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1.1 GENERAL BACKGROUND 

Meat is a good source of high value proteins, vitamins and minerals. Meat proteins contain all the 

essential amino acids that humans cannot synthesize and therefore must be supplied through the 

diet. Due to the fresh character of meat and meat products, it is of the utmost importance that 

the microbiological, sensory, technological and nutritional quality is preserved during processing 

and storage. Together with microbial spoilage, oxidation of both the lipid and protein fraction is 

one of the major causes of quality deterioration in meat (Xiong, 2000). The mechanisms of lipid 

oxidation in meat and meat products have been studied extensively, and its main consequences 

are the typical rancid off-odour and off-flavour (Velasco, Dobarganes, & Márquez-Ruiz, 2010). The 

study of protein oxidation, on the other hand, has been relatively new in food science, although 

it has been studied in medical science for many years (Estévez, 2011). Protein oxidation in meat 

and meat products may result in impaired sensory quality such as lower tenderness and juiciness 

(Rowe, Maddock, Lonergan, & Huff-Lonergan, 2004; Lund, Lametsch, Hviid, Jensen, & Skibsted, 

2007b), impaired technological quality such as poor emulsifying, gel-forming and water holding 

capacity (Decker, Xiong, Calvert, Crum, & Blanchard, 1993; Ooizumi & Xiong, 2004), or impaired 

nutritional quality because of loss of essential amino acids and altered digestibility (Xiong, 2000). 

Although many of these consequences have been studied in meat science, the underlying 

mechanisms of protein oxidation are not yet fully elucidated (Estévez, 2011). 

Despite its nutritional value, meat and meat products have obtained a negative image in recent 

years, because of the epidemiological evidence linking red meat and processed red meat 

consumption with colorectal cancer (CRC) (Chan et al., 2011; Ferrucci et al., 2012; Magalhães, 

Peleteiro, & Lunet, 2012; Johnson et al., 2013). Several hypotheses for the underlying carcinogenic 

mechanisms have been proposed to explain this epidemiological link, the one more likely than the 

other, as reviewed by Demeyer, Mertens, De Smet, and Ulens (2015). As such, the presence of 

polycyclic aromatic hydrocarbons (PAHs) and heterocyclic amines (HCAs), both classified as 
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carcinogenic, together with the presence of heme, enhancing lipid oxidation, and the formation 

of carcinogenic N-nitroso compounds (NOCs), are generally considered as important underlying 

mechanisms (Demeyer et al., 2015). Regarding the intake of oxidized food proteins, it has been 

suggested that structural modifications in oxidized proteins can change their susceptibility to 

proteolytic enzymes in the gastrointestinal tract, potentially resulting in an altered colonic 

fermentation with formation of toxic and carcinogenic compounds (Evenepoel et al., 1998; Hughes, 

Magee, & Bingham, 2000). In medical science, a growing number of studies have reported an 

increase of oxidation biomarkers in CRC patients, often measured as protein oxidation such as 

carbonylation, however it remains unclear whether oxidative stress contributes to or is a 

consequence of CRC development (Perse, 2013).  

In 2007, the World Cancer Research Fund recommended to “limit intake of red meat and avoid 

processed meat” as one of the guidelines for healthy nutrition (World Cancer Research Fund & 

American Institute for Cancer Research, 2007). Analogue recommendations followed by e.g. the 

French National Cancer Institute (2009), the British Scientific Advisory Committee on Nutrition 

(2010) and the Superior Health Council in Belgium (2013). Changing the eating habits of individuals 

and a population is however a long process, and it is likely that meat and meat products will 

continue to have a large share in the total energy and protein intake of many people. Meanwhile, 

the meat industry is challenged to improve the nutritional profile of meat and meat products. This 

could be done by reducing (the formation of) potentially unhealthy constituents such as PAHs, 

HCAs, nitrite and oxidizing lipids and proteins, and/or by enriching meat products with health 

promoting bioactive compounds (Grasso, Brunton, Lyng, Lalor, & Monahan, 2014). By replacing 

synthetic with natural antioxidants rich in phenolic compounds, both of the above mentioned 

strategies could potentially be addressed. However, since bioactive compounds are often highly 

reactive and prone to interactions with other macronutrients such as lipids and proteins (Le 

Bourvellec & Renard, 2012; Ozdal, Capanoglu, & Altay, 2013), it remains a challenge to predict their 

bioactivity and bioavailability during processing, storage and digestion, and ultimately, their effect 
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on human health when consumed as a meat product additive (Zhang, Xiao, Samaraweera, Lee, & 

Ahn, 2010; Olmedilla-Alonso, Jiménez-Colmenero, & Sánchez-Muniz, 2013).  

 

1.2 PROTEIN OXIDATION IN MEAT 

1.2.1 Mechanisms of protein oxidation 

Protein oxidation is a complex phenomenon in which amino acid side chains and the peptide 

backbone are attacked by reactive oxygen species (ROS), leading to free radical chain reactions 

consisting of initiation, propagation and termination similar to those of lipid oxidation. Numerous 

ROS, such as superoxide (O2
●-), hydroperoxyl (HO2

●) and hydroxyl (HO●) radicals and nonradical 

species such as hydrogen peroxide (H2O2) and hydroperoxides (ROOH), can be generated through 

various chemical and biological reactions, such as lipid oxidation, metal-catalyzed oxidation (MCO), 

irradiation and oxidative enzymes (Xiong, 2000; Estévez, 2011).  

When proteins are subjected to ROS, a hydrogen atom is abstracted and a protein carbon-

centered radical (P●) is formed (reaction [1.1]). This protein radical will be converted to a protein 

peroxyl radical (POO●) in the presence of oxygen (reaction [1.2]), which in turn is able to abstract 

a hydrogen atom from another susceptible molecule or a protonated superoxide radical, forming 

a protein hydroperoxide (POOH) (reactions [1.3] and [1.4]). Further reactions with HO2
● lead to the 

formation of an alcoxyl radical (PO●) (reactions [1.5]) and its hydroxyl derivative (POH) (reactions 

[1.6]). It is noteworthy that the presence of oxygen is required for reaction [1.2], and therefore all 

ongoing reactions, to take place. In anaerobic conditions, two protein carbon-centered radicals 

may interact to form a carbon-carbon cross-link (reaction [1.7]) (Stadtman & Levine, 2003). 

 

PH + HO● → P● + H2O    [1.1] 

P● + O2 → POO●    [1.2] 

POO● + PH → POOH + P●   [1.3] 

POO● + HO2
●  → POOH + O2   [1.4] 
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POOH + HO2
● → PO● + H2O + O2  [1.5] 

PO● + HO2
● → POH + O2   [1.6] 

P● + P● → P-P     [1.7] 

 

1.2.1.1 Role of transition metals 

In these general mechanisms of protein oxidation, transition metals play an important role. Both 

their reduced and oxidized forms are able to cleave H2O2 through Fenton-like reactions (reaction 

[1.8] and [1.9]), resulting in the formation of radicals. Furthermore, reduced transition metals such 

as Fe2+ or Cu+ are able to replace HO2
● in reactions [1.4] to [1.6], as shown in reactions [1.10] to [1.12]. 

Hence, iron and other transition metals are able to initiate and catalyze propagation of oxidation. 

When bound to proteins, this can result in site-specific metal-catalyzed oxidation of amino acids 

near the metal-binding sites (Stadtman et al., 2003).  

 

Fe2+ + H2O2 → Fe3+ + HO- + HO●  [1.8] 

Fe3+ + H2O2 → Fe2+ + HO2● + H+   [1.9] 

POO● + Fe2+ + H+ → POOH + Fe3+  [1.10] 

POOH + Fe2+ → PO● + HO_ + Fe3+  [1.11] 

PO● + H+ + Fe2+ → POH + Fe3+   [1.12] 

 

Metal-catalyzed oxidation (MCO) is particularly important in meat because of its high levels of 

heme and non-heme iron. Most iron is bound to the porphyrin ring of heme proteins such as 

myoglobin, which is abundantly present in red meat. Upon heating, Fe2+ is released from the heme-

porphyrin moiety, and non-heme iron comes available for the reactions above (Kanner, 1994; 

Lombardi-Boccia, Martinez-Dominguez, & Aguzzi, 2002).  
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1.2.1.2 Role of myoglobin 

Besides being a source of non-heme iron upon heating, myoglobin as such is also able to promote 

protein oxidation. In the presence of oxygen, myoglobin is oxygenated into oxymyoglobin, which 

in turn can be oxidized into metmyoglobin (MbFe(III)). The latter can be activated by hydrogen 

peroxide to form perferrylmyoglobin radicals (●MbFe(IV)=O) (reaction [1.13]), which are highly 

reactive and decompose to ferrylmyoglobin (MbFe(IV)=O) by abstracting a hydrogen atom from a 

neighboring molecule or the protein itself (reaction [1.14]) (Kröger-Ohlsen, Carlsen, Andersen, & 

Skibsted, 2002; Libardi, Skibsted, & Cardoso, 2014).  

 

MbFe(III) + H2O2 → ●MbFe(IV)=O + H+ + H2O [1.13] 

●MbFe(IV)=O + PH → MbFe(IV)=O + P●  [1.14] 

 

In meat model systems, myoglobin species have been shown to catalyze protein oxidation to a 

greater extent than iron-catalyzed oxidation (Park, Xiong, & Alderton, 2006a; Park, Xiong, Alderton, 

& Ooizumi, 2006b; Park & Xiong, 2007; Estévez & Heinonen, 2010). In meat and meat products, it is 

however still unclear whether heme or non-heme iron acts predominantly as oxidation catalyst, 

and so far it is generally accepted that both pathways should be taken into account (Estévez, 2011). 

 

1.2.1.3 Role of lipid oxidation 

It is reasonable to assume that there is an interaction between lipid and protein oxidation by 

transfer of radical species between both phenomena (Estévez, 2011). Some studies have found 

correlations between the progression of lipid and protein oxidation in model systems as well as 

meat and meat products (Mercier, Gatellier, Viau, Remignon, & Renerre, 1998; Park et al., 2006a; 

Park et al., 2006b; Estévez, Kylli, Puolanne, Kivikari, & Heinonen, 2008b), whereas others found 

protein oxidation to be hardly affected by lipid oxidation (Liu & Xiong, 1996; Haak et al., 2006). It 
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is often observed that lipid oxidation progresses faster than protein oxidation, and therefore it is 

suggested that protein oxidation is induced by radicals formed during initiation and propagation 

of lipid oxidation, more likely than the other way round. Furthermore, amino acid side chains are 

able to react with lipid oxidation products, leading to indirect protein oxidation (Estévez, 2011). 

Although the exact interactions between protein and lipid oxidation in a complex matrix such as 

meat and meat products are still unclear, it is unlikely that both phenomena take place 

independently (Lund, Heinonen, Baron, & Estévez, 2011). 

 

1.2.2 Manifestation and assessment of protein oxidation in meat 

Free radical attack on proteins may result in modifications of the protein backbone or the amino 

acid side chains. A list of amino acid residues and their oxidation products is represented in Table 

1.1. Among them, cysteine, tyrosine, phenylalanine, tryptophan, histidine, proline, arginine, lysine 

and methionine have been pointed out as most susceptible to free radical and nonradical ROS 

(Lund et al., 2011).  

 

1.2.2.1 Thiol oxidation 

The thiol group on the cysteine residue is highly reactive and will readily oxidize in the presence 

of ROS. After a series of reactions as shown in Figure 1.1, thiol oxidation results in the formation 

of disulfides, sulfenic acid, sulfinic acid, sulfonic acid and thiosulfinates, of which disulfides and 

sulfenic acid are reversible thiol oxidation products (Nagy & Winterbourn, 2010). In meat science, 

it is generally believed that thiol oxidation results predominantly into disulfide cross-linking (Lund 

et al., 2007b; Jongberg, Skov, Tørngren, Skibsted, & Lund, 2011b; Li, Kong, Xia, Liu, & Li, 2013).  

Rather than measuring the exact oxidation product, thiol oxidation is often determined as loss of 

thiol groups. Thiol loss in meat is most commonly measured after reaction with 5,5’-dithiobis(2-

nitrobenzoic acid) (DTNB or Ellman’s reagent). DTNB forms a disulfide bond with free thiol groups, 

releasing a thiolate ion (TNB dianion) which can be measured spectrophotometrically and plotted 
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against a cysteine standard curve (Estévez, Morcuende, & Ventanas, 2009a). Although the DTNB 

method is widely applied, it only provides information on the extent, and not on the nature or 

reversibility of thiol oxidation. 

 

Table 1.1: Oxidative modification of amino acid side chains (adapted from Xiong, 2000; Levine & Stadtman, 
2001; Soladoye, Juárez, Aalhus, Shand, & Estévez, 2015). Amino acids highlighted with * are known to be 

essential amino acids for healthy adults. 

Amino acid  Type of modification Oxidation products 

Arginine Carbonylation γ-Glutamic semialdehyde 

Cysteine Cross-linking, 

sulfoxidation 

Disulfides (Cys–S–S–Cys or Cys–S–S–R), sulfenic acid 

(Cys-SOH), sulfinic acid (Cys-SO2H), sulfonic acid (Cys-

SO3H), thiosulfinates (Cys-S(O)-S-R) 

Glutamic acid Hydroxylation, adduct 

formation, 

deamination 

4-Hydroxyglutamic acid, pyruvate adducts, oxalic 

acid 

Histidine* Imidazole oxidation Aspartic acid, asparagine, 2-oxo-histidine, 4-

hydroxyglutamate 

Leucine* Hydroxylation 3-, 4-, and 5-Hydroxyleucine 

Lysine* Carbonylation α-Amino adipic semialdehyde 

Methionine* Sulfoxidation Methionine sulfoxide, methionine sulfone 

Phenylalanine* Hydroxylation 2-, 3-, and 4-Hydroxyphenylalanine, 2,3-

dihydroxyphenylalanine 

Proline Carbonylation, 

hydroxylation 

γ-Glutamic semialdehyde, pyroglutamic acid, 2-

pyrrolidone, 4- and 5-hydroxyproline 

Threonine* Carbonylation 2-Amino-3-ketobutyric acid 

Tryptophan* Hydroxylation, 

nitration 

Formylkynurenine, kynurenine, 2-, 4-, 5-, 6-, and 7-

hydroxytryptophan, 3-hydroxykynurenine, 

nitrotryptophan  

Tyrosine Hydroxylation, cross-

linking, nitration 

3,4-dihydroxyphenylalanine (DOPA), Tyr-Tyr cross-

links, 3-nitrotyrosine 

Valine* Hydroxylation 3-Hydroxyvaline 
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Figure 1.1: Thiol oxidation on the cysteine residue. 

 

Liu, Xiong, and Butterfield (2000a) quantified disulfides in myofibrillar proteins according to the 

method described by Damodaran (1985), based on disulfide cleavage with sodium sulfite followed 

by spectrophotometric quantification of the newly formed thiols. The reaction rate of sulfitolysis 

of disulfide bonds is however rather slow and rarely quantitative in the absence of catalysts (Kella 

& Kinsella, 1985; Hansen & Winther, 2009b). Furthermore, measures need to be taken to prevent 
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cross-reaction of sulfite with the thiol detection agent (Damodaran, 1985), making sulfite less 

appropriate as a reducing agent. Jongberg, Lund, Waterhouse, and Skibsted (2011a) used the strong 

reducing agent sodium borohydride (BH) to cleave disulfides in myofibrillar proteins, followed by 

thiol detection with DTNB. The excess of BH could easily be removed by acidification, after which 

the pH had to be readjusted for the DTNB reaction (pH 8). However, the large pH fluctuations 

required for this combination of reducing and thiol detection agent are unfavourable for thiol-

disulfide redox reactions (Hansen et al., 2009b). Both of these methods for disulfide quantification 

were performed in isolated myofibrillar proteins (Liu et al., 2000a; Jongberg et al., 2011a). However 

to the best of our knowledge, no attempts have been made to quantify disulfides in whole meat 

or meat products by this strategy, that is cleavage of disulfides and subsequent 

spectrophotometric measurement of newly formed thiols. 

Another way to evaluate disulfide formation in meat, in particular disulfide cross-linking of myosin, 

is by means of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Myosin 

makes up approximately 55% of the myofibrillar protein fraction, and in non-oxidized state 

contains about 42 thiol groups and no disulfide bonds (Hofmann & Hamm, 1978; Liu et al., 2000a). 

Upon oxidation, intermolecular disulfide cross-links would change the electrophoresis pattern, 

decreasing the band intensity of myosin heavy chain (MHC), with the simultaneous appearance of 

a cross-linked myosin heavy chain (CL-MHC) band (Ooizumi et al., 2004; Park et al., 2006b; Lund et 

al., 2007b; Jongberg et al., 2011b). The major drawbacks of this method are that (1) measurement 

of the band pixel intensity is merely semi-quantitative, and (2) only CL-MHC dimers are taken into 

account, since severely oxidized polymers would be too large to enter the gel. Furthermore, this 

SDS-PAGE procedure is usually applied to muscle tissue samples, whereas hardly any literature can 

be found on electrophoresis techniques on processed meat. Modifications of the myofibrillar 

proteins during processing, such as thermal denaturation and/or actions of microorganisms and 

enzymes, would make SDS-PAGE too nonspecific to be considered relevant (Estévez et al., 2009a). 
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1.2.2.2 Carbonylation 

The generation of carbonyl derivatives (aldehydes and ketones) is believed to be the most 

abundant manifestation of protein oxidation (Xiong, 2000). Four different pathways for carbonyl 

formation have been reported: (1) direct oxidation of amino acid side chains (Requena, Chao, 

Levine, & Stadtman, 2001), (2) covalent binding of non-protein carbonyls, such as secondary lipid 

oxidation products, through Michael addition (Stadtman et al., 2003). (3) non-enzymatic glycation 

reactions with reducing sugars (Akagawa, Sasaki, Kurota, & Suyama, 2005), and (4) fragmentation 

of the protein backbone through α-amidation reactions or oxidation of glutamyl side chains 

(Berlett & Stadtman, 1997; Hawkins & Davies, 2001), Park et al. (2006a) reported carbonylation 

through protein backbone scission to be negligible in porcine myofibrillar proteins. The relative 

contribution of the other three pathways to carbonyl formation in meat proteins remains 

unknown, although it is generally believed that direct oxidation of amino acid side chains is the 

major route, especially in MCO systems. In the presence of transition metals, lysine is oxidized into 

α-amino adipic semialdehyde (AAS) and arginine and proline into γ-glutamic semialdehyde (GGS) 

as shown in Figure 1.2. Reactive species first abstract a hydrogen atom neighboring the ε-amino 

group in the side chain, generating a carbon-centered protein radical. Next, oxidized metal ions 

accept the unpaired electron, forming an imino group which upon hydrolysis yields a carbonyl 

moiety (Estévez, 2011).  

The traditional method to determine protein carbonyl compounds in meat is by means of 2,4-

dinitrophenylhydrazine (DNPH). DNPH reacts with carbonyl groups to form 2,4-

dinitrophenylhydrazone, which is quantified spectrophotometrically based on its extinction 

coefficient (Estévez et al., 2009a). The DNPH method is a widely used, relatively rapid and 

inexpensive procedure rendering information on the total amount of protein carbonyls. However, 

it does not make a distinction between different carbonyl species, which makes it inappropriate 

to study the exact mechanisms of protein oxidation in meat.   
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Figure 1.2: Metal-catalyzed oxidation of lysine, arginine and proline into α-amino adipic semialdehyde (AAS) 
and γ-glutamic semialdehyde (GGS) (modified from Estévez, 2011). 
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The specific carbonyl compounds AAS and GGS were initially analyzed as biomarkers of protein 

oxidation in biological systems (Daneshvar, Frandsen, Autrupand, & Dragsted, 1997). This method 

was successfully adapted to apply in meat science using liquid chromatography electrospray 

ionization mass spectrometry (LC-ESI-MS) (Estévez, Ollilainen, & Heinonen, 2009b) or high 

performance liquid chromatography with fluorescence detection (HPLC-FLD) (Utrera, Morcuende, 

Rodríguez-Carpena, & Estévez, 2011). The sum of AAS and GGS has been reported to account for 23 

to 61% of total (DNPH-derivatized) carbonyls in oxidized plasma, liver and meat proteins (Requena 

et al., 2001; Akagawa et al., 2006; Utrera et al., 2011), hence AAS and GGS are believed to be good 

and reliable markers for protein oxidation. However, this value seems to vary greatly depending 

on the oxidation system and protein matrix. Nonetheless, the specific detection of AAS and GGS 

allows to better understand the mechanisms and pathways of protein oxidation. 

Protein carbonylation is known to be an irreversible process, however carbonyl moieties should 

not be considered as end-products of protein oxidation. In fact, a biphasic progression of total 

and/or specific carbonyls in meat proteins has been observed in several studies (Mercier, Gatellier, 

& Renerre, 2004; Salminen, Estévez, Kivikari, & Heinonen, 2006; Utrera & Estévez, 2013b). The initial 

increase corresponds to the accumulation of protein carbonyls, whereas the subsequent decrease 

indicates that carbonyls are subjected to ongoing reactions. Several reactions with the carbonyl 

groups have been suggested (Figure 1.3), including (1) ongoing oxidation of the carbonyl group into 

a carboxylic acid (Sell, Strauch, Shen, & Monnier, 2007), (2) reaction with the ε-amino group from 

another amino acid side chain e.g. lysine, forming a Schiff base cross-link (Dölz & Heidemann, 1989), 

(3) reaction with another protein-bound carbonyl group, forming an aldol condensation cross-link 

(Dölz et al., 1989), and (4) reaction with an α-amino group from a free amino acid, forming a 

Strecker aldehyde (Estévez, Ventanas, & Heinonen, 2011). 
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Figure 1.3: Ongoing reactions of protein carbonyls: (1) oxidation into a carboxylic acid, (2) formation of a 
Schiff base cross-link, (3) formation of an Aldol condensation cross-link, and (4) formation of a Strecker 

aldehyde (modified from Estévez, 2011). 

 

(1) 
"' 0~0 

(NH OH 

carboxylic acid 

(2) + 
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Sireoker aldehyde 
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The natural fluorescence of Schiff base structures can be measured with fluorescence 

spectroscopy (Utrera & Estévez, 2012b). Although rapid and inexpensive, the specificity towards 

carbonyl derived Schiff base structures cannot be assured with this type of measurements. The 

carboxylic acid α-amino adipic acid (AAA) has been identified as an ongoing oxidation product of 

AAS in cell cultures and model systems (Sell et al., 2007). The research group of Mario Estévez 

(University of Extremadura, Spain) has attempted to quantify AAA in meat by means of HPLC, 

helping to understand the pathway of lysine oxidation (Utrera et al., 2012b). Although AAA is said 

to be a stable end-product and might therefore be a more reliable protein oxidation marker than 

AAS (Estévez, 2011), the method requires further optimization and has thus far not been 

incorporated in other meat science laboratories. 

 

1.2.2.3 Hydroxylation 

Aromatic amino acids such as tryptophan, tyrosine and phenylalanine are also highly susceptible 

to oxidation. Rather than hydrogen abstraction, oxidation of these amino acids is mostly 

expressed as hydroxyl addition to the aromatic ring. As such, oxidation of phenylalanine may 

generate isomers of tyrosine, which can oxidize further into 3,4-dihydroxyphenylalanine (DOPA) 

or dityrosine as shown in Figure 1.4 (Hawkins et al., 2001; Lund & Baron, 2010). Hydroxylation of 

tryptophan can take place on the pyrrole or the benzene ring, generating 2-, 4-, 5-, 6-, and 7-

hydroxytryptophan. Attack on the pyrrole ring can eventually lead to kynurenine derivatives (Lund 

et al., 2010). 

In meat science, aromatic amino acid oxidation is mostly analyzed as loss of tryptophan, tyrosin 

or phenylalanine by means of UV or fluorescence spectroscopy (Gatellier et al., 2009; Utrera & 

Estévez, 2012a). Similar to measuring thiol loss, these measurements do not provide information 

on the type of oxidation products formed. Dityrosine formation has been observed in meat model 

systems (Morzel, Gatellier, Sayd, Renerre, & Laville, 2006; Lund, Luxford, Skibsted, & Davies, 2008), 

however has thus far not been detected directly in meat (Lund et al., 2010). 
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Figure 1.4: Oxidation of phenylalanine and tyrosine (modified from Lund et al., 2010). 
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1.2.3 Consequences of protein oxidation in meat and meat products 

1.2.3.1 Functional and technological properties 

Considering the damage that protein oxidation can cause, it is reasonable to believe that the 

biochemical and structural changes will affect the technological properties of meat proteins 

(Soladoye et al., 2015). The amino acid composition and sequence (primary structure) of proteins 

largely influence their native (secondary and tertiary) structure, ultimately determining their 

functionality. The chemical interactions between amino acids and surrounding water and lipid 

molecules are highly important for the gelling, emulsifying and water holding capacity (Xiong, 

2000; Puolanne & Halonen, 2010). Oxidation of these amino acids would lead to changes in protein-

protein, protein-water and protein-lipid interactions. Eventually, the physico-chemical 

modifications induced by protein oxidation could lead to protein unfolding, increased surface 

hydrophobicity, aggregate formation, and denaturation. Some of these oxidative changes could 

be beneficial, however most of them are detrimental for protein functionality, and this appears to 

depend on the type and extent of oxidation (Xiong, 2000). As such, mild intra- and intermolecular 

cross-linking could increase gel formation by stabilizing the gel matrix (Srinivasan & Hultin, 1997), 

however severe cross-linking can impair the gelling capacity by formation of rigid structures 

(Ooizumi et al., 2004; Bertram et al., 2007). Carbonylation of polar amino acids could lead to altered 

protein-protein and protein-water interactions, shifting electrical charges and decreasing the 

isoelectric point (Stadtman, 1990). This, together with cross-link formation, could lead to shrinkage 

of myofibrillar proteins, resulting in a decreased water holding capacity and increased cooking 

loss caused by protein oxidation (Bertram et al., 2007; Liu, Xiong, & Chen, 2010). 
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1.2.3.2 Sensory properties 

Oxidative modifications could not only affect the technological properties of meat proteins, but 

have also been suggested to influence sensory aspects. The decrease in sensory-assessed juiciness 

and tenderness in meat stored in oxygen-rich packaging, compared to oxygen-free storage, was 

suggested to be caused by disulfide cross-linking, decreasing the water holding capacity and 

strengthening the myofibrillar structure (Lund et al., 2007b). Rowe et al. (2004) suggested that the 

decreased meat tenderness in irradiated beef, measured instrumentally as Warner-Bratzler shear 

force, was caused by oxidative inactivation of the meat tenderizing enzyme µ -calpain, which has 

an oxidizable cysteine residue at its active site. Other studies found a significant correlation 

between protein carbonylation and instrumental hardness of meat products (Estévez & Cava, 2004; 

Estévez, Ventanas, & Cava, 2005; Ganhão, Morcuende, & Estévez, 2010a), suggesting the contribution 

of carbonyls to severe cross-linking. Next to textural changes, Estévez et al. (2011) also introduced 

a possible role of two specific carbonylation products, γ-glutamic and α-amino adipic 

semialdehyde (GGS and AAS, respectively), in the formation of Strecker aldehydes from (iso)leucine, 

which could contribute to an off-flavour in meat and meat products. 

 

1.2.3.3 Nutritional properties 

Besides a technological and sensory impact, protein oxidation could also have nutritional 

consequences. It is worth noting that eight out of the nine essential amino acids for healthy adults 

are known to be susceptible to oxidation (Table 1.1). Since part of the oxidative modifications are 

irreversible, such as carbonylation, protein oxidation could have a detrimental impact on the 

quantity and quality of essential amino acids, and thus, the nutritional value of meat (Estévez, 2011; 

Soladoye et al., 2015). Additionally, protein oxidation has been suggested to affect proteolysis 

during digestion. Controversial effects have been reported on this matter, depending on the 

oxidative and proteolytic conditions applied (Xiong, 2000). It is generally believed that relatively 
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mild oxidative conditions would partially unfold proteins, thereby enhancing the accessibility of 

digestive enzymes to their recognition sites and thus increasing proteolysis. Severe oxidation on 

the other hand will induce protein polymerization and aggregation through cross-link formation, 

structurally hindering proteolytic attack (Davies, 2001; Grune, Jung, Merker, & Davies, 2004; Bax et 

al., 2012). Furthermore, it is known that gastric pepsin preferentially cleaves at the carboxylic side 

of phenylalanine, methionine, leucine and tryptophan, while duodenal trypsin and α-chymotrypsin 

hydrolyze proteins at the carboxylic sides of tyrosine, phenylalanine, tryptophan, leucine, 

methionine, alanine, aspartic acid, glutamic acid, arginine and lysine (Santé-Lhoutellier, Engel, 

Aubry, & Gatellier, 2008b). Oxidation of these amino acids, whether through carbonylation, 

hydroxylation, thiol oxidation or cross-link formation, could be detrimental for protease 

recognition. Subsequently, severely oxidized proteins that are chemically and physically hindered 

to be hydrolyzed and absorbed in the stomach and small intestine, would be intensely fermented 

by the microbial flora in the colon (Evenepoel et al., 1998). During this bacterial fermentation, 

metabolites can be formed that might have mutagenic or carcinogenic properties. Phenol and p-

cresol, formed out of tyrosine fermentation, are probably the most widely discussed metabolites 

in this regard, however other potentially harmful metabolites such as ammonia, amines, NOCs and 

sulfides might contribute to an increased genotoxicity in the colon (Evenepoel et al., 1998; Hughes 

et al., 2000). However, all of these potential health effects (loss of essential amino acids, altered 

digestibility and metabolite formation) are still largely unexplored for meat proteins and require 

additional research (Soladoye et al., 2015). 
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1.3 ANTIOXIDANT STRATEGIES AGAINST PROTEIN OXIDATION IN MEAT 

Considering all of the above mentioned implications for meat quality, it is obvious that oxidation 

should be delayed as much as possible. Actions taken to control protein oxidation in meat and 

meat products are mostly adopted from lipid antioxidant approaches, including dietary strategies 

by supplementing antioxidants to the animal feed, and technological strategies by adding 

antioxidants during food processing (Lund et al., 2010; Estévez, 2011).  

 

1.3.1 Mechanisms of antioxidants 

Antioxidants can work at different levels in the oxidation cycle: they can scavenge initiating 

radicals, decompose peroxides, decrease oxygen concentrations or bind oxidation catalysts, such 

as metal ions (Shah, Bosco, & Mir, 2014; Shahidi & Ambigaipalan, 2015). As such, antioxidants can to 

a certain extend prevent initiation of the free radical chain reactions, or they can stabilize the 

radicals formed during propagation, thereby terminating the chain reactions (Shah et al., 2014). 

The most effective antioxidants are those interrupting the free radical chain reaction. Radical 

scavenging is a process in which free radicals are neutralized, by donating a hydrogen atom, or 

by reaction of antioxidant compounds with radicals to form resonance stabilized carbon centered 

radical adducts (Nimse & Pal, 2015). Often, chain-breaking antioxidant compounds have at least 

one aromatic (often phenolic) ring structure containing at least one hydroxyl group. This hydroxyl 

group is capable of donating a hydrogen atom to radicals generated during various stages of the 

oxidation cycle (reaction [1.15]) (Brewer, 2011; Shahidi et al., 2015). The resulting antioxidant radical 

is more stable than protein or lipid radicals because of resonance delocation throughout the ring 

structure, and therefore is not able to initiate or propagate oxidation itself in normal 

circumstances (Choe & Min, 2009). Antioxidant radicals are readily neutralized by forming a stable 

peroxy-antioxidant compound (reaction [1.16]) (Brewer, 2011), or can be regenerated by another 

hydrogen donating antioxidant.  
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AH + P●/PO●/POO● → A● + PH/POH/POOH [1.15] 

A● + A● → A-A     [1.16] 

 

Besides radical scavenging activity, some antioxidants are able to chelate metal ions. Vicinal 

hydroxyl groups on the aromatic ring structure of antioxidants stabilize transition metals in an 

inactive or insoluble form as suggested in Figure 1.5 (Falowo, Fayemi, & Muchenje, 2014), preventing 

the metal ions to catalyze oxidation.  

 

 

Figure 1.5: Metal chelating activity of antioxidants (modified from Falowo et al., 2014). 

 

Radical scavenging and metal chelating activity are generally considered as the primarily modes 

of action of antioxidants. Other antioxidative mechanisms include quenching singlet oxygen, 

absorbing UV radiation, decomposing hydroperoxides, and inhibiting enzymes (Choe et al., 2009; 

Kumar, Yadav, Ahmad, & Narsaiah, 2015). 

Finally, it should be noted that antioxidant compounds are able to exert pro-oxidant activity at 

certain concentrations or physiological conditions. As such, they are capable of reducing Fe3+ to 

Fe2+, and thus enable formation of initiating radicals through Fenton-like reactions (reaction [1.8] 

and [1.9]). This pro-oxidant activity is often observed at high concentrations (Moran, Klucas, Grayer, 

Abian, & Becana, 1997; Procházková, Boušová, & Wilhelmová, 2011). 
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1.3.2 Synthetic and natural antioxidants 

1.3.2.1 Synthetic antioxidants 

Synthetic antioxidants, such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), 

tert-butylhydroxyquinone (TBHQ), and propyl gallate (PG) have been widely used in meat products 

(Shah et al., 2014). These antioxidants contain one phenolic ring with one (BHA and BHT), two 

(TBHQ) or three (PG) hydroxyl groups (Figure 1.6). Hence, their antioxidant activity relies mainly on 

radical scavenging, and for PG also metal chelating (Kumar et al., 2015). They are lipid soluble, but 

(practically) insoluble in water.  

 

  

Figure 1.6: Synthetic antioxidants often used in meat products. 

 

Reports on the effects of synthetic antioxidants on consumer health are contradictory. As reviewed 

by Falowo et al. (2014), some of these compounds have been found cytotoxic or carcinogenic at 

high concentrations in laboratory animals, while other reports suggest they are not harmful for 

humans, and might even be anticarcinogenic. The use of synthetic antioxidants in food is strictly 

regulated by law (Falowo et al., 2014). In Europe, PG, TBHQ and BHA are allowed to be used in meat 
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products, alone or combined, in a maximum level of 200 ppm based on the fat content (European 

Parliament & Council of the European Union, 2008). 

 

1.3.2.2 Natural antioxidants 

Adverse toxicological reports on synthetic antioxidants, together with consumer’s growing interest 

in natural food additives, have prompted the food industry to search for natural alternatives with 

antioxidative potential in food matrices (Karre, Lopez, & Getty, 2013; Ahmad, Gokulakrishnan, 

Giriprasad, & Yatoo, 2015; Kumar et al., 2015). Plant materials of different kinds contain a variety of 

bioactive substances with antioxidant properties. These natural antioxidants, which can be found 

in the cell membranes of any plant parts (grains, fruits, nuts, seeds, leaves, roots, etc.), have similar 

radical scavenger and metal chelating properties as synthetic antioxidants, and have even been 

shown to have better antioxidant capacities than BHA or BHTin vitro, although this strongly 

depends on dosage and matrix (Kumar et al., 2015). 

The most important natural antioxidants in plant tissue include vitamins, carotenoids and 

phenolic compounds. The water soluble vitamin C (ascorbic acid, Figure 1.7) contains four hydroxyl 

groups (two pairs on adjacent carbon atoms), and can therefore act as a radical scavenger, metal 

chelator and oxygen quencher. Vitamin E (α-tocopherol, Figure 1.7) is lipid soluble and is able to 

scavenge radicals and quench oxygen (Brewer, 2011; Shahidi et al., 2015). Carotenoids such as ẞ-

carotene and lycopene (Figure 1.7) are good oxygen quenchers and radical scavengers, especially 

for peroxyl radicals. Their long unsaturated alkyl chains make them highly lipophilic (Nimse et al., 

2015). 
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Figure 1.7: Vitamins and carotenoids in plant material with antioxidant activity. 

 

The majority of natural antioxidants in plant material are however phenolic compounds, of which 

the most important ones are flavonoids and phenolic acids (Gülçin, 2012; Kumar et al., 2015). 

Flavonoids have a characteristic 15 carbon flavan structure arranged in three rings (C6-C3-C6), 

labelled A, B and C. Subclasses of flavonoids differ in the level of saturation of the C ring (Figure 

1.8A), and compounds within a subclass differ in the substitution pattern (hydroxylation and 

methoxylation) of the A and B rings (Brewer, 2011; Gülçin, 2012; Shahidi et al., 2015). Phenolic acids 

(hydroxybenzoic and hydroxycinnamic acid, Figure 1.8B) are hydroxy derivatives of aromatic 

carboxylic acids (Gülçin, 2012). The predominant mode of antioxidant activity of these phenolic 

compounds is believed to be radical scavenging through hydrogen donation from hydroxyl groups. 

Phenolic acids have also been shown to quench oxygen, while flavonoids have metal chelating 

potential, depending on the arrangements of hydroxyl and carbonyl groups around the molecule 

Hence, the antioxidant capacity of flavonoids and phenolic acids depend mainly on the pattern 

(number and location) of hydroxyl groups (Shahidi et al., 2015). Glycosylation of hydroxyl groups 

usually decreases the antioxidant effectiveness of phenolics (Shahidi, Janitha, & Wanasundara, 1992; 
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Kumar et al., 2015). Flavonoids and phenolic acids are hydrophilic compounds, and their solubility 

in fats and oils is very low (Choe et al., 2009). 

When using plant material as a source of natural antioxidants, often an extract is made in order 

to concentrate the target compounds and maximize the antioxidant power. Usually, the plant 

material is cleaned, dried, and ground into a fine powder followed by solvent extraction. The most 

suitable type of solvent depends on the chemical characteristics and polarities of the antioxidant 

compounds of interest. Mixtures of water with ethanol, methanol, acetone, or ethyl acetate are 

often found to be good extraction solvents. Next to the choice of solvent, the sample preparation, 

the solvent-sample ratio, and the extraction time, temperature and pressure are also important 

parameters in determining the extraction yield. Obviously, all traces of organic solvents must be 

removed before applying the extracts in food stuff, since they can affect human health (Shah et 

al., 2014). 

Finally, it should be noted that even when a food grade extract was produced out of plant 

material, the safety should not be taken for granted. Natural antioxidants are often perceived as 

harmless and even beneficial for health, and therefore unlimited to use. However, like synthetic 

phenolic antioxidants, natural antioxidants might potentially have mutagenic, carcinogenic or 

other pathogenic activities at high doses or after processing (Shahidi & Zhong, 2005). Hence, not 

only the efficacy but also the safety of natural antioxidants requires further research. 
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Figure 1.8: Backbone structures of natural phenolic compounds: (A) major subclasses of flavonoids, (B) 
major subclasses of phenolic acids. Compounds within a subclass differ in the substitution pattern of the 

phenolic ring(s) (modified from Shahidi et al., 2015). 
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1.3.2.3 Apple phenolics as a source of natural antioxidants 

Apples are an important part of the Belgian diet as well as the Belgian fruit production. Apples 

take up the highest amount of fresh fruit purchased for home use in Flanders, followed by oranges 

and bananas (19.5%, 15.8% and 15.7%, respectively, in 2015). The most popular apple cultivar in 

Flanders is Jonagold, although its market share is decreasing because of the growing popularity 

of the imported Cripps Pink cultivar (commercial name “Pink Lady”). In 2014, the Belgian apple 

production accounted for 42% of the total national fruit production volume, only preceded by 

pears (51%) (Platteau, Van Gijseghem, Van Bogaert, & Vuylsteke, 2016). However, only apples that 

meet strict quality criteria reach the fresh market, and those with deviating size, shape or color 

distribution are often categorized as ‘low quality fruit’, even though there is no quality loss from 

a nutritional point of view (De Paepe, 2014).  

In fact, apples, either of high or so-called low quality, are a good source of phenolic compounds, 

and it is well documented that apple peel contains higher concentrations of phenolics than apple 

flesh (Burda, Oleszek, & Lee, 1990; Eberhardt, Lee, & Liu, 2000; Wolfe & Liu, 2003). Recently, De Paepe 

et al. (2015b) investigated the phenolic profiles of 47 apple cultivars occurring in Belgium, enabling 

the selection of apple cultivars for breeding programs, and/or for studying processing 

characteristics and health promoting effects. The same authors studied the preservation of 

phenolic compounds during the production of cloudy apple juice by spiral-filter pressing and belt 

pressing (De Paepe et al., 2015a). With both systems, the majority of phenolic compounds ended 

up in the apple pomace (press residue), since large, phenolic-rich apple skin particles cannot be 

transferred through the filter element or belt. Because of the fast processing and the low oxygen 

levels in the extraction chamber of the spiral-filter press, phenolic compounds in both the apple 

juice and pomace were better preserved with the spiral-filter press technology as compared to 

conventional belt pressing (De Paepe et al., 2015a). As such, spiral-filter pressing of (‘low quality’) 

apples does not only produce phenolic-rich juice, but also a valuable by-product. 
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The phenolic profile and content in apples varies depending on several factors, such as the variety, 

cultivar, geographic origin, growing year, weather conditions, maturity stage, crop load, and fruit 

position within the canopy (De Paepe, 2014). Generally, the main representative phenolics in (whole) 

apple and apple pomace are the phenolic acid chlorogenic acid (subclass hydroxycinnamic acids), 

and the flavonoids (epi)cathechin and procyanidin B2 (subclass flavanols), phloridzin (subclass 

dihydrochalcones), and quercetin and derivatives (subclass flavonols) (Lu & Yeap Foo, 2000; Lee, 

Kim, Kim, Lee, & Lee, 2003; Diñeiro García, Valles, & Picinelli Lobo, 2009; Neveu et al., 2010; Rothwell 

et al., 2012; Rothwell et al., 2013; De Paepe et al., 2015a). In vitro antioxidant assays showed that 

these individual apple phenolics exert higher antioxidant activity than vitamin C or E, and that the 

contribution of vitamin C in apple (on average 12.8 mg/100 g fresh weight) to the total antioxidant 

activity is only minor compared to phenolics (Wang, Cao, & Prior, 1996; Lu et al., 2000; Lee et al., 

2003). Hence, all of these findings suggest that apple pomace could potentially be used as a source 

of natural, phenolic antioxidants, thereby valorizing the by-product of apple juice production, and 

answering consumers’ demand for natural ingredients. 

 

1.3.3 Antioxidants against protein oxidation in meat and meat products 

Although in vitro tests may show high radical scavenging and metal chelating activity of 

antioxidants, it is important to investigate their efficacy in food products. Synthetic antioxidants 

as well as phenolic-rich fruit and plant materials have been added to meat products to investigate 

their protection towards the lipid and protein fraction. Theoretically, it could be expected that 

lipophilic antioxidants prevent lipid oxidation whereas hydrophilic antioxidants are effective 

inhibitors of protein oxidation. However, even in simplified model systems it has been shown that 

some hydrophilic antioxidants had a protective effect on lipids (Baron, Berner, Skibsted, & 

Refsgaard, 2005), and the lipophilic α-tocopherol was able to inhibit the formation of protein 

carbonyls GGS and AAS in myofibrillar protein (Estévez et al., 2010). In raw pork patties, Haak, Raes, 

and De Smet (2009) found lipid soluble α-tocopherol and ascorbyl palmitate to inhibit protein 
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thiol oxidation better than their water soluble variants trolox and ascorbic acid. This emphasizes 

that it remains a challenge to predict the kinetics and mechanisms of antioxidants against lipid 

and protein oxidation in complex (emulsion-type) meat systems. Furthermore, the possible 

interaction of antioxidants with macromolecules in the meat matrix such as lipids, proteins and 

carbohydrates might modify their radical scavenging and metal chelating properties (Estévez et 

al., 2008b).  

Thus far, most studies on antioxidants in meat have been applied on fresh and freshly prepared 

meat such as ground meat and patties, whereas their effect on extensively processed meats has 

been much less studied, especially with regard to protein oxidation. It is however likely that severe 

muscle structure modification, thermal treatment, and functional ingredients such as salt and 

phosphate can lead to even more matrix effects (Jiang & Xiong, 2016). Some of the works on 

antioxidants against protein and lipid oxidation in meat and meat products are presented in Table 

1.2. While most of the applied antioxidants exert an inhibitory effect on lipid oxidation, the effects 

towards protein oxidation are often less pronounced or even pro-oxidative. Unfortunately, often 

only one (non-specific) protein oxidation marker, or one category (thiol oxidation or 

carbonylation), is considered (Table 1.2).  

Among synthetic antioxidants, BHT at a concentration of 100 ppm has been shown to protect 

proteins against thiol oxidation and carbonylation during refrigerated storage of raw pork patties 

(Choe, Kim, & Kim, 2017), while 200 ppm significantly inhibited protein carbonylation in pork liver 

pâté after processing (90 days storage at 4 °C) (Estévez, Ventanas, & Cava, 2006). During illuminated 

chilled storage of raw pork patties, 200 ppm of BHA was able to inhibit thiol oxidation, however 

the decrease in carbonyl content compared to the control (without BHA) was not significant (Jia, 

Kong, Liu, Diao, & Xia, 2012). TBHQ (200 ppm) significantly decreased carbonylation during cold 

storage of non-radiated and radiated raw chicken breast (Rababah et al., 2004).  
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Table 1.2: Effects of antioxidant towards protein and lipid oxidation in meat and meat products. 
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Reference 
             

Raw pork 
patties 

Persimmon peel extract (0.05, 0.1 and 0.2%) 
BHT (0.01%) 
Ascorbate (0.05%) 

A 
A 
A 

- 
A 
A 
A 

- -  
A 
A 
A 

- 
A 
A 
A 

A 
A 
A 

Choe et al., 
2017 

             

Pork cooked 
ham 

Garlic, cinnamon, cloves and rosemary 
essential oil (1 g/kg) 
Artinox®1 (3 g/kg) 
Rose hip extract (300 mL/kg) 

- - 

 
A 
A 
A 

- - 

  
A 
A 
A 

- - - 
Armenteros et 
al., 2016 

             

Pork 
emulsions 

Green tea extract (100 ppm) 
Green tea extract (500 ppm) 
Green tea extract (1500 ppm) 

NS 
P 
P 

A 
NS 
P 

- - - 
 A 

A 
A 

- - - 
Jongberg et 
al., 2015b  

             

Bologna type 
sausage 

Green tea extract (500 ppm) 
Rosemary extract (400 ppm) 

P 
NS 

P 
NS 

A 
A 

- - 
 A 

NS2 
- - - 

Jongberg et 
al., 2013 

             

Raw pork 
patties 

Rosemary essential oil (0.05 and 0.4%) 
Oregano essential oil (0.05 and 0.4%) 
Garlic essential oil (0.05 and 0.4%) 

A 
A 
P 

A 
A 
P 

- - - 
 

- - - - 
Nieto et al., 
2013 

             

Frankfurters Dog rose extract (5 and 30 g/kg) - - - A - 
 

- A - - 
Vossen et al., 
2012 

             

Raw pork 
patties 

Black current extract (5, 10 and 20 g/kg) 
BHA (0.2 g/kg) 

A3 
A 

- 
A4 
NS 

- -  
A 
A 

- - - Jia et al., 2012 
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Table 1.2: Effects of antioxidant towards protein and lipid oxidation in meat and meat products. 

  Protein oxidation  Lipid oxidation  
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Reference 
             

Raw beef 
patties 

White grape extract (500 ppm) NS NS NS - -  A - - - 
Jongberg et 
al., 2011b  

             

Raw pork 
patties 

Avocado var. ‘Hass’ peel or seed extracts (5%) 
Avocado var. ‘Fuerte’ peel or seed extracts (5%) 

- - 
A 
NS 

- -  
A 
A 

- - - 
Rodríguez-
Carpena et al., 
2011 

             

Cooked pork 
patties 

Arbutus berry extract (3%) 
Common hawthorn extract (3%) 
Dog rose extract (3%) 
Elm-leaf blackberry extracts (3%) 

- - 

NS 
NS 
NS 
NS 

A 
A 
A 
A5 

A 
A 
A 
A 

 - - - - 
Ganhão et al., 
2010b  

             

Beef and pork 
cooked ham 

Apple polyphenol extract (0.3, 0.5 and 1 g/kg) 
Ascorbic acid (0.4 g/kg) 

- - 
NS6 
NS 

- -  
A 
A 

- - - Sun et al., 2010 

             

Raw pork 
patties 

Ascorbic acid (100 and 200 ppm) 
Tocopherol (100 and 200 ppm) 
Rosemary extract (100 ppm) 
Green tea extract (100 ppm) 

NS 
NS7 
NS7 
NS7 

- - - -  

P 
A 
A 
A 

- - - 
Haak et al., 
2009 

             

Raw beef 
patties 

Rosemary extract (0.05%) 
Ascorbic acid/sodium citrate (0.05%) 

- - 
NS 
P 

- -  
A 
A 

- - - 
Lund et al., 
2007a  

             

Pork liver 
pâté 

Rosemary essential oil (0.1%) 
Sage essential oil (0.1%) 
BHT (0.02%) 

- - 
A 
A 
A 

- -  - - - - 
Estévez et al., 
2006b  
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Table 1.2: Effects of antioxidant towards protein and lipid oxidation in meat and meat products. 

  Protein oxidation  Lipid oxidation  

Meat type Antioxidant 
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Reference 
             

Cooked pork 
patties 

Rapeseed meal extract (0.3, 0.5 and 0.7%) 
Camelina meal extract (0.3, 0.5 and 0.7%) 
Soy meal or flour extract (0.3, 0.5 and 0.7%) 
Rosemary extract (0.04 and 0.08%) 
Rapeseed, camelina or soy (0.5%) + rosemary 
(0.04%) extract 

- - 

A 
A 
NS 
A8 
A 
 

- -  - 

A 
A 
NS 
A8 
A 
 

- - 
Salminen et 
al., 2006 

             

Frankfurters Rosemary essential oil (150, 300 and 600 ppm) - - A9 - -  - - - - 
Estévez et al., 
2005 

             

Cooked pork 
patties 

Rapeseed meal (141, 282, 353 and 424 mg/100 g) 
Rapeseed meal extract (15 and 29 mL/100 g) 
Rapeseed oil extract (2 and 5 mL/100 g) 
Pine bark extract (7 and 11 mL/100 g) 

- - 

A 
A 
A 
A 

- -  - 

A 
A 
A 
A 

- - 
Vuorela et al., 
2005 

             

Raw chicken 
breast 

Green tea extract (3000 and 6000 ppm) 
Grape seed extract (3000 and 6000 ppm) 
TBHQ (200 ppm) 

- - 
A 
A 
A 

- -  
A 
A 
A 

- - - 
Rababah et al., 
2004 

             

TBARS, thiobarbituric acid reactive substances; A, significant antioxidative effect compared to control; P, significant pro-oxidative effect compared to control; NS, 
non-significantly different from control. 1Commercial antioxidant consisting of a combination of additives (sodium citrate : sodium erythorbate 1:1). 2Antioxidative 
effect close to significance (P = 0.062). 3NS at 5 g/kg. 4NS at 20 g/kg. 5Only significant for GGS formation. 6Antioxidative effect at end of storage in beef. 7Antioxidative 
effect after frozen storage. 8NS at 0.04%. 9NS at 150 ppm.  
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Ascorbic acid (vitamin C) and its salt sodium ascorbate have been applied as antioxidants with 

varying results. During cold storage of raw patties, ascorbate (500 ppm) significantly reduced thiol 

oxidation and carbonylation, however, inhibition percentages were higher for BHT than for 

ascorbate (Choe et al., 2017). Ascorbic acid brine injection of cooked hams significantly decreased 

lipid oxidation during cold illuminated storage, but had no significant effect on protein 

carbonylation (Sun et al., 2010). Lund et al. (2007a) found the combination of ascorbic acid and 

sodium citrate (both 0.05%) to be an effective antioxidant towards lipid oxidation in beef patties 

during cold storage (80% oxygen or absence of oxygen), however it had a pro-oxidative effect on 

protein carbonyl formation in both packaging atmospheres. Somewhat opposite effects were 

reported by Haak et al. (2009) on ascorbic acid addition (100 and 200 ppm) to raw pork patties 

during illuminated cold storage. These authors observed a pro-oxidative effect of ascorbic acid 

towards lipid oxidation, whereas results for thiol oxidation revealed no significant differences. The 

same authors also tested α-tocopherol as antioxidant in raw pork patties, which had an 

antioxidant character towards lipid oxidation, but was only able to significantly inhibit thiol 

oxidation after frozen storage (Haak et al., 2009).  

Several botanical phenolics have been investigated for their antioxidant capacity towards protein 

oxidation in meat. Often, (commercial) essential oils or solvent extracts of phenolic-rich plant 

material are used. Rosemary has shown a significant inhibition of protein carbonylation in cooked 

pork patties (Salminen et al., 2006), frankfurters (Estévez et al., 2005), liver pâté (Estévez et al., 2006), 

and Bologna type sausages (Jongberg et al., 2013), but not in raw beef patties (Lund et al., 2007a). 

The effect of rosemary on thiol oxidation was not significant in Bologna type sausages (Jongberg 

et al., 2013), but in raw pork patties, rosemary showed significant thiol protection (Haak et al., 2009 

after frozen storage; Nieto et al., 2013). Green tea phenolics protected meat proteins against 

carbonylation in raw chicken breast (Rababah et al., 2004) and Bologna type sausages (Jongberg 

et al., 2013), and against thiol oxidation in raw pork patties, however only after frozen storage 

(Haak et al., 2009). In Bologna type sausages, a pro-oxidative effect of green tea extract on thiol 

oxidation was observed (Jongberg et al., 2013). The same research group found green tea extract 
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to affect thiol oxidation in pork emulsions in a dose-dependent way, and suggested the occurrence 

of protein-phenolic interactions at high phenolic concentrations (Jongberg et al., 2015b). Dog rose 

extract was an effective antioxidant against GGS and AAS formation in frankfurters (Vossen et al., 

2012), and against GGS formation in cooked pork patties (Ganhão et al., 2010b), although in the 

latter study no significant effect on total carbonylation was observed. From these results, it is clear 

that variations in selected plant material, phenolic composition, extraction procedure, applied 

concentration, meat matrix, meat processing steps and storage conditions may result in a different 

antioxidant or pro-oxidant outcome. Furthermore, the choice of protein oxidation markers should 

be made carefully, since the effects of phenolic antioxidants are not always similar for different 

protein oxidation manifestations. 

Few literature can be found on the use of apple phenolics against protein oxidation in meat and 

meat products. Sun et al. (2010) added a commercial apple polyphenol extract (0.3, 0.5 and 1 g/kg) 

to the curing brine for beef and pork cooked ham, and observed a significant inhibition of lipid 

oxidation during cold illuminated storage, similar or better than the ascorbic acid treatment (0.4 

g/kg). Protein carbonyls in beef cooked ham were only significantly lower than the control in the 

1 g/kg apple phenolic treatment at the end of storage. In pork cooked ham, the level of carbonyl 

compounds decreased slightly by addition of apple phenolics, though not significantly. Other 

studies have investigated the effects of apple phenolics towards lipid oxidation in meat, without 

including protein oxidation measurements. Yu et al. (2015) found a commercial apple phenolic 

extract to be more effective than BHT in simultaneously inhibiting TBARS and the formation of 

volatile compounds during storage of Chinese-style (salami-like) sausages. In mutton meat balls, 

the addition of apple pomace powder (1% ,3% and 5%) significantly decreased TBARS values 

compared to the control (without antioxidants added) (Rather, Akhter, Masoodi, Gani, & Wani, 

2015). Nuñez de Gonzalez, Boleman, Miller, Keeton, and Rhee (2008) evaluated pork sausage treated 

with 3% and 6% dried plum and apple puree. After cooking and refrigerated storage, TBARS values 

in the 6% treatment were significantly lower than in the control. Hence, these studies suggest that 

apple phenolics have the potential to act as an antioxidant in meat and meat products. However, 
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as shown in Table 1.2, the inhibition of lipid oxidation does not automatically guarantees 

antioxidant protection of the protein fraction, and a thorough evaluation is needed to elucidate 

the effect of apple phenolics on meat protein oxidation. 

 

1.3.4 Role of nitrite and ascorbate 

In cured meat products, nitrite is mainly used for its antimicrobial effect (especially against 

Clostridium botulinum), and to obtain the desired pink colour of cooked meat products. To obtain 

this colour, nitrite is first reduced into nitric oxide, which reacts with myoglobin to form 

nitrosomyoglobin. Upon heating, the latter denatures into globin and the pink nitroso-

myochromogen. Ascorbate, as a strong reducing agent, speeds up the process of colour formation, 

mainly by catalyzing the reduction from nitrite to nitric oxide (Feiner, 2006b; Skibsted, 2011). Besides 

these functions of nitrite, it has also been shown to have an antioxidant effect towards lipid 

oxidation. The main mode of action is believed to be an interaction of nitric oxide with lipid 

radicals, forming non-radical addition products and thereby terminating the lipid oxidation chain 

reactions (Skibsted, 2011). Other antioxidant activity of nitrite involves NO binding to heme and 

non-heme iron, inhibiting the catalytic activity of iron towards oxidation (Morrissey & 

Tichivangana, 1985). Furthermore, in the presence of oxygen, the NO molecule can easily be 

oxidized to NO2. In this way, nitrite acts as an antioxidant by oxygen sequestering (Honikel, 2008). 

On the other hand, the strong oxidizing character of nitrite could make it a pro-oxidant as well, 

by forming reactive nitrogen species. As such, nitric oxide can react with a superoxide anion to 

form peroxynitrite, which is able to induce lipid oxidation in food (Brannan, Connolly, & Decker, 

2001). The antioxidant or pro-oxidant activity of nitric oxide is highly dependent on the 

concentration of reactive species (Rubbo et al., 1994). 

Although the inhibitory effect of nitrite on lipid oxidation in meat and meat products is well 

established (Zanardi, Ghidini, Battaglia, & Chizzolini, 2004; Balev, Vulkova, Dragoev, Zlatanov, & 

Bahtchevanska, 2005), only few studies on nitrite and protein oxidation have been reported in 

meat science. Vossen and De Smet (2015) found no antioxidant or pro-oxidant effect of nitrite on 
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protein oxidation (carbonylation and thiol oxidation) in myofibrillar protein isolates or raw pork 

patties, although TBARS values were significantly lower in patties treated with nitrite. During 

processing of fermented sausages, Villaverde, Morcuende, and Estévez (2014) observed pro-

oxidative activity of nitrite towards carbonyl and Schiff base formation and tryptophan depletion, 

whereas ascorbate acted as an antioxidant. Their results suggested that ascorbate might be 

required to compensate the pro-oxidant impact of nitrite on meat proteins. However, in a similar 

study by Berardo et al. (2016), the combined addition of ascorbate and nitrite to dry fermented 

sausages resulted in higher carbonyl levels compared to their separate addition. Ascorbate, nitrite 

and their combination significantly inhibited lipid oxidation, however no significant differences in 

thiol loss were observed. Hence, it can be concluded that nitrite and ascorbate act differently 

against lipid and protein oxidation, and the role of these curing agents towards protein oxidation 

remain to be fully elucidated.  
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1.4 RESEARCH OBJECTIVES AND THESIS OUTLINE 

The aim of this PhD research was to clarify the underlying mechanisms of protein oxidation during 

storage and digestion of meat and meat products, and the potential inhibition thereof by apple 

phenolics. In this Chapter 1, the mechanisms and consequences of protein oxidation in meat were 

elucidated, and current methods for measuring protein oxidation in meat were discussed. 

Furthermore, the mechanisms of synthetic and natural antioxidants were discussed, as well as 

their use in meat products. In the following chapters, several protein oxidation manifestations will 

be investigated in meat protein matrices in various oxidation systems, with or without the presence 

of apple phenolics (Figure 1.9). 

 

 

Figure 1.9: Oxidation mechanisms studied in the research and their relation to the chapters. MCO, metal-
catalyzed oxidation; O2, molecular oxygen; MPI, myofibrillar protein isolation. In chapters denoted with *, 

apple phenolics were used as a source of natural antioxidants. 

 

As discussed in Section 1.2.2.1, thiol oxidation in meat is often measured spectrophotometrically as 

thiol loss by means of the thiol detection agent DTNB. Spectrophotometric measurement of 

disulfides in myofibrillar proteins has been performed by using sulfite or sodium borohydride as 

a reducing agent (Liu et al., 2000a; Jongberg et al., 2011a), however drawbacks to these methods 

include slow reaction rates, cross-reactivity and unfavourable pH fluctuations (Hansen et al., 

2009b). In 2013, Ruan, Chen, Kong, & Hua found 4,4’-dithiodipyridine (4-DPS) to be a more suitable 

and reliable thiol detection agent in soy proteins, as it is less affected by pH and denaturants. In 
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Chapter 2, a new method for determination of free and total thiols in meat was introduced, based 

on reduction with sodium borohydride and thiol detection with 4,4’-dithiodipyridine. This 

combination of reducing and detection agent has been applied on small proteins in biomolecular 

science (Hansen, Ostergaard, Norgaard, & Winther, 2007), but has thus far not been tested in meat 

science. The method was applied on ground beef during storage under high-oxygen atmosphere, 

since previous work has shown significant thiol oxidation as measured with DTNB in these 

conditions (Jongberg et al., 2011a; Jongberg et al., 2011b; Zakrys-Waliwander, O'Sullivan, O'Neill, & 

Kerry, 2012). This method allowed to get more insight on the reversibility of thiol oxidation in meat 

during high-oxygen storage. 

Chapter 3 covers the carbonylation pathway of myofibrillar proteins during in vitro metal-

catalyzed oxidation in the presence of apple phenolics. A model system was set up to obtain a 

controlled oxidation of isolated myofibrillar proteins, using Fe3+ and H2O2 to induce radical 

formation through Fenton-like reactions. The isolation of myofibrillar proteins allowed to evaluate 

protein oxidation without the interference of other meat components (Vossen et al., 2015). The 

suspensions were treated with three pure phenolic compounds and an apple peel extract. 

Chlorogenic acid, (-)-epicatechin and phloridzin were chosen to represent apple phenolics from 

different phenolic classes and subclasses (see Section 1.3.2.3). Apple peel (from the apple cultivar 

Cripps Pink) instead of whole apple or apple pomace was chosen for the extract preparation, 

because of its superior phenolic content. The experimental conditions (concentrations and 

temperature) were based on literature (Estévez et al., 2009b; Estévez et al., 2010; Utrera & Estévez, 

2013a), specifically chosen to enlarge and accelerate oxidation and the effects of phenolics. HPLC 

determination of α-amino adipic and γ-glutamic semialdehydes and fluorescence measurement 

of Schiff base cross-links allowed to evaluate the potential function of apple phenolics as natural 

antioxidants against meat protein oxidation. 

Although in vitro model systems are useful for comprehending the mechanisms and pathways of 

oxidation, the effects of the food matrix are not taken into account. Furthermore, these model 

systems do not reflect the realistic oxidative conditions that occur during storage or digestion of 
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meat and meat product. In Chapter 4 and 5, protein oxidation was studied in whole meat and 

meat products during storage and digestion experiments that mimic realistic conditions. Because 

of the complexity of protein oxidation, a combination of protein oxidation assays is crucial in 

order to provide accurate information about oxidative protein damage and its consequences. In 

Chapter 4, a hitherto unique combination of protein oxidation markers was used to shed light on 

the oxidative degradation of beef and pork patties during illuminated storage and in vitro  

digestion. Meat patties and digests were subjected to thiol measurement as developed in Chapter 

2, and carbonyl formation was measured as total and specific carbonylation. For the latter, the 

HPLC analysis of AAS and GGS from Chapter 3 was adapted to a more rapid and accurate UHPLC 

analysis. Furthermore, 4-hydroxyphenylalanine was identified and quantified as a new protein 

oxidation marker in meat. Proteolysis measurement allowed to understand the effect of protein 

oxidation on digestibility. 

To investigate the effects of apple phenolics (as a source of natural antioxidants) on oxidation 

and digestibility, emulsion-type sausages were enriched with freeze dried apple pomace and 

subjected to illuminated storage and subsequent in vitro digestion in Chapter 5. Emulsion-type 

sausages were chosen for the ease of incorporating new ingredients during processing. Apple 

pomace (from the apple cultivar Jonagold) instead of apple peel was chosen because the pomace, 

and not the peel alone, is a by-product of apple juice production that may be valorized, and it is 

well documented that a large part of the phenolic compounds are retained in the pomace after 

pressing (Yeap Foo & Lu, 1999; Lu et al., 2000; Diñeiro García et al., 2009; De Paepe et al., 2015a). No 

extract was made to investigate whether drying of apple pomace alone, without extracting and 

thus concentrating the phenolics, would be sufficient to inhibit oxidation. Analysis of thiols, total 

and specific carbonyls, and proteolysis allowed to evaluate the actions and reactions of apple 

phenolics in meat emulsions. 

Table 1.3 provides the hypotheses of the research and their relation to the chapters. To conclude, 

a general discussion and future prospects are given in Chapter 6.  
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Table 1.3: Hypotheses of the research and their relation to the chapters 

 Hypothesis Chapter 

H1 Free and total thiols as measured with 4,4’-dithiodipyridine (4-DPS) are good 

markers for protein oxidation in meat 

2, 4, 5 

H2 Total carbonyl level as measured with 2,4-dinitrophenylhydrazine (DNPH) is a 

good marker for protein oxidation in meat 

4, 5 

H3 γ-Glutamic semialdehyde (GGS) and α-amino adipic semialdehyde (AAS) as 

measured with (U)HPLC-FLD are good markers for protein oxidation in meat 

3, 4, 5 

H4 Schiff base structures as measured with fluorescence spectroscopy are good 

markers for protein oxidation in meat 

3 

H5 4-hydroxyphenylalanine as measured with UHPLC-FLD is a good marker for 

protein oxidation in meat 

4 

H6 Cysteine thiol loss in meat proteins is caused by reversible disulfide formation 2 

H7 γ-Glutamic semialdehyde (GGS) and α-amino adipic semialdehyde (AAS) are the 

most abundant protein carbonyls in meat 

4, 5 

H8 Apple phenolics can be used as a source of natural antioxidants against protein 

oxidation in meat 

3, 5 

H9 Protein oxidation in meat affects proteolysis during in vitro digestion 4, 5 

H10 The antioxidative role of apple phenolics in meat reduces the effects of protein 

oxidation on proteolysis during in vitro digestion 

5 
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Chapter 2 Reversible and irreversible thiol oxidation in ground beef as detected with 4,4’-

dithiodipyridine 

 

Chapter 2 

Reversible and irreversible thiol oxidation in ground beef as 

detected with 4,4’-dithiodipyridine 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Redrafted after 

Rysman, T., Jongberg, S., Van Royen, G., Van Weyenberg, S., De Smet, S., & Lund, M. N. (2014). Protein 

thiols undergo reversible and irreversible oxidation during chill storage of ground beef as detected 

by 4,4'-dithiodipyridine. Journal of Agricultural and Food Chemistry, 62, 12008-12014.  
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ABSTRACT 

Quantification of protein thiols (free and total) in ground beef during storage under high-oxygen 

atmosphere at 4 °C was performed by thiol detection using 4,4’-dithiodipyridine (4-DPS) before 

and after reduction using sodium borohydride. Two independent storage trials were performed, 

and in trial 1, only reversible thiol oxidation was observed (thiol loss was 30%). In trial 2, irreversible 

thiol oxidation occurred during the first days of storage, while further loss of thiols was caused 

by reversible oxidation (thiol loss was 33% of which ca. half was lost due to irreversible oxidation). 

The results were compared with SDS-PAGE analysis of cross-linked myosin heavy chain formed by 

disulfide bonding. Assuming that all reversible thiol loss was caused by disulfide cross-linking, both 

methods confirmed increasing disulfide formation in meat during storage, but the 4-DPS method 

showed higher disulfide percentages than the SDS-PAGE method (22.2 ± 0.3% and 8.5 ± 1.2%, 

respectively). The 4-DPS assay provides an accurate method to evaluate the reversibility of thiol 

oxidation in meat. 
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2.1 INTRODUCTION 

Protein oxidation in meat and meat products is known to have an impact on protein functionality, 

sensory aspects and nutritional values (Estévez, 2011; Lund et al., 2011). The oxidation of thiol groups 

(RSH) of the cysteine residue in myosin (the most abundant myofibrillar protein) results in the 

formation of disulfide cross-links (RSSR) and has shown to alter texture properties resulting in a 

decreased tenderness and juiciness of meat (Lund et al., 2007b; Kim, Huff-Lonergan, Sebranek, & 

Lonergan, 2010; Lund et al., 2011; Zakrys-Waliwander et al., 2012; Jongberg, Wen, Tørngren, & Lund, 

2014). Furthermore, the structural changes in proteins due to cross-linking may affect their 

recognition sites for proteases, making the oxidized proteins less susceptible to proteolysis, 

resulting in a decreased digestibility (Rowe et al., 2004; Morzel et al., 2006; Santé-Lhoutellier, Aubry, 

& Gatellier, 2007). Thiol oxidation is complex and may lead to the formation of multiple oxidation 

products, such as disulfides, sulfenic acid, sulfinic acid, sulfonic acid, and thiosulfinates of which 

disulfides and sulfenic acid are reversible thiol oxidation products (Nagy et al., 2010). Most often 

oxidation of thiol groups is evaluated by quantification of the loss of thiol groups and not by 

quantification of thiol oxidation products, but it is generally believed that thiol loss results 

primarily in formation of disulfides (e.g. Li et al., 2013) although no direct evidence for this 

statement can be found in the literature. Inhibition of thiol oxidation in meat during storage has 

been attempted by use of plant extracts rich in phenolic compounds, which are known to 

effectively reduce lipid oxidation, but have not been shown to be able to prevent disulfide 

formation in meat (Jongberg et al., 2011a). It is therefore important to quantify the amount of 

reversibly and irreversibly oxidized thiols in order to further develop antioxidant strategies to 

avoid or repair thiol oxidation in meat. 

The degree of protein disulfide cross-linking in meat and meat products can be evaluated by 

means of protein separation by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) (Decker et al., 1993). However, measurement of the band pixel intensity on the SDS gel is 
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merely semi-quantitative, and irreversible thiol oxidation cannot be evaluated by this method. A 

sensitive method to quantify  thiol loss and its reversibility is thus needed to get clear insight into 

the thiol oxidation chemistry in meat and meat products. The spectrophotometric measurement 

of the loss of free thiol groups in muscle proteins has been widely used as an indicator of protein 

oxidation (Estévez et al., 2009a). The quantification of protein disulfides is somewhat more 

complex, as disulfide bonds must first be cleaved before detecting the newly formed thiols. In 

order to cleave all disulfide bonds, a strong and efficient reducing agent must be selected. 

Furthermore, this reducing agent must not cross-react with the thiol detection agent (Hansen et 

al., 2009b). 

An approach for measuring thiols and disulfides is shown in Figure 2.1. Thiols can be detected by 

reaction with a thiol-specific detection agent with useful spectrophotometric properties (Figure 

2.1A). The most common thiol detection reagent is 5,5’-dithiobis-(2-nitrobenzoic acid) (DTNB or 

Ellman’s reagent), which forms a disulfide bond with free thiol groups, releasing a yellow NTB 

dianion (2-nitro-5-thiobenzoate) with maximum absorbance at 412 nm in the pH range from 6 to 

9.5 (Estévez et al., 2009a; Hansen et al., 2009b). An alternative to DTNB is 4,4’-dithiodipyridine (4-

DPS), which reacts in a similar way with thiol groups, forming 4-thiopyridone (4-TP) that absorbs 

at 324 nm. The small size of this detection reagent makes it easier to reach poorly accessible thiols 

within the protein core. 4-TP also has a higher extinction coefficient than NTB, suggesting that 4-

DPS is a more sensitive thiol detection agent than DTNB (Riener, Kada, & Gruber, 2002). 

Furthermore, 4-TP is stable in lower pH ranges (pH 3 – 7), making thiol detection possible at low 

pH as in common reversed phase HPLC conditions (Hansen et al., 2007). Ruan et al. (2013) found 4-

DPS to be less affected by pH and denaturants compared with DTNB, and thus found 4-DPS more 

suitable and reliable for thiol detection in soy protein. The measurement of disulfide bonds is 

based on the reduction of disulfides followed by detection of the newly reduced thiols (Figure 

2.1B). Assuming that all thiol loss was caused by reversible disulfide formation, the amount of 

disulfides can then be calculated by subtracting the amount of free thiols from total thiols. To 

reduce disulfide bonds during SDS-PAGE, dithiothreitol (DTT) is often used. This reagent is less 
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suitable for disulfide quantification because of its slow reaction rate and the cross-reactivity with 

thiol detection agents (Hansen et al., 2007; Hansen et al., 2009b). Liu et al. (2000a) have quantified 

disulfide bonds in myofibrillar proteins based on a method described by Damodaran (1985). In this 

procedure, disulfides are cleaved by adding an excess of sodium sulfite. However, oxidative 

sulfitolysis of disulfide bonds is slow and rarely quantitative in absence of catalysts (Kella et al., 

1985; Hansen et al., 2009b). An alternative reducing agent is sodium borohydride (BH), a highly 

reactive and strong reductant whose main advantage is that its excess can be removed by 

acidification (Gailit, 1993; Hansen et al., 2009b). Jongberg et al. (2011a) have used this reducing agent 

in myofibrillar proteins, followed by thiol detection with DTNB. However, the large pH variations 

(from acidic pH after BH excess removal to pH 8.0 for DTNB reaction) are unfavourable for thiol-

disulfide redox reactions. 

 

 

Figure 2.1: Approach for detection of free thiols (A) and total thiols (B). Thiols destined for detection are 
denoted S* (modified after Hansen et al., 2009b). 

 

The aim of the present Chapter was to investigate the extent of reversible and irreversible thiol 

oxidation in ground beef during storage. This allowed to evaluate whether (a) thiol loss in meat is 

caused by (reversible) disulfide formation, which is generally assumed though not proven in 

literature, or (b) thiol loss is also caused by formation of other (irreversible) oxidation products. A 

sensitive and reliable method for the quantification of free and total thiols in meat was established 

based on reduction with sodium borohydride and thiol detection with 4,4’-dithiodipyridine. This 

combination of BH and 4-DPS has been applied on small proteins in biomolecular science (Hansen 

et al., 2007), but has thus far not been tested in meat, which is a more complex matrix containing 
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large proteins with low solubility. The method was subsequently used for quantification of 

reversible and irreversible thiol oxidation in ground beef during storage in high-oxygen modified 

atmosphere packaging (HiOx MAP) and compared with SDS-PAGE based methodology. 

 

2.2 MATERIALS AND METHODS 

2.2.1 Sampling of HiOx MAP ground meat  

Two independent storage trials (Trial 1 and Trial 2) were performed for sampling of HiOx MAP 

ground beef. For trial 1, ground beef stored in high-oxygen modified atmosphere packaging was 

obtained from a local Danish supermarket. The meat had been packed under modified atmosphere 

(high-oxygen) the day before and consisted of nine packages of 400 g each. No information was 

available on the packaging material or initial oxygen levels. Three packages (replicate A, B, and C) 

were opened and the meat was vacuum packed in portions of 50 g and stored at -80 °C until 

analysis (day 0). The remaining six packages were stored in darkness at 4 °C until day 4 or day 9, 

at which point another three replicates (A, B, and C) were collected, vacuum packed, and frozen 

to -80 °C.  

For trial 2, similar sampling was performed for freshly ground beef obtained from a local Belgian 

butcher, ground three days after slaughter of the animal. Fifteen polypropylene trays were filled 

with 450 g of meat each, and flushed with a gas mixture of 70% O2 and 30% CO2. Trays were 

sealed with a PET/CPP NPAF foil (oxygen transmission rate 190 cm3/m2/24 h at 25 °C and 50% R.H.) 

by means of a tray sealer (TS400, VC999 Packaging Systems, Herisau, Switzerland), and stored at 

4 °C until sampling day. On day 0, 3, 6, 9 and 12, three packages (replicate A, B, and C) were opened, 

vacuum packed in portions of 75 g and stored at -80 °C until analysis. 

 

2.2.2 Influence of pH and denaturant on the molar extinction coefficients of 4-TP 

A total of 24 buffers were prepared, by varying the buffering capacity, the pH value, and the 

presence of a denaturant. Six buffers with a low buffering capacity were prepared by mixing 0.1 M 
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citric acid and 0.2 M Na2HPO4 to pH values of 2.5, 3.5, 4.5, 5.5, 6.5 and 7.5. Likewise, six high capacity 

buffers were prepared by mixing 1 M citric acid and 1 M trisodium citrate dihydrate to the 

aforementioned pH values. Sodium dodecyl sulfate (SDS) buffers were prepared by adding 5% SDS 

(w/v) to the low capacity buffers. The same was done for guanidine hydrochloride by adding 6 M 

GuHCl to the high capacity buffers. Concentrations of L-cysteine ranging from 2.5 to 500 µM were 

prepared in all buffers. Thiol detection with 4-DPS was performed based on Riener et al. (2002) by 

diluting 500 µL of L-cysteine solution with 2 mL of the corresponding buffer, and adding 500 µL 

4-DPS solution (4 mM 4-DPS in 12 mM HCl). The absorbances were measured at 324 nm against 

water, before addition of 4-DPS (Apre) and after exactly 30 minutes of reaction with 4-DPS in the 

dark at room temperature (Apost). The absorbance corresponding to the thiol concentration was 

calculated by subtracting Apre and Ablank (2.5 mL buffer + 500 µL 4-DPS solution) from Apost. Molar 

extinction coefficients (ε) were calculated from the slope of the standard curves according to the 

Lambert-Beer law (equation 2.1: A is absorbance, ℓ is path length).  

A = ε ∙ ℓ ∙ c   [2.1] 

 

2.2.3 Optimization of disulfide reduction 

The efficiency of the disulfide reduction was tested by the reduction of known concentrations (25 

to 200 µM) of commercially available oxidized glutathione (GSSG). The expectation was to find 

thiol concentrations in the form of reduced glutathione (GSH) double of the aforementioned 

molarities (50 to 400 µM). The GSSG was dissolved in 6 M GuHCl in 0.1 M Tris(hydroxymethyl)-

aminomethan (TRIS) buffer (pH 8.0), as this was the buffer system that was chosen to solubilize 

the meat proteins. The method was developed based on disulfide reduction according to Hansen 

et al. (2007). The reduction was performed by adding 100 µL of 30% (w/v) alkaline borohydride to 

3 mL of sample. After incubation at 50 °C, the excess of borohydride was removed with 6 M 

hydrochloride (final concentration 1.8 M) at room temperature. Different conditions and 

parameters were tested by varying the solvent for sodium borohydride (1, 2 and 4 M NaOH), the 
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incubation time for the reduction with borohydride (15, 30, 60 and 150 minutes), and the hydrolysis 

time of the residual borohydride (2, 10, 20, 30, 40, 45, 60, 90, 150, 165 and 180 minutes).  

 

2.2.4 Quantification of free and total thiols in MAP ground beef using 4-DPS  

The vacuum packed meat was thawed in water at room temperature for 30 minutes before 

homogenizing 1.0 g of meat in 25 mL of 6 M GuHCl in 0.1 M TRIS buffer (pH 8.0) using an Ultra 

Turrax. The homogenates were centrifuged (20 minutes, 5311 g, 4 °C) and supernatants were 

filtered (qualitative filter paper, particle retention: 11 µm). Samples were kept on ice at all times. 

Protein concentration of the filtrates was determined spectrophotometrically at 280 nm using a 

5-point standard curve prepared from bovine serum albumin (BSA). Disulfide reduction was 

performed according to the optimized procedure as described in the previous section. Hence, an 

aliquot of 3 mL filtrate was subjected to disulfide reduction by adding 50 µL 1-octanol (as anti-

foaming agent) and 100 µL freshly prepared 30% sodium borohydride in 1 M NaOH. After 

incubation at 50 °C for 30 minutes, an aliquot of 1.35 mL of 6 M HCl was added, followed by stirring 

for 10 minutes.  

Free and total thiols were determined with 4-DPS in the non-reduced filtrate and the reduced 

filtrate, respectively. An aliquot of 500 µL filtrate was mixed with 2 mL of 6 M GuHCl in 1 M citric 

acid buffer (pH 4.5) and 500 µL 4-DPS solution (4 mM 4-DPS in 12 mM HCl). The absorbance was 

measured at 324 nm against 6 M GuHCl in 1 M citric acid buffer (pH 4.5), before addition of 4-DPS 

(Apre) and after exactly 30 minutes of reaction with 4-DPS in the dark at room temperature (Apost). 

A mixture of 2.5 mL 6 M GuHCl in 1 M citric acid buffer (pH 4.5) and 500 µL 4-DPS solution was 

prepared as a blank sample (Ablank). The absorbance corresponding to the thiol concentration was 

calculated by subtracting Apre and Ablank from Apost. The thiol concentration was calculated based 

on a 5-point standard curve ranging from 2.5 to 500 µM L-cysteine in 6 M GuHCl in 1 M citric acid 

buffer (pH 4.5). The thiol content was expressed as nmol thiol per mg protein. Assuming that all 

reversible thiol oxidation was caused by disulfide formation, and taking into account that 
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treatment of disulfide bonds with sodium borohydride yields two thiol groups (Brown, 1960), the 

disulfide content was calculated as half of the difference between total and free thiols. 

 

2.2.5 SDS-PAGE analysis 

The meat from trial 1 was subjected to SDS-PAGE analysis. The meat was thawed at room 

temperature for 30 minutes before an aliquot of 1.0 g meat was homogenized in 25 mL of 5% SDS 

(w/v) dissolved in 0.1 M TRIS buffer at pH 8.0 using an Ultra Turrax. The homogenates were placed 

in a water bath at 80 °C for 30 minutes, followed by centrifugation for 20 minutes at 950 g. The 

supernatant was filtered (particle retention: 5-13 µm), and the protein concentration was 

determined spectrophotometrically at 280 nm using a standard curve prepared from BSA. The 

homogenates were analyzed by gel electrophoresis using NuPAGE Novex 3-8% TRIS-acetate gels 

according to the manufacturer’s instructions (Invitrogen, Carlsbad, CA, USA). Reduced samples were 

prepared by mixing 1.6 μL diluted sample (2 mg protein/mL) and 14.4 μL loading solution, which 

was prepared from 60 μL LDS (lithium dodecyl sulfate) sample buffer, 24 μL 1.0 M DTT and 132 μL 

MilliQ water. The non-reduced samples were prepared by mixing 1.6 μL diluted sample (2 mg 

protein/mL) and 14.4 μL loading solution, which was prepared from 60 μL LDS sample buffer and 

156 μL MilliQ water. Aliquots of 10 μL reduced or non-reduced samples, as well as 3 μL of Precision 

Plus Protein Standard All Blue marker were loaded to the wells of the gels. Electrophoresis was 

run for 90 minutes at 150 V in cassettes containing ice cold SDS TRIS-acetate running buffer. After 

electrophoresis, the gels were fixed overnight in fixation solution (50% ethanol, 7% acetic acid) at 

room temperature on a laboratory shaker. Following staining overnight by the fluorescence SYPRO 

Ruby Protein Gel Stain, the gels were photographed by a charge-coupled device (CCD) camera 

(Raytest, Camilla II, Straubenhardt, Germany). The protein concentration of the bands were 

estimated by the pixel intensity as determined by the freeware GelAnalyzer2010a© by Dr. Istvan 

Lazar, www.gelanalyzer.com. Band intensities were quantified from the volume of the pixel 

intensity when analyzing the gels with GelAnalyzer. In order to correct for total protein content of 

http://www.gelanalyzer.com/
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each sample, the pixel intensities of cross-linked myosin heavy chain (CL-MHC) and myosin heavy 

chain (MHC) were divided by the total pixel volume of all bands in each lane of the gel to obtain 

the relative intensity of CL-MHC and MHC for each sample. The degree of cross-linking was 

calculated based on gels containing both reduced and non-reduced samples, and was considered 

equal to the ratio of the relative intensity of CL-MHC in the non-reduced samples to the relative 

intensity of MHC in the reduced samples at day 0 (CL-MHCnon-red / MHCred, day 0; %).  

 

2.2.6 Statistical analysis 

Statistical analysis was performed using SAS® 9.3 package (SAS Institute Inc., Cary, NC, USA). 

Recovery percentages were analyzed using a linear model with concentration as fixed effect. Thiol 

content was analyzed using a linear model with storage time (days), treatment (with reduction = 

free thiols and without reduction = total thiols) and their interaction as fixed effects. Disulfides 

and degrees of cross-linking were analyzed using a linear model with storage time as fixed effect. 

The correlation between the 4-DPS assay and SDS-PAGE was assessed using Pearson correlation. 

Effects were considered significant at P < 0.05. 

 

2.3 RESULTS AND DISCUSSION 

2.3.1 The influence of pH and denaturant on the molar extinction coefficients of 4-TP 

In order to determine the optimal pH for thiol detection with 4-DPS, two types of buffer solutions 

with a low and high buffering capacity were prepared that ranged from pH 2.5 to pH 7.5. It is 

strictly necessary to include protein denaturants in the buffer during analysis of thiols in meat to 

prevent precipitation of some of the cross-linked protein. In the absence of protein denaturants, 

such precipitants would not be included in the assay resulting in erroneous quantifications. The 

effect of denaturants was therefore tested by adding 5% SDS and 6 M GuHCl to the low and high 

capacity buffers, respectively. Molar extinction coefficients were calculated from the slope of an L-
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cysteine standard curve, which was subjected to the 4-DPS assay at all pH and denaturant 

conditions. 

According to Riener et al. (2002), the molar extinction coefficient of 4-TP is 21400 M-1 cm-1 at pH 7.0. 

As shown in Figure 2.2, the molar extinction coefficients in all low and high capacity buffers 

without denaturants stay close to this value. However, adding denaturants to the buffers clearly 

narrows the pH range in which the molar extinction coefficients are stable. This is in agreement 

with the findings of Hansen et al. (2009b), who found that the presence of denaturants decreased 

the alkylation rate of NTB by N-ethylmaleimide. The lowest 4-TP absorptions were measured at 

pH 2.5 with buffers added 5% SDS and 6 M GuHCl (ε = 8500 M-1 cm-1 and ε = 13800 M-1 cm-1, 

respectively). The amount of GuHCl was not soluble at pH 6.5 and 7.5, thus Figure 2.2 shows no 

results for these conditions.  

 

 

Figure 2.2: Molar extinction coefficients of 4-DPS as a function of pH. 

 

Overall, optimal molar extinction coefficients were found in buffers containing denaturants 

ranging from pH 3.5 to 5.5. Two factors were considered to select the optimal working buffer. First, 
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the pH value in the samples is very low after acidification in the reduction step. Therefore, a high 

capacity buffer was needed to ensure correct pH adjustment. Second, a strong denaturant is 

crucial to ensure good solubility of meat proteins. We therefore chose to use 6 M GuHCl in 1 M 

citric acid buffer pH 4.5 as a working buffer for determining the free and total thiols in meat using 

4-DPS. 

 

2.3.2 Optimization of disulfide reduction 

It was necessary to optimize the disulfide reduction in the buffer systems chosen for the meat 

samples, and this was established by determination of recovery percentages for the reduction of 

GSSG based on incubation at 50 °C with alkaline borohydride followed by removal of residual 

borohydride by acidification. The reduction procedure was tested by combining different sodium 

hydroxide concentrations with varying times of incubation and hydrolysis as described in Section 

2.2.3. For each combination, a known concentration of GSSG in 6 M GuHCl in 0.1 M TRIS buffer 

(pH 8.0), as well as a blank (6 M GuHCl in 0.1 M TRIS buffer pH 8.0), were subjected to the reduction 

assay. Twice as much GSH as GSSG in molar concentrations was expected, thus the recovery 

percentages were calculated according to equation 2.2: 

recovery%= 
thiols quantified

thiols expected
×100   [2.2] 

It is well known that sodium borohydride rapidly decomposes at neutral or acidic pH (Banfi, 

Narisano, Riva, Stiasni, & Hiersemann, 2001). Therefore, solutions of 30% (w/v) borohydride in 1, 2, 

and 4 M NaOH were freshly prepared for the reduction of GSSG. After mixing 3 mL of sample with 

100 µL of BH dissolved in 1, 2, and 4 M NaOH, the pH was approximately 8.6, 11.0, and 12.0, 

respectively. Although Patsoukis and Georgiou (2005) highlighted that a high alkaline environment 

(pH 12.0 rather than 8.0) is needed for optimal disulfide reduction by borohydride, we found similar 

recovery percentages with the 1 M NaOH treatment as with 2 and 4 M NaOH (data not shown). The 

lack of correlation between our results and those reported by Patsoukis et al. (2005) may be due 

to the use of different buffers and derivatization agents.  
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After addition of BH, the mixtures were incubated at 50 °C as recommended by Patsoukis et al. 

(2005). The optimal incubation time for effective reduction depends on the concentration and 

reactivity of BH and on the accessibility of the protein disulfides. Incubation must take long enough 

in order to let the BH reach and reduce all disulfides. Prolonged incubation, however, might 

promote re-oxidation of the newly formed thiols (Gailit, 1993). Furthermore, NaBH4 can decompose 

over time, even at alkaline pH (Gailit, 1993; Minkina, Shabunya, Kalinin, Martynenko, & Smirnova, 

2012). For the current method development, oxidized glutathione was incubated with BH during 

15, 30, 60, and 150 minutes, and optimal recovery percentages were found with 30 minutes of 

incubation (data not shown). 

Subsequent to incubation, the residual BH was removed by acidification with 6 M HCl, bringing the 

final concentration of HCl in the mixture to 1.8 M. Acidification of NaBH4 completely discharges the 

reactive hydride, yielding hydrogen gas (H2) (Hansen et al., 2009b; Winther & Thorpe, 2014) and 

causing the protein solution to foam. This reaction was avoided by adding a small amount of 1-

octanol (Hansen et al., 2009b). During the method optimization, the acidified solutions were left 

to stir on a magnetic stirrer at room temperature for various time periods, ranging from 2 minutes 

to 3 hours. The best recovery percentages were found when stirring for 10 minutes after addition 

of HCl, and subsequently re-adjusting the pH with 6 M GuHCl in 1 M citric acid buffer (pH 4.5) for 

the 4-DPS assay (data not shown). Although the low pH of the BH-HCl mixture is likely to protect 

the reduced thiols from re-oxidation (Hansen et al., 2009b), oxygen inclusion due to prolonged 

and vigorous stirring may induce further oxidation after the reducing agent has been deactivated 

(Gailit, 1993).  

The method for disulfide reduction was adjusted based on all the above mentioned considerations. 

Optimal recovery percentages in the range from 25-200 µM GSSG were obtained when carrying 

out the reduction as follows: 50 µL 1-octanol and 100 µL freshly prepared 30% sodium borohydride 

in 1 M NaOH were added to 3 mL of sample. The mixture was incubated at 50 °C for 30 minutes 

with occasional stirring. After incubation, the excess of borohydride was removed by adding 

1.35 mL of 6 M HCl followed by stirring for 10 minutes. This procedure was applied for the reduction 
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of various concentrations of GSSG. The quantified thiols and recovery percentages are presented 

in Table 2.1. 

 

Table 2.1: Recovery of GSH after reduction of GSSG in 6 M GuHCl and 0.1 M TRIS buffer (pH 8.0), with 30% 
sodium borohydride in 1 M NaOH at 50 °C for 30 minutes, followed by acidification with 6 M HCl (final 

concentration 1.8 M) and stirring for 10 minutes. Recovery percentages are expressed as the ratio 
quantified to expected thiols (described in equation 2.2). 

GSSG  

(µM) 

Thiols expected 

 (µM) 

Thiols quantified  

(µM) 

Recovery  

(%) 

0 (blank) 0 3.8 ± 1.6  

25 50 42.9 ± 3.6 85.8 ± 7.1 

50 100 82.7 ± 4.7 82.7 ± 4.7 

75 150 129.1 ± 2.6 86.1 ± 1.7 

100 200 175.3 ± 1.2 87.7 ± 0.6 

125 250 211.5 ± 8.6 84.6 ± 3.4 

150 300 262.7 ± 5.6 87.6 ± 1.9 

175 350 304.7 ± 6.5 87.1 ± 1.9 

200 400 350.1 ± 8.1 87.5 ± 2.0 

 

No significant differences between recovery percentages were found among the GSSG 

concentrations (P = 0.642), indicating that the reduction procedure is precise for concentrations 

ranging from 25 to 200 µM of disulfides and resulted in an approximate recovery of 86%. 

According to AOAC International the expected recovery is from 80-90% to 107-110% in the 

concentration range of the quantified thiols used in the present study, so the observed accuracy 

is acceptable (AOAC International, 2012). 

 

2.3.3 Quantification of disulfides in MAP ground beef with 4-DPS 

MAP ground beef obtained from trial 1 and trial 2 were subjected to free and total thiol 

quantification by the 4-DPS assay at various storage times. Caution should be made when 

comparing the meat from trial 1 and 2 for several reasons: 1) the batches of meat were not obtained 

from the same animal, 2) ground beef often comes from different muscles so any observed 
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difference in thiol or disulfide concentrations between the two trials could be ascribed to 

differences in the types of muscles used in each batch of meat, and 3)  difference in time between 

slaughter and packaging and the exact gas composition (unknown for trial 1).  

 

Table 2.2: Thiol and disulfide quantification with 4-DPS in ground beef from trial 1, stored under high-
oxygen atmosphere at 4 °C for up to 9 days. Results are shown as mean ± SD of three independent 

replicates. Different superscripts (a-c) within a column denote statistical differences among storage times 
(P < 0.05). Total thiols marked with * are significantly different from free thiols on the same day. 

Storage time 

 

 Free thiols 

(nmol/mg protein) 

 Total thiols 

(nmol/mg protein) 

 Disulfides 

(nmol/mg protein) 

Day 0  37.6a ± 0.5  51.7a ± 0.8 *  7.0a ± 0.6 

Day 4  30.0b ± 1.1  49.2a ± 1.5 *  9.6b ± 1.1 

Day 9  26.5c ± 1.7  49.4a ± 1.4 *  11.5c ± 1.4 

  Pstorage time < 0.001 

Ptreatment < 0.001 

Pstorage time * treatment < 0.001  

 Pstorage time < 0.001 

 

The significant decrease in free thiols in the meat from trial 1 as well as trial 2 (Table 2.2 and Table 

2.3, respectively) shows that thiol oxidation (ca. 30% and 33% loss of free thiols, respectively) took 

place during storage, which is in agreement with previous studies (Lund et al., 2007b; Jongberg et 

al., 2011b). After reducing the proteins from the beef samples from trial 1 with borohydride, the 

amount of total thiols was significantly higher than the amount of free thiols at all sampling days 

indicating the formation of disulfides. No significant changes in total thiol levels were found during 

the nine days of storage (Table 2.2). This suggests that all thiols lost during nine days storage could 

be fully reduced by borohydride, and were, hence, lost due to reversible thiol oxidation (most likely 

disulfide formation).  
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Table 2.3: Thiol and disulfide quantification with 4-DPS in ground beef from trial 2, stored under high-
oxygen atmosphere at 4 °C during 12 days. Results are shown as mean ± SD of three independent 

replicates. Different superscripts (a-c) within a column denote statistical differences among storage times 
(P < 0.05). Total thiols marked with * are significantly different from free thiols on the same day. 

Storage time 

 

 Free thiols 

(nmol/mg protein) 

 Total thiols 

(nmol/mg protein) 

 Disulfides 

(nmol/mg protein) 

Day 0  58.3a ± 1.6  61.8a ± 0.2  1.8a ± 0.9 

Day 3  44.4b ± 1.2  55.1b ± 1.2 *  5.3b ± 1.1 

Day 6  42.4bc ± 0.8  54.4b ± 1.6 *  6.0b ± 1.1 

Day 9  40.4bc ± 2.4  53.1b ± 2.2 *  6.4b ± 2.1 

Day 12  39.2c ± 0.8  52.1b ± 1.6 *  6.4b ± 1.0 

  Pstorage time < 0.001 

Ptreatment < 0.001 

Pstorage time * treatment < 0.001  

 Pstorage time < 0.001 

 

When subjecting the beef from trial 2 to borohydride reduction, no significant difference was 

found between the free and total thiol level on day 0 (P = 0.191), indicating that the initial level of 

oxidation in this meat was minimal. After three days of storage, the concentration of free thiols 

was significantly lower than at day 0 (Table 2.3) (P < 0.001) confirming thiol oxidation during 

storage. Reduction of the beef proteins resulted in a significantly higher concentration of total 

thiols than free thiols at day 3 (P < 0.001) suggesting the formation of disulfides or other reducible 

thiol oxidation products. However, the concentration of total thiols significantly decreased from 

day 0 to day 3 (P < 0.001) showing that irreversible thiol oxidation had taken place concomitantly 

to the suggested disulfide formation. Although the amount of total thiols stayed constant between 

day 3 and 12, there was a significant decrease of free thiols between day 3 and 12, indicating that 

predominantly protein disulfides were formed in this storage period. By subtracting the free thiol 

concentration on day 0 with the free thiol concentration on day 12, a loss in free thiols of 19 

nmol/mg protein was obtained. Similarly, the loss in total thiols over 12 days of storage was only 

10 nmol/mg protein, which means that over the full duration of storage about half of the thiols 

were lost due to irreversible oxidation and the other half due to reversible oxidation. The 

consequence of thiol oxidation in meat has previously been ascribed mainly to disulfide formation 
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(Lund et al., 2007b; Jongberg et al., 2011b) but thiol oxidation is very complex and numerous 

oxidation products may be formed such as sulfenic acid, sulfinic acid, sulfonic acid and 

thiosulfinates (Nagy et al., 2010). The present study shows that other thiol oxidation products than 

disulfides may be formed in meat during storage. While the formation of sulfonic acid is 

irreversible, sulfenic acid is extremely reactive and may react further to create compounds such 

as disulfides or sulfonic acid. Due to the efficient reducing capacity of BH it is likely that sulfenic 

acids are also reduced to thiols by this reducing agent, so it is unknown whether a part of the 

quantified total thiols is in fact derived from the reduction of sulfenic acid, thus overestimating 

the amount of disulfides. However, the approach based on BH and 4-DPS has previously been used 

for the quantification of the thiol-disulfide redox status in cells without considering a potential 

sulfenic acid formation (Hansen, Roth, & Winther, 2009a). The formation of sulfenic acids in living 

cells has been shown to be rather widespread in some cases (Saurin, Neubert, Brennan, & Eaton, 

2004) but it has never been determined in meat samples during storage. 

 

2.3.4 Comparison between SDS-PAGE and 4-DPS for the quantification of disulfides in 

MAP ground beef 

The quantification of free and total thiols in the ground beef from trial 1 with 4-DPS was compared 

with the conventional cross-linking analysis by SDS-PAGE. Myosin heavy chain has previously been 

found to be the meat protein that is most susceptible to oxidation and SDS-PAGE analysis has 

been widely used to study disulfide cross-link formation in meat and meat products (Decker et al., 

1993; Morzel et al., 2006; Lund et al., 2007b; Jongberg et al., 2011b). The non-reduced samples showed 

an increase of CL-MHC band intensity on the SDS gel as the storage time increased (Figure 2.3), 

whereas no CL-MHC was seen in the reduced samples (data not shown).  
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Figure 2.3: SDS-PAGE gel of non-reduced ground beef from trial 1 stored under high-oxygen atmosphere at 
4 °C during 9 days. The gel shows all samples in triplicate (A-C). CL-MHC, cross-linked myosin heavy chain; 

MHC, myosin heavy chain. 

 

The degrees of disulfide formation in the ground beef according to the 4-DPS assay and SDS-PAGE 

are compared in Table 2.4. With both methods, a significant increase of disulfides was found in 

the ground beef during nine days of storage under high-oxygen atmosphere (P < 0.001 and P = 

0.005 for 4-DPS and SDS-PAGE, respectively). A Pearson correlation of 0.913 was found between 

the two methods, but  the concentration of disulfides found by the 4-DPS assay was considerably 

higher than by SDS-PAGE. This can be explained by the fact that two proteins may be cross-linked 

by several disulfide bridges, consequently, cleaving these disulfide bridges leads to more than two 

newly formed thiol groups. From the three-dimensional protein structure of MHC it can be seen 

that several cysteine residues are transversely positioned in the tail of MHC, thus it is likely that 

several intermolecular disulfides are formed between two MHC molecules. Furthermore, thiols may 

be lost to disulfide formation intramolecularly in MHC, without causing a cross-link between two 

proteins; that is without generating the CL-MHC band that appears in the SDS-PAGE gel. 

Additionally, it is worth noting that severely cross-linked MHC polymers are probably too large to 
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enter the SDS gel (Jongberg et al., 2011a), leading to an underestimation of CL-MHC. This is a 

problem which is actually one of the many drawbacks with the gel electrophoresis methods. Upon 

severe and ongoing oxidation, such polymerization of MHC would eventually lead to a hyperbolic 

instead of linear correlation between 4-DPS and SDS-PAGE results. Finally, even though myosin 

heavy chain has been found to be the meat protein that is most prone to thiol oxidation (Stagsted, 

Bendixen, & Andersen, 2004), disulfide formation in other meat proteins may also contribute to 

the values obtained with the 4-DPS assay, and as mentioned above, the potential presence of 

sulfenic acid may contribute to an overestimation of disulfides by the 4-DPS assay.  

 

Table 2.4: Degrees of cross-linking in ground beef obtained from trial 1 during 9 days of storage under 
high-oxygen atmosphere at 4 °C, measured with 4-DPS and SDS-PAGE. Degrees of cross-linking are 

expressed as the level of cross-linking (disulfides and CL-MHC for 4-DPS and SDS-PAGE, respectively) divided 
by the reference level of reduced protein on day 0 (total thiols and MHCred for 4-DPS and SDS-PAGE, 

respectively). Results are shown as mean ± SD of three independent replicates. CL-MHC, cross-linked myosin 
heavy chain; MHC, myosin heavy chain. Different superscripts (a-c) within a column denote statistical 

differences among storage times (P < 0.05). 

 4-DPS assay  SDS-PAGE 

Storage time Disulfides / Total thiolsday 0 

(%) 

 CL-MHCnon-red / MHCred, day 0 

(%) 

Day 0 13.6a ± 0.4  3.1a ± 1.6 

Day 4 18.6b ± 0.9  6.9b ± 1.0 

Day 9 22.2c ± 0.3  8.5b ± 1.2 

 Pstorage time < 0.001  Pstorage time = 0.005 

 

  



62 

 

2.4 CONCLUSIONS 

SDS-PAGE analysis provides information about intermolecular disulfide formation in MHC for 

moderately oxidized samples, while the 4-DPS assay provides a more accurate and quantitative 

assessment of protein thiols and intra- and intermolecular disulfides and thus offers a good tool 

to investigate the thiol-disulfide reactions in meat and potentially also in meat products.  

In the present study, we have shown that both reversible and irreversible thiol oxidation takes 

place in meat during storage. Disulfide formation is often the consequence of thiol oxidation as 

observed by a thiol loss, but our results clearly show that disulfide formation in meat during 

storage is not the only consequence of thiol oxidation. This is an important observation in relation 

to the further development of strategies to avoid or repair thiol oxidation.   
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Chapter 3 Apple phenolics as inhibitors of the carbonylation pathway during in vitro metal-

catalyzed oxidation of myofibrillar proteins 
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ABSTRACT 

The effect of apple phenolics on the oxidative damage caused to myofibrillar proteins by an in 

vitro metal-catalyzed oxidation system was investigated. Three pure phenolic compounds 

(chlorogenic acid, (-)-epicatechin and phloridzin) and an apple peel extract were added to 

myofibrillar proteins in three concentrations (50, 100 and 200 µM), and a blank treatment was 

included as a control. All suspensions were subjected to Fe3+/H2O2 oxidation at 37 °C during 10 

days, and protein oxidation was evaluated as carbonylation (α-amino adipic and γ-glutamic 

semialdehydes) and Schiff base cross-links. Significant inhibition by apple phenolics was found as 

compared to the control treatment, with (-)-epicatechin being the most efficient antioxidant and 

phloridzin showing the weakest antioxidant effect. The higher concentrations of apple peel extract 

showed effective antioxidant activity against protein carbonylation in myofibrillar proteins, 

emphasizing the potential of apple by-products as natural inhibitors of protein oxidation in meat 

products. 
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3.1 INTRODUCTION 

Among food products, meat and meat products belong to the group that is most prone to 

oxidative deterioration due to their chemical composition. Oxidation in muscle foods can cause 

chemical modifications of both lipids and proteins, affecting quality traits (Hygreeva, Pandey, & 

Radhakrishna, 2014). To cope with consumer’s demand for qualitative, shelf-stable meat and meat 

products, the use of antioxidative strategies is almost inevitable (Monahan, 2000).  

Over the last decade, the utilization of vegetable, fruit, herbs and spice derivatives as natural 

antioxidants has been a topic of great interest. Plant materials provide a good alternative for 

synthetic antioxidant additives because of their high phenolic content (Hygreeva et al., 2014). These 

natural phenolics, like synthetic antioxidants, are able to act as free radical scavengers and metal 

ion chelators, and thus inhibit oxidation and extend the shelf-life (Falowo et al., 2014). However, a 

concern is growing among consumers about synthetic antioxidants because of adverse, potential 

toxicological reports (Devatkal, Narsaiah, & Borah, 2010; Karre et al., 2013). Replacing synthetic with 

natural antioxidants can thus provide a solution to consumers demand for shelf-stable meat 

products (Hygreeva et al., 2014). 

The antioxidative effects of plant derivatives on lipid oxidation in muscle foods have been reported 

extensively (Maqsood, Benjakul, Abushelaibi, & Alam, 2014; Ahmad et al., 2015). The inhibition of 

protein oxidation by natural antioxidants has also been a rising research topic while much less 

studied than lipid oxidation (Estévez, 2011; Falowo et al., 2014). The possible nutritional impact (loss 

of amino acids), sensory deterioration (tenderness, off-odour, off-flavour) and impaired protein 

functionality (gelation, emulsification, water holding) and health concerns caused by protein 

oxidation, emphasize the importance of understanding the effects of antioxidants based on the 

underlying chemical mechanisms and pathways related to protein oxidation (Estévez, 2011; 

Soladoye et al., 2015; Estévez & Luna, 2017). 
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The oxidative conversion of amino acid side chains into carbonyl compounds is believed to be one 

of the most important consequences of protein oxidation, and the spectrophotometric 

measurement of carbonylation using 2,4-dinitrophenylhydrazine (DNPH) has been widely used for 

evaluating protein oxidation (Estévez et al., 2009a). Estévez et al. (2009b) identified two specific 

carbonylation markers in oxidized myofibrillar proteins, α-amino adipic semialdehyde (AAS) and 

γ-glutamic semialdehyde (GGS), which can be quantified using HPLC with fluorescence detection 

(Utrera et al., 2011). AAS is a direct carbonylation product of a lysine residue, whereas GGS is 

oxidatively derived from arginine and proline residues (Requena, Levine, & Stadtman, 2003). As 

carbonyl groups are known to be highly reactive moieties, they can be involved in several ongoing 

reactions. Protein carbonyls can interact with the primary amine group of lysine residues, forming 

intra- or intermolecular Schiff base cross-links (Xiong, 2000; Stadtman et al., 2003).  

In this Chapter, porcine myofibrillar proteins were subjected to an in vitro metal-catalyzed 

oxidation (Fe3+/H2O2), and the effect of natural antioxidants was studied. Because apples are one 

of the most important sources of phenolic compounds in the human diet, and because apple peel 

is known to contain a high concentration of phenolics (Wolfe et al., 2003), a selection of three 

phenolic compounds that are abundantly present in apple peel (chlorogenic acid, (-)-epicatechin 

and phloridzin) were separately added to the myofibrillar proteins as natural antioxidants. 

Furthermore, an apple peel extract was prepared and added as a fourth treatment, as to compare 

with the pure phenolic treatments. Hence, the objective of this research was to investigate the 

effects of apple phenolics (chlorogenic acid, (-)-epicatechin, phloridzin, and apple peel extract) on 

the oxidative stability of myofibrillar proteins in terms of carbonylation (AAS and GGS) and Schiff 

base formation.  
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3.2 MATERIALS AND METHODS 

3.2.1 Extraction of phenolic compounds from apple 

In order to obtain an optimal extraction of phenolic compounds from apple peel, a total of 8 

extraction solvents were tested: 20%, 40%, 60% and 80% of acetone or methanol (v/v) in water. 

The extraction was done following a protocol described by Cando, Morcuende, Utrera, and Estévez 

(2014) with minor modifications as follows. A volume of 20 mL of extraction solvent was added to 

1 g of freeze dried and homogenized peel of the apple cultivar “Cripps Pink”. The mixture was 

homogenized with an Ultra Turrax and centrifuged (8 minutes, 1328 g, 4 °C), and the supernatant 

was filtered. This procedure was repeated on the pellet with once more 20 mL of extraction 

solvent. Filtrates were collected and diluted to a total of 50 mL with the corresponding extraction 

solvent. 

 

3.2.2 Measurement of total phenolic content: Folin-Ciocalteu assay 

Total phenolic content of the apple peel extracts were measured following the Folin-Ciocalteu 

method according to Soong and Barlow (2004) and Rodríguez-Carpena, Morcuende, Andrade, Kylli, 

and Estévez (2011a) with slight modifications. An aliquot of 200 µL of diluted apple peel extract 

(1:100 in water) was mixed with 1000 µL of 1:10 diluted Folin-Ciocalteu’s phenol reagent, and 800 µL 

of 7.5% (w/v) sodium carbonate. The mixture was shaken and allowed to stand for 30 minutes at 

room temperature in the dark, after which the absorbance was measured at 765 nm using a 

spectrophotometer. Total phenolic content was calculated from a standard curve of gallic acid, 

and results were expressed as millimolar gallic acid equivalents (GAE).  

 

3.2.3 Measurement of radical scavenging activity: DPPH● assay 

The radical scavenging activity of the apple peel extracts was measured by means of the 2,2-

diphenyl-1-picrylhydrazyl (DPPH●) assay as reported by Rodríguez-Carpena et al. (2011a). Briefly, 
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30 µL of extract was mixed with 2 mL of DPPH● solution (0.14 mM in methanol). The reaction 

mixture was stirred and allowed to stand at room temperature in the dark for 11 min, followed by 

absorbance measurement at 517 nm. The radical scavenging activity was calculated from a Trolox 

standard curve, and results were expressed as mM Trolox equivalent antioxidant capacity (TEAC). 

 

3.2.4 Measurement of cupric ion reducing antioxidant capacity: CUPRAC assay 

The cupric ion reducing antioxidant capacity (CUPRAC) assay was carried out as described by Apak, 

Güçlü, Özyürek, and Karademir (2004) and Rodríguez-Carpena et al. (2011a) with slight 

modifications. One milliliter of 10 mM CuCl2.2H2O, 1 mL of neocuproine solution (7.5 mM in ethanol), 

and 1 mL of 1 M ammonium acetate buffer (pH 7.0) were added to 0.1 mL of diluted extract (1:3 v/v 

in water). One milliliter of water was added, making a final volume of 4.1 mL. The absorbance of 

the final solution at 450 nm was read against a reagent blank after 30 min of standing at room 

temperature in the dark. Results were calculated from a Trolox standard curve, and results were 

expressed as mM TEAC. 

 

3.2.5 Preparation of apple peel extract for in vitro oxidation assay 

The apple peel extract for the in vitro oxidation assay was made following the extraction 

procedure as described in Section 3.2.1, with 3 g of freeze dried apple peel, and 60% acetone in 

water as extraction solvent. Filtrates were collected and acetone was removed using a rotary 

evaporator. The total phenolic content of the remaining watery solution was quantified according 

to the Folin-Ciocalteu method as described in Section 3.2.2, and the solution was diluted with 

water to obtain a stock solution of 20 mM GAE. 

 

3.2.6 LC-MS quantification of phenolic compounds in apple peel extract 

The apple peel extract was characterized according to De Paepe et al. (2013) with slight 

modifications. Briefly, an acetone extract was prepared from the freeze dried apple peel as 
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described In Section 3.2.5. Subsequently, 1 mL of the acetone extract was dried under a nitrogen 

flow and re-dissolved in 1 mL of methanol:40 mM ammonium formate buffer (60:40). The obtained 

solution was diluted 10-fold with methanol:40 mM ammonium formate buffer (60:40), filtrated 

through a 0.22 µm Millex-HV Syringe filter (Millipore Corporation, Bedford, MA, USA), and stored in 

a capped vial at 4 °C prior to injection into the UHPLC coupled with diode array and accurate 

mass spectrometry detection using electrospray ionisation (DAD/ESI-am-MS) as described by De 

Paepe et al. (2013). The concentration of chlorogenic acid, (-)-epicatechin and phloridzin in the 

apple peel were calculated by means of external standards, and expressed as mg per kg of dry 

weight. 

 

3.2.7 Extraction of myofibrillar proteins 

The extraction of myofibrillar proteins was adapted from Park et al. (2006b) with slight 

modifications (Estévez, Kylli, Puolanne, Kivikari, & Heinonen, 2008a). Minced muscle (lean pork loin) 

obtained from a local supermarket was homogenized using an Ultra Turrax for 30 seconds at 

8000 rpm with 4 volumes (v/w) of isolation buffer (10 mM sodium phosphate, 0.1 M NaCl, 2 mM 

MgCl2 and 1 mM ethylene glycol-bis(2-aminoethylether)-N,N,N′ ,N′ -tetraacetic acid (EGTA); pH 7.0). 

The homogenate was centrifuged at 850 g for 15 minutes, after which the supernatant was 

discarded and the pellet was washed twice with 4 volumes (v/w) of the same buffer. The solution 

was stirred and centrifuged after each washing step. Subsequently, the myofibrillar pellet was 

washed three times with 4 volumes of 0.1 M NaCl. Before the third centrifugation, the myofibrillar 

suspension was filtered through cheese cloth and the pH was adjusted to 6.0 with 0.1 M HCl. After 

the last centrifugation, the myofibrillar protein isolation (MPI) was suspended (ca. 5 mg mL-1) in 

15 mM 1,4-piperazinediethanesulfonic acid (PIPES) buffer (pH 6.0) containing 0.6 M NaCl. 

 

3.2.8 Protein concentration determination 

The protein concentration of the MPI suspension was measured according to the biuret method 

(Doumas, Bayse, Carter, Peters, & Schaffer, 1981) with minor modifications. A volume of 2.5 mL of 
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biuret reagent (6 mM copper (II) sulfate pentahydrate; 20 mM potassium sodium tartrate 

tetrahydrate; 0.75 M NaOH) was mixed with 0.5 mL of MPI suspension. The absorbance was read 

after 5 minutes at 550 nm. The calibration curve was constructed using bovine serum albumin 

(BSA) at various concentrations ranging from 0.2 to 1 mg mL-1 under the described conditions. 

Results were expressed as mg BSA equivalents per mL of MPI suspension. 

 

3.2.9 In vitro oxidation of myofibrillar proteins 

Thirteen different suspensions (20 mL) were prepared depending on the addition and 

concentration (50, 100 and 200 µM) of the selected phenolic compound: chlorogenic acid (C50, 

C100 and C200), (-)-epicatechin (E50, E100 and E200), phloridzin (P50, P100 and P200), apple peel 

extract (A50, A100 and A200) and a control group (no phenolic compounds). All suspensions were 

prepared in triplicate in capped flasks and oxidized using 10 µM FeCl3 as oxidation promoter in 

combination with 1 mM H2O2. During the in vitro oxidation, suspensions were kept on a magnetic 

stirrer in an oven at 37 °C for 10 days. Sampling was carried out at days 0, 2, 5, 7 and 10 for analysis. 

 

3.2.10 Synthesis of AAS-ABA and GGS-ABA standards 

Standards for AAS-ABA and GGS-ABA were prepared from Nα-acetyl-L-lysine and Nα-acetyl-L-

ornithine using lysyl oxidase activity of egg shell membrane according to the procedure of 

Akagawa et al. (2006) with minor modifications. Briefly, 10 mM of Nα-acetyl-L-lysine and 10 mM of 

Nα-acetyl-L-ornithine were individually incubated with egg shell membrane (3 g) in 30 mL of 20 mM 

sodium phosphate buffer (pH 9.0) during 24 hours at 37 °C on a laboratory shaker. After removal 

of the egg shell membrane by centrifugation, the pH was adjusted to 6.0 with 1 M HCl. Subsequently, 

the resulting aldehydes, Nα-acetyl-L-AAS and Nα-acetyl-L-GGS, were reductively aminated with 

3 mmol of 4-aminobenzoic acid (ABA) and 4.5 mmol of NaCNBH3 for 2 hours at 37 °C on a magnetic 

stirrer. Then, the resulting derivatives, Nα-acetyl-L-AAS-ABA and Nα-acetyl-L-GGS-ABA, were 

hydrolyzed in the presence of 12 M HCl (30 mL) during 10 hours at 110 °C. The hydrolysates were 
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dried in vacuo at 40 °C using a SpeedVac (Thermo Fisher Scientific Inc., Waltham, MA, USA), and 

the resulting AAS-ABA and GGS-ABA were finally reconstituted in HPLC water and filtered through 

a 0.45 µm Millex-HV Syringe filter (Millipore Corporation, Bedford, MA, USA). 

 

3.2.11 Determination of α-amino adipic and γ-glutamic semialdehyde 

The MPI suspensions were prepared for HPLC analysis of α-amino adipic semialdehyde (AAS) and 

γ-glutamic semialdehyde (GGS) according to Utrera et al. (2011). At sampling times, 200 μL of MPI 

suspension was dispensed in 2 mL-Eppendorf tubes. Proteins were precipitated with 1.5 mL of ice 

cold 10% trichloroacetic acid (TCA) followed by centrifugation at 2000 g for 30 minutes at 4 °C. 

The resulting pellets were treated again with 1.5 mL of cold 5% TCA and proteins precipitated after 

centrifugation at 5000 g for 5 minutes at 4 °C. Pellets were then treated with 500 µL of 250 mM 

2-(N-morpholino) ethanesulfonic acid (MES) buffer at pH 6.0 containing 1% sodium dodecyl sulfate 

(SDS) and 1 mM diethylenetriaminepentaacetic acid (DTPA), 500 µL of 50 mM ABA in 250 mM MES 

buffer (pH 6.0) and 250 µL of 100 mM NaCNBH3 in 250 mM MES buffer (pH 6.0). The derivatization 

was completed by allowing the mixture to react for 90 minutes, while tubes were incubated at 

37 °C and stirred regularly. All solutions for the derivatization procedure were freshly made on the 

day of analysis. The derivatization reaction was stopped by adding 500 µL of ice cold 50% TCA 

followed by centrifugation (10000 g, 10 minutes, 4 °C). Pellets were then washed twice with 1 mL 

of 10% TCA and 1 mL of ethanol:diethyl ether (1:1). Centrifugations at 5000 g for 5 minutes at 4 °C 

were performed after each washing step. Subsequently, protein hydrolysis was performed at 110 °C 

for 18 h in the presence of 6 M HCl. After that, hydrolysates were dried in vacuo at 40 °C using a 

SpeedVac (Thermo Fisher Scientific Inc., Waltham, MA, USA). Hydrolysates were finally reconstituted 

with 200 µL of HPLC water and filtered through a 0.45 µm Millex-HV Syringe filter (Millipore 

Corporation, Bedford, MA, USA). Samples and standards (Section 3.2.10) were analysed using a 

PerkinElmer Series 200 HPLC, connected to a LS 45 Fluorescence Spectrometer with LC flow cell 

(PerkinElmer Life and Analytical Science inc., Massachusetts, USA). The HPLC system was equipped 
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with a Cosmosil 5C18-AR-II RP-HPLC column (5 μm, 150 × 4.6 mm, Nacalai Tesque inc., Kyoto, Japan) 

and a SecurityGuard Analytical Guard Cartridge System (Phenomenex inc., Torrance, USA). Eluent 

A and B were 50 mM sodium acetate buffer (pH 5.4) and acetonitrile, respectively, and a gradient 

was programmed varying eluent B from 0% to 8% in 20 minutes. The injection volume was 10 µL, 

the flow rate was kept constant at 1 mL min-1, and the oven temperature was set at 30 °C. Excitation 

and emission wavelengths were set at 283 and 350 nm, respectively. The AAS-ABA and GGS-ABA 

peaks were identified by comparing the retention times with those of the standards, and were 

manually integrated and plotted in an ABA standard curve ranging from 0.5 to 10 µM (R2 > 0.998). 

Results are expressed as nmol of carbonyl compound per mg of protein. 

 

3.2.12 Determination of fluorescent Schiff base cross-links 

The natural fluorescence of Schiff base structures were measured with a PerkinElmer LS 45 

Fluorescence Spectrometer equipped with a single cell thermostatted sample holder according to 

Utrera et al. (2012b) with slight modification (Iqbal, Kenney, & Klandorf, 1999; Chelh, Gatellier, & 

Sante-Lhoutellier, 2007). An aliquot of 400 µL of MPI suspension was mixed with 3.6 mL of 20 mM 

sodium phosphate buffer (pH 6.5) in a 4 mL UV spectrofluorometer cuvette. Emission of Schiff 

base structures was recorded at 420 nm with the excitation wavelength established at 350 nm. 

Excitation and emission slit widths were set at 10 nm and integration time 3 s. The contents of 

Schiff base structures were expressed as fluorescence intensity units emitted at 420 nm. 

 

3.2.13 Statistical analysis 

Statistical analysis was performed using SAS® 9.4 package (SAS Institute Inc., Cary, NC, USA). Results 

for the extraction solvents were analyzed using a linear model with solvent and concentration, as 

well as their interaction, as fixed effects. The effect of apple phenolics on GGS, AAS and Schiff base 

structures was tested using a repeated measures linear mixed model. Days of sampling (0, 2, 5, 7 

and 10), compound (chlorogenic acid, (-)-epicatechin, phloridzin, and apple peel extract) and 

concentration (0, 50, 100 and 200 µM), as well as their interactions were tested as categorical fixed 
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effects. Significant difference was considered for P < 0.05. Post-hoc comparison was performed 

with a Tukey test. 

 

Table 3.1: Total phenolic content (Folin-Ciocalteu assay), radical scavenging activity (DPPH● assay) and 
cupric ion reducing antioxidant capacity (CUPRAC assay) of apple peel extracts prepared with acetone or 

methanol (20, 40, 60 or 80% in water). 

  Solvent in water mixture  

Assay Solvent 20% 40% 60% 80% Mean 

       
Folin-Ciocalteu1 

(mM GAE) 

Acetone 1.42 ± 0.02 1.77 ± 0.14 1.80 ± 0.06 1.72 ± 0.05 1.68 

Methanol 1.17 ± 0.10 1.50 ± 0.06 1.62 ± 0.03 1.52 ± 0.04 1.45* 

 Mean 1.29a 1.64b 1.71b 1.62b  

       
DPPH●2 

(mM TEAC) 

Acetone 1.05a ± 0.04 1.23b ± 0.13 1.10ab ± 0.07 0.83c ± 0.07 1.05 

Methanol 0.77ab* ± 0.07 0.90a* ± 0.07 0.90a* ± 0.04 0.71b ± 0.10 0.82 

 Mean 0.91 1.06 1.00 0.77  

       
CUPRAC3 

(mM TEAC) 

Acetone 2.60a ± 0.09 3.32b ± 0.33 3.22b ± 0.26 3.00ab ± 0.10 3.03 

Methanol 1.89a* ± 0.05 2.78b* ± 0.14 2.99b ± 0.15 2.89b ± 0.10 2.64 

 Mean 2.24 3.05 3.10 2.94  

       
GAE, gallic acid equivalents; DPPH, 2,2-diphenyl-1-picrylhydrazyl; TEAC, Trolox equivalent antioxidant 
capacity; CUPRAC, cupric ion reducing antioxidant capacity 
1 Psolvent < 0.001 ; Pconcentration < 0.001 ; Psolvent*concentration = 0.608 
2 Psolvent < 0.001 ; Pconcentration < 0.001 ; Psolvent*concentration = 0.037 
3 Psolvent < 0.001 ; Pconcentration < 0.001 ; Psolvent*concentration = 0.009 
a-c Significant difference between concentrations within the same solvent (P < 0.05). * Significant difference 
between solvents within the same concentration (P < 0.05). 
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3.3 RESULTS AND DISCUSSION 

3.3.1 Selection of extraction solvent 

The results for the antioxidant assays of the extracts are shown in Table 3.1. All assays suggested 

acetone to be a better extraction solvent than methanol. Extraction yields were highest with 40% 

and 60% acetone in water, with no significant differences between these concentrations. Because 

generally higher phenol concentrations are reported in extracts with a solvent content above 50% 

(as reviewed by Shah et al., 2014), it was chosen to make the apple peel extract with 60% aqueous 

acetone. 

 

3.3.2  Characterization of apple peel extract 

LC-MS analysis of the apple peel extract revealed phenolic contents of 582 ± 170 mg of chlorogenic 

acid, 842 ± 41 mg of (-)-epicatechin, and  124 ± 11 mg of phloridzin per kg dry weight of apple peel. 

These findings are in agreement with those from Huber and Rupasinghe (2009). However, the 

comparison of the phenolic content and composition of apples from literature should be 

undertaken carefully, because of the variety of analytical methods employed including different 

extraction solvents and fruit varieties investigated in the different studies. 

 

3.3.3 Metal-catalyzed oxidation of myofibrillar proteins in the control treatment 

A significant increase of α-amino adipic semialdehyde (AAS), γ-glutamic semialdehyde (GGS), and 

Schiff base structures (SB) was found in MPI control suspensions (without added phenolic 

compounds), during 10 days of incubation at 37 °C in the presence of Fe3+ and H2O2 (Figure 3.1). 

This may be ascribed to site-specific metal-catalyzed oxidation, in which reactive oxygen species 

(ROS) are formed through Fenton-like reactions at specific iron-binding sites in the protein 

(reactions [3.1] and [3.2]) (Stadtman, 1990; Estévez, 2011). When ROS attack the side chains of amino 

acid residues neighboring the iron-binding site, the latter are oxidized into various oxidation 



75 
 

products, mainly carbonyls (Stadtman, 1990). The significant AAS and GGS increase during 

incubation of myofibrillar protein in the presence of iron and hydrogen peroxide suggests that 

site-specific metal-catalyzed oxidation as described above has taken place, and lysine, arginine and 

proline were converted into their corresponding specific carbonyl derivatives. 

 

Fe3+ + H2O2 → Fe2+ + HO2
● + H+  [3.1] 

Fe2+ + H2O2 → Fe3+ + HO- + HO●  [3.2] 

 

 

Figure 3.1: Progression of α-amino adipic semialdehyde (AAS, ●) and γ-glutamic semialdehyde (GGS, ■) (left 
panel), and Schiff base structures (SB, ▲) (right panel) during in vitro oxidation (37 °C/10 days) of 

myofibrillar proteins (5 mg mL-1) without phenolic compounds added (control treatment). Values are 
shown as mean ± standard error (N=3). 

 

Regarding the progression of AAS and GGS formation in the control treatment (Figure 3.1), a slight 

but non-significant decrease was observed towards the end of the experiment. This is in agreement 

with previous studies on myofibrillar proteins and meat products (Estévez et al., 2009b; Estévez et 

al., 2010; Utrera et al., 2012b; Utrera, Rodríguez-Carpena, Morcuende, & Estévez, 2012c; Utrera et al., 

2013a; Utrera, Parra, & Estévez, 2014), and can be ascribed to ongoing reactions of carbonyl groups. 

In fact, simultaneously with the decrease of carbonyl compounds, a significant increase was found 

in Schiff base (SB) structures (Figure 3.1). As SB cross-links can be the result of interactions between 

carbonyls and the amino group of lysine residues in the same or a different protein (Xiong, 2000; 
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Stadtman et al., 2003), the decrease in carbonyls may be likely ascribed to the formation of SB 

(Utrera et al., 2012b).  

The abovementioned observations in the control treatment are in agreement with previous studies 

on Fe3+/H2O2 catalyzed oxidation of myofibrillar proteins (Estévez et al., 2009b; Estévez et al., 2010; 

Utrera et al., 2012b, 2013a), and thus provide a reliable basis to compare with the apple phenolic 

treatments. 

 

Table 3.1: AAS formation (nmol/mg protein) during in vitro oxidation (37 °C/10 days) of myofibrillar 
proteins (5 mg mL-1) with added phenolic compounds.  

 day 0 day 2 day 5 day 7 day 10 

control 0.26a ± 0.02 0.48ab ± 0.09 0.72bc ± 0.13 0.77c ± 0.13 0.73bc ± 0.06 

C50 0.24a ± 0.01 0.40ab ± 0.04 0.49abc ± 0.02 0.57bc ± 0.02 0.69c ± 0.10 

C100 0.28a ± 0.01 0.42ab ± 0.02 0.56ab ± 0.07 0.67b ± 0.19 0.70b ± 0.05 

C200 0.24a ± 0.01 0.41ab ± 0.04 0.55bc ± 0.04 0.68bc ± 0.03 0.72c ± 0.06 

E50 0.24 ± 0.02 0.35 ± 0.04 0.41 ± 0.05 0.37 ± 0.01 0.46 ± 0.04 

E100 0.25 ± 0.02 0.33 ± 0.01 0.37 ± 0.01 0.34 ± 0.01 0.45 ± 0.04 

E200 0.27 ± 0.00 0.31 ± 0.01 0.34 ± 0.01 0.30 ± 0.01 0.31 ± 0.04 

P50 0.25a ± 0.01 0.47ab ± 0.06 0.74b ± 0.13 0.69b ± 0.07 0.61b ± 0.15 

P100 0.22ab ± 0.02 0.42ac ± 0.04 0.71d ± 0.07 0.51cd ± 0.16 0.41bc ± 0.06 

P200 0.22a ± 0.01 0.41ab ± 0.00 0.54b ± 0.08 0.41ab ± 0.10 0.43ab ± 0.14 

A50 0.25a ± 0.03 0.33a ± 0.04 0.41ab ± 0.11 0.62bc ± 0.22 0.86c ± 0.31 

A100 0.22a ± 0.04 0.32a ± 0.02 0.36a ± 0.05 0.50a ± 0.01 0.91b ± 0.12 

A200 0.24 ± 0.03 0.33 ± 0.02 0.32 ± 0.01 0.44 ± 0.12 0.47 ± 0.11 

C50, C100, C200: 50, 100 and 200 µM of chlorogenic acid; E50, E100, E200: 50, 100 and 200 µM of (-)-
epicatechin; P50, P100, P200: 50, 100 and 200 µM of phloridzin; A50, A100, A200: 50, 100 and 200 µM of apple 
peel extract. Results are expressed as means  ± standard deviations. Values with a different superscript letter 
(a-c) within a row indicate significant differences (P < 0.05). Values in bold denote a significant difference 
compared with the control treatment within the same column (P < 0.05). 
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3.3.4 Apple phenolics against oxidation of myofibrillar proteins 

The results for AAS, GGS and SB formation in MPI samples treated with apple phenolics are shown 

in Table 3.1, 3.2 and 3.3, respectively. Statistical analyses with ‘days of sampling’, ‘phenolic 

compound’ and ‘concentration’ as fixed effects revealed significant 3-way interactions for AAS and 

SB, and 3-way interactions for GGS were close to significance (Pday*compound*concentration = 0.058). None 

of the phenolic treatments led to significantly higher levels of AAS, GGS or SB than in the control 

treatment. Overall, for all four phenolic treatments, the 200 µM concentration showed the most 

effective inhibition. However, differences between concentrations within the same phenolic 

compound were often not significant.  

 

Table 3.2: GGS formation (nmol/mg protein) during in vitro oxidation (37 °C/10 days) of myofibrillar 
proteins (5 mg mL-1) with added phenolic compounds.  

 day 0 day 2 day 5 day 7 day 10 

control 0.08a ± 0.02 0.44b ± 0.08 0.63b ± 0.12 0.60b ± 0.10 0.58b ± 0.07 

C50 0.08 ± 0.01 0.30 ± 0.05 0.32 ± 0.05 0.33 ± 0.05 0.33 ± 0.05 

C100 0.07 ± 0.01 0.30 ± 0.05 0.31 ± 0.06 0.32 ± 0.10 0.30 ± 0.02 

C200 0.06 ± 0.00 0.30 ± 0.05 0.29 ± 0.03 0.31 ± 0.02 0.30 ± 0.03 

E50 0.06a ± 0.01 0.30ab ± 0.06 0.29ab ± 0.03 0.23ab ± 0.03 0.33b ± 0.06 

E100 0.07 ± 0.01 0.23 ± 0.02 0.21 ± 0.01 0.19 ± 0.02 0.25 ± 0.04 

E200 0.06 ± 0.01 0.16 ± 0.03 0.13 ± 0.00 0.11 ± 0.00 0.10 ± 0.02 

P50 0.06a ± 0.01 0.46b ± 0.08 0.71b ± 0.13 0.61b ± 0.05 0.63b ± 0.08 

P100 0.08a ± 0.02 0.38b ± 0.08 0.72c ± 0.10 0.58bc ± 0.11 0.59bc ± 0.15 

P200 0.05a ± 0.01 0.40b ± 0.04 0.61b ± 0.12 0.45b ± 0.10 0.49b ± 0.15 

A50 0.06a ± 0.01 0.19a ± 0.03 0.20a ± 0.08 0.32ab ± 0.14 0.50b ± 0.27 

A100 0.04a ± 0.01 0.15ab ± 0.03 0.12ab ± 0.02 0.22ab ± 0.02 0.36b ± 0.08 

A200 0.05 ± 0.01 0.18 ± 0.00 0.11 ± 0.01 0.14 ± 0.04 0.31 ± 0.20 

C50, C100, C200: 50, 100 and 200 µM of chlorogenic acid; E50, E100, E200: 50, 100 and 200 µM of (-)-

epicatechin; P50, P100, P200: 50, 100 and 200 µM of phloridzin; A50, A100, A200: 50, 100 and 200 µM of apple 

peel extract. Results are expressed as means  ± standard deviations. Values with a different superscript letter 

(a-c) within a row indicate significant differences (P < 0.05). Values in bold denote a significant difference 

compared with the control treatment within the same column (P < 0.05). 
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An explanation for the different outcomes of the phenolic treatments should primarily be found 

in the chemical structure of the phenolic compounds, as the radical scavenging and metal 

chelating activity of phenolics mainly depends on the number, position and glycosylation of 

hydroxyl groups in the molecule (Rice-Evans, Miller, & Paganga, 1996; Michalak, 2006). Generally, 

there is a positive correlation between antioxidant capacity and the number of hydroxyl groups, 

whereas the antioxidant capacity decreases with an increase in glycosylation (Shahidi et al., 1992). 

However, the exact chemical conformation of the phenolic compound, as well as matrix effects 

should be taken into consideration when evaluating the antioxidant potential of phenolics. 

 

Table 3.3: Schiff base formation (fluorescence intensity units) during in vitro oxidation (37 °C/10 days) of 
myofibrillar proteins (5 mg mL-1) with added phenolic compounds. 

 day 0 day 2 day 5 day 7 day 10 

control 193a ± 8 237a ± 84 377b ± 36 440bc ± 29 481c ± 14 

C50 187a ± 18 244ab ± 6 332bc ± 12 348c ± 7 386c ± 12 

C100 190a ± 4 238a ± 46 320bc ± 14 360c ± 11 361c ± 20 

C200 178a ± 1 204a ± 27 307b ± 11 321b ± 12 338b ± 7 

E50 195ab ± 7 185a ± 26 243abc ± 10 284bc ± 12 286c ± 14 

E100 205 ± 2 170 ± 16 248 ± 23 261 ± 19 255 ± 29 

E200 210ab ± 15 160a ± 28 218ab ± 12 251b ± 38 260b ± 17 

P50 163a ± 1 254b ± 46 367c ± 22 410c ± 16 413c ± 36 

P100 158a ± 10 217a ± 34 339b ± 23 370b ± 18 353b ± 19 

P200 158a ± 11 182a ± 49 237ab ± 43 319bc ± 31 352c ± 27 

A50 190a ± 7 174a ± 57 281b ± 51 377c ± 40 406c ± 56 

A100 196ab ± 2 122a ± 16 206ab ± 31 247bc ± 44 305c ± 16 

A200 191ab ± 10 140a ± 24 225ab ± 26 264bc ± 27 316c ± 26 

C50, C100, C200: 50, 100 and 200 µM of chlorogenic acid; E50, E100, E200: 50, 100 and 200 µM of (-)-
epicatechin; P50, P100, P200: 50, 100 and 200 µM of phloridzin; A50, A100, A200: 50, 100 and 200 µM of apple 
peel extract. Results are expressed as means  ± standard deviations. Values with a different superscript letter 
(a-c) within a row indicate significant differences (P < 0.05). Values in bold denote a significant difference 
compared with the control treatment within the same column (P < 0.05). 
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3.3.4.1 Chlorogenic acid against oxidation of myofibrillar proteins 

Although AAS levels in MPI samples with chlorogenic acid treatments were slightly lower than the 

control, no significant inhibitory effects were observed during 10 days of incubation. For GGS 

formation however, chlorogenic acid showed significant inhibition as compared to the control 

treatment on day 5 and 7 (all concentrations) and day 10 (C100 and C200, P = 0.025 and P = 0.028, 

respectively). Regarding SB formation, no significant inhibition was found for the 50 µM 

concentration, however C100 contained significantly less SB than the control on day 10 (P = 0.011), 

and C200 significantly inhibited SB from day 7 to 10. Although slightly less oxidation products were 

found in higher concentrations of chlorogenic acid, and higher concentrations inhibited for a 

longer period, these differences between concentrations of chlorogenic acid were not significant. 

Chlorogenic acid, which is an ester of caffeic and (-)-quinic acid (Figure 3.2), has antioxidant 

potential because of the two hydroxyl groups on the phenol moiety of caffeic acid (Shahidi et al., 

1992; Rice-Evans et al., 1996). The main antioxidant mechanism of these hydroxyl groups is believed 

to be radical scavenging through hydrogen donation (Shahidi et al., 1992), however their ortho 

position also renders possibility to metal chelating (Kono et al., 1998). Both mechanisms may be 

applicable to the effects observed in the present study. However, in our study, only limited, often 

non-significant inhibition against AAS and SB was found in the chlorogenic acid treatments, 

whereas this phenolic acid worked more efficient as an antioxidant against GGS formation. This 

suggests that the chlorogenic acid molecule played a more important role in the antioxidative 

protection of arginine and proline residues, preventing those from oxidizing into GGS, and thus 

leaving the lysine residues more subjective to metal-catalyzed oxidation into AAS and SB. It is not 

fully understood how the protein tertiary structure influences oxidation and antioxidant 

protection of the amino acids. Theoretically, amino acids buried inside the protein (mostly non-

polar amino acids) would be less susceptible to ROS attack, while those at the protein surface 

(polar and charged amino acids) would be more prone to oxidation. A closer look can be taken at 
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myosin, the most abundant myofibrillar protein. In myosin II (the myosin class responsible for 

muscle contraction), lysine and arginine (both positively charged amino acids) are distributed quite 

homogenously in the amino acid sequence of both the myosin head and tail region, and when 

considering the 3D structure, their side chains are pointed outwards. Proline residues (non-polar) 

are only present in the myosin head, mainly in loop regions with their side chain pointing inwards 

(Kopp & Schwede, 2006; Kiefer, Arnold, Künzli, Bordoli, & Schwede, 2009; Bienert et al., 2017). Hence, 

from a structural point of view, arginine and lysine side chains would be more susceptible to ROS 

attack, but might also be better accessible for antioxidant protection. The reason why chlorogenic 

acid seems to protect arginine rather than lysine, might be because of more favourable reduction 

potentials. Myosin is however a large and complex protein to investigate, and other myofibrillar 

proteins such as actin might also play a role. In a similar study, Estévez et al. (2010) found pro-

oxidative effects of chlorogenic acid, and ascribed this to the auto-oxidation of phenolics into 

quinones, which in turn could catalyze the oxidative deamination of lysine into AAS (Akagawa & 

Suyama, 2001). The inconsistencies between our and their results are most likely due to slight 

differences in model systems (5 vs. 20 mg mL-1 MPI suspensions) and dose applied (50 – 200 µM vs. 

1 mM). 

 

3.3.4.2 (-)Epicatechin against oxidation of myofibrillar proteins 

All three (-)-epicatechin concentrations showed significant AAS inhibition on day 5 and 7, however 

only E200 was able to retain its antioxidative effect until day 10 (P < 0.001). The inhibitory effect 

of (-)-epicatechin against GGS as compared to the control treatment was significant from day 5 to 

7 for E50, from day 5 to 10 for E100, and from day 2 to 10 for E200. As for Schiff base formation, 

the antioxidant activity of (-)-epicatechin was significant from day 5 to 10 in all concentrations. 

Like for chlorogenic acid, no significant differences were found between low, medium or high 

concentrations of (-)-epicatechin, however higher doses trended to inhibit oxidation more and 

longer. 
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Figure 3.2: Chemical structures of chlorogenic acid, (-)-epicatechin and phloridzin. 

 

In contrast with chlorogenic acid, the (-)-epicatechin molecule (Figure 3.2) contains multiple 

structural confirmations which contribute to free radical scavenging activity, such as the ortho 

3’,4’-dihydroxy moiety on the B ring, the meta 5,7-dihydroxy moiety on the A ring, and the 3-OH 

group in the C ring (Bors, Heller, Michel, & Saran, 1990; Rice-Evans, Miller, & Paganga, 1997). 

Furthermore, the 3’,4’-dihydroxy position in the B ring forms a metal chelating point within the (-

)-epicatechin structure (Rice-Evans et al., 1997). Our results confirm the effective antioxidant 

capacity of (-)-epicatechin by significant inhibition of AAS, GGS and SB in myofibrillar proteins 

treated with this phenolic compound. In fact, none of the higher (-)-epicatechin treatments showed 

a significant increase during the whole experiment, indicating very efficient antioxidative 

properties. The slight, though non-significant decrease of SB on day 2 is most likely due to 

formation of aggregates, which interfered with the fluorescence measurement resulting in 
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underestimation. A study performed by Estévez et al. (2010) revealed AAS and GGS inhibition by 

catechin, an isomer of (-)-epicatechin, however the antioxidative effect was not as profound as in 

our study. This can most likely be ascribed to differences in applied concentrations (µM vs. mM 

range), as well as structural arrangements (isomers) and availability of the phenolic molecule 

within the protein macromolecule. 

 

3.3.4.3 Phloridzin against oxidation of myofibrillar proteins 

The phloridzin treatments only significantly inhibited AAS formation in MPI samples towards the 

end of the experiment, namely P100 on day 10 (P = 0.018) and P200 on day 7 (P = 0.002) and, close 

to significance on day 10 (P = 0.059). Similar results were found for phloridzin against SB 

formation, that is significant inhibition by P100 on day 10 (P = 0.011), and by P200 from day 5 to 

10. Furthermore, SB levels in the phloridzin treatment significantly differed in 50 and 200 µM 

concentrations on day 5 (P < 0.003). None of the phloridzin concentrations significantly inhibited 

GGS formation within the duration of the experiment. 

Phloridzin, or phloretin 2-β-D-glucoside, is a glycosylation product of phloretin (Figure 3.2). Unlike 

(-)-epicatechin, phloridzin possesses only one hydroxyl group on the B ring, making the molecule 

more stable, hence less reactive for antioxidative actions (Lavelli & Corti, 2011). Furthermore, it is 

well documented that glycosylation of phenolic compounds decreases their antioxidant activity 

(Shahidi et al., 1992; Rice-Evans et al., 1996; Michalak, 2006). This structural chemistry of phloridzin 

thus explains why little significant inhibition was found in the phloridzin treatments in the current 

study. The fact that significant AAS and SB inhibition only occurred towards the end of the 

experiment and in higher concentrations, suggests that the applied phloridzin concentrations 

were not sufficient, most likely due to the slow reactivity of the mono hydroxyl group on the B 

ring of phloridzin. 
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3.3.4.4 Apple peel extract against oxidation of myofibrillar proteins 

All concentrations of the apple peel extract treatment inhibited AAS formation on day 5, however, 

on day 7 inhibition was only significant for A200 (P = 0.014). On the last day of observations (day 

10), AAS inhibition by the 200 µM apple treatment was no longer significant, and the A50 and A100 

even showed higher levels of AAS than the control treatment, although not significant. The amount 

of GGS was significantly lower than the control from day 2 (PA100 = 0.016 and PA200 = 0.071) or day 5 

(PA50 < 0.001) until day 7 (PA50 = 0.018 and PA100 < 0.001) or day 10 (PA200 = 0.043). Only A100 and A200 

showed significantly less Schiff base formation than the control from day 2 to 10 or day 5 to 10, 

respectively. As for differences between concentrations of apple peel extract, the amount of AAS 

in A200 on day 10 was significantly lower than for A50 or A100 (P < 0.001). This dose-dependency 

of apple peel extract was also clear for SB formation between A50 and A100 (P = 0.003), and A50 

and A200 (P = 0.033) on day 7.  

Considering the dilution factors during the preparation of the stock solution of apple peel extract, 

the weight based concentrations of chlorogenic acid, (-)-epicatechin and phloridzin in freeze dried 

apple peel (mg/100 g dry weight, Section 3.3.2) can be recalculated to the concentration in the 

apple treatments. For the 200 µM apple treatment, this comes down to a final concentration of 

1.79 ± 0.52 µM, 3.15 ± 0.16 µM and 0.31 ± 0.03 µM of chlorogenic acid, (-)-epicatechin and phloridzin 

in protein suspensions, respectively. It is worth mentioning that the concentration of the apple 

peel extract was based on the total phenolic content as determined with the Folin-Ciocalteu 

method, which measures the reducing capacity of phenolic compounds expressed as gallic acid 

equivalents (Gülçin, 2012). However, it is most likely that not all phenolics present in the apple peel 

extract reacted in exactly the same way as gallic acid, therefore leading to an over- or 

underestimation of total phenolic content. Taken all of this into consideration, caution should be 

made when comparing the apple extract treatment with the pure phenolic treatments. In fact, 

since the concentrations of chlorogenic acid, (-)-epicatechin and phloridzin in the apple peel 
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extract are considerably lower than those of the pure phenolic treatments, it is unlikely that the 

inhibition patterns of the apple peel extracts can be explained solely by those of the pure phenolic 

compounds. The inhibition of protein carbonylation by the 200 µM apple peel extract treatment 

was similar to the (-)-epicatechin treatments and often better than the chlorogenic acid and 

phloridzin treatments. This suggests that other components contribute to the antioxidant capacity 

of the apple peel extract, and/or synergistic effects occurred (Bors et al., 1990). As such, a more 

effective free radical scavenger can be regenerated by a less effective one with a lower reduction 

potential. A combination of two or more antioxidants with different modes of action can also 

show synergism, e.g. metal chelating antioxidants inhibiting MCO, thereby producing less radicals 

to be reduced by radical scavengers. Finally, synergism can be achieved by one antioxidant 

protecting another one by means of sacrificial oxidation. As such, the less effective antioxidant 

traps radicals in food, thereby protecting the more effective antioxidant from oxidation. On the 

other hand, antagonism can arise by regeneration of the less effective antioxidant by the more 

effective one, by oxidation of the more effective antioxidant by the radicals from the less effective 

one, by competition between formation of antioxidant radical adducts and regeneration of the 

antioxidant, and by alteration of the microenvironment of one antioxidant by another one (Choe 

et al., 2009). The increase of AAS, GGS and SB starting from day 5 of the experiment in the low 

apple peel extract concentrations, suggests that the extract was no longer sufficiently stable to 

act as an antioxidant. However, the 200 µM concentration does show some promising inhibition 

of protein oxidation in myofibrillar proteins. 
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3.4 CONCLUSIONS 

Apple phenolics displayed a potential to protect myofibrillar proteins from oxidation, whereby (-

)-epicatechin proved to be more effective against protein carbonylation in the current model 

system than chlorogenic acid and phloridzin. The characteristics and conformation of the protein 

is also of importance in terms of accessibility and phenol-protein interactions. Hence, it was 

observed that chlorogenic acid showed more protection of arginine and proline residues. Low 

concentrations of apple peel extract seemed not to be as stable as the pure phenolic compounds, 

however the 200 µM concentration was able to inhibit protein oxidation similar to the (-)-

epicatechin treatments. 

Although the antioxidative actions of phenolics (the extent as well as the duration of inhibition) 

tended to be positively correlated with the concentration (50 µM < 100 µM < 200 µM), only few 

significant differences were found among doses within the same phenolic compound. However, it 

is worth noting that the applied concentrations (50, 100 and 200 µM) of apple phenolics and apple 

peel extract showed no pro-oxidant, and often anti-oxidative effects during the time of 

observation, indicating that these results form a good basis for optimizing the apple phenolic 

concentration as natural antioxidants in meat products. Obviously, not only the dose-dependency 

of phenolics, but also the effects of meat matrices should be taken into consideration, and should 

be investigated more profoundly in ongoing research.  
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Chapter 4 Protein oxidation and proteolysis during storage and in vitro digestion of pork and 

beef patties 
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ABSTRACT 

The effect of protein oxidation on meat digestibility was investigated following storage and 

subsequent in vitro digestion of beef and pork patties. Protein oxidation was evaluated as thiol 

oxidation, total carbonylation, and specific carbonylation (α-amino adipic and γ-glutamic 

semialdehyde). Furthermore, 4-hydroxyphenylalanine, a hydroxylation product of phenylalanine, 

was identified and quantified as a new protein oxidation marker. After 7 days of chilled illuminated 

storage (4 °C under atmospheric air), significant oxidative modifications were quantified and the 

oxidative degradation was continued during in vitro digestion. The observed effects were more 

abundant in beef patties. Protein oxidation before digestion resulted in impaired digestibility.  
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4.1 INTRODUCTION 

Oxidation is one of the major causes of quality deterioration of meat, together with microbial 

spoilage. The susceptibility of muscle lipids and proteins to oxidation can be ascribed to both 

internal and external factors. Meat contains various endogenous initiators or catalysts of 

oxidation, such as ferric heme pigments, transition metal ions, and oxidative enzymes. 

Furthermore, processing and storage of meat is likely to intensify oxidative degradation. The 

mechanical actions during meat grinding leads to cell disruption and oxygen inclusion, thereby 

increasing the contact with reactive oxygen species (ROS) (Xiong, 2000). Subsequent exposure to 

oxygen and light during chilled display, such as in retail and butcher shops, enhances further 

oxidation (Soladoye et al., 2015). Hence, ground meat products are exposed to various pro-

oxidative factors and mechanisms by the time they are consumed. 

During digestion, partly oxidized meat is further exposed to oxidation catalysts, such as gastric 

fluid which has a low pH and contains dissolved oxygen, H2O2, ascorbate and iron (Nalini, 

Ramakrishna, Mohanty, & Balasubramanian, 1992; Kanner & Lapidot, 2001). The fate of oxidized 

meat components during passage through the gastrointestinal tract, and their impact on 

nutritional value and health, has been a topic of great interest. Lipid oxidation products, such as 

malondialdehyde (MDA) and 4-hydroxy-2-nonenal (HNE), may be cytotoxic and cause DNA damage 

through adduct formation (Guéraud et al., 2010). In vitro digestion studies of meat have elucidated 

the effects of heme iron content, nitrite curing, fat content and cooking temperature on the 

formation of lipid oxidation products (Van Hecke et al., 2014a; Van Hecke et al., 2014b; Vanden 

Bussche et al., 2014; Van Hecke et al., 2015). Besides the lipid fraction, proteins are also susceptible 

to ROS attack during storage and digestion. Furthermore, aldehyde moieties from lipid oxidation 

products such as MDA or HNE can covalently bind to amino acid residues, resulting in indirect 

protein oxidation. Both direct and indirect protein oxidation can result in modified amino acid 

side chains and cross-link formation, which in turn may alter recognition sites for proteases in the 
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gastrointestinal tract. Hence, the nutritional value of oxidized meat proteins may decrease because 

of loss of essential amino acids and impaired digestibility (Xiong, 2000). Furthermore, undigested 

proteins may be fermented by bacteria in the colon into toxic or mutagenic metabolites (Evenepoel 

et al., 1998). However, the biological significance of protein oxidation has yet to be fully clarified 

(Soladoye et al., 2015), and therefore it is essential to fully understand the chemical nature of 

oxidative modifications of proteins during digestion (Estévez, 2011). In this respect, the 

characterization of protein oxidation products after gastric and duodenal digestion can elucidate 

the oxidation pathways during digestion, and can help to identify the loss of essential amino acids, 

which could be highly informative from a nutritional point of view. 

In this Chapter, the effects of protein oxidation on the digestibility of beef and pork patties were 

investigated. Meat samples were stored under light at 4 °C and subsequently subjected to a gastric 

and duodenal digestion simulation, specifically designed to study oxidation during passage of 

meat through the gastrointestinal tract (Van Hecke et al., 2014a). A hitherto unique combination 

of protein oxidation markers was used to acquire an optimal insight in the oxidative damage of 

meat proteins during storage and digestion. Thiol oxidation was measured with 4,4’-

dithiodipyridine (4-DPS), and carbonylation was determined as total carbonyls (2,4-

dinitrophenylhydrazine or DNPH method) and as γ-glutamic and α-amino adipic semialdehyde 

(GGS and AAS, respectively). The HPLC analysis of GGS and AAS as described by Utrera et al. (2011) 

was adapted to a more rapid and accurate UHPLC analysis. Furthermore, 4-hydroxyphenylalanine, 

which has previously been highlighted as one of the oxidation products of the aromatic amino 

acid phenylalanine (Maskos, Rush, & Koppenol, 1992), was identified and quantified as a new protein 

oxidation marker in meat. Secondary lipid oxidation products were measured as thiobarbituric 

acid reactive substances (TBARS). Finally, proteolysis was determined by reaction of free amino 

groups with 2,4,6-trinitrobenzenesulphonic acid (TNBS). All markers were determined after storage 

and after digestion, in order to understand the effects of oxidation on proteolysis which occurs 

during digestion of meat proteins. Hence, the chemical changes caused by oxidation were studied 

extensively to give more insight in the potential effects on nutritional value and health of meat. 
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4.2 MATERIALS AND METHODS 

4.2.1 Preparation and sampling of pork and beef patties 

Lean pork shoulder cuttings and beef cuttings as well as subcutaneous pork fat were obtained 

from a local meat cutter 4 days post mortem. No details were available on the animal breeds and 

the types of beef muscles. All meat cuttings had been kept at 4 °C in a plastic bag covered from 

light. The pork and beef, both with 5% added pork back fat to level out possible differences in 

fatty acid composition, were separately grounded in a meat mincer equipped with a 3 mm plate 

(Seydelmann, Stuttgart, Germany). Portions of 100 g were shaped into patties of 10 cm diameter 

and stored at 4 °C (atmospheric air) under fluorescent light of 1000 lux, which was turned on for 

12 hours per day to simulate retail display. Upon sampling time (day 0, 4 and 7), patties were 

homogenized using a food processor, vacuum packed and stored at -80 °C until analysis. 

 

4.2.2 Physico-chemical characterization of meat samples 

Moisture, crude protein and crude fat content were determined according to ISO 1442:1997, ISO 

937:1978 and ISO 1444:1996, respectively.  

 

4.2.3 In vitro digestion 

The in vitro digestion of the meat products was performed according to a  protocol described by 

Versantvoort, Oomen, Van de Kamp, Rompelberg, and Sips (2005) with modifications according to 

Van Hecke et al. (2014a). Oxidants and antioxidants that are normally present in digestive juices 

were included: peroxidase and NaNO2 were added to the saliva juice, and ascorbic acid, H2O2 and 

ferrous iron were added to the gastric juice. Hence, although in many aspects comparable to the 

protocol from the consensus paper by Minekus et al. (2014), this protocol was specifically designed 

for studying oxidation processes during passage in the gastrointestinal system (Van Hecke et al., 

2014a). Digestions consisted of an enzymatic digestion simulating the mouth, stomach and 
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duodenum gastro-intestinal tract compartments. Briefly, meat samples (4.5 g) were sequentially 

incubated at 37 °C for 5 minutes with 6 mL saliva, 2 hours with 12 mL gastric juice, and 2 hours 

with 2 mL bicarbonate buffer (1 M, pH 8.0), 12 mL duodenal juice and 6 mL bile juice. The 

composition of the synthetic digestive juices are presented in Table 4.1. All of the digestive enzymes 

[α-amylase from hog pancreas (~50 U/mg; 10080), mucin from porcine stomach type II (M2378), 

pepsin from porcine gastric mucosa (>250 U/mg solid; P7000), lipase from porcine pancreas type 

II (10-400 U/mg protein; L3126), pancreatin from porcine pancreas (8 × USP specifications; P7545), 

porcine bile extract (B8631)] were purchased from Sigma-Aldrich (Diegem, Belgium). Lipase and bile 

acted as emulsifiers. The incubations were performed in triplicate. After completion, samples were 

homogenized with an Ultra Turrax homogenizer (9500 rpm) and aliquots were stored in Eppendorf 

tubes at -80 °C pending analysis. 

 

4.2.4 Quantification of lipid oxidation 

MDA concentrations in meat products and digests were measured colorimetrically as TBARS by a 

modified method in accordance with Grotto et al. (2007). Results were expressed as nmol MDA 

equivalents per mg free fat. 

 

4.2.5 Quantification of free and total thiols 

Free and total thiols were quantified according to Rysman et al. (2014) with slight modification. 

Briefly, the vacuum packed meat was thawed in water at room temperature for 30 minutes before 

homogenizing 0.5 g of meat in 25 ml of 6 M guanidine hydrochloride (GuHCl) in 0.1 M 

Tris(hydroxymethyl)-aminomethane (TRIS) buffer (pH 8.0) using an Ultra Turrax. The homogenates 

were centrifuged (5311 g, 20 minutes, 4 °C) and supernatants were filtered. Digests were thawed, 

diluted (1:7) with 6 M GuHCl in 0.1 M TRIS buffer (pH 8.0) and filtrated. Samples and filtrates were 

kept on ice at all times. Protein concentration of the filtrates was determined 

spectrophotometrically at 280 nm using a 7-point standard curve prepared from bovine serum 
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albumin (BSA). Reduction with sodium borohydride and measurement of free and total thiols were 

performed as described by Rysman et al. (2014) (Chapter 2, Section 2.2.4). The thiol content was 

expressed as nmol thiol per mg protein.  

 

Table 4.1: Composition of the synthetic digestive juices (1 L) used for in vitro digestion of meat samples 
(Van Hecke et al., 2014a). 

 Mouth  Stomach  Duodenum 

 Saliva (pH 6.8)  Gastric juice (pH 1.3)  Duodenal juice (pH 8.1)  Bile (pH 8.2) 

In
o

rg
a
n

ic
 s

o
lu

ti
o

n
 

0.90 g KCl  2.75 g NaCl  7.01 g NaCl  5.26 g NaCl 

0.20 g KSCN  0.27 g NaH2PO4  3.39 g NaHCO3  5.79 g NaHCO3 

0.90 g NaH2PO4  0.82 g KCl  0.08 g KH2PO4  0.38 g KCl 

0.57 g NaSO4  0.40 g CaCl2.2H2O  0.56 g KCl  0.15 mL HCl 37% 

0.30 g NaCl  0.31 g NH4Cl  0.05 g MgCl2    

1.69 g NaHCO3
  6.50 mL HCl 37%  0.18 mL HCl 37%    

            

O
rg

a
n

ig
 s

o
lu

ti
o

n
 

0.20 g Urea  0.09 g Urea  0.10 g Urea  0.25 g Urea 

11.5 mg Uric acid  0.02 g Glucuronic acid  1.00 g BSA  1.80 g BSA 

25.0 mg Mucin  0.65 g Glucose  9.00 g Pancreatin  30.0 g Bile 

2.50 IU peroxidase  0.33 g Glucosamine-HCl  1.50 g Lipase    

   17.6 mg Ascorbic acid       

   1.00 g BSA       

   2.50 g Pepsin       

   3.00 g Mucin       

            

A
d

d
 6.90 mg NaNO2  10.0 µL H2O2 (30%)  0.200 g CaCl2.2H2O  0.222 g CaCl2.2H2O 

   11.2 mg FeSO4
.7H2O       

 

4.2.6 Quantification of total carbonyls 

Total carbonyls were determined as described by Vossen et al. (2015) with slight modifications. 

Briefly, the vacuum packed meat was thawed in water at room temperature for 30 minutes. 

Subsequently, 3.0 g was homogenized in 30 mL of 0.6 M NaCl in 20 mM phosphate buffer (pH 6.5) 

using an Ultra Turrax (in triplicate), and four aliquots of 100 µL of the homogenates were 

dispensed in 1.5 mL-Eppendorf test tubes. All aliquots were treated with 1 mL of ice cold 10% 

trichloroacetic acid (TCA) and left at 4 °C for 15 minutes. For the digested samples, 200 µL of 



94 

thawed digest was pipetted in 1.5 mL-Eppendorf test tubes and treated with 1 mL of ice cold 10% 

TCA in quadruplicate. Samples were incubated at 40 °C for 15 minutes in order to free the digested 

proteins from the lipid particles. Subsequently, meat and digest samples were centrifuged (2000 g, 

30 minutes) and supernatants were discarded. The protein pellets were treated with another 

milliliter of 10% TCA, left at 4 °C for 15 minutes, and centrifuged (2000 g, 30 minutes). After 

discarding the supernatant, two pellets of each sample were treated with 500 µL of 10 mM 2,4-

dinitrophenylhydrazine (DNPH) in 2 M HCl, and the two other pellets were treated with 500 µL of 

2 M HCl as a blank. Samples were left to derivatize covered from light on a laboratory shaker (300 

rpm) during 1 hour. Subsequently, samples were treated with 500 µL of 20% TCA, and left at 4 °C 

for 15 minutes before centrifugation (2000 g, 20 minutes). After discarding the supernatant, the 

pellets were washed three times with 1 mL of ethanol:ethylacetate (1:1). After each washing step, 

samples were centrifuged (2000 g, 20 minutes) and supernatants were discarded. After the final 

wash, the test tubes were left open under the fume hood for 15 minutes in order to remove the 

residual washing solvent. Pellets were dissolved in 1 mL of 6 M GuHCl in 20 mM phosphate buffer 

(pH 6.5) and placed on a laboratory shaker (300 rpm) covered from light during 30 minutes. The 

final solution was centrifuged (3800 g, 10 minutes) to remove insoluble parts. Protein 

concentration of the samples (mg mL-1) was determined spectrophotometrically at 280 nm using 

a 7-point BSA standard curve. DNP hydrazone absorbance was measured at 370 nm, and protein 

carbonyl concentration (nmol mL-1) was calculated as [A370/Ɛhydrazone*10^6], where Ɛhydrazone is 22000 

M-1 cm-1. Protein carbonyl concentration expressed as nmol carbonyl per mg protein was calculated 

from the above mentioned concentrations, and DNPH-treated samples were corrected by 

subtracting the protein carbonyl concentration of their blank equivalents. 
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4.2.7 Quantification of γ-glutamic semialdehyde (GGS) and α-amino adipic 

semialdehyde (AAS) 

Samples were prepared for ultra high performance liquid chromatography with fluorescence 

detection (UHPLC-FLD) analysis of γ-glutamic semialdehyde (GGS) and α-amino adipic 

semialdehyde (AAS) according to Utrera et al. (2011) with modifications. The vacuum packed meat 

was thawed before 3.0 g of meat was homogenized in 30 mL of cold isolation buffer (10 mM 

sodium phosphate buffer, 0.1 M NaCl, 2 mM MgCl2, and 1 mM EGTA, pH 6.5) using an Ultra Turrax. 

The homogenates were made in triplicate for each meat sample. Four aliquots of 100 µL of each 

homogenate were dispensed in 2 mL-Eppendorf test tubes. Proteins were precipitated with 1 mL 

of ice cold 20% TCA followed by centrifugation at 3000 g for 30 minutes. Digested samples were 

thawed and four aliquots of 200 µL were treated with 1 mL of ice cold 20% TCA. After incubation 

at 40 °C during 15 minutes, samples were centrifuged at 3000 g for 30 minutes. The resulting meat 

and digest pellets were treated again with 1.5 mL of ice cold 5% TCA followed by centrifugation at 

5000 g for 5 minutes. Subsequently, pellets were treated with 500 µL of 250 mM 2-(N-morpholino) 

ethanesulfonic acid (MES) buffer at pH 6.0 containing 1% sodium dodecyl sulfate (SDS) and 1 mM 

diethylenetriaminepentaacetic acid (DTPA). Two aliquots were treated with 500 µL of 50 mM 4-

aminobenzoic acid (ABA) in 250 mM MES buffer (pH 6.0) and two aliquots were treated with 500 

µL of 250 mM MES buffer (pH 6.0) as a blank. To create a reductive environment, an aliquot of 250 

µL of 100 mM NaCNBH3 in 250 mM MES buffer (pH 6.0) was added to all test tubes. The 

derivatization was completed by allowing the mixture to react for 90 minutes, while tubes were 

incubated at 37 °C and stirred regularly. The derivatization reaction was stopped by adding 500 

µL of ice cold 50% TCA followed by centrifugation (10000 g, 10 minutes). Pellets were then washed 

twice with 1 mL of 10% TCA and 1 mL of ethanol:diethyl ether (1:1). Centrifugations at 8000 g for 

5 minutes were performed after each washing step. Following the final wash, the blank pellets 

were dissolved in 1.0 mL of 6 M guanidine hydrochloride in 20 mM phosphate buffer (pH 6.5) and 

placed on a laboratory shaker (300 rpm) for 30 minutes. After final centrifugation (3800 g, 
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10 minutes) to remove insoluble material, the protein concentration was determined 

spectrophotometrically at 280 nm using a 7-point standard curve prepared from BSA. For the ABA-

treated samples, protein hydrolysis was performed in 1.5 mL of 6 M HCl at 110 °C for 18 h. After 

that, hydrolysates were dried in vacuo at 45 °C using a SpeedVac (Thermo Fisher Scientific Inc., 

Waltham, MA, USA). Hydrolysates were finally reconstituted with 1 mL of HPLC water and filtered 

through a 0.22 µm Millex-HV Syringe filter (Millipore Corporation, Bedford, MA, USA). GGS-ABA and 

AAS-ABA standard was prepared according to the procedure of Akagawa et al. (2006) with minor 

modifications as described in Chapter 3 (Section 3.2.10). Samples and standards were analysed 

using an ACQUITY UPLC H-Class system coupled to a fluorescence detector (Waters Corporation, 

Massachusetts, USA). The UHPLC system was equipped with an AccQ-Tag Ultra C 18 column (1.7 µm, 

2.1 × 100 mm) (Waters Corporation, Massachusetts, USA). Eluent A and B were 5 mM sodium acetate 

buffer (pH 5.4) and acetonitrile, respectively, and a gradient was programmed varying eluent B 

linearly from 0% to 8% in 3 min, to 90% B at 4 minutes and held at 90% B to 6 min. Initial 

conditions of 100% A were re-equilibrated from 6.5 to 8.5 min. The injection volume was 2.5 µL, 

the flow rate was kept constant at 0.5 mL min-1, and the oven temperature was set at 30 °C. 

Excitation and emission wavelengths were set at 283 and 350 nm, respectively. The GGS-ABA and 

AAS-ABA peaks were identified by comparing the retention time with that of the standard, and 

were automatically integrated and plotted in an ABA standard curve ranging from 0.1 to 4 µM 

(R2 > 0.999). Results are expressed as nmol of GGS or AAS per mg of protein.  

 

4.2.8 Identification and quantification of 4-hydroxyphenylalanine 

To identify the peak with retention time 0.995 minutes in the GGS/AAS chromatograms, the 

accurate mass of the eluting compound was determined using an ACQUITY UPLC H-Class system 

coupled to a Synapt G2 S (Waters Corporation, Massachusetts, USA) high resolution mass 

spectrometer (HRMS). The used UHPLC column and gradient were the same as described in Section 

4.2.7, however eluent A (5 mM sodium acetate buffer pH 5.4) was replaced by 5 mM ammonium 
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acetate buffer (pH 5.4) and the injection volume was 10 µL. Two sequential analysis were done, one 

in positive electrospray ionization (ESI) and one in negative ESI. Prior to analysis the HRMS was 

calibrated (50-1200 Da) using a sodium-formate solution. The HRMS was operated in resolution 

mode (20.000 FWHM) and a leucine-enkephalin solution (200 pg/µL) was constantly infused during 

analysis as lockmass. Once identified, the peaks in the GGS/AAS chromatograms were quantified 

with UHPLC-FLD as described in Section 4.2.7, using a 4-hydroxyphenylalanine standard curve 

ranging from 1 µM to 1 mM (R2 > 0.998). 

 

4.2.9 Quantification of proteolysis 

Proteolysis was determined as described by Polychroniadou (1988) with modifications. For the 

meat samples, 1.5 g of thawed meat was homogenized in 25 mL of 0.1 M TRIS (pH 8.0) using an 

Ultra Turrax. After centrifugation (5311 g, 20 minutes), 2 mL of supernatant was precipitated with 

1 mL of TCA (30%). Solutions were left to stand at room temperature for 15 minutes before 

filtration. Simultaneously, a glycine standard curve ranging from 0.5 to 4 mM was prepared in 0.1 M 

TRIS (pH 8.0), and diluted (2:1) with TCA (30%). For the digested meat samples, thawed digests were 

diluted (1:50) with TCA (10%), left to stand for 15 minutes at room temperature, and filtrated. A 

glycine standard curve ranging from 10 to 100 mM was prepared in water, and diluted (1:50) with 

TCA (10%). For the colorimetric reaction, 200 µL of sample or standard was added to 2 mL of 1 M 

borate buffer (pH 9.2). After adding 800 µL of 0.15% (w/v) of 2,4,6-trinitrobenzenesulphonic acid 

(TNBS), the solution was left to stand for 30 minutes in the dark at room temperature. 

Subsequently, 800 µL of 2.3 M NaH2PO4 containing 18 mM Na2SO3 was added to stop the reaction. 

After 20 minutes of incubation at room temperature in the dark, the absorbance was measured 

at 420 nm and proteolysis in the samples was calculated from the glycine standard curves. 

Incubated meat samples were corrected with a blank incubation. Results were expressed as µmol 

glycine equivalents per mg of dry weight. 
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4.2.10 Statistical analysis 

All analyses were done in triplicate. Results were analyzed using a linear model with storage day, 

type of meat and digestion, as well as their interactions, as fixed effects (SAS 9.4). Tukey-adjusted 

post hoc tests were performed for pairwise comparisons, and the significance level was selected 

as P < 0.05. 

 

4.3 RESULTS AND DISCUSSION 

4.3.1 Composition of meat patties 

The composition (moisture, protein and fat content) of the beef and pork patties are represented 

in Table 4.2. As lipid oxidation occurs at the double bonds of unsaturated fatty acids, the fatty 

acid profile and the degree of unsaturation is one of the most determining factors in the rate of 

lipid oxidation (Velasco et al., 2010). Because of the addition of 5% pork back fat to both the beef 

and pork patties, only minimal differences in fatty acid composition are expected, as was observed 

by Van Hecke et al. (2014a; 2015) in similar meat formulations.  

 

Table 4.2: Moisture, protein and fat content in beef and pork patties. Results are expressed g/100 g. 

 Moisture Protein Fat 

Beef 72.3 22.4 4.1 

Pork 72.2 20.5 5.9 

 

4.3.2 Oxidation during storage and digestion of beef and pork patties 

During storage and digestion, oxidative degradation of the meat patties was observed (Table 4.3, 

Figure 4.1). It is most likely that the disruption of cells during manufacturing of the patties, followed 

by the exposure to light and oxygen, has led to the development of ROS. Subsequently, ROS 

attacked protein and lipid molecules in the meat patties resulting in oxidative deterioration. Since 

the simulated digestive juices contained pro-oxidant substances such as H2O2, ascorbate and iron, 
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which are components of human digestive juices (Nalini et al., 1992; Van Hecke et al., 2014a), the 

free radical chain reactions involved in both protein and lipid oxidation were further propagated 

during in vitro digestion. 

 

 

Figure 4.1: Lipid oxidation in beef and pork patties during chilled illuminated storage and in vitro 
digestion. a-b Significant difference between storage days within the same type of meat and digestive state 

(P < 0.05). Results are shown as mean ± standard deviation (N=3). 

 

Our results show that the oxidative effects were more noticeable in beef patties than in pork 

patties (Table 4.3, Figure 4.1). This implies the role of endogenous pro-oxidants in the development 

of ROS. As heme pigment, and thus heme bound iron, is more abundant in beef than pork muscle 

(Lombardi-Boccia et al., 2002), the formation of ROS through metal-catalyzed (Fenton-like) 

reactions is likely to be more pronounced in beef.  

 

4.3.3 Lipid oxidation 

Since oxidizing lipids are believed to be promoters of protein oxidation (Xiong, 2000), a correlation 

between lipid and protein oxidation has been observed by several authors (Estévez et al., 2004; 

Ventanas, Estévez, Tejeda, & Ruiz, 2006; Estévez, Ventanas, & Cava, 2007). In meat science, the TBARS 

assay is the most common method to evaluate lipid oxidation (e.g. see Table 1.2). This assay is 

based on the reaction of thiobarbituric acid (TBA) with the secondary lipid oxidation product MDA, 
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forming a red chromophore which is measured spectrophotometrically. Although the method is 

often questioned regarding its specificity towards MDA, it is still a widely used method for 

determination of secondary lipid oxidation (Böhm & Müller, 2009). TBARS values in beef and pork 

patties before and after in vitro digestion are represented in Figure 4.1. During 7 days of chilled 

illuminated storage, a significant increase in TBARS was found for beef patties, whereas no 

significant change was observed for pork patties (Figure 4.1, dark marks). Similar TBARS patterns 

were found by Min, Nam, Cordray, and Ahn (2008) after chilled storage of raw beef and pork 

patties, where a significantly higher heme iron content was measured in the beef patties. Hence, 

it is likely that the lower heme iron content in the pork patties did not promote ROS formation 

to induce lipid oxidation during the course of our experiment. 

After digestion, all beef and pork patties showed significantly higher TBARS values than their 

undigested equivalents (Figure 4.1, white marks). This is in agreement with Van Hecke et al. (2014a), 

who found a  2- to 3-fold increase in lipid oxidation products in beef, pork and chicken after in 

vitro digestion. In beef patties, the relative increase seemed to be slightly higher in patties that 

had been subjected to illuminated storage (94%, 124% and 108% increase after digestion of patties 

on day 0, 4 and 7 respectively). This suggests that lipid oxidation during digestion is more intense 

when the meat products are already oxidized before digestion. Since more lipid oxidation had 

already taken place in the 4- and 7-day old patties before digestion, it is likely that those beef 

patties contained more lipid oxidation radicals to further promote lipid oxidation during 

digestion. 
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Table 4.3: Protein oxidation in beef and pork patties during chilled illuminated storage and in vitro digestion. 

   Before digestion  After digestion    P values 

 Meat  Day 0 Day 4 Day 7  Day 0 Day 4 Day 7  RMSE  D M S D*M D*S M*S D*M*S 

                    

Free thiols 
(nmol/mg protein) 

Beef  44.0a 36.1b 30.8c  2.8 3.0 3.4  
1.0 

 
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Pork  46.7 46.8* 45.2*  2.7 3.2 4.7   

                    

Total thiols 
(nmol/mg protein) 

Beef  51.5 49.9 48.4  40.3 34.8 36.8  
2.5 

 
<0.001 0.043 0.027 0.774 0.415 0.177 0.704 

Pork  52.4 53.2 50.2  40.0 39.5 37.0   

                    

Total carbonyls 
(nmol/mg protein) 

Beef  1.75a 2.00a 2.89b  1.98a 2.62b 3.51c  
0.12 

 
<0.001 <0.001 <0.001 0.003 0.033 <0.001 0.272 

Pork  
1.34ab

* 
1.11a* 1.67b*  1.48a* 1.38a* 1.90b*   

                    

GGS 
(nmol/mg protein) 

Beef  0.20a 0.33b 0.47c  0.16 0.19 0.19  
0.03 

 
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 

Pork  0.12 0.14* 0.17*  0.16 0.11 0.16   

                    

AAS 
(nmol/mg protein) 

Beef  0.12a 0.43b 0.79c  0.11 0.14 0.16  
0.05 

 
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Pork  0.14a 0.20ab* 0.30b*  0.09 0.11 0.18   

                    

4-OH-Phe 
(µmol/mg protein) 

Beef  0.44a 0.61b 0.68b  0.14 0.18 0.22  
0.03 

 
<0.001 <0.001 <0.001 <0.001 0.013 0.015 0.024 

Pork  0.36 0.39* 0.45*  0.14 0.17 0.23   

                    

GGS, γ-glutamic semialdehyde; AAS, α-amino adipic semialdehyde; 4-OH-Phe, 4-hydroxyphenylalanine; RMSE, root mean square error; D, digestion; M, type of 
meat; S, storage day. a-c Significant difference between storage days within the same type of meat and digestive state (P < 0.05). * Significant difference between 
types of meat within the same storage day and digestive state (P < 0.05). Values in bold indicate significant difference from its undigested equivalent (P < 0.05). 
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4.3.4 Protein oxidation 

4.3.4.1 Thiol oxidation 

The loss of thiol groups in pork and beef during storage in an oxygen-rich environment has been 

reported before (Lund et al., 2007b; Jongberg et al., 2011b). Similar to these studies, the thiol content 

in the current paper was determined in a denaturant-treated protein filtrate and expressed as 

nmol thiol per mg of protein. This was calculated from the thiol concentration (µM), as determined 

by a colorimetric reaction with a thiol detection agent (in this case 4-DPS) and a cysteine standard 

curve, and the protein concentration, as determined spectrophotometrically at 280 nm with a BSA 

standard curve. Hence, all proteins as well as peptides and amino acids present in the filtrate were 

included in the assay. If severely oxidized proteins would not be able to pass the filter paper, this 

underestimation of thiols concentration would be levelled out by a lower protein concentration. 

In the present study, a significant decrease in free thiols was observed during chilled illuminated 

storage of beef patties before digestion (Table 4.3), indicating that thiol groups were lost due to 

oxidative reactions. This thiol loss could be attributed to direct ROS attack at thiol groups on the 

cysteine residue in meat proteins, converting them to disulfide bonds and other thiol oxidation 

products such as sulfenic, sulfinic and sulfonic acid, and thiosulfinates (Nagy et al., 2010). 

Furthermore, free thiols can be lost by reaction with the lipid oxidation product HNE through 

Michael addition (Stadtman & Berlett, 1997). In contrast with beef patties, only a slight, non-

significant decrease in free thiol content was found in pork patties among storage days before 

digestion. As mentioned above, this can most likely be ascribed to the lower heme iron content 

and TBARS values in pork. After duodenal digestion, the level of free thiols dropped dramatically 

in both beef and pork patties, with an average decrease of 92% (Table 4.3). It is reasonable to 

believe that the proteolytic breakdown of proteins by digestive enzymes exposed initially buried 

thiol groups, making them susceptible to ROS. Because of the severe thiol oxidation during 
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digestion, the minor oxidative thiol loss before digestion seemed not to play a significant role on 

the outcome after digestion. 

All thiol samples were subjected to reduction with sodium borohydride in order to measure the 

amount of total thiols, and thus the reversibility of thiol oxidation (Rysman et al., 2014). The initial 

total thiol levels in beef and pork were found to be slightly higher than the free thiol levels on day 

0, indicating that some thiol oxidation had already taken place post mortem, e.g. during 

manufacturing. No significant differences in total thiols were found among storage days before 

digestion (Table 4.3). This implies that all thiol oxidation products that were formed in beef and 

pork patties during storage, were fully reversible independent of the extent of free thiol oxidation. 

After digestion, all beef and pork patties had significantly lower total thiol levels than their 

undigested equivalents (Table 4.3). Hence, the reduction step with sodium borohydride was not 

able to recover the initial total thiol level of fresh beef and pork patties (day 0 before digestion), 

signifying that up to 27% of the thiol oxidation that took place during digestion was irreversible. 

Furthermore, total (reducible) thiol levels after digestion tended to be lower for samples that had 

been stored longer before digestion, though not significantly. This suggests that thiol oxidation 

before digestion negatively impacts the reversibility of thiol oxidation during digestion. Since the 

4-DPS method only gives information on the extent and reversibility of thiol oxidation, the type 

of irreversible thiol oxidation products and their potential toxicity should be further investigated. 

 

4.3.4.2 Carbonylation 

Both total carbonyl measurement (DNPH assay) and GGS and AAS determination with UHPLC-FLD 

revealed an increase in carbonylation during storage of beef and pork patties (Table 4.3, before 

digestion). These effects were once again more pronounced in beef patties, however the increase 

was significant in all cases except for GGS formation in pork. Hence, it is reasonable to assume 

that ROS, formed through processing, storage and catalyzed by heme iron, attacked not only thiol 

groups on cysteine residues, but also other amino acid side chains such as lysine, arginine, proline 

and threonine, converting them to aldehydes and ketones. α-Amino adipic semialdehyde (AAS, 
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derived from lysine) and γ-glutamic semialdehyde (GGS, derived from arginine and proline) have 

been proposed as reliable biomarkers for protein carbonylation in bovine serum albumin (BSA), 

plasma, rat liver, myofibrillar proteins, and meat products (Requena et al., 2001; Akagawa et al., 

2006; Armenteros, Heinonen, Illilainen, Toldrá, & Estévez, 2009; Estévez et al., 2009b; Utrera et al., 

2011). In the present study, both types of meat patties had similar initial GGS and AAS levels (day 0 

before digestion), however the increase of AAS was much more abundant than the GGS increase. 

Higher levels of AAS in beef and pork patties as compared to GGS were also found by Utrera et al. 

(2011; 2013b; 2014). According to Souci, Fachmann, and Kraut (2008), bovine and porcine muscle 

contains on average 4.4 mol% arginine, 5.4 mol% proline, and 7.8 mol% lysine, suggesting that 

upon complete oxidation the amount of GGS would be similar to or even higher than the amount 

of AAS. However, the results from the current study and those mentioned above indicate that in 

common meat matrices, the lysine residues are more prone to oxidation than the arginine and 

proline residues.  

In previous studies on GGS and AAS, the sum of both compounds made up 23 to 60% of total 

carbonyls (Estévez, 2011), indicating that other carbonyl compounds contribute to the total 

carbonyl level as measured with the DNPH method. These carbonyls could either be derived from 

direct (primary) oxidation of amino acid side chains other than lysine, arginine and proline, or 

could be the consequence of indirect (secondary) carbonylation. The amino acid threonine is 

known to be oxidatively converted into α-amino-3-ketobutyric acid (Taborsky & McCollum, 1973), 

and its ketone group could react with DNPH as well. Furthermore, carbonyl groups can be formed 

by oxidative peptide scission, or in the presence of oxidizing sugars or lipids (Berlett et al., 1997; 

Xiong, 2000). These sugars or lipids are able to form adducts with e.g. lysine, resulting in Amadori 

products and MDA or HNE adducts (Xiong, 2000). These secondary protein carbonyls are equally 

able to be derivatized with DNPH, resulting in an overestimation of primary protein carbonyls. In 

the present study, the sum of AAS and GGS  made up 18 to 44% of total carbonyls in beef and pork 

patties before digestion. In beef patties, the higher total carbonyl levels could be attributed to 

protein lipoxidation, as a significant increase in TBARS was observed. Since no significant TBARS 
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increase was found in pork patties before digestion, it is unlikely that the higher total carbonyl 

levels can be ascribed to protein lipoxidation. In fact, if protein-MDA adducts would have been 

significantly formed during storage of the pork patties, this should also be noticeable in TBARS 

results, since samples were subjected to NaOH hydrolysis prior to TBA derivatization, reducing 

potentially formed protein-MDA adducts. Therefore, it seems reasonable to assume that certain 

amino acids are oxidized into primary protein carbonyls other than GGS and AAS. Furthermore, 

as sugars are naturally present in the water-soluble fraction of meat (Macy, Naumann, & Bailey, 

1964), protein carbonylation through reactions with reducing sugars or their oxidation products 

(glycation and glycoxidation reactions) is worth taking into consideration. 

Upon in vitro duodenal digestion, total carbonyl levels further increased in all samples, being 

significant for beef patties on day 4 and 7 (Table 4.3). This increase during digestion is in agreement 

with Van Hecke et al. (2014a; 2014b; 2015) and indicates that protein carbonylation was further 

promoted by oxidative enzymes and other pro-oxidants of the digestive tract. Similar to TBARS, 

the relative increase of total carbonyls was higher when digesting older beef patties (average of 

13, 31 and 21% increase after digestion of patties on day 0, 4 and 7, respectively). Hence, this implies 

that radicals formed during protein carbonylation before digestion intensified ongoing carbonyl 

formation during digestion. Unlike total carbonyls as measured with DNPH, the levels of GGS and 

AAS decreased during digestion, with significantly lower levels of both compounds in beef patties 

on day 4 and 7. This decrease can be ascribed to further oxidative reactions of the aldehyde moiety 

of GGS and AAS, making the compounds unable to derivatize with ABA prior to UHPLC-FLD analysis. 

As such, the aldehyde group can further oxidize into a carboxylic acid, as has been shown for the 

oxidative conversion of AAS into α-amino adipic acid (AAA) (Sell et al., 2007). Furthermore, carbonyl 

groups can form inter- or intramolecular cross-links by reacting with neighbouring protein-bound 

amino acids or other carbonyls, forming Schiff base structures and aldol condensation products, 

respectively (Akagawa & Suyama, 2000). Additionally, Estévez et al. (2011) have highlighted the ability 

of AAS and GGS to form Strecker aldehydes after reaction with free amino acids. The fact that 

total carbonyls increased after digestion whereas a decrease in the amount of AAS and GGS was 
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observed, could be attributed to secondary protein carbonyls and other primary protein carbonyls 

as described above, which might be more stable than AAS and GGS. Furthermore, it should be 

taken into account that total carbonyls, AAS and GGS were only measured in proteins which were 

precipitated by trichloroacetic acid (TCA). Since a profound peptide scission by proteolytic enzymes 

had occurred during in vitro digestion, the digested samples contained mostly small peptides and 

amino acids. Hence, the molecular weight of some of them might have been too low to precipitate 

with TCA (Greenberg & Shipe, 1979). Since direct protein carbonylation such as AAS and GGS 

shortens the amino acid side chain, whereas indirect protein carbonylation increases the mass 

through adduct formation (Madian & Regnier, 2010), it is reasonable to assume that the protein 

pellets after digestion contained more secondary protein carbonyls, resulting in higher DNPH 

values and an underestimation of GGS and AAS. 

Finally, it is worth mentioning that caution should be made when comparing absolute values of 

carbonylation as measured by DNPH and UHPLC-FLD. In the DNPH assay, the amount of all 

aldehydes and ketones that react with DNPH is calculated based on the extinction coefficient of 

the DNP hydrazone. In UHPLC-FLD analysis, the GGS-ABA and AAS-ABA peaks are quantified using 

a ABA standard curve (due to the lack of quantitative GGS and AAS standards), assuming that one 

mole of ABA emits the same fluorescence as one mole of GGS-ABA or AAS-ABA (Utrera et al., 2011). 

However, if the emission of derivatized carbonyls were to be lower than that of single ABA, an 

underestimation of AAS and GGS would be calculated. Nevertheless, the parallel interpretation of 

both methods offer valuable information about direct and indirect protein carbonylation. 

 

4.3.4.3 Hydroxylation of phenylalanine 

Upon inspection of the GGS/AAS chromatograms, the peak with retention time 0.995 minutes drew 

attention as it appeared to increase in oxidized samples (Figure 4.2), suggesting that the peak 

corresponded with an oxidation product other than GGS or AAS. UHPLC-FLD analysis of non-

derivatized samples revealed the same peak (data not shown), indicating that the compound did 
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not react with ABA and was fluorescent as such at the selected excitation and emission 

wavelengths. Subsequently, the samples were subjected to HMRS analysis to determine the identity 

of the unknown compound. Analysis in negative ESI mode revealed a peak with an m/z-value of 

180.0680 and in positive ESI with an m/z value of 182.0808. These two values lead to C9H11NO3 as 

proposed molecular formula for the unknown peak with a mass deviation of 10 PPM in ESI- and 5 

PPM in ESI+ mode. A ChemSpider search revealed 1109 hits for this molecular formula, however 

based on the obtained fragmentation pattern in ESI- mode and the presumption that it concerned 

a fluorescent oxidation product, 4-hydroxyphenylalanine (4-OH-Phe) was proposed as tentative 

identity. Subsequent UHPLC-FLD analysis of a 4-OH-Phe standard confirmed this identity, and 

quantification of the concentration in the samples based on a 4-OH-Phe standard curve revealed 

values as shown in Table 4.3. The compound 4-OH-Phe, also known as tyrosine, is an aromatic 

amino acid naturally present in meat proteins, however it can also be formed by hydroxylation of 

phenylalanine (Solar, 1985; Maskos et al., 1992). Hence, it is impossible to make a distinction between 

endogenous tyrosine and monohydroxylated phenylalanine with the current UHPLC-FLD 

quantification or any other technique. However, the increase of the total level of 4-OH-Phe during 

storage of both beef and pork patties suggests that at least part of the measured amount is an 

oxidation product. Furthermore, even if initial tyrosine would oxidize and thus decrease, the total 

increase suggests that the formation of 4-OH-Phe from phenylalanine still outnumbered tyrosine 

loss. Although the rate constant for reaction with hydroxyl radicals was found to be slightly higher 

for tyrosine than for phenylalanine in aqueous solutions at pH 7 (1.3×1010 and 6.5×109 dm3 mol-1 s-1, 

respectively) (Buxton, Greenstock, Helman, & Ross, 1988; Davies, 2005), to our knowledge no 

information is available about the oxidation rate of tyrosine and phenylalanine in meat and meat 

products. Hence, given this possible interference, the relative increase in 4-OH-Phe as a measure 

of the hydroxylation of phenylalanine rather than the absolute value could be used as a new 

marker for protein oxidation in meat and meat products. Although oxidative loss of aromatic 

amino acids in meat has previously been determined spectrophotometrically (Gatellier et al., 2009; 
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Utrera et al., 2012a), the specificity of such measurements can be questioned, whereas our UHPLC-

FLD method provides a more accurate and more specific determination. 

 

 

Figure 4.2: Overlay of UHPLC-FLD chromatograms of beef samples before digestion on day 0 (red) and day 
7 (black). 

 

As mentioned above, an increase of 4-OH-Phe was found during storage of both beef and pork 

patties, however the increase was only significant in beef patties. This pattern is similar to all other 

oxidation products that were identified and is likely due to the higher heme iron content, and 

thus Fenton-like reactions, in beef. After digestion, all samples had significantly lower 4-OH-Phe 

levels than their undigested equivalents (Table 4.3), therefore it is likely that further oxidation of 

4-OH-Phe has taken place during digestion. It is known that 4-OH-Phe, or tyrosine, is able to oxidize 

into various compounds, of which the most important are dityrosine, a cross-link between two 

tyrosine residues (Davies, Delsignore, & Lin, 1987), and dihydroxyphenylalanine (DOPA), which is 

formed after secondary hydroxylation of phenylalanine (Maskos et al., 1992). However, when 

interpreting the decrease of 4-OH-Phe levels in digested samples, the remark about proteolysis 

and TCA pellet formation as explained in Section 4.3.4.2 must also be taken into consideration: if 
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most 4-OH-Phe residues were located on the small peptides and amino acids, it is likely that those 

were not included in the analysis. 

As phenylalanine is an essential amino acid, its oxidative degradation emphasizes the deleterious 

effect of protein oxidation on the nutritional value of meat and meat products. Furthermore, its 

hydroxylation product 4-OH-Phe or tyrosine is known to be metabolized into phenol and p-cresol 

during bacterial fermentation in the colon (Hughes et al., 2000). These potentially mutagenic 

metabolites are largely absorbed from the colonic lumen, detoxified in the liver and urinarily 

excreted (Evenepoel et al., 1998), however an increase of residual fecal p-cresol has been observed 

in rats fed high protein diets (Toden, Bird, Topping, & Conlon, 2005). Winter et al. (2011) found a 

correlation between fecal p-cresol and promutagenic DNA adducts in the colon, however the exact 

mechanisms remain to be clarified. In the present study, digests from oxidized meat samples (day 

7) contained up to 57% more residual 4-OH-Phe as compared to digests from fresh meat patties 

(day 0) (Pbeef = 0.145 and Ppork = 0.108) (Table 4.3). Hence, consumption of oxidized meat, leading to 

higher duodenal levels of 4-OH-Phe, may negatively impact health by formation of phenol and p-

cresol in the colon. 

 

4.3.5 Proteolysis 

No significant changes in proteolysis were observed during storage of meat patties (Figure 4.3), 

indicating no detectable endogenous protease activity in the current meat matrix. As expected, 

significantly more proteolysis was measured after digestion, confirming protein breakdown by the 

proteolytic enzymes in the gastric and duodenal juices. However, in vitro digestion of oxidized 

meat samples resulted in slightly fewer free amino groups in the digests (significant for pork 

patties), suggesting that protein oxidation decreases the digestibility of meat. Equivocal results 

have been reported about the effect of protein oxidation on the digestibility in meat model 

systems, depending on the extent of oxidation and the in vitro digestion conditions applied (Liu 

& Xiong, 2000b; Santé-Lhoutellier et al., 2007; Santé-Lhoutellier, Astruc, Marinova, Greve, & Gatellier, 
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2008a; Bax et al., 2012). It is generally believed that mild oxidative conditions enhance enzyme 

digestibility by minor modifications and partial unfolding, increasing the availability for proteases, 

while severe protein oxidation impairs the digestibility by protein polymerization and aggregation, 

decreasing the protease susceptibility (Davies, 2001; Grune et al., 2004; Bax et al., 2012). In the 

present study, the decrease in proteolysis suggests that the latter has occurred. However, a critical 

remark should be made on the TNBS assay that was applied in the present paper to measure 

proteolysis. TNBS is a widely used reagent to quantify primary amino acids, but no distinction is 

made between α- and ε-amino groups (Cayot & Tainturier, 1997). Hence, the ε-amino group on the 

lysine residue could lead to an overestimation of proteolysis. On the other hand, when lysine is 

oxidized and the ε-NH2 group is lost, this will lead to a decrease in the estimate of proteolysis. 

Since pork and beef contain on average 7.8 mol% lysine (Souci et al., 2008), complete oxidation of 

all lysine residues will theoretically result in a 7.2% decrease of proteolysis. In our results, a 7.1% 

and 15.2% decrease of proteolysis was measured in beef and pork digests due to a 7-day storage, 

respectively. Hence, these results do not allow to conclude whether proteolysis was decreased due 

to lysine oxidation, or due to protein polymerization before digestion. However, it is unlikely that 

all lysine residues would be oxidized, and the results for pork suggest that even if all ε-amino 

groups were lost, there should still be an additional loss in α-amino groups, most likely due to 

protein polymerization prior to digestion. Finally, it is worth noting that although more protein 

oxidation was observed in beef patties, no significant differences in proteolysis were found 

between pork and beef. Most likely the differences between beef and pork in terms of oxidation 

and proteolysis would be enhanced if the samples would be subjected to heat treatment prior to 

digestion. Upon heating, heme-iron is released from the porphyrin moiety, and can subsequently 

take part in Fenton-like reactions (Kanner, 1994; Lombardi-Boccia et al., 2002). Furthermore, heating 

inactivates endogenous antioxidant enzymes in meat, disrupts muscle cells and denatures proteins, 

making both proteins and lipids more susceptible to oxidation (Nuñez de Gonzalez et al., 2008; 

Wen et al., 2015). Van Hecke et al. (2015) observed significantly more lipid and protein oxidation 

during gastric and duodenal digestion of cooked and overcooked pork compared to raw pork. 
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Figure 4.3: Proteolysis in beef and pork patties during chilled illuminated storage and in vitro digestion. a-b 
Significant difference between storage days within the same type of meat and digestive state (P < 0.05). 

 

The in vitro digestibility studies mentioned above were often conducted on meat protein isolates 

with addition of pro-oxidative chemicals (Liu et al., 2000b; Morzel et al., 2006; Santé-Lhoutellier et 

al., 2007). Even if pro-oxidative conditions such as meat cooking, mincing and aging were mimicked 

(Santé-Lhoutellier et al., 2008a; Bax et al., 2012), the subsequent in vitro digestions were conducted 

on protein isolates and after addition of gastric pepsin and pancreatic trypsin and α-chymotrypsin 

only. The in vitro tool used in the present study was applied to the whole meat product and 

consisted of static incubations with digestive juices simulating the in vivo situation as close as 

possible (Van Hecke et al., 2014a; Van Hecke et al., 2014b). Therefore, it can be expected that the 

results obtained in the present study better reflect the relationship between protein oxidation and 

proteolysis during digestion of meat. 
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4.4 CONCLUSIONS 

Several oxidative changes were observed during illuminated storage and subsequent in vitro 

digestion of beef and pork patties. Oxidation of free thiols was the most abundant protein 

oxidation mechanism during digestion (average of 92% free thiol loss), emphasizing that thiol 

groups are highly reactive and sensitive to oxidative damage. Measurement of carbonylation with 

DNPH (total carbonyls) and UHPLC-FLD (AAS/GGS) indicate the formation of other direct protein 

carbonyls, as well as indirect protein carbonylation through protein lipoxidation or glycation and 

glycoxidation reactions. The hydroxylation pathway of the essential amino acid phenylalanine in 

meat during exposure to air and light has been shown through the identification of 4-

hydroxyphenylalanine. Protein oxidation prior to digestion had a reducing effect on proteolysis 

during digestion, which can be ascribed to polymerization. 

To the best of our knowledge, this is the first study to use a specific combination of protein 

oxidation markers (thiol oxidation, total and specific carbonylation, and hydroxylation) in meat 

products and their simulated digests. The meat had been subjected to relevant oxidative 

conditions and the applied in vitro tool closely simulated in vivo conditions, which should have 

allowed to properly evaluate the effects of protein oxidation on proteolysis during meat digestion. 

Additionally, the identification of 4-hydroxyphenylalanine in oxidized meat arises questions about 

its role in the colonic metabolism when it is converted into phenol and p-cresol. The combination 

of the current in vitro digestion model and protein oxidation markers thus forms a valuable tool 

to evaluate the consequences of oxidation during digestion of meat, and could be applied to 

heated meat and meat products in future. Subsequent in vitro colonic fermentations of duodenal 

digests can provide information on protein fermentation derived metabolites. 
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Chapter 5 Ascorbate and apple phenolics affect protein oxidation in emulsion-type sausages 

during storage and in vitro digestion 
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ABSTRACT 

The effect of sodium ascorbate and apple phenolics on the oxidative stability of emulsion-type 

sausages during storage and digestion was investigated. Emulsion-type sausages containing 0.05% 

sodium ascorbate or 3% freeze dried apple pomace were subjected to chilled illuminated storage 

and subsequent in vitro digestion. Lipid oxidation was assessed as TBARS, and protein oxidation 

was evaluated as thiol oxidation, total carbonyls, and γ-glutamic and α-amino adipic 

semialdehyde. Proteolysis was measured after digestion to evaluate protein digestibility. The 

results suggest the presence of protein-ascorbate and protein-phenol interactions, which may 

decrease protein digestibility and may interfere with spectrophotometric methods for measuring 

oxidation. 
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5.1 INTRODUCTION 

During aging and processing, meat and meat products are exposed to various reactive oxygen 

species (ROS) which are able to target both the lipid and protein fraction. Lipid oxidation is marked 

for the typical rancidity and off-flavour in meat products, and the mechanisms and inhibition by 

antioxidants have been studied extensively (Velasco et al., 2010). The consequences of protein 

oxidation are perhaps more subtle, which is probably why this phenomenon has for a long time 

been ignored in food science. However, ROS can damage proteins by attacking the amino acid 

side chains or the peptide backbone (Lund et al., 2010). Consequently, protein oxidation can be 

detrimental for meat quality in many ways, e.g., by altering protein functionality such as the 

emulsifying, gel-forming and water holding capacity (Decker et al., 1993; Ooizumi et al., 2004; 

Bertram et al., 2007), and by decreasing sensory aspects such as meat tenderness and juiciness 

through cross-link formation (Rowe et al., 2004; Lund et al., 2007b). Furthermore, oxidative 

modification of proteins may affect their nutritional value and digestibility (Xiong, 2000).  

Ascorbic acid or its salt, sodium ascorbate, is a reducing agent which is often added to meat 

products. It acts as a chain-breaking antioxidant by donating electrons or hydrogen atoms to free 

radicals, thereby inhibiting further oxidation (Buettner & Jurkiewicz, 1996). Furthermore, ascorbate 

can react with atmospheric oxygen and is able to regenerate other endogenous and exogenous 

antioxidants (Feiner, 2006a). In nitrite cured meat products such as emulsion-type sausages, 

ascorbate also acts as a colour enhancer by accelerating the reduction of nitrite into nitric oxide. 

The latter reacts with myoglobin to form nitrosomyoglobin, which upon heating turns into the 

typical pink cured meat colour (Totosaus, 2009). Over the last decades, phenolic-rich fruit and 

plant material have been considered as an alternative to conventional antioxidants. Like ascorbate, 

polyphenols have reducing capacities and can scavenge free radicals by either donating hydrogen 

atoms or capturing radicals into their phenolic ring structure. Furthermore, some polyphenols are 
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able to chelate metal ions, enabling Fenton-like reactions in which ROS are formed (Shahidi et al., 

2015). 

In the present study, emulsion-type sausages were prepared with the addition of either sodium 

ascorbate or freeze dried apple pomace, and their oxidative stability was investigated during 

chilled illuminated storage and subsequent in vitro digestion. Lipid oxidation was evaluated as 

thiobarbituric acid reactive substances (TBARS), and protein oxidation was evaluated as thiol 

oxidation and carbonylation (total carbonyls, γ-glutamic semialdehyde and α-amino adipic 

semialdehyde). Furthermore, the proteolytic degradation after digestion was evaluated in order to 

shed light on the potential correlation between protein oxidation and protein digestibility. 

 

5.2 MATERIALS AND METHODS 

5.2.1 Preparation of freeze dried apple pomace 

Apples of the cultivar ‘Jonagold’ were obtained from a local fruit distributor. The apples were 

vacuum pressed (VaculIQ 1000, VaculIQ, Hamminkeln, Germany) and the retained apple pomace 

was immediately vacuum packed and frozen to -20 °C. After being freeze dried (Epsilon 2-10 D LSC, 

Martin Christ, Osterode am Harz, Germany), the apple pomace was homogenized into a powder 

using a food processor, vacuum packed and stored in the dark at room temperature until 

manufacturing of the emulsion-type sausages. 

 

5.2.2 Preparation and sampling of emulsion-type sausages 

Lean pork and pork fat were obtained from a local meat processing plant. Three treatments were 

prepared, each containing 2.8 kg of lean pork, 2.45 kg of pork fat, 1.75 kg of crushed ice, 133 g of 

nitrite salt (Solina group, Eke-Nazareth, Belgium), and 35 g of emulsifier (Emulsioninne AB, Solina 

group, Eke-Nazareth, Belgium). No other ingredients were added to the first treatment, which was 

included as a control. The ascorbate and apple treatments were enriched with 3.5 g of sodium 

ascorbate and 210 g of freeze dried apple pomace to obtain a final concentration of 0.05% and 
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3%, respectively. A concentration of 0.05% (500 ppm) of sodium ascorbate is commonly applied 

for meat products (Sahoo & Anjaneyulu, 1997; Feiner, 2006a). The 3% apple concentration was 

chosen on the basis of the work of Nuñez de Gonzalez et al. (2008), who tested 3% and 6% of 

dried plum puree and dried plum and apple puree as natural antioxidants in pork sausages. After 

cooking and dark storage (21 days), these authors reported TBARS inhibition in the 6% plum and 

apple puree treatment, however this puree had a moisture content of 50% to 56%. The meat 

batters were prepared in a laboratory blender (Stephan Prime Cut 12, Stephan Machinery GmbH, 

Hameln, Germany) and transferred to a vacuum filler (Robby Type 136, VEMAG, Verden, Germany) 

to make 1.5 kg sausages in artificial casings with 105 mm diameter (F plus rot, Walsroder Casings 

GmbH, Walsrode, Germany). The sausages were heated (Baskett PRIV 130 M, Firex, Sedico, Italy) to 

a core temperature of 68 °C and subsequently cooled to 4 °C. Sausages were automatically sliced 

(VS12 D, Bizerba, Balingen, Germany) into 1.5 mm slices and displayed in portions of three stacked 

slices at 4 °C (atmospheric air) under fluorescent light of 1000 lux, which was turned on for 12 h 

per day. Upon sampling time (day 0, 4 and 7), portions were homogenized using a food processor, 

vacuum packed, and stored at -80 °C until analysis. 

 

5.2.3 Physico-chemical characterization of meat samples 

Moisture, crude protein and crude fat content were determined according to ISO 1442:1997, ISO 

937:1978 and ISO 1444:1996, respectively. Colour measurements  (L*, a* and b*) were performed 

using a UV–Vis spectrophotometer (Sensing Unveils CM-5, Konica Minolta Sensing, Osaka, Japan). 

 

5.2.4 In vitro digestion 

The in vitro digestion of the meat products was performed according to a previously described 

protocol (Van Hecke et al., 2014a), as described in Chapter 4, Section 4.2.3.  
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5.2.5 Quantification of lipid oxidation 

Malondialdehyde (MDA) concentrations in meat products and digests were measured 

colorimetrically as TBARS by a modified method in accordance with Grotto et al. (2007). Results 

were expressed as nmol MDA equivalents per mg free fat. 

 

5.2.6 Quantification of free and total thiols 

Free and total thiols were quantified according to Rysman et al. (2014) with slight modification as 

described in Chapter 4, Section 4.2.5. However, 1 g instead of 0.5 g of meat was taken to level out 

the protein concentration in emulstion-type sausages as compared to meat patties. The thiol 

content was expressed as nmol thiol per mg protein. 

 

5.2.7 Quantification of total carbonyls 

Total carbonyls were determined according to Vossen et al. (2015) with slight modifications as 

described in Chapter 4, Section 4.2.6. However, 200 µL (instead of 100 µL) and 400 µL (instead of 

200 µL) were taken from the meat homogenates and digests, respectively, to level out the protein 

concentration in emulstion-type sausages as compared to meat patties. Protein carbonyl 

concentration was expressed as nmol carbonyl per mg protein.  

 

5.2.8 Quantification of γ-glutamic semialdehyde (GGS) and α-amino adipic 

semialdehyde (AAS) 

Samples were prepared for ultra high performance liquid chromatography with fluorescence 

detection (UHPLC-FLD) analysis of γ-glutamic semialdehyde (GGS) and α-amino adipic 

semialdehyde (AAS) according to Utrera et al. (2011) with modifications as described in Chapter 4, 

Section 4.2.7. However, 200 µL (instead of 100 µL) and 400 µL (instead of 200 µL) were taken from 

the meat homogenates and digests, respectively, to level out the protein concentration in 
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emulstion-type sausages as compared to meat patties. Results were expressed as nmol of GGS or 

AAS per mg of protein.  

 

5.2.9 Quantification of proteolysis 

Proteolysis in digested samples was determined according to Polychroniadou (1988) with 

modifications as described in Chapter 4, Section 4.2.9. Results were expressed as µmol glycine 

equivalents per mg of dry weight. 

 

5.2.10 Statistical analysis 

All analyses were done in triplicate. Statistical analyses were carried out using SAS® software (SAS 

Institute Inc., Cary, NC, USA). Colour values (L*, a* and b*) were analyzed using a linear model with 

treatment as fixed effect. Data before and after digestion were analyzed separately. Results for 

TBARS, free thiols, total thiols, total carbonyls, GGS, AAS, and proteolysis in the meat samples and 

the digests were analyzed using a linear model with ‘storage day’ and ‘treatment’, as well as their 

interaction, as categorical fixed effects. Tukey-adjusted post hoc tests were performed for pairwise 

comparisons, and the significance level was selected as P < 0.05. 

 

5.3 RESULTS AND DISCUSSION 

5.3.1 Characteristics of apple pomace 

Apple pomace contains approximately 3.1 – 4.5% protein, 1.6 – 4.5% fat, 0.6 – 1.9% ash, 10.8 – 15.0% 

sugars and 60.7 – 89.8% dietary fibers, of which 56.5 – 81.6% insoluble dietary fibers (dry weight 

basis) (Figuerola, Hurtado, Estévez, Chiffelle, & Asenjo, 2005; Dhillon, Kaur, & Brar, 2013; Younis & 

Ahmad, 2015).  

In 2015, De Paepe et al. quantified the phenolic profile in the peel and flesh of 47 Belgian apple 

cultivars. Table 5.1 shows the major phenolics in apple fruit and their content in Jonagold (the 

apple cultivar used in this Chapter) as determined by these authors. Considering that apple peel 
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accounts for approximately 3% of the apple (on dry weight basis), the phenolic content in the 

whole apple can be calculated (Table 5.1). In a comparative study between spiral-filter pressing (the 

technology used to obtain the pomace in this Chapter) and belt pressing in apple juice production, 

these same authors determined the extraction efficiency for each of these phenolics (De Paepe et 

al.), allowing to calculate the phenolic content in apple pomace. Hence, the concentrations as 

shown in Table 5.1 are a good representation of what the phenolic profile in the apple pomace 

from the current Chapter would look like.  

 

Table 5.1: Proximate phenolic content in Jonagold apple.  

  Concentration (mg/kg dry weight) 

Phenolic compound Ee (%)1 Peel2 Flesh2 Whole3 Pomace3 

Chlorogenic acid 79.2% 122.4 15.1 18.3 3.8 

Isoquercitrin 4.5% 459.5 0.5 14.2 13.6 

Hyperin 3.5% 644.1 0.1 19.5 18.8 

Rutin 10.1% 53.3 0.0 1.6 1.5 

Avicularin 1.8% 339.4 2.3 12.5 12.2 

Quercitrin 10.2% 331.7 10.4 20.0 18.0 

(+)-Catechin 64.9% 19.5 4.2 4.7 1.6 

(-)-Epicatechin 58.5% 295.1 57.2 64.3 26.7 

Phloridzin 10.5% 43.6 13.3 14.2 12.7 

Procyanidin B2 45.9% 248.8 80.8 85.9 46.5 

Ee, extraction efficiency during spiral-filter pressing of apple (% phenolic transfer to juice). 
1De Paepe et al. (2015a). 2De Paepe et al. (2015b). 3By calculation. 

 

Some critical remarks should be made when interpreting this data. The Jonagold apples used for 

the determination of the phenolic content in Table 5.1 are from a different growing year than the 

ones used in this Chapter. As it concerns the same cultivar, the phenolic profile would be 

comparable, however the growing year might influence the phenolic content (De Paepe, 2014). 

Furthermore, to determine the phenolic content in the apple peel and flesh as shown in Table 5.1, 

the apples were cored (De Paepe et al., 2015b). Hence, phenolics that are mainly present in the 

apple seeds, such as phloridzin (Li, 2012), are not taken into account. Moreover, only a selection of 
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phenolics were tested on their extractability during apple juice production, however there are 

more phenolics in Jonagold than presented in Table 5.1. Especially those that are abundantly 

present in the apple peel, are strongly retained in the apple pomace (De Paepe et al., 2015a). Hence, 

it would be incorrect to simply add up the phenolic content as shown in Table 5.1 to obtain a total 

phenolic content. Finally, not only the total phenolic content, but also the effects of synergism 

and antagonism among phenolic antioxidants, as explained in Chapter 3 (Section 3.3.4.4), should 

be considered when evaluating the antioxidant capacity of phenolics in the apple pomace. 

Diñeiro García et al. (2009) determined the antioxidant capacity of apple pomaces after hydraulic 

pressing of six cultivars by means of spectrophotometric methods. On average, they found a total 

phenolic content of 7.3 ± 1.8 g GAE per kg dry weight according to the Folin-Ciocalteu assay. The 

radical scavenging activity according to the DPPH● assay was on average 12.6 ± 1.8 g ascorbic acid 

equivalents per kg dry weight, and the mean ferric reducing antioxidant power (FRAP) was 10.7 ± 

1.6 g ascorbic acid equivalents per kg dry weight. 

With regard to ascorbic acid (vitamin C), few literature can be found on its content in apple 

pomace. According to Lee et al. (2003), whole apple contains on average 12.8 mg per 100 g fresh 

weight (ca. 0.64 g per kg dry weight). Considering that the majority of vitamin C is located in the 

apple flesh, it is reasonable to assume that most of the vitamin C will be transferred to the apple 

juice. Hence, compared to phenolic compounds, vitamin C would have only a minor contribution 

to the antioxidant capacity of apple pomace. 

 

5.3.2 Characteristics of emulsion-type sausages 

The composition (moisture, protein and fat content) and colour values (L*, a* and b*) of the 

emulsion-type sausages are represented in Table 5.2. The redness (a*) significantly increased in the 

order control < apple pomace < ascorbate treatment. The high a* value in the ascorbate treatment 

can be ascribed to the role of ascorbate as a colour enhancer. The intermediate redness in 

emulsion-type sausages treated with freeze dried apple pomace suggests that phenolic 
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compounds are able to reduce nitrite to nitric oxide, subsequently contributing to the formation 

of nitrosomyoglobin, however the phenolics do not seem to be as efficient as ascorbate. The 

lightness (L*) and yellowness (b*) significantly increased in the order control < ascorbate < apple 

pomace. The brighter and more yellow colour of the sausages in the apple treatment is due to the 

bright, yellowish green colour of the apple pomace powder. 

 

Table 5.2: Moisture, protein and fat content and colour values (L*, a* and b*) in emulsion-type sausages 
(control, 0.05% ascorbate and 3% freeze dried apple pomace).  

 Moisture 

(%) 

Protein 

(%) 

Fat 

(%) 

L* a* b* 

Control 60.7 10.7 25.7 68.0a ± 0.2 4.2a ± 0.2 8.5a ± 0.1 

Ascorbate 60.1 10.1 26.6 69.1b ± 0.2 5.3b ± 0.2 9.5b ± 0.1 

Apple 59.7 9.7 25.5 70.8c ± 0.1 4.8c ± 0.1 12.4c ± 0.2 

P values    <0.001 <0.001 <0.001 

 

5.3.3 Lipid oxidation 

During storage, a small though significant decrease in TBARS expressed on fat basis was measured 

in the control treatment (Figure 5.1), while an increase was expected. Since the TBARS assay is 

based on reaction of MDA with thiobarbituric acid (TBA), an underestimation or decrease of TBARS 

can be ascribed to instability of MDA. As such, MDA can bind to proteins through Schiff base 

formation with lysine residues (Domingues et al., 2013). However, the hydrolysis step in our TBARS 

assay should have reduced such MDA-protein adducts, making the MDA molecule available again 

for detection with TBA. Lebepe, Molins, Charoen, Farrar, and Skowronski (1990) suggested that MDA 

was metabolized by spoilage bacteria, causing a decrease of TBARS in vacuum packed pork loin. 

Bax et al. (2012) proposed a breakdown of MDA into volatile compounds, together with MDA-protein 

adducts, to explain their TBARS decrease in porcine meat cooked at high temperatures. Another 

likely explanation for the TBARS decrease in the present study is interference of residual nitrite. 

Since the emulsion-type sausages were cured with nitrite salt, the residual nitrite could lead to 

partial nitrosation of MDA during storage, making it unreactive to TBA (Raharjo & Sofos, 1993). 
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Sindelar, Cordray, Sebranek, Love, and Ahn (2007) used curing conditions in emulsion-type sausages 

similar to our production, and measured a decrease of residual nitrite in the ppm range during 

vacuum storage. Hence, it is plausible that some of the residual nitrite reacted with MDA that was 

formed during processing and storage of the emulsion-type sausages, making it undetectable with 

the TBARS assay. 

 

 

Figure 5.1: Lipid oxidation in emulsion-type sausages (control, 0.05% ascorbate and 3% freeze dried apple 
pomace) during illuminated storage (4 °C) and after in vitro digestion. Results are shown as mean ± 

standard deviation (N=3). a-c Significant difference between days within the same treatment (P < 0.05). x-z 
Significant difference between treatments within the same day (P < 0.05). 

 

Although TBARS values in the ascorbate treatment also decreased significantly during storage, 

they were significantly lower than the control treatment on all sampling days (Figure 5.1). This 

indicates that ascorbate worked effectively as an antioxidant against lipid oxidation. The apple 

treatment did not significantly differ from the control during the first 4 days of storage, however 

by day 7, TBARS values increased slightly and were significantly higher than the control (Figure 5.1). 

These results clearly indicate that the freeze dried apple pomace did not act as an inhibitor of 

lipid oxidation during storage of the emulsion-type sausages. Contradictory results were reported 

by Sun et al. (2010), where both ascorbic acid and apple polyphenols significantly inhibited lipid 
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oxidation in sliced cooked cured ham. However, differences in concentration and purification of 

the apple extracts, as well as in the meat matrix (cooked ham vs. emulsion-type sausages), impede 

comparisons between their and our study.  

After digestion, a 2- to 7-fold increase of TBARS values was found (Figure 5.1), which is in agreement 

with Van Hecke et al. (2014a; 2014b; 2015) and confirms the ongoing lipid oxidation during digestion. 

The trends of decreasing TBARS over light exposure time and lower TBARS in the ascorbate 

treatment were similar to those before digestion, suggesting that MDA reactions with residual 

nitrite still interfered with the TBARS assay, yet ascorbate remained an inhibitor of lipid oxidation 

during digestion. Interestingly, the TBARS results after digestion in the apple treatment were 

significantly lower than in all other digests, indicating that the phenolic-rich apple pomace 

effectively inhibited lipid oxidation during digestion. Possibly, the physiological conditions of the 

gastro-intestinal tract positively influenced the antioxidative capacities of the apple phenolics. As 

redox reactions are pH dependent, it is possible that the pH decrease in the stomach and/or the 

subsequent increase in the duodenum affects the antioxidant activity of phenolics. Curiously, 

Nuñez de Gonzalez et al. (2008) observed that 3% dried plum and apple puree only significantly 

inhibited TBARS formation in pork sausages after frozen storage and not during manufacturing, 

cooking, or refrigerated storage. This suggests that apple polyphenols are slower to act as an 

antioxidant than ascorbate. However, possible interactions of phenolics or other apple compounds 

with MDA, interfering with the TBARS assay and resulting in an underestimation after digestion, 

should not be excluded. 

 

5.3.4 Protein oxidation 

5.3.4.1 Thiol oxidation 

The levels of free and total thiols in the three treatments of emulsion-type sausages (control, 

0.05% ascorbate and 3% apple) during storage are shown in Table 5.3. During 7 days of chilled 

illuminated storage, the free thiol content decreased significantly in all treatments, indicating that 
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thiols were lost to oxidation. After 7 days, a free thiol decrease of 32% was observed in the control 

treatment, however free thiol loss was more abundant in the presence of ascorbate and apple 

(62% and 46%, respectively). This suggests that more thiol oxidation took place and thus, that 

ascorbate and apple were not effective as antioxidants against protein thiol oxidation. Next to its 

free radical scavenging properties, ascorbate is able to reduce free metal ions, such as ferric iron 

which can be released upon heating of myoglobin. Its reduced form, ferrous iron, can subsequently 

take part in Fenton-like reactions producing ROS. Hence, ascorbate can indirectly act as a pro-

oxidant (Carr & Frei, 1999). However, the applied 4-DPS method only gives information about the 

extent of thiol loss and not about the types of thiol oxidation products formed. Therefore, it is 

unknown whether the observed thiol loss is caused by direct thiol oxidation such as disulfide 

cross-link formation, or by thiol reactions with ascorbate or apple phenolics. As such, reactions of 

thiols with degradation products of ascorbate have been reported. Upon oxidation of ascorbate, 

e.g. by donating hydrogen atoms to free radicals, dehydroascorbate (DHA) is formed. This reaction 

is reversible, however under severe oxidative stress the ascorbate:DHA ratio will decrease. Since 

DHA is unstable under physiological conditions, it will degrade into numerous products, one of 

which was identified as a five-carbon derivative reacting with thiol groups of glutathione, insulin 

B-chain, α-lactalbumin, and hemoglobin, forming protein-DHA* adducts (Figure 5.2A) (Regulus, 

Desilets, Klarskov, & Wagner, 2010; Kay, Wagner, Gagnon, Day, & Klarskov, 2013). These types of 

adducts could explain the significantly lower thiol levels in the ascorbate treatment on day 4 and 

7. Similar adduct formation and interactions have been reported about phenolic compounds and 

protein thiols. Upon oxidation of the hydroxyl groups on the phenolic ring, quinone structures 

are formed, which in turn can react with thiol groups on cysteine side chains. After this covalent 

bonding, the phenol moiety is regenerated and is able to reoxidize and bind with another cysteine 

side chain, forming a protein-phenol-protein cross-link (Figure 5.2B) (Ozdal et al., 2013). Hence, 

these protein-phenol interactions would lead to a decrease in free thiols as detected with 4-DPS. 

The fact that in the present study, the free thiols in the apple treatment on day 0 were already 

significantly lower than in the control treatment, suggests that some of these protein-phenol 
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reactions had already taken place during manufacturing of the emulsion-type sausages. Similar 

results were observed by Jongberg et al. (2015b), who studied the dose-dependent effects of green 

tea extract as an antioxidant in emulsion-type sausages, and found significantly fewer free thiols 

in the high dose treatment (1500 ppm of extract). Hence, the concentration of 3% freeze dried 

apple pomace in the present study is possibly too high, resulting in significant protein-phenol 

interactions. 

 

Table 5.3: Protein oxidation in emulsion-type sausages (control, 0.05% ascorbate and 3% freeze dried 
apple pomace) during illuminated storage (4 °C). 

   storage    P values 

 treatment  day 0 day 4 day 7  RMSE  T D T×D 

            
free thiols 

(nmol/mg protein) 

control  21.8a,x 20.4a,x 14.8b,x  

1.0 

 

<0.001 <0.001 <0.001 ascorbate  19.5a,x 11.4b,y 7.3c,y   

apple  16.0a,y 11.9b,y 8.6c,y   

            
total thiols 

(nmol/mg protein) 

control  52.3x 53.7x 49.3x  

2.0 

 

<0.001 <0.001 <0.001 ascorbate  50.1a,x 47.6a,y 34.3b,y   

apple  44.1a,y 40.6a,z 32.1b,y   

            
total carbonyls 

(nmol/mg protein) 

control  2.36a,x 2.89ab,x 3.35b,x  

0.25 

 

<0.001 <0.001 <0.001 ascorbate  3.02a,xy 5.41b,y 6.30c,y   

apple  3.12a,y 3.86b,z 3.93b,x   

            
GGS 

(nmol/mg protein) 

control  0.23xy 0.28 0.28  

0.04 

 

0.005 <0.001 0.133 ascorbate  0.16a,x 0.29b 0.33b   

apple  0.29y 0.36 0.34   

            
AAS 

(nmol/mg protein) 

control  1.47 1.57xy 1.48xy  

0.26 

 

<0.001 0.014 0.040 ascorbate  1.09a 1.89b,x 1.98b,x   

apple  0.85 1.04y 0.91y   

            
GGS, γ-glutamic semialdehyde; AAS, α-amino adipic semialdehyde; RMSE, root mean square error; T, 
treatment; D, day. a-c Significant difference between days within the same treatment (P < 0.05). x-z 
Significant difference between treatments within the same day (P < 0.05). 
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Figure 5.2: Proposed mechanisms of ascorbate (scheme A) and phenol (scheme B) interactions with protein 
thiols. Gray spheres indicate protein-bound carbonyl groups susceptible to DNPH derivatization. Schemes 

modified from Kay et al. (2013) and Jongberg, Lund, and Otte (2015a). 
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Upon reduction with sodium borohydride, the total thiol level in the fresh control sample (day 0) 

was 2.4 fold higher than the free thiol level (Table 5.3). This indicates that approximately 30.5 nmol 

of reducible thiol oxidation products per mg of protein were already formed during 

manufacturing of the emulsion-type sausages. No significant changes in total thiols were observed 

during storage of the control sample, indicating that the free thiol loss was due to reducible 

oxidation reactions. The total thiol content in the ascorbate treatment was similar to that of the 

control treatment on day 0, however by day 7 a significant 32% decrease was observed, indicating 

that part of the thiol reactions were irreversible. According to Kay et al. (2013), the reaction between 

DHA* and thiols likely involves Michael addition. Since the reversibility of these type of adducts are 

dependent on temperature and structure (Allen & Humphlett, 1966), it is likely that in this study 

the proposed protein-DHA* adducts are irreversible as determined with the 4-DPS assay. Analogue 

to the free thiol content, the total thiol content in the apple treatment was significantly lower 

than the control on day 0 and continued to decrease during storage. This could again be 

attributed to the formation of protein-phenol adducts as described above. Jongberg et al. (2015a) 

studied the effects of dithiothreitol, tris(2-carboxyethyl)phosphine, and sodium sulfite on quinone-

β-lactoglobulin adducts using mass spectrometry, and found that these three reducing agents 

were able to dissociate the adducts for 68, 36 and 75%, respectively. Although no information is 

available on the reducing effect of sodium borohydride on protein-phenol adducts, it is reasonable 

to assume that part of these covalent bonds were not dissociated during the reduction step in the 

4-DPS analysis, resulting in a decrease in total thiols. 

After digestion, lower thiol contents were measured (Table 5.4), indicating that further thiol 

oxidation took place. In the control treatment, the free thiol content decreased ca. 50% on each 

sampling day compared to the undigested equivalents. Although free thiols in the ascorbate and 

apple treatment were lower than the control before digestion, no significant differences from the 

control were found after digestion. Hence, if the lower values before digestion were caused by 

protein-DHA* and protein-phenol adducts as hypothesized, these interactions did apparently not 

occur during digestion, nor did they promote further thiol oxidation. No significant differences in 
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total thiols were found among storage days or treatment (Table 5.3), with an average of 31.5 nmol 

of total thiols per mg of protein. Compared to the initial total thiol level after production of the 

emulsion-type sausages (control day 0 before digestion), approximately 40% of the thiol oxidation 

became irreversible during digestion, disregarding the treatment. These data suggest that 

formation of protein-DHA* and protein-phenol adducts took place faster than thiol oxidation, 

however these interactions did not influence the ultimate thiol oxidation and its reversibility after 

digestion. 

 

Table 5.4: Protein oxidation in emulsion-type sausages (control, 0.05% ascorbate and 3% freeze dried 
apple pomace) after in vitro digestion. 

   storage    P values 

 treatment  day 0 day 4 day 7  RMSE  T D T×D 

            
free thiols 

(nmol/mg protein) 

control  11.9a 9.1b,xy 7.7b  

0.8 

 

<0.001 <0.001 0.718 ascorbate  13.3a 10.5b,x 8.1c   

apple  11.2a 8.0b,y 6.7b   

            
total thiols 

(nmol/mg protein) 

control  29.3 31.0 32.8  

3.6 

 

0.239 0.277 0.306 ascorbate  29.7 26.8 34.1   

apple  33.4 33.6 32.3   

            
total carbonyls 

(nmol/mg protein) 

control  2.11 2.20 2.30  

0.34 

 

0.009 0.091 0.280 ascorbate  2.68 2.77 2.19   

apple  2.87 3.02 2.40   

            
GGS 

(nmol/mg protein) 

control  0.22x 0.19x 0.20  

0.05 

 

<0.001 <0.001 <0.001 ascorbate  0.18x 0.25x 0.19   

apple  0.58a,y 0.60a,y 0.26b   

            
AAS 

(nmol/mg protein) 

control  0.20 0.21 0.24  

0.04 

 

0.304 0.295 0.385 ascorbate  0.15 0.21 0.22   

apple  0.19 0.20 0.17   

            
GGS, γ-glutamic semialdehyde; AAS, α-amino adipic semialdehyde; RMSE, root mean square error; T, 
treatment; D, day. a-c Significant difference between days within the same treatment (P < 0.05). x-y 
Significant difference between treatments within the same day (P < 0.05). 
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5.3.4.2 Carbonylation 

Results for carbonylation as determined with DNPH (total carbonyls) and with UHPLC-FLD (GGS 

and AAS) are presented in Table 5.3 (during storage) and Table 5.4 (after digestion). Although GGS 

and AAS have been highlighted as the main carbonyls in meat proteins (Estévez, 2011), it is worth 

interpreting all results simultaneously. Table 5.5 shows the sum of the GGS and AAS results 

expressed relative to the total carbonyl level. In the control treatment on day 0, GGS+AAS 

accounted for 72% of total carbonyls. Total carbonyls in the control increased significantly during 

storage, however no significant changes were observed in GGS or AAS, decreasing the GGS+AAS 

percentage to 52% by day 7. Hence, the higher initial total carbonyl level, as well as the increase 

during storage, should be ascribed to other carbonyls than GGS and AAS, which are also detectable 

with DNPH. Such carbonyls could be derived from direct carbonylation of other amino acids, or 

from reactions of proteins with oxidizing sugars or lipids containing an aldehyde (Estévez, 2011). 

 

Table 5.5: Amount of GGS and AAS, relative to the total carbonyl level. Results calculated as the sum of 
GGS and AAS (as determined with UHPLC-FLD) divided by total carbonyls (as determined with DNPH) (%). 

  before digestion  after digestion 

treatment  day 0 day 4 day 7  day 0 day 4 day 7 

control  72% 64% 52%  20% 18% 19% 

ascorbate  41% 40% 37%  12% 17% 18% 

apple  37% 36% 32%  27% 27% 18% 

 

In the ascorbate treatment, a significant increase in total carbonyls, GGS and AAS was observed 

during storage. Total carbonyls were significantly higher and almost double of the total carbonyl 

level in the control on day 4 and 7. This suggests that ascorbate acted as a pro-oxidant through 

iron reduction as described in Section 5.3.4.1, especially since protein carbonylation is believed to 

be metal-catalyzed (Estévez, 2011). However, GGS and AAS levels did not significantly differ from 

the control, indicating that the spectacular increase in total carbonyls was caused by other 
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carbonyls. As such, the carbonyl moieties on ascorbate and DHA are able to react with DNPH in a 

similar way as protein carbonyls. If these molecules were covalently bound to the protein, e.g., 

through protein-DHA* adducts, they would not be removed by washing of the protein pellet, 

therefore leading to an overestimation of total protein carbonyls (Figure 5.2A) (Srinivasan, Xiong, 

& Decker, 1996). In the ascorbate treatment, GGS+AAS initially made up 41% of total carbonyls, 

which suggests that part of these DNPH interfering DHA adducts were already formed during 

processing. 

The apple treatment contained slightly higher total carbonyl and GGS levels compared to the 

control, however these differences were only significant for total carbonyls during the first 4 days 

of storage. Similar to the proposed ascorbate interference, covalent protein-phenol interactions 

could contribute to higher total carbonyls through reaction of DNPH with carbonyl moieties on 

the quinone structure (Figure 5.2B). After production (day 0), GGS+AAS made up 37% of total 

carbonyls in the apple treatment compared to 72% in the control, which suggests phenol adduct 

formation during processing, and thus DNPH overestimation from the beginning of the 

experiment. Total carbonyls in the apple treatment no longer significantly increased nor differed 

from the control by day 7, which could suggest that some sort of equilibrium between phenol 

interference and carbonyl inhibition was reached. Interestingly, apple phenolics seemed to inhibit 

AAS formation, though not significantly. This suggests that phenolics specifically protected the 

lysine residue from oxidizing into AAS. Most likely this is not by radical scavenging, because results 

for thiol oxidation, total carbonyls and GGS formation indicate otherwise. Possibly some apple 

phenolics interacted with the lysine residue, e.g. through ionic bonds between the positively 

charged ε-amino group from lysine and the negatively charged hydroxyl groups from the phenol 

structure (Le Bourvellec et al., 2012), thereby preventing lysine from further oxidation. 

Total carbonyl levels in the digested samples (Table 5.4) were 8 to 65% lower than in their 

undigested equivalents. This decrease can be ascribed to further reactions of carbonyls during 

digestion, in which the carbonyl moiety is lost and no longer can be detected with DNPH. As such, 

carbonyls can further degrade into carboxylic acids, Schiff base structures, aldol condensation 
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products, and Strecker aldehydes (Estévez, 2011). The total carbonyl decrease during digestion of 

the ascorbate and apple samples suggests that if the high total carbonyl levels before digestion 

would be due to ascorbate and phenol interference, at least part of the carbonyl groups on these 

adducts also took part in further reactions. In all treatments, the total carbonyl decrease during 

digestion was more extensive in older samples (average of 10, 31 and 45% decrease in samples 

from day 0, 4 and 7, respectively), signifying that more secondary carbonyl reactions took place in 

severely oxidized samples. Due to this further degradation of carbonyls, no significant differences 

in total carbonyls could be observed among digested samples. Results for GGS formation indicate 

a similar pattern as for total carbonyls in the control and ascorbate treatments, however the GGS 

content in the presence of apple nearly doubled during digestion of samples on day 0 and 4, 

whereas a decrease was observed after digestion of the 7 day old apple sample. This could indicate 

that the apple phenolics were able to delay the secondary oxidation of GGS during digestion on 

day 0 and 4, but that by day 7, GGS degradation could no longer be prevented. Results for AAS 

formation revealed an average decrease of 85% after digestion, without significant differences 

between storage days or treatments. As a result, GGS+AAS only accounted for an average of 19% 

of total carbonyls after digestion (Table 5.5). This spectacular decrease indicates that AAS 

undergoes excessive ongoing reactions during digestion, and therefore might not be an optimal 

marker for carbonylation during severe oxidative stress, especially for treatment comparison. 

However, it is worth taking into consideration that both methods for carbonylation measurement 

include protein precipitation steps. Since proteins were exposed to proteases in the simulated 

digestive juices, digests contained mostly small peptides and amino acids, of which the molecular 

weight might be too low to precipitate. Direct carbonylation, such as AAS or GGS formation, 

shortens the amino acid side chain and thus lowers the molecular weight, whereas adduct 

formation increases it. Hence, the precipitated protein pellet might contain more carbonyl 

containing protein adducts, resulting in more DNPH derivatization. 
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5.3.5 Proteolysis 

Both increased and decreased proteolytic susceptibility have been reported with oxidized meat 

proteins, depending on the degree and nature of oxidation (Liu et al., 2000b; Santé-Lhoutellier et 

al., 2007). An increase in proteolysis can be ascribed to protein unfolding due to oxidative 

degradation, making the protease recognition site more available. Severe protein oxidation 

however might lead to protein aggregation, preventing access by proteolytic enzymes (Bax et al., 

2012). Results for proteolysis in the digested samples after increasing storage days are shown in 

Figure 5.3. Statistical analysis revealed a significant effect of treatment (P < 0.001) and storage day 

(P = 0.026), whereas the interaction was not significant (P = 0.139). A decreasing trend was observed 

in all treatments, signifying that the oxidative modifications that had occurred during storage led 

to impaired proteolytic susceptibility, and thus impaired digestibility. It is worth noting that some 

gastric and duodenal proteases such as trypsin preferentially cleave proteins at arginine and lysine 

residues (Gasteiger et al., 2005). Hence, carbonylation of these residues, as was observed in our 

results, could impair protease recognition. Furthermore, it is likely that aggregation caused by 

protein cross-linking occurred during storage and digestion of the emulsion-type sausages. As 

thiol loss was observed in all treatments during storage and especially after digestion (Table 5.3 

and 5.4), it is likely that part of these thiols were oxidized into intra- or intermolecular disulfide 

bonds. Furthermore, as stated in Section 5.3.4.2, the decrease in carbonyls after digestion suggests 

ongoing reactions such as carbonyl mediated cross-link formation. These results indicate that the 

radical attack during digestion, resulting in thiol and carbonyl mediated cross-links, happened 

faster than the proteolytic attack by the digestive enzymes. 

Proteolysis in the ascorbate treatment was slightly lower than the control, though not significantly. 

This indicates that ascorbate did not act as an antioxidant by inhibiting carbonylation and cross-

link formation, and even slightly induced cross-linking. As such, Reihl, Lederer, and Schwack (2004) 

characterized a number of lysine-arginine cross-links derived from degradation products of DHA. 
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Hence, these ascorbate mediated cross-links, on top of thiol and carbonyl mediated cross-links, 

could account for more aggregation and thus less digestibility. Similarly, phenol (quinone) 

mediated cross-links as described in Section 5.3.4.1 (Figure 5.2) might possibly lead to a impaired 

proteolytic susceptiblity in the apple treatment. 

 

 

Figure 5.3: Proteolysis in cooked sausage (control, 0.05% ascorbate and 3% freeze dried apple pomace) 
after in vitro digestion. Results are shown as mean ± standard deviation (N=3). 
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5.4 CONCLUSIONS 

In the present study, no significant protection of proteins against oxidation was observed during 

storage and in vitro digestion when 0.05% of sodium ascorbate or 3% of freeze dried apple 

pomace was added to emulsion-type sausages, even though a significant inhibition of lipid 

oxidation was found in the ascorbate treatment during storage and digestion, and in the apple 

treatment after digestion. The addition of ascorbate and apple phenolics led to significant more 

thiol loss, and results for total carbonyls and GGS and AAS formation were inconsistent. The results 

suggest that degradation products of ascorbate and phenolics reacted with protein moieties, 

resulting in more free thiol loss and non-protein carbonyls. Indications for interactions with 

ascorbate only appeared after prolonged storage and digestion, whereas phenolic interactions 

were noticeable right after manufacturing, however they changed slower and were less 

pronounced. These interactions might also impair the digestibility of proteins. More accurate 

methods with mass spectrometry are necessary to confirm and investigate these interactions. 
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Chapter 6 General discussion and future prospects 
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Meat and meat products are highly susceptible to quality loss due to oxidation of both the lipid 

and protein fraction (Xiong, 2000). Lipid and protein oxidation go hand in hand, and are first and 

foremost expressed as off-flavours and off-odours. However, protein oxidation may also influence 

texture and technological properties, and the impact on health upon consumption has been a 

topic of great interest, though still not fully elucidated (Soladoye et al., 2015). The use of 

antioxidants in meat products can delay such reactions, and consumers’ growing interest in 

natural ingredients and so called ‘clean label’ products have prompted meat researchers to explore 

natural antioxidants derived from plant material rich in phenolic compounds (Hygreeva et al., 

2014). In this dissertation, the mechanisms of protein oxidation in meat products and the effects 

of apple phenolics as a source of natural antioxidants during storage and digestion were studied. 

 

6.1 PROTEIN OXIDATION MARKERS IN MEAT AND MEAT PRODUCTS 

Thiol oxidation and carbonylation are reported to be the most abundant oxidative changes in 

meat proteins (Estévez, 2011; Lund et al., 2011), and therefore are the most widely used protein 

oxidation markers. In this PhD thesis, a new method for thiol measurement was introduced and 

methods for carbonylation measurement were optimized. Schiff base measurement was applied 

for the evaluation of the carbonylation pathway. Furthermore, hydroxylation of phenylalanine 

was introduced as an additional oxidation marker, contributing to the understanding and 

evaluation of protein oxidation in meat. However, all methods have certain drawbacks and 

limitations which should always be borne in mind when evaluating protein oxidation. 

 

6.1.1 Free and total thiols 

In most meat research, thiol oxidation into disulfides is analyzed as thiol loss, measured 

spectrophotometrically with the thiol detection agent 5,5’-dithiobis-(2-nitrobenzoic acid) (DTNB or 

Ellman’s reagent), and/or as cross-linked myosin heavy chain (CL-MHC) formation, semi-
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quantitatively measured by means of SDS-PAGE (e.g. Lund et al., 2007b; Jongberg et al., 2011b). In 

Chapter 2 of this thesis, a new spectrophotometric method was introduced for the quantification 

of free and total thiols in meat with 4,4’-dithiodipyridine (4-DPS). This thiol detection agent is 

suggested to be more sensitive and reliable than DTNB due to its smaller size and thus higher 

accessibility, its higher extinction coefficient, and its stability at low pH ranges (Riener et al., 2002; 

Hansen et al., 2007). The latter was an important feature when including a reduction step in thiol 

analysis, since acidification was needed at the end of this step. While the aforementioned DTNB 

method only measures thiol loss, the reduction step with sodium borohydride in the 4-DPS assay 

allows to gain information on the reducibility of thiol oxidation in meat. Compared to the SDS-

PAGE method, more reducible thiol oxidation products are measured with 4-DPS in ground beef 

during high-oxygen storage. This can be explained by several aspects: (1) two MHC molecules may 

be cross-linked by multiple disulfide bridges; (2) intramolecular disulfide cross-linking are not 

visualized by gel electrophoresis, but are measured with the 4-DPS assay; (3) severely cross-linked 

MHC molecules are not able to migrate through the gel, leading to an underestimation; (4) thiol 

oxidation in meat proteins other than myosin, as well as reducible thiol oxidation products other 

than disulfides, are only measured with 4-DPS and not with SDS-PAGE. While SDS-PAGE visualizes 

thiol oxidation as disulfide formation on a molecular level, the measurement of free and total 

thiols in meat with 4-DPS offers valuable information about thiol oxidation on a functional group 

level (H1 accepted). However, the 4-DPS method only analyses thiol loss and its reversibility, but it 

does not provide information on the type of thiol oxidation products formed. For that, more 

accurate (U)HPLC or LC-MS/MS methods are necessary. Furthermore, it is worth noting that the 4-

DPS assay is carried out on a filtrate, after meat proteins were solubilized with a denaturant. 

Hence, proteins that adhere to insoluble particles through cross-linking or other reactions, might 

be retained by the filter paper and excluded from the assay. This potential protein loss is leveled 

out by measuring the protein concentration of the filtrate, but should be considered when 

interpreting 4-DPS results. Finally, some optimization to the 4-DPS method should be considered. 

During the method development, the reduction procedure was tested on oxidized glutathione, 
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and an average recovery percentage of 86% was obtained. Including a spike addition step in the 

4-DPS assay, by adding a known amount of GSSG to the meat at the beginning of sample 

preparation, allows to calculate the recovery percentage in meat, which subsequently can be taken 

into account for thiol content calculations.  

 

6.1.2 Total carbonyls 

Measurement of total carbonyls with 2,4-dinitrophenylhydrazine (DNPH) is by far the most 

common method for evaluating protein carbonylation in meat. As with all spectrophotometric 

assays, the specificity of the DNPH method can be questioned, however measures are taken to 

ensure a reliable quantification of protein carbonyls. As DNPH and DNP hydrazone exhibit the 

same yellow colour, it is important to include a thorough washing step after derivatization to 

remove all excess DNPH. This is done with ethanol:ethyl acetate, which at the same time washes 

away lipid particles. These lipid particles might contain secondary lipid oxidation products such 

as malondialdehyde (MDA), which are equally able to derivatize with DNPH, thus leading to an 

overestimation of protein carbonyls. During the DNPH derivatization and washing procedure, it is 

unavoidable that some of the protein fraction is washed away. To allow to correct for protein 

concentration differences, a blank derivatization (without DNPH) should thus be included for all 

samples. When following this procedure, the DNPH method can be considered as a rapid and 

reliable method for measuring total protein carbonyls in meat (H2 accepted). Nonetheless, the 

DNPH method does not provide information on which amino acids were carbonylated. 

Furthermore, this method does not allow to make a distinction between primary and secondary 

protein carbonylation. This is especially important in complex meat products, in which secondary 

protein carbonyls cannot only be derived from other meat components (e.g. oxidizing lipids), but 

also from non-meat ingredients such as ascorbate and phenolic compounds. Finally, it is worth 

noting that carbonyls on small proteins, peptides and free amino acids are not included in the 

DNPH assay, since they cannot be precipitated by TCA and are washed away. 
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6.1.3 Specific carbonyls: γ-glutamic and α-amino adipic semialdehyde 

In 2011, Utrera, Morcuende, Rodríguez-Carpena, and Estévez introduced an HPLC method for the 

quantification of two specific carbonylation products in meat: γ-glutamic semialdehyde (GGS, 

derived from arginine and proline) and α-amino adipic semialdehyde (AAS, derived from lysine). 

The method is based on reductive amination of these aldehydes with the fluorescent 4-

aminobenzoic acid (ABA), followed by acid hydrolyzation and HPLC separation coupled to a 

fluorescence detector (FLD). In Chapter 4 of this thesis, the HPLC-FLD procedure was adapted to a 

more rapid and accurate UHPLC-FLD procedure, reducing analysis time from 40 to 8.5 minutes 

per sample. Furthermore, a blank derivatization (without ABA) for protein concentration 

measurement was included for all samples, similar to the DNPH method. Up to now, AAS and GGS 

concentrations were expressed as nmol carbonyl per mg protein, and the protein concentration 

was measured in the meat samples before starting the derivatization procedure. However, as with 

the DNPH procedure, protein loss during sample preparation for carbonyl measurement is 

inevitable. Since severely oxidized meat proteins are often very fragile and harder to precipitate 

with TCA, the protein concentration in these samples at the end of the derivatization procedure 

can be considerably lower. Hence, including a blank derivatization and measuring protein 

concentration at the end of the derivatization procedure instead of before, corrects for protein 

loss during sample preparation and avoids an underestimation of carbonyls. With these procedure 

improvements, the suggested UHPLC-FLD method for AAS and GGS determination can be 

considered as a good and reliable way to evaluate direct protein carbonylation in meat (H3 

accepted). Its specificity towards AAS and GGS can however at the same time be a limitation, since 

no information is given on carbonylation of amino acids other than arginine, proline or lysine, or 

any other oxidative changes. Another shortcoming of the method that cannot be overcome at 

present, is the absence of quantitative GGS and AAS standards. The use of an ABA standard curve 

to quantify GGS-ABA and AAS-ABA peaks, with the assumption that one mole of ABA emits the 
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same fluorescence as one mole of GGS-ABA or AAS-ABA (Utrera et al., 2011), could contribute to an 

over- or underestimation if the emission of derivatized carbonyls would be higher or lower than 

that of single ABA. Finally, as with the DNPH assay, AAS and GGS in small proteins, peptides and 

free amino acids are excluded from the assay since TCA only precipitates larger proteins. 

 

6.1.4 Schiff base structures 

Schiff base (SB) structures can be formed from cross-linking between protein carbonyl compounds 

and the ε-amino group of a lysine residue in the same or another protein (Xiong, 2000). 

Spectrophotometric measurement of their natural fluorescence can thus contribute to the under-

standing of the carbonylation pathway in meat proteins (e.g. see Chapter 3). However, SB structures 

can also be formed from other reactions where protein carbonyls are not involved, such as cross-

linking between lipid oxidation aldehydes and lysine residues  (Guyon, Meynier, & de Lamballerie, 

2016). Furthermore, SB cross-linking can contribute to protein polymerization, aggregation, and in 

severe cases insolubility (Xiong & Decker, 1995), which can interfere with the spectrophotometric 

measurement. The use of a high ionic strength buffer might be sufficient to bring myofibrillar 

protein isolates into suspension for fluorescent SB measurement (e.g. see Chapter 3), however 

when analyzing meat and meat products for SB structures, a purification and solubilization step 

should be included in sample preparation to avoid the interference of other meat components 

and insoluble (protein) fractions (H4 undecided). In any case, it should always be considered that 

fluorescent molecules other than carbonyl-amino SB structures might be measured at the given 

excitation and emission wavelengths. Furthermore, the lack of SB standards prevents the exact 

quantification of SB structures in the samples; SB measurement is expressed as fluorescence 

intensity units, and can only be evaluated in comparison with other samples. 
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6.1.5 4-Hydroxyphenylalanine 

In Chapter 4, a peak in the UHPLC-FLD chromatograms for GGS/AAS was identified as 4-

hydroxyphenylalanine (4-OH-Phe) or tyrosine, an aromatic amino acid which is naturally present 

in meat, or can be formed by oxidation of phenylalanine. Thus far, oxidative loss of aromatic 

amino acids in meat was measured spectrophotometrically (Gatellier et al., 2009; Utrera et al., 

2012a), while this UHPLC determination provides more accurate and more specific determination 

of 4-OH-Phe. Although it is impossible to make a distinction between endogenous tyrosine and 

monohydroxylated phenylalanine, the progression of the amount of 4-OH-Phe in meat during 

storage and/or digestion can be used as a new protein oxidation marker (H5 accepted). Hence, 

the UHPLC-FLD method described in this thesis does not only provide information about specific 

carbonylation (GGS and AAS formation), but also about hydroxylation of phenylalanine in meat. 

Since 4-OH-Phe or tyrosine is commercially available as a standard, the peaks in the 

chromatograms can easily be quantified. However, as with interpreting DNPH and GGS/AAS results, 

protein loss during sample preparation should be considered. With regards to 4-OH-Phe, sample 

preparation for UHPLC-FLD analysis could be simplified, since 4-OH-Phe emits a natural 

fluorescence at the applied wavelengths, and therefore derivatization with ABA is not necessary,  

 

In conclusion, all of the described methods offer valuable information on protein oxidation in 

meat, however their limitations should always be considered when analyzing results. When 

evaluating protein oxidation in meat, it is advisable to use at least two oxidation markers, because 

no single oxidation marker is all inclusive. Depending on the research objectives and the type of 

oxidative modification of interest (carbonylation, thiol oxidation, hydroxylation, …), a combination 

of specific and general (spectrophotometric) markers should be chosen carefully. Spectrophoto-

metric methods such as the 4-DPS, DNPH and Schiff base assays are relatively rapid and 

inexpensive. However in these assays all chromogenic compounds at a given wavelength are 
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measured, and therefore the specificity towards the target molecules cannot be assured. On the 

other hand, UHPLC-FLD analysis gives specific information on GGS, AAS and 4-OH-Phe formation, 

however other oxidation products are overlooked. Furthermore, it is known that both carbonyls 

and thiols are highly reactive compounds that are able to react with other amino acid residues, 

with secondary lipid oxidation products such as 4-hydroxy-2-nonenal (HNE) and malondialdehyde 

(MDA), or with other meat components (Xiong, 2000; Estévez, 2011). Therefore, the parallel 

interpretation of several protein and lipid oxidation markers is of the utmost importance to 

comprehend oxidative reactions. Finally, it should be noted that even when quantification is 

possible by means of a standard, results from oxidation assays should not stand alone. Oxidation 

is a complex and dynamic phenomenon, and results from two different laboratories or even two 

different studies within the same laboratory may vary considerably (Pegg, 2001; Stadtman et al., 

2003). Therefore, trends in oxidized samples should always be compared to suitable controls (e.g. 

before and after storage or digestion).  

 

6.2 PROTEIN OXIDATION DURING STORAGE AND DIGESTION OF MEAT AND MEAT 

PRODUCTS 

All of the applied oxidation systems in this PhD thesis (metal-catalyzed oxidation (MCO), O2 and 

light exposure) caused significant oxidative deterioration of amino acid side chains in myofibrillar 

protein isolates, ground beef, pork and beef patties, and emulsion-type sausages. Ongoing 

oxidative reactions were observed during in vitro gastric and duodenal digestion of meat patties 

and emulsion-type sausages, and higher levels of protein oxidation were found in digests from 

meat samples that had been oxidized prior to digestion. Oxidation during both storage and 

digestion was more abundant in beef than pork patties. This can be ascribed to the higher heme 

iron content in beef, which is known to contribute to ROS formation through Fenton-like 

reactions.   
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6.2.1 Thiol oxidation 

The 4-DPS method for quantification of free and total thiols was applied on ground beef during 

high-oxygen storage in Chapter 2, and results revealed a significant decrease of free thiols during 

the course of the experiment, suggesting that thiol oxidation took place. The decrease in total 

thiols suggested that in oxidized meat samples, the borohydride reduction step was not able to 

restore the total thiol level from fresh meat, signifying that not all thiol loss was reversible. Similar 

results were found in Chapter 4 and 5 during illuminated storage under atmospheric air and 

subsequent in vitro digestion of patties (pork and beef) and emulsion-type sausages, respectively. 

Here, the level of free thiols decreased significantly during storage and dropped dramatically after 

digestion (decrease up to 92%), while the total thiol level decreased only after digestion. This partly 

irreversible thiol loss, either during storage or digestion, suggests that other thiol oxidation 

mechanisms than disulfide formation alone took place (H6 partly rejected). Although thiol loss in 

meat was previously ascribed mainly to reversible disulfide formation, the results from this thesis 

suggest the formation of other, irreversible thiol oxidation products, such as sulfinic or sulfonic 

acid and thiosulfinates (Nagy et al., 2010), or irreversible reactions with other meat components. 

The reversibility of thiol oxidation in meat is an important observation with regard to further 

development of strategies to delay or repair thiol oxidation. LC-MS/MS analysis could provide more 

information on the type of thiol oxidation products that are formed during storage and digestion 

of meat and meat products. 

 

6.2.2 Carbonylation 

Carbonylation was evaluated in myofibrillar proteins (subjected to MCO), and meat patties and 

emulsion-type sausages (subjected to illuminated storage under atmospheric air and subsequent 

in vitro digestion). Similar patterns were observed during the experiments; first an increase in 

carbonyl compounds was measured, followed by a decrease at the end of storage or after 
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digestion. This progression demonstrates that oxidation is a dynamic process that should be 

evaluated in the course of time. Measurements at a single time point do provide limited 

information on the kinetics of protein oxidation and the state of oxidation of different samples. 

The decrease in protein carbonyl compounds suggests that ongoing reactions with carbonyl 

groups took place, and this was in fact shown in the myofibrillar proteins where a significant 

increase in Schiff base structures was measured simultaneously with protein carbonyl decrease. It 

is however likely that also other carbonyl reactions than SB cross-linking alone took place, such 

as formation of carboxylic acids (e.g. α-amino adipic acid or AAA), aldol condensation products, 

and Strecker aldehydes (Estévez, 2011). Furthermore, reactions of protein carbonyl groups with 

non-protein compounds are likely to occur in complex matrices such as meat products. 

In Chapter 4 and 5 of this thesis, both total and specific (GGS/AAS) carbonylation was analyzed on 

the same meat samples and digests. All protein carbonylation markers followed the familiar 

pattern of increase and decrease during storage and digestion, however the slope and peak of the 

carbonylation curves differed among total carbonyls, GGS and AAS. This suggests that amino acids 

such as arginine, proline and lysine are not equally susceptible to carbonylation, possibly because 

of their accessibility within the protein core. Furthermore, the amount of total carbonyls was 

considerably higher than the sum of GGS and AAS (H7 rejected). Although direct carbonylation of 

amino acid side chains is suggested to be the main route for protein carbonylation, and GGS and 

AAS are often highlighted as the most abundant protein carbonyls (Estévez, 2011), The formation 

of other direct protein carbonyls, as well as indirect protein carbonylation through protein 

lipoxidation or glycation and glycoxidation reactions warrants consideration.  

 

6.2.3 Hydroxylation 

In Chapter 4, a significant increase of 4-OH-Phe was found during storage of beef patties, 

suggesting that the aromatic amino acid phenylalanine was oxidized. After in vitro digestion of 

the samples, 4-OH-Phe levels were significantly lower, signifying that ongoing reactions took place, 
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such as formation of dityrosine or dihydroxyphenylalanine (DOPA) (Maskos et al., 1992; Stadtman 

et al., 1997). Hydroxylation of phenylalanine may influence the nutritional value of meat and meat 

products, since phenylalanine is an essential amino acid. Furthermore, when reaching the colon, 

4-OH-Phe is fermented into phenol and p-cresol by colonic bacteria. These potentially mutagenic 

metabolites are believed to be largely detoxified in the liver and urinarily excreted (Evenepoel et 

al., 1998). However residual faecal p-cresol has been correlated with promutagenic DNA adducts in 

the colon (Winter et al., 2011). In Chapter 4, duodenal digests from oxidized meat samples contained 

up to 57% more 4-OH-Phe than digests from fresh meat. Further research should determine 

whether this influences bacterial fermentation in the colon and the level of residual faecal p-

cresol, and ultimately its possible impact on human health. 

 

6.3 APPLE PHENOLICS AS ANTIOXIDANTS AGAINST PROTEIN OXIDATION IN MEAT 

AND MEAT PRODUCTS 

In this PhD research, apples were chosen as a source of natural antioxidants because of their high 

phenolic content, which is preserved very good after spiral-filter pressing for juice production. The 

press residue or apple pomace, which in this regard is considered as a by-product, could be 

valorized as a phenolic-rich meat ingredient to inhibit oxidation. The effects of apple phenolics (in 

the form of pure phenolic compounds, an apple peel extract or freeze dried apple pomace) as a 

source of natural antioxidants against protein oxidation were investigated in myofibrillar proteins 

(Chapter 3) and emulsion-type sausages (Chapter 5). 

 

6.3.1 Apple phenolics in myofibrillar proteins and emulsion-type sausages 

In myofibrillar proteins, the selected pure phenolic compounds and the apple peel extract showed 

significant antioxidative effects against GGS, AAS and SB formation. (-)-Epicatechin inhibited the 

carbonylation pathway most efficiently, while phloridzin exhibited the weakest antioxidant effect. 

The higher concentrations of apple peel extract showed inhibition of AAS, GGS and SB formation 
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similar to the (-)-epicatechin treatment. These results demonstrate that certain apple phenolics 

can be a good source of natural antioxidants in meat protein suspensions when applied in the 

right concentration, suggesting the potential role of apple by-products as natural inhibitors of 

protein oxidation in meat and meat products.  

When enriching emulsion-type sausages with freeze dried apple pomace, contradictory results for 

protein oxidation were found. Results for free and total thiols (4-DPS assay) and total carbonyls 

(DNPH assay) revealed that more (irreversible) thiol oxidation and carbonylation took place in the 

presence of freeze dried apple pomace as compared to a control treatment (without antioxidants 

added), suggesting that apple phenolics stimulated oxidation. However, as mentioned in Section 

6.1, caution must be exercised with interpreting spectrophotometric methods. Like thiols and 

carbonyls, phenolics are highly reactive compounds; upon oxidation of the hydroxyl group on the 

phenolic ring (e.g. by donating hydrogen atoms to stabilize radicals), a quinone structure is formed, 

which in turn is able to react with protein thiols (Ozdal et al., 2013; Jongberg et al., 2015a). Hence, 

these covalent protein-phenol interactions would lead to a decrease in free and total thiols as 

detected with 4-DPS. What is more, such protein-phenol interactions might interfere with total 

carbonyl measurement, since carbonyl moieties on protein bound quinone may react with DNPH, 

resulting in an overestimation of primary protein carbonylation. This hypothesis was strengthened 

upon UHPLC-FLD analysis, revealing no significant increase of GGS or AAS during storage of the 

apple treatments, and no significant differences from the control treatment. Hence, the higher 

carbonyl levels that were measured with DNPH, were caused either by other primary carbonyls 

than GGS or AAS, or by secondary protein carbonyls (e.g. from protein bound phenols). It is 

important to notice that this increased thiol loss and total carbonylation in the presence of freeze 

dried apple pomace was already observed at the start of the experiment (day 0 before digestion), 

suggesting that protein-phenol interactions had already taken place during manufacturing of the 

emulsion-type sausages. Although phenol interactions might prevent further direct protein 

oxidation, it has been suggested that protein bound phenol is able to re-oxidize and bind with 

another amino acid side chain, forming a protein-phenol-protein cross-link (Ozdal et al., 2013; 
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Jongberg et al., 2015a). In this regard, apple phenolics could contribute to the formation of phenol 

mediated cross-links, which could negatively influence sensory aspects and technological 

properties. Such interfering phenol mediated cross-links were in fact suggested to occur in 

emulsion-type sausages treated with high doses of green tea extract (1500 ppm) (Jongberg et al., 

2015b). It is likely that the concentration of freeze dried apple applied in this PhD research (3% 

w/w) was too high, resulting in protein-phenol interactions instead of (measurable) antioxidant 

mechanisms.  

In conclusion, the selected pure phenolic compounds and apple peel extract showed inhibition 

against protein oxidation in myofibrillar protein suspensions (Chapter 3), however there appeared 

to be interfering protein-phenol interactions when applying freeze dried apple pomace in 

emulsion-type sausages (Chapter 5), impeding the evaluation of protein oxidation (H8 undecided). 

To understand and possibly avoid or inhibit such protein-phenol interactions, their kind and dose-

dependency could be clarified by means of LC-MS/MS analysis in model systems, before gradually 

extrapolating the protein and phenol matrix to a meat product enriched with apple phenolics as 

a source of natural antioxidants.  

 

6.3.2 Finding the optimal phenolic concentration 

Table 6.1 represents the phenolic content in the apple treatments of myofibrillar proteins and 

emulsion-type sausages, expressed on weight basis. As the 200 µM apple peel extract was effective 

in the MPI model system (Chapter 3), theoretically a concentration of 6.5 g GAE/kg protein should 

be achieved in emulsion-type sausages as well. Considering that (1) according to Diñeiro García et 

al. (2009), the average total phenolic content of apple pomace is 7.3 g GAE/kg pomace (dry weight), 

and (2) emulsion-type sausages have an average protein content of 10%, apple pomace powder 

should be added to the emulsion-type sausages in a concentration of 89 g/kg meat, or 8.9%. This 

is thrice the amount that was added in the experiment from Chapter 5, and would in practice be 

hardly feasible without altering technological and sensory properties of the meat product.  
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Table 6.1: Proximate phenolic content in myofibrillar proteins treated with 200 µM apple peel extract, and 
emulsion-type sausages treated with 3% freeze dried apple pomace.  

 Myofibrillar proteins 

(Chapter 3) 

 Emulsion-type sausages 

(Chapter 5) 

 mg/kg protein  mg/kg meat mg/kg protein 

Gallic acid equivalents 65311  2193 2258 

Chlorogenic acid 121.62  0.14 1.2 

(-)-Epicatechin 175.72  0.84 8.3 

Phloridzin 25.92  0.44 3.9 

1Calculated from the total phenolic content (Folin-Ciocalteu) in apple peel extract treatment (200 
µM GAE). 2Calculated from phenolic content (LC-MS quantification) in apple peel extract (Chapter 3). 
3Calculated from the mean total phenolic content (Folin-Ciocalteu) of six apple pomaces (Diñeiro 
García et al., 2009). 4Calculated from phenolic content of apple pomace derived from LC-MS 
quantification by De Paepe et al. (2015b) (Chapter 5). 

 

One should however be very cautious when comparing these phenol:protein ratios, and when 

using them to predict the antioxidant outcome. The oxidative conditions in both experimental 

designs differed greatly. The model system in Chapter 3 was specifically designed to promote 

metal-catalyzed oxidation by adding iron and H2O2 at 37 °C. The concentrations and temperature 

in this model were chosen to enlarge and accelerate the effects of oxidation and antioxidants, 

allowing to elucidate the underlying mechanisms. In Chapter 5, the oxidative conditions did 

simulate retail display (refrigerator temperature and exposed to light). Moreover, protein oxidation 

was studied in a different matrix. In Chapter 3, the isolation of myofibrillar proteins minimized 

matrix interference, whereas in the emulsion-type sausages from Chapter 5, other meat 

components such as oxidizing lipids are likely to influence protein oxidation and antioxidant 

mechanisms. Finally, some caution should be made in interpreting the phenolic content in apple 

extract or powder. In order to determine the phenolic content, either by spectrophotometric 

methods or by LC-MS, an extract must first be made. As illustrated in Chapter 3, the choice of 

solvent, as well as other factors such as sample preparation, solvent:sample ratio, and extraction 

time, temperature and pressure, will influence the extraction rate. It is unlikely that all phenolics 

will be extracted and included in the assay, leading to an underestimation when expressed on 
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weight basis. On the other hand, when adding apple (pomace) powder to meat products (as a 

whole instead of as an extract), little is known about the availability of the phenolic compounds. 

The severe comminution during cuttering of the meat batters is likely to improve the release and 

availability of phenolics as a source of antioxidants, however microscopic images of the cell 

integrity should confirm this.  

 

6.3.3 Valorization of apple by-products as a source of natural antioxidants in meat 

and meat products 

As with all antioxidants, the correct dosage is of utmost importance to ensure an optimal 

functionality. Because phenolics are only a small fraction of apple pomace, it will likely be 

necessary to make an extract, to concentrate the phenolics and limit interactions from other apple 

compounds such as fibers. After all, antioxidants are a group of food additives which are used to 

extend the shelf-life of food products without altering their sensory or nutritional properties 

(Shahidi et al., 2015), so they should be added in small, concentrated amounts. Considering that 

fruit and vegetable by-products are often processed in animal feed or used for renewable energy, 

a cost-benefit analysis should be made when valorizing apple by-products as natural antioxidants 

in meat and meat products; costs for extraction procedures and safety regulations must be taken 

into account. 
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6.4 EFFECTS OF PROTEIN OXIDATION AND APPLE PHENOLICS ON DIGESTION OF 

MEAT AND MEAT PRODUCTS 

Protein oxidation in meat has been suggested to influence proteolytic breakdown during gastric 

and duodenal digestion in several ways. Mild protein oxidation is believed to enhance enzyme 

accessibility by partial unfolding, thereby increasing proteolysis. Severe oxidation, on the other 

hand, reduces enzyme accessibility by polymerization and aggregation, thereby decreasing 

proteolysis (Bax et al., 2012). Furthermore, some gastric and duodenal proteases such as trypsin 

preferentially cleave proteins at arginine and lysine residues (Gasteiger et al., 2005), and oxidation 

of these amino acids may impair protease recognition. In this PhD thesis, fresh and oxidized pork 

and beef patties and emulsion-type sausages (enriched with freeze dried apple pomace) were 

subjected to an in vitro digestion model, specifically designed for studying oxidation processes 

during passage in the gastrointestinal system (Van Hecke et al., 2014a). Quantification of proteolysis 

in the duodenal digests provided information about the effect of protein oxidation on proteolysis 

during digestion. 

 

6.4.1 Effect of protein oxidation and apple phenolics on proteolysis during in vitro 

digestion of meat and meat products 

After in vitro digestion of fresh and oxidized beef and pork patties (Chapter 4) and emulsion-type 

sausages (Chapter 5), a decrease in proteolysis was observed as the samples were more oxidized. 

This suggests that the proteolytic enzymes in the gastric and duodenal juices (1) were structurally 

hindered to reach the peptide backbone in the oxidized meat samples because of protein cross-

linking, polymerization and aggregation, and/or (2) did not recognize their cleavage sites because 

of oxidative modification of amino acid side chains. Hence, protein oxidation during storage 

results in impaired proteolysis during digestion (H9 accepted). As mentioned above, ongoing 

protein oxidation was observed in the meat digests. The severe thiol loss after digestion suggested 
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that at least part of these thiols were oxidized into intra- and intermolecular disulfide bonds. 

Furthermore, the decrease in carbonyls that was measured after digestion could be caused by 

carbonyl mediated cross-link formation. These results suggest that radical attack during digestion, 

resulting in thiol and carbonyl mediated cross-links, happened faster than the proteolytic attack 

by digestive enzymes. 

After in vitro digestion of emulsion-type sausages enriched with freeze dried apple pomace, slightly 

less proteolysis was observed as compared to the control treatment (without apple phenolics). It 

is likely that protein-phenol interactions in the apple treatment impaired proteolytic attack by 

forming phenol mediated cross-links or altering recognition sites. As discussed above, the protein-

phenol interactions most likely are dose-dependent, and until this has been clarified, no 

conclusions can be made about the effect of apple phenolics as antioxidants on impaired 

proteolysis caused by protein oxidation (H10 undecided). 

 

6.4.2 Health impact of protein oxidation and apple phenolics in meat and meat 

products 

It has been reported that when proteins are poorly hydrolyzed in the small intestine, they are 

intensely fermented by colonic bacteria (Evenepoel 1998). Impaired proteolysis of oxidized meat 

proteins in the stomach and duodenum could therefore increase the amount of potentially 

mutagenic or carcinogenic bacterial fermentation metabolites in the colon (e.g. phenol and p-

cresol from 4-OH-Phe). Such metabolites could be analyzed in colonic digests if a colonic 

fermentation stage would be added to the in vitro digestion model. In this aspect, it is important 

to note that with a static in vitro digestion model such as the one applied in this PhD research, 

the absorption of amino acids and metabolites through the lumen of the small and large intestine 

is not taken into account. It is likely that part of the oxidized proteins are still hydrolyzed into 

small peptides and amino acids and absorbed in the upper gastrointestinal tract, escaping colonic 

fermentation. If so, it is unknown what effect the oxidative modifications of these dietary amino 
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acids have on protein synthesis in the human body (Soladoye et al., 2015). If oxidized proteins do 

reach the colon and are fermented, further research should determine whether the formed 

metabolites are harmful for the human body, or simply detoxified and excreted. Hence, the 

bioavailability of oxidized meat proteins and their possible colonic metabolites remains to be 

elucidated.  

Adding apple phenolics to meat products as a source of natural antioxidants arises more questions 

about the effects on digestion, bioavailability and health. In medical science, (natural) phenolic 

antioxidants are often praised as being beneficial for human health by protecting the human body 

from ROS damage (Shahidi et al., 2015). It is however more complicated than that, since some 

antioxidants, either synthetic or natural, can exhibit pro-oxidant and even carcinogenic activity 

under certain conditions (Boudet, 2007). Furthermore, the health impact of dietary phenolic 

compounds also depends on the composition of the diet and interactions with other dietary 

components (Shahidi et al., 2015). Moreover, ingested polyphenols are hydrolyzed and degraded in 

the colon, and these degradation products should also be taken in consideration (Boudet, 2007). 

Hence, the bioavailability and lack of toxicity of natural antioxidants remains to be confirmed. 

 

6.5 LIMITATIONS AND FUTURE PROSPECTS 

In this PhD thesis, some final thoughts and issues came forward that deserve further consideration 

and research. 

i. When evaluating protein oxidation in meat, the choice of protein oxidation markers must 

be considered well. To do so, the basic principles of each assay should be taken into 

account: free and total thiols (4-DPS assay) are determined in soluble proteins after 

denaturation, carbonyls and 4-OH-Phe (DNPH and UHPLC-FLD) are determined in 

proteins after TCA precipitation. 
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ii. To optimize the 4-DPS method for free and total thiol quantification, a spike addition 

with oxidized glutathione could be included in order to take the recovery of the reduction 

procedure into account. 

iii. Other peaks in the UHPLC-FLD chromatograms for GGS/AAS analysis, especially those 

that increase upon oxidation, require identification with GC/MS. For now, all that is 

known is that the compounds representing those peaks either derivatize with ABA during 

sample preparation, or that they are fluorescent as such at the given wavelengths. They 

might be other oxidation products that are not necessarily carbonyl compounds. 

iv. As with protein oxidation, a single marker does not allow to fully comprehend the 

manifestations of lipid oxidation. Additional to the TBARS assay, the peroxide value could 

be determined as a measure for the formation of hydroperoxides (primary lipid 

oxidation), and specific secondary lipid oxidation products such as 4-HNE and MDA could 

be quantified using HPLC. 

v. Potential synergistic or antagonistic interactions among phenolic antioxidants towards 

protein oxidation can be studied in more detail by adding combinations of pure phenolic 

compounds to model systems. 

vi. Microscopic analysis of the apple pomace would enable to evaluate the cell integrity, 

helping to understand the availability of the phenolics for antioxidant activities or for 

protein interactions. 

vii. The nature and dose-dependency of protein-phenol interactions require further 

investigation by means of LC-MS/MS. 

viii. Heating during meat processing might affect the functionality of phenolics. Although 

phenolics are known to have good heat resistance in vitro, they might act differently to 

high temperatures when incorporated in meat batters, resulting in decreased antioxidant 

activity or increased protein-phenol interactions. 

ix. The effect of apple phenolics on colour formation in cured meat products, as well as 

their effect as an antioxidant against colour oxidation, remains to be elucidated. 
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x. Studies on the role of nitrite towards protein oxidation in meat were thus far 

inconclusive. As nitrite is a highly reactive compound, its potential synergistic or 

antagonistic antioxidant effect should be considered when evaluating oxidation in cured 

meat products. 

xi. The potential loss of essential amino acids because of protein oxidation should be 

evaluated by determination of the amino acid composition. 

xii. Finally, it is worth emphasizing the importance of the origin of the meat when studying 

and comparing oxidation. Diversity with regard to animal species, muscle type, redox 

status of the muscle, and the presence of naturally occurring prooxidants and 

antioxidants (e.g. through animal feed) may have great influence on the progression of 

oxidation. A similar comment can be made about the origin of apple phenolics, because 

the phenolic profile and content depends on several factors such as variety, cultivar, 

geographic origin, growing year, weather conditions, maturity stage, crop load, and fruit 

position within the canopy. This biological variability is inevitable when studying natural 

products, and requires consideration when standardizing antioxidant treatments. 
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Protein oxidation has been studied in medical science for many decades, however in food science, 

it is a relatively new research topic. Research on oxidation in meat was thus far mainly focused 

on the lipid fraction, resulting in the typical rancid off-odours and off-flavours. However, oxidation 

of meat proteins can be detrimental for meat quality as well, since oxidative damage of amino 

acid side chains and the peptide backbone may affect technological, sensory or nutritional 

properties. A literature review on the possible consequences of protein oxidation in meat, and the 

inhibition hereof by means of antioxidants, was provided in Chapter 1 of this PhD thesis.  

Oxidation of the thiol group on the cysteine side chain in meat was investigated in Chapter 2. A 

new method for the quantification of free and total thiols in meat was introduced, based on thiol 

detection with 4,4’-dithiodipyridine (4-DPS) and reduction with sodium borohydride. This method 

was conducted on ground beef during storage under high-oxygen atmosphere at 4 °C in two 

independent trials. In trial 1, only reversible thiol oxidation was observed, with 30% thiol loss after 

9 days of storage. In trial 2, 33% thiol loss occurred after 12 days of storage, of which ca. half was 

caused by irreversible thiol oxidation during the first days of storage, suggesting the presence of 

thiol oxidation products other than reversible disulfides. The results were compared with SDS-

PAGE analysis of cross-linked myosin heavy chain formed by disulfide bonding. Both methods 

confirmed increasing disulfide formation due to thiol oxidation in meat during storage, but the 

4-DPS method showed higher disulfide percentages than the SDS-PAGE method (22.2 ± 0.3% and 

8.5 ± 1.2%, respectively). It was concluded that the 4-DPS assay provides an accurate method to 

evaluate the thiol oxidation and its reversibility in meat, and can be useful in the development of 

strategies to avoid or repair thiol oxidation. 

In Chapter 3, the carbonylation pathway and the effect of apple phenolics were investigated in 

myofibrillar proteins during in vitro metal-catalyzed oxidation (Fe3+/H2O2, 37 °C, 10 days). Three 

pure phenolic compounds (chlorogenic acid, (-)-epicatechin and phloridzin) and an apple peel 

extract were added to myofibrillar protein suspensions in three concentrations (50, 100 and 

200 µM), and a blank treatment was included as a control. Protein oxidation was evaluated as 

specific carbonylation (α-amino adipic and γ-glutamic semialdehydes, or AAS and GGS) and Schiff 
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base cross-link formation. Significant inhibition of protein carbonylation was observed in most of 

the phenolic treatments, depending on the chemical structure of the pure phenolic compound ((-

)-epicatechin > chlorogenic acid > phloridzin), and the applied concentration (200 µM > 100 µM > 

50 µM). The higher concentrations of the apple peel extract showed significant inhibition similar 

to the (-)-epicatechin treatments. Hence, phenolic compounds in apple by-products could be 

introduced as a source of natural antioxidants against protein oxidation in meat and meat 

products. 

To investigate the effects of protein oxidation on meat digestibility, beef and pork patties were 

subjected to illuminated storage (4 °C, atmospheric air) and subsequent in vitro digestion in 

Chapter 4. Protein oxidation was evaluated as thiol oxidation, total carbonylation, and specific 

carbonylation (AAS/GGS). Furthermore, 4-hydroxyphenylalanine (4-OH-Phe), a hydroxylation 

product of phenylalanine, was identified and quantified as a new protein oxidation marker. 

Proteolysis was measured after digestion to evaluate protein digestibility. After 7 days of storage, 

significant oxidative modifications were quantified and the oxidative degradation was continued 

during in vitro digestion. The observed effects were more abundant in beef patties. An average of 

92% of free thiol loss was measured after digestion, and the decrease in total thiols indicates the 

formation of irreversible thiol oxidation products during digestion. Results for total and specific 

carbonyls suggest the presence of other direct protein carbonyls than AAS and GGS, as well as 

indirect protein carbonylation through protein lipoxidation or glycation and glycoxidation 

reactions. Protein oxidation before digestion resulted in impaired digestibility, which can be 

ascribed to thiol and carbonyl mediated cross-links, as well as the oxidative modification of 

recognition sites of proteolytic enzymes. The identification of 4-OH-Phe in oxidized meat arises 

questions about its role in colonic metabolism when it is converted into phenol and p-cresol.  

In Chapter 5, the effect of sodium ascorbate and apple phenolics on the oxidative stability of 

emulsion-type sausages during storage and digestion was investigated. Emulsion-type sausages 

containing 0.05% sodium ascorbate or 3% freeze dried apple pomace were subjected to 

illuminated storage (4 °C, atmospheric air) and subsequent in vitro digestion. Protein oxidation 
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was evaluated as thiol oxidation, total carbonylation, and specific carbonylation (AAS/GGS). 

Proteolysis was measured after digestion to evaluate protein digestibility. During storage and 

digestion, more thiol loss was observed in the presence of ascorbate and freeze dried apple 

pomace as compared to the control treatment. This can be ascribed to interactions of degradation 

products of ascorbate and phenol with the protein thiol group. Results for total and specific 

carbonylation were inconsistent, strengthening the hypothesis of protein-ascorbate and protein-

phenol interactions interfering with spectrophotometric methods. Furthermore, these interactions 

appeared to decrease protein digestibility, because of ascorbate and phenol mediated cross-links 

and alteration of proteolytic recognition sites. 

In conclusion (Chapter 6), protein oxidation in meat and meat products is a complex and dynamic 

phenomenon which should be evaluated by means of at least two markers, since no single protein 

oxidation marker is all inclusive. Protein oxidation during storage and subsequent digestion was 

shown to impair meat digestibility. The impact of decreased digestibility in the upper intestinal 

tract on the colonic metabolism requires further research. Apple phenolics were able to inhibit 

protein carbonylation in myofibrillar protein suspensions, however in emulsion-type sausages 

there appeared to be interfering protein-phenol interactions, impeding the evaluation of protein 

oxidation. Further research should elucidate the exact nature and dose-dependency of such 

interactions, before optimizing (extracts of) apple by-products as a source of natural antioxidants 

in meat products.  
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Eiwitoxidatie wordt al decennialang bestudeerd in de medische wetenschappen, maar het is een 

relatief nieuw onderzoeksthema in de voedingswetenschappen. Onderzoek omtrent oxidatie in 

vlees was tot nu toe vooral gericht op de vetfractie, in relatie tot de typische ranzige geur- en 

smaakafwijking bij vetoxidatie. Oxidatie van vleeseiwitten kan echter ook nadelig zijn voor de 

vleeskwaliteit, aangezien oxidatieve schade van aminozuurzijketens en de peptideruggengraat de 

technologische, sensorische en nutritionele eigenschappen kan beïnvloeden. Hoofdstuk 1 van deze 

doctoraatsthesis omvat een literatuurstudie over de mogelijke gevolgen van eiwitoxidatie in vlees 

en de remming hiervan door gebruik te maken van antioxidanten. 

Oxidatie van de thiolgroep op de cysteïnezijketen in vlees werd bestudeerd in Hoofdstuk 2. Er 

werd een nieuwe methode ontwikkeld voor de kwantificatie van vrij en totaal thiol in vlees, 

gebaseerd op thioldetectie met 4,4’-dithiodipyridine (4-DPS) en reductie met natriumborohydride. 

Deze methode werd toegepast op rundsgehakt tijdens bewaring in een zuurstofrijke verpakking 

bij 4 °C in twee onafhankelijke proeven. In proef 1 werd enkel omkeerbare thioloxidatie 

waargenomen, met 30% thiolverlies na 9 dagen bewaring. In proef 2 werd een verlies van 33% 

thiol vastgesteld na 12 dagen bewaring, waarvan ongeveer de helft veroorzaakt werd door 

onomkeerbare thioloxidatie gedurende de eerste dagen van bewaring. Dit suggereert de aanwezig-

heid van andere thioloxidatieproducten dan omkeerbare disulfidebindingen. De resultaten werden 

vergeleken met SDS-PAGE-analyse van gecrosslinkte myosine zware ketens gevormd door 

disulfidebinding. De beide methodes bevestigden een toename in disulfidebindingen veroorzaakt 

door thioloxidatie in vlees tijdens bewaring, maar de 4-DPS-methode leverde hogere disulfide-

percentages op dan de SDS-PAGE-methode (respectievelijk 22.2 ± 0.3% en 8.5 ± 1.2%). Er werd 

geconcludeerd dat de 4-DPS-methode een accurate methode is om (de omkeerbaarheid van) 

thioloxidatie in vlees te evalueren. De methode kan worden toegepast bij de ontwikkeling van 

strategieën om thioloxidatie te voorkomen of herstellen. 

In Hoofdstuk 3 werd carbonylatie en het effect van appelfenolen bestudeerd in myofibrillaire 

eiwitten tijdens in vitro metaalgekatalyseerde oxidatie (Fe3+/H2O2, 37 °C, 10 dagen). Drie zuivere 

fenolische componenten (chlorogeenzuur, (-)-epicatechine en phloridzin) en een appelschilextract 
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werden in drie concentraties (50, 100 en 200 µM) toegevoegd aan myofibrillaire eiwitsuspensies en 

een blanco behandeling werd toegevoegd ter controle. Eiwitoxidatie werd geëvalueerd aan de 

hand van specifieke carbonylatieproducten (α-amino adipic en γ-glutamic semialdehyden, of AAS 

en GGS) en Schiff base crosslinking. Er werd een significante remming van eiwitcarbonylatie 

waargenomen in de meeste behandelingen met fenolische componenten, afhankelijk van de 

chemische structuur van de zuivere fenolische component ((-)-epicatechine > chlorogeenzuur > 

phloridzin) en de toegepaste concentratie (200 µM > 100 µM > 50 µM). De hogere concentraties aan 

appelschilextract vertoonden een significante remming die gelijkaardig was aan de (-)-

epicatechinebehandelingen. Fenolische componenten in nevenstromen van appel kunnen dus 

mogelijks dienen als een bron van natuurlijke antioxidanten tegen eiwitoxidatie in vlees en 

vleesproducten. 

Om het effect van eiwitoxidatie op de vertering van vlees te onderzoeken, werden runds- en 

varkensburgers bewaard onder licht (4 °C) en vervolgens onderworpen aan een in vitro vertering 

in Hoofdstuk 4. Eiwitoxidatie werd geëvalueerd als thioloxidatie, totale carbonylatie en specifieke 

carbonylatie (AAS/GGS). Bovendien werd 4-hydroxyfenylalanine (4-OH-Phe), een 

hydroxylatieproduct van fenylalanine, geïdentificeerd en gekwantificeerd als een nieuwe merker 

voor eiwitoxidatie. Na de vertering werd proteolyse gemeten om de eiwitverteerbaarheid te 

evalueren. Na 7 dagen bewaring werden significante oxidatieve wijzigingen waargenomen die 

werden verder gezet tijdens in vitro vertering. De waarnemingen waren meer uitgesproken in 

rundsburgers. Na vertering werd gemiddeld 92% verlies aan vrij thiol gemeten en de daling in 

totaal thiol wijst op de vorming van onomkeerbare thioloxidatieproducten tijdens vertering. De 

resultaten voor totale en specifieke carbonylatie suggereren de aanwezigheid van andere directe 

eiwitcarbonylproducten dan AAS en GGS en/of indirecte eiwitcarbonylatie via oxiderende vetten 

en suikers. Eiwitoxidatie voor vertering resulteerde in een verminderde verteerbaarheid. Dit kan 

worden toegeschreven aan thiol- en carbonylgemedieerde crosslinks en de oxidatieve wijziging 

van herkenningsplaatsen voor proteolytische enzymen. Door de identificatie van 4-OH-Phe in 
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geoxideerd vlees kunnen vragen worden gesteld over de gezondheidsimpact wanneer 4-OH-Phe in 

de dikke darm wordt gemetaboliseerd in fenol en p-cresol. 

In Hoofdstuk 5 werden de effecten van natriumascorbaat en appelfenolen op de oxidatieve 

stabiliteit van kookworst onderzocht tijdens bewaring en vertering. Kookworsten met 0.05% 

natriumascorbaat of 3% gevriesdroogde appelpomace werden bewaard onder licht (4 °C) en 

vervolgens onderworpen aan een in vitro vertering. Eiwitoxidatie werd geëvalueerd als 

thioloxidatie, totale carbonylatie en specifieke carbonylatie (AAS/GGS). Na de vertering werd 

proteolyse gemeten om de eiwitverteerbaarheid te evalueren. Tijdens bewaring en vertering werd, 

vergeleken met de controle, meer thiolverlies waargenomen in de aanwezigheid van ascorbaat en 

gevriesdroogde appelpomace. Dit kan worden verklaard door interacties van degradatieproducten 

van ascorbaat en fenolen met de thiolgroep in vleeseiwitten. De resultaten van totale en specifieke 

carbonylatie waren tegenstrijdig, wat de hypothese versterkt over eiwit-ascorbaat- en eiwit-fenol-

interacties die interfereren met de spectrofotometrische methoden. Dergelijke interacties leken 

bovendien de verteerbaarheid van vleeseiwitten te verminderen, door ascorbaat- en 

fenolgemedieerde crosslinks en de verandering van proteolytische herkenningsplaatsen. 

Er kan worden geconcludeerd (Hoofdstuk 6) dat eiwitoxidatie in vlees en vleesproducten een 

complex en dynamisch fenomeen is dat met minstens twee testen moet worden geëvalueerd, 

aangezien geen enkele test alomvattend is. Eiwitoxidatie tijdens bewaring en vertering zorgt voor 

een verminderde verteerbaarheid van vlees. De impact van dergelijke verminderde verteerbaarheid 

in de maag en dunne darm op het metabolisme in de dikke darm moet verder worden onderzocht. 

Appelfenolen waren in staat om eiwitcarbonylatie te remmen in myofibrillaire eiwitten, maar in 

kookworst belemmerden interfererende eiwit-fenol-interacties de evaluatie van eiwitoxidatie. 

Verder onderzoek zal de aard en dosisafhankelijkheid van zo’n interacties moeten achterhalen om 

(extracten van) nevenstromen van appel te optimaliseren als een bron van natuurlijke 

antioxidanten in vlees en vleesproducten. 
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