (u, v) can be identified. And even if that works, it
may be impossible to choose a w in such a way that the transformation can explicitly
be inverted to express the second-order condition in new variables. The integrability
analysis of the next section then becomes very relevant for unravelling alternative ways
of trying to obtain solutions.

3 General integrability scheme

As far as we know, there have been two attempts to develop an integrability classification
in the existing literature for gij = δij . The first one by Váradi and Érdi [8] is ineffective,
unfortunately, if only because these authors regarded the energy function as being a priori
given, an assumption which is simply inconsistent with the nature of all requirements.
In their examples, a choice for what we call E comes out of the blue and is not justified
by any theoretical foundation. The integrability analysis by Shorokhov [7] in this respect
is much more reliable and in fact contains a surprising strong statement (cf. our next
section) which perhaps has not been sufficiently recognised. Nevertheless, it is probably
not an optimal approach either, because the two starting equations (taken over from [8])
both contain the function E, i.e. there is no direct role for the particular vector field
X in the plane orthogonal to the given curves which has the advantage of producing a
homogeneous partial differential equation not involving the energy function.
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Recall first that setting up the equation forX requires that the right-hand sides of (11,12)
do not vanish simultaneously. We will label the rather exceptional situation that they
do as Case 0.

Case 0: ∇Z0(φ) = ∇Z0(ψ) = 0.

Obviously, this implies that ∇Z0 is proportional to Z0 and we will show first that it
corresponds to the case that the given family of curves consists of straight lines.

Proposition 1. The family of curves defined by (1) consists of straight lines, if and only
if ∇Z0 = ρZ0 for some function ρ.

Proof: We know that Z0 is tangent to the curves (1). This means that along each such
curve xi(s), if it is parameterized by Euclidean arclength s, Z0 is actually proportional
to d/ds at each point, in other words:

Zi
0 = λ

dxi

ds
and Z0(Z

i
0) = λ

dλ

ds

dxi

ds
+ λ2

d2xi

ds2
.

Hence, if Z0(Z
i
0
) = ρZi

0
, it follows that

d2xi

ds2
=

1

λ

(

ρ− dλ

ds

)dxi

ds
.

But this further tells us that

dxi

ds

dxi

ds
= 1 ⇒ 0 =

d2xi

ds2
dxi

ds
=

1

λ

(

ρ− dλ

ds

)

.

The conclusion is that d2xi/ds2 = 0, meaning that the curvature is zero at each point
and hence that we are looking at straight lines.

Conversely, if the data are such that all curves (1) are straight lines, the above pointwise
calculation shows that we will have

Z0(Z
i
0) = λ

dλ

ds

dxi

ds
=
dλ

ds
Zi
0,

and hence that ∇Z0 is proportional to Z0.

For straight lines, our problem obviously has the solution V = constant, which is not
terribly interesting because in such a case the extra freedom introduced by the metric is
irrelevant. But the above result at least tells us that, if we are not in Case 0 and if the
conditions on the potential can only be satisfied by a constant V , then there is actually
no solution! As for Case 0, continuation of an integrability analysis reveals two subcases.

From (11,12), it follows that we must have

Z1(V ) = Z2(V ) = 0.
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Case 0a: Z1 and Z2 span an integrable distribution.

Then there exists a solution for V in the form of an arbitrary function of one specific
variable. The remaining requirement

1

2
h2g(Z0, Z0) + V = E(φ,ψ)

can simply be viewed subsequently as determining h2 as a function of E(φ,ψ). Hence,
although the given curves are straight lines, the problem has non-constant solutions for
V so that the Lagrangian system we construct will have plenty of integral curves which
are not straight lines.

Case 0b: Z⊥
0

= sp{Z1, Z2} is not integrable.

Then, [Z1, Z2] has a Z0 component and we have to impose Z0(V ) = 0, so that V must
be constant.

It is of some interest to emphasize here that the properties characterizing Case 0 depend
on the data only, i.e. are independent of the choice of a metric g. On the other hand,
g is present when it comes to checking whether sp{Z1, Z2} is integrable. So we may be
able to use the extra freedom of our generalization to avoid the trivial solution for given
straight lines.

From now on, we can assume that ∇Z0(φ) 6= 0 so that the equations (17) and (15) are
well defined. [The case that ∇Z0(φ) = 0 and ∇Z0(ψ) 6= 0 is simply a matter of renaming
φ and ψ.] We are then led to look at the bracket of X and Z1, which by the way is
equivalent to looking at sp{Z1, Z2} again since X belongs to this distribution. The two
main cases to be discussed again depend on whether this distribution is integrable or
not.

Case 1: Z⊥

0
= sp{X,Z1} is integrable, say [X,Z1] = aX + bZ1 for some functions a

and b.

It follows from acting with X on (17) and Z1 on (15) and using the integrability assump-
tion that we must have:

(

X(A) + bA
)

(V − E) = −AX(E). (19)

Case 1a: X(A) + bA ≡ 0.

So we must have X(E) = 0 in conjunction with the requirement Z0(E) = 0. Hence, the
integrability analysis shifts to E and we can distinguish two further subcases.

Case 1a1: If the distribution sp{X,Z0} is integrable, E will emerge as an arbitrary
function of one variable, which itself will be a specific function of the given φ and ψ
(and also a specific function of variables (u, v) whose exterior derivatives span the co-
distribution of X).

Case 1a2: If sp{X,Z0} is not integrable, there will be a third restriction on E, say
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Y (E) = 0, where X, Z0 and Y are independent vector fields. This implies that E is
restricted to be an arbitrary numerical constant.

In both of these subcases, however, the integrability requirement (19) for V is satisfied,
so we can integrate (15,17), at least in principle, to find a solution for V .

Case 1b: X(A) + bA 6= 0.

We demonstrate in the next section that this case, quite surprisingly, is empty.

Case 2: sp{X,Z1} is not integrable, say [X,Z1] = aX + bZ1 + cZ0.

This time, the integrability computation of (17) and (15) will give rise to an extra
equation, of the form

C Z0(V ) = B (E − V )−X(E), (20)

where we have put

C = cA and B =
(

X(A) + bA
)

A−1.

The extended distribution sp{X,Z1, Z0} is integrable by dimension, but the point is that
using [X,Z0] and [Z1, Z0] will produce further necessary conditions, which are linear
algebraic expressions in V . Explicitly, set

[X,Z0] = l X +mZ1 + nZ0 and [Z1, Z0] = pX + q Z1 + r Z0.

Acting with X on (20), using the first of these commutators and replacing first-order
derivatives of V by using (15), (17) and (20), we end up with a relation of the form

F1 V = G1. (21)

Likewise, using [Z1, Z0], we obtain another linear relation, say

F2 V = G2. (22)

Here, F1 and F2 are ‘known functions’, in the sense that they are expressions involving
the functions A and b introduced before, plus derivatives of these functions through the
actions of the vector fields X, Z1 and Z0, while G1 and G2 depend on E and some of its
first and second derivatives. Explicitly, we have

F1 = −(B/C)
(

X(C) + nC
)

+ (C/A)m+X(B),

G1 = F1E +
(

B + (X(C) + nC)/C
)

X(E)−X2(E),

F2 = q C − (C/A)Z0(A)−B
(

rA+ (A/C)Z1(C)
)

+AZ1(B),

G2 = F2E +
(

rA+ 1 + (A/C)Z1(C)
)

X(E) +AB Z1(E)−AZ1(X(E)).

Again, there is no apparent reason why an algebraic expression for V , obtained from
(21) and/or (22) would automatically satisfy the partial differential equations from which
these were derived. One will have to substitute such an expression back into (15) and
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(17), leading to higher-order partial differential equations to be satisfied by E. But
to complicate matters, there is even a preliminary compatibility issue between the two
expressions (21) and (22). In that respect, we can distinguish three subcases, which only
slightly differ in the way extra conditions on E have to be approached. We should of
course not forget that the ‘known functions’ F1 and F2 contain the six parameters of the
symmetric matrix (gij). Hence, one of the possible strategies in the search for a solution
might be to use these free parameters in order to force the system into a more favourable
situation.

Case 2a: F1 = F2 = 0.

Then G1 = 0 and G2 = 0 give rise to two second-order conditions on E. In practice,
it remains to be seen whether continuing along these lines offers better chances than
trying the ‘energy free approach’. Also, one could proceed with further integrability
considerations concerning the equations G1 = G2 = 0, but that doesn’t really make
much sense. Better is to pass to new coordinates, involving φ and ψ (or in fact any
functions of them if more appropriate), plus a suitably selected third variable χ. In fact,
as was the case with the ‘energy free approach’ explained in the previous section, it is
very likely that by doing this, and knowing that E cannot depend on χ, one or both of
the equations G1 = G2 = 0 (being polynomials in χ for example) immediately split into
several conditions, which could then rapidly tell us the form of any nontrivial solution.

Notice that E = constant is a solution of G1 = G2 = 0, which should not come as
a surprise since the potential V is determined up to a constant. In addition, there
is no relation which would indicate that a constant E implies a constant V . Hence,
theoretically, there is a possibility that a non-constant solution of the system of three first-
order partial differential equations (17,15,20) exists, with E in the role of an arbitrary
constant.

Case 2b: One of the Fi is zero, say F2.

Then G2 = 0 is a second-order condition on E and we can put

V = F1
−1G1. (23)

As argued before, this V is not guaranteed to solve the original equations (17,15); back
substitution in those equations generates more conditions to be satisfied by E, which will
this time even be third-order equations. It again makes no sense to go into details about
these equations: the rule of conduct should be to address G2 = 0 in adapted coordinates
(φ,ψ, χ), and if a solution can be found, test the V obtained from (23) by substitution
into (17) and (15). As for the solution E = constant in this case, (23) would imply
V = E and since we are not in a straight line situation, the conclusion would be that
there is no solution.

Case 2c: F1 6= 0 and F2 6= 0.

This very much looks like a worst case scenario but the examples will show that existence
of a solution should not be ruled out. In this case, compatibility between (21) and (22)
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requires that
F2G1 = F1G2, (24)

which again is a second-order condition on E, in which the terms not involving derivatives
of E cancel out. As in the preceding case, if a constant E would turn out to be the only
possibility, the conclusion is that there is no solution. Likewise, it is not interesting to
look at more conditions on E by substitution of (23) (or equivalently V = F2

−1G2) into
(17,15). Passing to suitably adapted coordinates (φ,ψ, χ) will indeed, in practice, make
that (24) splits into further equations which are already a headache for MapleTM[3], or
any other computer algebra package one will have to rely on for actually executing the
calculations.

To conclude this section, we briefly summarize the motivations behind our theoretical
developments. The introduction of a constant symmetric matrix multiplier in the inverse
problem, as formulated by (5) is a natural extension of the way the so-called Szebehely
problem has mostly been addressed in the literature. It offers six extra parameters
which can lead to more general solutions or solutions where there previously were none.
Of course, it also leads to extra computational technicalities. Therefore, the practical
philosophy we advocate is: (i) if at all possible, try to solve the problem for admissible
potentials V via the ‘energy free approach’ explained in Section 2; (ii) alternatively,
start the integrability analysis of Section 3, which essentially transfers the problem to
equations for the energy function first; (iii) in the course of this process, try to take
advantage of the extra free parameters to lead the problem towards a more favourable
case of integrability.

We discuss a number of illustrative examples in sections 5 and 6, including some for
which both approaches consistently lead to solutions. Most of the calculations have been
carried out or double checked with MapleTM.

4 There is no Case 1b

The claim we are making here is that whenever the vector fields X and Z1 span an
integrable distribution, or equivalently the orthogonal complement of Z0 is integrable,
the function X(A) + bA, as defined in the previous section, is always automatically
zero. This sounds like an unrealistic expectation, but we were challenged to pursue this
possibility by a result of Shorokhov [7] in the Euclidean case. Indeed, using a variety
of well known identities satisfied by the standard vector calculus operators and (quote)
“omitting tedious calculations”, Shorokhov derives a formula which reads

〈s, rot p〉 = div

(

2

s2
〈s, rot s〉 s

)

. (25)

Here s can be identified with our Z0 and p is proportional to ∇Z0. Integrability of the
orthogonal complement of Z0 then corresponds to having 〈s, rot s〉 = 0, and Shorokhov’s
proof that a potential then always exists is based on the above formula.
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In our more general setting, since we want to allow rescaling of Z0 and X for practical,
computational purposes, we better check first whether such rescaling could have an effect
on the claim we wish to prove. If Z̃0 = ρZ0, then g(Z̃0, Z̃0) = ρ2g(Z0, Z0) and

∇
Z̃0
Z̃0 = ρZ0(ρ)Z0 + ρ2∇Z0

Z0.

It follows that ∇
Z̃0
Z̃0(φ) = ρ2∇Z0

Z0(φ) and consequently that

Ã := 1

2

g(Z̃0, Z̃0)

∇
Z̃0
Z̃0(φ)

= A.

The corresponding definition of X̃ say, reads

X̃ := ∇
Z̃0
Z̃0(ψ)Z1 −∇

Z̃0
Z̃0(φ)Z2 = ρ2X.

Obviously, integrability of sp{X̃, Z1} is the same as integrability of sp{X,Z1} and if
[X,Z1] = aX + bZ1, then [X̃, Z1] = ã X̃ + b̃ Z1 with b̃ = ρ2b. It follows that

X̃(Ã) + b̃ Ã = ρ2
(

X(A) + bA
)

,

and this is also the conclusion if we independently rescale X, with or without a rescaling
of Z0. Hence, rescaling causes no threat for the property we want to obtain.

Let us now first try to reformulate the problem under consideration in more geometrical
terms. To this end, if we put Y := AZ1, integrability of Z⊥

0
equally means that [X,Y ] =

ā X + b̄ Y for some functions ā, b̄. With the starting equations (15) and (17) now in
the form X(V ) = 0, Y (V ) = V − E, the commutator requirement (19) takes the form
b̄ V = b̄ E−X(E). So in this representation, we want to prove that b̄ = 0. But if a vector
field has only an X-component, it is orthogonal to both Z0 and ∇Z0. Hence, our goal is
to show that

g([X,Y ], Z0) = 0 =⇒ g([X,Y ],∇Z0) = 0, (26)

and it will be convenient to approach this via the dual version of Frobenius’ theorem.
Putting

Z0 g = α0, (27)

we know from (9) that α0 annihilates Z⊥

0
, so that

g([X,Y ], Z0) = 0 ⇐⇒ dα0 ∧ α0 = 0. (28)

Lemma 1. ∇Z0
α0 = iZ0

dα0 +
1

2
d
(

g(Z0, Z0)
)

.

Proof: We have, using the fact that the gkl are constant,

(

∇Z0
α0

)

k
= gklZ

j
0

∂Z l
0

∂xj

= Zj
0

(

gkl
∂Z l

0

∂xj
− gjl

∂Z l
0

∂xk

)

+
1

2

∂

∂xk
(gjlZ

j
0
Z l
0),
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from which the result follows.

Now put

β0 :=
2

g(Z0, Z0)
∇Z0

α0. (29)

Lemma 2. dβ0∧α0 = − 2

g(Z0, Z0)2
d
(

g(Z0, Z0)
)

∧iZ0
(dα0∧α0)+

2

g(Z0, Z0)
LZ0

(dα0∧α0).

Proof: Using the result of Lemma 1, we easily find that

dβ0 = − 2

g(Z0, Z0)2
d
(

g(Z0, Z0)
)

∧ iZ0
dα0 +

2

g(Z0, Z0)
LZ0

dα0.

Wedging this with α0, the difference between what we get and what we want to prove
is a sum of three terms, two of which cancel each other, while the remaining one is
proportional to dα0 ∧ iZ0

dα0. But this last term is zero also, because it is half of the
contraction with Z0 of dα0 ∧ dα0, which is a 4-form in dimension 3.

Remark: Computing dβ0 ∧ α0 can be seen to be exactly the analogue of what is the
left-hand side in the result (25) obtained by Shorokhov.

Theorem 1. Whenever a non-singular symmetric multiplier matrix gij can be found,
such that Z⊥

0
= sp{Z1, Z2} = sp{X,Y } is an integrable distribution, the generalized

Szebehely problem expressed by the conditions (15, 17) has a solution for the potential,
whereby the corresponding energy function E will be either an arbitrary function of one
specific variable, or a numerical constant.

Proof: It directly follows from Lemma 2 that the integrability assumption dα0∧α0 = 0
implies that dβ0 ∧α0 = 0. With, for example, {X,Y,Z0} as a local basis of vector fields,
knowing that α0(X) = α0(Y ) = 0, it immediately follows that

dβ0 ∧ α0 = 0 ⇐⇒ dβ0(X,Y ) = 0.

In addition, g(X,∇Z0) = 0 says that β0(X) = 0, while

β0(Y ) =
2

g(Z0, Z0)
∇Z0

α0

(

1

2

g(Z0, Z0)

∇Z0(φ)
Z1

)

=
1

∇Z0(φ)
g(Z1,∇Z0) ≡ 1.

Hence dβ0(X,Y ) = −β0([X,Y ]), which is proportional to g([X,Y ],∇Z0). The overall
conclusion, taking also (28) into account, now is that the implication (26) is true. There-
fore, Case 1b is void, so that whenever the distribution Z⊥

0
is integrable, we are in Case 1a.

The result then follows from our analysis of Case 1a in the preceding section.

5 A broader look at some examples from the literature

Shorokhov, in his integrability analysis [7], discusses four examples to illustrate some of
the cases in his classification. Since that classification is quite different from the way we
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have approached the integrability problem, it is appropriate that we check where these
examples fit into our scheme. In fact, two of Shorokhov’s examples (taken over from
previous publications) concern straight lines, so we single them out first. In what follows
we won’t be explicit about the domains of the various functions involved.

Example 1: φ = x/z, ψ = y/z.

After rescaling, we have that

Z0 = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
, and ∇Z0 = Z0.

It is easy to verify that, for the standard choice gij = δij , we are in Case 0a and the
potential, as reported in [7], can be any function of x2 + y2 + z2, whereas there is no
restriction on the energy function E as a function of φ and ψ. For comparison now, we
look at what happens when we allow a more general, non-singular g. Note for a start
that, since the problem is reduced to solving the equations Z1(V ) = Z2(V ) = 0, we can
somewhat simplify the calculations again by rescaling Z1 and Z2 as well. It turns out
that sp{Z1, Z2} is integrable for any choice of g, i.e. that we remain in Case 0a no matter
what constant, kinetic energy metric we select. Correspondingly, for an arbitrary g, the
potential function V can be taken as an arbitrary function of the quadratic expression
gijx

ixj . Needless to say, the given 2-parameter family of straight lines constitutes only
a particular subset of the integral curves of the resulting Lagrangian system.

Example 2: φ = x/y, ψ = y + z.

Upon appropriate rescaling,

Z0 = −x ∂
∂x

− y
∂

∂y
+ y

∂

∂z
, and ∇Z0 = −Z0.

This time, with gij = δij , we are in Case 0b. Hence, the only solution is the trivial one
V = constant and we are looking at the free particle system whose integral curves all
are straight lines. However, this is a first example of a case where our broader picture
can bring us into a more favourable situation of integrability, with a less trivial solution
for admissible potentials. Indeed, if we take g13 = 0 and g23 = g33, it turns out that we
move up to Case 0a. To be a bit more explicit, appropriately rescaled versions of Z1 and
Z2 then read

Z1 =
(

g12x+ (g22 − g33)y
) ∂

∂x
− (g11x+ g12y)

( ∂

∂y
− ∂

∂z

)

, Z2 =
∂

∂z
,

and it is clear that these vector fields commute. The solution now reads that V can be
an arbitrary function of the expression g11x

2 + (g22 − g33)y
2 + 2g12xy.

Example 3: φ = xz, ψ = yz.

It is straightforward to verify that for the Euclidean metric gij = δij , this is an example
belonging to the most favourable Case 1a1, so we cannot expect to do much better by
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allowing a more general g. Yet, it is of interest to see whether more general solutions
exist and we will take the opportunity to illustrate some of the technical problems to
which we referred before as a motivation for our integrability analysis.

For a start, after the usual rescaling, the vector fields Z0 and ∇Z0 read:

Z0 = −x ∂
∂x

− y
∂

∂y
+ z

∂

∂z
, ∇Z0 = x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
,

whereas

X =
(

(g12g33 − g13g23)x+ (g22g33 − g223) y
) ∂

∂x

+
(

(g213 − g11g33)x+ (g13g23 − g12g33) y
) ∂

∂y

+
(

(g11g23 − g12g13)x+ (g12g23 − g13g22) y
) ∂

∂z
.

We can actually solve the equation X(V ) = 0 in all generality here. The implication is
that V should be a function of, say

u = g13x+ g23y + g33z,

v = 1

2
(g11g33 − g213)x

2 + (g12g33 − g13g23)xy +
1

2
(g22g33 − g223) y

2.

We did not succeed, however, in continuing along the ‘energy free approach’ by solving
the second-order condition (18). Hence, we are led into the integrability scheme and it is
easy to check that we can force the system into Case 1, by taking g13 = g23 = 0. As by
now expected, this simplification also results in X(A)+bA = 0, so that we are in Case 1a.
Moreover, with the reduced expression ofX, we now have that [X,Z0] = 0, meaning that,
even better, we are in Case 1a1. The conditions on E require that Z0(E) = X(E) = 0 and
tell us that E can be an arbitrary function of one variable, which itself can be expressed
as function of φ and ψ. We choose to represent the solution for E in the following form:

E = F
(

1

2
g33 (g11φ

2 + 2g12φψ + g22ψ
2)
)

.

Having done that, we are guaranteed that the equations (17) and (15) have a solution
for V . Of course, such a V will still have to be a function of the (reduced) variables
(u, v) mentioned before. It is therefore of interest that the representation we choose for
E can easily be expressed as function of (u, v) as well. Even more important is that we
try to optimize the choice of (u, v) variables now. For example, if we manage to pass to
an equivalent set (u1, v1) such that Z1(v1) = 0, then the remaining equation (17) will be
greatly simplified. Such an equivalent set exists here and is given by

u1 =
1

2
(g11x

2 + 2g12xy + g22y
2 + g33z

2),

v1 =
1

2
(g11x

2 + 2g12xy + g22y
2 − g33z

2).
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The expression for E above then can be written as

E = F
(

1

2
(u1 + v1)(u1 − v1)

)

,

and equation (17) reduces to

u1
∂V

∂u1
= V − F

(

1

2
(u1 + v1)(u1 − v1)

)

.

The solution is given by

V = u1

[

G(v1)−
∫

1

u2
1

F
(

1

2
(u21 − v21)

)

du1

]

with F and G arbitrary functions (not both zero) of the indicated arguments. For the
particular case that g12 = 0 and g11 = g22 = g33 = 1, we recover here exactly the solution
reported in [7].

Example 4: φ = xyz + x+ y, ψ = z.

We have

Z0 = (xz + 1)
∂

∂x
− (yz + 1)

∂

∂y
,

and a rescaled version of X reads

X = (g13g22 − g12g23)
∂

∂x
+ (g11g23 − g13g12)

∂

∂y
− (g11g22 − g212)

∂

∂z
.

One can verify that it is impossible to select a non-singular (gij) which would make the
orthogonal complement of Z0 integrable, hence we are condemned to face the difficulties
of Case 2. We note in passing that the equation X(V ) = 0 can be integrated here as
well and identifies variables (u, v) as follows:

u = (g11g23 − g12g13)x+ (g12g23 − g13g22) y,

v = (g11g22 − g212)x+ (g13g22 − g12g23) z.

Unfortunately, continuing along the path of the ‘energy free approach’ looks impossible
without further restrictions on g. What we will observe with this example, however, is
that the Case 2 integrability analysis may actually suggest or impose suitable restrictions.

Following the Case 2 scheme now, there is no apparent incentive to enforcing that either
F1 or F2 be zero, which means that we shall start by addressing a Case 2c situation.
The first obstruction for a solution then is (24), a second-order condition on E which
requires passing to adapted coordinates (φ,ψ, χ). We make the choice χ = y, by which
the inverse transformation becomes

x =
φ− χ

ψχ+ 1
, y = χ, z = ψ.
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Expressing the condition (24) in the new variables must be handled with great care. In
doing so we find that the resulting condition is a polynomial in χ of degree 29. In other
words, we are looking here, not at a single second-order condition on a function E(φ,ψ),
but at a set of 30 such conditions which must be imposed step by step. We briefly sketch
the technicalities which follow. From the coefficient of the highest-order term, it follows
that if g22 6= 0, E will have to be of the form

E(φ,ψ) = f1(ψ) +
f2(ψ)

φψ + 1
.

The terms of order 28, however, immediately restrict f1 to be constant and thus redun-
dant. This has the effect that the next non-vanishing condition comes from the terms of
order 25, which splits into two conditions again because it is a polynomial of degree 1 in
ψ now. The solution of these two conditions reads

f2(ψ) = C1ψ
2 +C2ψ

(

(g12g23 − g13g22)ψ
2 + g11g22 − g212

)

.

Now things become even more cumbersome because each of the subsequent conditions
will split into many more since they each become polynomials in φ and ψ. Looking at a
suitable subset of these conditions (still under the assumption that g22 6= 0), we find that
only the following subcases are worth a further analysis: either C2 = 0 or g11 = g12 = 0.
The case g11 = g12 = 0 turns out to make F1 = 0 so that we are actually in Case 2b.
It can further be verified that also G1 = 0, so there are no further restrictions on the
expression for E obtained so far. It follows that V should be G2/F2. Such a V actually
satisfies X(V ) = 0, but unfortunately not the other initial requirement (17), hence there
is no solution. It is interesting to observe here in passing that with g11 = g12 = 0, the
vector field X becomes proportional to ∂/∂x which implies V = V (y, z). We can then
simply pursue the ‘energy free approach’ and it leads to the conclusion that V must
be constant, confirming this way that there is no solution. With the alternative choice
C2 = 0, going back to the requirement (24) now and cutting short a rather long story, an
investigation of all conditions coming from terms of degree 24 and 23 soon leads to the
conclusion that (maintaining the assumption g22 6= 0), we will have to put g11 = g22 and
g13 = g23. Meanwhile, with C2 = 0, the expression for E we obtained so far is reduced
to

E =
C1ψ

2

φψ + 1
.

Fortunately, the massive number of remaining terms in the compatibility condition (24)
all vanish now (while by far this time, the functions F1 and F2 are not zero). Knowing
that (21) and (22) are now compatible, it remains to use any of these relations to define
V and check whether such a V happens to satisfy the equations (15) and (17). This
turns out to be the case without further restrictions on the multiplier g. Expressed in
the original variables, the solution for the potential is of the form

V =
C

(x− y)2
,
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whereby the relation between the constants C and C1 is given by C = 2C1(g12−g22)/g22.
It is worth observing that with g11 = g22 and g13 = g23, a choice which was dictated
by the analysis of equation (24), we could again forget the integrability analysis and go
back to the ‘energy free approach’. The (u, v) variables mentioned above are no longer
valid though. The vector field X can be rescaled to

X = g23

( ∂

∂x
+

∂

∂y

)

− (g12 + g22)
∂

∂z
,

which shows that appropriate variables for V now are: u = x− y and v = (g12 + g22)x+
g23z. The second-order equation (18) then implies that V must be the function of u
specified above.

For completeness, it remains to investigate the case that g22 = 0, since that was excluded
at the very first stage of our integrability analysis. This reduces the order of the poly-
nomial in χ from 29 to 19, but the remaining conditions are still so strong that the final
conclusion is: no solution!

A final comment is in order about this example. The solution we have obtained for V
is exactly the same as the one found by Shorokhov [7] even though the restrictions on
our g are not forcing it to be proportional to the standard Euclidean metric. So, in
some sense, our generalization fails to produce more general admissible potentials here.
Instead, it has the curious effect that with the same potential, a broader class of kinetic
energy terms is allowed to arrive at a Lagrangian system which has the given family of
curves sitting in its set of integral curves. Explicitly, the more general kinetic energy is
of the form

T = 1

2
g22(ẋ

2 + ẏ2) + 1

2
g33ż

2 + g12ẋẏ + g23(ẋ+ ẏ)ż.

Example 5: φ = 1

2
(x2 + y2), ψ = z/x.

This example has been discussed (for the Euclidean case) in a number of papers. It is
the first example in [8], but as mentioned before, these authors start from a preassigned
energy function for which no justification is given. A better treatment is found in [1],
where the general solution is obtained via the ‘energy free approach’. Let us first sketch
how this presents itself with the notations we have introduced. After an appropriate
rescaling, we have

Z0 = xy
∂

∂x
− x2

∂

∂y
+ yz

∂

∂z
, and X = −z ∂

∂x
+ x

∂

∂z
,

whereby X in fact is proportional to Z2 here. Solving the equation X(V ) = 0 identifies
V as a function of say u = x2+z2 and v = y. Putting in addition w = ψ = z/x completes
a set of new variables which turns out to be viable for expressing the further objects of
interest into such coordinates. Imposing the second-order condition (18) subsequently
pins down the potential, which (up to an additive constant) is given by

V (u, v) = C1(u+ v2) + C2/v
2 − C3/u, Ci constant. (30)
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The corresponding energy function E, which as we know must also be expressible as a
function of φ and ψ is found to be

E = 2φ(ψ2 + 2)C1 −
ψ2

2φ
C2 −

ψ2

2φ(ψ2 + 1)2
C3. (31)

It is interesting that this solution can also be obtained by following the integrability
scheme. We find ourselves in Case 2c then so that the first problem to address is solving
the second-order equation (24) for E. For that, it is appropriate to use coordinates
(φ,ψ, χ) adapted to E, for which one can simply take χ = y. This way, the equation (24)
becomes a polynomial in χ, with only even power terms up to order 6. Hence, there is
a set of four second-order equations to be solved, but this can be done and the solution
is found to be compatible with (31). However, in principle, this is not the end of the
story. Our scheme tells us that we have to put V = F1

−1G1 = F2
−1G2 and test whether

this V satisfies the equations (15) and (17). This may lead in general to many further
restrictions, but here it doesn’t and we have indeed obtained the solution for V .

Let us now investigate whether more general potentials can be obtained by introducing
our constant multiplier gij . That has no effect on the Z0 mentioned above, but X
becomes

X =
(

(g12g23 − g13g22)x+ (g223 − g22g33) z
) ∂

∂x

+
(

(g12g13 − g11g23)x+ (g12g33 − g13g23) z
) ∂

∂y

+
(

(g11g22 − g212)x+ (g13g22 − g12g23) z
) ∂

∂z
.

It is fairly easy to verify that there is no non-singular g which produces a Case 1 situation.
So either we face the Case 2 complications or we try the energy free approach. For
a start, observe that we can solve the equation X(V ) = 0 without restrictions on g.
Corresponding (u, v)-variables are

u =
(

g11g22 − g212
)

x2 + 2
(

g13g22 − g12g23
)

xz +
(

g22g33 − g223
)

z2, (32)

v = g12x+ g22y + g23z. (33)

Unfortunately, it looks impossible to select a third variable w in such a way that we
could even set up the second-order condition (18). The alternative approach via E has
the advantage that adapted coordinates (φ,ψ, χ) are not affected by the presence of g.
Yet again, we were unable, even with the assistance of MapleTM, to get anything out
of the second-order condition (24) for general g. Even the expressions for the known
functions F1 and F2, for example, run over several pages. So, we have to settle for some
particular cases.

Inspired by the general solution (30) for the Euclidean case, let us try under what con-
ditions on g a V of the form V = C3/u solves the second-order requirement (18). The
conclusion is that this is the case provided we restrict g by g12 = g23 = 0. Exactly the
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same restriction makes that also a V of the form C2/v
2 works, which is no surprise. On

the other hand, it turns out that V = C1(u+ v2) is an admissible potential without any
restriction on g. Turning the arguments around, if we set g12 = g23 = 0 from the outset,
we can find that the general solution of (18) is a linear combination of the above three
particular solutions. Remember that the function u now is more general than in the
standard Euclidean case and this is made possible by choosing a kinetic energy of the
form

T = 1

2
(g11ẋ

2 + g22ẏ
2 + g33ż

2) + g13ẋż.

Finally, let us attempt to find a particular solution which can manifestly not be obtained
with a standard kinetic energy. To that end, we put g11 = g22 = g33 = 0. Then, the
homogeneous partial differential equation X(V ) = 0 identifies variables

u = g12x+ g23z, and v = g12xy + g13xz + g23z.

If we put w = ψ = z/x to complete a local coordinate change, the second-order condition
for V turns out to generate a polynomial in w of degree 13. Hence, no less than 14 second-
order conditions have to be satisfied by a function V (u, v). But there is a solution, namely
V = C1v (always up to an additive constant). The corresponding energy function,
expressed in its own natural variables, reads E = −2g13C1φψ.

6 Some new examples

As far as we know, the following example has not been mentioned in the extensive
literature before:

φ = (x+ y)z, ψ = xy.

The vector fields Z0 and ∇Z0 are given by

Z0 = −x(x+ y)
∂

∂x
+ y(x+ y)

∂

∂y
+ z(x− y)

∂

∂z
,

∇Z0 = 2x2(x+ y)
∂

∂x
+ 2y2(x+ y)

∂

∂y
− 4xyz

∂

∂z
.

With an arbitrary g, the other vector fields of interest are too long to list up here and there
is no chance to integrate the fundamental equation X(V ) = 0. With, for example, χ = y
as additional variable, we have an easily invertible coordinate change, so the approach
via the energy condition F1G2 = F2G1 seems to offer better chances for success. But
it takes a lot of effort to even control the expression swell in MapleTMand the result is
bound to be a polynomial in χ of very high degree. In short, we were unable to get results
without a priori simplifying assumptions on g. Let us then look at two complementary
situations.

First assume that g is diagonal, i.e. g12 = g13 = g23 = 0. The condition referred to above
then ‘reduces’ (after eliminating denominators) to a polynomial of degree 76 in χ. The
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coefficients of the highest and lowest degree terms produce the same equation with g11
and g22 interchanged. Therefore, we must have g11 = g22 and since there is an overall
scaling freedom, we can actually set them equal to 1 without loss of generality. Bringing
the coefficient of the next to highest order terms into the picture, we learn that E is
bound to be a function of the form aφ2 + bψ + c, with a, b, c as yet arbitrary constants.
But the remaining terms in the condition F1G2 = F2G1 soon impose that a and b should
be zero and hence that E must be constant, which in a Case 2c situation means that
there is no solution. We conclude that the problem has no solution for a diagonal g,
which of course contains the standard Euclidean case.

Secondly, as a kind of complementary hypothesis, assume that g11 = g22 = g33 = 0.
Attempts to solve the equation X(V ) = 0 are still unsuccessful. The energy approach
this time leads to a polynomial expression of degree 56, and the highest and lowest order
coefficients turn out to vanish identically provided we take g13 = g23, which as before can
then be set equal to 1 without loss of generality. However, at this point we appear to be
in a Case 1 setting, so that we better take a step backwards and look at this situation
from a different angle.

Without any a priori assumptions on the metric g, let us try to implement the strategy
of forcing the system into a Case 1 situation. For that purpose, we compute the bracket
[X,Z1] in the local frame sp{X,Z1, Z0} and require that the coefficient of Z0 be zero. It
turns out that this will be the case, provided that

g23(g11 + g12) = g13(g22 + g12),

g33(g12 − g11) = g13(g23 − g13),

g33(g22 − g12) = g23(g23 − g13).

One can show that there is a non-singular g satisfying these conditions if and only if

g13 = g23, g33 = 0, g22 = g11 with g11 6= g12.

Again, using the scale freedom in g, we set g13 = g23 = 1 and thus cover the situation
encountered in the preceding paragraph. With these simplifications, we now list the
expressions for the various objects that matter for the subsequent considerations. The
vector fields X (after rescaling) and Z1, Z2 are given by

X = −
(

(g11 − g12)xy(x+ y)3 + z(x− y)3(x+ y)
) ∂

∂x

−
(

(g11 − g12)xy(x+ y)3 − z(x− y)3(x+ y)
) ∂

∂y

+
(

(g211 − g212)xy(x+ y)3 + (g11 − g12)z(x+ y)2(x2 + y2 − 4xy)
) ∂

∂z
,

Z1 =
1

2
(x+ y)

(

∂

∂x
+

∂

∂y

)

+
(

z − 1

2
(g11 + g12)(x+ y)

) ∂

∂z
,

Z2 =
1

2

x− y

g12 − g11

(

∂

∂x
− ∂

∂y

)

+ 1

2
(x+ y)

∂

∂z
.

21



In addition, we have for the function A defined by (16) and the coefficient b of Z1 in the
bracket [X,Z1] the following expressions:

A = −1

2
+ 1

4
[g11(x+ y)3 − 2(g11 + g12)xy(x+ y)]/z(x− y)2,

b = (xy/z)(g211 − g212)(x+ y)3 + (g11 − g12)(x+ y)4.

One can verify that X(A) + bA = 0, as it should, so that we are in Case 1a indeed.
Following our general scheme, we next investigate integrability of sp{X,Z0}. It turns
out that this distribution is not integrable because g11 6= g12. So we are in Case 1a2 and
conclude that E must be constant. It remains to integrate the system of equations (15)
and (17), and MapleTMhelps us to conclude that the solution V can be written in the
form V = uF (v) +E, where F is an arbitrary function and the variables u and v are (in
the domain of their definition) given by

u =
g11

(g11 + g12)(x− y)2
− 2xy

(x2 − y2)2
− 2z

(g11 + g12)(x+ y)3
,

v =
z

x+ y
+ 1

2
(g11 + g12) ln(x+ y) + 1

2
(g11 − g12) ln(x− y).

So this is definitely a non-trivial example where a potential does not exist if one sticks
to the traditional picture with a standard Euclidean metric, whereas we have obtained
a V , provided we take the kinetic energy to be

T = 1

2
g11(ẋ

2 + ẏ2) + g12ẋẏ + ẋż + ẏż.

For some more new examples now, we will avoid the very technical complications of Case 2
situations and address directly the approach of using the extra freedom of a g to end
up in a Case 1 situation. This part of the computations at least is quite straightforward
and when successful, we know from Section 4 that a potential can be obtained. The idea
now is to keep some arbitrariness in the a priori selection of the functions φ and ψ and
hope that imposing integrability of sp{X,Z1} will be possible without ending up with
the conclusion that g will be singular. Let us take

φ = 1

2
xy2, ψ = z f(y),

with f as yet undetermined. The condition to be in Case 1 is a polynomial expression in
x and z which is of degree 1 in both variables. Hence, it splits into 4 conditions, which
read:

g12g23 − g13g22 = 0 or y f ′ − 2f = 0,

g11g23 − g12g13 = 0 or y f ′ + f = 0,

g12g33 − g13g23 = 0 or y ff ′′ − y f ′
2 − 2ff ′ = 0,

g213 − g11g33 = 0 or y ff ′′ − y f ′
2
+ ff ′ = 0.

A careful analysis of these conditions, keeping in mind of course that g must be non-
singular, ultimately gives rise to the following four distinct possibilities (where f always
is determined up to an irrelevant multiplicative constant).
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1. g12 = g13 = 0 (g23 6= 0), with f = 1/y.

2. g12 = g13 = g23 = 0, with f = yk (k arbitrary).

3. g11 = g13 = g23 = 0, with f = eky
3

(k arbitrary).

4. g13 = g23 = 0 (g11 6= 0, g12 6= 0), with f = 1.

It is instructive to verify again that in each of these cases, we have X(A) + bA = 0
indeed, so that we are in Case 1a. The computation of the solution for the potential in
each of the above situations is fairly straightforward.
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