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MTA–ELTE Geometric and Algebraic Combinatorics Research Group
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Abstract

In this paper, by using properties of Baer subplanes, we describe the construction
of a minimal blocking set in the Hall plane of order q2 of size q2 + 2q + 2 admitting
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1-,2-,3-,4-, (q + 1)- and (q + 2)-secants. As a corollary, we obtain the existence of a
minimal blocking set of a non-Desarguesian affine plane of order q2 of size at most
4q2/3+5q/3, which is considerably smaller than 2q2−1, the Jamison bound for the
size of a minimal blocking set in an affine Desarguesian plane of order q2.

We also consider particular André planes of order q, where q is a power of the
prime p, and give a construction of a small minimal blocking set which admits
a secant line not meeting the blocking set in 1 mod p points. Furthermore, we
elaborate on the connection of this problem with the study of value sets of certain
polynomials and with the construction of small double blocking sets in Desarguesian
projective planes; in both topics we provide some new results.

Keywords: minimal blocking set, Baer subplane, stabiliser of a Baer subplane, Hall
plane, André plane, double blocking set, value set of polynomials.

1 Introduction

In finite geometry one often studies combinatorial analogues of classical substructures
of Galois geometries. In case of projective planes, examples of such combinatorially
defined substructures are arcs, ovals and hyperovals, (k, n)-arcs, unitals, blocking sets
and multiple blocking sets. Most results regarding these are for planes coordinatized
over finite fields (i.e. Desarguesian planes) and are obtained by using algebraic methods.
Therefore it is an interesting question to decide whether these results remain valid for
non-Desarguesian planes or not. It is not too surprising that only few results have a
combinatorial proof, and in most cases one can find counterexamples showing that the
strong results for Desarguesian planes cannot be extended to non-Desarguesian ones. One
strategy for constructing counterexamples is to consider a substructure of a Desarguesian
plane and study when this subset will be a similar inherited substructure in a suitable non-
Desarguesian plane. Another strategy for constructing examples and counterexamples is
to use higher-dimensional representations of non-Desarguesian planes (the André/Bruck–
Bose representation). These methods can be successful and the present paper illustrates
both of them but the focus is on the first one. The early results on inherited substructures
were about ovals, the reader is referred to [18]. More recent results in this direction can
be found in [17]. In the present paper we use inherited substructures for constructing
blocking sets in Hall- and André planes.

1.1 Preliminaries

A blocking set B in a projective plane Πq of order q is a set of points such that every line
of Πq contains at least one point of B. We also say that the set B blocks all lines. A
minimal blocking set B is a blocking set such that no proper subset of B is a blocking
set. An essential point of a blocking set is a point lying on at least one tangent line to B
and we see that B is minimal if and only if every point of B is essential. A blocking set is
called trivial if it contains a line. A t-fold blocking set is a set of points such that every
line contains at least t points of B. A 1-fold blocking set is simply a blocking set and a
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2-fold blocking set is mostly called a double blocking set. A Baer subplane of an arbitrary
projective plane of order q2, is a set of q2 + q + 1 points such that its inherited point-line
structure forms a projective subplane of order q. It is well-known that any Baer subplane
is a blocking set in its ambient plane.

A blocking set B in a projective plane of order q is said to be of Rédei type if there
exists a line ` such that |B| = q + |B ∩ `|. Given a set U of q points in an affine plane,
the set of determined directions is the set DU of those points on the line at infinity that
admit a line through them which intersects U in at least two points. It is well-known that
U ∪DU is a blocking set of Rédei type in the projective closure. For more details, we refer
to [20].

Let us first collect some results on blocking sets in Desarguesian planes. We denote
by PG(2, q) and AG(2, q) the projective and affine plane over the q-element field GF(q).

Result 1.1 (Szőnyi [19]). Let q = ph, p prime, h > 1, and let B be a minimal blocking set
in PG(2, q) of size less than 3

2
(q + 1). Then every line intersects B in 1 (mod p) points.

Result 1.2 (Blokhuis–Storme–Szőnyi [4]). Let B be a t-fold blocking set in PG(2, q),
q = ph, p prime, of size t(q + 1) + C. Let c2 = c3 = 2−1/3 and cp = 1 for p > 3.
(1) If q = p2d+1 and t < q/2− cpq2/3/2, then C > cpq

2/3;
(2) if q is a square, t < min{q1/4/2, cpq

1/6}, and C < cpq
2/3, then B contains the union

of t disjoint Baer subplanes.

Result 1.3 (Jamison [13], Brouwer–Schrijver [5]). A blocking set of AG(2, q) has at least
2q − 1 points.

If B is a blocking set in a projective plane Π and on a point P ∈ B there are t tangents
to B, we may take one point on each but one, say, `, of these tangents, add these points to
B and remove P from B to obtain a blocking set in the affine plane Π\ ` of size |B|+ t−2.
This well-known idea shows that Result 1.3 is equivalent with the following.

Result 1.4. Let B be a blocking set in PG(2, q). Then each essential point of B lies on
at least 2q − |B|+ 1 tangent lines to B.

After the third author’s talk at the 37th ACCMCC, Gordon Royle asked whether the
1 modulo p result (Result 1.1) for blocking sets in Galois planes could be extended for
non-Desarguesian planes. In a sense this question was the starting point for this paper.

In Section 3, we provide information about Baer subplanes of Desarguesian projective
planes and their stabilisers which will be applied in Hall planes. In Section 4, we construct
small blocking sets in non-Desarguesian planes and show that, as expected, the above
mentioned results on blocking sets do not hold for non-Desarguesian planes in general.
These results are also related to small double blocking sets in Desarguesian planes. Let
us state some of our results here.

Theorem 1.5. Let q2 > 9 be a square prime power. Then in the Hall plane of order q2

there is a minimal blocking set of size q2 + 2q + 2 admitting 1-, 2-, 3-, 4-, (q + 1)- and
(q + 2)-secants.
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Theorem 1.6. Let q2 > 9 be a square prime power. Then there exists an affine plane of
order q2 in which there is a blocking set of size b4q2/3 + 5q/3c.

Note that regarding Result 1.3, there was one counterexample known: Bruen and de
Resmini ([6], 1983) constructed a blocking set of size 16 in a particular non-Desarguesian
affine plane of order 9. However, Bierbrauer [3] pointed out that the construction works
in all non-Desarguesian affine planes of order 9.

Theorem 1.7. Let GF(r) be a proper subfield of GF(q), and suppose that gcd(r − 2, q −
1) = 1, r > 4. Then there exists a projective plane of order q in which there is a minimal
blocking set of size q + 2(q − 1)/(r − 1) admitting an r + 2-secant.

Theorem 1.8. Let B be a non-trivial blocking set in PG(2, ph), p prime, h > 2, of size
|B| 6 3

2
(ph − ph−1). Then there exists a blocking set of size ph + ph−1 + 1 that is disjoint

from B. Consequently, if p > 5, then there exists a double blocking set in PG(2, ph) of
size 2(ph + ph−1 + 1).

Additionally, we apply the same methods to find small double blocking sets with
respect to k-spaces in PG(2k, ph).

In Section 2, we show some connections of the above results with value sets of certain
polynomials. For a polynomial f ∈ GF(q)[x], let V (f) = {f(x) : x ∈ GF(q)} denote the
value set of f . As usual, we consider x−a and xq−1−a as the same functions, and thus
we interpret 0−a as zero. Determining the size of the value set of polynomials is hard in
general. Cusick [7] and, based on Cusick’s work, Rosendahl [16] examined the value sets of
polynomials of the form sa(x) = xa(x+ 1)

√
q−1, q a square, and have derived several exact

results, mostly in the case when q is even. Their proofs depend on the arithmetic of GF(q)
and connections to cross-correlation functions. If q is odd, then, up to our knowledge,
the following are the only known corresponding results. Note that one may define these
polynomials more generally with respect to any field extension GF(q) ⊂ GF(qh) as

sa(x) = xa(x+ 1)q−1.

Result 1.9 (Cusick–Müller [8]). For any prime power q and h > 2, the size of the value
set of s1(x) = x(x+ 1)q−1 in GF(qh) is

|V (s1)| = (1− 1/q)qh.

Result 1.10 (Rosendal [16]). Assume that q ≡ 0 (mod 3). Then the size of the value set
of s3(x) = x3(x+ 1)q−1 in GF(q2) is

|V (s3)| = 2

3
q2 − 1

6
q − 1

2
.

Let us remark that [16, Theorem 2.8] states the above formula for q ≡ 1 (mod 3), q
odd as well but, a short check using GAP [10] shows that the result actually fails in that
case. Using the connections to be established in Section 2, in Section 5 we obtain the
following result.
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Theorem 1.11. Let q be odd. The size of the value set of s−1(x) = x−1(x + 1)q−1 in
GF(q2) is

|V (s−1)| =


2
3
q2 − 1

6
q − 1

2
if q 6≡ 2 (mod 3),

2
3
q2 − 1

6
q + 1

6
if q ≡ 2 (mod 3).

Let us remark that our methods work for q even as well, for which case the respective
results have already been obtained by Cusick [7] and Rosendahl [16], see Section 5.

2 Connections of double blocking sets of PG(2, qh), lines of
André planes, and value sets of certain polynomials

In the following, unless stated otherwise, q denotes an arbitrary power of a prime p,
and we consider GF(qh), h > 2 as the extension of GF(q). For a field F , F∗ denotes
its multiplicative group. We use (x : y : z) to denote a homogeneous triplet over the
respective field. We call `∞ = {(1 : y : 0) : y ∈ GF(qh)} ∪ {(0 : 1 : 0)} the line at infinity
of PG(2, qh), and we let AG(2, qh) denote the affine plane PG(2, qh) \ `∞. Recall that
x 7→ xq is an automorphism of GF(qh).

Let D = {xq−1 : x ∈ GF(qh)∗} be the set of (q − 1)-th powers in GF(qh)∗, and let
D = {(1 : s : 0) : s ∈ D} ⊂ `∞ ∈ PG(2, qh) be the set of common points of lines with
slope in D. We define k := gcd(q − 2, qh − 1) = gcd(q − 2, 2h − 1) and C := {xq−2 : x ∈
GF(qh)∗} = {xk : x ∈ GF(qh)∗}.

We consider the following model for a particular affine André plane of order qh. The
upcoming method for constructing projective planes, due to T. G. Ostrom for h = 2, is
called derivation. For more information on derivation and derived planes, we refer to [12].
We use D as a derivation set, that is, for all a ∈ D, we replace the lines of AG(2, qh)
with equation y = ax+ b by other suitable subsets, namely those defined by the equation
y = axq + b. For our purposes, it will be convenient to introduce the following notation.

fa,c(x) := axq − ac, where a 6= 0.

As (fa,c(x)−fa,c(y))/(x−y) = (axq−ayq)/(x−y) = a(x−y)q−1, the directions determined
by (the graph of) fa,c are {axq−1 : x ∈ GF(qh)∗}, which correspond to the points {(1 :
axq−1 : 0) : x 6= 0} = {(1 : s : 0) : s ∈ aD} =: D(a) on the line at infinity. Hence, the
following sets are blocking sets of Rédei type in PG(2, qh):

B(a, c) = {(x : fa,c(x) : 1) : x ∈ GF(qh)}︸ ︷︷ ︸
U(a,c)

∪{(1 : axq−1 : 0) : x ∈ GF (qh)∗}︸ ︷︷ ︸
D(a)

.

Then an affine André plane can be constructed in the following way. Define the set P
as the set of points of AG(2, qh). Define the set L as a set of lines of two types:

(i) the lines of PG(2, qh) meeting `∞ not in D;
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(ii) the sets B(a, c), where a ∈ D, c ∈ GF(qh).

The incidence I is the natural incidence. It is well known that ΠA
D := (P ,L, I) is an

affine plane of order qh (and it is easy to check as well). Its projective completion ΠD is
a projective André plane of order qh. Unless causing confusion, we write simply Π and
ΠA instead of ΠD and ΠA

D. It is clear that the parallel classes of lines of type (ii) are
the sets [a] := {B(a, c) : c ∈ GF(qh)}, where a ∈ D, as U(a, c1) and U(a, c2) are disjoint
if c1 6= c2. For each a ∈ D, let (a) denote the common point of the lines of [a], and
let D′ = {(a) : a ∈ D}. The points of `∞ \ D ⊆ PG(2, qh) naturally correspond to the
common points of the parrallel classes of lines of type (i) in ΠA. Note that the point set
of a line B(a, c) of type (ii) in Π is U(a, c) ∪ {(a)}. The directions in D′ and lines of type
(ii) are also called derived directions and derived lines, respectively.

We will denote by `′∞ the line at infinity in ΠD. In what follows, we will often consider
an object in one plane (Π or PG(2, q2)), and interpret it in the other plane, e.g., a line of
type (ii) in Π is a blocking set of PG(2, q2), an affine point of PG(2, q2) is an affine point
of Π, etc. Note that if h = 2, then B(a, c) is always a Baer subplane, and the plane Π is
the well known Hall plane of order q2. In this case, the set of all lines of type (ii) in Π is
the set of all Baer subplanes in PG(2, q2) that contain D.

Suppose that B is a blocking set of PG(2, qh). Then B∗ := B \ D blocks every line of
type (i) in Π. Clearly, B∗ ∪D′ is a blocking set of Π; however, B∗ alone may not block all
lines of type (ii) or `′∞. If B∩D = ∅ and a line ` of type (ii) of Π is skew to B, then ` is a
blocking set of PG(2, qh) disjoint from B, thus B∪ ` is a double blocking set in PG(2, qh).

We choose a blocking set of PG(2, qh) in the following way. Let g(x) = xq. Similarly
as before, the set of directions determined by g(x) is {(1 : xq−1 : 0) : x 6= 0} = D,

B0 := {(y : 1 : yq) : y ∈ GF(qh)}︸ ︷︷ ︸
U0

∪{(1 : 0 : yq−1) : y ∈ GF(qh)∗}︸ ︷︷ ︸
D0

is a blocking set of Rédei type in PG(2, qh), and `∞ ∩ B0 = {(0 : 1 : 0)} /∈ D. Recall that
s−1(x) = x−1(x+ 1)q−1, and note that 0 ∈ V (s−1).

Definition 2.1. For a point set T ⊂ PG(2, qh) and any element a ∈ GF(qh)∗, let σTi (a) =
|{c ∈ GF(qh) : |U(a, c) ∩ T | = i}|, and let the type of a (with respect to T ) be σT (a) =
(σT0 (a), σT1 (a), . . . , σT

qh
(a)).

Lemma 2.2. 1. ∀ a ∈ GF(qh)∗ : D(a) ∩ B0 = ∅.
2. ∀ a ∈ GF(qh)∗ : U(a, c) ∩ D0 = ∅ ⇐⇒ c /∈ D.
3. If a/a′ ∈ C, then σU0(a) = σU0(a′) and σB0(a) = σB0(a′).
4. ∀ a ∈ GF(qh)∗, c ∈ GF(qh) : U(a, c) ∩ U0 = ∅ ⇐⇒

(c 6= 0 and − 1/(cq−2aq−1) /∈ V (s−1)) or (c = 0 and a /∈ C).

Proof. Let a ∈ GF(qh)∗, c ∈ GF(qh), f = fa,c and g(x) = xq. As g(y) = 0 ⇐⇒ y = 0,
D(a)∩U0 and D(a)∩D0 are clearly empty; thus D(a)∩B0 = ∅. Note that f(x) = 0 ⇐⇒
xq = c. Thus U(a, c)∩D0 is nonempty iff there exists y ∈ GF(q)∗ such that (y−(q−1))q = c.
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The left-hand-side is always a (q− 1)-th power, so this is possible if and only if c ∈ D. In
this case, |U(a, c) ∩ D0| = 1.

An element of U(a, c) ∩ U0 corresponds to elements x, y ∈ GF (qh) such that (y : 1 :
g(y)) = (x : f(x) : 1). Then g(y) 6= 0, so y 6= 0 and hence x 6= 0; clearly, f(x) 6= 0, thus
(y : 1 : g(y)) = (x/f(x) : 1 : 1/f(x)), so g(x/f(x)) = 1/f(x). As g is multiplicative, this
yields g(x)f(x) = g(f(x)) = f(x)q, i.e., xq = (axq−ac)q−1 = aq−1(xq−c)q−1, equivalently:

ψc(x) :=
(xq − c)q−1

xq
=

1

aq−1
. (?)

Thus once a 6= 0 is fixed, |U(a, c) ∩ U0| is the number of solutions of (?) in GF(qh) in
the indeterminate x.

Let t ∈ GF(qh)∗. Replacing x by t(q−1)/qx in (?), it is easy to see that |U(a, c) ∩
U0| = |U(tq−2a, c/tq−1) ∩ U0|. Moreover, as c ∈ D ⇐⇒ c/tq−1 ∈ D, |U(a, c) ∩ D0| =
|U(tq−2a, c/tq−1) ∩ D0|. Hence, if a/a′ ∈ C, that is, a′ = a · tq−2 for some t ∈ GF(qh)∗,
then σU0(a) = σU0(a′) and σB0(a) = σB0(a′).

If c = 0, then (?) has a solution if and only if a ∈ C. Suppose now c 6= 0. Since
{xq : x ∈ GF(qh)∗} = {−cx : x ∈ GF(qh)∗} = GF (qh)∗, the range of ψc(x) is the same as

that of (−cx−c)q−1

−cx = (−c)q−2s−1(x). Thus U(a, c)∩U0 = ∅ iff −1/(cq−2aq−1) /∈ V (s−1).

Let Ca be the coset (−1/aq−1)C, and let χC̄(a) be one or zero depending on whether
a /∈ C or a ∈ C, respectively.

As gcd(q− 2, qh− 1) = k, c 7→ −1/(cq−2aq−1) is a mapping from GF(qh)∗ to Ca which
covers each element of the image exactly k times. Thus, by Lemma 2.2 (iv), for any a ∈ D
we have

σU00 (a) = |{c ∈ GF(qh) : U(a, c) ∩ U0 = ∅}| =
|{c ∈ GF(qh)∗ : − 1/(cp−2ap−1) /∈ V (s−1)}|+ χC̄(a) =

|GF(qh)∗| − |V (s−1) ∩ Ca| · k + χC̄(a).

Recall that 0 ∈ V (s−1). Note that by Lemma 2.2 (3), σU00 is constant on any coset of C,
hence, if the elements a1, . . . , ak ∈ D are representatives of the k cosets of C, then

|V (s−1)| = qh −
k∑

i=1

σU00 (ai)/k +
k∑

i=1

χC̄(a)/k = qh −
k∑

i=1

σU00 (ai)/k +
k − 1

k
.

Note that each coset of C intersects D in |D|/k points. Therefore we see that

∑
a∈D

σU00 (a) = (|D|/k)
k∑

i=1

σU00 (ai) ,

thus
∑

a∈D σ
U0
0 (a) is divisible by |D|/k and

|V (s−1)| = qh − 1

|D|
∑
a∈D

σU00 (a) +
k − 1

k
. (1)
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Thus the size of the value set V (s−1) is determined by
∑

a∈D σ
U0
0 (a), which is of purely

geometrical nature: it is the number of skew lines of type (ii) to U0 in the affine André
plane ΠA

D. In the case of h = 2, that is, Hall planes, lines of type (ii) are Baer subplanes
of PG(2, q2). Baer subplanes and their intersection properties are quite well understood
in Desarguesian planes, which is well exploitable in the present context.

3 On Baer subplanes in PG(2, q2)

It is well-known that every subplane of a Desarguesian projective plane is itself a De-
sarguesian plane and hence, is coordinatised by the elements of a subfield of GF(q). In
particular, we get that a Baer subplane of PG(2, q2) corresponds to a set of q2 + q + 1
points whose homogeneous coordinates, with respect to a well-chosen frame of PG(2, q2),
are in the subfield GF(q) of GF(q2); a frame of a projective plane is a set of four points,
no three of which are collinear. Likewise, a frame of PG(1, q2) is a set of 3 distinct points
and a Baer subline of PG(1, q2) is defined as a set of q+1 points such that the coordinates
with respect to a frame of PG(1, q2), are in GF(q).

For a point P ∈ PG(2, q2), let 〈P 〉 denote the set of lines through P ; that is, the pencil
with carrier P . For two distinct points P and R, let 〈P,R〉 denote the line of PG(2, q2)
connecting P and R. Recall that given a Baer subplane B of PG(2, q2), every line of
PG(2, q2) intersects B in one or q + 1 points. The lines of the latter type are called long
secants (of B). Let 〈P 〉B denote the set of long secants of B through P . It is well-known
that if P ∈ B, then |〈P 〉B| = q + 1, and if P /∈ B, then |〈P 〉B| = 1.

Definition 3.1. Let P be a point of PG(2, q2) and let l be any line such that P 6∈ l.
Choose a Baer subline m contained in l. Then the Baer subpencil determined by P and
m is the set of q + 1 lines on P meeting l in a point of m.

Note that if B is a Baer subplane and P ∈ B, then 〈P 〉B is also a Baer subpencil of 〈P 〉,
as for any long secant line l of B not containing P , 〈P 〉B is determined by P and the Baer
subline l∩B. Using the fact that the points of a frame in PG(2, q2) or PG(1, q2) determine
a unique Baer subplane or subline respectively, we obtain the following well-known facts.

Lemma 3.2. Given three collinear points in PG(2, q2), there exists a unique Baer subline
containing them. Dually, given three concurrent lines in PG(2, q2), there exists a unique
Baer subpencil containing them. Four points, no three of which are collinear, in PG(2, q2),
are contained in a unique Baer subplane.

Let us remark that we could use not only D but any Baer subline of `∞ to construct
the Hall plane. However, using D does not cause loss of generality, as the collineation
group of PG(2, q2) is transitive on the Baer sublines of a given line. We prove a couple
of such transitivity results in connection with Baer subplanes and Baer sublines which
might be known, yet seem to be hard to find a direct reference for. We use the well-
known fact that the group PGL(3, q2) of projective linear transformations of PG(2, q2) is
sharply transitive on the frames. For basic information on the collineations of PG(2, q2)
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and PG(1, q2) we refer to [11]. If a group G acts on a set Ω and A1, . . . , An are subsets of
Ω, we denote by StabG(A1, . . . , An) the subgroup of G that stabilises setwise each of the
Ai’s, 1 6 i 6 n. If Ai = {P} is a single point, we write simply P instead of {P}.

Lemma 3.3. Let B be an arbitrary Baer subplane of PG(2, q2). For a point Q ∈ B, LQ

denotes the set of tangent lines to B through Q. For a line ` tangent to B, X` denotes the
set of all Baer sublines of `, X ′` = {R ∈ X` : B ∩R = ∅}. For any line `, Y` denotes the
set of all Baer subplanes that intersect ` in precisely one point, and for any fixed Baer
subline R of `, Y`,R = {B′ ∈ Yl : B′∩R = ∅}. Let us interpret PGL(3, q2) and PGL(2, q2)
as the groups of all projective linear transformations of PG(2, q2) and ` (after ` is fixed),
respectively. Then the following hold.

1. Let Q ∈ B. Then StabPGL(3,q2)(B, Q) is transitive on LQ.
2. Let `′ be any long secant to B. Then StabPGL(3,q2)(B,B ∩ `′) is transitive on `′ \ B.
3. Let ` be a tangent to B with tangency point Q. Then the actions of StabPGL(3,q2)(B, `)

and StabPGL(2,q2)(Q) on ` are the same.
4. Let ` be a tangent to B. Then StabPGL(3,q2)(B, `) is transitive on X ′` .
5. Let R be a Baer subline of an arbitrary line `. Then StabPGL(3,q2)(R) is transitive

on Y`,R.

Proof. Let Q ∈ B, and let ` be a line tangent to B on Q. Let ι be the mapping of
StabPGL(3,q2)(B, `) into StabPGL(2,q2)(Q) given by the natural action of StabPGL(3,q2)(B, `)
on `. First we show that the kernel of this mapping is trivial. Suppose to the contrary
that there exist a collineation ϕ ∈ StabPGL(3,q2)(B, `) that fixes ` pointwise, and that there
exists a point A ∈ B such that ϕ(A) 6= A. Let e be a long secant of B through A such
that R := e∩ ` is different from Q. Then 〈R,A〉 and ϕ(〈R,A〉) = 〈ϕ(R), ϕ(A)〉 = 〈R,A′〉
are two different long secants to B through R, a contradiction. Thus ι is an injection.
As PGL(2, q2) is sharply transitive on the triplets of `, |StabPGL(2,q2)(Q)| = q2(q2 − 1),
whence |StabPGL(3,q2)(B, `)| 6 q2(q2 − 1).

Let A, B and C be three points of B such that Q, A, B and C are in general position.
As StabPGL(3,q2)(B, Q) is sharply transitive on such triplets, the image of A, B and C
can be chosen in (q2 + q)q2(q2 − 2q + 1) = q3(q + 1)(q − 1)2 ways, so this is the order of
StabPGL(3,q2)(B, Q). Then |StabPGL(3,q2)(B, `)| is |StabPGL(3,q2)(B, Q)| divided by the size
of the orbit of ` in LQ under the action of StabPGL(3,q2)(B, Q), which is of size at most
|LQ| = q2 − q. Hence |StabPGL(3,q2)(B, `)| > q2(q2 − 1). Consequently, equality holds, and
thus StabPGL(3,q2)(B, Q) is transitive on LQ, and ι is a bijection, so StabPGL(3,q2)(B, `) acts
on ` as StabPGL(2,q2)(Q) does. Thus (1) and (3) follow. (2) follows from (1) as PG(2, q2)
is self-dual.

As three points uniquely determine a Baer subline and PGL(2, q2) is transitive on the
triplets of `, PGL(2, q2) is transitive on X`. Let R,R′ ∈ X ′` , and let ϕ ∈ PGL(2, q2) be
such that ϕ(R) = R′. By (2), we find ψ ∈ StabPGL(2,q2)(R) such that (ψ ◦ ϕ)(Q) = Q.
Thus ψ◦ϕ ∈ StabPGL(2,q2)(Q) and it movesR toR′; therefore StabPGL(2,q2)(Q) is transitive
on X ′` , and thus so is ι−1(StabPGL(2,q2)(Q)) = StabPGL(3,q2)(B, `), which is assertion (4).

Now let ` be any line, let R ∈ X`, and B1,B2 ∈ YR arbitrary. As PGL(3, q2) is
transitive on the frames, there exists an element ϕ1 ∈ PGL(3, q2) such that ϕ1(B1) = B2
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and ϕ1(B1 ∩ `) = B2 ∩ ` =: Q. By (1), there exists ϕ2 ∈ StabPGL(3,q2)(B2, Q) such that
ϕ2◦ϕ1(`) = `. Then, by (4), there exists ϕ3 ∈ StabPGL(3,q2)(B, `) such that ϕ3◦ϕ2◦ϕ1(R) =
R. Thus (5) follows.

By Lemma 3.3 (5), if B is a Baer subplane intersecting `∞ in a point Q and R is
any Baer subline of `∞ not containing Q, we may assume without loss of generality that
B = B0 and R = D. We will need this only to prove one part of Lemma 3.10. Let us
remark that if the collineation group of PG(2, q2) were transitive on the ordered pairs of
disjoint Baer subplanes, we would not need Lemma 3.3 to see this; however, this is not
the case. For more details, see the work of Eisfeld [9].

Definition 3.4. Let [D] be the set of Baer subplanes of PG(2, q2) that contain D. For a
point P ∈ AG(2, q2), let [P ] = [P ]D denote the set of Baer subplanes that contain {P}∪D.

In other words, [P ] is the set of lines of type (ii) through P , and [D] is the set of all
lines of type (ii) in the Hall plane. The next result is well-known (basically this verifies
the correctness of the construction of the Hall plane) yet we include a short proof.

Proposition 3.5. Let P,R ∈ AG(2, q2), P 6= R. If 〈P,R〉∩ `∞ ∈ D, then |[P ]∩ [R]| = 1;
otherwise |[P ] ∩ [R]| = 0. For any point P ∈ AG(2, q2), |[P ]| = q + 1.

Proof. Let P,R ∈ AG(2, q2), and let Q1, Q2 ∈ D\〈P,R〉 arbitrary. By Lemma 3.2 there is
a unique Baer subplane B containing P,R,Q1, Q2, so |[P ] ∩ [R]| 6 1. The Baer subplane
B has to contain the point Q := 〈P,R〉 ∩ `∞. If Q /∈ D, then clearly B /∈ [D] and
[P ] ∩ [R] = ∅. If Q ∈ D, then, since Q,Q1 and Q2 are distinct points, by Lemma 3.2,
D ⊂ B, thus B ∈ [P ] ∩ [R].

Now let P ∈ AG(2, q2) be arbitrary. Then the Baer subplanes in [P ] partition the
q2 − 1 points of each line 〈P,Q〉 \ {P,Q}, Q ∈ D into subsets of size q − 1. We may
conclude that |[P ]| = q + 1.

Definition 3.6. Suppose that P,R ∈ AG(2, q2). If 〈P,R〉∩`∞ ∈ D, then let [P,R] denote
the unique Baer subplane containing {P,R} ∪ D (cf. Proposition 3.5). We will say that
[P,R] exists if 〈P,R〉 ∩ `∞ ∈ D; otherwise we will say that [P,R] does not exist.

Definition 3.7. Given a Baer subplane B of PG(2, q2) such that B ∩ `∞ = {Q}, Q 6∈ D,
let S = SB be the set of lines of PG(2, q2) meeting `∞ in a point of D and meeting B in
q + 1 points.

An oval of a projective plane of order q is a set of q + 1 points, no three of which are
collinear. It is easy to see that every point of an oval O lies on a unique tangent line to
O; if q is odd, the tangent lines to an oval form a dual oval; and if q is even, all tangent
lines to the oval O are concurrent. Moreover, there are (q+1)q

2
secant lines to O and (q−1)q

2

external lines to O.

Lemma 3.8. Let B be a Baer subplane of PG(2, q2) such that B ∩ `∞ = {Q}, Q 6∈ D.
(1) The set {` ∩ B | ` ∈ S} is a dual oval of B.
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(2) A Baer subplane B′ ∈ [D] cannot contain three points of B that are collinear.
(3) For two distinct points P,R ∈ B, [P,R]D exists if and only if 〈P,R〉 ∈ S.

Proof. (1) As every point of D ⊂ B lies on a unique (q+1)-secant to B, |S| = |D| = q+1.
Suppose that three lines of S meet in a point P ∈ B. Then, by Lemma 3.2, the
Baer subpencils C = {〈P,R〉 : R ∈ D} and 〈P 〉B coincide. But as Q ∈ B \ D,
〈P,Q〉 ∈ 〈P 〉B \ C, a contradiction. Hence, no three lines of S can meet in a common
point, so the intersections of the lines of S with B form a dual oval of B.

(2) Assume that a Baer subplane B′ ∈ [D] contains three points of B that are collinear.
These three points determine a line of PG(2, q2) meeting B and B′ in the same Baer
subline l, which necessarily meets the Baer subline D ⊂ B′, a contradiction since
B ∩ D = ∅.

(3) As 〈P,R〉 is a long secant of B, this follows immediately from the definition of S and
Proposition 3.5.

Lemma 3.9. Let B be a Baer subplane of PG(2, q2) such that B ∩ `∞ = {Q}, Q 6∈ D.
Call O the set of tangent points of S in B, i.e. the set of points of B that are contained
in exactly one line of S. Call O+ the set of points of B covered by exactly two lines of S
and call O− the set of points of B \ {Q} not covered by any line of S.

(1) |O| = q + 1, |O+| = q(q+1)
2

, |O−| = (q+1)(q−2)
2

. If q is odd, then O is an oval of B; if q
is even, then O is a line of B.

(2) If P ∈ O−, then each Baer subplane of [P ] meets B only in P .
(3) If P ∈ O, then q Baer subplanes of [P ] meet B in two points, one of which is P and

the other is contained in O+, and one Baer subplane of [P ] meets B only in P .
(4) If P ∈ O+, then q− 1 Baer subplanes of [P ] meet B in three points of O+ (including

P ), and two Baer subplanes of [P ] meet B in two points, one of which is P and the
other is contained in O.

Proof. (1) By Lemma 3.8, the set O∗ = {l ∩B|l ∈ S} is a dual oval of B. Note that Q in
not covered by O∗. Applying dually the aforementioned properties of ovals to O∗ (so
O, O+ and O− correspond dually to the tangents, the secant lines and external lines
of an oval, resp.), the assertion follows.

(2) As P ∈ O−, this follows immediately from Lemma 3.8 (3).
(3) Let P ∈ O. Consider the unique line l ∈ S on P . By Lemma 3.8 (3), for a point

P ′ ∈ B \ {P}, [P, P ′] ∈ [P ] exists if and only if P ′ ∈ l \ {P}. Since a Baer subplane
B′ ∈ [P ] cannot contain three points of B that are collinear by Lemma 3.8 (2),
|{[P, P ′] : P ′ ∈ l \ {P}}| = q. By Proposition 3.5, there is one Baer subplane left in
[P ]. If this subplane contained a point Q of B \ {P}, then 〈P,Q〉 would be a line of
S by Lemma 3.8 (3), a contradiction since this would force P to be contained in O+.

(4) Let P ∈ O+, and denote by `1, `2 the two lines of S on P . By Lemma 3.8 and
Proposition 3.5 we see that each of the 2q points of (`1 ∪ `2) ∩ (B \ {P}) is covered
by exactly one of the q + 1 Baer subplanes of [P ]. Since O∗ is a dual oval in B, for
i = 1, 2, there is exactly one point of `i in B, say Ri, that only lies on the line `i of S,
hence, Ri ∈ O. Then, by (3), [P,Ri] ∩ B = {P,Ri}, i = 1, 2. It follows that the q − 1
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Baer subplanes of [P ] \ {[P,R1], [P,R2]} each contain a point of `1 \ {P} and a point
of `2 \ {P}.

Lemma 3.10. Let B be a Baer subplane of PG(2, q2) such that B∩`∞ = {Q}, Q /∈ D. Let
P ∈ D′ be a point of the Hall plane ΠD, and let ti(P ) denote the number of i-secant lines (of
type (ii)) through P to B∗ := B\{Q}. If q 6≡ 2 (mod 3), then ∀P ∈ D′ : t0(P ) = (q2−q)/3.
If q ≡ 2 (mod 3), then for (q + 1)/3 points P ∈ D′ : t0(P ) = (q2 − q − 2)/3, and for
2(q + 1)/3 points P ∈ D′ : t0(P ) = (q2 − q + 1)/3.

Proof. Let P be a point of D′ and note that lines of H through the point P of D′ are
necessarily lines of type (ii). By Lemma 3.9, a line tangent to B∗ contains either a point
of O− or O, denote the number of such tangents by t′1(P ) and t′′1(P ), respectively; a
2-secant to B∗ contains one point of O and one of O+; a 3-secant to B∗ contains three
points of O+. Thus we have t′1(P ) = |O−| = (q+ 1)(q− 2)/2, t′′1(P ) + t2(P ) = |O| = q+ 1
and t2(P ) + 3t3(P ) = |O+| = q(q + 1)/2. From these equations, we get that the total
number of lines of type (ii) intersecting B∗ through P is t′1(P ) + t′′1(P ) + t2(P ) + t3(P ) =
2q(q + 1)/3 − t2(P )/3. It follows that if q 6≡ 2 (mod 3), then t2(P ) ≡ q (mod 3), and if
q ≡ 2 (mod 3), then t2(P ) ≡ 0 (mod 3).

By Lemma 3.9, each of the q+1 points in O determines q 2-secants to B through some
points of D′. Moreover, all these 2-secants are different and every 2-secant line of type
(ii) is obtained in this way, so we get

∑
P∈D′ t2(P ) = (q + 1)q. Thus, since |D′| = q + 1,

and |t2(P )| 6 |O| = q + 1, either there exists a point P ∈ D′ such that t2(P ) = q + 1 6≡ q
(mod 3) and hence q ≡ 2 (mod 3), or for all points P ∈ D′ : t2(P ) = q.

Suppose now q ≡ 2 (mod 3) (that is, k = 3). By Lemma 3.3 (5), we may assume
without loss of generality that B = B0. If P = (a) then ti(P ) = σB0i (a), hence by Lemma
2.2 (3) we have that D′ can be partitioned into three sets of size (q + 1)/3, and on each
of these sets, t2(P ) takes on the same value. As 3 | t2(P ) and there must be some P ∈ D′
with t2(P ) < q+1, it is easy to see that t2(P ) = q−2 on one of these sets, and t2(P ) = q+1
on the two remaining sets.

By considering t0(P ) = q2 − 2q(q+1)
3

+ t2(P )
3

, we can finish the proof easily.

4 Some blocking and double blocking sets

First, starting from the Hall plane, we give the construction of interesting small blocking
sets in non-Desarguesian planes.

Theorem 4.1. In the projective Hall plane Π of order q2, q > 3, there exists a minimal
blocking set of size q2 + 2q + 2, which admits 1-, 2-, 3-, 4-, (q + 1)- and (q + 2)-secants.

Proof. Let D be a Baer subline of `∞ in PG(2, q2) and let, as before, D′ denote the
set of derived directions. Let B be a Baer subplane of PG(2, q2) such that B ∩ `∞ is a
single point Q 6∈ D. Then it is clear that T := B ∪ D′ is a blocking set of H of size
q2 + 2q+ 2. We claim that T is a minimal blocking set. By Lemma 3.10, the points of D′
are essential for T . The points of B (including Q) are also essential, as there are at least
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q2 + 1− |〈P 〉B| − |D′| = q2 − 2q − 1 > 0 tangents on each point P of B. This proves our
claim. Using Lemma 3.9, we see that a line of type (ii) meets T in either 2, 3 or 4 points.
A line of type (i) meets T in 1 or q + 1 points and `∞ meets T in q + 2 points.

Remark 4.2. Using similar ideas, we could also show that in the projective Hall plane of
order q2, q > 3, there also exists a minimal blocking set of size q2 + 2q + 1 or q2 + 2q.

Theorem 4.3. Let q be a prime power. There exists a non-Desarguesian affine plane of
order q2 in which there is a blocking set of size at most 4q2/3 + 5q/3.

Proof. Consider the blocking set T of size q2 + 2q + 2 in the Hall plane H, constructed
in Theorem 4.1. By Lemma 3.10, we may choose a point P ∈ D′ that has at most
(q2− q− 2)/3 or exactly (q2− q)/3 tangents to T through it, according to whether q ≡ 2
(mod 3) or not, respectively. Let ` be one of these tangents. By putting one point on
all skew lines of T \ {P} but `, we obtain an affine blocking set in H \ ` of size at most
4q2/3 + 5q/3.

Note that the ratio of the size of the above constructed affine blocking set and the
order of the plane tends to 4/3, which is notably smaller than the ratio 2 in case of
Desarguesian affine planes.

Remark 4.4. We may also use multiple derivation to achieve similar results. That is,
let D1, . . . ,Dn be pairwise disjoint Baer sublines of `∞ in PG(2, q2), q > 3, 1 6 n < q−2,
replace the lines intersecing `∞ in D1∪· · ·∪Dn by the Baer subplanes [D1]∪· · ·∪ [Dn], and
consider the resulting projective plane Π. Take a Baer subplane B of PG(2, q2) such that
B∩ `∞ = {Q}, Q 6∈ D1∪ · · · ∪Dn. Then Lemma 3.10 shows that T = B∪D1∪ · · · ∪Dn is
a blocking set in Π for which all points of T ∩`∞ are essential; moreover, as on each point
of B\{Q} there are at least q2 +1− (n+1)(q+1) > 0 tangents to T , T is minimal. Thus
in the resulting projective plane we obtain a minimal blocking set of size q2 +(n+1)(q+1);
and, as in Theorem 4.3, we find an affine plane of order q2 with a blocking set of size at
most 4q2/3 + (3n+ 2)q/3 + n− 1.

Next we discuss blocking sets of the André planes ΠD and double blocking sets of
PG(2, qh). In the proof of the next theorem, we will use the following result.

Result 4.5 (Bacsó–Héger–Szőnyi [1]). Let F be a finite field of characteristic p, and let
H 6 F∗ be a multiplicative subgroup of m elements. Suppose that g ∈ F [x] maps a coset
c1H into another coset c2H. Then the mapping g|c1H : c1H → c2H is injective if and only
if the constant term of g(c1x)t (mod xm − 1) is zero for all 1 6 t 6 m− 1, p6 | t.

Theorem 4.6. Suppose that k = gcd(q − 2, qh − 1) = 1, h > 2. Then for each a ∈ D,
there exists c ∈ GF(qh)∗ such that B(a, c) and B0 are disjoint.

Proof. Recall that s−1(x) = (x + 1)q−1/x. By Lemma 2.2, we have to find c ∈ GF(qh)∗,
c /∈ D such that −1/(cq−2aq−1) /∈ V (s−1). Clearly, c ∈ D iff −1/(cq−2aq−1) ∈ −D; thus if
we find an element 0 6= t /∈ −D, t /∈ V (s−1), then, by gcd(q − 2, qh − 1) = 1, the unique
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element c ∈ GF(qh)∗ \D defined by cq−2 = −1/(taq−1) is appropriate. Note that for any
r ∈ GF(qh)∗, s−1(x) ∈ rD iff x ∈ r−1D. Choose r so that r−1D 6= −D. Then it is enough
to show that s−1|rD : rD → r−1D is not a bijection.

By Result 4.5, it is enough to show that the constant term of ψ(rx) (mod xm − 1) is
nonzero, where ψ(x) = xq

h−2(x+ 1)q−1 and m = |D| = (qh − 1)/(q − 1). Now

ψ(rx) = (rx+ 1)q−1(rx)q
h−2 =

q−1∑
i=0

(
q − 1

i

)
(rx)i+qh−2,

and precisely those addends contribute to the constant term of ψ(rx) (mod xm−1) whose
exponents are divisible by m. As m | qh − 1 and q − 1 < (qh − 1)/(q − 1) = m, we see
that i + qh − 2 ≡ i − 1 ≡ 0 (mod m) if and only if i = 1 (under 0 6 i 6 q − 1). As(
q−1

1

)
rq

h−1 = −1 is clearly nonzero, the proof is finished.

Corollary 4.7. Let gcd(q − 2, qh − 1) = 1, h > 2, q > 4 a power of the prime p.
Then, in the André plane ΠD of order qh, there exists a minimal blocking set of size
qh + 2(qh − 1)/(q − 1) admitting a t-secant, with t = (qh − 1)/(q − 1) + 1 6≡ 1 (mod p).

Proof. It is clear that B := B0∪D′ is a blocking set in Π of size qh + 2(qh−1)/(q−1). By
Theorem 4.6, all points of D′ are essential. On the other hand, by Result 1.4, in PG(2, qh)
there are at least qh− 2(qh− 1)/(q− 1) + 1 tangents to B0 in each point of B0. As at least
qh − 3(qh − 1)/(q − 1) + 1 > 0 of these tangents are also lines of Π, the points of B0 are
also all essential. The line `′∞ is a (qh − 1)/(q − 1) + 1-secant of Π.

Just as in case of starting with a Hall plane, one may use the same ideas to construct
small blocking sets in non-Desarguesian affine planes coming from the André plane ΠD. If
for a point P ∈ D′ there are t1 tangents to B0∪D′, we may obtain an affine plane of order
qh admitting a blocking set of size qh+2(qh−1)/(q−1)+t1−2 ≈ (1+2/(q−1)+t1/q

h)qh.
Using the GAP package FinInG [10, 2], we have computed the number of tangents on
points of D′ for several values of q and h. The results are shown in Table 1.

As a consequence of Theorem 4.6, we see that there exist two disjoint blocking sets
of size qh + (qh − 1)/(q − 1) in PG(2, qh) (namely, B0 and B(a, c) with properly chosen
parameters); thus their union is a small double blocking set. Such a double blocking set
was already obtained in [1] in which the following theorem is shown.

Result 4.8 (Bacsó–Héger–Szőnyi [1]). Let τ2(PG(2, s)) denote the size of the smallest
minimal double blocking set of PG(2, s), then τ2(PG(2, s)) 6 2

(
s+ s−1

r−1

)
, where r is the

size of the largest proper subfield of GF(s).

In the same paper, the authors use this bound on τ2, the size of the smalles double
blocking set, to determine the so-called upper chromatic number of the projective plane
of order q, which is easily seen to be at least q2 + q + 2− τ2.

Next we describe other small double blocking sets obtained as the union of two disjoint
blocking sets. As a corollary, we will construct a minimal blocking set in the André
plane ΠD of order qh, strictly containing a blocking set of the corresponding Desarguesian
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q h qh t1 |BA| t1/q
h |BA|/qh q h qh t1 |BA| t1/q

h |BA|/qh
3 3 27 6 57 0.222 2.111 11 3 1331 447 2042 0.336 1.534
3 4 81 20 197 0.247 2.21 11 4 14641 4716 22283 0.322 1.522
3 5 243 60 543 0.247 2.235 13 3 2197 759 3320 0.345 1.511
4 3 64 12 116 0.188 1.813 13 4 28561 9676 42995 0.339 1.505
4 4 256 60 484 0.234 1.891 16 3 4096 1079 5719 0.263 1.396
4 5 1024 220 1924 0.215 1.879 16 4 65536 17696 91968 0.27 1.403
5 3 125 36 221 0.288 1.768 17 3 4913 1701 7226 0.346 1.471
5 4 625 162 1097 0.259 1.755 19 3 6859 2394 10013 0.349 1.46
5 5 3125 875 5560 0.28 1.779 23 3 12167 4158 17429 0.342 1.432
7 3 343 108 563 0.315 1.641 25 3 15625 5589 22514 0.358 1.441
7 4 2401 731 3930 0.304 1.637 27 3 19683 7002 28197 0.356 1.433
7 5 16807 5175 27582 0.308 1.641 29 3 24389 8715 34844 0.357 1.429
8 3 512 126 782 0.246 1.527 32 3 32768 9060 43940 0.276 1.341
8 4 4096 918 6182 0.224 1.509 37 3 50653 17935 71400 0.354 1.41
8 5 32768 8070 50198 0.246 1.532
9 3 729 231 1140 0.317 1.564
9 4 6561 2148 10347 0.327 1.577
9 5 59049 19090 92899 0.323 1.573

Table 1: B0∪D′ is a blocking set in the André plane ΠD of order qh, t1 is the minimum of
the number of tangents to B0∪D′ through P , where P ranges through D′, BA is the affine
blocking set constructed from B0 ∪ D′ in the mentioned way. Note that t1 is particularly
small if q is even and, for fixed h, |BA|/qh is decreasing in q if q is prime. Let us remark

that for q = 32, h = 3, |BA| is smaller than
⌊

4
3
qh + 5

3

√
qh
⌋

by 52.
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projective plane, but which is smaller than the one obtained in Corollary 4.7 if q is a
prime. Moreover, if q = ph, where p and h are prime, we find a smaller upper bound
for τ2(PG(2, ph)) than the one of Result 4.8, which also improves in that case the results
on the upper chromatic number. For this construction, we will need the notion of linear
blocking sets.

By field reduction, the points of PG(2, qh) are in one-to-one correspondence with the
elements of a Desarguesian (h−1)-spread S in PG(3h−1, q) (as both kinds of objects can
be interpreted as h-dimensional subspaces of a 3h dimensional vectorspace over GF(q)).
Let B(µ) denote the set of spread elements of S meeting a subspace µ of PG(3h − 1, q).
We often identify the element of S with the corresponding point in PG(2, qh). The spread
element corresponding to a point P of PG(2, qh) will be denoted as P̄ . If π is an h-space
of PG(3h − 1, q), then it is clear that B(π) is a blocking set in PG(2, qh), and such a
blocking set is an GF(q)-linear blocking set. Note that a linear blocking set is necessarily
minimal and its size is at most (qh+1−1)/(q−1). For more information on field reduction
and linear sets, we refer to [14].

We say that B(π) is of vertex-type if it is non-trivial and there exists one spread element
of S, say V , which meets the h-space π in an (h−2)-space. It is easy to see that a blocking
set of vertex-type consists of q+1 (qh−1 +1)-secants through the point V and thus has size
qh + qh−1 + 1. It follows from [15] that B(π) is projectively equivalent to the set of points
{(Tr(x) : 1 : x)|x ∈ GF(qh)} ∪ {(Tr(x) : 0 : x) | x ∈ GF(qh)∗}, where Tr denotes the trace
function from GF(qh) to GF(q), i.e. Tr : GF(qh)→ GF(q), x 7→ x+ xq + xq

2
+ . . .+ xq

h−1
.

Theorem 4.9. Let p > 5 and let B be a non-trivial blocking set in PG(2, ph), p prime,
of size |B| 6 3

2
(ph − ph−1) (e.g., a non-trivial linear blocking set with p > 5), then there

exists a blocking set of vertex-type B(π) such that B ∩ B(π) = ∅.

Proof. Let Q be a point of PG(2, ph), not contained in B. Using that every line through
Q meets B in 1 mod p points by Result 1.1, this implies that there are at least ph + 1−
(|B| − ph − 1)/p tangent lines through Q to B. It is clear that the intersection points of
the tangent lines with B cannot be collinear, since otherwise either B would be a trivial
blocking set, or the size of B would be at least 2ph + 1− (|B| − ph − 1)/p > 3

2
(ph − ph−1).

Now consider 3 non-collinear points P1, P2, P3 such that QPi is a tangent line to B.
Choose a point T of Q̄ (i.e. the spread element corresponding to Q), and consider the

2h-space τ through P̄1, P̄2, and the point T , then τ meets Q̄ only in the point T . Denote
the point set of the spread elements of B by B̃. Let µ be an (h − 2)-space in Q̄, not
through T . We may consider τ to be the quotient space PG(3h− 1, p)/µ; every point R
of PG(3h− 1, p), not in µ corresponds to the projection of R from µ onto the space τ .

We claim that there exists a line ` in PG(3h − 1, p)/µ, skew from B̃/µ. Suppose
to the contrary that B̃/µ is a blocking set with respect to lines in PG(3h − 1, p)/µ ∼=
PG(2h, p). The set B̃/µ contains at most

(
ph−1
p−1

)
3
2

(
ph − ph−1

)
points, which is less than

3(p2h−1 + 1)/2. Hence, B̃/µ is a small blocking set with respect to lines in PG(2h, p), and
so by [21], all essential points are contained in a hyperplane. Let Ri, i = 1, 2 be some
point contained in P̄i and let R3 be the point P̄3 ∩ τ .
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Suppose that line 〈T,Ri〉 contains a point X 6= Ri of B̃/µ. Then 〈µ,X〉 would contain
a point Y of B̃, such that B(Y ) is a point of B, different from Pi. Now B(Y ) lies on
the tangent line 〈Q,Pi〉 since 〈µ,X〉 lies in 〈Q̄, P̄i〉. It follows from the fact that X 6= Ri

that B(Y ) is different from Pi. Hence, 〈T,Ri〉 only contains the point Ri of B̃/µ which
implies that the points of P̄1, P̄2 are essential points and we recall that all essential points
are contained in a hyperplane, which is then necessarily 〈P̄1, P̄2〉. But since P1, P2, P3

are not collinear, the point R3, which is clearly essential, is not contained in 〈P̄1, P̄2〉, a
contradiction. This proves our claim.

So we find a line ` in τ , skew from B̃/µ. The space π = 〈`, µ〉 is an h-space such
that B(π) ∩ B = ∅. Since π meets Q̄ in the (h − 2)-space µ, B(π) is a blocking set of
vertex-type meeting the required conditions.

Corollary 4.10. If B is a blocking set in PG(2, ph), p > 5 prime, of size at most 3
2
(ph −

ph−1), then there exists a double blocking set in PG(2, ph) of size |B| + ph + ph−1 + 1. In
particular, if p > 5, then there exist double blocking sets in PG(2, ph) of size 2ph+2ph−1+2
and τ2(PG(2, ph) 6 2

(
ph + ph−1 + 1

)
.

Corollary 4.11. Consider the André plane ΠD of order ph derived from PG(2, ph), p
prime, h > 2. Then there exists a non-trivial minimal blocking set in ΠD of size at least

ph + ph−1 + 2 and at most ph + ph−1 + ph−1
p−1

+ 1.

Proof. Consider the blocking set B1 = B(1, 0) of PG(2, ph) as defined earlier. From
Theorem 4.9, we obtain that there is a blocking set B2 of size ph + ph−1 + 1 skew from

B1. Clearly, T := B2 ∪ D′ forms a blocking set of size ph + ph−1 + ph−1
p−1

+ 1 in Π. Since

B1 (considered as a line of Π) and T are skew, at least one point of D′ is essential to
the blocking set T . Moreover, it is clear that every point of B2 is essential to T and the
statement follows.

As an addition, using the same method, we construct small double blocking sets with
respect to k-spaces in PG(2k, ph). Note that a GF(p)-linear blocking set with respect to
k-spaces in PG(2k, ph), p prime, is a set B(π), where π is an hk-dimensional subspace of
PG(h(2k + 1)− 1, p) and that such a linear blocking set is necessarily minimal.

Theorem 4.12. Let p > 5. There exist two sets B(π) and B(π′), where π and π′ are
hk-dimensional subspaces of PG(h(2k + 1)− 1, p) with B(π) ∩ B(π′) = ∅.

Proof. Let π be an hk-dimensional space in PG(h(2k+ 1)−1, p) and denote the point set

of the spread elements in B(π) by S̃, then |S̃| = |B(π)| · ph−1
p−1

6 phk+1−1
p−1

· ph−1
p−1

. If p > 5,

then phk+1−1
p−1

· ph−1
p−1

< 3
2
(phk+h−1 + 1). This implies that, if S̃ blocks all hk-spaces, it is a

small blocking set with respect to hk-spaces in PG(h(2k + 1)− 1, p), and hence, S̃ is an
(hk + h− 1)-dimensional subspace of PG(h(2k + 1)− 1, p). This implies that B(π) is the
set of all spread elements contained in an (h(k + 1) − 1)-dimensional subspace spanned
by spread elements, hence, B(π) corresponds to a k-space of PG(2k, ph). This implies
that if π is an hk-dimensional subspace of PG(h(2k + 1)− 1, p) such that B(π) does not
correspond to a k-space of PG(2k, ph), i.e. if B(π) defines a non-trivial blocking set with
respect to k-spaces, then there exists an hk-space π′ with B(π) ∩ B(π′) = ∅.
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Corollary 4.13. If p > 5 is prime, then there exist minimal double blocking sets with

respect to k-spaces in PG(2k, ph) of size at most 2phk+1−1
p−1

.

5 On the value set of s−1 in GF(q2)

Recall that k = gcd(q − 2, qh − 1) and, by (1),

|V (s−1)| = qh − 1

|D|
∑
a∈D

σU00 (a) +
k − 1

k
,

where σU00 (a) is the number of lines of type (ii) in the parallel class [a] of the affine André
plane ΠA that are skew to U0.

For a ∈ D, let
δ(a) = |{l ∈ [a] : l ∩ U0 = ∅, l ∩ D0 6= ∅}|,

and let us write

t0(a) = σB00 (a) = |{l ∈ [a] : l ∩ U0 = ∅, l ∩ D0 = ∅}|.

Clearly, we have

σ0(a) := σU00 (a) = t0(a) + δ(a). (2)

Let us now consider the case h = 2, that is, when Π is a Hall-plane. Then we are in
the situation of Lemma 3.8: B0 is a Baer subplane intersecting `∞ in one point not in D.
We use the notation and the assertions of Lemma 3.9 and Lemma 3.10.

Let `x be the line {(x : 0 : 1) : x ∈ GF(qh)} ∪ {(1 : 0 : 0)}. As D0 = B0 ∩ `x and
`x ∩ `∞ = (1 : 0 : 0) /∈ D, `x is a line of Π containing D0, so each line of Π different from
`x contains at most one point of D0. If P ∈ O− ∩D0, then every line of type (ii) through
P is tangent to B0, hence skew to U0. Similarly, if P ∈ O ∩ D0 or P ∈ O+ ∩ D0, then
there is exactly one or zero line of type (ii) skew to U0 through P , respectively. Let LO
denote the set of lines of type (ii) that are skew to U0 and intersect D0 in a point of O.
Then |LO| = |O ∩ D0| and δ(a) = |O− ∩ D0|+ |[a] ∩ LO|, whence∑

a∈D

δ(a) = |D| · |O− ∩ D0|+ |O ∩ D0|.

We have that if k = gcd(q − 2, q2 − 1) = gcd(q − 2, 3) = 1, then t0(a) = (q2 − q)/3
and σ0(a) = q2 − |V (s−1)| are constant on D, hence so is δ(a). Thus |O ∩ D0| = 0
or |O ∩ D0| = |D| = q + 1. If q is odd, then O is an oval of B0 and only the first
case can occur, so `x ∩ B0 is an external line to O, δ(a) = |O− ∩ D0| = (q + 1)/2,
σ0(a) = (q2 − q)/3 + (q + 1)/2; consequently, |V (s−1)| = q2 − (q2 − q)/3− (q + 1)/2.

If q is even, then O is a line of B0 and only the second case can occur, so δ(a) =
|O− ∩ D0| + 1 = 1, σ0(a) = (q2 − q)/3 + 1; consequently, |V (s−1)| = q2 − (q2 − q)/3− 1.
Thus we obtain the following result, which, for q even, was already obtained by Cusick
[7].
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Theorem 5.1. Let q 6≡ 2 (mod 3), and let s−1 : x 7→ x−1(x + 1)q−1 be a function from
GF(q2) to GF(q2), where 0−1 = 0q2−2 is considered zero. Then the number of elements in
the range of s−1 is

|V (s−1)| =


2
3
q2 − 1

6
q − 1

2
if q is odd,

2
3
q2 + 1

3
q − 1 if q is even.

Now consider the case q ≡ 2 (mod 3), that is, k = 3. Recall that for each a ∈ D,

t0(a) = q2 − 2q(q+1)
3

+ t2(a)
3

and
∑

a∈D t2(a) = (q + 1)q. Thus

∑
a∈D

σ0(a) =
∑
a∈D

(t0(a) + δ(a)) = (q + 1)

(
q2 − 2q(q + 1)

3

)
+

(q + 1)q

3
+
∑
a∈D

δ(a)

=
q(q2 − 1)

3
+ (q + 1) · |O− ∩ D0|+ |O ∩ D0|.

Recall that |D|/k = (q + 1)/3 divides
∑

a∈D σ0(a), so (q + 1)/3 divides |O ∩ D0|.
Suppose that q is odd. As `x ∩ `∞ /∈ D, `x cannot be a tangent to O, hence |O ∩ D0|

is either 0 or 2. In the latter case, (q + 1)/3 | 2, thus q = 5. This case can be handled
separately (e.g., by computer), so we assume q 6= 5. Then |O ∩ D0| = 0, so `x ∩ B0 is an
external line of O and |O− ∩ D0| = (q + 1)/2. Thus∑

a∈D

σ0(a) =
q(q2 − 1)

3
+ (q + 1)

q + 1

2
=

2q3 + 3q2 + 4q + 3

6
.

Now suppose that q is even. Then |O∩D0| is either 1 or q+1, and by (q+1)/3 | |O∩D0|,
the first case implies q = 2 which can be handled separately; thus we may assume q > 2
and |O ∩ D0| = q + 1. Then |O− ∩ D0| = 0 and∑

a∈D

σ0(a) =
q(q2 − 1)

3
+ (q + 1) =

q3 + 2q + 3

3
.

Thus we obtain the following result, which, for q even, was already conjectured by
Cusick [7] and proved by Rosendahl [16].

Theorem 5.2. Let q ≡ 2 (mod 3), and let s−1 : x 7→ x−1(x + 1)q−1 be a function from
GF(q2) to GF(q2), where 0−1 = 0q2−2 is considered zero. Then the number of elements in
the range of s−1 is

|V (s−1)| =


2
3
q2 − 1

6
q + 1

6
if q is odd,

2
3
q2 + 1

3
q − 1

3
if q is even.
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