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Abstract 
Autistic spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits 
in social interactions, communication and stereotyped behavior. Recent evidence from 
neuroimaging supports the hypothesis that ASD deficits in adults may be related to 
abnormalities in a specific frontal-temporal network (Autism-specific Structural Network, 
ASN). To see whether these results extend to younger children and to better characterize 
these abnormalities, we applied three morphometric methods on brain grey matter of 
children with and without ASD. 
 
We selected 39 sMRI images of male children with ASD and 42 typically developing (TD) 
from the ABIDE database. We used Source-Based Morphometry (SoBM), a whole-brain 
multivariate approach to identify grey matter networks, Voxel-Based Morphometry (VBM), 
a voxel-wise comparison of the local grey matter concentration, and Surface-Based 
Morphometry (SuBM) for the estimation of the cortical parameters. 
 
SoBM showed a bilateral frontal-parietal-temporal network different between groups, 
including the inferior-middle temporal gyrus, the inferior parietal lobule and the postcentral 
gyrus; VBM returned differences only in the right temporal lobe; SuBM returned a thinning 
in the right inferior temporal lobe thinner in ASD, a higher gyrification in the right superior 
parietal lobule in TD and in the middle frontal gyrus in ASD.  
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For the first time, we investigated the brain abnormalities in children with ASD by using 
three morphometric techniques. The results were relatively consistent between methods, 
stressing the role of an Autism-specific Structural Network in ASD individuals. We also make 
methodological speculations on the relevance of using multivariate and whole brain 
neuroimaging analysis to capture ASD complexity. 
 
Keywords: Autism, MRI, VBM, Source based morphometry, Surface based morphometry. 
 
Introduction 
Autistic Spectrum Disorder (ASD) is defined as a behavioral disorder caused by 
neurodevelopmental problems reflecting dramatic cognitive, affective and behavioral 
deficits (Greenspan, 1997; Trevarthen et al., 1998; Venuti, 2003; Venuti, 2012). Based on 
World Health Organization, 1 child on 160 has a ASD disorder, and the diagnosis is globally 
increasing, probably due to more sensitive criteria (e.g. from DSM IV to DSM 5), or the 
application of more accurate tools of investigation (see www.who.int for information). ASD 
is characterized by severe and pervasive impairment in social and communication skills and 
by repetitive conduct patterns. The term spectrum (DSM 5) is meant to capture an umbrella 
of disorders that previously were diagnosed separately, namely autistic disorder, Asperger's 
disorder, childhood disintegrative disorder, Rett syndrome, and pervasive developmental 
disorder not otherwise specified (DSM-IV-TR). This is because ASD is characterized by a wide 
phenomenological and neural heterogeneity, that prevents a clear and specific investigation 
of the aforementioned disorder. Such complexity and heterogeneity posed problems to 
scientists interested in finding basic mechanisms behind such wide manifestations, but also 
to clinician to develop specific markers to make a clear diagnosis. Although researchers 
believe that ASD is characterized by a neurobiological origin, such heterogeneity has always 
been a challenge for autism research and for its clinical diagnosis. To overcome this 
shortcoming, researchers have focused their attention on specific brain alterations. 
However, results have been fragmented and quite confusing (Cauda et al., 2011; Grecucci et 
al., 2015). Several regions seem to be affected by ASD. A meta-analysis by Cauda and 
colleagues (2011) summarized several on grey matter abnormalities. Some studies reported 
increased grey matter in the cerebellum, the middle temporal gyrus, the right anterior 
cingulate cortex, the caudate, the insula, the fusiform gyrus, the precuneus and the 
posterior cingulate cortex seem all involved in ASD. Other studies showed reduced grey 
matter concentration in the cerebellar tonsil, inferior parietal lobule, middle temporal gyrus, 
right amygdala, insula, middle temporal gyrus, and others (Cauda et al., 2011). Another 
meta-analysis reported brain structures anomalies in ASD. Specifically, the authors found six 
consistent clusters relative to ASD pathology, that included the lateral occipital lobe, the 
pericentral region, the medial temporal lobe, the basal ganglia, the right parietal operculum 
(Nickl-Jockschat et al., 2012). 
 
To make order in these apparently confusing results, researchers suggested the possibility 
to consider ASD deficits as belonging to a more large “social brain”. Drawing from results 
from several studies, this network may consist of the amygdala (for emotion processing), 
the superior temporal sulcus and the fusiform gyrus (perception and recognition of faces), 
orbitofrontal cortex and superior frontal gyrus (facial imitation and theory of mind) 
(Brothers, 1990; Misra, 2014; Gordon & Calamia, 2016). However, the “social brain” 
hypothesis does not clearly descend from actual brain data, but rather from theoretical 
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assumptions (e.g. areas selected from separate studies based on their hypothetical 
involvement in autistic deficits). One problem with previous studies, is that researchers used 
different approaches, different ages, and mainly univariate approaches, or hypothesis 
driven approaches, thus missing the possibility of finding a whole brain ASD neural 
abnormalities. 
 
Given the complexity and heterogeneity of ASD manifestations, only recently researchers 
advocated the necessity of novel approach to study ASD from a network perspective. 
 
Recently, Grecucci and collaborators (2016) introduced an innovative approach to autism 
neural research called Source-Based Morphometry, a multivariate method able to detect 
maximally independent networks of grey matter from MRI data. They found a broad 
structural frontal-temporal network differing between adults with ASD and controls, that 
they called “Autism-specific Structural Network” (ASN), a set of regions selectively involved 
in social cognition, high-visual processing, and executive functions (Grecucci et al., 2016). 
They also found that the entity of grey matter abnormalities correlated with social and 
behavioral deficits as manifested by ASD. Another study tried to extend these results on 
younger children between 6 and 12 years old (Pappaianni et al., 2016). They found a 
significant network including several cerebellar regions (as Inferior Semi-lunar lobule, Tuble, 
Uvula, Pyramis, Declive and Cerebellar Tonsil) and the Fusiform Gyrus. However, these 
results refer to a wide age range (7 years in a critical development period), and the 
differences found may be due to different developmental trajectories between ASD and 
controls (Wegiel et al., 2014), rather than specific abnormalities due to ASD deficits. 
 
The first aim of the present study is to extend Grecucci et al. (2016) results to younger 
individuals with ASD. To this aim we applied Source-Based Morphometry (SoBM) on children 
with and without ASD. To avoid possible confounds due to different developmental 
trajectories (as possibly displayed by Pappaianni et al., 2016), we restricted the age range of 
autistics and controls to a smaller range. We predict to find evidence of the ASN also in 
younger individuals with ASD, confirming and strengthening previous results (Grecucci et al., 
2016). We want to put forward the idea that multivariate approaches (e.g. SoBM) might be 
preferred to univariate approaches (e.g. VBM) to study autism. Univariate approaches are 
largely used for neuropsychiatric research. However, such approaches may not be able to 
capture the heterogeneity and large brain scale deficits as presented by ASD individuals. To 
provide evidence of the usefulness of multivariate rather than univariate approaches to 
ASD, we performed on the same data both SoBM and VBM. Coherently with previous 
observations on other complex pathologies (e.g. schizophrenia, Xu et al., 2009), we predict 
SoBM to be more sensitive to detect brain abnormalities as compared to VBM. 
 
To better understand the eventual neural abnormalities in ASD when compared to normal 
controls as detected by SoBM, we aim to perform Surface-Based Morphometry (SuBM), a 
novel approach to cortical analyses, that returns information about gyrification, thickness 
and sulci depth in the grey matter. SoBM is of great help to determine whole brain 
abnormalities in terms of large scale networks that covary inside each group, but that 
differently express between groups. However, it does not specify the nature of this 
difference. In other words, SoBM clarifies “where” is the problematic network. SuBM may 
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help clarifying “what” is the problem in terms of gyrification, thickness and sulci depth 
abnormalities, inside that network. 
 
Notably, by applying SuBM only, the goal of detecting the full features of the network 
behind ASD deficits may be missed, since the analysis of surface returns only the clusters of 
voxels that reach a given threshold without taking into account the relation between them; 
instead, SoBM does take into account such relevant relation. By applying both SoBM and 
SuBM we believe we will be able to have a more complete picture of ASD neural 
abnormalities. 
 
Participants and Methods 
We selected 39 male children with ASD (mean age 10.10 (0.98) years, age range 8-11) and 
42 male TD control participants matched for age (t(79) = 1.99, p = 0.21) (mean age 10.39 
(1.08) years, age range 8-11) from the Autism Brain Imaging Data Exchange (ABIDE) 
database (Di Martino et al., 2013). We took into account only participants that had full data 
on cognitive tasks of interest. Demographic information about participants is shown in Table 
1 and detailed information about the selection is described below. 
 
Structural MRI images of every participant were acquired from ABIDE. The acquisition 
parameters, informed consent, diagnostic criteria and specific protocols used in every site 
are available on the database website (http://fcon_1000.projects.nitrc.org/indi/abide/). 
 
ABIDE initially returned 296 participants at age 8-12 available, but after a rigorous 
qualitative skimming, we excluded the ones with acquisition artifacts or incomplete 
behavioral data. We also included the intelligence scores (Full IQ, Verbal IQ and 
Performance IQ) derived from the Wechsler Abbreviated Scale of Intelligence (WASI), the 
Differential Ability Scales (DAS), and the Wechsler Intelligence Scale for Children (WISC) and 
the Autism Diagnostic Observation Schedule (ADOS) scores for the ASD population. 
 
This accurate selection (matching based on age, sex and absence of corrupted data) has led 
to 81 male participants: 39 with ASD and 42 typically developing controls. These data were 
collected from different research centers (see Table 1 and 2). Particularly, among the 
participants with ASD, 28 participants were selected from NYU Langone Medical Center and 
11 from University of California Los Angeles (specifically, 7 from UCLA Sample 1 and 4 from 
UCLA Sample 2). Regarding the typically developing controls, 18 were chosen from NYU, 14 
from University of California Los Angeles (9 from UCLA-1 and 5 from UCLA-2), 8 from Yale 
Child Study Center and 2 from University of Pittsburgh, School of Medicine.  The scanners 
used in these research centers were assembled by the same manufacturer. MRI scanners 
and acquisition protocols are described in Table 2. All remaining technical details are 
available on the database website (http://fcon_1000.projects.nitrc.org/indi/abide/). 
 
Preprocessing of the MRI images 
Source-Based Morphometry 
Source-Based Morphometry is a multivariate method based on independent component 
analysis (ICA) (Lee, 1999; Xu et al., 2009) and it is defined as a whole-brain approach. ICA is a 
widely used technique for biomedical signal computations, and it has shown to be 
particularly suitable with fMRI, EEG and sMRI data (Calhoun & Adali, 2006; Makeig et al., 
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1997; Nakai et al., 2004; Xu et al., 2009). In the latter case, ICA detects and splits up the 
mixed signal coming from sMRI images, identifying independent sources (single regions or a 
network of areas) that covarying between participants, providing information about in grey 
matter among groups of individuals (Xu et al., 2009). SoBM is defined as a data-driven 
approach: operating automatically on the whole brain, it tracks independently the 
unpredicted components signal. SPM12 software 
(http://www.fil.ion.ucl.ac.uk/spm/software) was used for segmentation of grey matter, 
white matter and cerebrospinal fluid after a scrupulous quality check of the initial images for 
avoiding artifacts. Modulated normalized writing option was chosen. Stressing that we were 
interested only in grey matter for our research goals, we took advantage of Diffeomorphic 
Anatomical Registration using Exponential Lie algebra (DARTEL) tools, a potential alternative 
to SPM's traditional registration approaches that operates in a whole brain approach (Yassa 
& Stark, 2009). Normalization to MNI space with spatial smoothing (full-width at half 
maximum of Gaussian smoothing kernel [8, 8, 8]) was then applied on DARTEL images. 
Source-Based Morphometry was performed by Group ICA of an FMRI Toolbox (GIFT, 
http://mialab.mrn.org/software/gift/). The software estimated autonomously the number 
of Independent Components (in our case, 9 sources). A neural network algorithm (Infomax) 
that exploits the signal-information coming from the images to maximize the recognition of 
independent components was used to perform ICA (Bell & Sejnowski, 1995, Lee et al., 
1999). ICASSO, a GIFT toolbox for investigating the reliability of the ICA algorithm 
(http://research.ics.aalto.fi/ica/icasso/) was selected as stability analysis type. Both RandInit 
and Bootstrap modes were selected in ICASSO analysis. Independent Component Analysis 
was run 100 times: the minimum cluster size set up was 2, the maximum 9 (the number of 
components identified by the software). At the end, SoBM converts grey matter volumes of 
each component into a numerical vector, creating a matrix composed by rows (the 
participants) and columns (the sources). It follows that each numerical value of the matrix 
indicates how a specific component is expressed in each participant. 
 
Voxel-Based Morphometry 
Voxel-Based Morphometry is a cerebral morphometric technique that involves “a voxel-wise 
comparison of the local concentration of gray matter between two groups of subjects” 
(Ashburner & Friston, 2000). VBM is a univariate method and follows a linear procedure of 
application (Xu et al., 2009). Voxel-Based and Source-Based Morphometry shared the same 
preprocessing phase. After the application of the spatial smoothing (full-width at half 
maximum of Gaussian smoothing kernel [8, 8, 8]), a set of voxel-wise parametric statistical 
tests allowed to determine how grey matter differed between groups and to establish how 
significant this difference is. 
 
Surface Based Morphometry 
The Computational Anatomy Toolbox (CAT12, http://www.neuro.uni-jena.de/cat/), a 
toolbox available for SPM12 software in the MATLAB environment, was used for 
preprocessing the images and for the surface analyses. All images together underwent 
automated segmentation to gray matter (GM), white matter (WM) and cerebrospinal fluid 
(CSF), affine registration to a MNI template space, and subsequently a non-linear 
deformation. This part resembles VBM preprocessing explained before. Using projection-
based thickness (PBT), that uses a projection scheme which considers 92 blurred sulci to 
create a correct cortical thickness map (Dahnke et al. 2012), we estimated cortical thickness 
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and created the central cortical surface for left and right hemisphere. Cortical thickness is 
measured estimating the white matter distance between the inner surface (WM/GM 
boundary) and the outer surface (GM/CSF) of gray matter. Next, visual quality control was 
performed inspecting gray matter images. Newly created images were smoothed with 
15mm FWHM of Gaussian smoothing kernel and total intracranial volume (TIV) was 
calculated. We extracted several additional measures for surface, such as gyrification indices 
(GI) that measure surface complexity (Yotter et al. 2011b) and sulci depth. GI is measured as 
a ratio of the external brain surface with the outer surface excluding the sulci. GI calculation 
was based on absolute mean curvature (Luders et al. 2006). Square root transformed sulcus 
depth based on the euclidean distance between the central surface and its convex hull. 
Transformation with square root function was used to render the data more normally 
distributed (CAT12, manual). 
 
Statistical analyses 
In SoBM, a simple t-test without assuming equal variances on the matrix’s loading 
coefficients was used to determine significant differences for every component between 
children with ASD and typical development ones. In addition, the same values were tested 
in a linear relation between the coefficients and the cognitive and ADOS available scores. In 
VBM, a whole-brain analysis was carried out, while group comparison was performed using 
a two samples t-test. Additionally, Age, Total Intracranial Volume (TIV) and Verbal IQ were 
used as covariate to increase the possibility of finding significant results. In SuBM, two-
sample t-tests (without and with age and VIQ as covariates) were used to find differences in 
gyrification, cortical thickness and sulci depth. All tests were corrected for multiple 
comparisons (p < 0.05, family wise error (FWE) correction at cluster-level), unless explicitly 
indicated. 
 
Results 
Demographic results 
Groups did not differ for Age (t(79) = -1.25, p = 0.21), Full IQ (t(79) = -0.71, p = 0.48), 
Performance IQ (t(79) = 1.16, p = 0.25) and Total Intracranial Volume (t(79) = 0.16, p = 0.87). 
Only Verbal IQ resulted significantly different between groups (t(79) = -2.38, p = 0.02). We 
believe that this difference may be related to language and communicative deficits that 
characterize ASD in early childhood. 
 
Source-Based Morphometry results 
Independent Component Analysis returned 9 Independent Components. A matrix composed 
by 81 rows (the participants) and 9 columns (the sources) was obtained. We stress that the 
number of components was automatically recommended by GIFT toolbox based on the 
well-known Akaike’s information criterion and not selected based on a priori knowledge. 
Among these, a network indicated as Independent Component number 7 (IC7) resulted to 
be significant after two-sample t-test between ASD and TD loading coefficients (p = 0.002). 
Specifically, this large network included the bilateral inferior-middle temporal gyrus, the 
postcentral gyrus, the precentral gyrus, the temporal sub-gyral gyrus, the supramarginal 
gyrus, the fusiform gyrus, the left insula, the superior temporal gyrus and the right uncus, 
the parahippocampal gyrus, the extra-nuclear and middle frontal gyrus. IC7 details are 
shown in Table 3, a visual rendering in Figure 1. 
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As already said, ICA returned 9 components. Apart from IC7, the other 8 components 
resulted not to be significant after two-sample t-test. Specifically, we get IC1 (p = 0.46), IC2 
(p = 0.13), IC3 (p = 0.53), IC4 (p = 0.50), IC5 (p = 0.76), IC6 (p = 0.17), IC8 (p = 0.35), IC9 (p = 
0.44). A detailed description of the components is available in the Supplementary Materials. 
 
Voxel-Based Morphometry results 
Voxel-Based Morphometry returned only a cluster of voxels (k = 3310) in the right superior 
temporal gyrus significant between groups (p = 0.006, ASD vs TD contrast). No significant 
results were found in the left hemisphere and in the opposite contrast (i.e. TD vs ASD). To 
possibly improve results provided by VBM we then included Age, TIV and VIQ as covariates 
in the analysis. Age increased the significance (p = 0.003) in the same region, although the 
number of voxels slightly decreased (k = 2865); in addition, a trend of significance was 
observed in the left postcentral gyrus (k = 569, p = 0.06, uncorrected). Using TIV, two wide 
clusters in the right superior temporal gyrus and left postcentral gyrus emerged (k = 6702, p 
= 0.001; k = 2608, p = 0.003), in addition to the left middle temporal gyrus (k = 1274, p = 
0.005 unc.), the middle frontal gyrus (on the left hemisphere, k = 1026, p = 0.01 unc.; on the 
right, k = 1144, p = 0.008 unc.) and the right superior frontal gyrus (k = 676, p = 0.03 unc.). 
Verbal IQ confirmed the right superior temporal gyrus (k = 5506, p = 0.001), together with 
the right middle frontal gyrus (k = 2604, p = 0.005), the left inferior frontal gyrus (k = 2711, p 
= 0.004) and the left postcentral gyrus (k = 2782, p = 0.003). In addition to this, the left 
superior temporal gyrus was found significant (k = 2048, p = 0.02), whereas the right 
precuneus was found not significant after FWE correction (k = 835, p = 0.03 unc.). Results 
from VBM with and without covariates (contrasts, Talairach labels of regions of interest, 
spatial coordinates and p-values on cluster-level, FWE corrected) are shown in Figure 2 and 
Table 4. 
 
Summarizing, SoBM returned a bilateral network, incorporating wide temporal, frontal and 
parietal regions. Voxel-Based Morphometry returned only a region in the right temporal 
region; this result was confirmed and partially strengthened using age, TIV and in particular 
Verbal IQ as covariate (see Figure 2), although the clusters of significance especially in the 
left hemisphere resulted scattered and not able to fully describe the wide cerebral 
extension of the autistic condition (as expressed instead by SoBM). 
 
Surface-Based Morphometry results 
2-Sample t-tests on 15mm-smoothed surface images were performed. Specifically, we 
considered cortical thickness, sulci depth and gyrification as cortical parameters extracted 
during segmentation of GM, WM and CSF. Analyses were performed for each hemisphere 
separately. As a form of consistency, also in this case age and verbal IQ were considered as 
covariates in the analysis. 
 
Cortical thickness 
No significant results were found in left hemisphere; conversely, in the right hemisphere, a 
large cluster of voxels (k = 1024) resulted different between groups (Fig. 3, p = 0.004). 
Children with ASD showed a lower cortical thinning in the temporal lobe, near the middle 
temporal gyrus. This result was confirmed by using age as covariate (k = 666, p = 0.02) and 
powered with verbal IQ (k = 1352, p = 0.001). See Table 5 for all details. 
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Cortical gyrification 
In the left hemisphere, no significant results were found in cortical local gyrification without 
covariates (p = 0.09 unc.) and with age (p = 0.11 unc.). Adding Verbal IQ, a trend of 
significance was observed in two clusters of the middle temporal gyrus in ASD vs TD contrast 
(k = 227, p = 0.05; k = 201, p = 0.07, both uncorrected). In the right hemisphere, although 
not corrected for multiple comparisons, cortical gyrification appeared lower in ASD than TD 
in the superior parietal lobule (Fig. 3, k = 250, p = 0.04 unc.). This seemed confirmed by age 
(k = 256, p = 0.04 unc.) and Verbal IQ (k = 245, p = 0.05 unc.). Conversely, a trend of 
significance for increased gyrification in middle frontal gyrus in ASD children was observed 
(k = 210, p = 0.072 unc.); while with age as covariate there were not significant results (p = 
0.09), with Verbal IQ a cluster in middle frontal gyrus resulted statistically increased in 
gyrification in children with ASD (Fig. 3, k = 412, p = 0.01). All details are shown in Table 5. 
 
Sulci depth 
In the left hemisphere, there was no significant difference in sulci depth between children 
with ASD compared to TD peers (p = 0.16 uncorrected in frontal areas). This was also the 
case using the usual covariates (for age, p = 0.29; for VIQ, p = 0.18 and p = 0.29 all 
uncorrected). Also in the right hemisphere, there was no significant difference between 
children with ASD and controls (p = 0.13 uncorrected in middle frontal sulci). Using age as 
covariate, the same cluster did not reach the significance (p = 0.13 unc.); adding Verbal IQ, 
two clusters near to cuneus and precuneus emerged, however not significantly between 
ASD and TD (p = 0.07 and p = 0.17, unc.). See all details in Table 5. 
 
Effect size 
In order to validate our results, the T-maps values obtained from the t-test contrasts were 
converted into effect size d, with uncorrected threshold type peak-level (0.001). Among 
voxels survive height threshold u = 3.2, particularly results for cortical thickness (TD > ASD in 
middle temporal gyrus) and gyrification (ASD > TD in superior parietal lobule) were 
confirmed. 
 
Discussion 
In the present study, we applied Source-Based (SoBM), Voxel-Based (VBM) and Surface-
Based Morphometry (SuBM) on MRI images of children diagnosed with autism spectrum 
disorder and typical developing controls. SoBM is an innovative approach to study the 
neural abnormalities in autism. As a multivariate data-driven method, it exploits 
Independent Component Analysis (ICA) in order to extract clusters of grey matter covarying 
between participants as structural networks not defined a priori (Pappaianni et al., 2016; 
Grecucci et al., 2016; Xu et al., 2009). On the other hand, VBM is a univariate method that 
allows to find out relevant differences in grey matter concentration with a direct 
comparison in terms of clusters of voxels in the brain between groups. We want to put 
forward the idea that SoBM may be more appropriate for studying ASD because of its 
complexity and heterogeneity. ASD is clearly characterized by diffuse brain abnormalities 
that cover different regions at the same time, and these changes may be not locally 
detected with a univariate approach of parametric analysis (Grecucci et al., 2016). Taking 
advantage of the Independent Component Analysis, Source-Based Morphometry provided 9 
independent sources extracted from the group of participants. Among these, a wide circuit 
that included mainly temporal, but also parietal and frontal regions (IC7) resulted 
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significantly different between children with ASD and TD controls. This network specifically 
included the bilateral postcentral gyrus, the inferior temporal gyrus, the precentral gyrus, 
the temporal sub-gyral, the inferior parietal lobule, the supramarginal gyrus, the middle 
temporal gyrus, the fusiform gyrus; the left insula and the superior temporal gyrus; the right 
parahippocampal gyrus and the middle frontal gyrus. 
 
In parallel, a cluster in the right superior temporal gyrus resulted different in ASD than 
controls when applying VBM. This result overlaps with SoBM findings. However, 1) this 
region is largely smaller, no frontal neither parietal extensions were visible, and no 
significant results emerged in the left hemisphere, showing that a univariate method as 
VBM fails to detect some important differences in a network logic. To investigate if 
covariates may help VBM to detect other regions more similar to SoBM, age, TIV and Verbal 
IQ were considered in the analysis. With the addition of these covariates, VBM showed 
other significant regions, such as the right middle frontal gyrus and the left superior 
temporal gyrus, areas included in IC7 (SoBM). Although VBM and SoBM overlap, we want to 
suggest that being SoBM a multivariate and whole brain approach, may be preferred when 
studying such complex neurobehavioral disorders (See Xu et al., 2009 for similar 
considerations). 
 
In addition to these two approaches, to better investigate the nature of the network, we 
also applied SuBM to detect surface abnormalities that may help the interpretation of this 
ASD children specific circuit emerged with SoBM. In particular, cortical thickness, sulci depth 
and local gyrification were analyzed to find abnormal cortical alterations. For the sake of 
consistency, we introduced also in SuBM the same covariates already used in VBM, except 
for the TIV. Again, results in the right temporal lobe emerged in terms of cortical thickness: 
ASD showed a lower thickness of grey matter in temporal sub-gyral, specifically in middle-
superior temporal gyrus using VIQ as a covariate. Notably, although spatially very close, 
there is no direct overlap between the results of VBM and SuBM. This would lead to 
problems of interpretation, since on one hand grey matter volume resulted larger in the 
ASD’s medial superior temporal regions and on the other a lower cortical thickness in ASD 
emerged. Instead, these less thick clusters seem to be included in the network described by 
SoBM. Since SoBM does not work on voxel level but on clusters covarying between subjects, 
we assume that this decrease in cortical thickness in these areas may be an important 
cortical parameter of covariance between participants with ASD within the IC7 network. 
 
Significant results regarding the sulci depth did not emerged: we believe that a larger 
sample could have led to significance, since a possible trend for to deeper sulci in ASD than 
TD in medial frontal regions was observed, areas historically related to ASD (and included in 
our network IC7). This was already spotted in literature: indeed, abnormal patterns of sulci 
in ASD in central, intraparietal and frontal medial sulci were already found (Auzias et al., 
2014). Nordahl and colleagues (2007) found in a young population with low-functioning 
autism a prominent abnormal shape in the inferior frontal gyrus associated with a sulcal 
depth difference in the anterior insula and frontal operculum, confirmed in high-functioning 
individuals although lesser extent but spatially more posterior (Nordahl et al., 2007). 
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Abnormal gyrification has been observed repeatedly in ASD research, but results often have 
not been exhaustive and convergent, probably due to important differences in sample size, 
analysis methods, to the wide diversity in cortical gyrification observed also in healthy 
population or to the substantial change of cortical gyrification during the development 
(Bartley et al., 1997; Ecker et al., 2016; Armstrong et al., 1995). However, Yang and 
colleagues (2016) showed an age-related increment of gyrification in children with ASD 
referring to the right prefrontal lobe, the right temporal lobe, the left parietal lobe, together 
with a higher cortical gyrification in the temporal, the parietal, the occipital and cingulate 
cortex independently from age (Yang et al., 2016). The same year, Ecker and collaborators 
(2016) attempted to find a relation between local grey matter gyrification and white matter 
connectivity in ASD. In particular, they first found higher gyrification in left pre/post-central 
gyrus and white matter fiber tracts associated with these areas with a significant increment 
in axial diffusivity (Ecker et al.. 2016). There are also evidences about a gyrification 
increment in ASD’s bilateral posterior cortices (Wallace et al., 2013), left frontal gyrification 
index higher in childhood and adolescence but not in adults (Hardan et al., 2004), but also 
reduced gyrification in left supramarginal gyrus in ASD than TD (Libero et al., 2014). From 
our analysis (with VIQ covariate), a strong increment of gyrification in the right middle 
frontal gyrus emerged in ASD, while TD controls seemed to have more expressed 
gyrification in the superior parietal lobule, a region near to the intraparietal sulcus. Although 
the results in the literature are various, we are inclined to believe that the frontal lobe in 
children with ASD may be affected by an abnormal structural pattern of gyrification, since it 
emerged as a recurrent area in our three parametric analyses likewise to the temporal lobe 
and partially to the parietal one. Regarding this, a smaller gyrification to the superior-
posterior part of the parietal lobe may be linked to the motor difficulties typical of ASD 
children, although other studies will need to confirm this hypothesis to look for a more 
effective link. 
 
Drawing from our three analyses, a key role for the temporal lobe in the characterization of 
ASD clearly emerges. This result is in line with previous observations. Zilbovicius and 
colleagues (2000, 2005) reported abnormalities in temporal regions of ASD individuals, 
areas implicated in social perception, language, and theory of mind (Gendry Meresse et al., 
2005). Also the fusiform gyrus is commonly reported as linked to ASD, probably related to 
face processing difficulties (Rossion et al., 2003; Osterling & Dawson, 1994) or to inability in 
focalizing attention to conspecific voice (Kuhl et al., 2005; Gordon & Calamia, 2016).  In 
addition, Kleinhans and colleagues (2008) found a weaker connectivity between fusiform 
face area (FFA) and other “social regions” (as the superior temporal sulcus, posterior 
cingulate and amygdala), in relation to high social deficit scores in ADI-R, an interview tool 
used in diagnosis of ASD (Kleinhans et al., 2008; Gordon & Calamia, 2016). Also the superior 
temporal sulcus, implied in the perception of social acts, seem related to ASD (Zilbovicius et 
al., 2006).  Then, it has been shown that people with ASD have problems in recognizing 
biological motion (Gordon & Calamia, 2016). While healthy individuals can easily recognize 
actions of others (and even emotions) through kinematic patterns from lights attached to 
specific parts of the body (defined point-light walkers) (Johansson, 1973), for individuals 
with ASD this type of recognition is problematic (Black et al., 2003), and researchers found 
that this impairment may be related to a weaker activation of the superior temporal sulcus 
during the recognition task (Carter & Pelphrey, 2006; Gordon & Calamia, 2016). Other 
important clusters in our network emerged in frontal areas, regions involved in executive 
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processes and language (Gotts et al., 2012; Libero et al., 2014). This part of the circuit 
included also precentral motor areas. Action processing impairments and repetitive 
movements are commonly observed among participants affected by autism (Grecucci et al., 
2013). Frontal and precentral regions may be connected with mirror neuron dysfunctions in 
ASD. A theory known as the “broken mirror” hypothesis of ASD, suggested that a 
dysfunctional MNS is an important factor in AD pathogenesis (Oberman et al., 2005). 
 
Looking more broadly, a meta-analysis by Cauda and colleagues (2011) summarized several 
results about autism research on brain morphometric measures. They demonstrate that 
grey matter of individuals with ASD is generally enlarged in the cerebellum, the middle 
temporal gyrus, the insula, the fusiform gyrus, the precuneus, the caudate and the cingulate 
cortex. A more recent meta-analysis of neuroimaging studies showed a specific 
lateralization in ASD compared to controls in communication and language tasks, with more 
right hemisphere activity in superior temporal gyrus and inferior frontal gyrus and a hypo-
activation in MTG of both hemispheres (Herringshaw et al., 2016). In line with these 
outcomes, our VBM (and partially SoBM) results were affected by a right lateralization, in 
particular with the addition of Verbal IQ (a parameter strictly related to linguistic and 
communicative skills) in the VBM analysis. A recent investigation by Eilam-Stock and 
colleagues (2016) compared grey-matter volume in a quite large sample of high-functioning 
adults with autism and controls by using voxel-based morphometry. They found an 
increased volume of grey-matter in the frontal, temporal, and cerebellar brain regions in the 
ASD group. In particular, the right medial prefrontal cortex, the left superior frontal gyrus, 
the left inferior frontal gyrus (Broca’s area), the middle temporal gyrus, and the cerebellum 
(VIIb) were found to be larger in ASD. Vice versa, the left posterior hippocampus and the 
bilateral cuneus were found less extended in the clinical population than in typically 
developing controls. Reflecting the fact that autism requires a large-scale study in terms of 
network than single regions, and that it is a unique and specific disorder about this feature, 
in a very recent research Conti and colleagues (2017) applied MRI diffusion tractography to 
images of ASD children compared with other neurodevelopmental disorder. They found an 
over-connectivity pattern specific and typical for ASD in networks concerning temporal-
frontal nodes, in regions strictly related to social and communicative skills (Conti et al., 
2017). 
 
Summarizing, results emerged from the our three analyses (in particular with SoBM and 
VBM) seemed to be plausible and quite consistent with literature. 
 
The Autism-specific Structural Network (ASN) 
Our SoBM results is coherent with a previous study conducted by Grecucci and colleagues 
(2016), in which they used SoBM on adults with ASD and TD controls. They found an Autism-
Specific Network (ASN), a specific circuit that involved the inferior-middle-superior frontal 
gyrus, the inferior-middle-superior temporal gyrus, the fusiform gyrus, the parahippocampal 
gyrus, the paracentral lobule, the precuneus and the cerebellar tonsil. Comparing Grecucci 
et al., (2016) ASN and our findings, a strong coherence and overlap emerges, especially in 
regard to the temporal and frontal regions. Notably, several parietal and temporal-parietal 
regions resulted in IC7, making the circuit wider but also sparser: the large size of this 
network (which incorporates even spatially distant regions) may be the confirmation of a 
widespread neural deficit in children. Our hypothesis is that with increasing age, the 
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situation may tend to stabilize and different regions (or circuits) could be inclined to 
specialize and to be directly responsible for the various deficits characterizing the condition, 
justifying the correlations they found between ASN and ADOS scores that we did not. 
Including frontal and temporal areas, the ASN in adults may be linked mostly to the 
cognitive control, whereas the additional involvement of the parietal lobe in children may 
be associated more with attentive processes. 
 
Voxel-Based Morphometry showed results in the superior temporal gyrus, that is a region 
included in IC7, but without covariates it failed to show abnormal grey matter clusters in the 
left hemisphere (although even with these variables the results were scattered). 
 
In summary, as already explained by Xu and colleagues (2009) that compared SoBM and 
VBM on healthy people and schizophrenics, Source-Based Morphometry seems to be 
preferable to VBM because shows more noise reduction in results and because as 
multivariate method considers the relation among voxels (and not the single one) by 
detecting the clusters (in our case of grey matter) covarying between all participants (Xu et 
al., 2009). For this reason, SoBM seems to be more suitable for studying the abnormal 
cerebral anatomy in autism, since it is a disorder extended in the whole brain. 
 
Conclusions 
For the first time, our study investigated brain abnormalities in children with ASD by 
combining three different methods: SoBM, VBM, and SuBM. A complex but relatively 
coherent framework has emerged in all three approaches, stressing particularly the role of 
the temporal lobe that comes to light among the analyses. Although wider, a network 
similar to ASN emerged by SoBM in children with ASD, including temporal, frontal and 
parietal regions. For this reason, this network seems to be stable across ages. In literature, it 
has been reported that an early diagnosis could lead to better outcomes after the 
intervention (Dawson et al., 2012; Small & Pelphrey, 2015). The main problem of getting an 
early diagnosis is that so far the most used assessment tools require abilities already 
structured in children, as the language. Because of that, recent research is focusing on 
investigating the presence of biological markers for the ASD conditions, which may overstep 
the limits imposed by diagnostic tests. Being a growing research interest the detection of 
these biomarkers for ASD (Wang et al., 2016; Small & Pelphrey, 2015), continuing our 
research line in the future it would be very necessary to investigate the presence of ASN 
already in toddlers. If the ASN would be confirmed also in toddlers, it may be considered as 
an important indicator for the areas of interest. At that point, ASN in combination with 
Support Vector Machine (SVM) applied to brain structural MRI data of patients with ASD at 
any age could provide valuable inferences at single-subject level (Retico et al., 2016; Gori et 
al., 2015) and could be an additional tool for clinicians in the assessment and diagnosis of 
autistic spectrum disorder. 
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Data Accessibility 

Structural MRI images of every participant were acquired from ABIDE. The acquisition 

parameters, informed consent, diagnostic criteria and specific protocols used in every site 

are available on the database website (http://fcon_1000.projects.nitrc.org/indi/abide/). A 

summary of the data used in this study is provided as a supplementary file. 
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Tables’ legend 

 
Table 1. Demographic information about participants. The presented values for Age, Full IQ, 

Verbal IQ, Performance IQ, ADOS scores and Total Intracranial Volume are the relative 

arithmetic averages; values in round brackets are the standard deviations, in square brackets 

the minimum-maximum range.   

 

Table 2 Acquisition centers, MRI scanners and acquisition protocols. Informations come 

from ABIDE website (http://fcon_1000.projects.nitrc.org/indi/abide/) 

 

Table 3. Independent Component 7. Talairach labels of regions of interest, Brodmann area, 

volume (expressed in cc) and spatial MNI coordinates with their max values are shown.   

 

Table 4. VBM results. Contrasts, Talairach labels of ROIs, spatial coordinates and p-value on 

cluster-level FWE corrected are shown 
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Table 5. Surface-Based Morphometry results. Cortical parameters, contrasts, hemispheres, 

area of interests and p-values (threshold 0.001, uncorrected) without and with age and VIQ as 

covariates are shown. 

 

 

Figures’ legend 
 

Figure 1. SoBM returned 9 independent components. Independent component 7 resulted 

significant between ASD and TD children. IC7 includes: postcentral gyrus (PC); inferior 

parietal lobule (IPL); inferior temporal gyrus (ITG); middle temporal gyrus (MTG); middle 

frontal gyrus (MFG). 

 

Figure 2. VBM results. ASD > TD contrasts (threshold p = 0.001) with no covariates, with 

Age, TIV and Verbal IQ as covariates are shown. Regions of interest: STG (superior 

temporal gyrus), ITG (inferior temporal gyrus), MFG (middle frontal gyrus), PreCG 

(precentral gyrus), PostCG (postcentral gyrus). 

 

Figure 3. SuBM results (threshold 0.001). Cortical thickness (TD > ASD) in right temporal 

regions; Gyrification (TD > ASD) in superior parietal lobule; Gyrification (ASD > TD) in 

middle frontal gyrus (VIQ covariate). 
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Tables 

 

Table 1. Demographic information about participants. The presented values for Age, Full IQ, 

Verbal IQ, Performance IQ, ADOS scores and Total Intracranial Volume are the relative 

arithmetic averages; values in round brackets are the standard deviations, in square brackets 

the minimum-maximum range.   

 

 ASD TD controls T-test 

Participants 39 42  

Age (years) 10 (1) 

[8-12] 

10 (1)  

[8-12] 

t(79) = -1.25, p = 0.21 

Full IQ 107 (16) 

[84-148] 

110 (13) 

[78-142] 

t(79) = -0.71, p = 0.48 

Verbal IQ 103 (14) 

[75-137] 

110 (13) 

[87-141] 

t(79) = -2.38, p = 0.02 

Performance IQ 111 (17) 

[85-149] 

107 (14) 

[72-135] 

t(79) = 1.16, p = 0.25 

ADOS Communication 3 (2) 

[0-7] 

  

ADOS Social 8 (3) 

[3-14] 

  

ADOS Stereotypical 

Behav 

3 (2) 

[0-7] 

  

ADOS Total 11 (4) 

[6-21] 

  

Total Intracranial 

Volume (TIV, mm3) 

1597 (125) 

[1323-1913] 

1593 (110) 

[1347-1920] 

t(79) = 0.16, p = 0.87 

NYU Langone Med. 

Center 

28 18  

UCLA1 7 9  
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UCLA2 4 5  

Yale Child Study Center 0 8  

University of Pittsburgh 0 2  

 

 

 

 

Table 2 Acquisition centers, MRI scanners and acquisition protocols. Informations come 

from ABIDE website (http://fcon_1000.projects.nitrc.org/indi/abide/) 

 

Center MRI scanner Acquisition protocols 

NYU Langone 

Medical Center 

SIEMENS MAGNETOM 

Allegra syngo MR 2004A  

TR=2530 [ms], TE=3.25 [ms], TI=1100 [ms], 

flip angle 7°, Bandwidth [200 Hz/px] 

UCLA Sample 1 SIEMENS MAGNETOM 

TrioTim syngo MR B15 

TR=2300 [ms], TE=2.84 [ms], TI=853 [ms], 

flip angle 9°, Bandwidth [240 Hz/px] 

UCLA Sample 2 SIEMENS MAGNETOM 

TrioTim syngo MR B15 

TR=2300 [ms], TE=2.84 [ms], TI=853 [ms], 

flip angle 9°, Bandwidth [240 Hz/px] 

Yale Child Study 

Center 

SIEMENS MAGNETOM 

TrioTim syngo MR B17 

TR=1230 [ms], TE=1.73 [ms], TI=624 [ms], 

flip angle 9°, Bandwidth [320 Hz/px] 

University of 

Pittsburgh 

SIEMENS MAGNETOM 

Allegra syngo MR A30 

TR=2100 [ms], TE=3.93 [ms], TI=1000 [ms], 

flip angle 7°, Bandwidth [130 Hz/px] 
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Table 3. Independent Component 7. Talairach labels of regions of interest, Brodmann area, 

volume (expressed in cc) and spatial MNI coordinates with their max values are shown.   

 

Area Brodmann 

Area 

volume (cc) 

L/R 

Max Value (x, y, 

z) L/R 

MNI (x, y, z) 

L/R 

Postcentral Gyrus 1, 2, 3, 40 2.2/0.8 6.4 (-55, -17, 

31)/ 

4.2 (55, -17, 40) 

(-5.55, -1.95, 

33)/ 

(5.55, -1.95, 

42) 

Inferior Temporal 

Gyrus 

20, 21, 37 2.1/2.6 4.9 (-55, -19, -

22)/ 

6.0 (58, -24, -18) 

(-5.55, -18, -

27)/ 

(5.85, -24, -

2.25) 

Precentral Gyrus 4 0.9/0.5 5.5 (-52, -19, 

34)/ 

4.1 (58, -16, 37) 

(-5.25, -21, 

36)/ 

(5.85, -18, 39) 

Temporal Sub-Gyral 20 0.1/1.0 3.7 (-33, -48, 

40)/ 

5.3 (45, -24, -21) 

(-33, -51, 

4.05)/ 

(45, -24, -27) 

Inferior Parietal 

Lobule 

40 4.5/0.8 5.3 (-53, -37, 

27)/ 

4.1 (58, -29, 36) 

(-54, -39, 27)/ 

(5.85, -3.15, 

3.75) 

Supramarginal Gyrus 40 1.6/0.3 5.2 (-55, -39, 

30)/ 

4.0 (55, -41, 30) 

(-5.55, -42, 

30)/ 

(5.55, -4.35, 

30) 

Middle Temporal 

Gyrus 

20, 21 1.6/2.9 4.3 (-58, -43, -7)/ 

5.2 (58, -23, -14) 

(-5.85, -4.35, -

1.05)/ 

(5.85, -2.25, -

18) 

Fusiform Gyrus 20 1.0/1.8 4.8 (-50, -10, -

26)/ 

5.2 (42, -22, -23) 

(-51, -9, -

3.15)/ 

(42, -21, -

2.85) 

Insula  0.3/0.0 4.8 (-53, -34, 

21)/ 

- 

(-54, -36, 21)/ 

- 
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Uncus 20 0.0/0.2 - / 

4.6 (40, -14, -27) 

-/ 

(4.05, -1.35, -

33) 

Superior Temporal 

Gyrus 

13, 22 0.4/0.0 4.4 (-58, -38, 

21)/ 

- 

(-5.85, -4.05, 

21)/ 

- 

Parahippocampal 

Gyrus 

36 0.0/0.1 -/ 

4.2 (39, -24, -21) 

-/ 

(39, -24, -27) 

Extra-Nuclear  0.0/0.1 -/ 

3.9 (19, -54, 18) 

-/ 

(1.95, -57, 

1.65) 

Middle Frontal Gyrus  0.0/0.1 -/ 

3.6 (43, 16, 27) 

-/ 

(4.35, 15, 30) 

 

 

 

Table 4. VBM results. Contrasts, Talairach labels of ROIs, spatial coordinates and p-value on 

cluster-level FWE corrected are shown. 

 

Contrast Area t x y z cluster- level 

p(FWE) 

No covariate 

ASD > TD R Superior Temporal Gyrus 4.28 66 -30 11 0.006 

TD > ASD - - - - - - 

Age as covariate 

ASD >TD R Superior Temporal Gyrus 4.23 66 -30 11 0.003 

 L Postcentral Gyrus 4.18 -48 -29 51 0.06 (unc.) 
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TD > ASD - - - - - - 

TIV as covariate 

ASD > TD R Superior Temporal Gyrus 5.08 68 -30 9 0.001 

 L Postcentral Gyrus 4.57 -48 -29 51 0.003 

 L Middle Temporal Gyrus 3.86 -54 9 -20 0.005 (unc.) 

 R Middle Frontal Gyrus 3.75 56 18 36 0.008 (unc.) 

 L Middle Frontal Gyrus 3.90 -53 32 33 0.01 (unc.) 

 R Superior Frontal Gyrus 3.75 21 53 32 0.03 (unc.) 

TD > ASD - - - - - - 

VIQ as covariate 

ASD > TD R Superior Temporal Gyrus 5.02 66 -30 12 0.001 

 R Middle Frontal Gyrus 4.49 51 27 45 0.005 

 L Postcentral Gyrus 4.44 -48 -29 51 0.003 

 R Precuneus 4.21 14 -60 35 0.0325 (unc) 

 L Superior Temporal Gyrus 4.07 -50 11 -24 0.0216 

 L Inferior Frontal Gyrus 3.95 -47 33 3 0.004 

TD > ASD - - - - - - 
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Table 5. Surface-Based Morphometry results. Cortical parameters, contrasts, hemispheres, 

area of interests and p-values (threshold 0.001, uncorrected) without and with age and VIQ as 

covariates are shown. 

 

Cortical 

parameter 

Contrast Hemisph Area P 

value 

(no 

cov) 

Area 

(age) 

P 

value 

(age) 

Area 

(VIQ) 

P value 

(VIQ) 

Cortical 

thickness 

ASD > 

TD 

Left - - - - - - 

 TD > 

ASD 

Left MFG 0.389 MFG 0.536 MFG 0.201 

 ASD > 

TD 

Right - - - - - - 

 TD > 

ASD 

Right Temp-

SubGyral 

0.004 Temp-

SubGyral 

0.02 Temp-

SubGyral 

0.001  

 TD > 

ASD 

Right MFG 0.54 

(unc.)  

MFG 0.63 

(unc.)  

MFG 0.088 

(unc.)  

Gyrification ASD > 

TD 

Left MTG 0.09 

(unc.)  

MTG 0.11 

(unc.) 

MTG; 

MTG 

0.05 

(unc.); 

0.07 

(unc.) 

 TD > 

ASD 

Left - - - - - - 

 ASD > 

TD 

Right MFG 0.07 

(unc.) 

SFG 0.09 

(unc.) 

MFG 0.01  

 TD > 

ASD 

Right SPL 0.04 

(unc.) 

SPL 0.04 

(unc.) 

SPL 0.05 

(unc.) 

Sulci depth ASD > 

TD 

Left Front-

SubGyral 

0.16 

(unc.) 

Front-

SubGyral 

0.29 

(unc.) 

MFG, 

SFG 

0.18 

(unc.); 

0.29 

(unc.)  
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 TD > 

ASD 

Left - 0.99 

(unc.) 

- - - - 

 ASD > 

TD 

Right MFG 0.13 

(unc.) 

MFG 0.13 

(unc.) 

Cuneus, 

Precuneus 

0.07 

(unc.); 

0.17 

(unc.) 

 TD > 

ASD 

Right - - - - - - 
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