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Abstract	

	 Implementation	of	process	analytical	 technology	 (PAT)	 tools	 in	 the	manufacturing	

process	of	liquid	detergent	compositions	should	allow	fast	and	non‐destructive	evaluation	

of	the	product	quality.	The	aim	of	this	study	was	to	develop	and	validate	a	rapid	method	for	

quantifying	the	chemical	compounds	of	five	washing	liquid	precursors.	Raman	spectroscopy	

was	 applied	 in	 combination	 with	 a	 two‐step	 multivariate	 modeling	 procedure.	 In	 first	

instance,	a	SIMCA	(Soft	Independent	Modeling	of	Class	Analogy)	model	was	developed	and	

validated,	 allowing	 the	 distinction	 between	 the	 different	 laundry	 detergents.	 Once	 the	

product	 was	 correctly	 identified,	 it	 was	 aimed	 at	 predicting	 the	 concentration	 of	 its	

individual	 components	 using	 partial	 least	 squares	 (PLS)	 models.	 Raman	 spectra	 were	

collected	at‐line	with	a	total	acquisition	time	of	20	seconds,	using	a	non‐contact	fiber‐optic	

probe.		
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	 The	SIMCA	model	was	perfectly	capable	of	differentiating	between	the	classes	of	the	

laundry	liquid	precursors.	Per	detergent,	the	concentration	of	at	least	three	main	ingredients	

could	be	predicted	with	a	recovery	between	98	%	and	102	%	and	a	standard	deviation	below	

2.5	 %.	 Accuracy	 profiles	 based	 on	 the	 analysis	 results	 of	 validation	 samples	 were	 then	

calculated	 to	 prove	 the	 reliability	 of	 the	 developed	 regression	 models.	 β‐expectation	

tolerance	 intervals	were	 calculated	 for	 each	model	 and	 for	 each	 validated	 concentration	

level.	The	acceptance	 limits	were	set	at	5	%	relative	bias,	 indicating	that	at	 least	95	%	of	

future	measurements	should	not	deviate	more	than	5	%	from	the	true	value.	Furthermore,	

based	on	the	data	of	the	accuracy	profiles,	the	measurement	uncertainty	was	determined.	

The	 developed	 Raman	 spectroscopic	 method	 demonstrated	 to	 be	 able	 to	 rapidly	 and	

adequately	determine	the	concentration	of	the	components	of	interest	in	the	liquid	detergent	

compositions	at‐line.		

	

	

Keywords	

Process	analytical	technology	

Raman	spectroscopy	

Chemometrics	

Method	validation	

Measurement	uncertainty	 	
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1.	Introduction		
	
The	 manufacture	 of	 liquid	 detergent	 compositions	 requires	 a	 careful	 balance	 of	

ingredients	and	process	steps.	Their	development	and	production	is	based	on	simple	mixing	

of	a	number	of	detergent	components.	The	 ingredients	may	be	selected	 from	surfactants,	

builders,	chelants,	polymers,	organic	and	inorganic	solvents,	dyes,	perfumes,	preservatives,	

antibacterial	agents,	viscosity	modifiers,	pH	adjustment	agents,	water	or	a	mixture	thereof.	

Dosing	 of	 these	 cleaning	 agent	 constituents	 should	 be	 performed	 accurately,	 as	 the	

incapacity	of	meeting	the	preferred	specifications	could	negatively	impact	the	cleaning	or	

care	ability	of	 the	 composition.	Further,	 it	 could	adversely	affect	 factors	 such	as	physical	

stability,	odor	profile,	safety	profile	or	regulatory	compliance.		

Since	 the	 publication	 of	 the	 process	 analytical	 technology	 (PAT)	 guidance	 by	 the	

American	Food	and	Drug	Administration	(FDA)	in	2004,	it	is	generally	accepted	that	quality	

should	be	built	into	products	rather	than	be	tested	afterwards,	preventing	the	process	from	

being	 an	 un‐comprehended	 black	 box	 system	 [1],[2].	 Thus,	 advanced	 manufacturing	

practices	are	being	implemented	in	the	pharmaceutical,	chemical,	biotechnological	and	food	

industry,	 enhancing	 process	 efficiency	 and	 guaranteeing	 product	 quality	 [3–9].	 The	

consumer	goods	 industry,	on	 the	contrary,	has	been	slow	at	adapting	 this	PAT	approach.	

Nowadays,	 most	 consumer	 goods	 companies	 still	 rely	 on	 univariate	 statistical	 process	

monitoring	methods	(based	on	univariate	sensors)	to	ensure	their	product	quality.	These	

traditional	compliance	approaches	via	product	checks	by	employees	have	limitations	with	

respect	to	the	number	of	people	required	and	the	accuracy	of	the	checks	whilst	often	missing	

underlying	patterns	in	process	data.		

Introducing	PAT	systems	in	the	manufacturing	process	of	liquid	detergent	compositions	

would	help	to	achieve	assured	high	levels	of	quality	and	productivity.	PAT	tools	should	allow	
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real‐time	measurement	of	 key	quality	parameters	 in	 intermediate	 raw	materials	 and	 the	

finished	product.	

The	aim	of	this	study	was	to	develop	and	validate	a	fast	and	non‐destructive	analytical	

method	for	the	determination	and	quantification	of	the	chemical	composition	of	five	washing	

liquid	 precursors.	 These	 intermediates	 of	 the	 liquid	 detergent	 production	 process	 are	

mixtures	of	 liquid	detergents	based	on	 simple	blending	of	 cleaning	 ingredients,	 to	which	

perfume,	dyes	and	enzymes	are	added	later	to	create	the	final	washing	liquid	product.	During	

manufacturing	of	these	liquid	compositions,	several	chemical	reactions	take	place	between	

the	 combined	 constituents,	 so	 the	 term	mixture	 is	 not	 employed	 in	 its	 purely	 chemical	

definition.	 Whenever	 the	 authors	 refer	 to	 a	 mixture,	 the	 liquid	 composition	 formed	 by	

assembling	 detergent	 ingredients	 is	 meant,	 not	 implying	 a	 lack	 of	 chemical	 interaction	

during	production.		

A	method	based	on	the	combination	of	Raman	spectroscopy	with	multivariate	modeling	

was	 developed	 to	 predict	 the	 composition	 of	 the	 complex	 liquids	 non‐destructively	 and	

within	 a	 few	 seconds.	 Raman	 spectroscopy	 is	 a	 molecular	 vibrational	 spectroscopic	

technique	allowing	rapid	and	non‐destructive	measurements	without	sample	preparation.	

Its	ability	to	record	spectra	directly	through	transparent	glass	or	plastic	packaging	and	the	

possibility	to	quantify	compounds	in	aqueous	formulations	makes	Raman	spectroscopy	the	

preferred	analytical	technique.	The	list	of	Raman	applications	in	the	pharmaceutical	industry	

seems	 endless	 and	 the	 use	 in	 other	 industries	 (e.g.	 food,	 forensics,	 plastic	 sorting	 and	

recycling…)	has	been	growing	extensively	 in	 the	past	 few	years;	but	again,	 the	consumer	

goods	field	is	behind	on	this	[3],[4],[10]–[18].	

For	the	multivariate	modeling,	a	two‐step	approach,	consisting	of	a	classification	and	a	

quantification	phase,	was	used.	During	the	initial	categorization	step,	a	distinction	is	made	

between	 the	 five	 types	 of	 laundry	 liquid	 precursors	 implemented	 based	 on	 their	 Raman	
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spectra,	 thus	 identifying	 the	 sample	 in	 front	 of	 the	 probe.	 Next,	 the	 composition	 of	 the	

complex	 liquids	 is	 checked	 during	 the	 quantification	 step.	 More	 concrete,	 partial	 least	

squares	 (PLS)	models	 regressing	 Raman	 spectra	 versus	 the	 chemical	 composition	 of	 the	

laundry	 liquids	are	 fitted	 for	each	detergent,	allowing	 to	predict	 the	concentration	of	 the	

washing	products	main	ingredients.		

To	assure	that	every	future	measurement	that	will	be	performed	in	routine	will	be	close	

enough	to	the	unknown	true	value	of	the	sample,	validation	of	the	quantification	method	is	

executed	 by	 calculating	 accuracy	 profiles.	 This	 validation	 procedure,	 introduced	 by	 the	

Société	Française	des	Sciences	et	Techniques	Pharmaceutiques	(SFSTP)	[19],[20]	is	widely	

accepted	in	the	pharmaceutical	field	as	can	be	derived	from	the	numerous	applications	in	

literature	 [10],[21]–[28].	 To	 our	best	 knowledge,	 no	 applications	 are	 published	 from	 the	

consumer	goods	industry,	making	this	a	cutting‐edge	approach	in	the	business.		

By	calculating	accuracy	profiles,	 a	 reliable	 representation	of	 the	methods	performance	 is	

created,	based	on	β‐expectation	tolerance	intervals.	Within	day,	between	day	and	operator	

variability	are	taken	into	account	to	estimate	the	total	error	of	the	procedure,	influenced	by	

both	bias	and	standard	deviation.	The	objective	is	to	assess	the	models	predictive	power,	

thus	minimizing	the	risk	to	accept	an	inaccurate	quantification	method	or	reject	a	capable	

one.	

	
2.	Materials	and	methods	

	
2.1	Materials	

The	 examined	 laundry	 liquid	 precursors	 are	 mixtures	 of	 detergent	 ingredients	

consisting	of	10	to	15	components	that	are	blended	together	into	a	homogeneous	fluid.	

The	 five	 precursors	 under	 investigation	 differ	 in	 terms	 of	 compounds	 present	 and	

quantity	 of	 these	 composites.	 As	 the	 proprietary	 confidential	 formulas	 cannot	 be	
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concealed,	the	laundry	detergents	are	simply	numbered	1	to	5	and	their	components	of	

interest	are	referred	to	as	ingredient	A	to	E	in	this	publication.	The	target	concentrations	

of	these	key	compounds	in	the	different	laundry	liquid	precursors	are	listed	in	table	1.			

2.2	Sample	preparation	

Calibration	 standards	were	 prepared	 per	 laundry	 liquid	 precursor	 according	 to	 a	

central	 composite	 circumscribed	 (CCC)	 experimental	 design	 created	 in	 MODDE	

(Umetrics,	 Sweden).	 Since	 it	was	 aimed	at	 predicting	 the	 concentration	of	 a	 few	main	

ingredients,	these	key	components	were	introduced	as	quantitative	factors	in	the	design	

wizard.	 A	 range	 of	 ±	 5	 %	 around	 the	 target	 was	 set	 to	 create	 the	 lower	 and	 upper	

concentration	 level.	 For	 detergents	 1,	 4	 and	 5,	 this	 resulted	 in	 the	 development	 of	 a	

calibration	 set	 consisting	 of	 29	 lab‐made	 samples.	 The	 concentration	 levels	 of	 each	

ingredient	vary	on	5	levels	within	this	set,	spanning	a	range	between	88	and	102	%	of	

their	 targeted	quantity.	Since	detergents	2	and	3	contain	only	4	of	 the	key	 ingredients	

(Table	 1),	 the	 CCC	 design	 of	 these	 liquid	 detergents	 resulted	 in	 a		

27‐sample	calibration	set,	in	which	each	relative	constituent	level	varies	between	90	and	

110	%.	To	take	the	variability	between	lab‐made	and	production	samples	into	account,	

five	plant	samples	produced	on	target	were	added	to	each	calibration	set,	thus	resulting	

in	32	to	34	samples	per	calibration	set.		

Six	 validation	 standards	 were	 created	 per	 laundry	 detergent,	 with	 independently	

varying	concentrations	of	the	key	ingredients,	all	deviating	±	1	%,	±	4	%	and	±	10	%	from	

their	target	value.	This	set	was	also	enlarged	with	3	production	samples	containing	all	

components	at	their	target	concentration.	

Finally,	per	detergent,	a	verification	set	consisting	of	30	randomly	selected	production	

samples	from	different	manufacturing	dates	was	used.		
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Table	 2	 provides	 a	 summary	 of	 the	 composition	 of	 the	 calibration,	 validation	 and	

verification	sets	per	detergent.		All	lab‐made	samples	were	prepared	using	blends	of	raw	

materials	from	different	batches	delivered	from	the	production	plant.		

2.3	Raman	spectroscopy	

All	 measurements	 were	 performed	 using	 a	 RPA‐HE	 785	 Raman	 spectrograph	

equipped	with	 a	 fiber‐optic	 superhead	probe	 and	 an	 air‐cooled	CCD	detector	 (Horiba,	

Japan).	The	spectral	data	were	collected	with	the	accompanying	LabSpec	spectroscopy	

software	(Horiba,	Japan).	The	laser	wavelength	during	the	experiments	was	the	785	nm	

line	from	a	diode	laser.	An	exposure	time	of	1	second	with	20	accumulations	was	selected,	

leading	to	a	total	acquisition	time	of	20	seconds.	PLS_Toolbox	version	7.9.3	(Eigenvector	

Research,	Inc.,	USA)	running	on	MATLAB	R2014b	(The	MathWorks,	Inc.,	USA)	was	used	

to	analyze	the	spectra	and	to	develop	the	classification	and	calibration	models.		

2.4	Experimental	set‐up	

The	Raman	superhead	was	placed	inside	a	metal	case	facing	a	sample	holder	(Fig.	1A,	

Fig.	1B).	Fixation	of	the	probe	in	the	box	ensured	robust	sample‐to‐probe	presentation.	

As	it	was	aimed	at	analyzing	the	samples	at‐line,	the	Raman	equipment	was	installed	in	

close	proximity	to	the	process	stream.		A	branch	of	the	production	line	was	lead	to	the	lab,	

where	a	plastic	cup	could	be	filled	with	the	laundry	liquid	under	production	and	placed	

directly	 inside	 the	metal	 box	 (Fig.	 1C).	 The	 disposable	 plastic	 containers	 fit	 perfectly	

inside	the	sample	holder	and	the	cover	of	the	box	was	closed	to	prevent	interference	of	

ambient	light	during	the	Raman	measurements.	Both	production	and	lab‐made	samples	

were	prepared	by	simple	blending	of	the	washing	liquids	raw	materials	in	a	fixed	order.	

The	 lab‐made	 samples	 were	 poured	 into	 identical	 plastic	 cups	 as	 the	 ones	 on	 the	

production	site.		

2.5	Development	and	evaluation	of	the	classification	model	
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A	 soft	 independent	 modeling	 of	 class	 analogy	 (SIMCA)	 classification	 model	 was	

developed	to	distinguish	between	the	five	types	of	laundry	detergents.	The	election	of	this	

class‐modeling	method	is	based	on	two	main	advantages	over	pure	pattern	recognition	

techniques	 such	 as	 PLS‐DA	 (Partial	 Least	 Squares	 –	 Discriminant	 Analysis).	 In	 first	

instance,	SIMCA	allows	for	adding	supplementary	classes	without	requiring	recalculation	

of	 the	 already	 existing	 class	 models.	 This	 is	 very	 beneficial	 since	 new	 or	 improved	

formulas	could	easily	be	implemented	without	disturbing	the	current	models.	Secondly,	

it	 is	 possible	 to	 recover	 samples	 which	 are	 not	 presented	 in	 any	 of	 the	 examined	

categories.	This	implies	that	new	samples	are	not	necessarily	contributed	to	a	pre‐defined	

class,	but	might	also	be	categorized	as	belonging	to	none	of	the	modeled	classes.	In	this	

way,	irregularities	may	be	traced.	

Aiming	at	covering	a	broad	range	of	variation	sources,	all	spectral	data	collected	from	

the	calibration,	validation	and	verification	sets	 for	 the	PLS	quantification	models	were	

utilized	for	this	model	development.	Using	this	approach,	variations	in	spectra	caused	by	

different	concentration	levels,	raw	material	batches	and	production	methods	(lab‐made	

versus	industrial	fabrication),	as	well	as	day‐to‐day	deviations	in	instrumental	response	

are	taken	into	account.	A	new	set	of	15	production	samples	was	then	introduced	to	test	

the	developed	classification	model.	PLS_Toolbox	for	MATLAB	(Eigenvector	Research,	Inc.,	

USA)	was	employed	to	create	the	model	and	evaluate	its	performance.		

The	spectral	range	of	680−3000	cm‐1	was	selected,	eliminating	the	spectral	noise	at	

the	beginning	and	end	of	the	spectrum.	A	standard	normal	variate	(SNV)	correction	was	

performed	 to	 correct	 for	 baseline	 shifts.	 The	 data	 were	mean	 centered	 and	 principal	

components	 analysis	 (PCA)	 models	 were	 fitted	 using	 the	 spectra	 of	 each	 detergent,	

resulting	 in	 five	 local	 decomposition	 models.	 Evaluation	 of	 the	 classification	 models	

performance	was	executed	by	plotting	the	class	membership	predictions	of	the	test	set.	
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The	reduced	T2	and	Q	values	were	inspected	for	each	local	model,	as	were	the	confusion	

matrix	 and	 confusion	 table	 of	 the	 SIMCA	 model.	 Hotelling’s	 T2	 and	 Q	 residuals	 are	

summary	statistics	that	indicate	how	well	a	model	is	describing	a	given	sample	and	why	

that	 sample	has	 its	observed	score.	Hotelling’s	T2	or	 simplified	T2,	 is	a	measure	of	 the	

variation	in	each	sample	within	the	model.	It	is	calculated	as	the	sum	of	the	normalized	

squared	 scores	 and	 indicates	 how	 variables	 deviate	 from	 the	 center	 of	 the	 model.	 Q	

residuals	 are	 a	 lack‐of‐fit	 statistic	 computed	as	 the	 sum	of	 squares	of	 each	 row	of	 the	

residual	matrix	that	shows	how	well	each	sample	conforms	to	the	model.	The	reduced	T2	

en	Q	values	are	obtained	by	dividing	T2	and	Q	by	their	respective	95	%	confidence	limit	

line,	which	is	a	normalization	that	simplifies	data	interpretation,	as	a	value	of	1	always	

corresponds	with	the	predefined	confidence	limit.	The	confusion	matrix	creates	a	table	

showing	the	true	positive,	false	positive,	true	negative	and	false	negative	rates	as	a	matrix	

for	each	class	modeled.	The	confusion	table	shows	the	number	of	samples	predicted	to	

belong	to	the	‘i‐th’	class,	which	actually	belong	to	the	‘j‐th’	class	of	the	classification	model.	

The	selected	SIMCA	model	was	then	evaluated	with	a	new	set	of	production	samples.	

This	independent	validation	set	consisting	of	15	randomly	selected	production	samples	

from	 different	 manufacturing	 dates	 for	 each	 laundry	 liquid	 was	 introduced	 and	 the	

models	ability	to	allocate	the	detergents	to	the	correct	class	was	inspected.	New	samples	

were	considered	‘in‐class’	when	they	were	inside	the	T2	and	Q	confidence	limit	combined.	

This	classification	rule	first	takes	the	reduced	Q	and	T2	as	explained	above	and	combines	

the	two	statistics	using	the	formula	(Eq.	1):		

sqrt(Q^2+T2^2)		 	 	 	 	 	 	 	 (Eq.	1)	

as	the	distance	measure.	Only	samples	inside	the	sqrt(2)	limit	are	appointed	to	the	class	

under	investigation.			

2.6	Development	of	the	PLS	quantification	models	
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Once	the	laundry	detergent	is	identified	correctly,	the	concentration	of	its	individual	

components	is	to	be	predicted	using	partial	 least	squares	(PLS)	regression	models.	Per	

detergent,	4	to	5	ingredients	with	a	target	level	varying	between	1.8	and	20	%	were	aimed	

to	be	quantified	(Table	1).	As	we	aspired	adequate	determination	of	the	concentration	of	

each	 individual	 compound	 in	 distinctive	 matrices,	 separate	 regression	 models	 were	

constructed	per	ingredient	per	detergent	(PLS1).	This	resulted	in	a	total	number	of	23	PLS	

models	to	be	developed.	Three	Raman	spectra	were	collected	per	calibration	standard.	

Two	 different	 operators	 performed	 sample	 measurements	 in	 random	 order	 on	 three	

different	days.	The	spectral	data	were	regressed	against	the	amount	of	the	component	of	

interest	present	 in	 the	 samples.	These	 reference	 concentration	values	were	 calculated	

gravimetrically	from	the	amount	of	raw	materials	weighted	during	sample	preparation,	

taking	the	purity	of	the	raw	materials	into	account.	First,	the	calibration,	validation	and	

verification	sets	were	investigated	individually	by	fitting	PCA	models	to	the	spectral	data.	

During	 this	 qualitative	 analysis,	 abnormalities	 and	 outliers	 could	 be	 detected	 before	

starting	model	regression.		

For	 the	 development	 of	 the	 PLS	 regression	 models,	 several	 spectral	 ranges	 were	

selected,	numerous	spectral	filters	were	applied	and	different	numbers	of	latent	variables	

were	chosen	for	comparison	(Table	3).		

Determination	 of	 the	 spectral	 ranges	 was	 performed	 using	 the	 VIP	 (Variable	

Importance	 in	Projection)	plot.	This	graph	gives	an	estimate	of	the	 importance	of	each	

variable	in	the	projection	used	in	a	PLS	model,	by	summarizing	the	weights	and	regression	

coefficients	and	taking	the	explained	Y	into	account.	A	variable	with	a	VIP	score	close	to	

or	greater	than	1	can	be	contemplated	as	important	in	a	given	model,	while	variables	with	

VIP	 scores	 significantly	 less	 than	1	 are	 less	 important.	The	 latter	are	 considered	good	
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candidates	for	exclusion	from	the	model,	which	facilitates	the	spectral	range	selection.	A	

variety	of	ranges	going	from	120	to	750	variables	was	thus	investigated.		

An	assortment	of	 spectral	 filters	and	 their	mutual	 combinations	was	applied	 to	all	

data,	followed	by	mean	centering.		

3	 to	 10	 latent	 variables	 were	 selected	 based	 on	 the	 inspection	 of	 the	 predictive	

properties,	expressed	by	the	RMSEP	values,	 in	function	of	the	order.	The	RMSEP	(Root	

Mean	Square	Error	of	Prediction),	is	defined	by	(Eq.	2):	

		RMSEP sqrt ∑ , , /	 		 	 	 	 (Eq.	2)	

where	yobs,i	is	the	actual	value	of	y	for	object	i,	ypred,i	is	the	y‐value	for	object	i	predicted	by	

the	model	under	investigation	and	n	is	the	number	of	objects	for	which	ypred,i	is	obtained	

by	prediction.	In	this	case,	the	RMSEP	is	calculated	from	the	results	of	the	validation	and	

verification	samples	prediction.	The	optimal	number	of	 latent	variables	 is	 typically	the	

number	at	which	 the	addition	of	 another	 latent	 variable	does	not	greatly	 improve	 the	

performance	of	the	model	(i.e.	decrease	the	RMSEP	value).		

Using	 the	 model	 optimizer	 of	 PLS_Toolbox	 (Eigenvector	 Research,	 Inc.,	 USA),	

hundreds	of	regression	models	were	examined	for	each	ingredient.	Inspecting	the	models	

ability	to	predict	the	concentration	of	the	validation	and	verification	samples	accurately	

assessed	 the	 performance	 of	 the	 calibration	 models.	 Next	 to	 the	 investigation	 of	 the	

RMSEP	 values,	 the	 recovery	 and	 relative	 standard	 deviation	 were	 computed	 for	 all	

samples.	The	recovery	was	calculated	for	each	object	i	as	(Eq.	3):	

recovery	=	(ypred,i	/	yobs,i)	X	100	%		 	 	 	 	 	 (Eq.	3)	

and	 is	 expressed	 in	 percentages.	 Then	 the	 average	 recovery	 was	 determined	 for	 the	

calibration,	validation	and	verification	set,	as	was	the	standard	deviation	on	these	values.	
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Based	on	this	information,	three	model	candidates	were	selected	that	showed	the	most	

promising	predictive	capabilities.		

Nevertheless,	 these	 results	 do	 not	 guarantee	 the	 models	 reliability	 for	 future	

application	 at	 manufacturing	 scale.	 As	 these	 traditional	 model	 statistics	 are	 proven	

insufficient	 to	 validate	 a	 method	 [22–28],	 the	 final	 decision	 about	 the	most	 qualified	

model	was	made	based	on	the	information	derived	from	the	accuracy	profiles	calculated	

in	the	validation	step.		

2.7	Validation	of	the	Raman	quantification	methods	and	estimation	of	their	

uncertainty	

In	 order	 to	 accurately	 estimate	 the	 predictive	 power	 of	 the	 calibration	models	 in	

routine,	 the	 three	 candidate	models	 for	 each	 ingredient	 of	 each	 complex	 liquid	 were	

investigated	in	closer	detail	during	this	validation	step.	This	resulted	in	the	selection	of	

the	final	models	and	the	guarantee	that	future	measurements	will	be	close	enough	to	the	

unknown	 true	 value	 of	 the	 component	 in	 the	 sample.	 It	 was	 aimed	 at	 including	 all	

variability	 sources	 that	 the	 models	 might	 meet	 during	 future	 routine	 use.	 Therefore,	

several	concentration	levels	were	investigated,	different	raw	material	batches	were	used	

for	 sample	 preparation	 and	 both	 lab‐made	 and	 industrial	 samples	were	measured	 by	

different	operators,	taking	between‐day	and	within‐day	variability	into	account.	

The	 harmonized	 method	 proposed	 by	 the	 SFSTP	 is	 based	 on	 the	 calculation	 of	

accuracy	profiles,	which	were	conducted	with	E.noval	3.0	(Arlenda,	Belgium).	A	model	

was	found	acceptable	when	it	can	be	assured	that	the	probability	that	a	measurement	(x)	

will	fall	outside	the	predefined	acceptance	limit	(λ)	is	 less	than	or	equal	to	the	risk	the	

analyst	 is	 willing	 to	 take	 during	 routine	 use.	 This	 can	 be	 expressed	 by	 the	 following	

equation	(Eq.	4):	
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P(x‐μT	<	λ)	≥	β		 	 	 	 	 	 	 	 (Eq.	4) 	

where	μT	 is	 the	unknown	 true	value	of	 the	sample	and	β	 represents	 the	proportion	of	

measurements	inside	the	acceptance	limits	[19].	

In	this	study,	the	predefined	acceptance	limits	were	set	at	5	%	relative	bias	and	the	

maximal	risk	(1‐β)	 to	obtain	results	outside	the	tolerance	 interval	at	5	%.	The	set	of	9	

validation	standards	per	detergent	with	varying	concentrations	of	the	target	ingredients	

was	measured	 repeatedly	on	 three	different	 times	during	 three	different	days,	by	 two	

different	operators,	resulting	in	a	total	of	18	Raman	spectra	per	sample.	Estimates	of	bias	

and	precision	were	acquired	from	these	data.	The	accuracy	profiles	were	then	obtained	

by	computing	the	confidence	interval	that	allows	evaluating	the	proportion	of	expected	

measures	inside	the	acceptance	limits.	

The	 standard	 deviation	 of	 the	 β‐expectation	 tolerance	 intervals	 can	 be	 used	 for	

assessment	 of	 the	 standard	 uncertainty	 in	 the	measurements	 [29].	 The	 uncertainty	 is	

defined	as	a	parameter	associated	with	the	result	of	a	measurement,	which	characterizes	

the	 dispersion	 of	 the	 values	 that	 could	 reasonably	 be	 attributed	 to	 the	 measurand	

[30],[31].	 The	 International	Organization	 for	 Standardization	 (ISO)	 suggested	 in	 guide	

21748	to	estimate	the	measurement	uncertainty	using	repeatability,	reproducibility	and	

trueness	 estimates	 [31].	 The	 experimental	 data	 obtained	 during	 the	 accuracy	 profile	

development	are	perfectly	fit	for	this	uncertainty	evaluation	approach	[29].	

	
3.	Results	and	discussion	

	
3.1	Development	and	evaluation	of	the	classification	model	

Five	 local	 PCA	 models	 were	 fitted	 to	 all	 Raman	 spectra	 of	 the	 laundry	 detergent	

precursors.	 The	 spectral	 range	 of	 680−3000	 cm‐1	was	 selected,	 excluding	 the	 spectral	

noise	at	the	beginning	and	end	of	the	spectra	(Fig.	2).	After	SNV	preprocessing	followed	
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by	mean	centering,	the	Raman	spectra	of	the	five	types	of	 laundry	liquid	are	divergent	

enough	to	allow	a	perfect	class	distinction.	5	to	6	principal	components	were	selected	per	

local	 detergent	 PCA	model,	 explaining	 at	 least	 96	%	 of	 the	 variance	 in	 the	 individual	

datasets.		

The	 confusion	 table	 (Table	 4)	 confirms	 the	 correct	 identification	 of	 all	 external	

validation	samples.	This	table	shows	the	number	of	samples	that	are	predicted	to	belong	

to	a	certain	class	with	regard	to	their	actual	class	membership.	No	misclassifications	are	

noted,	nor	is	any	sample	described	as	not	belonging	to	any	class.		

3.2	Development	of	the	PLS	quantification	models	

After	 correct	 identification	 of	 the	 laundry	 detergent	 in	 the	 sample	 holder,	 the	

concentration	of	 the	 liquid	detergents	main	 ingredients	 is	 to	be	predicted.	PLS	models	

developed	from	the	Raman	spectra	with	different	spectral	ranges,	several	pre‐processing	

techniques	 and	 a	 varying	 number	 of	 latent	 variables	 were	 created	 per	 component	 of	

interest	 within	 each	 laundry	 liquid.	 The	 model	 performance	 was	 then	 evaluated	 by	

inspecting	their	ability	to	predict	the	validation	and	verification	samples	correctly.		

The	optimum	number	of	latent	variables	for	each	model	was	selected	after	inspection	

of	 the	 RMSEP	 in	 function	 of	 the	 number	 of	 components.	 As	 an	 example,	 the	 model	

statistics	plot	of	model	candidate	a	predicting	ingredient	B	in	detergent	3	is	presented	in	

fig.	3.	In	this	illustration,	five	latent	variables	were	selected,	as	no	significant	decrease	of	

the	RSMEP	was	 obtained	with	 the	 addition	 of	 extra	PLS	 factors.	 Fig.	 3	 also	 shows	 the	

RMSEC	(Root	Mean	Square	Error	of	Calibration)	and	RMSECV	(Root	Mean	Square	Error	

of	Cross	Validation)	values,	which	are	considered	less	reliable	measures	of	the	predictive	

power	as	they	are	not	based	on	the	evaluation	of	an	external	test	set.	

Models	were	qualified	as	potential	candidates	if	the	recovery	of	their	predictions	was	

found	between	98	and	102	%	for	the	calibration,	validation	and	verification	sets	with	a	
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relative	standard	deviation	below	2.5	%	(Fig.	4).	For	22	out	of	the	23	PLS	models	to	be	

developed,	three	model	candidates	meeting	those	success	criteria	were	selected.	Only	one	

component	(ingredient	A	in	detergent	3)	could	not	be	predicted	with	such	recovery	(Table	

5).	 For	 ingredient	 A	 in	 detergent	 3,	 we	 did	 not	 succeed	 at	 developing	 a	 satisfying	

calibration	model	using	the	data.	This	is	most	probably	due	to	the	low	detection	sensitivity	

of	Raman	spectroscopy	for	this	compound.		

As	 the	 conventional	 chemometric	 parameters	 (such	 as	 RMSECV	 and	 RMSEP)	 are	

insufficient	to	allow	the	assessment	of	the	methods	ability	to	predict	the	content	of	new	

samples,	accuracy	profiles	based	on	tolerance	intervals	were	used	as	a	complementary	

decision	tool	to	evaluate	the	models	predictive	performances.		

3.3	Validation	of	the	Raman	quantification	methods	and	estimation	of	their	

uncertainty	

For	each	of	the	main	ingredients	per	laundry	liquid,	three	PLS	models	were	selected	

for	 a	 performance	 evaluation	 based	 on	 accuracy	 profiles.	 Then,	 one	 final	 model	 was	

selected	for	which	the	accuracy	calculated	through	the	relative	β‐expectation	tolerance	

intervals	falls	entirely	within	the	acceptance	limits	of	±	5	%	(Fig.	5).		

As	an	example,	fig.	5	displays	the	accuracy	profile	calculated	with	the	validation	set	

results	for	model	candidate	a	predicting	ingredient	B	in	detergent	3.	This	model	has	the	

tolerance	 limits	 (dashed	 blue	 lines)	 completely	 included	within	 the	 acceptance	 limits	

(black	dotted	lines)	over	the	full	concentration	range.	Here	it	can	be	concluded	that	95	%	

of	future	predictions	based	on	this	model	will	be	computed	with	an	error	not	more	than	

5	%	over	the	validated	concentration	range.	

For	some	of	the	ingredients,	all	model	candidates	found	their	accuracy	profiles	lying	

within	 the	 acceptance	 limits.	 In	 that	 case,	 the	model	with	 the	 lowest	 risk	 profile	was	

selected.	For	other	ingredients,	only	one	of	the	model	candidates	with	a	sufficiently	good	
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recovery	and	standard	deviation	fell	inside	the	5	%	acceptance	limits,	confirming	the	need	

for	a	trustworthy	validation	procedure.		

	Table	5	gives	an	overview	of	the	recovery	and	standard	deviation	of	all	final	models	

selected	 after	 validation.	 All	 of	 these	 models	 had	 accuracy	 profiles	 lying	 within	 the	

predefined	acceptance	limits	over	the	validated	concentration	range,	guaranteeing	that	

each	 further	measurement	 of	 unknown	 samples	will	 be	 included	within	 the	 tolerance	

limits	set	at	the	5	%	level.		

Using	 the	 data	 collected	 for	 the	 development	 of	 the	 accuracy	 profiles,	 the	

measurement	uncertainty	was	estimated	as	suggested	by	Feinberg	et	al.	[29].	Using	this	

approach,	several	uncertainty	parameters	were	calculated,	which	are	presented	in	table	

6	for	model	candidate	a	predicting	ingredient	B	in	detergent	3.	The	uncertainty	of	the	bias,	

the	uncertainty	that	combines	the	uncertainty	of	the	bias	with	the	intermediate	precision	

standard	deviation,	the	expanded	uncertainty	and	the	relative	expanded	uncertainty	are	

displayed	for	each	level	of	the	accuracy	profile.	The	expanded	uncertainty	defines	a	95	%	

probability	 interval	around	the	mean	value	 in	which	the	unknown	true	value	 is	 found.	

Over	the	entire	validated	range,	the	uncertainty	of	the	Raman	method	is	not	more	than	

3.30	%;	i.e.	the	unknown	true	value	is	located	at	a	maximum	of	±	3.30	%	around	the	result	

with	a	confidence	level	of	95	%.		

4.	Conclusion	
	
A	 Raman	 spectroscopic	 method	 was	 developed	 to	 control	 the	 dosing	 of	 cleaning	

ingredients	for	the	production	of	liquid	detergent	compositions.		

The	SIMCA	classification	model	was	perfectly	able	to	distinguish	between	the	five	types	of	

laundry	detergents	implemented,	thus	identifying	the	product	in	front	of	the	probe	correctly.	

PLS	models	 were	 developed	 that	 predict	 the	 concentration	 of	 the	 washing	 liquids	main	

ingredients	with	a	recovery	between	98	and	102	%	and	a	standard	deviation	below	2.5	%.	
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Validation	of	these	calibration	models	by	means	of	accuracy	profiles	ensured	that	95	out	of	

100	future	measurements	in	routine	will	be	within	the	acceptance	limits	of	5	%.	Moreover,	

the	 data	 used	 in	 this	 validation	 approach	 were	 used	 to	 assess	 the	 uncertainty	 of	

measurements	by	estimating	the	uncertainty	of	bias	as	well	as	the	expanded	uncertainty	at	

each	concentration	level.	

This	Raman	spectroscopic	method	succeeds	at	evaluating	 the	composition	of	 the	 laundry	

liquid	precursors	in	a	fast	and	non‐destructive	manner	and	is	ready	for	implementation	at‐

line.		
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	Table	1.	Target	concentration	of	all	ingredients	to	be	quantified	using	PLS	calibration	models.	
	

  ingredient A  ingredient B ingredient C ingredient D  ingredient E

detergent 1  3.894 %  9.009 % 6.597 % 4.687 %  4.821 %

detergent 2  11.252 %  not present 6.902 % 4.247 %  3.982 %

detergent 3  1.876 %  14.710 % 9.406 % 4.158 %  not present

detergent 4  14.904 %  14.869 % 10.829 % 14.189 %  5.012 %

detergent 5  19.959 %  5.249 % 14.771 % 17.090 %  6.034 %
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Table	2.	Composition	of	the	calibration,	validation	and	verification	set	of	each	laundry	detergent.	
	

  sample set 
sample  number of  concentration levels  

  preparation samples of each key ingredient 

DETERGENT 1 

calibration set 
lab‐made  29  target, target ± 5 %, target ± 12 % 

production  5 target 

validation set 
lab‐made  6 target ± 1 %, target ± 4 %, target ± 10 %

production  3 target 

verification set  production  30 target 

DETERGENT 2 

calibration set 
lab‐made 27 target, target ± 5 %, target ± 10 %

production  5 target 

validation set 
lab‐made  6 target ± 1 %, target ± 4 %, target ± 10 %

production  3 target 

verification set  production  30 target 

DETERGENT 3 

calibration set 
lab‐made 27 target, target ± 5 %, target ± 10 %

production  5 target 

validation set 
lab‐made  6 target ± 1 %, target ± 4 %, target ± 10 %

production  3 target 

verification set  production  30 target 

DETERGENT 4 

calibration set 
lab‐made 29 target, target ± 5 %, target ± 12 %

production  5 target 

validation set 
lab‐made  6 target ± 1 %, target ± 4 %, target ± 10 %

production  3 target 

verification set  production  30 target 

DETERGENT 5 

calibration set 
lab‐made 29 target, target ± 5 %, target ± 12 %

production  5 target 

validation set 
lab‐made  6 target ± 1 %, target ± 4 %, target ± 10 %

production  3 target 

verification set  production  30 target 
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Table	3.	Model	specifications	investigated	during	PLS	model	development	for	each	component	of	

every	laundry	liquid.	

	

spectral ranges  spectral filters number of latent variables

680 – 3000 cm‐1  EPO filter 3 

680 – 1560 + 2750 – 3000 cm‐1  GLS weighting 4 

680 – 1830 cm‐1  baseline  5 

680 – 1820 cm‐1  detrend 6 

680 – 1720 cm‐1  extended scatter correction 7 

680 – 1560 cm‐1  first derivative 8 

730 – 1650 cm‐1  second derivative 9 

730 – 1160 cm‐1  SNV 10 

880 – 1700 cm‐1  MSC 	
980 – 1630 cm‐1  normalize 	
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Table	4.	Confusion	table	of	the	SIMCA	classification	model.	The	header	row	shows	the	actual	class	

membership,	while	the	column	row	illustrates	the	number	of	samples	that	are	predicted	to	belong	

to	a	certain	class.		

	

	

	

	
	

	  

detergent 1  detergent 2  detergent 3  detergent 4  detergent 5  no class 

predicted as 
15  0  0  0  0  0 

detergent 1 

predicted as 
0  15  0  0  0  0 

detergent 2 

predicted as 
0  0  15  0  0  0 

detergent 3 

predicted as 
0  0  0  15  0  0 

detergent 4 

predicted as 
0  0  0  0  15  0 

detergent 5 

predicted as 
0  0  0  0  0  0 

no class 
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Table	5.	Recovery	and	standard	deviation	(stdev)	of	the	predictions	of	the	calibration	(cal),	validation	(val)	and	verification	(ver)	set	of	all	final	models	
selected.		

   
INGREDIENT A  INGREDIENT B  INGREDIENT C  INGREDIENT D  INGREDIENT E 

 

    recovery  stdev  recovery  stdev  recovery  stdev  recovery  stdev  recovery  stdev   

 
DETERGENT 1 

cal set  100.02 %  1.24 %  100.01 %  1.04 %  100.02 %  1.36 %  100.00 %  0.66 %  100.00 %  0.37 %   

  val set  99.72 %  2.44 %  99.74 %  0.95 %  99.69 %  2.34 %  99.94 %  2.39 %  100.65 %  1.80 %   

  ver set  99.68 %  1.68 %  100.44 %  0.67 %  100.74 %  2.23 %  100.09 %  2.00 %  99.88 %  0.92 %   

 
DETERGENT 2 

cal set  100.00 %  0.45 % 

Not present 

100.01 %  1.05 %  100.02 %  1.54 %  100.00 %  0.63 %   

  val set  99.49 %  1.17 %  100.75 %  2.00 %  100.32 %  2.00 %  99.80 %  1.79 %   

  ver set  100.43 %  0.59 %  99.92 %  1.59 %  100.02 %  2.25 %  98.75 %  0.77 %   

 
DETERGENT 3 

cal set 
No adequate model 

found 

100.02 %  1.25 %  100.04 %  1.94 %  100.00 %  0.87 % 

Not present 
 

  val set  99.65 %  1.48 %  99.80 %  1.45 %  99.85 %  1.90 %   

  ver set  100.91 %  1.42 %  101.29 %  1.55 %  100.35 %  1.56 %   

 
DETERGENT 4 

cal set  100.00 %  0.55 %  100.01 %  1.08 %  100.00 %  0.55 %  100.00 %  0.41 %  100.04 %  2.01 %   

  val set  100.40 %  1.56 %  99.56 %  1.21 %  99.99 %  1.42 %  100.90 %  1.50 %  99.34 %  2.39 %   

  ver set  100.14 %  1.64 %  100.16 %  1.05 %  100.05 %  1.26 %  100.36 %  1.08 %  101.25 %  1.61 %   

 
DETERGENT 5 

cal set  100.01 %  0.98 %  100.01 %  0.83 %  100.01 %  1.11 %  100.00 %  0.34 %  100.01 %  0.90 %   

  val set  100.23 %  0.99 %  100.28 %  1.74 %  100.02 %  0.92 %  100.22 %  0.57 %  99.07 %  1.39 %   

  ver set  99.89 %  0.75 %  98.52 %  1.91 %  99.04 %  1.53 %  100.01 %  1.52 %  100.47 %  1.65 %   
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Table	6.	Estimates	of	the	different	uncertainties	related	to	the	content	of	ingredient	B	in	

detergent	3	at	each	concentration	level	of	the	accuracy	profile	using	the	PLS	model	candidate	a.		

	

concentration  uncertainty 
uncertainty 

expanded  relative expanded 

level  of the bias  uncertainty  uncertainty  

12.50 %  0.06019 %  0.1766 %  0.3532 %  2.777 % 

13.53 %  0.05513 %  0.1695 %  0.3391 %  2.509 % 

14.27 %  0.04919 %  0.1533 %  0.3066 %  2.154 % 

14.71 %  0.07427 %  0.2426 %  0.4852 %  3.298 % 

15.15 %  0.07628 %  0.2297 %  0.4595 %  3.077 % 

15.89 %  0.05885 %  0.1709 %  0.3419 %  2.194 % 

16.92 %  0.07505 %  0.2218 %  0.4436 %  2.676 % 
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Fig.	 1.	 Experimental	 set‐up:	A.	Raman	 superhead	 enclosed	 in	metal	box,	with	 sample	 in	plastic	

container	ready	 for	measurement.	B.	Content	of	box:	 fiber‐optic	Raman	probe	 facing	 the	sample	

holder.	C.	Branch	of	the	production	line	passing	through	the	lab	for	sample	collection.		
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Fig.	 2.	 SNV‐corrected	 spectra	 of	 all	 laundry	 detergents	 in	 the	 selected	 spectral	 range	 of		

680‐3000	cm‐1,	colored	according	to	classes.	
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Fig.	3.	RMSECV	(blue),	RMSEC	(red)	and	RMSEP	(yellow)	values	versus	the	number	of	PLS	factors	

in	model	candidate	a	predicting	ingredient	B	in	detergent	3.		
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Fig.	4.	A.	Example	of	an	observed	versus	predicted	plot	of	model	candidate	a	predicting	ingredient	

B	in	detergent	3.	B.	Recovery	and	standard	deviation	values	of	the	model	candidate.	

	 	

	 recovery	 standard
deviation 

calibration set 100.02 %  1.25 %

validation set 99.65 %  1.48 %

verification set 100.91 %  1.42 %
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Fig.	5.	Accuracy	profile	of	model	candidate	a	predicting	ingredient	B	in	detergent	3.	The	black	

dotted	lines	represent	the	acceptance	limits,	which	were	set	at	5	%	relative	bias.	The	dashed	blue	

lines	are	the	β‐expectation	tolerance	limits	at	each	validated	concentration	level.	The	green	dots	

represent	the	relative	error	of	the	back‐calculated	concentrations	and	are	plotted	with	respect	

to	their	targeted	concentration,	while	the	plain	red	line	shows	the	relative	bias.		
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