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This paper provides a construction of a Fleming–Viot measure
valued diffusion process, for which the transition function is known,
by extending recent ideas of the Gibbs sampler based Markov pro-
cesses. In particular, we concentrate on the Chapman–Kolmogorov
consistency conditions which allows a simple derivation of such a
Fleming–Viot process, once a key and apparently new combinatorial
result for Pólya-urn sequences has been established.

1. Introduction. The Fleming–Viot process, introduced by Fleming and
Viot [6], is a measure valued diffusion process. The stationary distribution
of the process is Π, where Π is the distribution of a random measure µ, on
some space S, and µ can be obtained via

µ(·) =
∞
∑

i=1

ρi δVi
(·),(1.1)

where ρ1 > ρ2 > · · · have the Poisson–Dirichlet distribution [8] and V1, V2, . . .
are independent and identically distributed from ν0, and independent of the
ρi. Such a random measure is also known as a Dirichlet process [5] and has
been of great importance to Bayesian nonparametric methods. To denote
the dependence on (θ, ν0), we will use the notation Π(θ ν0).

Ethier and Griffiths [4] provide the transition function for a particular
Fleming–Viot process. Let dn(t) = P (Dt = n), where Dt is a death process,
D0 = ∞ a.s., and with rate λn = 1

2n(n− 1 + θ) for some θ > 0. Tavaré [11],
for example, computed that, for n = 1,2, . . . ,

dn(t) =
∞
∑

m=n

(−1)m−nC(m,n)(θ + n)(m−1)m!−1γm,t,θ,(1.2)
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where

γm,t,θ = (2m− 1 + θ)e−λmt

and

d0(t) = 1−
∞
∑

m=1

(−1)m−1θ(m−1)m!−1γm,t,θ.

Also,

C(m,n) =
m!

(m− n)!n!

and a(m) = a(a+1) · · · (a+m−1) for m = 1,2, . . . with a(0) = 1. We will also
use a[m] = a(a−1) · · · (a−m+1) for m = 1,2, . . . with a[0] = 1. We will show
among other things that this death process is fundamentally connected with
the general Pólya-urn scheme [3].

The transition function is given by

P (t, µ, dν) =
∞
∑

n=0

dn(t)

∫

Π

(

dν
∣

∣

∣θν0 +
n
∑

i=1

δXi

)

µ(dX1) · · ·µ(dXn).(1.3)

It is the intention of this paper to establish a comprehensive construction of
the process and the transition function using ideas formulated in Bayesian
nonparametrics relating to the Dirichlet process. The key result, which ap-
pears new and involves an elegant combinatorial identity, is for sequences of
Pólya-urns. We will also use recent ideas for constructing Markov processes
using latent variables, outlined in [10].

In Section 2 we provide background to the construction of the Fleming–
Viot process via discrete time processes associated with the Dirichlet process.
The necessary Chapman–Kolmogorov condition for existence in continuous
time is examined in Section 3. Section 4 contains technical results and Sec-
tion 5 concludes the paper with some points of discussion.

2. Stationary Markov processes using the Dirichlet process. In [10] the
use of the Dirichlet process for deriving the DAR(1) model was described.
Consider the joint distribution on S × P(S), where P(S) is the space of
probability measures on S, given by

P (dµ,dX) = µ(dX)Π(dµ|θν0).

In words, µ is chosen from Π and, given µ, X is chosen from µ. By making
use of both conditional distributions, the conditional distribution for µ being

P (dµ|X) = Π(dµ|θν0 + δX),
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a discrete time Markov process can be constructed on S with transition
function

P (Xt, dXt+1) =

∫

µ(dXt+1)Π(dµ|θν0 + δXt).

This is of the form

P (Xt, dXt+1) =

∫

P (dXt+1|µ)P (dµ|Xt).

A result in [2] gives

Π(θν0) =

∫

Π(·|θν0 + δX)ν0(dX)(2.1)

and it is well known that
∫

µΠ(dµ|θν0) = ν0.(2.2)

Consequently, it is easy to show that ν0 is the stationary distribution of the
process. The process, using properties of the Gibbs sampler, is easily shown
to be reversible.

In fact, it follows that

Xt+1

{

∼ ν0, with probability θ/(1 + θ),
= Xt, with probability 1/(1 + θ).

This is the DAR(1) model.
Alternatively, we could consider the measure valued process on P(S).

This would have transition function given by

P (µ,dν) =

∫

Π(dν|θν0 + δX)µ(dX).

Using (2.1) and (2.2), it is straightforward to show that Π is the stationary
distribution of the process and that it is also reversible.

Instead of having a single observation from µ, we could consider the joint
distribution on Sn ×P(S) given by

P (dX1, . . . , dXn, dµ) = Π(dµ|θν0)
n
∏

i=1

µ(dXi).

It is well known that the “posterior” or conditional distribution of µ given
X1, . . . ,Xn has the form

Π

(

·
∣

∣

∣θν0 +
n
∑

i=1

δXi

)

;
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see [5]. Hence, in this case, the transition function for the measure valued
process is

P (µ,dν) =

∫

Π

(

dν
∣

∣

∣θν0 +
n
∑

i=1

δXi

)

µ(dX1) · · ·µ(dXn).(2.3)

This is beginning to resemble the transition function for the Fleming–Viot
process given in (1.3), though obviously for discrete time. To obtain the
Fleming–Viot process, we need to put the processes we have constructed
into continuous time. To achieve this, it is necessary to make the number of
samples n be random. So, using the notation of Ethier and Griffiths in [4],
we denote by dn(t) the probability that the number of samples being used
is n for the transition with time t.

We are now ready to examine the existence of such a process by looking
at the Chapman–Kolmogorov equations.

3. Chapman–Kolmogorov conditions. We consider the transition from
µ0 to µt and then to µt+s. Thus, we have

P (dµt+s|Y1, . . . , Ym,m) = Π

(

dµt+s

∣

∣

∣θν0 +
m
∑

j=1

δYj

)

,

where Y1, . . . , Ym are independent and identically distributed from µt and
P (m) = dm(s). Also,

P (dµt|X1, . . . ,Xn, n) = Π

(

dµt

∣

∣

∣θν0 +
n
∑

i=1

δXi

)

,

where X1, . . . ,Xn are independent and identically distributed from µ0 and
P (n) = dn(t). Now, it is well known that we can integrate out µt and that

P (Y1, . . . , Ym|X1, . . . ,Xn, n) = Q

(

θν0 +
n
∑

i=1

δXi

)

,

where Q denotes a distribution associated with the general Pólya-urn
scheme [2, 3]. In terms of sampling, we take the Y1, Y2, . . . by sampling
Y1 ∼ νn, where

νn =
θν0 +

∑n
i=1 δXi

θ + n
,

and then, subsequently,

P (Yj|Y1, . . . , Yj−1) =
(θ + n)νn +

∑j−1
l=1 δYl

θ + n + j − 1
.

Such a sampling scheme, which in the Bayesian nonparametric literature
is known as the Pólya-urn scheme, also appears in mathematical genetics
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and is connected with the Poisson–Dirichlet process. See, for example, [11].
Since the Xi are independent and identically distributed from µ0, to achieve
the Chapman–Kolmogorov condition, we need to understand how many of
the Yj ’s are independent and identically distributed from µ0. For there to
be r of them, we obviously require m ≥ r and n ≥ r. To expand on this, a
number of the Yj ’s will be identical to some of the Xi’s. We are looking for
the number of distinct indices associated with these Xi’s. So, for example,
if we collect up {X2,X4,X2,X1,X6,X4} from sampling the Yj ’s, then the
appropriate number is r = 4; that is, we have the distinct indices {1,2,4,6}.

Theorem 3.1. Conditionally on n and m, we have that the probability

mass function for r is given, for r ∈ {0, . . . ,min{n,m}}, by

P (r|m,n) =
n[r](θ + r)(m−r)

(θ + n)(m)
C(m,r),

which can be written in extended form as

P (r|m,n) = r!C(n, r)C(m,r)
θ(n)θ(m)

θ(n+m)θ(r)
.

The proof is provided in Section 4. Hence, the Chapman–Kolmogorov
condition becomes

dr(t + s) =
∞
∑

n=r

∞
∑

m=r

r!C(n, r)C(m,r)
θ(n)θ(m)

θ(n+m)θ(r)
dm(s)dn(t)(3.1)

for all s, t > 0. There can be many solutions to this, we will look for those
within the class of death processes; that is, dn(t) = P (Dt = n). We let the
rate be λn and so, in particular, we have P (Ds+t = n|Dt = n) = P (Tn > s),
where Tn is an exponential r.v. with parameter λn.

We have the death process also satisfying Chapman–Kolmogorov and so

dr(t + s) =
∞
∑

n=r

P (Dt+s = r|Dt = n)dn(t).

Comparing this with the Chapman–Kolmogorov condition in (3.1) for the
measure valued process, we see that we should have

θ(r)P (Dt+s = r|Dt = n)

r!
=

∞
∑

m=r

C(m,r)
θ(m)

θ(n+m)
dm(s)θ(n)C(n, r)

and so
∞
∑

m=r

C(m,r)
θ(m)

θ(n+m)
dm(s) =

θ(r)(n− r)!

θ(n)n!
P (Dt+s = r|Dt = n).(3.2)
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This needs to be solved.
We will now show that the dn(t) given in (1.2) is a solution to (3.2). Ethier

and Griffiths [4] did much the same thing, but from a more complicated
starting point. Our demonstration, which follows, is now straightforward
given the result of Theorem 3.1.

Now

P (Dt+h = n|Dt = n) = 1− λnh + o(h)(3.3)

and

P (Dt+h = n− 1|Dt = n) = λnh + o(h).(3.4)

By considering

∞
∑

m=n

m[n]

(θ + m)(n)
dm(s)

and
∞
∑

m=n−1

m[n−1]

(θ + m)(n)
dm(s)

which are part of (3.2) with r = n and r = n− 1, respectively, with the help
of formulae appearing in [4], page 1585, we can show that the dm(s) given in
(1.2) satisfies the conditions for the death process. The details are provided
in Section 4.

Hence, we see that the complicated nature of the death process proba-
bilities is solely due to the form of P (r|n,m), which is a property of the
Pólya-urn scheme. For other processes, perhaps with a different choice of Π,
which generates discrete random distribution functions (see Section 5.2), and
so yield different P (r|n,m), the fundamental equation to solve for obtaining
a transition function satisfying Chapman–Kolmogorov is to find dm(s) such
that

P (Dt+s = r|Dt = n) =
∞
∑

m=r

P (r|n,m)dm(s).

This appears to be the key.

4. Technical results.

Result [A]. We first prove that

∞
∑

m=n

m[n]

(θ + m)(n)
dm(s) = e−λns.
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Now the left-hand side can be written as
∞
∑

m=n

∞
∑

k=m

(−1)k−mC(k,m)m[n]k!−1 (θ + m)(k−1)

(θ + m)(n)
γk,s,θ,

which is equal to

n[n]γn,s,θ

n!(θ + 2n− 1)
(4.1)

+
∞
∑

k=n+1

γk,s,θ

(k − n)!

k
∑

m=n

(−1)k−mC(k − n,m− n)(θ + m + n)(k−n−1).

Lemma 4.1. It is that

k
∑

l=0

(−1)k−lC(k, l)(φ + l)(k−1) = 0

for any φ > 0 and k ≥ 1.

Proof. We will do this by induction and prove the more general result
that

k
∑

l=0

(−1)k−lC(k, l)(φ + l)(k−r) = 0

for all r ∈ {1, . . . , k}. Assume the result is true for all k < K and for r ∈
{R, . . . ,K} when k = K. Now

K
∑

l=0

(−1)K−lC(K, l)(φ + l)(K−R+1)

= φ
K
∑

l=0

(−1)K−lC(K, l)(1 + φ + l)(K−R)

+ K
K
∑

l=1

(−1)K−lC(K − 1, l − 1)(1 + φ + l)(K−1−R+1),

which by hypothesis is zero. To complete the proof, note that

k
∑

l=0

(−1)k−lC(k, l) = 0

for all k = 1,2, . . . and that the result is true for K = 2. �

The result follows from (4.1) by setting l = m− n, and then substituting
k − n for k. Hence, dm(·) satisfies (3.3).
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Result [B]. We next show, in the first instance, that

H(s) =
∞
∑

m=n−1

m[n−1]

(θ + m)(n)
dm(s) =

1

2

1

λn − λn−1
(e−λn−1s − e−λns).

Using a result in [4], page 1585, we have

dH(s)

ds
=

1

2
e−λn−1s − λnH(s)

and so

H(s) =
1

2

1

λn − λn−1
e−λn−1s + Ce−λns.

Now H(0) = 0 and so

C = −
1

2

1

λn − λn−1
,

leading to the desired result. Now performing some elementary algebra on
(3.2) with r = n− 1, we obtain

P (Dt+s = n− 1|Dt = n) = n(n− 1 + θ)H(s),

which leads to the validity of (3.4).
We could have proven the validity of (3.3) using this technique as well. If

G(s) =
∞
∑

m=n

m[n]

(θ + m)(n)
dm(s),

then

dG(s)

ds
= −λnG(s).

Hence, G(s) = C exp(−λns) and since G(0) = 1, we have the result.

Result [C]. Before proving Theorem 3.1, we need to establish the follow-
ing result (this is apparently a new combinatorial result):

Lemma 4.2. Let θ be a positive real. Then for m ≥ r > 0 and defining

0! = 1,

m−r
∑

k=0

k!C(k + r − 1, k)C(m− r, k)θ(m−r−k) = (θ + r)(m−r).
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Proof. Let |s(n,k)| denote the unsigned or absolute Stirling numbers
of the first kind. Expanding the θ terms on both sides of this relation, we
obtain

m−r
∑

k=0

k!C(k + r − 1, k)C(m− r, k)
m−r−k
∑

l=0

|s(m− r − k, l)|θl

=
m−r
∑

k=0

|s(m− r, k)|
k
∑

l=0

C(k, l)θlrk−l.

By changing the order of summation on both sides and collecting up the
terms, we have

m−r
∑

l=0

{

m−r−l
∑

k=0

k!C(k + r − 1, k)C(m− r, k)|s(m− r − k, l)|

}

θl

=
m−r
∑

l=0

{

m−r
∑

k=l

C(k, l)|s(m− r, k)|rk−l

}

θl.

These are two polynomials in θ of degree m − r and for them to be equal
∀ θ, it suffices to establish the equality of the coefficients of the same powers
of θ; that is,

m−r−l
∑

k=0

k!C(k+r−1, k)C(m−r, k)|s(m−r−k, l)|=
m−r
∑

k=l

C(k, l)|s(m−r, k)|rk−l,

for all l = 0,1, . . . ,m− r.
To show this, is true, we make use of an identity that appears in [1], page

824, which states that, for positive integers a≤ b ≤ c,

C(b, a)|s(c, b)| =
c−a
∑

j=b−a

C(c, j)|s(c− j, a)||s(j, b − a)|.

The right-hand side of the equation can be written as

m−r
∑

k=l

C(k, l)|s(m− r, k)|rk−l

=
m−r
∑

k=l

m−r−l
∑

j=k−l

C(m− r, j)|s(m − r − j, l)||s(j, k − l)|rk−l

=
m−r−l
∑

j=0

C(m− r, j)|s(m − r − j, l)|
j+l
∑

k=l

|s(j, k − l)|rk−l



10 S. G. WALKER, S. J. HATJISPYROS AND T. NICOLERIS

=
m−r−l
∑

j=0

C(m− r, j)|s(m − r − j, l)|
j
∑

k=0

|s(j, k)|rk

=
m−r−l
∑

j=0

C(m− r, j)|s(m − r − j, l)|r(j)

=
m−r−l
∑

j=0

j!C(j + r − 1, j)C(m− r, j)|s(m − r − j, l)|,

where we have used the fact that r(j) = j!C(j + r− 1, j). This completes the
proof. �

Proof of Theorem 3.1. The closed form of the joint probability of

[Y1, . . . , Ym|X1, . . . ,Xn]

is given by

dG(Y1, . . . , Ym|X1, . . . ,Xn) =
m
∏

i=1

{

θν0 +
∑i−1

j=1 δYj
(dYi) +

∑n
l=1 δXl

(dYi)

θ + n + i− 1

}

.

Assume without loss of generality that X1, . . . ,Xr, the first r observations
from X1, . . . ,Xn, are those that are repeated when we obtain a sample
Y1, . . . , Ym. Let 0 ≤ si ≤ m − r, i = 1,2, . . . , r, and fix a number k such that
s1 + s2 + · · ·+ sr = k, where 0≤ k ≤ m− r.

Here the si represent the multiplicity of the Xi, i = 1,2, . . . , r, that ap-
pear in the sample when there are k spaces available for those repetitions.
So, conditionally on X1, . . . ,Xn, we are searching for the probability of the
simultaneous occurrence of the following events:

Y1 = X1, Y2 = X2, . . . , Yr = Xr,

Yr+j = X1, 1≤ j ≤ s1,

Yr+s1+j = X2, 1≤ j ≤ s2,

...

Y
r+
∑r−1

i=1
si+j

= Xr, 1 ≤ j ≤ sr,

Yr+k+1 ∈ X − {X1, . . . ,Xn},

Yr+k+j ∈ X − {Yr+k+1, . . . , Yr+k+j−1,X1, . . . ,Xn} or

Yr+k+j ∈ {Yr+k+1, . . . , Yr+k+j−1}, 2≤ j ≤m− r − k,

where X is the sample space. This probability is given by

(s1 + 1)! · · · (sr + 1)!θ(m−r−k)

(θ + n)(m)
.
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Since these events are exchangeable, by taking into consideration the number
of repetitions of the Xi’s and the specific order of appearance of the new
values, which depend on the previous observations, then, for a given k and
for fixed multiplicities s1, . . . , sr, the probability of them occurring in any
order is given by

{

m!

(s1 + 1)! · · · (sr + 1)!(m − r − k)!

}

(s1 + 1)! · · · (sr + 1)!θ(m−r−k)

(θ + n)(m)

=
m!θ(m−r−k)

(m− r − k)!(θ + n)(m)
.

If we let k and s1, . . . , sr vary, then this probability becomes

m−r
∑

k=0

∑

{s1+···+sr=k}

m!θ(m−r−k)

(m− r − k)!(θ + n)(m)

=
m−r
∑

k=0

C(k + r − 1, k)
m!θ(m−r−k)

(m − r − k)!(θ + n)(m)

=
m!

(m− r)!

m−r
∑

k=0

k!C(k + r − 1, k)C(m− r, k)
θ(m−r−k)

(θ + n)(m)

and since, as proven in Lemma 4.2,

m−r
∑

k=0

k!C(k + r − 1, k)C(m− r, k)θ(m−r−k) = (θ + r)(m−r),

this probability becomes

m!(θ + r)(m−r)

(m− r)!(θ + n)(m)
.

Finally, for any choice of r X ’s from {X1, . . . ,Xn}, we have that

P (r|m,n) = C(n, r)
m!(θ + r)(m−r)

(m− r)!(θ + n)(m)
,

which is given by

n[r](θ + r)(m−r)

(θ + n)(m)
C(m,r),

as required. �
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5. Discussion. We have shown how to construct a particular Fleming–
Viot process, for which the transition function is known, from basic ideas
involving the Dirichlet process and Markov processes, based on the Gibbs
sampler. This approach requires a new combinatorial result involving Pólya-
urn schemes. In particular, the combinatorial complexities which arise with
the generator approach are avoided with the Chapman–Kolmogorov con-
dition, once Theorem 3.1 has been established. Here we briefly discuss a
number of points:

5.1. The case θ = 0. Here we consider the case when θ = 0. It is evident
that since Π no longer exists in this case, there can be no stationary distri-
bution for the process. A stationary distribution, which is Π(θν0), can only
exist when θ > 0. When θ = 0, the death process has probabilities

dn(t) =
∞
∑

m=n

(−1)m−nC(m,n)n(m−1)m!−1γm,t,

for n ≥ 2, where γm,t = (2m − 1) exp{−m(m− 1)t/2}, with d0(t) = 0 and

d1(t) = 1−
∞
∑

m=2

(−1)mγ(m,t).

Now dn(t) is the probability that there are n equivalence classes at time t
in the coalescent of [9]. When θ = 0, then

P (Y1, . . . , Ym|X1, . . . ,Xn, n) = Q

(

n
∑

i=1

δXi

)

and

P (r|n,m) =
n[r]r(m−r)

n(m)
C(m,r),

which can be written as

P (r|n,m) = rC(m,r)C(n, r)
(n− 1)!(m − 1)!

(n + m− 1)!
,

n = 1,2, . . . ;m = 1,2, . . . .

Hence, for n,m > 0, we have P (r = 0|n,m) = 0.

5.2. The next step. We believe the representation given is informative,
making a strong connection between Bayesian nonparametrics and popu-
lation genetics. It is also based on first principles for the construction of
a Markov process, namely, the proposal for a transition function and the
verification of the Chapman–Kolmogorov condition. What are the possible
directions in which this connection can be taken? The clear idea is that we
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can consider alternative choices of Π which generates discrete random dis-
tribution functions. One class of such a random distribution function can be
generated via

µ(·) =
∞
∑

i=1

ρiδVi
(·),

where the Vi are independent and identically distributed from some measure
ν0 and the ρi have a stick-breaking structure; that is,

ρ1 = w1 and ρi = wi

∏

j<i

(1−wj),

where the wj have independent beta distributions, say, beta(αj , βj). Then
µ is almost surely a random probability measure when

∞
∑

j=1

log(1 + αj/βj) =∞;

see [7]. For example, the Dirichlet process arises when αj = 1 and βj = θ. The
two parameter Poisson–Dirichlet process, which is worth exploring, arises
when αj = 1 − σ and βj = θ + jσ for 0 < σ < 1 and θ > −σ. To find the
transition function for this process and others, if they exist, we would need
to replicate Theorem 3.1, that is, find the appropriate P (r|m,n) from the
predictive distributions, and then solve

P (Dt+s = r|Dt = n) =
∞
∑

m=r

P (r|n,m)dm(s)

for an appropriate death process. Hence, we have a strategy for finding
alternative transition functions which seems to be highly possible to achieve.
Work on this is ongoing.

5.3. An inequality. Here we consider the usefulness of

∞
∑

m=n

m[n]

(θ + m)(n)
dm(t) = e−λnt.

For example, by putting n = 1, we have

∞
∑

m=1

m

θ + m
dm(t) = e−λ1t.

Hence, it is easy to obtain

e−λ1t < 1− d0(t) < (1 + θ)e−λ1t

and it is also clear how to obtain improved inequalities from this identity.
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