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Abstract— A difficulty still hindering the widespread applica-
tion of Model Predictive Control (MPC) methodologies, remains
the computational burden that is related to solving the associ-
ated Optimal Control (OC) problem for every control period.
In contrast to numerous approximation techniques that pursue
acceleration of the online optimization procedure, relatively few
work has been devoted towards shifting the optimization effort
to a precomputational phase, especially for nonlinear system
dynamics. Recently, interest revived in the theory of general
Polynomial Chaos (gPC) in order to appraise the influence of
variable parameters on dynamic system behaviour and proved
to yield reliable results. This article establishes an explicit
solution of the multi-parametric Nonlinear Problem (mp-NLP)
based on the theoretical framework of gPC, which enabled a
polynomial approximated nonlinear feedback law formulation.
This resulted in real-time computations allowing for real-time
MPC, with corresponding control frequencies up to 2 kHz.

I. INTRODUCTION

Practical implementation of Model Predictive Control
(MPC) methods requires numerical solution of an Optimal
Control (OC) problem at every control step [1], [2]. It is
yet a recognized challenge to complete such optimization
within the limits of a control period and therefore application
usually remains limited to slowly varying systems. For some
relatively simple problems, it is possible to obtain an explicit
solution, allowing to replace the optimization by a simple
function evaluation; however, the existence of such solution
is not guaranteed for more complex systems. To tackle this
problem, there exist two conceptions: on the one hand, the
online computational effort can be simplified such that yet
the solution can be obtained within a control period [3]. On
the other hand, the explicit solution can be approximated by
a piecewise linear solution.

The first approach makes a compromise on the optimality
of the solution, since they are either required to introduce
some sort of approximation measure, or have to interrupt the
optimization after a single iteration [4]. The iLQR method
[5] considers locally linearized system models along the
optimized trajectory and allows relatively fast convergence
to a (suboptimal) solution, by identification of recursive
relations. In [6] the application of the iLQR method on an
inverted pendulum is reported, capable of generating controls
at a frequency of 4 Hz which is however still insufficient for
highly dynamic systems.

The second idea aims to construct an approximation of
the explicit solution of the OC problem in function of the

initial state value, which requires to solve a multiparametric
Nonlinear Program (mp-NLP). In [7] this is established by
partitioning the feasible set of initial state values and by
associating a local linear approximation of the feedback
law to each partition. Evaluation of the feedback requires
execution of a (possibly large) binary tree search through
the partitioning structure and storage of an equal number
of linear feedback laws. The presented method is able to
deal with constraints, set both on input and state. When the
required approximation quality is however increased, such
will result in an expansion of the number of partitions,
consequently increasing the computational effort spent on
the tree search. Such is an acknowledged problem, which
they solve by posteriorly reducing the total number of
partitions by merging adjacent partitions whose policies are
only slightly deviating [8].

Considering the latter methodology, one can argue that it
is not necessary to construct a local linear approximation
over the entire feasible set of initial state values. It might
be beneficial to pursue an explicit solution by means of
a smooth approximation for regions of the solution space
that allow it. A smooth solution is however not suited to
approximate the explicit solution when it is an element of
the C0 function class, locally. Typically, regions to which
such applies, correspond to initial state values for which the
optimal solution does adopt the supremum value(s) for one or
more of its inequality constraints. This can be compensated
for by reintroduction of partitions. However, the total number
of partitions will still be significantly reduced.

In this work it is therefore proposed to establish an
approximation of the explicit solution of the mp-NLP in
function of the initial state value by expansion over a poly-
nomial base. The polynomial expansion is rooted within the
framework of general Polynomial Chaos (gPC) as originally
introduced by Wiener [9], towards which interest has flared
in the last decade [10]. Different studies already explored
the application of the gPC framework to that of dynamic
optimization and demonstrated its potential to decompose
optimal trajectories over some variable parameters [11]–[13].
Additionally, polynomial expansions exhibit good conver-
gence properties for relatively smooth surfaces even when
using sparse grids, as was reported by [14], [15]. Moreover,
the recursive generation of the one-dimensional polynomials
allows for rapid numerical evaluation of the multivariate



polynomial space. This paper presents a decomposition of
the resulting large coupled NLP, using a collocation method,
into a number of original OC problems in order to obtain
the desired polynomial coefficients. This method results in
a polynomial interpolation of the optimal feedback law. As
a reference, a more general interpolator such as the Kriging
method was applied to compare the resulting approximation
qualities. It is expected that a Kriging interpolator will yield
slightly superior results, certainly for constrained optimiza-
tion problems. However, for an increasing number of data-
points, which the Kriging interpolator requires to assess all
for each evaluation [16], it is expected to be somewhat
slower, considering that the polynomial interpolator only
requires to evaluate the polynomial base.

The presented framework is limited to unconstrained OC
problems, as to guarantee sufficiently smooth control poli-
cies. The concept can be extended to constrained problems
by reintroduction of partitions as in [8], which was however
not considered here yet.

II. CONVENTIONAL MPC

Within the framework of MPC one faces an optimization
problem of the form (1). Conventionally, x(τ) ∈ Rn, repre-
sents the system state vector, and, u(τ) ∈ Rm, an arbitrary
input signal. The function, f : Rn×Rm → Rn, describes the
governing system dynamics and is assumed time-invariant.
Functions, l : Rn × Rm → R and h : Rn → R, characterize
the running and final cost kernels, which summation ought
to be minimized over control horizon N ; that by proper
choice of the function arguments u = (ū(t) · · · ū(t+N −
1)). The control objective is assumed to be the asymptotic
stabilization of x(τ) to the origin.

V (x(t)) = min
u

N−1∑
k=0

l(x̄(t+ k), ū(t+ k)) + h(x(t+N))

subject to x̄(t+ k + 1) = f(x̄(t+ k), ū(t+ k))

x̄(t) = x(t)
(1)

The solution of this mp-NLP will be both function of the
(discrete) time, τ ∈ {t, . . . , t+N − 1}, and the initial state
value, x(t), and will henceforth be referred to as the optimal
control policy, u†(τ,x(t)), corresponding optimal trajectory
x†(τ,x(t)). Here, J(·, ·) and G(·, ·) are compact represen-
tations of the cost and constraint functions of problem (1).

u†(·,x) = arg min
u

J(u,x) subject to G(u,x) = 0 (2)

The principle idea in MPC is thus to solve the optimization
problem for the current state (belief), x(t), at every time
t and set the required input u(t) according the optimized
policy u†(t,x(t)), yielding the state feedback function η(·).

η(x(t)) ≡ u†(t,x(t)) (3)

It is a known property of V (x) = J(u†(·,x),x), that it
serves as a Lyapunov function for the closed-loop system
x(τ + 1) = f(x(τ),η(x(τ))), for well chosen l and h [2],
and as such guarantees asymptotic stability to the origin.

Despite this strategy’s stability assurance, it requires in-
stant evaluation of the optimized control policy and thus in-
stant solution of the optimization problem; which is unlikely,
if not impossible. In the remaining we shall demonstrate
that an explicit approximation of solution, u†(τ,x(t)), can
be established by expanding the optimized trajectory and
policy over a polynomial base in function of the initial
state, x(t). Recursive evaluation of the polynomial base and
multiplication with the polynomials coefficients allow for
rapid (almost instant) evaluation of the optimized feedback
law, as is required to apply the MPC method.

III. POLYNOMIAL CHAOS EXPANSION

A. Wiener-Askey Polynomial Chaos

According to the gPC framework, the dependency of a
sufficiently smooth variable z(ξ) ∈ Rk on the variable
ξ ∈ Ω = ⊗ni=1Γi ⊂ Rn, can be modelled by decomposition
over a family of polynomials, φi, as illustrated by the
equation below, with, ξ, being a random variable associated
to probability function ρ(ξ) : Ω→ R+.

z(ξ) =

∞∑
i=0

ziφi (ξ) (4)

A relation is established between various distributions
and their corresponding polynomial basis by the Wiener-
Askey scheme [17]. As we intent to decompose the optimal
trajectories over a set of feasible initial states, and consid-
ering that all are equally important, a uniform distribution
is reckoned most appropriate to model the dependency.
According the scheme, the uniform distribution is related
to the one-dimensional Legendre polynomials, Pk(ξ), which
are defined on the interval Γ = [−1, 1]. The base polynomials
satisfy the orthonormality relation 〈Pi, Pj〉 = δij , with the
inner product defined as 〈ψ, φ〉 =

∫
Γ
ψ(ξ)φ(ξ)ρ(ξ)dξ. It is

of interest to note that these polynomials satisfy the Bonnet
recursion formula, allowing for rapid numerical evaluation.

(k + 1)Pk+1(ξ) = (2k + 1)ξPk(ξ)− kPk−1(ξ)

P0(ξ) = 1, P1(ξ) = ξ
(5)

The one-dimensional orthogonal polynomial space Λp,
spanning polynomials up to degree p, can formally be defined
as Λp = {v : Γ → R : v ∈ span{Pk(ξ)}pk=0}. Correspond-
ingly we can construct an n-dimensional polynomial space
on Ω as Λpn =

⊗
|i|≤p Λik . With multi-index i = (i1 · · · in)

and the total degree
∑
k ik ≤ p. As such the multivariate

polynomials φi(ξ) are evaluated as below. The possibility to
exploit the recursion formula during numerical evaluation is
not affected by the multivariate construction.

φi(ξ) = Pi1(ξ1) · · ·Pin(ξn) (6)

Given that the polynomial degree is restricted to p, the
series expansion as introduced in (4) is truncated after M
polynomial contributions, where M =

(
n+p
p

)
. We obtain

expansion zp(ξ), which is an approximation of z(ξ).

zp(ξ) =

M∑
i=1

zpi φi(ξ) (7)



This approximate series can be written more compactly as

zp (ξ) =
(
φ1 (ξ) · · · φM (ξ)

)
⊗ In ·

 z
p
1
...
zpM


= φ>(ξ)⊗ In (ξ) · Zp

(8)

Where ⊗ represents the Kronecker product, and In the
identity matrix of dimension n.

B. Determination of Coefficients
As we wish to appraise the effect of arbitrary ξ on the

variable z(ξ), we require to dispose over the polynomial
coefficients Zp. In order to determine this set, one would
usually try to exploit the orthonormality property and project
the variable z(ξ) on the multivariate polynomial space, Λpn.
Those are referred to as Galerkin procedures; this and others
are documented in [10]. This would however require to
evaluate the inner product integral which is unfortunately
nontrivial, if not impossible in the case of nonlinear relations
[18]. One is thus obligated to use an approximate integration
rule to compute the exact integral, based on a number of
actual function evaluations, z

(
ξj
)
, at Q arbitrary - so called

- collocation nodes, ξj . In case of a one dimensional variable,
we obtain for every, j = 1, . . . , Q.

zξj = z
(
ξj
)
≈ zp

(
ξj
)

= φ>
(
ξj
)
· Zp (9)

Introducing the collocation output vector, Zξ, and the
system matrix, Φ ∈ RQ×M , consisting of the elements
Φji = φi

(
ξj
)
, this can be formulated as a linear system.

Zξ =

z
ξ
1
...
zξQ

 ≈
φ

> (ξ1
)

...
φ>
(
ξQ
)
 ·

 zp1
...
zpM

 = Φ · Zp (10)

In [18], it is suggested to approximate the integral that
determines the projection 〈z, φi〉 by an approximate integra-
tion rule, resulting in the estimate, Z̃

p
= Φ>W · Zξ with

W a diagonal matrix containing the associated integration
weights. The authors in [19] suggest however to minimize
the cost defined by E([zp − z]2) over the coefficients Zp,
with E(z) defined as

∫
Ω
z(ξ)ρ(ξ)dξ and approximate the

associated integral. For a uniform distribution this results in
the familiar Least Squares (LS) approximation [10].

Z̃
p

=
(
Φ>WΦ

)−1
Φ>W · Zξ (11)

The matrix representations of both collocation approaches
holds a certain similarity; in that the estimated coefficients
Z̃
p

are spanned by the weighted collocation output, W · Zξ,
projected on the coefficient space by the transposed system
matrix Φ. Whether or not the estimate is multiplied with
(Φ>WΦ)−1 determines the method. One can observe that
the first method directly estimates the N first coefficients,
whilst the LS method additionally rescales the same estimate
to account for the truncated tail of the polynomial expansion
and is therefore preferred in this study. The corresponding
approximate polynomial decomposition is then given by

z̃p(ξ) = φ>(ξ) · Z̃p (12)
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Fig. 1: Nodal set distributions

C. Nodal Set Distribution

The sole restriction to which the choice of Q collocation
nodes is subject, is that the corresponding system matrix,
Φ, has to be well-conditioned. Additionally, a lower limit
is set by the total truncation number, M , which the number
of nodes, Q, must either match or exceed. Regarding these
requirements, two sampling techniques are convenient: either
a full tensor-product grid is spanned over the feasible space
or an (orthogonal) random sampling distribution is practiced.

Both are however flawed by practical objections; the num-
ber of nodes corresponding the tensor product grows expo-
nentially with respect to the problems dimensionality, whilst
the random sampling cannot guarantee solution consistency
over each run. An answer to both casualties is possibly
given by the Smolyak method [18] which only considers a
subset of the full tensor-product, ruling out all the nodes with
negligible importance to the quality of the approximation.
In case the grid is constructed over the one-dimensional
Chebyshev points, the grid is referred to as the Clenshaw-
Curtis abscissas. The approximation quality corresponding
each distribution schemes is compared in section V, a visual
illustration of the set themselves can be found in figure 1.

D. Polynomial Approximation Error

In order to provide an estimate for the accumulated ap-
proximation error, introduced by the truncation and the coef-
ficient estimation, two metrics are defined. They indicate the
relative approximation errors between: the real function z(ξ)
and the truncated expansion, zp(ξ), and, between the latter
and the estimated coefficient expansion, z̃p(ξ), respectively
given by εM = E([z − zp]2)

1
2 and εQ = E([zp − z̃p]2)

1
2 .

As shown in [18], the accumulated error, ε = E([z −
z̃p]2)

1
2 , then satisfies the inequality below, with both εM

and εQ converging to 0 for increasing M or Q, respectively.

ε ≤ (ε2M + ε2Q)
1
2 (13)

IV. POLYNOMIAL CHAOS EXPANSION OF THE OCP
Here, we introduce the theory of gPC into the framework

of optimal control, to establish an eplixit solution of the mp-
NLP problem (1) over the variable initial state value, x(t).
We shortly discuss how the desired polynomial coefficients,
Zp, can be obtained by merit of the collocation approach.
Once the coefficients are available, an approximation of the
explicit optimal feedback law, η(x(t)), for arbitrary initial
state values can be easily obtained. For notational clarity, the
derivation is carried out on a scalar variable.



A. Explicit Solution of the mp-NLP

We wish to solve problem (1) explicitly in function of
x(t) = ξ ∈ Ω, yielding the explicit trajectories x†(τ, ξ) and
u†(τ, ξ). This thus requires to solve the mp-NLP

arg min
u

J(u(τ, ξ), ξ) subject to G(u(τ, ξ), ξ) = 0 (14)

According to the gPC framework, the variable, z(ξ), can
be decomposed over a polynomial space, Λpn. The expansion
is characterised by the coefficients, Zp, or an appropriate
estimate. In case of a time dependent variable, z(τ, ξ), the
coefficients will be time dependent as well, Zp(τ). This
allows to decompose the explicit trajectories over the poly-
nomial base: xp(τ, ξ) =

∑M
i=1 x

p
i (τ)φi(ξ) and up(τ, ξ) =∑M

i=1 u
p
i (τ)φi(ξ), for ξ ∈ Ω and Ω a feasible hypercube

of initial states. With appropriate scaling this then coincides
with the feasible set of the Legendre polynomials.

We now need to to find the time dependent coefficients
xpi (τ) and upi (τ), which dynamics are still governed by the
original dynamic relation. Substitution yields
M∑
i=1

xpi (τ + 1)φi(ξ) = f

(
M∑
i=1

xpi (τ)φi(ξ),

M∑
i=1

upi (τ)φi(ξ)

)
(15)

This large system of coupled time dependent coefficients
is not straightforward to solve. However, following the col-
location technique, we invoke Q arbitrary nodes, ξj , that are
assigned to the variable initial state. Such allows to consider
the variables xξj(τ) and uξj(t) similar to the approach in [20].

xξj(τ) =

M∑
i=1

xpi (τ)φji uξj(τ) =

M∑
i=1

upi (τ)φji (16)

By merit of this collocation technique, solution of problem
(14) simplifies to solving Q problems of the form (1), for
the variables, xξj and uξj , and dynamic relation, xξj(τ + 1) =

f(xξj(τ), uξj(τ)), and, initial state values equal to collocation
node, ξj . The solution yields the optimal collocation trajec-
tories, xξ,†j (τ) and uξ,†j (τ), j = 1, . . . , Q.

uξ,†j
(
·, ξj

)
= arg min

u
J
(
u, ξj

)
subject to G

(
u, ξj

)
(17)

According to (10) these collocation trajectories can on
their turn be related to the optimal polynomial coefficients,
xp,†i (t), and, up,†i (t), as illustrated by the expression below.u

ξ,†
1 (τ)

...
uξ,†Q (τ)

 =

φ11 · · · φ1M

...
. . .

...
φQ1 · · · φQM

 ·
u

p,†
1 (τ)

...
up,†M (τ)

 (18a)

Uξ,†(τ) = Φ · Up,†(τ) (18b)

This system of equations can now be solved to yield
the optimal time dependent polynomial coefficients. In case
the number of collocation nodes Q equals the number of
coefficients M this requires inversion of matrix Φ; if the
number of collocation nodes is however larger than the
number of coefficients, one can adopt the LS approach.

Ũ
p,†

(τ) =
(
Φ>WΦ

)−1
Φ>W · Uξ,†(τ) (19)

B. Smooth Interpolated MPC
Now that we dispose over the optimal control coefficient

vector, Ũp,†(τ), the polynomial expansion is applied to
approximate the explicit optimal control policy, u†(t,x(t)).

u†(t,x(t)) ≈ ũp,†(t,x(t)) = φ>(x(t))⊗ In · Ũp,†(t) (20)

Recalling the definition of the MPC feedback (3), substi-
tution of the approximate expression (20) for the accurate
solution yields the interpolated feedback law

η̃(x(t)) ≡ φ>(x(t))⊗ Im · Ũp,†(t) (21)

The online computations are as such reduced to evaluation
of the polynomial expansion, which will require only a
fraction of the computational resources and storage that is
required to numerically solve (1) online, nor does it require
to execute a possibly extensive tree search and storage of an
equal amount of linear state feedbacks.

C. Stability Criterion
By merit of the MPC framework, it holds that V (x)

is a Lyapunov function for the closed-loop system x(τ +
1) = f(x(τ),η(x(τ))) = fη(x(t)) and assures asymptotic
stability. It can also be shown that V (x) − V (fη(x)) >
l(x,η(x)),∀x ∈ Ω [2]. Now, consider the closed-loop sys-
tem dynamics fη̃(x) = f(x, η̃(x)). Assessing the inequality
and the property of V , V (x) > 0,∀x ∈ Ω\{0}, it holds that
stability of the system can still be assured if V (fη̃(x)) −
V (fη(x)) < V (x)−V (fη(x)),∀x ∈ Ω\{0}. This condition
allows us to establish a tolerance on the error, ‖η̃(x)−η(x)‖,
which the approximation must satisfy. Assume that V and
f are both C1 functions; therefor there must exist local
Lipschitz constants κv(x) > 0 and κf (x) > 0 such that
V (fη̃(x))− V (fη(x)) ≤ κv(x)κf (x)‖η̃(x)− η(x)‖. Sub-
stitution in the stability criterion V (fη̃(x)) − V (fη(x)) <
V (x) − V (fη(x)) and some basic manipulation yield then
a limit for the maximal polynomial error ε.

ε ' ‖η̃(x)− η(x)‖ < l(x,η(x))

κv(x)κf (x)
(22)

From III-D we know, that the above criterion can be
enforced if M and Q are taken large enough.

D. Ordinary Kriging Interpolator
Alternative to the polynomial expansion in (21), motivated

by the explicit solution of (14), one could argue to fit an
interpolator directly on the data Uξ,†(t) as to approximate
η(x). The Ordinary Kriging Interpolator is given by (m = 1,
for m > 1 the procedure is simply repeated m times) [21].

η̃(x) = η̂ + r(x)R−1
(
Uξ,†(t)− 1η̂

)
(23)

Where Rij = ψ(ξi−ξj ,θ), η̂ = 1>R−1Uξ,†(t)/1>R−11
and r(x) = (ψ(x−ξ1,θ) · · · ψ(x−ξQ,θ)). The correlation
parameter θ is determined by maximizing − log(|R(θ)|),
which is a measure for the Likelihood of observation Uξ,†(t).
The function ψ : Rn → R is usually chosen to be a
radial base function, e.g. ψ(d) =

∏n
i=1 exp(−θjd2

j ). Note
that computation of the interpolator requires to evaluate Q
distances |x−ξj |. Implementational details are found in [16].



V. BALANCING OF THE INVERTED PENDULUM

θ

u

lθ̇
ẏ

v
y

m, 2l

Consider the model of a nonlinear
inverted pendulum which base is free to
move along the horizontal direction.

Expressions for the kinetic and po-
tential energy, denoted as, T , and, V ,
are presented in equation (24) in terms
of the coordinates θ and y, with m =
0.2 kg and 2l = 0.6 m. The velocity of
the centre of mass satisfies the relation,
v2 = l2θ̇2 + ẏ2 + 2lθ̇ẏ cos(θ), following the law of cosines.

T = 1
2

1
3ml

2θ̇2 + 1
2mv

2 V = mgl cos(θ) (24)

The Lagrange formalism yields the governing equation
(25) for the state variable θ with arbitrary force term u
applied to the base. An additional damping term, λθ̇, with λ
equal to 0.1 Nms is added to model friction at the suspension
point. We introduce the state vector, x = (θ θ̇)>, and the
arbitrary force term, u, is associated with the system input.

θ̈ = − sin(θ) cos(θ)θ̇2+ λ
ml2

θ̇− gl sin(θ)
4
3−cos2(θ)

− cos(θ)
4
3−cos2(θ)

u

ml
(25)

An OC problem is defined with a quadratic running cost
kernel, presented in equation (26). The control horizon is
set to 500 ms with a control period of 20 ms, resulting
in N = 25. The feasible subspace, Ω, is defined as{
π
3 [−1, 1]× 2π [−1, 1]

}
. The NLP (17) are solved using the

commercial software package MATLAB. Solution of the OC
problem, with a 2.7 GHz processor and 4 GB RAM, lasts
0.8 s up to 1.7 s, ruling out real-time MPC regardlessly.

x(τ)>diag(100, 10)x(τ) + u2(τ) (26)

Figure 2 portrays a contour plot of the exact MPC
feedback, η(x(t)), over the considered subspace. The ap-
proximation was performed for several nodal set distribu-
tions and varying polynomial degree. The number of col-
location points, Q, corresponding the Smolyak distribution
is restricted to the set: {1, 5, 13, 29, 65, 145, 321, . . . } of
which the first two were not considered to secure well-
conditioning of the system matrix for 2nd degree approxi-
mations. In order to achieve comparable results, the number
of collocation points of the uniform grid were selected
as proximate to those of the Smolyak grid, yielding the
set: {16, 25, 64, 144, 324}. For the random grid the same
numbers were adopted. Recalling the average solution time
of 1 s, the highest precomputational load, corresponding the
largest number of collocation nodes, took about 10 min. In
order to compare results to a more general interpolator, also
an Ordinary Kriging (OK) approximation was considered.

The approximation quality was estimated by means of the
error, ε = E([η̃ − η]2)

1
2 , which was approximated over a

uniform 30 × 30 grid, ε ' 1
N2

√∑N
i,j=1(η̃(ξij)− η(ξij))2.

The values corresponding each combination are reported in
table I. Considering the values observed for the random grid,
the mean value over 10 tries is depicted. In case a value is
lacking the associated systems matrix is ill-conditioned.

Uniform [1e− 3]

Q\p 2 3 4 5 6 7 8 9 OK

16 211 211 989
25 194 197 695
64 178 178 56 56 40 40 35
144 167 170 54 54 23 23 2 2 4
324 166 166 53 53 21 21 2 2 2

Random [1e− 3]

Q\p 2 3 4 5 6 7 8 9 OK

16 356 507
25 223 420 289 94
64 188 224 87 143 105 248 61 30
144 177 191 66 93 47 69 10 21 9
324 173 176 59 63 35 41 4 3 1

Smolyak [1e− 3]

Q\p 2 3 4 5 6 7 8 9 OK

13 299 299 1210
29 275 275 77 77 44
65 223 223 73 73 34 34 38
145 208 208 65 65 29 29 2 2 43
321 200 200 63 63 26 26 2 2 1

TABLE I: E([η̃−η]2)
1
2 values corresponding different nodal

set distributions strategies for varying m and s.

The uniform and Smolyak nodal sets exhibit close to equal
approximation qualities and similar convergence properties.
The random grid yields less reliable approximations levels,
yet results in an improved conditioning of the system matrix
for higher approximation levels with low collocation number.
As expected the OK interpolator slightly outperforms the
polynomial approximation for large collocation numbers,
especially in case of the random grid. Note that in the case
of the uniform and the Smolyak grid, the quality of the odd
degree approximation is equivalent to that of the lower even
degree, which is explained considering both the symmetry
exhibited by the surface as the nodal set and the presence of
the same set of even polynomials in the expansion.

The average calculation time required to obtain the in-
terpolated feedback value is less than 400 µs, corresponding
the 9th degree polynomial approximation and is negligible
compared to the control period, as such enabling for real-time
MPC implementations. This is somewhat faster than the OK
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Fig. 2: Contour plot of the exact MPC feedback, η(x(t)).



approximation which computation time was about 700 µs for
the same nodal set. This is explained by observing that the
polynomial approximation only requires to evaluate 55 poly-
nomials compared to 324 radial base function evaluations
that the OK interpolator requires to execute. Additionally, it
is observed that overfitting the nodal set with respect to the
polynomial degree seems to be a necessary practice as to
secure well-conditioning of the system matrix.

Lastly, a phase plot of varying optimal trajectories, sim-
ulated over the period of 1 s, is portrayed in figure 3. The
pendulum is successfully stabilized to the upward position,
starting from 13 different initial state values; both for the
exact MPC as for the polynomial MPC strategy. However
indiscernible visually, the largest deviation occurred close
to the origin given that the difference, l(x,η(x)), vanishes
when approaching the origin. By consequence of the stability
criterion (22), the effect of the approximation error will thus
be more pronounced in proximity of the origin.
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Fig. 3: Simulated trajectories for the MPC feedback, both
exact and gPC expanded with polynomial degree p = 9 over
a uniform nodal set of 324 collocation points. The trajectories
coincide almost perfectly and can’t be distinguished visually.

VI. CONCLUSION AND FUTURE PERSPECTIVES

This discussion established an explicit solution of the mp-
NLP, associated to the OC problem in MPC methodologies,
that by merit of the gPC framework and the collocation
approach. As a consequence of this explicit solution, the
computation time associated with solution of the exact on-
line OC problem (∼1 s) drastically diminished (∼400 µs),
lowering the implementational threshold of MPC strategies,
even for low-cost embedded applications. A criterion to
maintain the stabilizing property was obtained, in the sense
of a bound on the approximation error. It is noted that once
the collocation output vector is available, the polynomial
degree can still be varied yielding a required approximation
level. Nonetheless, the authors wish to emphasize that further
research is required in terms of stability and scalability.

In conclusion, it is brought to attention that the polynomial
coefficients are determined by solving Q deterministic opti-
mal control problems. In the future we intent to consider a
stochastic optimal control problem at each of the collocation
nodes in terms of some variable systems parameters.
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