

Development and validation of an UPLC-MS/MS multi-method for the quantitative analysis of important mycotoxins in rumen fluid

Sandra Debevere^{1,4*}, Siegrid De Baere¹, Geert Haesaert², Michael Rychlik³, Veerle Fievez^{4a}, Siska Croubels^{1a}

¹ Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium ² Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium ³ Chair of Analytical Food Chemistry, Technische Universität München, Freising, Germany ⁴ Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium *Corresponding author: sandra.debevere@ugent.be ashared senior authorship

INTRODUCTION AND AIMS

In Belgium, the most important mycotoxins found in maize silage are deoxynivalenol (DON), nivalenol (NIV), zearalenone (ZEN), mycophenolic acid (MPA), roquefortine C (ROQ-C), citrinin (CIT) and enniatin B (ENN B) 1,2,3 . The detoxifying capacity of ruminal microbiota for the previously mentioned mycotoxins, especially in combinations, is not well known. To answer this question, a method to determine multiple mycotoxins in rumen fluid is needed. Therefore, a sensitive and specific analytical method for the quantitative determination of the mycotoxins DON, NIV, ZEN, MPA, ROQ-C, CIT and ENN B as well as their metabolites deepoxy-deoxynivalenol (DOM-1), α -zearalenol (α -ZOL), β -zearalenol (β -ZOL), zearalanone (ZAN), α -zearalanol $(\alpha$ -ZAL) and β -zearalanol (β -ZAL) in rumen fluid using UPLC-MS/MS was developed and validated.

MATERIALS AND METHODS

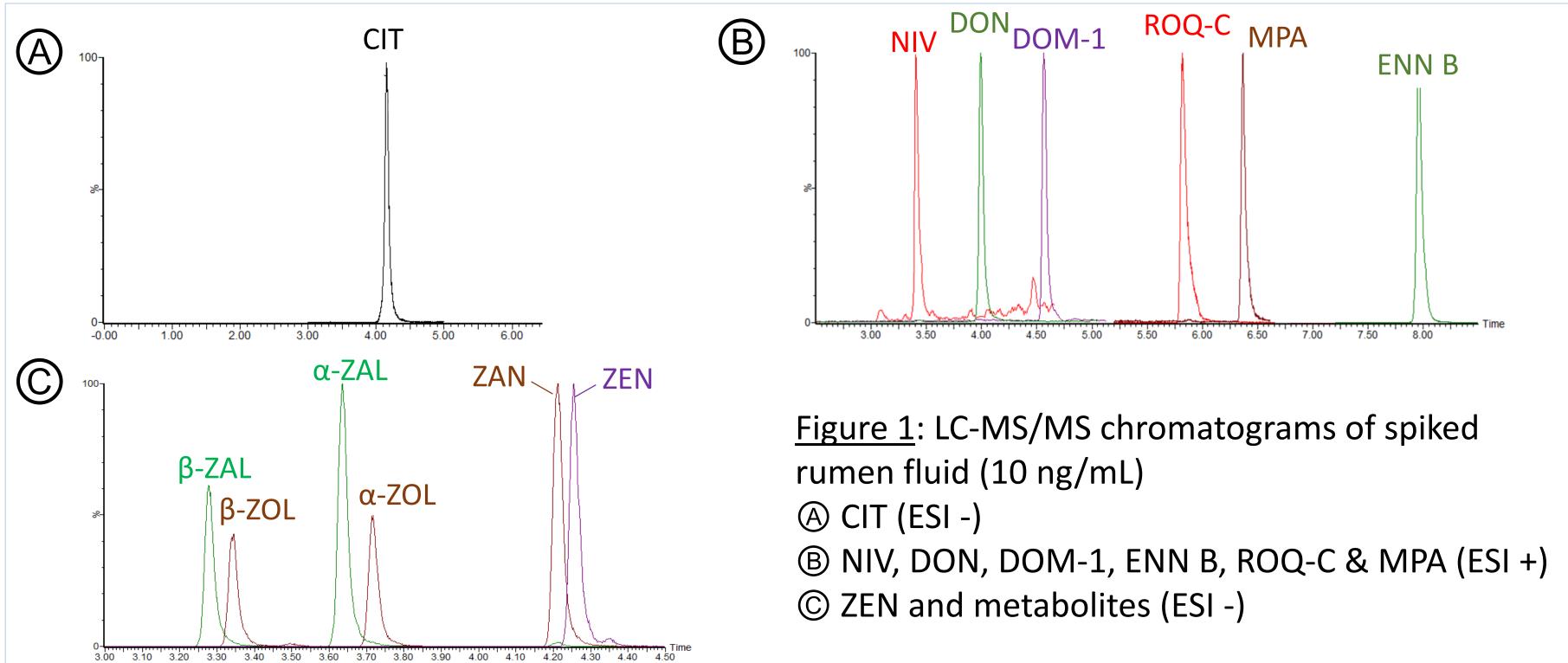
Sample extraction:

Rumen fluid (cattle/sheep) — 1) sample for extraction of CIT 2) sample for extraction of other mycotoxins sample + IS* + 250 μl aqueous phase** mix + centrifuge evaporate to dissolve in solvent* analyze on Xevo® TQ-S collect filtrate $(250 \mu l)$ + 1.5 ml organic phase** dryness $(200 \mu l)$ (UHPLC-MS/MS) organic solvent $(*^{13}C_{18}DON, ^{15}N_3ENNB, ^{13}C_{17}MPA, ^{13}C_{22}ROQ-C, ^{13}C_{18}ZEA & ^{13}C_{13}CIT$ are used as internal standard (IS); **other solvents for extraction CIT vs other mycotoxins)

Chromatography:

- HPLC instrument: Acquity UHPLC system (Waters, Zellik, Belgium)
- UPLC-column: HSS T3 column (2.1 x 50 mm, d.p.: 1.8 μm) in combination with a VanGuard pre-column (2.1 x 5 mm, d.p.: 1.8 μm) both from Waters (Zellik, Belgium)
- Aqueous and organic mobile phases with gradient elution program

MS/MS detection:


- MS instrument: Xevo® TQ-S triple quadrupool MS/MS (Waters, Zellik, Belgium)
- MS conditions: positive and negative electrospray ionization, multiple reaction monitoring mode (MRM)

➤ Analysis (A) (ESI -): CIT → Analysis ® (ESI +): NIV, DON, DOM-1, ENN B, MPA, ROQ-C Analysis © (ESI -):

ZEN & metabolites

Validated according to European guidelines^{4,5}

RESULTS

<u>Table 1</u>: Evaluation of validation parameters

	All mycotoxins, except ROQ-C	ROQ-C
Linearity		
Accuracy & precision		
Limit of quantification	0.05-0.6 ng/mL NIV: 36 ng/mL	0.1 ng/mL
Limit of detection	10-280 pg/mL NIV: 5.4 ng/mL	4 pg/mL
Specificity & selectivity		
Carry-over		

DISCUSSION AND CONCLUSIONS

The LC-MS/MS parameters resulted in good chromatographic properties (Figure 1). Furthermore, the method is validated according to European guidelines (Table 1). ROQ-C shows carry-over, but this can be countered by injecting the samples from low to high concentrations of ROQ-C. This analytical method can be used to determine the fate of multiple mycotoxins in rumen fluid on a specific and sensitive way. In vitro studies will be performed to determine the detoxifying capacity of ruminal microbiota when incubated with the mycotoxins DON, NIV, ZEN, MPA, ROQ-C, CIT and/or ENN B in different rumen conditions.

ACKNOWLEDGEMENTS

This research is funded by the government agency Flanders Innovation & Entrepreneurship (VLAIO-Belgium, LA 140971).

References

- Driehuis et al. (2008). Food Additives and Contaminants: Part B, 1(1), 41–50.
- 2. Tangni et al. (2013). Journal of Animal Science Advances, 3(12), 598–612.
- 3. Driehuis et al. (2008). Journal of Dairy Science, 91(11), 4261–4271. 4. Commission Decision 2002/657/EC.
- Heitzman (1994). Veterinary Drug Residues, Report Eur. 14126-EN, Commission of the EC, Brussels, Luxembourg.