# CARBONATION MECHANISM OF DIFFERENT KINDS OF C-S-H: RATE AND PRODUCTS

# Bei Wu<sup>(1)</sup>, Guang Ye<sup>(1,2)</sup>

Microlab, Delft University of Technology, 2628 CN, Delft, The Netherlands
Magnel Laboratory for Concrete Research, Ghent University, 9052 Ghent, Belgium

#### Abstract

During the carbonation of cement paste blended with supplementary cementitious materials, the C-S-H with different Ca/Si ratios, formed from the hydration and pozzolanic reactions, are the major calcium-bearing phases which react with  $CO_2$ . Therefore, it's important to study the carbonation mechanism of different C-S-H phases. In this paper, the pure C-S-H phases (Ca/Si ratio: 0.66 to 2.0) were synthesized and used for the accelerated carbonation test. Synthesized C-S-H phases with different Ca/Si ratio were identified by X-ray diffraction and <sup>29</sup>Si nuclear magnetic resonance. The carbonation rate and products of different Ca/Si ratio (lower than 1.40) can be synthesized in the lab. The structure of synthesized C-S-H is similar to the C-S-H(I) reported by Taylor. The mean chain length of the C-S-H decreases dramatically when the Ca/Si ratio increases from 0.66 to 1.40, then it keeps no change. The portlandite appears in the products when the designed Ca/Si ratio is over 1.40. The C-S-H with lower Ca/Si ratio is decomposed faster than that with a higher Ca/Si ratio. All the C-S-H phases are fully decomposed to CaCO<sub>3</sub> and silica gel after 3 days' accelerated carbonation.

#### 1. Introduction

Carbonation of C-S-H has been studied by many authors [1, 2]. It is a complex decalcification-polymerization process of the C-S-H and the formation of amorphous silica gel, see Eq. (1).

$$C_x SH_y + xC \to xCC + SH_t + (y - t)H \tag{1}$$

It is reclaimed that, in cement notations, C = CaO,  $H = H_2O$ ,  $S = SiO_2$ ,  $A = Al_2O_3$ , and  $\overline{C} = CO_2$ . x, y and t are the molecular numbers. According to the Eq. (1), the carbonation mechanism, like reaction rate and products, depends on the properties of C-S-H like Ca/Si

(C/S) and  $H_2O/Si$  (H/S). It is better to study the carbonation mechanism of C-S-H on the basis of the C-S-H structure.

The C-S-H phase has a layer structure can be inferred from the refined structure of 11Å tobermorite ( $Ca_{4.5}Si_6O_{16}(OH) \cdot 5H_2O$ ) [3]. The layer structure of 11Å tobermorites consists of three parts:  $CaO_2$  sheet, 'dreierkette' form SiO chain and interlayer, illustrated in Fig. 1a. In the  $CaO_2$  sheet layer, the 7-fold coordinated  $Ca^{2+}$  share all the oxygen atoms with  $Si^{4+}$  in SiO chains of  $SiO_4$  tetrahedra on both side of the  $CaO_2$  layer. In the SiO chain layer,  $SiO_4$  tetrahedra coordinate themselves to Ca ions by linking in a dreierketten arrangement, to repeat a kinked pattern after three tetrahedra[4]. Two of the tetrahedra are linked to CaO polyhedral by sharing O-O edges with the central Ca-O part of the layer, called paired tetrahedra (PT); the third tetrahedra shares an oxygen atom at the pyramidal apex of a Ca polyhedron, called bridging tetrahedra (BT). There are  $Ca^{2+}$  cations and water molecules in the interlayer.

Comparing with the tobermorites, the major difference of the structure of C-S-H in Portland cement concrete, is that the chains of SiO<sub>4</sub> tetrahedra are broken. The C-S-H contains dimeric, pentameric and even higher polymeric species of SiO<sub>4</sub> tertrahedra, resulting in chains of 2, 5, ..., (3n-1) SiO<sub>4</sub> tetrahedra. It is proved by experimental studies[5-7] and molecular modeling research[8]. Fig. 1a illustrates the pentameric unit, in which a bridging SiO<sub>4</sub> ( $Q_B^2$ ) connects two dimers, resulting in two SiO<sub>4</sub> end-groups ( $Q^1$ ) and two 'paired' SiO<sub>4</sub> sites ( $Q_P^2$ ). Normally, the Q<sub>3</sub> or Q<sub>4</sub> SiO<sub>4</sub> tetrahedra is absent in the C-S-H produced by the Portland cement hydration.



Figure 1 Schematic of the layer crystal structure for the 11 Å tobermorite. The upper part shows different types of SiO4 tetrahedra in a pure pentameric silicate chain, which is a characteristic feature of the 'dreierketten'-based models for the C-S-H phase. The lower part illustrates the possible incorporation of Al in the bridging site and the formation of Q2(1Al) tertrahedra in C-(A-)S-H. b. Comparing between the interlayer structures of 11 Å tobermorite and 14 Å tobermorite.

The C/S of C-S-H in the concrete is normally higher than 0.83. The increase of the C/S in C-S-H based on the tobermorite structure can be caused by: omission of the bridge tetrahedra and incorporation of additional calcium in the interlayer. If all the bridge tetrahedra are removed, the C/S can increase to 1.25[9, 10]. Further incorporation of extra  $Ca^{2+}$  in the interlayer can form the C-S-H with a much higher C/S. The theoretical value is 1.50 when all the bridge sites are removed and taken up by extra  $Ca^{2+}[9]$ . The extra  $Ca^{2+}$  is normally balanced by the omission of H<sup>+</sup> or the incorporation of OH<sup>-</sup> or both. If the amount of extra Ca continues increasing and achieves a C/S even higher than 1.5, the structure of C-S-H is more close to the C-S-H/CH 'solid solution' (T/CH model)[9].

From the above discussion, three types of Ca exist in the C-S-H structure (classification by the position of Ca): Ca in the CaO<sub>2</sub> sheet layer, Ca in the interlayer, Ca from the CH in the 'solid solution'. The proportion of them varies from C-S-H to C-S-H. Apparently, to remove the Ca from the above three chemical site needs different energy, which means the decalcification rate are different among C-S-H phases. Moreover, the removal of Ca in the latter two site causes less changes of the structure than that in the CaO<sub>2</sub> sheet layer. This is why the decalcification of C-S-H may cause the shrinkage of cement paste, especially for the C-S-H with Ca/Si lower than 1.2 [11].

The aim of this work is to synthesize the single C-S-H phase with different C/S and study their carbonation rate and products. Base on this, to explain the phase transformation and microstructure development of blended cement paste during the carbonation, discovered in the former research [12].

#### 2. Experiments and test methods

#### 2.1. Raw Materials

The raw materials used in the synthesis are CaO and fumed silica. CaO is freshly prepared by the calcination of CaCO<sub>3</sub> under 1000 °C for at least 4 hours before synthesis. Fumed silica is from Sigma-Aldrich, with the surface area of 175-225  $m^2/g$ .

## 2.2. Synthesis of C-S-H with different C/S

C-S-H gels were prepared by using stoichiometric amounts of CaO and fumed silica, to give approximate C/S ranging between 0.66 and 2.0. The solid phases were mixed together with CO<sub>2</sub>-free water. The water/solid ratio was 50:1. The solution was stirred by magnetic stirrer at around 20 °C. The whole synthesis procedure was under N<sub>2</sub> protection in case of carbonation. After 2 or 4 weeks' reaction, samples of solid and liquid were extracted as a slurry. Solids were obtained by filtering the slurries through a Balston No. 45 paper. Then they were quickly moved into the vacuum drying chamber and dried under 35 °C for 24 h. Then the sample was stored in the desiccator with the relative humidity of 30%, controlling by the standard saturated CaCl<sub>2</sub>·6H<sub>2</sub>O solution. The set-up of the synthesis device is illustrated in Fig.2. The mix design of different C-S-H is described in Tab. 1.

## 2.3. Accelerated carbonation of C-S-H

Well-dried C-S-H samples were grinded into powders and moved into a carbonation chamber. The  $CO_2$  concentration is maintained at  $3\% \pm 0.2$  automatically by the solenoid valve

connected with a  $CO_2$  sensor. The temperature is regulated at 20 °C and the relative humidity is controlled at around 75% by using the saturated NaCl solution). The carbonation time varies from 0.5 h to 7 days.

# 2.4. Test methods

Test methods used for the identification of different types of C-S-H and the carbonation products were X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). Major crystalline phases in the products were tested by XRD. The X-ray source used is Cu K radiation ( $\lambda = 0.154056$  nm, 60 mA, 40 KV). The scan step size was 0.02°, from 5° to 70° (20). The scan time per step is 8 s. The FTIR spectra were collected over the wavelength range of 4000 to 400 cm<sup>-1</sup> by the TM 100 Optical ATR-FTIR spectrometer. The resolution was 4 cm<sup>-1</sup>. The samples were grinded into powders with same fineness as that required for the XRD test.

Solid state <sup>29</sup>Si single pulse magic angle spinning (MAS) NMR spectra were acquired using a BrukerMSL-400 spectrometer (magnetic field of 9.8 T; operating frequencies of 79.5 MHz). C-S-H powders were packed into the zirconia rotor sealed at either end with Teflon end plugs, and spun at 6 kHz in a Varian 7 mm wide-body probe. The spectra were acquired using a pulse recycle delay of 5 s, a pulse width of 4.97  $\mu$ s, and an acquisition time of 20 ms; 2002 scans were collected for each sample. <sup>29</sup>Si chemical shifts are given relative to tetrakis (trimethylsilyl) silane (TTMS) at -9.8 ppm, with kaolinite as an external standard at - 91.2 ppm.



Figure 2 Schematic diagram of the synthesis set-up Table 1 Mass fraction of raw materials for preparing different C-S-H

| Sample NO. | Ca/Si ratio | CaO (g) | SiO <sub>2</sub> (g) | H <sub>2</sub> O (g) |
|------------|-------------|---------|----------------------|----------------------|
| 1          | 0.66        | 3.0     | 4.9                  | 400                  |
| 2          | 0.86        | 3.6     | 4.4                  | 400                  |
| 3          | 1.18        | 4.2     | 3.8                  | 400                  |
| 4          | 1.40        | 4.5     | 3.5                  | 400                  |
| 5          | 1.70        | 4.9     | 3.1                  | 400                  |
| 6          | 2.00        | 5.2     | 2.8                  | 400                  |

## 3. Results and discussion

# 3.1. Synthetic products identification 3.1.1. XRD

XRD test results of synthetic products are described in Fig. 3. The identical peaks with the d-spacing of 3.04, 2.79, 1.82, 1.66 Å indicate that the C-S-H phase synthesized in this study is similar to C-S-H (I), which is one of the C-S-H phases found in the Portland cement concrete[13]. Due to the high reactivity of fumed silica, the C-S-H phases can be formed after 2 weeks' reaction, see Fig. 3 (a). When the designed C/S is less than 1.40, only C-S-H phase exists in the product with no trace of unreacted raw materials or carbonation product; otherwise, the portlandite appears, see Fig.2 (b). This is consistent with other researchers' results[14, 15].

# 3.1.2. NMR

The NMR test results of synthetic products are described in Fig. 4a and 4b. The peaks around -78 ppm and -85 ppm indicates the  $Q^1$  and  $Q^2$  type of tetrahedra respectively. Apparently, the peak intensity of  $Q^1$  increases with the increase of the C/S while that of  $Q^2$  decreases.



Figure 3 XRD test results of C-S-H with different C/S (0.66-2.0). C-S-H d-spacings are noted above their respective peaks in the units of Ångstrom (Å). a- synthesis for 2 weeks; b-synthesis for 4 weeks.

The increase of C/S in C-S-H can be caused by the omission of the bridge tetrahedra in the silicate chain, based on the structure of tobermorite. The consequence is the decrease of the proportion of  $Q^2$  tetrahedra and the formation of more  $Q^1$  tetrahedra. Moreover, the mean silicate chain length (MCL) will decrease. The MCL was calculated from the NMR data using Eq. (2).

$$MCL = \frac{2(Q^{1} + Q^{2})}{Q^{1}}$$
(2)

In which, the  $Q^1$  and  $Q^2$  indicate the fractions of Si present in  $Q^1$  and  $Q^2$  tetrahedra respectively. Quantitative information on the fractions of  $Q^1$ ,  $Q^2$  tetrahedra was obtained by the deconvolution of the single pulse spectra. The spectra were fitted to Gaussian/Lorentzian

mixed function using the dmfit2015 software. The fitting result of an example is illustrated in Fig. 5.

The deconvolution process is performed on all the <sup>29</sup>Si NMR test results of C-S-H with C/S ranging from 0.66 to 2.0. The MCL is calculated and plot with the C/S, comparing with the results from other researches of synthesized C-S-H in the solution[13, 16-20], see Fig. 6.





Figure 6 Calculated mean silicate chain length (M CL) of C-S-H with different C/S.

The MCL of the C-S-H decreases with the increasing C/S when the C/S is lower than 1.4. Then the MCL stays at around  $2\sim3$  tetrahedron units long. This can just verify the evolution model of C-S-H with higher C/S based on the tobermorite (Ca/Si = 0.83). By omission the bridge tedrahedra, the C/S will increase; meanwhile, the long silicate chain will be broken into shorter polymeric species of SiO<sub>4</sub> terdrahedra. Therefore, the MCL of C-S-H decreases

with the increase of the C/S. The C/S increases to 1.25 by the omission of all the bridge tetrahedra in the silicate chain. The further incorporation of Ca in the interlayer can achieve the C/S of 1.4, which will not affect the MCL. This is why the MCL of C-S-H keeps unchanged when the C/S increases above 1.4. The structure of C-S-H with the C/S higher than 1.4 can be explained by the 'T/CH' model, a 'solid solution' of C-S-H and CH.

Results in Fig. 6 also prove that the C/S of the synthetic C-S-H is quite close to the designed value. Considering together with the XRD test results, the conclusion can be made that the single C-S-H (I) phase with different C/S (lower than 1.4) is successfully synthesized in this research, and the experiment set-up can prevent the carbonation effectively.

#### 3.2. Carbonation of C-S-H with different C/S

To avoid the effects from the carbonation of portlandite, only the C-S-H with the C/S of 0.66 to 1.40 were used in the carbonation study. The carbonation product was analyzed by NMR and FTIR. The results are shown and discussed as follows.



Figure 7 NMR test results of different types of C-S-H, carbonated for different time.

The <sup>29</sup>Si NMR test results of carbonated C-S-H with different C/S are shown in Fig. 7. The characteristic peaks at around -101 and -111 ppm indicate the  $Q^3$  and  $Q^4$  tetrahedra, respectively. After carbonation, the fraction of  $Q^3$  and  $Q^4$  tetrahedra increases while the

fraction of  $Q^1$  and  $Q^2$  tetrahedra decreases at the same time. This indicate the polymerization process of the silicate chain and the removal of Ca in the CaO<sub>2</sub> sheet layer. The consequence is the linkage of the adjacent silicate chains and to form the silicate network in two and three dimensions. Whatever the C/S is, the silicate in the final carbonation products of C-S-H is silica gel, not the mixture or 'solid solution' of CaCO<sub>3</sub> and C-S-H with lower C/S[21].

Although the alkalinity of C-S-H is much lower than portlandite, the carbonation of C-S-H is quite faster under the accelerated condition. Nearly all the C-S-H are decomposed into silica gel after 3 days' carbonation.

In the FTIR spectra of C-S-H, there is a characteristic peak at around 970 cm<sup>-1</sup>. This peak indicates the Si-O stretching vibrations of  $Q^2$  tetrahedra, which shifts to the lower frequency with increasing of C/S[22]. In the contrary, the position of this peak shifts to the higher frequency. The FTIR tests were performed on the C-S-H with the C/S of 0.66 to 1.40. The carbonation time varied from 0.5 h to 24 h. The test results are compared in Fig. 8.



Figure 8 FTIR test results of different types of C-S-H, carbonated for different time

The shoulder peak at around 1066 cm<sup>-1</sup>, which is also indicating to the Si-O stretching vibrations of  $Q^2$  tetrahedra, has an obvious growth after carbonation. This peak only appears

in the FTIR spectrum of C-S-H with low C/S or in the tobermorite. Meanwhile, the intensity of the peak at around 970 cm<sup>-1</sup> decreases dramatically. The changes of these two peaks during the carbonation reveal the progressive polymerization of silicate chains.

The peak at around 875 and 1400~1500 cm<sup>-1</sup> represents the bending (v2) of  $CO_3^{2-}$  and the stretching (v3) of  $CO_3^{2-}$ , respectively. Both of them have a dramatic increase in the intensity when the shoulder peak (1066 cm<sup>-1</sup>) grows into an obvious and independent peak. For example, it can be observed in the spectrum when the C-S-H with the C/S of 0.66 is carbonated for 3 h. This 'critical' time is 6h for the C-S-H with the C/S of 0.86 and 12 h for the rest two types of C-S-H. This change in the FTIR spectra indicates that the silicate chain in the C-S-H starts to be destructed by the carbonation. Comparing this "start time" among different types of C-S-H, it can be concluded that the carbonation rate of the C-S-H with a higher C/S is lower than that of the C-S-H with the lower C/S. High Ca C-S-H has a better resistance to the carbonation.

# 4. Conclusions

In the paper, the C-S-H with different C/S, identified by XRD and <sup>29</sup>Si NMR, is successfully synthesized from CaO and fumed silica in the solution protected by the  $N_2$  flow. The carbonation mechanism of C-S-H including final products and rate are studied by NMR and FTIR. The carbonation resistance among different types of C-S-H are discussed. The main conclusions are as follow:

- The single phase of C-S-H(I) can be synthesized when the Ca/Si ratio is no more than 1.40; otherwise the portlandite appears.
- The structure of C-S-H with the C/S lower than 1.25 can be derived by missing the bridge tedrahedra based on tobermorite; the incorporation of extra Ca<sup>2+</sup> can achieve a much higher C/S of 1.40; The structure of C-S-H with the C/S higher than 1.4 can be explained by the 'T/CH' model, a 'solid solution' of C-S-H and CH.
- The final silicate in the products is silicate gel. The C-S-H with high C/S has the better resistance to the carbonation.

#### Acknowledgements

The authors are grateful for the help from technicians and experimental supports from Microlab, Delft University of Technology.

# References

Black L., et al., Structural features of C–S–H (I) and its carbonation in air—a Raman spectroscopic study. Part II: carbonated phases, J Am Ceram Soc, 90 (2007) 908-917.
Morandeau A., et al., Investigation of the carbonation mechanism of CH and CSH in

terms of kinetics, microstructure changes and moisture properties, Cement Concrete Res, 56 (2014) 153-170.

[3] Merlino S., et al., The real structure of tobermorite 11Å normal and anomalous forms, OD character and polytypic modifications, Eur J Mineral, 13 (2001) 577-590.

[4] Megaw H. D., Kelsey C. H., Crystal Structure of Tobermorite, Nature, 177 (1956) 390-391.

[5] Mohan K., Taylor H., A trimethylsilylation study of tricalcium silicate pastes, Cement Concrete Res, 12 (1982) 25-31.

[6] Dent Glasser L. S., et al., Identification of some of the polysilicate components of trimethylsilylated cement paste, Cement Concrete Res, 11 (1981) 775-780.

[7] Dent Glasser L. S., et al., A Multi-Method Study of C15 Hydration, Cement Concrete Res, 8 (1978) 7.

[8] Manzano H., et al., Aluminum incorporation to dreierketten silicate chains, The Journal of Physical Chemistry B, 113 (2009) 2832-2839.

[9] Richardson I., Tobermorite/jennite-and tobermorite/calcium hydroxide-based models for the structure of CSH: applicability to hardened pastes of tricalcium silicate,  $\beta$ -dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume, Cement Concrete Res, 34 (2004) 1733-1777.

[10] Taylor H., Howison J., Relationships between calcium silicates and clay minerals, Clay Minerals Bull, 3 (1956) 98-111.

[11] Chen J. J., et al., Decalcification shrinkage of cement paste, Cement Concrete Res, 36 (2006) 801-809.

[12] Wu B., Ye G., Development of porosity of cement paste blended with supplementary cementitious materials after carbonation, 14th International Congress on the Chemistry of Cement (ICCC2015), 2015, pp. 1-18.

[13] Chen J. J., et al., Solubility and structure of calcium silicate hydrate, Cement Concrete Res, 34 (2004) 1499-1519.

[14] Renaudin G., et al., Structural characterization of C–S–H and C–A–S–H samples—Part I: Long-range order investigated by Rietveld analyses, Journal of Solid State Chemistry, 182 (2009) 3312-3319.

[15] Garbev K., et al., Cell Dimensions and Composition of Nanocrystalline Calcium Silicate Hydrate Solid Solutions. Part 1: Synchrotron-Based X-Ray Diffraction, J Am Ceram Soc, 91 (2008) 3005-3014.

[16] Macphee D., et al., Polymerization effects in CSH: implications for Portland cement hydration, Adv Cem Res, 1 (1988) 131-137.

[17] Cong X. D., Kirkpatrick R. J., Si-29 MAS NMR study of the structure of calcium silicate hydrate, Adv Cem Based Mater, 3 (1996) 144-156.

[18] Beaudoin J. J., et al., A< sup> 29</sup> Si MAS NMR study of modified C–S–H nanostructures, Cement and Concrete Composites, 31 (2009) 585-590.

[19] He Y., et al., Effect of calcium–silicon ratio on microstructure and nanostructure of calcium silicate hydrate synthesized by reaction of fumed silica and calcium oxide at room temperature, Mater Struct, (2013) 1-12.

[20] L'Hôpital É. M., Aluminium and alkali uptake in calcium silicate hydrates (C-S-H), PhD thesis, EPFL(2014).

[21] Papadakis V. G., et al., A reaction engineering approach to the problem of concrete carbonation, AIChE Journal, 35 (1989) 1639-1650.

[22] Yu P., et al., Structure of Calcium Silicate Hydrate (C - S - H): Near - , Mid - , and Far - Infrared Spectroscopy, J Am Ceram Soc, 82 (1999) 742-748.