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ANAMARI NAKIĆ AND LEO STORME

Abstract. In this article we show that an i-tight set in the Her-
mitian variety H(2r + 1, q), 81 ≤ q odd square, is a union of pair-
wise disjoint (2r+1)-dimensional Baer subgeometries PG(2r + 1,

√
q)

and generators of H(2r + 1, q), when i < (q2/3 − 1)/2. We ex-
tend the result to tight sets in the symplectic polar space W (2r +
1, q) and show that an i-tight set in W (2r + 1, q) is a union of
pairwise disjoint generators of W (2r + 1, q), pairs of disjoint r-
spaces {∆,∆⊥}, and (2r+1)-dimensional Baer subgeometries. For
W (2r + 1, q), r even, the possibility of pairs of disjoint r-spaces
{∆,∆⊥} cannot occur. For the (2r + 1)-dimensional Baer subge-
ometries in the i-tight set of W (2r+1, q), these Baer subgeometries
either are invariant under the symplectic polarity of W (2r + 1, q)
or they arise in pairs of disjoint Baer subgeometries which corre-
spond to each other under the symplectic polarity of W (2r + 1, q).
These results are an improvement of the previous results where
the upper bound on i was q5/8/

√
2+ 1. Combining the generalized

version of known techniques with recent results on blocking sets
and minihypers, we present an alternative proof of this result and
consequently improve the upper bound on i to (q2/3 − 1)/2. We
conclude by applying our new results on tight sets to improve a
known result on maximal partial spreads in the symplectic polar
space W (2r + 1, q).

Keywords: Tight sets; Finite classical polar spaces; Minihypers;
Blocking sets; Hermitian varieties; Symplectic polar spaces

MSC 2010 codes: 05B25; 51E20

1. Preliminaries

Let PG(n, q) be the projective space of dimension n over the fi-
nite field Fq of order q = ph, p prime. A k-space, 0 ≤ k ≤ n,
is a k-dimensional subspace PG(k, q) of PG(n, q). A hyperplane of
PG(n, q) is an (n − 1)-space. When q is a square, a k-dimensional
space PG(k,

√
q), 0 < k ≤ n, defined over the subfield F√q of Fq,

naturally embedded in PG(n, q), is called a k-dimensional Baer sub-
geometry. A hyperplane of the projective space PG(n, q) intersects
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an n-dimensional Baer subgeometry PG(n,
√
q) in either an (n − 1)-

dimensional Baer subgeometry or in an (n− 2)-dimensional Baer sub-
geometry. A (t, k)-Baer cone is a cone with disjoint vertex t-space
PG(t, q) and base a k-dimensional Baer subgeometry. A (−1, k)-Baer
cone is simply a k-dimensional Baer subgeometry, naturally embedded
in PG(n, q). We shall denote θk = (qk+1 − 1)/(q − 1) = |PG(k, q)| and
θk,√q = (

√
qk+1 − 1)/(

√
q − 1) = |PG(k,

√
q)|.

A polarity ϕ of PG(n, q) is an involutory bijection of the set of k-
spaces on the set of (n− k− 1)-spaces reversing the incidence relation.
A k-space ∆ is mapped to an (n−k−1)-space ∆ϕ called its polar space.
For example, a point P is mapped to its (polar) hyperplane Pϕ. We
say that points P,R are conjugate if P ∈ Rϕ. A point that is conjugate
to itself is called self-conjugate.

Let P be a finite classical polar space in PG(n, q) of rank r+1. Then
P is either the Hermitian variety H(2r+ 1, q), q square, the Hermitian
variety H(2r+ 2, q), q square, the symplectic polar space W (2r+ 1, q),
the hyperbolic quadric Q+(2r+1, q), the parabolic quadric Q(2r+2, q),
or the elliptic quadric Q−(2r + 3, q). A generator of P is a maximal
subspace of P , it is a subspace of dimension r when P has rank r + 1.
If P is not a quadric in PG(n, q), n and q even, then there exists a
polarity ⊥ of PG(n, q) such that every point P of P satisfies P ⊆ P⊥.
Then a subspace ∆ is a generator of Q+(2r + 1, q), W (2r + 1, q) or
H(2r + 1, q) if and only if ∆ = ∆⊥.

1.1. Blocking sets. An (n − k)-blocking set B of PG(n, q) is a set
of points such that any k-space intersects B in at least one point. A
1-blocking set of PG(2, q) is simply called a blocking set. An (n − k)-
blocking set B is called trivial when an (n − k)-space is contained in
B, otherwise B is called non-trivial. Furthermore, B is called minimal
when no proper subset of B still is an (n − k)-blocking set, and B is
called small if |B| < 3

2
(qn−k + 1). A t-fold (n − k)-blocking set B is a

set of points of PG(n, q) intersecting every k-space in at least t points.
We say that a line is a t-secant of a point set S if it intersects S in t
points.

Theorem 1.1. [7] Let B be an (n− k)-blocking set in PG(n, q). Then
|B| ≥ θn−k, and equality holds if and only if B is an (n− k)-space.

Theorem 1.2. [24] An (n− k)-blocking set of PG(n, q) of size smaller
than 2qn−k is uniquely reducible to a minimal (n− k)-blocking set.

The following result was proved in [32] for the planar case, and then
generalized in [33] to arbitrary dimensions.
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Theorem 1.3. [32], [33] A small minimal (n−k)-blocking set of PG(n, q),
q = ph, p prime, h ≥ 1, intersects every k-space in 1 mod p points.

For an (n−k)-blocking set B of PG(n, q), the maximal integer e ≥ 1
such that each k-space intersects B in 1 mod pe points, is called the
exponent of B.

Theorem 1.4. [31] Let B be a small minimal (n − k)-blocking set of
PG(n, q), q = ph, p prime, h ≥ 1, with exponent e. Then 1 ≤ e and
e|h.

From Theorem 1.1 and Theorem 1.4 follows:

Corollary 1.5. Let B be a small minimal (n − k)-blocking set of
PG(n, q), q = ph, p prime, h ≥ 1, with exponent e. Then, e = h
if and only if B is an (n− k)-space.

Proof. Since the exponent of this small minimal (n−k)-blocking set B
is e = h, every line containing at least two points of B, is completely
contained in B. This property implies that B is equal to a subspace of
PG(n, q).

Since B is a small minimal (n− k)-blocking set of PG(n, q), B nec-
essarily is an (n− k)-space. �

Remark 1.6. The inverse statement of Theorem 1.4 is also true: for
every e ≥ 1, such that e|h, there exists a small minimal (n−k)-blocking
set in PG(n, q), q = ph, p prime, h ≥ 1, with exponent e (see the
constructions in [25], [27], [29]). These results assure the correctness of
the following notations. Let lq(n, k, e) and uq(n, k, e) denote the largest
and the smallest integer such that for any minimal (n − k)-blocking
set B in PG(n, q), q = ph, p prime, h ≥ 1, with exponent e holds:
lq(n, k, e) ≤ |B| ≤ uq(n, k, e). For pe 6= 2, 4, 8, the different intervals
[lq(n, k, e), uq(n, k, e)], for 1 ≤ e and e|h, are pairwise disjoint [32],
[33].

Theorem 1.7. [32], [33] Let B be a small minimal (n−k)-blocking set
of PG(n, q), q = ph, 2 < p prime. Let e be a divisor of h. If |B| belongs
to the interval [lq(n, k, e), uq(n, k, e)], then each k-space intersects B in
1 mod pe points.

Furthermore, if e′|h and e′ < e, then uq(n, k, e) < lq(n, k, e
′).

The following bounds are known for the planar case.

Theorem 1.8. Let q = ph, p prime, h ≥ 1, and let e ≤ h/2 divide h,
pe 6= 2, 4, 8.

(1) [3] q + 1 + pe
⌈
q/pe+1
pe+1

⌉
≤ lq(2, 1, e).
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(2) [28] uq(2, 1, e) ≤
1+(pe+1)(q+1)−

√
(1+(pe+1)(q+1))2−4(pe+1)(q2+q+1)

2
.

(3) [32] uq(2, 1, e) ≤ q + 9q/(4pe).
(4) [18] uq(2, 1, e) ≤ q + a0

q
pe

+ a1
q
p2e

+ · · · + ah/e−2p
e + 1, with ai

the i-th Motzkin number.

In this article, we will use the notation q + ε for the size of the
smallest non-trivial blocking sets in PG(2, q). Regarding the value ε,
the following results are known.

Theorem 1.9. Let B be the smallest non-trivial blocking set in PG(2, q),
with |B| = q + ε.

(1) [4] If 2 < q is a prime, then ε = (q + 3)/2.
(2) [8] If q is a square, then ε =

√
q + 1.

(3) [6] If q is a non-square, q = ph, h > 2, p prime, then ε = q2/3+1
for p > 3 and ε = q2/3/21/3 + 1 for p = 2, 3.

The results on the bounds on the sizes of small minimal blocking sets
in PG(2, q) have been extended to bounds on the sizes of small minimal
(n−k)-blocking sets in PG(n, q). Similarly, also a result characterizing
particular collinear sets in a small minimal (n − k)-blocking set in
PG(n, q) has been obtained.

Theorem 1.10. [31], [33] Let q = ph, p prime, h ≥ 1, and let e ≤ h/2
divide h, pe 6= 2, 4, 8.

(1) lq(n, k, e) ≥ lqn−k(2, 1, e) and uq(n, k, e) ≤ uqn−k(2, 1, e).
(2) uq(n, k, e) ≤ qn−k + 9qn−k/(4pe).
(3) If a k-space Πk intersects a small minimal (n− k)-blocking set

B in PG(n, q) of exponent e in precisely pe + 1 points, then
the intersection Πk ∩B is a collinear point set isomorphic to a
subline PG(1, pe).

Corollary 1.11. Let B be a small minimal (n − k)-blocking set of
PG(n, q), q = ph, 2 < p prime, h ≥ 1, with exponent e. Then
lqn−k(2, 1, e) ≤ |B| ≤ uqn−k(2, 1, e).

Moreover, |B| ≤ qn−k + 9qn−k/(4pe).

The following straightforward consequence of the two previous the-
orems will be often used in our arguments.

Corollary 1.12. Let q = ph, p prime, h ≥ 1, and let e ≤ h/2 divide h,
pe 6= 2, 4, 8. Let e be the exponent of a small minimal (n− k)-blocking
set B in PG(n, q). Then

qk + 1 + pe
⌈
qk/pe + 1

pe + 1

⌉
≤ |B|.
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We will especially be interested in non-trivial small minimal (n−k)-
blocking sets B of PG(n, q), when q = p2h is a square and B has
exponent h, i.e. when every k-space intersects B in 1 mod

√
q points.

The nature of such point sets was studied in [34].

Theorem 1.13. [34] Let B be a small minimal (n − k)-blocking set
of PG(n, q), q = p2h, 2 < p prime, h ≥ 1, 81 ≤ q. Assume that each
k-space intersects B in 1 mod

√
q points. Then B is either an (n−k)-

space or a (t, 2((n−k)−t−1))-Baer cone, where max{−1, n−2k−1} ≤
t < n− k − 1.

The exponent eP of the point P of a small minimal (n− k)-blocking
set B in PG(n, q), q = ph, p prime, is the largest integer for which
each line through P intersects B in 1 mod peP points. We note that
the exponent eP is always larger than or equal to the exponent e of
the blocking set B. For more results on exponents of small minimal
blocking sets and exponents of points, see [4], [5], [6], [31]. In our
arguments we will be using the following results. In [31], the planar
case has been covered. Using the technique from [33] we obtain the
generalization.

Theorem 1.14. [31] Let B be a small non-trivial minimal (n − k)-
blocking set of PG(n, q) with exponent e and |B| = qn−k + δ.

(1) If P ∈ B is a point of exponent eP , then there are at least
qn−k/peP−3(δ−1)/peP +2 distinct (peP +1)-secants of B through
P .

(2) There are at least qn−k−3δ+2pe+4 points P in B with exponent
eP = e.

1.2. Minihypers.

Definition 1.15. An {f,m;n, q}-minihyper is a pair (F,w), where F
is a subset of the point set of PG(n, q) and where w is a weight function
w : PG(n, q)→ N, satisfying:

(1) w(P ) > 0⇔ P ∈ F ,
(2)

∑
P∈F w(P ) = f , and

(3) min{
∑

P∈H w(P ) |H is a hyperplane} = m.

In the case when w is a mapping onto {0, 1}, the minihyper (F,w)
can be identified with F and is denoted by F .

The following theorem states some particular properties of minihy-
pers.

Theorem 1.16. [22] Let (F,w) be a {
∑n−1

i=0 εiθi,
∑n−1

i=1 εiθi−1;n, q}-minihyper,
where 0 ≤ εi ≤ q − 1, i = 0, . . . , n− 1, then:
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(1) If m is an integer such that 1 ≤ m ≤ n, then |(F,w) ∩ Ω| ≥∑n−1
i=m εiθi−m for any (n−m)-space Ω in PG(n, q) and the equal-

ity is valid for some (n−m)-space Ω in PG(n, q).
(2) |(F,w)∩∆| ≥

∑n−1
i=2 εiθi−2 for any (n− 2)-space ∆ in PG(n, q)

and |(F,w) ∩ G| =
∑n−1

i=2 εiθi−2 for some (n − 2)-space G in
PG(n, q).

Let Hj, j = 1, 2, . . . , q+1, be the q+1 hyperplanes in PG(n, q)

through an (n − 2)-space G intersecting (F,w) in
∑n−1

i=2 εiθi−2

points. Then (F,w) ∩Hj is a

{δj +
n−1∑
i=1

εiθi−1,
n−1∑
i=2

εiθi−2;n− 1, q}-minihyper

in Hj, for j = 1, 2, . . . , q + 1, and the parameters δj are some non-

negative integers such that
∑q+1

j=1 δj = ε0.

The following lemma, stated in [21], is a generalization of results in
[23].

Lemma 1.17. [21] Let (F,w) be a {
∑n−1

i=0 εiθi,
∑n−1

i=1 εiθi−1;n, q}-minihyper

satisfying n ≥ 1, εi ≥ 0,
∑n−1

i=0 εi = h ≤ q. Then every r-space ∆, 1 ≤
r ≤ n, not contained in F , intersects (F,w) in a {

∑r−1
i=0 miθi,

∑r−1
i=1 miθi−1; r, q}-

minihyper satisfying
∑r−1

i=0 mi ≤ h.

We will also rely on the following result.

Lemma 1.18. [19] Suppose that F is a {δθr, δθr−1;n, q}-minihyper sat-
isfying 0 ≤ δ ≤ (q+1)/2, 0 ≤ r ≤ n−1. If H is a hyperplane containing
more than δθr−1 points of F , then F ∩H is an (n− r− 1)-blocking set
of H.

2. Tight sets in finite classical polar spaces

2.1. Common results for P(2r+1, q). In this section we present the
characterization of i-tight sets in the Hermitian variety H(2r + 1, q)
and in the symplectic polar space W (2r + 1, q) when i < (q2/3 − 1)/2.
This result is the improvement of the result from [13] where the upper
bound on i was q5/8/

√
2 + 1. Combining the generalized version of

known techniques [26] with recent results on blocking sets and mini-
hypers, we present an alternative proof of this result and consequently
improve the upper bound on i to (q2/3 − 1)/2.

Let ⊥ denote the polarity corresponding to a finite classical polar
space P .
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Definition 2.1. A set of points T of a finite classical polar space P of
rank r + 1 is i-tight if for any point P ∈ P,

|P⊥ ∩ T | =
{
iθr−1 + qr , P ∈ T ,
iθr−1 , P 6∈ T .

A classical example of an i-tight set in P is a union of i pairwise
disjoint generators of P .

In this section the setting is the projective space PG(2r + 1, q) and
q = p2h is a square, p an odd prime. By P(2r + 1, q) we shall com-
monly denote the Hermitian variety H(2r + 1, q) and the symplectic
polar space W (2r + 1, q), and by T an i-tight set in P(2r + 1, q).

Lemma 2.2. [1, 13] An i-tight set T in P(2r + 1, q), with i > 1, is a
set of iθr points that generates the whole space PG(2r + 1, q) and T is
an {iθr, iθr−1; 2r + 1, q}-minihyper.

If i = 1, then τ is a generator of P(2r + 1, q).

We rely on results on m-ovoids from [1]. An m-ovoid is a set O of
points of a polar space P of rank r ≥ 2, which has exactly m points
in common with each generator of P . In particular, we shall use the
following result.

Lemma 2.3. [1] Let P be a finite polar space, and let O and T be an
m-ovoid and an i-tight set, respectively, of P. Then O and T intersect
in mi points.

The following lemma states the size of the intersection of an i-tight
set with an arbitrary hyperplane of PG(2r + 1, q).

Lemma 2.4. If H is a hyperplane of PG(2r + 1, q), then

|H ∩ T | =
{
iθr−1 + qr , if H = P⊥ for some P ∈ T ,
iθr−1 , otherwise.

Proof. When P(2r + 1, q) is the symplectic polar space W (2r + 1, q),
every hyperplane H is the polar hyperplane of some point P in W (2r+
1, q), so the lemma immediately follows from Definition 2.1. In the case
of the Hermitian variety H(2r + 1, q), if H is the polar hyperplane of
some point P ∈ H(2r+1, q), then the size of the intersection with T is
known. If H is not the polar hyperplane of some point P ∈ H(2r+1, q),
then H ∩H(2r+1, q) = H(2r, q) is a θr−1-ovoid of H(2r+1, q) and, by
Lemma 2.3, we have |H ∩ T | = iθr−1 for the hyperplanes H, H 6= P⊥,
∀P ∈ H(2r + 1, q). �
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A hole is a point of the tight set T . A hyperplane of PG(2r + 1, q)
that contains iθr−1 + qr holes is called a rich hyperplane, otherwise it
is called a poor hyperplane.

Lemma 2.5. If a (2r − 1)-space ∆ of PG(2r + 1, q) is contained in α
rich hyperplanes of T , then |∆ ∩ T | = αqr−1 + iθr−2.

Proof. Let H1, . . . , Hq+1 be the hyperplanes of PG(2r + 1, q) through
∆. Then

q+1∑
j=1

|Hj ∩ T | = α (qr + iθr−1) + (q + 1− α)iθr−1.

It follows that

|T |+ q|∆ ∩ T | = α (qr + iθr−1) + (q + 1− α)iθr−1,

and, consequently,

|∆ ∩ T | = αqr−1 + iθr−2.

�

Suppose now that i ≤ (q + 1)/2. If a hyperplane H of PG(2r+ 1, q)
is a rich hyperplane, then by Lemma 1.18, H ∩ T is an r-blocking set
of H. By Theorem 1.2, H ∩ T contains a unique minimal r-blocking
set B. In the following two lemmas, we show that if i < (q2/3 − 1)/2,
this minimal r-blocking set B is a (2r)-dimensional Baer subgeometry,
naturally embedded in H, when B is non-trivial.

Lemma 2.6. Let B be a non-trivial minimal r-blocking set in PG(2r, q),
q = p2h, 2 < p, h ≥ 1, with exponent e. If |B| < qr + 1

2
qr−1/3 + 1, then

e = h.

Proof. The point set B is a small minimal r-blocking set with exponent
e, so by Theorem 1.10, e|(2h). Furthermore, since B is a non-trivial
blocking set, by Corollary 1.5, e < 2h. The largest possible value of e
therefore is 2h/2 = h. Let e′ denote the second largest possible value
of e. Obviously, e′ ≤ 2h/3 < h. By Theorem 1.7 and Remark 1.6, from
e′ < h follows

lq(2r, r, e
′) > uq(2r, r, h) ≥ lq(2r, r, h).

Hence, showing that |B| < lq(2r, r, e
′) would imply that e = h. Again,

by Theorem 1.7 and Remark 1.6, it is sufficient to discuss the case
3|(2h) with e′ = 2h/3 and by Corollary 1.12,

lq(2r, r, 2h/3) ≥ qr + 1 + p2h/3

⌈
qr/p2h/3 + 1

p2h/3 + 1

⌉
.
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But

qr + 1 + p2h/3

⌈
qr/p2h/3 + 1

p2h/3 + 1

⌉
≥ qr +

1

2
qr−1/3 + 1 > |B|.

Therefore, e > 2h/3 and consequently, e = h. �

If B is a non-trivial small minimal r-blocking set of PG(2r, q) with
exponent h, then every r-space intersects B in 1 mod

√
q points. We

are now interested in the nature of such r-blocking sets when all of
their points are holes of a given tight set T of P(2r + 1, q).

Lemma 2.7. Let T be an i-tight set in P(2r + 1, q), i ≤ (q + 1)/2,
q = p2h, 2 < p, 81 ≤ q. Let B ⊂ T be a non-trivial small minimal
r-blocking set of a rich hyperplane H, with exponent h. Then B is a
(2r)-dimensional Baer subgeometry, naturally embedded in H.

Proof. By Theorem 1.13, B is a (t, 2r− 2t− 2)-Baer cone C, −1 ≤ t <
r−1, with t-dimensional vertex πt and base a (2r−2t−2)-dimensional
Baer subgeometry, naturally embedded in a (2r−2t−2)-space π2r−2t−2

skew to πt. Here, in this proof, we fix the space π2r−2t−2 containing the
base of B. We shall prove that necessarily t = −1, and therefore B is
a (2r)-dimensional Baer subgeometry, naturally embedded in H.

The hyperplane H is a rich hyperplane of T , therefore

|H ∩ T | = qr + iθr−1.

Denote by E the number of holes in H \B:

(1) E = |(H ∩ T ) \B| = qr + iθr−1 − |B|.

Our strategy in this proof is the following: we shall obtain a lower and
an upper bound on E and then show that necessarily t = −1.

An upper bound on E. By Corollary 1.12,

(2) |B| ≥ qr + 1 +
√
q

⌈
qr/
√
q + 1

√
q + 1

⌉
.

Introducing (2) in (1), we obtain

(3) E ≤ iθr−1.

A lower bound on E. Consider a plane ∆ = 〈P,L〉 generated by
a point P in the vertex πt of B and a line L intersecting the base of
B in a Baer subline Ω1. The intersection of B and ∆ is a unique Baer
cone E with P as a vertex and with the Baer subline Ω1 as a base. This
setting is visualised in Figure 1.
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Figure 1. Baer cone B and plane ∆

We are interested in deriving a lower bound on the number E∆ of
holes in ∆ outside of ∆ ∩B;

E∆ = |(∆ ∩ T ) \B| = |(∆ ∩ T ) \ E|.

First we notice that

(4) |∆ ∩ T | ≥ |E| = (
√
q + 1)(q + 1)−√q.

The tight set T is an {iθr, iθr−1; 2r + 1, q}-minihyper (Lemma 2.2). If
∆ 6⊆ T , then ∆ ∩ T is an {m1(q + 1) + m0,m1; 2, q}-minihyper, with
m1 + m0 ≤ i, m0,m1 ≥ 0 (Lemma 1.17). We note that m1 ≥

√
q + 1.

Namely, introducing m1 ≤
√
q in (4), we obtain that m1 +m0 ≥ q+1 >

i; a contradiction.
From the definition of a minihyper, it follows that ∆∩T is an m1-fold

blocking set in ∆. Hence, the remaining (q + 1)− (
√
q + 1) = q −√q

lines of ∆ \ E through P each share at least
√
q+ 1 points with T . So,

in total, ∆ \ E shares at least (q−√q)(√q− 1) extra holes with T not
lying on L:

E∆ ≥ |(∆ ∩ T ) \ E| − |L ∩ T | ≥ (q −√q)(√q − 1).

A hole R in H \ B belongs to at most one such plane ∆. Namely,
project such a hole R from the vertex πt onto a (2r − t)-space π2r−t
through the space π2r−2t−2, skew to πt. Then, the projection of R is a
point R′ not belonging to the base of B. If R′ ∈ π2r−2t−2, then there
is a unique line L of π2r−2t−2 that contains R′ and that intersects the
base of B in a Baer subline Ω1. This line L is the line pairing R′ to its
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conjugate point R′
√
q with respect to the (2r−2t−2)-dimensional Baer

subgeometry in π2r−2t−2 which is the base of B. Thus, R is contained
in at most one plane ∆ = 〈P,L〉, with P belonging to the vertex πt
of B and with L a line of π2r−2t−2 which intersects the base of B in a
Baer subline Ω1.

The number of lines L equals the number of Baer sublines in the
(2r − 2t − 2)-dimensional Baer subgeometry forming the base of B,
that is, equals θr−t−2θ2r−2t−2,

√
q. Each line L gives θt such planes 〈P,L〉,

with P ∈ πt, and each such plane 〈P,L〉 gives at least (q−√q)(√q−1)
extra holes not in B and not belonging to L. Therefore,

(5) E ≥ θr−t−2θ2r−2t−2,
√
qθt(q −

√
q)(
√
q − 1).

Finally, taking into consideration the upper bound (3) and the lower
bound (5) on E, as well as the upper bound i ≤ (q + 1)/2 on i, we
obtain that

(6) θr−t−2θ2r−2t−2,
√
qθt(q −

√
q)(
√
q − 1) ≤ θr−1(q + 1)/2,

which implies that r− t = 1. But the equality r− t = 1 contradicts the
inequality t < r − 1 from Theorem 1.13. Therefore, t = −1 and B is a
(2r)-dimensional Baer subgeometry, naturally embedded in H. �

The next corollary now easily follows from the two previous lemmas.

Corollary 2.8. Let T be an i-tight set in P(2r + 1, q), 81 ≤ q odd
square, containing no r-spaces, i < (q2/3 − 1)/2. Then every rich
hyperplane H shares a unique (2r)-dimensional Baer subgeometry BH

with T , naturally embedded in H.

Proof. First note that i < (q2/3 − 1)/2 ≤ (q + 1)/2. If a hyperplane H
of PG(2r+ 1, q) is a rich hyperplane, then by Lemma 1.18, H ∩T is an
r-blocking set of H. By Theorem 1.2, H∩T contains a unique minimal
r-blocking set BH with exponent e. Furthermore, |BH | ≤ |H ∩ T | =
qr + iθr−1 < qr + 1

2
qr−1/3 + 1. Therefore, by Lemma 2.6, the exponent

of BH equals e = h. By Lemma 2.7, BH is a (2r)-dimensional Baer
subgeometry, naturally embedded in H. �

Please note that in the previous corollary we only state that BH ⊆
H∩T . We will prove more specialized results on these (2r)-dimensional
Baer subgeometries BH of holes contained in the rich hyperplanes H
in Lemmas 2.11 and 2.12.

Now we note the dual setting of the previous corollary.

Lemma 2.9. Let T be an i-tight set in P(2r+1, q), 81 ≤ q odd square,
containing no r-spaces, i < (q2/3 − 1)/2. Then the rich hyperplanes
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Figure 2. Dual setting of Corollary 2.8

through a hole P contain a (dual) (2r)-dimensional Baer subgeometry
B∗P , naturally embedded in the quotient geometry PG(2r + 1, q)P of P .

Proof. Let H = P⊥ and let BH be the (2r)-dimensional Baer subgeom-
etry of holes, naturally embedded in H (Corollary 2.8). Then B⊥H = B∗P
is a dual (2r)-dimensional Baer subgeometry of rich hyperplanes, nat-
urally embedded in the quotient geometry PG(2r + 1, q)P of P . �

Remark 2.10. Figure 2 illustrates this dual setting. The main goal of
the explanation which follows is to show that it is possible to describe
the dual Baer subgeometry B∗P of rich hyperplanes through P much
easier in an equivalent way by a (2r)-dimensional Baer subgeometry BP

of points in a fixed hyperplane H ′ not through P . Namely, this dual
Baer subgeometry B∗P of rich hyperplanes through P is also obtained
in the following way: consider a fixed hyperplane H ′ of PG(2r + 1, q)
not containing P . In this hyperplane H ′, there is a particular (2r)-
dimensional Baer subgeometry BP satisfying the following properties.

(1) Consider a Baer hyperplane, i.e. a hyperplane of H ′ sharing a
(2r − 1)-dimensional Baer subgeometry with BP .

(2) Extend this Baer hyperplane to a (2r−1)-space defined over Fq.
(3) Then, by adding the point P , a hyperplane H of the dual (2r)-

dimensional Baer subgeometry B∗P of rich hyperplanes through
P is obtained.
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Figure 2 shows this fixed hyperplane H ′ containing the (2r)-dimensional
Baer subgeometry BP , the rich hyperplane H and the (2r)-dimensional
Baer subgeometry BH of holes in this rich hyperplane H.

We shall denote by C the cone with vertex P and base the (2r)-
dimensional Baer subgeometry BP . With the hyperplanes of C, we
denote the rich hyperplanes through P described above in (1), (2) and
(3). The lines of C are the lines through P and a point of BP .

Note that all these hyperplanes H of C are rich, so by Corollary 2.8,
they contain a (2r)-dimensional Baer subgeometry BH , naturally em-
bedded in H, completely consisting of holes.

The following properties will be proven in the next two lemmas re-
garding these (2r)-dimensional Baer subgeometries BH of holes, defined
by the hyperplanes H of C:

• for all hyperplanes H of C, P ∈ BH (Lemma 2.11);
• for all hyperplanes H of C, BH ⊆ C (Lemma 2.12).

We also recall that a hyperplane H of C contains θ2r−1,
√
q lines of C that

define a (2r−1)-dimensional Baer subgeometry of the (2r)-dimensional
Baer subgeometry BP . Two such rich hyperplanes of C share θ2r−2,

√
q

lines of C. The Baer cone C contains in total θ2r,
√
q lines of C.

We note already that our goal is to prove that the hole P belongs
to a (2r + 1)-dimensional Baer subgeometry of holes completely lying
within this Baer cone C. The desired goal of proving that P belongs to
a (2r + 1)-dimensional Baer subgeometry of holes lying on the cone C
is achieved in Lemma 2.13, following the two preparatory lemmas 2.11
and 2.12.

Lemma 2.11. Let T be an i-tight set of P(2r + 1, q), i < (q2/3 −
1)/2. Consider a hole P ∈ T and the Baer cone C defined by the rich
hyperplanes through P . Let H be a hyperplane of C and let BH be the
(2r)-dimensional Baer subgeometry that H shares with T . Then P is
a point of BH .

Proof. Figure 3 shows the setting of Lemma 2.11.
Let us assume the opposite: P 6∈ BH . Then P has a conjugate point

P
√
q 6= P with respect to BH .

In our proof we shall use particular θ2r−1,
√
q distinct (2r − 1)-spaces

∆ in H through P . We shall describe them in the following lines. The
hyperplane H intersects the base of C in a (2r − 1)-dimensional Baer
subgeometry Ω. There are θ2r−1,

√
q (2r − 2)-dimensional Baer subge-

ometries in Ω. We extend a (2r − 2)-dimensional Baer subgeometry
in Ω over Fq to obtain a (2r − 2)-space G in H. Then ∆ = 〈P,G〉



14 ANAMARI NAKIĆ AND LEO STORME

Figure 3. Setting of Lemma 2.11

is a (2r − 1)-space in H. Furthermore, from the properties of Baer
subgeometries, it follows that ∆ ∩ BH is either a (2r − 2)-dimensional
or a (2r − 1)-dimensional Baer subgeometry [30].

We shall now count the number of (2r − 1)-spaces ∆ of H that
intersect BH in a (2r− 1)-dimensional Baer subgeometry. We note the
following. If ∆∩BH is a (2r− 1)-dimensional Baer subgeometry, then
∆ necessarily contains the line PP

√
q. The line PP

√
q intersects BH in

a unique Baer subline that is contained in θ2r−2,
√
q (2r−1)-dimensional

Baer subgeometries in BH .
Therefore, at most θ2r−2,

√
q distinct (2r−1)-spaces ∆ share a (2r−1)-

dimensional Baer subgeometry with BH . The remaining (2r−1)-spaces
∆ share a (2r − 2)-dimensional Baer subgeometry with BH : denote
them by ∆j = 〈P,Gj〉, Gj = H ′ ∩ ∆j, j = 1, . . . ,

√
q2r−1, . . .. Let dj

denote the number of holes in ∆j \ BH . The space ∆j is contained in√
q + 1 hyperplanes of C since it intersects H ′ in a (2r − 2)-space Gj

which intersects BP in a (2r− 2)-dimensional Baer subgeometry. Note
that this (2r− 2)-space Gj corresponds to the space G initially defined
to construct the (2r−1)-space ∆. Here, Gj lies in

√
q+1 hyperplanes of

H ′ intersecting BP in (2r− 1)-dimensional Baer subgeometries, which,
together with P , define the

√
q+1 hyperplanes of C through ∆j. Every

hyperplane of C through ∆j is rich, so, by Lemma 2.5 with α ≥ √q+1,
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|∆j ∩ T | ≥ (
√
q + 1)qr−1 + iθr−2. Therefore,

dj ≥ (
√
q + 1)qr−1 + iθr−2 − θ2r−2,

√
q

and
(7)∑
j

dj −
√
q2r−1 ≥ √q2r−1 [(√q + 1)qr−1 + iθr−2 − θ2r−2,

√
q

]
−√q2r−1.

The term
√
q2r−1 on the left hand side is subtracted since we do not

count the point P which is contained in every (2r − 1)-space ∆j.
Consider a hole R ∈ H \ BH , R 6= P . Then, such a (2r − 1)-space

∆j contains such a hole R if and only if it contains the projection R′

of R from P onto H ′. If R′ ∈ Ω, then R′ belongs to θ2r−2,
√
q such

(2r − 1)-spaces in H ∩ H ′. If R′ 6∈ Ω, then R′ ∈ H ′ ∩ ∆j = Gj,
and then such a (2r − 1)-space ∆j also contains the conjugate point
R′
√
q with respect to Ω. The line R′R′

√
q intersects Ω in a unique Baer

subline that is contained in θ2r−3,
√
q such (2r − 1)-spaces in H ∩ H ′.

Therefore, R′ 6∈ Ω, and consequently, also R is contained in θ2r−3,
√
q

such (2r−1)-spaces ∆j. We see that R contributes the most if R′ ∈ Ω,
so

(8)
∑
j

dj −
√
q2r−1 ≤ |(H ∩ T ) \BH |θ2r−2,

√
q.

Now, the inequalities (7) and (8) yield
√
q2r−1

[√
q2r−1 − 1 + (i−√q − 1)θr−2

]
≤ (i−√q − 1)θr−1θ2r−2,

√
q,

implying that i ≥ q/2; a contradiction. �

The proof of the following lemma is a generalization of the technique
used in the proof of Lemma 2.2 in [26], which discusses the case r = 1.

Lemma 2.12. Let T be an i-tight set in P(2r + 1, q), 81 ≤ q odd
square, containing no r-spaces, i < (q2/3 − 1)/2. Consider a hole P
and the Baer cone C with vertex P defined by the rich hyperplanes H
through P . Then, for a rich hyperplane H of the Baer cone C, the
unique (2r)-dimensional Baer subgeometry BH that H shares with T
lies completely within the cone C.

Proof. Denote by Hj, j = 1, . . . , θ2r,
√
q, the hyperplanes of C. Every

hyperplane Hj shares a unique (2r)-dimensional Baer subgeometry Bj

with T and P is a point of Bj (Corollary 2.8 and Lemma 2.11). Suppose
that there exists a hyperplane Hl of the Baer cone C such that Bl 6⊆ C.
Let E be the number of such hyperplanes Hl for which Bl 6⊂ C.

If aj is the number of holes in Hj \ C, then
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Figure 4. The setting of Lemma 2.12

(9)
∑
j

aj = qθ2r−2,
√
qθ2r−1,

√
q(i−

√
q − 1)/(

√
q + 1).

The equality (9) is obtained from the following equality:

(10) |T | = 1 +
1

θ2r−2,
√
q

∑
j

aj +
1

θ2r−1,
√
q

∑
j

(|Hj ∩ T | − aj − 1).

To obtain the right hand side of the previous expression, we take into
account that a hole R 6= P belongs to multiple hyperplanes of C. The
setting is visualised in Figure 4. A hyperplane of C contains R if and
only if it contains its projection R′ from P onto the hyperplane H ′ that
contains the base BP of C. If R ∈ C, then the projection R′ belongs
to the base BP of C. There are θ2r−1,

√
q distinct (2r − 1)-dimensional

Baer subgeometries through R′ in the base BP of C, and each such
(2r − 1)-dimensional Baer subgeometry belongs to the intersection of
the base BP of C with a unique hyperplane of C. Therefore, R belongs
to θ2r−1,

√
q hyperplanes of the cone C. If R 6∈ C, then its projection

R′ lies outside of the base BP of C in the hyperplane H ′. The line
R′R′

√
q intersects the base BP of C in a unique Baer subline Ω1 that is

contained in θ2r−2,
√
q distinct (2r− 1)-dimensional Baer subgeometries

of the base BP of C. Therefore, R belongs to θ2r−2,
√
q hyperplanes of

the cone C. Applying these observations we obtain (10), whereby we



TIGHT SETS IN FINITE CLASSICAL POLAR SPACES 17

count the point P separately since P belongs to all the hyperplanes of
C.

Now we show that if aj < qr − √q, then Bj ⊆ C. If aj < qr − √q,
then

(11) |Bj ∩ C| = |Bj| − aj >
√
q(θ2r−2,

√
q + 1) + 1.

The hyperplaneHj contains θ2r−1,
√
q lines of C through P with the prop-

erty: the intersection of these lines andH ′ is a (2r−1)-dimensional Baer
subgeometry Ωj. Each of those lines intersects the Baer subgeometry
Bj of holes inHj in 1 or

√
q+1 points since P ∈ BH . By (11), more than

θ2r−2,
√
q + 1 of those lines of C in Hj are (

√
q+ 1)-secants of Bj. On the

other hand, P belongs to θ2r−1,
√
q lines of Hj that are (

√
q+ 1)-secants

of Bj and which define a (2r − 1)-dimensional Baer subgeometry Ω′j
in the quotient geometry of P . These two (2r − 1)-dimensional Baer
subgeometries Ωj and Ω′j intersect in more than θ2r−2,

√
q + 1 points,

therefore they must be equal [16]. Hence, every line of C in Hj shares a
Baer subline with Bj and Bj ⊆ C. Thus, if Bl 6⊆ C, then al ≥ qr −√q,
and, consequently,

|Bl ∩ C| ≤ iθr−1 +
√
q.

If we denote by L the number of lines of C in Hl that contain less than√
q + 1 holes, then

(12) L ≥ θ2r−1,
√
q − (iθr−1 +

√
q)/
√
q.

Namely, at most iθr−1 +
√
q holes of Hl belong also to C, so, since

P ∈ Bl, at most (iθr−1 +
√
q)/
√
q lines of C in Hl contain at least√

q + 1 holes.
If a line of C, lying in Hl, contains less than

√
q + 1 holes, then for

every hyperplane Hl′ of the Baer cone C through this line, necessarily
Bl′ 6⊆ C. There are exactly θ2r−1,

√
q − 1 such hyperplanes Hl′ , other

than Hl, through a given line of C, lying in Hl. Every such hyperplane
Hl′ shares θ2r−2,

√
q lines of C with Hl. So we obtain via the preceding

double counting argument that

(13) 1 + L · (θ2r−1,
√
q − 1)/θ2r−2,

√
q ≤ E,

where the 1 corresponds to the fixed hyperplane Hl for which Bl 6⊂ C.
Double counting of the set

{(R,Hl′)|R ∈ T \ C, R ∈ Hl′ , Bl′ 6⊆ C}

yields

(14) E · (qr −√q) ≤
∑
j

aj
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Figure 5. The setting of Lemma 2.13

since every hyperplane Hl′ of C, with Bl′ 6⊆ C, contains at least qr−√q
holes not belonging to the cone C. Taking into consideration inequali-
ties (9), (12), (13), and (14), we obtain the following inequality:

iθr−1

2
√
q − 1

√
q − 1

≥ θr−1(q + 2
√
q) +

√
q + 1.

This implies that for r ≥ 1, necessarily i ≥ (q − 1)/2; a contradiction.
Therefore, Bj ⊆ C, ∀j ∈ {1, . . . , θ2r,

√
q}. �

We now arrive at the proof of one of the main results of this section.
If the tight set T does not contain any r-space, then every hole P
belongs to a (2r + 1)-dimensional Baer subgeometry which consists
entirely of holes.

Lemma 2.13. Let T be an i-tight set in P(2r+1, q), 81 ≤ q odd square,
containing no r-spaces, i < (q2/3 − 1)/2. Then every hole belongs to a
(2r+1)-dimensional Baer subgeometry which consists entirely of holes,
naturally embedded in PG(2r + 1, q).

Proof. Figure 5 shows the setting of Lemma 2.13.
Let P be a hole and let C be the Baer cone with vertex P defined

by the rich hyperplanes through P . Denote by Hj, j = 1, . . . , θ2r,
√
q,
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the hyperplanes of C. Every hyperplane Hj shares a unique (2r)-
dimensional Baer subgeometry Bj with T , Bj is contained in C, and P
is a point of Bj (Corollary 2.8, Lemma 2.12, Lemma 2.11).

If a line of C belongs to a hyperplane Hj, then it intersects Bj in a
unique Baer subline (Lemma 2.12). We call a line of the cone C good if
it contains exactly one Baer subline of holes. A line of the cone C that
contains more than one Baer subline of holes, we call a bad line. The
unique Baer subline of holes on a good line g will be denoted by bg.

Consider a hyperplane Hj of the cone C and a good line g outside of
Hj. Then D := 〈bg, Bj〉 is a (2r + 1)-dimensional Baer subgeometry.
Obviously P ∈ D, and the arguments which follow shall show that
D ⊆ C.

Denote by γ the number of good lines through P sharing completely
their unique Baer subline of holes with D.

Suppose there exists a point R ∈ D \ T . Then each of the θ2r−1,
√
q

Baer subplanes in D through the line PR intersects at most one good
line in its unique Baer subline of holes, and therefore

(15) γ ≤ θ2r−1,
√
q.

The proof of this assertion proceeds as follows. Let ∆ denote a Baer
subplane in D through the line PR and suppose that ∆ intersects at
least two good lines g′ and g′′ through P in their unique Baer sub-
line of holes. The lines g′ and g′′ intersect the base BP of C in two
points. These two points belong to θ2r−2,

√
q (2r − 1)-dimensional Baer

subgeometries that are the intersection of the base BP with some hyper-
plane of C; denote one such hyperplane by Hj′ . Obviously, g′, g′′ ⊆ Hj′

which implies that 〈bg′ , bg′′〉 ⊆ Bj′ since g′ and g′′ are good lines. Since
R ∈ 〈bg′ , bg′′〉, it follows that R ∈ T ; a contradiction.

Two distinct Baer sublines intersect in at most two points, so a bad
line in Hj contains at least

√
q − 1 holes other than the ones shared

with Bj. Consequently, if a hyperplane Hj of C has βj bad lines, then

|Bj|+ βj(
√
q − 1) ≤ qr + iθr−1.

and

(16) βj ≤ θ2r−1,
√
q

q2/3 − 2
√
q − 3

2(q − 1)
.

Thus, since Hj has θ2r−1,
√
q lines of C, Hj has at least θ2r−1,

√
q(1 −

q2/3−2
√
q−3

2(q−1)
) good lines, and each good line g′ defines, together with

g, a Baer subplane 〈bg, bg′〉 of holes in D and, by the arguments of
the preceding paragraphs, also in C. Each such Baer subplane 〈bg, bg′〉
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intersects
√
q + 1 lines of the Baer cone C in a Baer subline. These

subplanes mutually only share bg, so in total there are at least

(17)
√
qθ2r−1,

√
q(1−

q2/3 − 2
√
q − 3

2(q − 1)
) + 1

lines of C which intersect D in a Baer subline of holes.
Taking into consideration the bound (16) on βj, the double counting

of the set

{(`,H) | ` is a bad line, H is a hyperplane of C, ` ⊆ H}
yields the following upper bound on the number of bad lines in C:

θ2r,
√
q

q2/3 − 2
√
q − 3

2(q − 1)
,

since the cone C has θ2r,
√
q hyperplanes and each line ` of the cone C

belongs to θ2r−1,
√
q hyperplanes of the cone C.

Subtracting it from (17) we get that

(18) γ ≥ θ2r−1,
√
q

q3/2 − q7/6 + 2q + 2
√
q

q − 1
.

Now, inequalities (15) and (18) imply that

q3/2 − q7/6 + 2q + 2
√
q

q − 1
≤ 1;

a contradiction.
The conclusion is that there is no point R ∈ D \ T , so the (2r + 1)-

dimensional Baer subgeometry D through P is completely contained
in T .

This (2r+1)-dimensional Baer subgeometryD through P is naturally
embedded in PG(2r + 1, q) since the point P belongs to θ2r,

√
q (rich)

hyperplanes H intersecting D in a (2r)-dimensional Baer subgeometry
of holes, naturally embedded in this hyperplane H. �

The following theorem is the main theorem of this section.

Theorem 2.14. Let T be an i-tight set in P(2r + 1, q), 81 ≤ q odd
square, containing no r-spaces, i < (q2/3 − 1)/2. Then T is a union
of pairwise disjoint (2r+ 1)-dimensional Baer subgeometries, naturally
embedded in PG(2r + 1, q).

Proof. It was shown in the previous lemma that every hole P belongs
to a (2r + 1)-dimensional Baer subgeometry of holes. It remains to
be proven that this (2r + 1)-dimensional Baer subgeometry of holes
through P is unique.
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Consider two distinct (2r + 1)-dimensional Baer subgeometries D1

andD2 completely consisting of holes. Assume they share a hole. Then,
dually, there exists a hyperplane H that intersects D1 and D2 in respec-
tive (2r)-dimensional Baer subgeometries BH1 and BH2 [10]. Obviously,
H is a rich hyperplane.

First we show that the hyperplane H intersects BH1 and BH2 in the
same (2r)-dimensional Baer subgeometry. Assume the opposite. Then
these two Baer subgeometries BH1 and BH2 share at most θ2r−1,

√
q + 1

points [16, 30] and

|H ∩ T | ≥ |BH1 ∪BH2 | > qr + iθr−1,

a contradiction. Thus, the hyperplane H intersects D1 and D2 in the
same (2r)-dimensional Baer subgeometry BH of holes (Corollary 2.8)
and BH ⊆ D1 ∩D2 [10]. Hence, since the number of points of D1 ∩D2

equals the number of common hyperplanes ofD1 andD2 [9], there exists
a second rich hyperplane H ′ that intersects D1 and D2 in the same
(2r)-dimensional Baer subgeometry BH′ . However, distinct (2r + 1)-
dimensional Baer subgeometries D1 and D2 share at most θ2r,

√
q + 1

points [16, 30], and since

|D1 ∩ D2| ≥ |BH ∪BH′| > θ2r,
√
q + 1,

we get a contradiction. Thus, it follows that D1 ∩ D2 = ∅. �

So far we have assumed that the tight set T of P(2r+ 1, q) does not
contain any r-spaces of PG(2r+1, q). We only used common properties
of the Hermitian variety H(2r+ 1, q) and of the symplectic polar space
W (2r+1, q) to show that tight sets, not containing r-spaces, are unions
of pairwise disjoint (2r + 1)-dimensional Baer subgeometries. If we
assume that the tight sets T contain r-spaces of PG(2r + 1, q), then
these two polar spaces H(2r+1, q) and W (2r+1, q) need to be discussed
separately. This distinction arises from the fact that every r-space
of PG(2r + 1, q) contained in the Hermitian variety H(2r + 1, q) is a
generator of H(2r+1, q), whereas for the symplectic space W (2r+1, q),
this is not true.

In the following two subsections, we will also rely on the following
result for obtaining the complete description of the investigated tight
sets T in P(2r + 1, q).

Lemma 2.15. Let T1 and T2 be respectively i1- and i2-tight sets of the
finite classical polar space P(2r + 1, q), with T2 ⊆ T1. Then T1 \ T2 is
an (i1 − i2)-tight set of P(2r + 1, q).
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2.2. Tight sets in the Hermitian variety H(2r+1, q). To simplify
the statements of this subsection, we first state a particular property
of (2r + 1)-dimensional Baer subgeometries contained in a Hermitian
variety H(2r + 1, q) of PG(2r + 1, q), q square.

Lemma 2.16. Let H(2r+ 1, q) be a non-degenerate Hermitian variety
of PG(2r + 1, q), q square.

Let Σ be a (2r+1)-dimensional Baer subgeometry completely embed-
ded in a Hermitian variety H(2r+ 1, q), then the Hermitian polarity of
H(2r + 1, q) induces a symplectic polarity in Σ.

Proof. Let ` be a line of PG(2r + 1, q) containing
√
q + 1 points of Σ.

Then, since Σ ⊂ H(2r + 1, q), either ` ⊂ H(2r + 1, q) or |` ∩ H(2r +
1, q)| = √q + 1, i.e., ` ∩H(2r + 1, q) = ` ∩ Σ or ` ⊂ H(2r + 1, q).

As a consequence, we have that, if τ is the non-linear involution of
PG(2r+ 1, q) fixing pointwise Σ, then τ fixes H(2r+ 1, q). For, this is
proven in the following way. Take a point P ∈ H(2r + 1, q) \ Σ, then
PP τ is the unique line ` of Σ through P . This line ` already contains
the
√
q+ 1 points of `∩Σ, and the point P of H(2r+ 1, q) \Σ. Hence,

this line ` = PP τ ⊂ H(2r + 1, q).
This proves that the non-linear involution τ fixes the Hermitian vari-

ety H(2r+ 1, q). By [11, Theorem 1.2, Cases 4) and 6)], it now follows
that the Hermitian polarity of H(2r+1, q) induces a symplectic polarity
in Σ. �

Theorem 2.17. Let T be an i-tight set in the Hermitian variety H(2r+
1, q), 81 ≤ q odd square, i < (q2/3 − 1)/2. Then T is a union of
pairwise disjoint generators of H(2r + 1, q) and (2r + 1)-dimensional
Baer subgeometries.

Proof. Consider an r-space ∆ contained in the tight set T . It is known
that this r-space ∆ is a 1-tight set in the Hermitian variety H(2r+1, q).
Then Lemma 2.15 shows that T ′ := T \ ∆ is an (i − 1)-tight set of
H(2r + 1, q).

Hence, removing all r-spaces from T , we obtain a tight set of H(2r+
1, q) that is, by Theorem 2.14, a union of pairwise disjoint (2r + 1)-
dimensional Baer subgeometries.

From Lemma 2.16, it follows that the Hermitian polarity of H(2r +
1, q) induces a symplectic polarity in these (2r + 1)-dimensional Baer
subgeometries. �

This concludes the proof for the case that T is an i-tight set in the
Hermitian variety H(2r+1, q). Lemma 2.6 imposed the condition that
i < (q2/3 − 1)/2. If r ≤ √q(q − 2)/(18(q − 1)), then the next lemma
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can be used as an alternative to Lemma 2.6. Consequently, the upper
bound on i will be improved to (q3/4 − 1)/2 for the small values of r.

Lemma 2.18. Consider a point P of the Hermitian variety H(2r +
1, q), q = p2h, 2 < p. Let B be a non-trivial small minimal r-blocking
set of the polar hyperplane P⊥, with exponent e, contained in H(2r +
1, q). Let |B| = qr + δ. If pe ≥ 18r(q − 1)/(q − 2), then e | h.

Proof. Applying Corollary 1.11, we obtain that

(19) δ ≤ q − 2

8r(q − 1)
qr.

A line of P⊥, that is not a line of H(2r + 1, q), is either a tangent line
or a (

√
q + 1)-secant of H(2r + 1, q) and then the intersection point

set is isomorphic to a Baer subline. If a line is a (pe + 1)-secant of
B, then the intersection point set is isomorphic to a subline PG(1, pe)
(Theorem 1.10). So, if a (

√
q + 1)-secant of H(2r + 1, q) is also a

(pe + 1)-secant of B, necessarily e | h.
Assume now that every (pe + 1)-secant of B is contained in a line of

H(2r+1, q). We shall show that this assumption leads to the conclusion
that B is a trivial r-blocking set; a contradiction.

Let E be the set of all points of B with exponent e. By Theorem 1.14,

|E| ≥ qr − 3δ + 2pe + 4.

Let R1 ∈ E , R1 6= P , and let π1 = 〈P,R1〉 = PR1. Obviously, π1 ⊆
H(2r + 1, q) since π1 ⊂ P⊥. Denote by E1 the set of points of B that
belong to a (pe + 1)-secant of B through R1. Note that E1 ⊆ E . By
Theorem 1.14,

|E1| ≥ (qr/pe − 3(δ − 1)/pe + 2)pe + 1.

If r = 1, then E1 ⊆ π1 since, by assumption, all (pe + 1)-secants of B
through R1 lie on a line completely contained in H(3, q), and PR1 is
the only line of H(3, q) through R1 lying in P⊥. Both π1 and B are
minimal blocking sets of P⊥, and B ∪ π1 is a blocking set with

|B ∪ π1| ≤ |B|+ |π1| − |E1| < 2q.

Therefore, π1∪B is uniquely reducible to a minimal blocking set of P⊥

(Theorem 1.2), so B = π1. Since B is a non-trivial blocking set, this is
a contradiction.

If r > 1, then |E1| > |π1|. Let R2 ∈ E1 \ π1 and let π2 = 〈P,R1, R2〉.
The line R1R2 is a (pe + 1)-secant of B, so by the assumption, it is
contained in H(2r+1, q). The points P,R1 and R2 are not collinear and
so π2 is a 2-space. The three lines PR1, PR2 and R1R2 are contained
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in H(2r + 1, q) and do not share a common point, therefore π2 ⊆
H(2r + 1, q).

By E2, we denote the set of all points of B that belong to a (pe + 1)-
secant of B through R2. Then

|E1 ∩ E2| ≥ |E1|+ |E2| − |B|.

If r > 2, then |E1 ∩ E2| > |π2|. Similarly, for every j = 2, . . . , r − 1, we
obtain points Rj+1 ∈ (E1∩· · ·∩Ej)\πj, where πj = 〈P,R1, . . . , Rj〉. By
induction on the dimension j of πj, (j−1)-spaces generated by j points
from the set {P,R1, . . . , Rj} are contained in H(2r + 1, q) and do not
share a common (j − 2)-space, therefore πj ⊆ H(2r + 1, q). By Ej+1,
we denote the set of all points of B that belong to a (pe + 1)-secant of
B through Rj+1. Then

|E1 ∩ · · · ∩ Ej+1| ≥ (j + 1)(qr − 3(δ − 1) + 2pe)− j(qr + δ)

and that |E1 ∩ · · · ∩ Ej+1| > |πj+1|, when j + 1 < r.
In this way, we obtain an r-space πr = 〈P,R1, . . . , Rr〉. By induction

on the dimension j of πj, πr ⊆ H(2r + 1, q), πr is a generator of
H(2r + 1, q). Note that πr cannot be extended to an (r + 1)-space
contained in H(2r + 1, q).

The union πr ∪B is an r-blocking set of P⊥. All (pe + 1)-secants of
B through P and Rj, j = 1, . . . , r, are contained in H(2r + 1, q), so

|πr ∩B| ≥ |E1|+ · · ·+ |Er| − (r − 1)|B| ≥ qr − δ(4r − 1) + 2rpe.

Applying (19),

(20) |πr ∪B| = |πr|+ |B| − |πr ∩B| < 2qr,

and so πr ∪ B is uniquely reducible to a minimal r-blocking set of P⊥

(Theorem 1.2). Both πr and B are minimal r-blocking sets in πr ∪ B,
therefore B = πr. Since B is a non-trivial r-blocking set of P⊥, this is
a contradiction.

Thus, at least one (pe + 1)-secant of B is contained in a (
√
q + 1)-

secant of H(2r + 1, q) and e | h. �

Lemma 2.19. Consider a point P of the Hermitian variety H(2r +
1, q), q = p2h, 2 < p prime, h ≥ 1. Let B be a non-trivial small
minimal r-blocking set of the polar hyperplane P⊥, with exponent e,
contained in H(2r + 1, q). Let |B| = qr + δ. If pe ≥ 18r(q − 1)/(q − 2)
and |B| < qr + qr−1/4/2 + 1, then e = h.

The proof of this lemma is similar to the proof of Lemma 2.6.
If we assume that r ≤ p(q−2)/(18(q−1)) and i < (q3/4−1)/2, then

the preceding lemma is valid for all exponents e, since e ≥ 1 (Theorem
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1.10). It is easy to adjust the calculations in the proofs of Section 2.1
to obtain the following result.

Theorem 2.20. Let T be an i-tight set in the Hermitian variety H(2r+
1, q), 81 ≤ q, q = p2h, 2 < p prime, h ≥ 1, r ≤ p(q − 2)/(18(q − 1))
and i < (q3/4−1)/2. Then T is a union of pairwise disjoint generators
of H(2r + 1, q) and (2r + 1)-dimensional Baer subgeometries.

For small r, this theorem is better than Theorem 2.17, but as the
conditions of this theorem state, it cannot be used for large values of
r.

2.3. Tight sets in the symplectic polar space W (2r + 1, q). The
symplectic polar space W (2r + 1, q) sometimes contains particular 2-
tight sets which are the union ∆∪∆⊥, for ∆ an r-space of PG(2r+1, q),
satisfying ∆ ∩ ∆⊥ = ∅. This only occurs for r odd, as will be proven
in Theorem 2.23.

To simplify the proofs, we first prove that such a union ∆ ∪∆⊥, for
∆ an r-space of PG(2r+1, q), satisfying ∆∩∆⊥ = ∅, indeed is a 2-tight
set of W (2r + 1, q).

Lemma 2.21. Suppose that for the polarity ⊥ of a symplectic polar
space W (2r + 1, q), there exists an r-space ∆ satisfying ∆ ∩ ∆⊥ = ∅.
Then T ′ = ∆ ∪∆⊥ is a 2-tight set of W (2r + 1, q).

Proof. Let P ∈ W (2r + 1, q). Obviously,

|P⊥ ∩ T ′| = |P⊥ ∩∆|+ |P⊥ ∩∆⊥|.
Assume first that P 6∈ T ′. Then P 6∈ ∆ ∪∆⊥ and ∆,∆⊥ 6⊆ P⊥. Thus,
both ∆ and ∆⊥ intersect P⊥ in an (r − 1)-space.

If P ∈ T ′, without loss of generality, assume that P ∈ ∆ and P 6∈
∆⊥. Then ∆⊥ ⊆ P⊥, ∆ 6⊆ P⊥, and so ∆ intersects P⊥ in an (r − 1)-
space.

Applying these observations, it follows that

|P⊥ ∩ T ′| =
{

2θr−1 + qr , P ∈ T ′,
2θr−1 , P 6∈ T ′,

and T ′ is a 2-tight set of W (2r + 1, q). �

Lemma 2.22. Let T be an i-tight set in the symplectic polar space
W (2r + 1, q), 81 ≤ q odd square, i < (q2/3 − 1)/2. Then T is a
union of pairwise disjoint generators of W (2r + 1, q), pairs of disjoint
r-spaces {∆,∆⊥}, (2r + 1)-dimensional Baer subgeometries invariant
under the symplectic polarity of W (2r + 1, q), and pairs of disjoint
(2r+ 1)-dimensional Baer subgeometries {Ω1,Ω2} which correspond to
each other under the symplectic polarity of W (2r + 1, q).
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Proof. Denote by ∆ an r-space contained in T . If ∆ is a generator of
W (2r+ 1, q), then ∆ is a 1-tight set of W (2r+ 1, q) and then T \∆ is
an (i− 1)-tight set of W (2r + 1, q) (Lemma 2.15).

Assume now that ∆ is not a generator of W (2r+1, q). Then ∆ 6= ∆⊥.
We shall then show that T ′ := T \ (∆ ∪∆⊥) is an (i − 2)-tight set of
W (2r + 1, q). First we show that ∆⊥ ⊆ T and that ∆ ∩∆⊥ = ∅.

If H is a hyperplane through ∆, then H is a rich hyperplane. Thus,
there exists a unique point Q ∈ T such that H = Q⊥. Then, ∆ ⊆ Q⊥,
which implies that Q ∈ ∆⊥. There are θr hyperplanes through ∆ and
θr points in ∆⊥, hence every point of ∆⊥ is a hole.

Assume now that ∆∩∆⊥ 6= ∅ and let R ∈ ∆∩∆⊥. Then, ∆∪∆⊥ ⊆
R⊥. Two distinct r-spaces can intersect in at most an (r − 1)-space,
thus

|∆ ∪∆⊥| ≥ 2θr − θr−1 > |R⊥ ∩ T |;

a contradiction. Therefore, ∆ and ∆⊥ are disjoint.
From Lemma 2.21, ∆ ∪∆⊥ is a 2-tight set of W (2r + 1, q), and, by

Lemma 2.15, T \ (∆ ∪∆⊥) is an (i− 2)-tight set of W (2r + 1, q).
In both cases, whether ∆ is a generator of W (2r+ 1, q) or not, when

removing ∆ ∪∆⊥ from T , the structure of a tight set of W (2r + 1, q)
is preserved. So, we can assume that T does not contain any r-spaces.
Then, by Theorem 2.14, T is a union of pairwise disjoint (2r + 1)-
dimensional Baer subgeometries.

It follows from [13, Lemma 3.11] that these (2r + 1)-dimensional
Baer subgeometries, contained in T , either are invariant under the
symplectic polarity of W (2r+1, q) or they come in pairs of disjoint (2r+
1)-dimensional Baer subgeometries {Ω1,Ω2} which correspond to each
other under the symplectic polarity of W (2r + 1, q), meaning that for
every point P of Ω1, P⊥∩Ω2 is a 2n-dimensional Baer subgeometry, and
for every point P of Ω2, P⊥∩Ω1 is a 2n-dimensional Baer subgeometry.

�

But if r is even, this result can be improved, since for r even, W (2r+
1, q) does not contain pairs of disjoint r-spaces {∆,∆⊥}.

Theorem 2.23. If r is even, then in the symplectic polar space W (2r+
1, q), there exist no pairs of disjoint r-spaces {∆,∆⊥} of PG(2r+1, q).

Proof. Assume that there exists a pair {∆,∆⊥} of disjoint r-spaces in
the symplectic polar space W (2r + 1, q). Then, no point P ∈ ∆ is
collinear with all the points of ∆ in W (2r + 1, q). For, the points of
∆ form in W (2r + 1, q) a symplectic polar space with singular space
∆∩∆⊥. Since ∆ and ∆⊥ are disjoint, the points of ∆ necessarily form
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in W (2r + 1, q) a non-singular symplectic polar space of dimension r;
a contradiction since r is even. �

If r is odd, the previous theorem is not valid. Consider in PG(2r +
1, q), r odd, an r-space ∆ such that ∆ ∩W (2r + 1, q) is a symplectic
polar space W (r, q), then ∆∩∆⊥ = ∅. So, by Lemma 2.21, T = ∆∪∆⊥

is a 2-tight set of W (2r + 1, q), r odd.
Now, we can present the improvement of Theorem 2.22.

Corollary 2.24. Let T be an i-tight set in the symplectic polar space
W (2r + 1, q), 81 ≤ q odd, i < (q2/3 − 1)/2.

(1) If r is odd, then T is a union of pairwise disjoint generators
of W (2r + 1, q), pairs of disjoint r-spaces {∆,∆⊥}, (2r + 1)-
dimensional Baer subgeometries invariant under the symplectic
polarity, and pairs of disjoint (2r + 1)-dimensional Baer sub-
geometries {Ω1,Ω2} which correspond to each other under the
symplectic polarity.

(2) If r is even, then T is a union of pairwise disjoint generators of
W (2r+1, q), (2r+1)-dimensional Baer subgeometries invariant
under the symplectic polarity, and pairs of disjoint (2r + 1)-
dimensional Baer subgeometries {Ω1,Ω2} which correspond to
each other under the symplectic polarity.

Remark 2.25. In the preceding characterization theorem, the possi-
bility of a pair of disjoint (2r + 1)-dimensional Baer subgeometries
{Ω1,Ω2} which correspond to each other under the symplectic polar-
ity of W (2r + 1, q) is mentioned.

This possibility occurs because such a pair would constitute a (2
√
q+

2)-tight set in W (2r + 1, q).
For W (3, 4), the non-existence of such a pair has been proven [13,

Remark 3.13].
For W (3, 9), the existence of such a pair has been found. We thank

the referee for presenting us with this example.

Theorem 2.26. The symplectic polar space W (3, 9) contains an 8-
tight set T which is a pair of disjoint 3-dimensional Baer subgeometries
{Ω1,Ω2} which correspond to each other under the symplectic polarity
⊥ of W (3, 9).

Proof. In W (3, 9), it is possible to find two disjoint Baer subgeometries
PG(3, 3) having the correct properties. With the aid of a computer, it
is possible to check that the following configuration occurs in W (3, 9).

Consider a Baer subgeometry PG(3, 3) = Σ such that there are ex-
actly 10 (totally isotropic) lines of W (3, 9) that meet Σ in a Baer sub-
line. Moreover, this set S of 10 lines induces a regular spread in Σ.



28 ANAMARI NAKIĆ AND LEO STORME

Then, the lines of S form a pseudoregulus, i.e., the set of points of
PG(3, 9) covered by the 10 lines of S is covered by the trivially inter-
secting sets formed by 2 transversal lines and 2 subgeometries, one of
which is Σ.

Let Σ′ be the other 3-dimensional Baer subgeometry. Then, if P ∈ Σ,
then P⊥ ∩ Σ′ is a Baer subplane, and vice versa, as required. �

In the preceding example, if G denotes the stabilizer of the Baer
subgeometry Σ in the symplectic group PSp(4, 9) fixing W (3, 9), then
|G| = 4|A6|.

3. Maximal partial spreads in the symplectic polar space
W (2r + 1, q) and in the Hermitian polar space H(2r + 1, q)

In this section we apply the obtained characterization results on
tight sets in the symplectic polar spaces W (2r+ 1, q) and H(2r+ 1, q)
to maximal partial spreads in W (2r + 1, q) and in H(2r + 1, q). The
application of the result on tight sets, then yields an extension of the
results from [20] on the bounds on the sizes of maximal partial spreads
in W (2r + 1, q). In [20], the technique was based on a link between
minihypers and partial spreads. To obtain improved results, we show
that the set of holes of a partial spread of deficiency δ in the finite
classical polar spaces W (2r+ 1, q), H(2r+ 1, q), and Q+(2r+ 1, q) is a
δ-tight set in these finite classical polar spaces.

A spread S of a finite classical polar space P is a set of generators
that partitions the point set of P . The cardinality of a spread S is then
|P|/θr, when r + 1 is the rank of P .

Not all finite classical polar spaces contain spreads. We present here
in Table 1 the Table 2 of [14] which gives the known results regarding
(non-)existence of spreads in finite classical polar spaces. For the exact
references to these results, we refer to the bibliography of [14].

A partial spread of P is a set of pairwise disjoint generators. It is
called maximal when it is not contained in a larger partial spread. The
cardinality of a partial spread S is |P|/θr − δ for some integer δ which
is called the deficiency of S. There are δθr points of P not covered by
S. Such points are called holes of S.

The following theorem reveals the link between minihypers and par-
tial spreads.

Theorem 3.1. [20] Let P be a classical polar space of rank r + 1 in
PG(n, q). If S is a partial spread of P with deficiency δ < q, then the
set of holes of S forms a {δθr, δθr−1;n, q}-minihyper.
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Space Existence
Q−(5, q) Yes

Q−(2n+ 1, q) q even: Yes
Q(2n, q) n ≥ 2, q even: Yes
Q(6, q) q odd, q prime: Yes

q odd, q 6≡ 1 mod 3: Yes
Q(4n, q) q odd: No

Q+(4n+ 1, q) No
Q+(3, q) Yes
Q+(7, q) q odd, q prime: Yes

q odd, q 6≡ 1 mod 3: Yes
Q+(4n+ 3, q) q even: Yes
W (2n+ 1, q) Yes
H(2n+ 1, q2) No

H(4, 4) No
Table 1. Existence and non-existence results on spreads

In [20], this link was then used to obtain new bounds on the sizes of
maximal partial spreads of finite classical polar spaces.

The following result gives a strong characterization result on minihy-
pers, contained in the non-singular quadrics Q(2r, q) and Q−(2r+1, q).

Theorem 3.2. [13, Theorem 2.10]

(1) An {iθr−1, iθr−2; 2r, q}-minihyper F contained in Q(2r, q), with
i 6 q/2− 1, consists of i pairwise disjoint generators.

(2) An {iθr−1, iθr−2; 2r + 1, q}-minihyper F contained in Q−(2r +
1, q), with i 6 q/2−1, consists of i pairwise disjoint generators.

For the hyperbolic quadrics Q+(2r + 1, q), there is a strong charac-
terization theorem of Beukemann and Metsch, immediately for tight
sets.

Corollary 3.3. [2, Theorem 1.1] Let F be an i-tight set of Q+(2r+1, q),
with i ≤ q when 1 ≤ r ≤ 3, and with i ≤ q − 1 for r ≥ 4, q ≥ 71,
then F is the union of i mutually disjoint generators. If r is even, then
necessarily i 6 2.

Theorem 3.2 immediately induces an extendability result on partial
spreads of Q(2r, q) and Q−(2r + 1, q), having small positive deficiency
δ, to spreads, when spreads exist in the corresponding finite classical
polar spaces. Otherwise they induce upper bounds on the sizes of
partial spreads in these finite classical polar spaces.
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We address these extendability results in the next theorem. We
immediately state also the corresponding result on the extendability
of maximal partial spreads of the hyperbolic quadric Q+(2r + 1, q), r
odd, which relies on Corollary 3.3 and Lemma 3.6 which follows. But
we refer to Table 1 on the known (non-)existence results on spreads in
finite classical polar spaces to check whether it is known if these finite
classical polar spaces contain spreads.

Theorem 3.4. (1) Every partial spread of Q(2r, q), with deficiency
δ satisfying 0 < δ 6 q/2 − 1, can be extended to a spread of
Q(2r, q).

(2) Every partial spread of Q−(2r+1, q), with deficiency δ satisfying
0 < δ 6 q/2− 1, can be extended to a spread of Q−(2r + 1, q).

(2) Every partial spread of Q+(2r + 1, q), r odd, with deficiency δ
satisfying 0 < δ ≤ q when 1 ≤ r ≤ 3, and with 0 < δ ≤ q − 1
for r ≥ 4, q ≥ 71, can be extended to a spread of Q+(2r+ 1, q).

In this section, we address improved results on the extendability of
partial spreads in the symplectic polar spaces W (2r+1, q) and H(2r+
1, q), which rely on the improved results on tight sets of the preceding
section. Because of the isomorphism between Q(2r+ 2, q), q even, and
W (2r + 1, q), q even, we focus on the case q odd for the polar space
W (2r + 1, q).

The following result is the known result.

Theorem 3.5. [20] Let q+ ε denote the size of the smallest non-trivial
blocking sets in PG(2, q). Let S be a maximal partial spread of defi-
ciency δ in W (2r + 1, q), q odd. Suppose that either δ < ε, or q > 16
is a square and δ < q5/8/

√
2 + 1. Then δ is even.

The following lemma will show that the set of holes of a maximal
partial spread S of deficiency δ in W (2r+1, q), Q+(2r+1, q), or H(2r+
1, q) is a δ-tight set in these finite classical polar spaces. The application
of Theorem 2.24 for W (2r+1, q) raises in the previous result the upper
bound on δ from q5/8/

√
2+1 to (q2/3−1)/2. Consequently, new bounds

on the sizes of maximal partial spreads in W (2r + 1, q) are obtained.

Lemma 3.6. Let S be a partial spread with deficiency δ in the sym-
plectic polar space W (2r+1, q), respectively Q+(2r+1, q), H(2r+1, q).
Then the set of holes T of S is a δ-tight set in W (2r+1, q), respectively
Q+(2r + 1, q), H(2r + 1, q).

Proof. Let P be the symplectic polar space W (2r + 1, q), respectively
Q+(2r + 1, q), H(2r + 1, q). The set of all points of such a polar space
P is a (trivial) O-tight set in P , where O = |P|/θr. The partial spread
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S is a (O − δ)-tight set in P . Hence, by Lemma 2.15, the set of holes
T = P \ S is a δ-tight set in P . �

Corollary 3.7. Let S be a maximal partial spread of deficiency δ in
the symplectic polar space W (2r + 1, q).

(1) Let q+ ε denote the size of the smallest nontrivial blocking sets
in PG(2, q). Assume δ < ε. Then:
(a) If q is odd and r is odd, then δ is even and the set of holes

is the union of pairwise disjoint pairs of r-spaces {∆,∆⊥},
with ∆ ∩∆⊥ = ∅.

(b) Otherwise, any partial r-spread of deficiency δ of W (2r +
1, q) can be extended to a spread of W (2r + 1, q).

(2) Assume 81 ≤ q is an odd square, δ < (q2/3 − 1)/2.
(a) If r is odd, then δ = s1(

√
q + 1) + s2, s1, s2 nonnega-

tive integers, s2 even, and the set of holes is the union
of pairwise disjoint (2r + 1)-dimensional Baer subgeome-
tries and of pairwise disjoint pairs of r-spaces {∆,∆⊥},
with ∆ ∩∆⊥ = ∅.

(b) If r is even, then δ ≡ 0 (mod
√
q + 1) and the set of holes

is the union of pairwise disjoint (2r+ 1)-dimensional Baer
subgeometries.

Proof. The set of holes T of a maximal partial spread S of deficiency
δ in the symplectic polar space W (2r + 1, q) is a δ-tight set (Lemma
3.6).

It is known that a 1-tight set is equal to a generator of W (2r+ 1, q)
[17, Theorem 9.1].

Assume 2 ≤ δ < ε. Then, it is known that a δ-tight set in W (2r+1, q)
is equal to a {δθr, δθr−1; 2r + 1, q}-minihyper (Lemma 2.2). If q is odd
and r is odd, then, by Corollary 2.24, the set of holes T is a union
of pairwise disjoint pairs of disjoint r-spaces {∆,∆⊥}, implying that
δ is even. Note that the possibility of the (2r + 1)-dimensional Baer
subgeometries in the statement of Corollary 2.24 cannot occur here
since δ < ε.

If q is odd and r is even, then, by Corollary 2.24, a δ-tight set in
W (2r + 1, q) is a union of pairwise disjoint generators of W (2r + 1, q),
so S must be equal to a spread since the generators in T extend S to
a spread. Finally, it was shown in [20] that when q is even, any partial
spread of W (2r + 1, q), with deficiency δ < ε, can be extended to a
spread in W (2r + 1, q).

Assume 81 ≤ q is an odd square, δ < (q2/3 − 1)/2. Then we can
apply Corollary 2.24. If r is odd, then the set of holes of S is a union
of pairwise disjoint (2r+ 1)-dimensional Baer subgeometries and pairs
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of disjoint r-spaces {∆,∆⊥}. Hence, δ = s1(
√
q + 1) + s2, where s1, s2

are nonnegative integers with s2 even. If r is even, then the set of
holes of S is a union of pairwise disjoint (2r + 1)-dimensional Baer
subgeometries. �

Remark 3.8. The investigation of maximal partial spreads in W (2r+
1, q) is not only complicated because of the distinct property for W (2r+
1, q), r is even or odd; it also depends on the field Fq.

In particular, the symplectic polar space W (3, q) has maximal partial
spreads of size q2 − 1 when q = 3, 5, 7, 11 [15].

But, De Beule and Gács proved in [12] that W (3, q), q an odd prime
power different from a prime, does not have maximal partial spreads of
size q2 − 1.

We now conclude this article with the new extendability result on
partial spreads on the Hermitian polar spaces H(2r+1, q), which relies
on the characterization result on tight sets of Theorem 2.17. Note that
the Hermitian polar space H(2r + 1, q) does not have spreads (Table
1), so we immediately formulate this result as a result on the possible
sizes of large maximal partial spreads.

Theorem 3.9. Let S be a maximal partial spread of the Hermitian
variety H(2r + 1, q), 81 ≤ q odd square, with deficiency δ satisfying
0 < δ < (q2/3 − 1)/2. Then δ ≡ 0 (mod

√
q + 1) and the set of

holes is the union of δ/(
√
q+ 1) pairwise disjoint (2r+ 1)-dimensional

Baer subgeometries PG(2r+ 1,
√
q) in which the Hermitian polarity of

H(2r + 1, q) induces a symplectic polarity.
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