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ABSTRACT

Chronic inflammation of skeletal muscle tissues, termed myositis, is associated with inherited muscular 
dystrophy and acquired inflammatory myopathy. In this review, the role of the organic osmolytes taurine, 
betaine, myo-inositol, and sorbitol in skeletal muscles in general, and in myositis in particular, is discussed. 
Evidence indicates that regulated osmolyte pathway activation contributes to normal muscle functioning, 
which becomes further activated in myositis as part of the tissue’s programme of damage control. On the 
one hand, osmolytes seem to act as protein stabilisers in muscle fibres counteracting tissue injury but,  
on the other hand, these compounds also regulate immune cell function. The possibilities for treating 
myositis through boosting of beneficial or targeting of adversary effects are explored.
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THE MULTIPLE FACES OF MYOSITIS

Chronic inflammation of skeletal muscle tissues, 
termed myositis, can have various origins. It can  
result from infection, tissue damage caused by 
inherited diseases, or an acquired autoimmune 
disease. In the muscular dystrophies, muscle 
inflammation is secondary, yet it represents a hefty 
pathogenic factor that contributes to deterioration 
of the muscle tissue’s integrity. The most common 
type is Duchenne muscular dystrophy (DMD); 
other subtypes include Becker muscular dystrophy, 
facioscapulohumeral muscular dystrophy, and 
myotonic dystrophy.1 DMD is a severe, and still 
incurable, X-linked muscle disease caused by 
protein-disruptive mutations in the dystrophin 
gene. The absence of dystrophin leads to increased 
vulnerability to contraction-induced sarcolemmal 
damage, resulting in cycles of muscle fibre necrosis 
and failing regeneration. Necrotising myofibres are 
attacked by macrophages; a few T cells, B cells,  

and dendritic cells are also found within the 
inflammatory areas.2 The build-up of inflammation 
is complexly regulated by an interplay of soluble 
factors and adhesion molecules. Chemotactic 
cytokines, termed chemokines, are key players 
in the inflammatory response associated with 
DMD, as these diffusible proteins orchestrate the 
activation and directed migration of leukocytes.3 
Our understanding of DMD disease progression has 
benefited from studies in the murine mdx model, 
though considerable differences exist between 
animal and human diseases.4

The idiopathic inflammatory myopathies on the 
other hand are autoimmune muscle diseases and 
comprise four main entities: dermatomyositis 
(DM), polymyositis (PM), sporadic inclusion 
body myositis (IBM), and immune-mediated 
necrotising myopathy (IMNM). These different 
disease subgroups present with distinct clinical 
and myopathological characteristics, with either 

blood vessels or muscle fibres acting as the primary 
immune target. In DM, complement-mediated blood 
vessel destruction and perifascicular muscle fibre  
damage and inflammation develop. PM and IBM 
are characterised by invasion of non-necrotic 
muscle fibres by auto-aggressive cytotoxic T cells 
and macrophages, and inflammation builds up 
mostly at endomysial sites.5 In IBM muscle fibres, 
additional degenerative phenomena occur, with  
rimmed vacuoles and inclusions that contain  
aggregates of ectopic proteins.6 IMNM is an  
increasingly recognised autoimmune myopathy in  
subgroups of patients triggered by statin use and  
associated with autoantibodies directed against  
3-hydroxy-3-methylglutaryl-coenzyme A reductase,7 
or associated with anti-signal recognition  
particle autoantibodies.8

THE OSMOLYTE PATHWAY AS A 
PROTECTOR OF MUSCLE FUNCTION

To anticipate perturbations in volume and osmotic 
imbalance, cells possess a variety of channels and 
transporters that enable them to accumulate or 
release osmotically active substances. In addition 
to inorganic ions, cells can count on a wide range 
of organic osmolytes, which include free amino 
acids and their derivatives, methyl ammonium  
compounds, and polyols. The intracellular osmolytic 
pool generally consists of a complex mixture of 
compounds and, in response to stress, pathway 
members become activated and complexly 
regulate each other’s activities.9 The transient 
regulation of osmolyte transporters in response to 
changing osmotic conditions stabilises intracellular 
protein function. Regulation occurs both at the  
transcriptional and translational level, and on a 
relatively short time-scale (within minutes).10 The 
central regulator of the expression of osmolyte 
pathway genes is the transcription factor tonicity 
enhancer binding protein, also called nuclear 
factor of activated T cells 5 (NFAT5).11 Among the 
NFAT5 target genes are the organic osmolyte 
carriers for taurine, betaine, myo-inositol, and  
the enzyme that catalyses sorbitol synthesis. This 
osmo-protective mechanism represents a universal 
system in mammalian cells ubiquitously expressed  
in human tissues. 

The muscle is a highly adaptive tissue, capable 
of increasing its mass in response to exercise, 
and of restoring damage caused by injury. These  
processes require hypertrophy and regeneration, 
respectively, and for that purpose, resident muscle 

precursor cells, termed satellite cells, are present 
within the tissue in a quiescent state. Myogenesis  
is a highly regulated process co-ordinated by 
regulatory factors both in favour and opposed 
to differentiation, which become active in an 
orderly and sequential fashion.12 Interestingly, the  
NFAT5 pathway is an important regulator of the 
differentiation of immature myoblasts to mature 
multinucleate myotubes,13 with NFAT5 levels 
increasing in the regenerating fibres of mice  
exposed to experimental muscle tissue injury.14 
The important role played by osmolytes in muscle 
functioning has been made clear in taurine  
transporter knockout mice, which display muscle 
fibre atrophy and necrosis, and reduced exercise 
endurance.15,16 It is well known that in DMD muscle 
the osmotic balance is perturbed, probably due 
mostly to passive efflux of osmolytes through the 
leaky plasma membranes,17 and recent evidence 
points to an involvement of the osmolyte pathway, 
also in inflammatory myopathies.

THE OSMOLYTE PATHWAY AS 
A REGULATOR OF MYOSITIS

In addition to an involvement in damage control and 
in tissue regeneration, osmolytes have been shown 
to be potent immune regulators. Both hyperosmotic 
and inflammatory conditions are able to induce 
NFAT5 expression and activation in muscle cells 
in vitro.18 This illustrates how the NFAT5 pathway 
acts as a more general stress-induced mechanism, 
equally involved in the muscle tissue’s responses 
to hypertonicity and to inflammation. In addition, 
the NFAT5 pathway has been firmly linked to 
nuclear factor κB (NFκB) activity and subsequent  
pro-inflammatory gene expression.19 Both the 
osmolyte pathway members and NFκB p65  
subunit protein levels are increased in muscle from 
DMD and PM/IBM patients.20 In addition, NFAT5 
is expressed in inflammatory cells recruited to 
sites of tissue injury.21 Osmolytes are involved in 
immune cell function, regulating cell volume as an 
important aspect of phagocytic activity. Taurine is 
the predominant free amino acid in granulocytes 
and in lymphocytes.22 Betaine23 and myo-inositol24 
accumulation and transporter expression are potent 
regulators of phagocytosis in liver macrophages, 
instigated by NFAT5 activation.25 

TAURINE

The semi-essential amino acid 2-aminoethane  
sulphonic acid (taurine) is the most abundant 



free amino acid in human tissues. It can either 
be synthesised in the liver from cysteine by 
cysteine deoxygenase and cysteine sulphinate  
decarboxylase, or imported in the cell through 
its sodium and chloride ion-dependent taurine 
transporter SLC6A6. In addition to its role as an 
osmolyte, taurine possesses antioxidant and anti-
inflammatory properties, and is important for 
skeletal muscle function and exercise capacity.15 
It has been used as a supplement in energy drinks 
for athletes for some time. In subjects in their 50s, 
a multi-nutrient supplement containing taurine 
has been reported to improve physical function 
and reduce the inflammation marker interleukin 
(IL)-6.26 A cell organelle protective effect has also 
been observed, preserving mitochondrial function27 
and counteracting endoplasmic reticulum stress.28 
Taurine appears to possess anti-ageing effects, 
protecting muscle fibres specifically against ageing-
associated damage. The content of amino acids 
in the skeletal muscle alters with age, with taurine 
levels decreasing, and SLC6A6 knockout mice 
display accelerated senescence.29

Dystrophin deficiency perturbs taurine metabolism 
in the muscle, and vice versa, SLC6A6 knockout 
mice display pathological changes that mimic those 
observed in the mdx disease model. In mdx mice, 
taurine content fluctuates in relation to the disease 
phase. At the onset of the active dystrophic phase 
at age 4 weeks, reduced taurine and SLC6A6 levels 
are present in muscle. This deficiency diminishes 
as the disease progresses to the stable pathology 
in adult mice.30 In contrast, the canine golden 
retriever MD model shows upregulated taurine and  
SLC6A6 levels at age 8 months.31 Thus, differing 
results have been obtained in different disease 
models, which fits with the known interspecies 
variance of dystrophin deficiency characteristics. 
In patients with active inflammatory myopathy, 
muscle taurine levels are significantly reduced.32 
Interestingly, urinary taurine levels are increased 
in DM/PM33 and in DMD patients34 compared to  
healthy controls, suggestive of deregulation of 
the plasma/tissue taurine balance. For the taurine 
transporter SLC6A6, different results have also  
been reported, from lower levels in 3–6-week old 
mdx compared to control mice,30 to unchanged 
levels.35 SLC6A6 protein expression is induced 
in muscle biopsies from inflammatory myopathy 
patients, mostly in the regenerating and atrophic 
muscle fibres, notably also in the perifascicular 
atrophic fibres of DM muscle.20

BETAINE

N,N,N-trimethylglycine (betaine) is a naturally 
occurring small amino acid derivative. The two main 
physiological roles of betaine are as an osmolyte 
to regulate cellular tonicity, and as a methyl donor 
participating in the control of cellular activities 
and differentiation. Betaine can be synthesised by 
the cell through oxidation of choline-containing 
compounds, or imported from the extracellular 
matrix by the betaine-gamma-aminobutyric acid 
(GABA) transporter termed SLC6A12. Betaine has 
been shown to promote myotube differentiation 
and hypertrophy in vitro, via insulin growth factor 
1-signalling.36 In addition to a beneficial effect on 
muscle regeneration, betaine could also counteract 
inflammation, as has been demonstrated by its 
inhibitory effect on hypoxia-induced adipokine 
expression.37 Based upon these observations,  
it can be concluded that betaine could potentially  
enhance exercise performance, reduce fatigue,  
and improve muscle function.

Urinary betaine33 and betaine/creatinine ratios38 
are higher in DM/PM patients than in controls. 
These findings parallel reports of elevated taurine, 
and further corroborate the possible existence of a 
general osmolyte plasma/tissue imbalance in these 
patients. While absent from healthy muscle, our 
immunofluorescence studies show strong staining  
of the transporter SLC6A12 on a subset of muscle 
fibres in DMD, DM (Figure 1), PM, IBM, and IMNM 
tissues, most of which are small atrophic or 
regenerating muscle fibres. 

MYO-INOSITOL

The essential nutrient cis-1,2,3,5-trans-4,6-
hexahydrocyclohexaan (myo-inositol) is a cyclic 
polyol and is one of the most abundant small 
organic osmolytes. It regulates different metabolic 
pathways, in addition to being a key component in 
preserving the cell’s osmotic balance. Myo-inositol 
can be synthesised by the cell, or accumulated  
from the extracellular space. Biosynthesis of  
myo-inositol starts with the conversion of 
D-glucose-6-phosphate to L-inositol-1-phosphate 
in a reaction catalysed by myo-inositol phosphate 
synthase. In addition to synthesis, import from the 
extracellular matrix is achieved by the sodium myo-
inositol co-transporter SLC5A3. Hypertonic stress 
conditions lead to the upregulation of SLC5A3  
gene expression,39 as well as to the displacement  
of the transporter to the plasma membrane.10

The SLC5A3 protein is not present in control 
muscle material but can readily be detected in the 
majority of biopsy samples from myositis patients. 
The transporter is expressed on a subset of muscle 
fibres but, in addition, SLC5A3 expression has been  
shown on macrophages and T cells infiltrating DMD, 
DM, PM, and IBM muscle.20

SORBITOL

The sugar alcohol (2R,3S,4S,5S)-hexane-1,2,3,4,5,6-
hexol (sorbitol) is synthesised within the cell.  
The aldo-keto reductase family member B  
(AKR1B1), also termed aldose reductase, catalyses  
the reduction of aldehydes and aldehyde forms 
of glucose. This process makes up the first 
and rate-limiting step of the polyol pathway 

of glucose metabolism, reducing glucose to 
sorbitol. AKR1B1 is expressed in high amounts in 
normal skeletal muscle, displaying further injury- 
induced expression.40

Sorbitol accumulation is postulated to play a role 
in skeletal muscle dysfunction associated with 
diabetes. In rats subjected to streptozotocin-
induced diabetes, muscle sorbitol levels are 
increased, an effect that can be significantly 
lowered by administering insulin.41 Insulin decreases 
intracellular sorbitol by deviating glucose away from 
the polyol pathway and metabolising it through 
non-polyol metabolic pathways.42 When an AKR1B1 
inhibitor was given to diabetic rats, skeletal muscle 
sorbitol levels decreased and muscle contractile 
properties improved.43

Figure 1: Immunofluorescent staining for osmolyte accumulators in muscle sections from patients 
diagnosed with dermatomyositis. 
Staining for osmolyte accumulators is induced/increased in subsets of muscle fibres of which most are 
of small-width: A) mouse monoclonal IgG1 anti-SLC6A6 (Santa Cruz Biotechnology, Dallas, Texas, USA;  
4 µg/mL); B) mouse monoclonal IgG2b anti-SLC6A12 (Santa Cruz Biotechnology, 4 µg/mL); C) rabbit 
polyclonal anti-SLC5A3 (Novus, Oxun, UK, 4 µg/mL); D) goat polyclonal anti-AKR1B1 (Santa Cruz 
Biotechnology, 1 µg/mL), visualised with secondary antibodies labelled with either AlexaFluor488 (green) 
or CY3 (red) (Jackson ImmunoResearch Laboratories, Newmarket, UK). Scale bar=50 µm.
Ig: immunoglobulin; AKR1B1: aldo-keto reductase family member B.
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Normal skeletal muscle contains high levels of 
AKR1B1, and in DMD myotubes in vitro, AKR1B1 
levels are high and are not further increased by  
high salt conditions. AKR1B1 levels are increased 
in the affected muscle fibres of myositis patients, 
and protein levels are significantly higher in DMD 
and PM/IBM muscle protein samples compared to  
control samples.20

TREATING MYOSITIS VIA OSMOLYTE 
PATHWAY INTERVENTION

Evidence is still sparse but clearly points to 
osmolyte pathway dysregulation in the muscle 
tissue of patients suffering from myositis (Table 1).  
An attractive strategy for treating diseases  
characterised by osmotic disturbances would be 
to administer positive osmolytes as a nutraceutical 
supplement. Such supplements are readily  
available, are relatively cheap, and only have 
minimal side effects. Based upon the available 
scientific evidence, two potential compounds 
come forward for myositis, in particular, taurine 
and betaine. Intriguingly, glucocorticoids, the most 
used pharmacological treatment for DM and PM, 
but also the most common supportive treatment 
for DMD, have been shown to increase muscle 
taurine content.44 In the animal model, the positive 
effect of glucocorticoids on mdx muscle function 
can be even further enhanced by administering 
taurine, with the two drugs exhibiting synergistic 
therapeutic actions.45 A beneficial effect of taurine  
supplements has been firmly shown in mdx 
mice, increasing the muscle taurine content, 

improving muscle function, and reducing  
muscle inflammation.35,46 Taurine supplementation 
represents an attractive approach, as it can 
conveniently be administered orally and presents 
no serious adverse effects.47 However, as amino acid  
patterns of skeletal muscle and blood are age-
dependent, with taurine levels increasing from birth 
to age 15 years,48 the patients’ age may be expected 
to influence the therapeutic outcome and optimal 
dosage. The benefits of betaine supplements on 
muscle endurance and performance49,50 have also 
been reported, but another study reported no effect 
of supplementation in healthy adults.51

Reports on the effects of taurine or betaine 
supplementation in myositis patients have not 
become available yet. As the upregulation of 
osmolyte accumulators in regenerating muscle 
fibres is a general feature of inflammatory  
myopathy as part of the re-kindling of myogenetic 
processes to restore muscle damage,20 osmolyte 
supplementation could be an amenable supportive 
therapeutic approach. It should be noted, however, 
that in DM, osmolyte accumulators are also induced 
in the perifascicular atrophic muscle fibres, pointing 
to a possible additional pathogenic role in this 
subgroup of patients.

Another reason to stimulate the osmolyte pathway 
could be based upon their known ’chaperoning‘ 
effects, mediating refolding of unstable or 
aggregated proteins,52 which makes them promising 
therapeutics for human protein conformational 
disorders. This offers perspectives for intervention  
in IBM, a subgroup of inflammatory myopathy 

currently still lacking effective treatment options. 
In IBM, misfolded proteins form multiple protein 
aggregates likely reflecting failing autophagy. The 
inclusions contain amyloid-β and components 
pointing to failing autophagic clearance, such 
as sequestosome 1, phosphorylated tau, and the 
standard autophagic marker LC3B.53 The inclusions 
also co-localise with the myo-inositol transporter 
SLC5A3.20 Whether the presence of the transporter 
in the aggregates represents a purely dysfunctional 
aspect due to trapping of the protein remains 
to be determined. Possibly, trapping of SLC5A3 
inside the aggregates could prevent entry of the 
proper myo-inositol levels in the muscle fibre, 
disturbing the cell’s osmoregulatory system.  
The complex regulation displayed by osmolytes 
on protein folding is an open line of research.  
Betaine concentration-dependent effects have  
been reported, with betaine dosage tuning 
the formation/disruption balance of insoluble  
protein aggregates.54 

An opposing therapeutic strategy should, 
however, also be considered, i.e. targeting the 
pro-inflammatory aspects of individual osmolytes 
if specific members of the osmolyte pathway 
with a pivotal role in chronic inflammation can be  

identified. In this respect, the expression of  
SLC5A3 on many muscle-infiltrating inflammatory 
cells20 puts this myo-inositol transporter forward 
as a potential target. Myo-inositol can regulate 
macrophage volume changes during the 
process of phagocytosis. The plausibility of an  
anti-inflammatory approach targeting osmolyte 
accumulators has already been shown with AKR1B1 
inhibitors.55 The latter can significantly prevent 
inflammation build-up in the allergic lung.56 This  
seems an amenable approach, as the beneficiary 
effects of the pathway members appear to 
be based mostly on redundant cytoprotective 
activities. Reductions in individual osmolytes can 
be compensated for, when individual partners are 
being targeted, as cells can rely on a complex scala 
of compatible osmolytes. In muscle cells exposed  
to hypertonic conditions, protective increases of  
cell creatine levels have been observed.57 

In summary, the osmolyte pathway represents 
potentially beneficial and adversary effects on 
myositis, and offers an interesting new avenue for 
therapeutic intervention. Full exploration of this 
therapeutic strategy will necessitate, however, 
further unravelling of osmolyte pathway activities  
in patient muscle tissues. 

Table 1: Osmolytes in patients diagnosed with myositis: summary of the available data.

DMD: Duchenne muscular dystrophy; DM: dermatomyositis; PM: polymyositis, IBM: sporadic inclusion body 
myositis; ND: not determined.

DMD DM PM IBM

Taurine ND Taurine muscle levels are reduced compared to controls32

Taurine urinary levels are increased compared to controls33,34 ND

Taurine transporter SLC6A6 protein levels increased in regenerating and atrophic muscle fibres20

Betaine ND Betaine urinary levels are increased compared to controls38 ND

Betaine transporter SLC6A12 protein expression induced on regenerating and atrophic muscle fibres

Myo-
inositol

The myo-inositol cotransporter SLC5A3 is induced on regenerating and atrophic muscle fibres  
and is expressed by a subset of muscle-infiltrating inflammatory cells20

Sorbitol The sorbitol-producing cellular aldose reductase AKR1B1 is constitutively present in muscle fibres,  
but is increased in the affected muscle fibres of myositis patients20

Levels of AKR1B1 protein are increased in patients’ muscle tissue20 ND
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