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We introduce a general approach for representing and reasoning with argumentation-based
systems. In our framework arguments are represented by Gentzen-style sequents, attacks (con-
flicts) between arguments are represented by sequent elimination rules, and deductions are
made according to Dung-style skeptical or credulous semantics. This framework accommo-
dates different languages and logics in which arguments may be represented, allows for a
flexible and simple way of expressing and identifying arguments, supports a variety of attack
relations (including those that reflect relevance or quantitative considerations), and is faithful
to standard methods of drawing conclusions by argumentation frameworks. Altogether, we
show that argumentation theory may benefit from incorporating proof theoretical techniques
and that different non-classical formalisms may be used for backing up intended argumentation
semantics.
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1. Introduction

Argumentation is the study of how jointly acceptable conclusions can be reached from a coll-
ection of arguments. In recent years, logic-based approaches for analysing and evaluating
arguments, sometimes called logical (or deductive) argumentation, have been largely studied,
yielding a variety of formal methods for argumentation-based reasoning (see, for instance, the
reviews in Chesñevar, Maguitman, and Loui, 2000; Prakken and Vreeswijk, 2002). The goal of
this paper is to provide an abstract, proof theoretical investigation of logical argumentation. Our
starting point is that an argument is a pair of a finite set of formulas (�, the support set) and a
formula (ψ , the conclusion), expressed in an arbitrary propositional language, such that the latter
follows, according to some underlying logic, from the former. This abstract approach gives rise to
Gerhard Gentzen’s well-known notion of a sequent (Gentzen, 1934), extensively used in the con-
text of proof theory. Accordingly, an argument is associated with a sequent of the form � ⇒ ψ

and logical argumentation boils down to the exposition of formalised methods for reasoning with
these syntactical objects.

This paper is a revised and extended version of Arieli (2013), where a sequent-based approach
to logical argumentation is realised in the following two aspects:

• Arguments as sequents.
We show that sequents are useful for representing logical arguments since they can be
regarded as specific kinds of judgments. This has the obvious benefit that proof the-
oretical approaches may be used in the context of argumentation theory. For instance,
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well-studied sequent calculi may be incorporated for producing arguments in an automated
way. Moreover, some restrictions in previous definitions of logical arguments, like mini-
mality and consistency of support sets (see, e.g. Besnard & Hunter, 2001, 2009), may now
be lifted, allowing for a more flexible way of expressing arguments, which also simplifies
their identification.

• Attacks as sequent elimination rules.
We show that interactions between arguments (expressed by attack relations) can by rep-
resented in terms of Gentzen-style rules of inference. This induces a general and uniform
approach not only for introducing arguments, but also for eliminating them. Furthermore,
in addition to known attack relations that are ‘imported’ to our framework (which are
discussed in Arieli, 2013), we also introduce new types of attack relations, like attacks
incorporating different kinds of modal operators, quantitative measurements, and attacks
that are based on relevance considerations, implementing the well-known principle of
variable sharing from relevance logics (Dunn and Restall, 2002) and applying it for
argumentation reasoning.

Keeping our sequent-based setting generic and modular allows us to accommodate different
types of languages and logics, including non-classical ones. This enables the use of different
substructural logics, including paraconsistent logics (da Costa, 1974) that support robust meth-
ods of handling conflicts among arguments, and deontic logics (Aqvist, 2002) that incorporate
modalities for modelling normative reasoning and handling problematic cases in which there are
conflicts among norms.

The rest of this paper is organised as follows: in the next section we review some basic notions
behind logical argumentation and introduce some related notations. Then, in Sections 3 and 4
we re-examine these notions and suggest some proof theoretical substitutes. This allows us to
introduce, in Section 5, the notion of sequent-based logical argumentation frameworks, admitting
different languages, logics, and inducing a family of entailment relations. The latter can be used
for simulating existing entailments of logical argumentation and for introducing new ones. In
Section 5 we illustrate reasoning with these entailments in different contexts and consider (also
in the Appendix of the paper) some of their basic properties. Finally, in Section 6 we refer to
some related work and in Section 7 we conclude.

2. Logical argumentation

Logical argumentation (sometimes called deductive argumentation) is a logic-based approach for
formalising argumentation, disagreements, and entailment relations for drawing conclusions from
argumentation-based settings (see, e.g. Besnard and Hunter, 2001; Pollock, 1992; Prakken, 1996;
Simari & Loui, 1992). In logical argumentation arguments are expressed in terms of formal lan-
guages and acceptance of arguments is determined by logical entailments. A wealth of research
has been conducted on formalising this kind of argumentation. Below we sketch some of the
main notions behind logical argumentation, concentrating on one of the better-known approaches
in this context, introduced by Besnard & Hunter (2001).

Definition 2.1 (Dung, 1995). An argumentation framework is a pair AF = 〈Args,A〉, where
Args is an enumerable set of elements, called arguments, and A is a relation on Args × Args
whose instances are called attacks.

Definition 2.2 (Besnard & Hunter, 2001, 2009). Let L be a standard propositional language,
S an enumerable set of formulas in L, and �cl the consequence relation of classical logic (for L).
An argument in the sense of Besnard and Hunter (BH-argument, for short), formed by S, is a
pair A = 〈�,ψ〉, where ψ is a formula in L and � is a minimally consistent subset of S (where
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minimisation is with respect to set inclusion), such that � �cl ψ . Here, � is called the support set
of the argument A and ψ is its consequent.

Different attack relations have been considered in the literature for logical argumentation
frameworks (see, e.g. Amgoud and Besnard, 2009, 2010; Besnard & Hunter, 2001; Gorogiannis
& Hunter, 2011; Pollock, 1987, 1992). Below we recall some of the better-known ones.

Definition 2.3 Let A1 = 〈�1,ψ1〉 and A2 = 〈�2,ψ2〉 be two BH-arguments.

• A1 is a defeater of A2 if ψ1 �cl ¬∧
γ∈�2

γ .
• A1 is a direct defeater of A2 if there is γ ∈ �2 such that ψ1 �cl ¬γ .
• A1 is an undercut of A2 if there is �′

2 ⊆ �2 such that ψ1 �cl ¬∧
γ∈�′

2
γ and

¬∧
γ∈�′

2
γ �cl ψ1.

• A1 is a direct undercut of A2 if there is γ ∈ �2 s.t. ψ1 �cl ¬γ and ¬γ �cl ψ1.
• A1 is a canonical undercut of A2 if ψ1 �cl ¬∧

γ∈�2
γ and ¬∧

γ∈�2
γ �cl ψ1.

• A1 is a rebuttal of A2 if ψ1 �cl ¬ψ2 and ¬ψ2 �cl ψ1.
• A1 is a defeating rebuttal of A2 if ψ1 �cl ¬ψ2.

Example 2.4 Let S = {p, ¬p, q}. Then 〈{¬p}, ¬p〉 is an BH-argument (formed by S) which is
a (direct) defeater and a (direct and canonical) undercut of the BH-argument 〈{p}, p ∨ q〉. Note,
further, that while q follows according to classical logic from {p, ¬p}, the pair 〈{p, ¬p}, q〉 is not
a BH-argument, since its support set is not classically consistent.

Definition 2.5 Let ArgsBH(S) be the (countably infinite) set of BH-arguments formed by S,
and let A be a binary relation on ArgsBH(S), obtained by at least one of the conditions described
in Definition 2.3. Then the pair AF(S) = 〈ArgsBH(S),A〉 forms a (logical) argumentation
framework.

3. Arguments as sequents

In the following sections we re-examine some of the basic concepts behind logical argumentation.
First, in this section, we consider the notion of a logical argument. We argue that the minimality
and consistency requirements in Definition 2.2 not only cause complications in the evaluation
and the construction of arguments, but also may not be really necessary for capturing the intended
meaning of this notion.

• Minimality. Minimisation of supports is not an essential principle for defining arguments,
thus there is no real reason to overload arguments with this condition. In mathematics, for
instance, proofs are usually not required to be minimal in order to validate their claim, and
in some other disciplines like law, medicine, and rhetoric, it is a common habit to have over-
lapping supports for backing up a particular conclusion. To see a more concrete example,
consider a framework in which supports are expressed only by literals (atomic formulas or
their negation). Then arguments like A = 〈{p, q}, p ∨ q〉 are excluded since their supports
are not minimal, although one may consider {p, q} a stronger support for p ∨ q than, say,
{p}, since the set {p, q} logically implies every minimal support of p ∨ q. Moreover, the size
of {p, q} is bigger than that of {p}, and this may be relevant when quantitative considerations
are involved (see Section 4.4).1,2

• Consistency. The requirement that the support set � of an argument 〈�,ψ〉 should be
consistent may be irrelevant for some logics, at least when consistency is defined by sat-
isfiability. Indeed, in logics such as Priest’s three-valued logic (Priest, 1989) or Belnap’s
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four-valued logic (Belnap, 1977), every set of formulas in the language of {¬, ∨, ∧} is
satisfiable.

• Complexity. From a more pragmatic point of view, the involvement of minimally consistent
subsets of the underlying knowledge-base poses serious questions on the computational
viability of identifying arguments and generating them. Indeed, deciding the existence of a
minimal subset of formulas that implies the consequent is already at the second level of the
polynomial hierarchy (see Eiter & Gottlob, 1995). For first-order languages the problem is
more severe, since arguments may not be generated in an effective way.

Our conclusion, then, is that what really matters for an argument, is that (i) its consequent
would logically follow, according to the underlying logic, from the support set, and that (ii) there
would be an effective way of constructing and identifying it. In what follows we therefore adhere
to the following principles:

(1) Supports and consequents of arguments are solely determined by the logic.
(2) Arguments are syntactical objects that are effectively computable by a formal system that

is related to the logic, and are refutable by the attack relation of the argumentation system.

For the first item we indicate what a logic is (Definition 3.1). The first part of the second item
corresponds to the primary goal of proof theory, so notations and machinery are borrowed from
that area (Definitions 3.2 and 3.3).

We denote by L an arbitrary propositional language having a countably infinite set Atoms(L)
of atomic formulas. In what follows T ,S (possibly primed or indexed) denote arbitrary theories
(sets of formulas) in L, and �,� (possibly primed or indexed) denote finite theories in L. Given
a language L, we fix a corresponding logic (sometimes called the base logic or the core logic),
defined as follows.

Definition 3.1 A (propositional) logic for a language L is a pair L = 〈L, �〉, where � is a
(Tarskian) consequence relation for L, that is, a binary relation between sets of formulas and
formulas in L, satisfying the following conditions:

Reflexivity: if ψ ∈ T then T � ψ
Monotonicity: if T � ψ and T ⊆ T ′ then T ′ � ψ
Transitivity: if T � ψ and T ′,ψ � φ then T , T ′ � φ

In the sequel we shall exclude trivial consequence relations, that is, we shall assume that p � q
for distinct atoms p and q.

In what follows we assume that L contains the following connectives:

• A unary connective ¬ which is a �-negation: for every atomic formula p of L it holds that
p � ¬p and ¬p � p,

• A binary connective ∧ which is a �-conjunction: for every set T of formulas and formulas
ψ ,φ it holds that T � ψ ∧ φ iff T � ψ and T � φ.

Also, when L has an implication connective ⊃, we shall assume that it is deductive with
respect to the base consequence relation:3

• A binary connective ⊃ is called a �-deductive implication if for every set T of formulas
and formulas ψ ,φ it holds that T ,ψ � φ iff T � ψ ⊃ φ.

We shall denote by
∧
� the conjunction of all the formulas in (the finite theory) �, and

abbreviate the formula (ψ ⊃ φ) ∧ (φ ⊃ ψ) by ψ ↔ φ.



Argument and Computation 77

Definition 3.2 Let L be a propositional language, and let ⇒ be a symbol that does not appear
in L. An L-sequent (or just a sequent) is an expression of the form � ⇒ �, where � and � are
finite sets of formulas in L.

Proof systems that operate on sequents are called sequent calculi (Gentzen, 1934). A crucial
property shared by all the logics considered in this paper is that they have a sound and complete
sequent calculus. For such a logic L = 〈L, �〉, then, there is an effective way of drawing entail-
ments: T � ψ iff for some finite subset � ⊆ T there is a proof of the sequent � ⇒ ψ in the
corresponding sequent calculus.

Definition 3.3 Let L = 〈L, �〉 be a logic with a corresponding sequent calculus C, and let S
be a set of formulas in L. An L-argument based on S is an L-sequent of the form � ⇒ ψ , where
� ⊆ S,4 that is provable in C.5 We denote by ArgL(S) the set of all the L-arguments that are
based on S.

In the notation of Definition 3.3, we have that:

Proposition 3.4 Let L = 〈L, �〉 be a propositional logic. Then � ⇒ ψ is in ArgL(S) iff � � ψ
for a finite � ⊆ S.

Example 3.5 Consider Gentzen’s sequent calculus LK (Figure 1), which is sound and complete
for classical logic CL. In this case we have, for instance, that the sequent ψ ⊃ φ ⇒ ¬ψ ∨ φ is
derivable in LK and so it belongs to ArgCL(S) whenever S contains the formula ψ ⊃ φ. Note,
however, that this sequent is not derivable by any sequent calculus that is sound and complete for
intuitionistic logic IL (e.g. Gentzen’s LJ), thus it is not in ArgIL(S) for any S.

Proposition 3.6 For every logic L = 〈L, �〉 and a set S of formulas in L, the set ArgL(S) is
closed under the following rules:6

S-Reflexivity: For every finite � ⊆ S and ψ ∈ � it holds that � ⇒ ψ ∈ ArgL(S)
S-Monotonicity: If � ⇒ ψ ∈ ArgL(S) and � ⊆ �′ ⊆ S, then �′ ⇒ ψ ∈ ArgL(S)
S-Transitivity: If � ⇒ ψ ∈ ArgL(S) and �′,ψ ⇒ φ ∈ ArgL(S), then also �,�′ ⇒

φ ∈ ArgL(S)

Proof By Proposition 3.4, S-Reflexivity (respectively, S-Monotonicity, S-Transitivity) follows
from the reflexivity (respectively, the monotonicity, transitivity) of �. �

Remark 3.1 The set ArgsBH(S) of the BH-arguments is not closed under any rule in
Proposition 3.6. To see this consider for instance the set S = {p, q, ¬p ∨ q, ¬q ∨ p}. Then
〈{p, ¬p ∨ q}, q〉 ∈ ArgsBH(S) and 〈{q, ¬q ∨ p}, p〉 ∈ ArgsBH(S), however 〈{p, ¬p ∨ q, ¬q ∨ p},
p〉 ∈ ArgsBH(S), since its support set is not minimal. Thus ArgsBH(S) is not S-transitive.
The fact that 〈{p, ¬p ∨ q, ¬q ∨ p}, p〉 ∈ ArgsBH(S) (while 〈{p}, p〉 ∈ ArgsBH(S)) also shows that
ArgsBH(S) is not S-monotonic and that it is not S-reflexive.7

Remark 3.2 Let L = 〈L, �〉 be a logic and S a set of formulas in L. Then S-Transitivity can be
strengthened as follows:

If � ⇒ ψ ∈ ArgL(S) and �′,ψ � φ for a finite �′ ⊆ S, then �,�′ ⇒ φ ∈ ArgL(S).
Note that unlike S-Transitivity, in the rule above ψ may not belong to S.
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Figure 1. The proof system LK.

4. Attacks as sequent elimination rules

In order to represent attack relations we introduce rules for excluding arguments (i.e. sequents) in
the presence of counter arguments. We call such rules sequent elimination rules, or attack rules.
The obvious advantage of representing attacks by sequent elimination rules is that the form of
such rules is similar to that of the construction rules, and both types of rules are expressed by the
same syntactical objects. This allows us to uniformly identify and generate arguments and attacks
by the same sequent-manipulation systems.

Typical conditions of attack rules consist of three ingredients: the attacking argument (the
first sequent in the rule’s prerequisites), the attacked argument (the last sequent in the rule’s
prerequisites), and the conditions for the attack (the other prerequisites). Conclusions of sequent
elimination rules will be the elimination of the attacked argument. In the sequel, we denote by
� ⇒ ψ the elimination (or, the discharging) of the argument � ⇒ ψ . Alternatively, if a sequent
is denoted by s, its discharged counterpart will sometimes be denoted by s.

Definition 4.1 Let ArgL(S) be a set of L-arguments, C a sound and complete sequent calculus
for L. A sequent elimination rule (or attack rule) is a Gentzen-type rule R of the following form:

�1 ⇒ �1, . . . ,�n ⇒ �n

�n ⇒ �n
.

We say that R is ArgL(S)-applicable, alternatively: L-applicable or just applicable (with respect
to θ ), if there is an L-substitution θ such that θ(�1) ⇒ θ(�1) and θ(�n) ⇒ θ(�n) are in ArgL(S)
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and for each 1 < i < n, θ(�i) ⇒ θ(�i) is C-provable. In this case we shall say that θ(�1) ⇒
θ(�1)R-attacks θ(�n) ⇒ θ(�n).

Note that applicability of a rule is defined with respect to a logic (and a substitution), and it is
invariant with respect to a particular calculus C, as long as C is sound and complete for L.

4.1. Standard logical attacks, revisited

First, we show how the attack relations in Definition 2.3 can be described in terms of
corresponding sequent elimination rules.

Attacks by defeaters. In terms of an arbitrary logic L = 〈L, �〉 and L-arguments in ArgL(S), an
argument �1 ⇒ ψ1 is an L-defeater of an argument �2 ⇒ ψ2 if ψ1 � ¬∧

�2. In the presence of
a �-deductive implication ⊃ in L, this means that � ψ1 ⊃ ¬∧

�2, and so ⇒ ψ1 ⊃ ¬∧
�2 is an

L-argument in ArgL(S). It follows that attacks by defeaters may be represented by the following
sequent elimination rule (relative to L):

Defeat:
�1 ⇒ ψ1 ⇒ ψ1 ⊃ ¬∧

�2 �2 ⇒ ψ2

�2 ⇒ ψ2
.

In the particular case where the underlying logic is classical logic CL, this rule is a sequent-
based encoding of a defeater attack in the sense of Definition 2.3:

Proposition 4.2 Let A1 = 〈ϒ1, σ1〉 and A2 = 〈ϒ2, σ2〉 be two BH-arguments. Then A1 is a
defeater of A2 in the sense of Definition 2.3 iff the rule Defeat defined above is CL-applicable
with respect to a substitution θ , where θ(�i) = ϒi and θ(ψi) = σi, i = 1, 2.

Proof Since Ai are BH-arguments it holds thatϒi �cl σi for i = 1, 2 and so the sequentsϒi ⇒ σi

are LK-provable (i = 1, 2). Moreover, since A1 is a defeater of A2, it holds that �cl σ1 ⊃ ¬∧
ϒ2,

thus ⇒ σ1 ⊃ ¬∧
ϒ2 is also LK-provable. It follows that the rule Defeat is CL-applicable with

respect to a substitution θ such that θ(�i) = ϒi and θ(ψi) = σi (i = 1, 2). Conversely, let A1 =
〈ϒ1, σ1〉 and A2 = 〈ϒ2, σ2〉 be BH-arguments and suppose that the rule Defeat is CL-applicable
with respect to a substitution θ such that θ(�i) = ϒi and θ(ψi) = σi (i = 1, 2). Then the attacking
condition of this rule is LK-provable, which means that σ1 �cl ¬∧

ϒ2, and so A1 is a defeater of
A2 in the sense of Definition 2.3. �

Remark 4.1 The following sequent elimination rule may be viewed as an equivalent form
of Defeat, which moreover does not assume the availability of a deductive implication in the
language.

Compact Defeat:
�1 ⇒ ¬∧

�2 �2 ⇒ ψ2

�2 ⇒ ψ2

Definition 4.3 We say that an attack rule R1 L-implies an attack rule R2, if for every set of
formulas S, whenever R2 is ArgL(S)-applicable its conclusion is produced by R1 (with respect to
ArgL(S)). Formally: whenever � ⇒ ψ ∈ ArgL(S)R2-attacks �′ ⇒ ψ ′ ∈ ArgL(S) there is � ⇒
φ ∈ ArgL(S) that R1-attacks �′ ⇒ ψ ′.8 The Attack rules R1 and R2 are said to be L-equivalent,
if each one of them L-implies the other.

From an argumentative point of view, the fact that a rule R1 implies a rule R2 intuitively
means that any attack that is producible using R2 can be reproduced using R1 by means of an
attacking argument with the same support set.
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Proposition 4.4 For every logic L, Compact Defeat is L-equivalent to Defeat.

Proof To show that Compact Defeat implies Defeat assume that the three conditions of Defeat
hold with respect to ArgL(S). Since ⇒ ψ1 ⊃ ¬∧

�2 is derivable, it holds that � ψ1 ⊃ ¬∧
�2.

Thus, since ⊃ is a �-deductive implication, ψ1 � ¬∧
�2. This, together with the assumption

that �1 ⇒ ψ1 is derivable (and so it is an argument in ArgL(S)), imply by Remark 3.2 that
�1 ⇒ ¬∧

�2 is an argument in ArgL(S), and so by Definition 3.3 it is derivable in the underlying
sequent calculus. It follows that �2 ⇒ ψ2 is producible by Compact Defeat, and so Compact
Defeat indeed implies Defeat.

To see that Defeat implies Compact Defeat suppose that the two conditions of Compact
Defeat hold. Since � is reflexive, ¬∧

�2 � ¬∧
�2, and so, since ⊃ is a �-deductive impli-

cation, � ¬∧
�2 ⊃ ¬∧

�2. We thus have that the sequent ⇒ ¬∧
�2 ⊃ ¬∧

�2 is derivable in
the underlying sequent calculus. It follows that �2 ⇒ ψ2 is producible by Defeat, and so Defeat
indeed implies Compact Defeat. �

Attacks by direct defeaters. Direct defeat with respect to an arbitrary logic L = 〈L, �〉 and a set
ArgL(S) of L-arguments based on S, means that �1 ⇒ ψ1 is an L-direct defeater of �2 ⇒ ψ2

if ψ1 � ¬γ for some γ ∈ �2. Thus, a direct defeat attack may be expressed by the following
sequent elimination rule:

Direct Defeat:
�1 ⇒ ψ1 ⇒ ψ1 ⊃ ¬φ �2,φ ⇒ ψ2

�2,φ ⇒ ψ2
.

It follows that an argument should be withdrawn in case that the negation of an element in its
support set is implied by a consequent of another argument.

As in the case of attacks by defeaters, we have the following relation between attacks by direct
defeaters in classical logic (Definition 2.3) and the above sequent-based formalisation:

Proposition 4.5 Let A1 = 〈ϒ1, σ1〉 and A2 = 〈ϒ2, σ2〉 be two BH-arguments. Then A1 is a
direct defeater of A2 in the sense of Definition 2.3 iff the rule Direct Defeat defined above is
CL-applicable with respect to a substitution θ where θ(�i) = ϒi and θ(ψi) = σi, i = 1, 2.

Proof Similar to that of Proposition 4.2. �

Remark 4.2 Again, it is possible to express an equivalent and more compact form of the rule
above, which does not mention an implication connective:

Compact Direct Defeat:
�1 ⇒ ¬φ �2,φ ⇒ ψ2

�2,φ ⇒ ψ2
.

Proposition 4.6 For every logic L, Compact Direct Defeat is L-equivalent to Direct Defeat.

Proof Similar to the proof of Proposition 4.4. �

Similar links to BH-arguments as in Propositions 4.2 and 4.5 may be established for all the
rules to be considered in what follows. Also, all these rules will have equivalent compact versions
like those considered in Remarks 4.1 and 4.2. In the sequel, we shall avoid replicating the links
to BH-arguments and formulating equivalent compact versions of the underlying rules.

Attacks by undercuts. For expressing undercuts with respect to a logic L = 〈L, �〉 we first have
to define logical equivalence in L. A natural way to do so is to require that ψ and φ are logically
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equivalent in L iff ψ � φ and φ � ψ . Using a �-deductive implication ⊃ and a �-conjunctive
connective ∧, this means that � (ψ ⊃ φ) ∧ (φ ⊃ ψ), that is, that ψ ↔ φ is a theorem of L. It
follows that attacks by undercuts are represented by the following sequent elimination rule:

Undercut:
�1 ⇒ ψ1 ⇒ ψ1 ↔ ¬∧

�′
2 �2,�′

2 ⇒ ψ2

�2,�′
2 ⇒ ψ2

.

Attacks by direct and canonical undercuts. Using the same notations as those for attacks by
undercuts, and under the same assumptions on the language, attacks by direct undercuts may be
represented by the following elimination rule:

Direct Undercut:
�1 ⇒ ψ1 ⇒ ψ1 ↔ ¬γ2 �2, γ2 ⇒ ψ2

�2, γ2 ⇒ ψ2
.

Similarly, attacks by canonical undercuts may be represented as follows:

Canonical Undercut:
�1 ⇒ ψ1 ⇒ ψ1 ↔ ¬∧

�2 �2 ⇒ ψ2

�2 ⇒ ψ2
.

Attacks by rebuttal and defeating rebuttal. By the discussion above it is easy to see that attacks
by rebuttal and defeating rebuttal are also represented by sequent elimination rules. Indeed, these
two attacks are represented as follows:

Rebuttal:
�1 ⇒ ψ1 ⇒ ψ1 ↔ ¬ψ2 �2 ⇒ ψ2

�2 ⇒ ψ2
,

Defeating Rebuttal:
�1 ⇒ ψ1 ⇒ ψ1 ⊃ ¬ψ2 �2 ⇒ ψ2

�2 ⇒ ψ2
.

Remark 4.3 All of the attack rules discussed previously can be represented in a language with
�-negation and �-conjunction only, that is, the availability of �-deductive implication (and a
corresponding connective for representing equivalence) may not be assumed. The attack rules in
the reduced language are represented in Figure 2. In these rules the conditions are not necessarily
S-arguments, as the premises of these conditions are not necessarily included in S.9

Note that the compact version of Direct Undercut is the same as Compact Direct Defeat, the
compact version of Canonical Undercut is the same as Compact Defeat, and the compact version
of Defeating Rebuttal is the same as Compact Rebuttal.

As the next proposition shows, the relations between the attacks in Definition 2.3, indicated
in Gorogiannis & Hunter (2011), carry on to our attack rules.

Proposition 4.7 Let L = 〈L, �〉 be a propositional logic, where L has a �-conjunction ∧. Then:
(a) Defeating Rebuttal is L-equivalent to Rebuttal, (b) Undercut L-implies Canonical Undercut
and Direct Undercut, (c) Canonical Undercut is L-equivalent to Defeat, (d) Direct Defeat is
L-equivalent to Direct Undercut.

Proof Part (a) follows from the fact that both rules are L-equivalent to Compact Rebuttal. Part
(b) follows from the fact that Undercut holds in particular when �2 is a singleton (in which case
Direct Undercut is obtained) and when �2 is the whole support set of the sequent (in which case
Canonical Undercut is obtained). Part (c) follows from the fact that both Canonical Undercut and
Defeat are equivalent to Compact Defeat. Part (d) follows from the fact that Direct Undercut and
Direct Defeat are equivalent to Compact Direct Defeat. �
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Figure 2. Sequent elimination rules.

Remark 4.4 Further relations between the elimination rules introduced above may be obtained
under further assumptions on the underlying logics. For instance, when L is classical logic, Defeat
implies Direct Defeat, since in LK the sequent ⇒ ψ ⊃ ¬∧

� is derivable from ⇒ ψ ⊃ ¬γ
for any γ ∈ �. Similar considerations show that in this case Defeat also implies Undercut and
Defeating Rebuttal.

4.2. Attacks incorporating modalities

The fact that our approach is language-independent enables us to apply it in different sce-
narios and for a variety of purposes. One of them, demonstrated in Straßer & Arieli (2014),
applies sequent-based logical argumentation for modelling normative reasoning in the context
of deontic logic (Aqvist, 2002). The idea is to reason with and about norms such as obliga-
tions, imperatives, permissions, etc. This is usually formalised by the primitive modal operator O
that represents obligations and the defined modal operator P (where P = ¬O¬) that represents
permissions.

A paradigmatic instance for normative reasoning is so-called factual detachment, saying that
if ϕ holds, and there is a commitment to ψ conditional on ϕ, then there is a commitment to ψ .
Another instance is aggregation: if there is a norm to bring about ϕ and another norm to bring
about ψ then there should be a norm to bring about ϕ ∧ ψ . Allowing for unrestricted factual
detachment or unrestricted aggregation is problematic in cases in which norms conflict. As shown
in Straßer & Arieli (2014) and demonstrated next, attack rules in the context of sequent-based
argumentation are useful for representing and handling such conflicts.
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Example 4.8 Consider the following example by Horty (1994):

• When served a meal one ought to not eat with fingers.
• However, if the meal is asparagus one ought to eat with fingers.

The statements above may be represented, respectively, by the formulas m ⊃ O¬f and
(m ∧ a) ⊃ Of . Now, in case one is indeed served asparagus (m ∧ a) we expect to derive the
(unconditional) obligation to eat with fingers (Of ) rather than to not eat with fingers (O¬f ).
This is a paradigmatic case of specificity: a more specific obligation cancels (or overrides) a less
specific one.

In our setting this may be handled by an attack rule advocating specificity, according to
which the argument {m ∧ a, (m ∧ a) ⊃ Of } ⇒ Of attacks the argument {m, m ⊃ O¬f } ⇒ O¬f .
Here, arguments are obtained by a sequent calculus for standard deontic logic SDL, which
extends LK by the following inference rules for the modal operators: (Below, we denote O� for
{Oφ | φ ∈ �})

KR:
� ⇒ φ

O� ⇒ Oφ
DR:

� ⇒ φ

O� ⇒ ¬O¬φ .

The aforesaid attack rule may be formalised as follows:

Specifity:
�,φ ⊃ ψ ⇒ ψ � ⇒ φ �′ ⇒ φ′ φ ⇒ φ′ ψ ⇒ ¬ψ ′ �′,φ′ ⊃ ψ ′ ⇒ ψ ′

�′,φ′ ⊃ ψ ′ ⇒ ψ ′ .

This rule aims at formalising the principle of specificity. It states that when two sequents �′ ⇒ ψ ′

and � ⇒ ψ are conflicting, the one which is more specific gets higher precedence, and so the
other one is discharged. Thus, in Example 4.1 for instance, Specificity allows to discharge the
sequent m, m ⊃ O¬f ⇒ O¬f in light of the more specific sequent m ∧ a, (m ∧ a) ⊃ Of ⇒ Of .

Some variations of Specificity are given below (where NN′ ∈ {OO, OP, PO}):10

NN′-Spec
�,φ ⊃ Nψ ⇒ Nψ � ⇒ φ �′ ⇒ φ′ φ ⇒ φ′ ψ ⇒ ¬ψ ′ �′,φ′ ⊃ N′ψ ′ ⇒ N′ψ ′

�′,φ′ ⊃ N′ψ ′ ⇒ N′ψ ′ ,

NN′-SpecNeg

�,φ ⊃ Nψ ⇒ ¬(φ′ ⊃ N′ψ ′) � ⇒ φ �′ ⇒ φ′ φ ⇒ φ′ ψ ⇒ ¬ψ ′ �′,φ′ ⊃ N′ψ ′ ⇒ ψ ′′

�′,φ′ ⊃ N′ψ ′ ⇒ ψ ′′ .

For instance, PO-Spec models permission as derogation (Stolpe, 2010): a permission may
suspend a more general obligation.

4.3. Relevant attacks

When L is a logic in which any formula follows from a contradiction (in particular, if L is classical
logic, CL), any sequent is attacked according to each rule in Figure 2. Thus, for instance, when
L = CL, S = {p, ¬p, q}, and the attack rule is Undercut, the sequent q ⇒ q is attacked by the
(classically valid) sequent p, ¬p ⇒ ¬q, although – intuitively – q is not really related to the
inconsistency in S.

In logics where negated contradictions are theorems, the above phenomenon may be avoided
by having some premise attack rules together with restricted rebuttals in which the supports of
the attacked arguments are not empty. By this, arguments with inconsistent supports are attacked
by arguments with empty supports (whose conclusions are theorems) and arguments with empty
supports are not attacked.
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In what follows we describe an alternative way of handling attacks by inconsistent supports,
in which the above assumptions on the underlying logic and the attack rules are not needed. For
this, we follow the primary consideration behind relevance logics and consider variations of the
attack rules, according to which the attacking sequent should contain information which is rel-
evant to the attacked sequent (see, e.g. Dunn & Restall, 2002). This is enforced by the variable
sharing property, a principle that in our case requires that the support sets of the attacking and
the attacked sequents should share variables, and so the former is ‘relevant’ for the latter. Note
that by monotonicity, support sets may be artificially extended to contain allegedly relevant infor-
mation (e.g. p, ¬p, q ⇒ ¬q). To prevent this artificial enforcement of variable sharing, relevant
attacks are performed only by sequents whose left hand sides contain the ‘most compact support’
for their consequents, as defined next.

Definition 4.9 Let � be a set of formulas and ψ a formula in a language L, and denote by
Atoms(�) the set of atomic formulas that appear in (some formula of) �.

(a) � is relevant to ψ , if Atoms(�) ∩ Atoms({ψ}) = ∅ implies that � = ∅. A non-empty set
� is irrelevant to a (non-empty) set � if Atoms(�) ∩ Atoms(�) = ∅.

(b) � is a most compact support for ψ (with respect to a logic L and a set of assertions S), if
� ⇒ ψ ∈ ArgL(S) and there is no �′ with Atoms(�′) � Atoms(�) such that �′ ⇒ ψ ∈
ArgL(S).11 We denote by mcs(ψ) the set of all formulas σ ∈ ϒ such that ϒ is a most
compact support for ψ (with respect to L and S).12

(c) Let R be an elimination rule in Figure 2, in which �1 ⇒ ψ1 attacks �2 ⇒ ψ2. The rele-
vant variant of R is the application of R with the side conditions (i.e. a restriction on the
application of R) that �1 ⊆ mcs(ψ1) and �1 is relevant to �2.

Example 4.10 Relevant Undercut is defined as follows:

[R-Ucut]
�1 ⇒ ψ1 ψ1 ⇒ ¬∧

�2 ¬∧
�2 ⇒ ψ1 �2,�′

2 ⇒ ψ2

�2,�′
2 ⇒ ψ2

provided that �1 is included in mcs(ψ1) and it is relevant to �2. Thus, for instance, when L = CL
and S = {p, ¬p, q}, each one of the the sequents p, q ⇒ (p ∨ ¬q) and p, q ⇒ ¬¬(p ∨ ¬q) attacks
according to this rule the sequent ¬p, q ⇒ ¬(p ∨ ¬q). Note, however, that unlike in the case of
Undercut, according to Relevant Undercut p, ¬p ⇒ ¬q does not attack q ⇒ q, since {p, ¬p} is
not relevant to q.

Remark 4.5 While the variable sharing principle prohibits the possibility that arguments would
attack other arguments which are irrelevant to them, a word of caution on using relevant attacks
(at least according to our definitions) is in order here. Consider, for instance, the set S1 = {p, p →
r, p ∧ q ∧ r, ¬r}. In this case, the sequent ¬r ⇒ ¬r is attacked according to [R-Ucut] only by
p, p → r ⇒ r and not by p ∧ q ∧ r ⇒ r, since the latter is not in mcs(r) relative to S1. Moreover,
the transition from S1 to its clausal form S2 = {p, p → r, q, r, ¬r}, which keeps the two sets
equivalent according to classical logic, has some implications on the attack relation, since ¬r ⇒
¬r is now attacked according to [R-Ucut] by r ⇒ r and not by p, p → r ⇒ r, which in turn does
not belong to mcs(r) relative to S2. It follows that relevant attacks are sensitive to the syntactic
structure of the underlying set of assertions.13 We refer to Avron (2014) for an in-depth discussion
on the relevance principle and corresponding logics.
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4.4. Quantitative attacks

Attacks between arguments may be triggered also by considerations that are not necessarily
purely logical, but can still be encoded in attack rules. One such consideration is concerned with
the amount of formulas that support an argument. Thus, for instance, as we have already noted,
when the left-hand-sides of the sequents consist only of literals, one may regard p, q ⇒ p ∨ q a
stronger argument for p ∨ q than p ⇒ p ∨ q, since the former has a bigger support.

To represent the above considerations in our setting, one may add to the attack rules side con-
ditions that take into account the cardinality of the support sets of the attacking and the attacked
arguments. Note however, that one has to be careful with the formalisation of such conditions.
For instance, a cardinality-based attack of �1 ⇒ ψ on �2 ⇒ ¬ψ cannot stem only from the fact
that |�1| > |�2| (where |�| denotes the size of �), since in this case the argument p, p → q ⇒ q
could be attacked by an argument like p, p → r, r → q ⇒ q or even by r, p, p → q ⇒ q, whose
support sets are bigger, but are certainly not stronger.

Example 4.11 A rebuttal attack rule for capturing ’stronger support due to more relevant
evidence’ may be formalized as follows:

�1 ⇒ ψ1 ⇒ ψ1 ↔ ¬ψ2 �2 ⇒ ψ2

�2 ⇒ ψ2
if |�1 ∩ mcs(ψ1)| ≥ |�2 ∩ mcs(ψ2)|,

where mcs(ψ) is the set of the most compact supports of ψ , defined in Definition 4.9.
To see an application of this rule, consider the set S = {p, q, ¬(p ∨ q)} and suppose that the

underlying logic is classical logic. Then p, q ⇒ p ∨ q attacks according to the above rule the
sequent ¬(p ∨ q) ⇒ ¬(p ∨ q) (but not the other way around), since its relevant evidential support
for p ∨ q is bigger than the relevant evidence the other sequent has for supporting ¬(p ∨ q).

We conclude Section 4 with a general observation about its realm.

Remark 4.6 Our purpose in this section was to exemplify the wide range of attack relations
that can be expressed by sequent-based rules. How to choose the most appropriate attacks for
specific needs is beyond the scope of this paper (mainly due to its generality and the fact that
many context-dependent considerations are involved in the study of well-behaved attacks, among
which are the language of the arguments and the type of the underlying logic). However, the
suitability of attack relations for specific settings is an important issue that should be verified
when it comes to applications. To see this we recall Remark 4.5 and the result by Gorogiannis &
Hunter (2011) that in the scope of standard propositional languages and classical logic canonical
undercuts and rebuttals yield complete extensions (see Definition 5.2) whose arguments have
mutually inconsistent conclusions.

For assuring the well-behaviour of attack relations one may need to refer to rationality pos-
tulates tailored to the specific logic under consideration (like those specified by Caminada &
Amgoud (2007)). This may trigger the introduction of additional machinery such as preference
orderings over arguments, as described, for example, in Modgil & Prakken (2013)14.

5. Sequent-based argumentation frameworks and their entailments

By Sections 3 and 4 we can now consider argumentation frameworks (Definition 2.1) whose
arguments are sequents and whose attacks are obtained by sequent elimination rules. We call
these structures sequent-based logical argumentation frameworks.
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Definition 5.1 A (sequent-based) logical argumentation framework for a set of formulas S,
based on a logic L and a set AttackRules of sequent elimination rules, is the pair AFL(S) =
〈ArgL(S),A〉, where A ⊆ ArgL(S)× ArgL(S) and (s1, s2) ∈ A iff there is R ∈ AttackRules
such that s1 R-attacks s2.

In what follows, somewhat abusing the notations, we shall sometimes identify A with
AttackRules.

We are ready now to use sequent-based logical frameworks for commonsense reasoning.
As usual in the context of abstract argumentation, we do so by incorporating Dung’s notion of
extension (Dung, 1995), defined next.

Definition 5.2 Let AFL(S) = 〈ArgL(S),A〉 be a sequent-based logical argumentation frame-
work (for the set S, based on the logic L), and let E ⊆ ArgL(S). We say that E attacks an argument
(sequent) s if there is an argument s′ ∈ E that attacks s (i.e. (s′, s) ∈ A). The set of arguments
that are attacked by E is denoted E+. We say that E defends s if E attacks every argument s′

that attacks s. The set E is called conflict-free if it does not attack any of its elements (i.e.
E+ ∩ E = ∅), E is called admissible if it is conflict-free and defends all of its elements, and E is
complete if it is admissible and contains all the arguments that it defends. Now:

• The minimal complete subset of ArgL(S) is the grounded extension of AFL(S),
• A maximal complete subset of ArgL(S) is a preferred extension of AFL(S),
• A complete subset E of ArgL(S) that attacks every argument in ArgL(S) \ E is a stable

extension of AFL(S).

Below, we denote by Cmpl(AFL(S)) (respectively, by Grnd(AFL(S)), Prf(AFL(S)),
Stbl(AFL(S))) the set of all the complete (respectively, all the grounded, preferred, stable)
extensions of AFL(S).

The induced entailment relations are now defined as follows:

Definition 5.3 Let AFL(S) = 〈ArgL(S),A〉 be a sequent-based logical argumentation frame-
work (for the set S of formulas and a logic L), and suppose that Sem ∈ {Grnd, Prf, Stbl}.

• S|∼∀
L,A,Semψ if every extension E ∈ Sem(AFL(S)) contains an argument of the form � ⇒

ψ .15 In this case we say that ψ skeptically follows from S according to Sem(AFL(S)).
• S|∼∃

L,A,Semψ if there is some extension E ∈ Sem(AFL(S)) that contains an argument of
the form � ⇒ ψ . In this case we say that ψ credulously follows from S according to
Sem(AFL(S)).16

Notation 5.4 In what follows we shall omit from the entailment notations of Definition 5.3
subscripts or superscripts that do not matter for specific statements. For instance, we shall write
|∼L,A,Sem to denote either |∼∀

L,A,Sem or |∼∃
L,A,Sem. Similarly, we use the notation |∼ whenever a

statement applies to each of the entailment relations in Definition 5.3.

Remark 5.1 A more cautious approach to skeptical reasoning would be to define AFL(S)-based
entailments by S|∼�

L,A,Semψ if there is an argument � ⇒ ψ in ArgL(S) that belongs to every
extension E ∈ Sem(AFL(S)). Clearly, it holds that if S|∼�

L,A,Semψ then S|∼∀
L,A,Semψ . In what

follows we shall concentrate on the entailments of Definition 5.3.
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Example 5.5 Let us consider a sequent-based argumentation system for S1 = {p, ¬p, q} that is
based on classical logic CL, and whose only attack rule is Relevant Undercut (see Example 4.10).
It is easy to see that no argument in ArgCL(S1) attacks the argument q ⇒ q, and so S1|∼CL,R-Ucut q.
On the other hand, p ⇒ p and ¬p ⇒ ¬p attack each other, therefore S1 |∼CL,R-Ucut p and
S1 |∼CL,R-Ucut ¬p.

Example 5.6 Consider the set S2 = {p, q, ¬(p ∧ q)}. When classical logic is the base logic none
of the formulas in S2 is derivable, since according to CL each pair of assertions in S2 attack the
third one by (Relevant) Undercut.

Suppose now that the base logic is Priest’s 3-valued paraconsistent logic LP (see Priest, 1989).
A sound and complete sequent calculus for this logic is obtained by keeping the axiom, structural
rules, and the inference rules for ∨ and ∧ of LK, and adding the axiom ⇒ p, ¬p and the negation
rules in Figure 3.

This time, whatever the attack rules in Figure 2 or their relevant versions are used, the con-
sequences would be different than those that are obtained when CL is the base logic. Indeed, in
LP sequents of the form p, ¬(p ∧ q) ⇒ ¬q are not derivable. It follows that while ¬(p ∧ q) ⇒
¬(p ∧ q) is still attacked in LP (by p, q ⇒ p ∧ q), p ⇒ p and q ⇒ q are not attacked.

Example 5.7 Let us recall the set S3 = {m, a, m ⊃ O¬f , (m ∧ a) ⊃ Of } of Example 4.8. Sup-
pose that SDL is the base logic and OO-SpecNeg is the single attack rule. We observe that, as
expected, one concludes the following:

• S3 |∼SDL,OO-SpecNeg O¬f . This is because one cannot derive O¬f , since the sequent m, m ⊃
O¬f ⇒ O¬f is attacked by m, a, (m ∧ a) ⊃ Of ⇒ ¬(m ⊃ O¬f ).

• S3|∼SDL,OO-SpecNeg Of . Indeed, the sequent m, a, (m ∧ a) ⊃ Of ⇒ Of is not attacked by an
argument in ArgSDL(S3).17

Remark 5.2 It is important to note at this point that the reasoning mechanism, depicted in the last
examples, is reinforced by corresponding derivation procedures. Such derivations are dynamic
in nature, as sequents may not only be introduced during a derivation, but may also be retracted.
This brings about a deviation in the standard definition of derivability in Gentzen-type proof
systems. We postpone the discussion about this to another paper. The interested reader is referred
to Arieli & Straßer (2014) for some definitions and preliminary discussions on this matter.

Next, we consider some basic properties of |∼. In what follows, we fix a (sequent-based)
logical argumentation framework AFL(S) = 〈ArgL(S),A〉 for a set S of L-formulas, based on
a logic L = 〈L, �〉 with a sound and complete sequent calculus C, and where A is the set of

Figure 3. Negation rules for LP.
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attacks obtained by the sequent elimination rules in AttackRules (that is, (s1, s2) ∈ A iff there is
R ∈ AttackRules and s1 R-attacks s2).

Proposition 5.8 If ArgL(S) is conflict-free with respect to AFL(S) then S|∼ψ iff S � ψ .

Proof If there are no attacks between arguments in ArgL(S), no attack rule in AttackRules is
applicable, and so the single extension of AFL(S) is ArgL(S). It follows, then, that S|∼ψ iff
there is a C-derivation of � ⇒ ψ for some � ⊆ S. Since C is sound and complete for L, the
latter is a necessary and sufficient condition for � � ψ , and so (by the monotonicity of L) it is a
necessary and sufficient condition for S � ψ .18 �

The next result is an immediate corollary of Proposition 5.8:

Corollary 5.9 If AttackRules = ∅ then |∼ and � coincide.

As the examples above show, |∼ and � are different. In the general case, we have:

Proposition 5.10 If S|∼ψ then S � ψ .

Proof If S|∼ψ then in particular there is a sequent � ⇒ ψ ∈ ArgL(S) for some � ⊆ S. Thus,
there is a proof in C for� ⇒ ψ , and so� � ψ . By the monotonicity of L we have that S � ψ . �

Proposition 5.8 implies, in particular, the following results for all the attack relations
considered previously in this paper:

Corollary 5.11 |∼ is cautiously reflexive: for every formula ψ such that ψ � ¬ψ it holds that
ψ |∼ψ .19

Corollary 5.12 For every atom p it holds that p|∼p.

Proof By Corollary 5.11 and the fact that since ¬ is a negation, for every p it holds that
p � ¬p. �

Despite of the last two corollaries, (all) the examples above show that |∼ may not be reflexive.
These examples also show that in general |∼ is not monotonic either. For instance, when C = LK
and A consists of any of the attack rules in Figure 2, we have that p|∼p while p, ¬p |∼p.

Like reflexivity, weak forms of monotonicity can be guaranteed in particular cases. For
instance, as Proposition 5.14 below shows, when adding unrelated information to an argumenta-
tion framework with relevant attack rules, this information should not disturb previous inferences.
For this proposition we first recall the following known notion:

Definition 5.13 Let L = 〈L, �〉 be a propositional logic.

• A set T of formulas (in L) is called �-consistent if there exists a formula ψ (in L) such
that T � ψ .

• We say that L is uniform, if for every two sets of formulas T1, T2 and formula ψ we have
that T1 � ψ when T1, T2 � ψ and T2 is a �-consistent theory that has no atomic formulas
in common with �1 ∪ {ψ}.
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Remark 5.3 By Łos-Suzsko Theorem (Łos & Suzsko, 1958), a finitary propositional logic
〈L, �〉 is uniform iff it has a single characteristic matrix (see also Urquhart, 2001). Thus, for
instance, the logics in this paper are uniform.

Proposition 5.14 Let L = 〈L, �〉 be a uniform logic, and let R be a set of attack rules in Rel-
evant Compact Defeat, Relevant Compact Direct Defeat, Relevant Undercut, Relevant Direct
Undercut, and Relevant Canonical Undercut. If S1|∼L,Rψ and S2 is a �-consistent set of formulas
that is irrelevant (in the sense of Definition 4.9) to S1, then S1,S2|∼L,Rψ .20

Proof First, we show the following lemma: �

Lemma 5.15 No argument in ArgL(S1) is attacked, according to the rules in R, by an argument
in ArgL(S1 ∪ S2)− ArgL(S1).

Proof In the notations of Definition 5.2, we have to show that ArgL(S1) ∩ (ArgL(S1 ∪
S2)− ArgL(S1))

+ = ∅. Indeed, assume for contradiction that some ϒ ⇒ ψ ∈ ArgL(S1 ∪ S2)−
ArgL(S1) R-attacks some � ⇒ φ ∈ ArgL(S1), and let δ ∈ ϒ ∩ S2 (such a δ exists, otherwise
ϒ ⊆ S1 and soϒ ⇒ ψ ∈ ArgL(S1)). In particular, δ ∈ mcs(ψ), and so there is a sequent� ⇒ ψ

that R-attacks � ⇒ φ for some R ∈ R and where � is a most compact support for ψ that
contains δ.

• Suppose first that R is one of the defeat rules. In this case ψ = ¬∧
�′, where �′ ⊆

�. Since S2 is �-consistent, by the uniformity of L we have that � ∩ S1 ⇒ ¬∧
�′ ∈

ArgL(S1), but since Atoms(� ∩ S1) � Atoms(�) (as δ ∈ �), this contradicts the assump-
tion that � is a most compact support for ψ .

• Suppose now that R is one of the undercut rules. In this case both of ψ ⇒ ¬∧
�′ and

¬∧
�′ ⇒ ψ are C-derivable for some �′ ⊆ �. Now, the application of Remark 3.2 on

� ⇒ ψ and ψ ⇒ ¬∧
�′ yields that � ⇒ ¬∧

�′ ∈ ArgL(S1 ∪ S2). Hence, by the uni-
formity of L and since S2 is �-consistent, � ∩ S1 ⇒ ¬∧

�′ ∈ ArgL(S1). By Remark 3.2
again and the fact that ¬∧

�′ ⇒ ψ is C-derivable, we get that � ∩ S1 ⇒ ψ ∈ ArgL(S1).
Once again, this is a contradiction to the choice of � as a most compact support for ψ ,
since Atoms(� ∩ S1) � Atoms(�). �

The proof of Proposition 5.14 now proceeds as follows: By the lemma above, the addition of
irrelevant information (S2) to existing information (S1) does not produce more attacks on existing
arguments, and so every Sem-extension E1 ∈ Sem(AFL(S1)) is included in some Sem-extension
E2 ∈ Sem(AFL(S1 ∪ S2)). We also get the converse, since in our case the arguments in E ∩
(ArgL(S1 ∪ S2)− ArgL(S1)) do not defend the arguments in E , and so if E ∈ Sem(AFL(S1 ∪
S2)) then E ∩ ArgL(S1) ∈ Sem(AFL(S1)). Suppose then that S1|∼L,Rψ . This means that every
[some] extension E1 ∈ Sem(AFL(S1)) contains an argument of the form � ⇒ ψ where � ⊆ S1,
and so every [some] extension E2 ∈ Sem(AFL(S1 ∪ S2)) contains an argument of the form � ⇒
ψ where � ⊆ S1 (thus � ⊆ S1 ∪ S2). This implies that S1,S2|∼L,Rψ . �

In the Appendix we show that, assuming that the base logic satisfies some simple prop-
erties, the cautious form of monotonicity in Proposition 5.14 holds also for frameworks with
non-relevant attack rules (see Propositions A.2 and A.3).

We conclude this section by checking two properties of |∼ that assure proper handling of
inconsistent information: paraconsistency (da Costa, 1974) and crash resistance (Caminada,
Carnielli, & Dunne, 2012). We start with the former.
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Proposition 5.16 If � is paraconsistent (p, ¬p � q for p = q) then so is |∼.

Proof By Proposition 5.10, S |∼ψ when S � ψ . Thus, if p, ¬p � q then p, ¬p |∼q as well, and
so |∼ is paraconsistent. �

Next, we consider crash resistance.

Definition 5.17 Let S be a set of L-formulas such that Atoms(S) � Atoms(L).

• S is called contaminating for |∼, if for every set T that is irrelevant for S and for every
formula ϕ, it holds that S|∼ϕ iff S, T |∼ϕ.

• |∼ is crash-resistant if there is no set of formulas that is contaminating for |∼.

Proposition 5.18 Let L = 〈L, �〉 be a uniform logic that has the variable sharing property (so
it resists irrelevant information: S � ψ when ψ is irrelevant to S). Then, in the notations of
Proposition 5.14, |∼L,R is crash resistant.

Proof Suppose for a contradiction that there is a set S that is contaminating for |∼L,R. Let p be
an atom that does not appear in S. Then S � p and by Proposition 5.10, S |∼L,R p. Since S is
contaminating we have that S, p |∼L,R p. On the other hand, by Corollary 5.12, p|∼L,R p, and so
by Proposition 5.14, S, p|∼L,R p — a contradiction. �

Proposition 5.19 Let L = 〈L, �〉 be a logic with a �-deductive ⊃. Suppose that

(1) L has the variable sharing property for consistent sets (if S is �-consistent and ψ is
irrelevant to S then S � ψ), and that

(2) L is consistency-enforcing (� ¬∧
� whenever a finite � is �-inconsistent).

Let ∅ = R ⊆ {Defeat, Compact Defeat, Undercut, Canonical Undercut, Compact Undercut}.
Then, |∼L,R is crash resistant.

Proof. First we show:

Lemma 5.20 For any S and any s = ϒ ⇒ ψ ∈ ArgL(S) such that ϒ is �-inconsistent there is
a s′ ∈ ArgL(S)− ArgL(S)+ that R-attacks s.

Proof Since ϒ is �-inconsistent, by (2), s′ = ⇒ ¬∧
ϒ ∈ ArgL(S). It is easy to see that s′

R-attacks s for all R ∈ R and that s′ is not attacked in ArgL(S). �

Suppose for a contradiction that there is a set S that is contaminating for |∼L,R. Let p be
an atom that does not appear in S. By (1), for every ϒ ⇒ p ∈ ArgL(S), ϒ is �-inconsistent.
By Lemma 5.20 we have S |∼L,Rp and hence by the supposition also S, p |∼L,R p. To see that
S, p |∼L,R p, suppose thatϒ ⇒ ψ ∈ ArgL(S ∪ {p})R-attacks p ⇒ p. Thenψ ⇒ ¬p ∈ ArgL(S ∪
{p}) and by transitivity,ϒ ⇒ ¬p ∈ ArgL(S ∪ {p}). If p /∈ ϒ ,ϒ is �-inconsistent by (1). If p ∈ ϒ
then ϒ − {p} ⇒ p ⊃ ¬p ∈ ArgL(S) and again ϒ is �-inconsistent by (1). By Lemma 5.20, then,
ϒ ⇒ ψ is attacked by some non-attacked sequent in ArgL(S ∪ {p}). It follows that p ⇒ p is
defended by S ∪ {p} and hence S, p|∼L,Rp. Thus S is cannot be contaminating for |∼L,R.
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6. Related work

Different approaches to logical argumentation have been introduced in the literature, including
formalisms that are based on classical logic (Besnard & Hunter, 2001, 2009), defeasible reasoning
(Governatori, Maher, Antoniou, & Billington, 2004; Pollock, 1991, 1995; Simari & Loui, 1992)
abstract argumentation and the ASPIC+ framework (Modgil & Prakken, 2014; Prakken, 2010),
assumption-based argumentation (Dung, Kowalski, & Toni, 2006), default logic (Prakken, 1993),
situation calculus (Brewka, 2001), and so forth.

The starting point of this paper is Besnard and Hunter’s approach to logical argumentation
(Besnard & Hunter, 2001, 2009), which we believe is a successful way of representing deduc-
tive reasoning in argumentation-based environments (we refer to Besnard & Hunter, 2009 for
some comparisons of this approach to other logic-based approaches, in particular the above-
mentioned work on defeasible reasoning). Our work extends this approach in several ways: first,
the usual conditions of minimality and consistency of supports are abandoned. This offers a sim-
pler way of producing arguments and identifying them (also for systems that are not formulated
in a Gentzen-type style).21 Second, arguments are produced and are withdrawn by rules of the
same style, allowing for a more uniform way of representing the frameworks and computing their
extensions. Third, our approach is logic-independent. This allows in particular to rely on a clas-
sical as well as on a non-classical logic, and so, for instance, paraconsistent formalisms may be
used for improving consistency-maintenance.

Another sequent-based approach to logical argumentation has been proposed by Pol-
lock (1991, 1995), where arguments are sequences of sequents of the form 〈�, p〉, obtained
by generic inference rules (Input, Reason, Supposition, Conditionalisation, and Dilemma), and
organised in inference graphs. Unlike the present approach, Pollock distinguishes between
defeasible and conclusive (strict) arguments, where only defeasible arguments can be attacked.

The ingredients of Pollock’s setting may be simulated in our setting. First, in the presence of a
calculus like LK, Pollock’s rules are translatable into our representation. For instance, Input is the
Axiom ψ ⇒ ψ with Left-Weakening, Supposition is Reflexivity, Conditionalisation is [⇒⊃],
and Dilemma is reasoning by cases. Second, it is not difficult to adjust our setting for accommo-
dating two (or more) kinds of arguments. In the presence of strict argument, denoted by � ⇒ ψ ,
and defeasible arguments, denoted by � ↪→ ψ , one may define attack rules of the following
form:

�1 ↪→ ψ1 �2 ⇒ ψ2 . . . �n−1 ⇒ ψn−1 �n ↪→ ψn

�n ↪→ ψn
.

The rule above expressed that (an argument obtained from the defeasible schema) �1 ↪→
ψ1 attacks (an argument obtained from the defeasible schema) �n ↪→ ψn, provided that the
conditions in {�2 ⇒ ψ2, . . . ,�n−1 ⇒ ψn−1} are satisfied.

The ASPIC+ framework (Modgil & Prakken, 2014; Prakken, 2010) is a comprehensive
instantiation of Dung’s abstract argumentation framework (Dung, 1995). Just like Pollock’s
account, it distinguishes between defeasible and non-defeasible arguments based on the distinc-
tion between defeasible and strict rules. Arguments are inference trees. Attacks are generated
in view of a contrariness function that also captures weaker negations than classical negation.
Different consequence relations are devised in view of semantics for abstract argumentation. In
this sense, ASPIC+, like our approach, provides a very flexible environment for logical argu-
mentation, leaving open the choices of the underlying language, the core logic, and the adequate
calculus.

Our approach overcomes some difficulties of using classical logic to obtain strict rules in
ASPIC+ and in Pollock’s OSCAR system (Pollock, 1992, 1995). In Wu (2012, Chapter 6) it is
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shown that consequences are not necessarily retained when unrelated information is added to
those systems under the standard semantics such as preferred or grounded semantics. As shown
in Propositions 5.3, this difficulty may be avoided in some of the sequent-based settings proposed
here (see also Propositions A.2 and A.3 in the Appendix).

7. Conclusion and further work

The primary message of this paper is that sequent-based representation and reasoning is an appro-
priate setting for logic-based modelling of argumentation systems. Among others, this approach
enables a general and natural way of expressing arguments and implies that well-studied tech-
niques and methodologies may be borrowed from proof theory and applied in the context of
argumentation theory.

Some important issues are left for future work. One of them is a development of practi-
cal means for computing the consequences of sequent-based argumentation frameworks. This
requires an automated machinery that not only produces sequents, but is also capable of elim-
inating them, as well as their consequences. Here, techniques like those used in the context of
dynamic proof theory for adaptive logics may be useful (see, e.g. Batens, 2007; Straßer, 2014).
Some results in this direction are reported in Arieli & Straßer (2014).

Future work also involves the exploration of further utilisations of arguments as sequents.
Below, we hint of two such opportunities:

• We used Gentzen-type systems which employ finite sets of formulas. However, one could
follow Gentzen’s original formulation and use sequences instead. This would allow, for
instance, to encode preferences in the arguments, where the order in a sequence represents
priorities. In this way one would be able to argue, for example, that � ⇒ p for any finite
sequence � of literals that contains p and in which the first appearance of p precedes any
appearance of ¬p. Another possibility is to employ multisets in the sequents, for example,
for representing majority considerations. Thus, one may state that � ⇒ p holds whenever
the number of appearances of p in a multiset � of literals is strictly bigger than the number
of appearances of ¬p in the same multiset. Of-course, the opposite may also be stated
when incorporating mathematical objects other than (finite) sets. That is, it is possible to
explicitly indicate that the order and/or the number of appearances of formulas do not
matter, by introducing (either of) the following standard structural rules:

Permutation:
�1,ψ ,ϕ,�2 ⇒ �

�1,ϕ,ψ ,�2 ⇒ �

� ⇒ �1,ψ ,ϕ,�2

� ⇒ �1,ϕ,ψ ,�2
,

Contraction:
�1,ψ ,ψ ,�2 ⇒ �

�1,ψ ,�2 ⇒ �

� ⇒ �1,ψ ,ψ ,�2

� ⇒ �1,ψ ,�2
.

• The incorporation of more complex forms of sequents, such as hypersequents
(Avron, 1987) or nested sequents (Brünnler, 2010), allows to express more sophisticated
forms of argumentation, such as argumentation by counterfactuals or case-based argumen-
tation. For instance, the nested sequent �1 ⇒ (�2 ⇒ ψ) may be intuitively understood by
‘if �1 were true, one would argue that �2 ⇒ ψ’ and the hypersequent �1 ⇒ ψ1 | �2 ⇒ ψ2

may be understood (again, intuitively) as a disjunction, at the meta-level, of the arguments
�1 ⇒ ψ1 and �2 ⇒ ψ2.
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Notes
1. Clearly, the argument A may be split into two BH-arguments, A1 = 〈{p}, p ∨ q〉 and A2 = 〈{q}, p ∨ q〉,

but in general such rewriting requires further processing and might cause a blowup in the number of
arguments.

2. Another argument that is sometimes pleaded for set-inclusion minimisation is that it reduces the number
of attacks. Again, it is disputable whether set-inclusion minimisation is the right principle for assuring
this property, since, for instance, the singletons S1 = {p1} and S2 = {p2 ∧ . . . ∧ pn}, supporting (e.g. in
classical logic) the claim p1 ∨ . . . ∨ pn, are incomparable w.r.t. set-inclusion (and moreover they even
do not share any atomic formula), but it is obvious that as n becomes larger S2 becomes more exposed
to attacks than S1.

3. The availability of an implication connective is not required – see Remark 4.3.
4. Following the usual convention, we shall omit set-brackets from the left-hand sides of sequents.
5. Obviously, for the definition of an L-argument it does not matter which of the calculi that are sound and

complete for L is chosen.
6. Following the usual conventions, we use commas in a sequent for denoting the union operation, and

omit curly brackets of singletons (i.e. we write ψ instead of {ψ}).
7. Note that ArgsBH(S) is cautiously S-reflexive: 〈{ψ},ψ〉 ∈ ArgsBH(S) for a consistent formula ψ ∈ S.
8. Gorogiannis & Hunter (2011) consider a stricter implication between attacks, in which φ = ψ .
9. To reduce the amount of notations, we use the same names for the rules with and without the implication

connective. This will not cause ambiguity in what follows.
10. Note that ‘PP-Spec’ or ‘PP-SpecNeg’ variants would not be sensible, since permissions with

incompatible content do not conflict in any intuitive sense.
11. Note that this condition does not imply a subset-minimality of �, but rather assures that � does not

contain information that is irrelevant (in the sense of Item (a)) for its conclusion.
12. For instance, when L = CL and S = {p, q}, we have that p, q ∈ mcs(p ∨ q).
13. On the other hand, relevant attack rules have some desirable properties that are not necessarily shared

by other rules, like being invariant with respect to irrelevant information – see Lemma 5.15.
14. See also the conclusion of this paper for a short discussion on implementing preferences in sequents.
15. Recall that by the definition of ArgL(S), this implies that � ⊆ S.
16. Similar entailment relations may of-course be defined for other semantics of abstract argumentation

frameworks, such as semi-stable semantics (Caminada, 2006), ideal semantics (Dung, Mancarella, &
Toni, 2007), eager semantics (Caminada, 2007), and so forth.

17. It is important to note that m, a, (m ∧ a) ⊃ Of ⇒ Of is attacked by SDL-derivable arguments (such as
m, m ⊃ O¬f , m, a, (m ∧ a) ⊃ O¬f ⇒ ¬((m ∧ a) ⊃ Of )), but none of them is in ArgSDL(S3).

18. In case that S is infinite, compactness of L should be assumed along the proof.
19. Note that the condition is indeed required here. For instance, in an argumentation framework based on

CL and Undercut it holds that p ∧ ¬p |∼CL,Ucutp ∧ ¬p. (Indeed, according to any semantics considered
here p ∧ ¬p ⇒ p ∧ ¬p is undefended, since it is attacked by ⇒ ¬(p ∧ ¬p), and the latter is not attacked
by any other sequent since its left-hand side is empty).

20. Recall that by Notation 5.4 this means that the proposition holds for every entailment of the form
|∼π

L,R,Sem considered in Definition 5.3, where L and R are as defined in the proposition, Sem is any of
the standard argumentation semantics considered in this paper, and π ∈ {∀, ∃}.
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21. Other techniques for generating arguments are considered, for example, in Besnard, Grégoire, Piette,
and Raddaoui (2010) and Efstathiou & Hunter (2011).
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Appendix. Some further results about the restricted monotonicity of |∼
Below we show that under some (rather intuitive) requirement on the base logic L, restricted monotonicity
with respect to relevant attacks (Proposition 5.3) may be generalised to other attack rules. For this, we first
need to introduce some new terminology.

Definition A.1 Let L = 〈L, �〉 be a propositional logic.

• We say that L is consistency-enforcing, if for every finite set of L-formulas � that is not �-consistent
it holds that � ¬ ∧

�.
• We say that L is ¬∧-expanding, if ϒ � ¬∧

� implies that ϒ � ¬∧
�′ for every finite set �′ that

contains �.

In what follows we consider sequent elimination rules representing premise attacks (prem-attacks, for
short), that is: all the forms of defeat and undercut in Figure 2. In addition, we assume that a given set R of
prem-attacks rules contains at least one of the rules Defeat, Compact Defeat, Undercut, Compact Undercut,
or Canonical Undercut.
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The main results of this Appendix are then the following:

Proposition A.2 Let L = 〈L, �〉 be a uniform, ¬∧-expanding and consistency-enforcing logic, R a set
of prem-attacking rules, and Sem a semantics which is either complete, grounded, preferred or stable. If
S1|∼∀

L,R,Semψ and S1 is irrelevant to S2, then S1,S2|∼∀
L,R,Semψ .

Proposition A.3 Let L = 〈L, �〉 be a uniform, ¬∧-expanding and consistency-enforcing logic, R a set of
prem-attacking rules, and Sem a semantics which is either complete, grounded or preferred (The question
whether this proposition holds also for stable semantics is left for future work.). If S1|∼∃

L,R,Semψ and S1 is

irrelevant to S2, then S1,S2|∼∃
L,R,Semψ .

Note that, unlike Proposition 5.14, in the propositions above S2 need not be �-consistent.
To show the Propositions A.2 and A.3, we need a few lemmas. The first lemma holds in every argumen-

tation framework AF = 〈Args,A〉 with a set Root(AF) = Args − Args+ of unattacked arguments.

Lemma A.4 Let AF ′ = AF ↓Args−Root(AF)+ be the framework AF = 〈Args,A〉, restricted to Args −
Root(AF)+. Then Cmpl(AF) = Cmpl(AF ′).

Proof To see that Cmpl(AF) ⊆ Cmpl(AF ′), suppose that E ∈ Cmpl(AF). Then Root(AF) ⊆ E . Since
E is conflict-free, necessarily Root(AF)+ ∩ E = ∅, and so E ⊆ Args − Root(AF)+. Suppose now that E
defends in AF ′ an argument A ∈ Args − Root(AF)+. If E defends A also in AF then by the completeness
of E , A ∈ E . If E does not defend A in AF , then there is a B ∈ Root(AF)+ that A-attacks A, but B ∈ E+.
However, since B ∈ Root(AF)+, there is a C ∈ Root(AF) such that C A-attacks B. But Root(AF) ⊆ E ,
so C ∈ E , which contradicts the assumption that B ∈ E+. We have thus shown that every argument that is
defended by E in AF ′ is in E . Let now A ∈ E and suppose some B ∈ Args − Root(AF)+ attacks A in AF ′.
Clearly, B also attacks A in AF . By the completeness of E in AF , B is attacked by some C ∈ E in AF .
Since B ∈ Args − Root(AF)+ and E ⊆ Args − Root(AF)+, C also attacks B in AF ′. Hence, E defends
itself in AF ′. Altogether, we have shown that E ∈ Cmpl(AF ′)

To see that Cmpl(AF ′) ⊆ Cmpl(AF), suppose that E ∈ Cmpl(AF ′). Note first that by the definition of
AF ′, Root(AF) ⊆ Root(AF ′). Since E is complete in AF ′, Root(AF ′) ⊆ E , and hence Root(AF) ⊆ E .
We now show that E ∈ Cmpl(AF). Clearly, E is conflict-free in AF since the only attacks that are added by
moving from A′ (the attack relation of AF ′) to A are attacks between Args and Root(AF)+ and between
Root(AF)+ and Args. Suppose now that E defends in AF some A ∈ Args. If E also defends A in AF ′ then
A ∈ E . Otherwise, E does not defend A in AF ′. By the conflict-freeness of E and since Root(AF) ⊆ E ,
A cannot be in Root(AF)+. Hence, A ∈ Args − Root(AF)+, and so there is an A′-attacker B of A such
that there is no C ∈ E such that C A′-attacks B. However, there must be a D ∈ E such that D A-attacks
B. This means that B ∈ Root(AF)+. However, since B A′-attacks A, B /∈ Root(AF)+, a contradiction.
We have thus shown that whenever E defends some A ∈ Args then A ∈ E . Conversely, suppose that A ∈ E
and some B ∈ Args attacks A in AF . If B ∈ Root(AF)+ then B ∈ E+, since Root(AF) ⊆ E . In case
B ∈ Args − Root(AF)+, also B ∈ E+, as E ∈ Cmpl(AF ′). Thus, E defends all of its elements. Altogether,
we have shown that E ∈ Cmpl(AF). �

Remark A.1 Lemma A.4 may be adjusted to any completeness-based semantics, that is, to every
semantics Sem such that Cmpl(AF) = Cmpl(AF ′) implies Sem(AF) = Sem(AF ′) and Sem(AF) ⊆
Cmpl(AF) (Note that all the semantics considered in this paper are completeness-based.). Thus, for every
framework AF , its induced framework AF ′ as defined in Lemma A.4, and a completeness-based semantics
Sem, we have that Sem(AF) = Sem(AF ′).

Next, we fix some logic L = 〈L, �〉 and a sequent-based argumentation framework AFL(S) =
〈ArgL(S),A〉, for which we use the following notations:

• Arg∅
L(S) = {A ∈ ArgL(S) | A is of the form ⇒ �},

• Arg⊥
L (S) = {A ∈ ArgL(S) | A is of the form ϒ ⇒ � where ϒ is �-inconsistent}.

By Remark A.1 we conclude that every extension with respect to a completeness-based semantics of
an argumentation framework AFL(S) whose base logic L is consistency-enforcing (and whose elimination
rules are prem-attacking), consists only of sequents whose premises are �-consistent. Formally:
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Corollary A.5 Let AFL(S) = 〈ArgL(S),A〉 be a sequent-based argumentation framework where L is
consistency-enforcing and whose rules in R are prem-attacks. Then for every completeness-based semantics
Sem and every E ∈ Sem(AFL(S)) it holds that E ∩ Arg⊥

L (S) = ∅.

Proof Since AFL(S) has only prem-attack rules, Arg∅
L(S) ⊆ Root(AFL(S)). Since L is consistency-

enforcing, Arg⊥
L (S) ⊆ Arg∅

L(S)+ (This is due to the supposition that R contains at least one of the rules
Defeat, Compact Defeat, Undercut, Compact Undercut, or Canonical Undercut, mentioned at the beginning
of the Appendix. This allows to derive the sequent ⇒ ¬ ∧

ϒ where ϒ is �-inconsistent.). Thus:

Arg⊥
L (S) ⊆ Arg∅

L(S)+ ⊆ Root(AFL(S))+. (A1)

By Remark A.1, if E ∈ Sem(AFL(S)) then E ∈ Sem(AF ′
L(S)), and so:

E ∩ Root(AFL(S))+ = ∅. (A2)

By Equations (A1) and (A2) the corollary follows. �

The next two lemmas present other properties that will be needed in the sequel.

Lemma A.6 Let L = 〈L, �〉 be a uniform and consistency-enforcing logic, and let R be a set of prem-attack
rules. Suppose that S1 is a set of L-formulas that is irrelevant to a set of L-formulas S2. If an argument
A = ϒ ⇒ ψ ∈ ArgL(S1 ∪ S2)− Arg⊥

L (S1 ∪ S2) R-attacks an argument B = � ⇒ φ ∈ ArgL(S1) accord-
ing to a rule R ∈ R, then there is a formula ψ1 such that the argument A1 = ϒ ∩ S1 ⇒ ψ1 ∈ ArgL(S1)
R-attacks B.

Proof Suppose that A R-attacks B where R ∈ R.

• Suppose first that R is a direct prem-attacking rule (i.e. either Direct Defeat, Compact Direct
Defeat, or Direct Undercut). In this case ψ � ψ ′ where ψ ′ ∈ �. Hence, by Remark 3.2, ϒ ⇒ ψ ′
is in ArgL(S1 ∪ S2). Since ϒ ∩ S2 is �-consistent (because so is ϒ), by the uniformity of L,
A1 = ϒ ∩ S1 ⇒ ψ ′ ∈ ArgL(S1). Obviously, A1 R-attacks B.

• Suppose now that R is a compact prem-attacking rule (Compact Defeat, Compact Direct Defeat,
Compact Undercut). Then ψ = ¬ ∧

�′ for some �′ ⊆ �. Again, by the uniformity of L we have that
A1 = ϒ ∩ S1 ⇒ ¬ ∧

�′ ∈ ArgL(S1). Clearly, A1 R-attacks B.
• Suppose that R is any other prem-attacking rule (that is, Undercut, Canonical Undercut, or Defeat).

Then ψ � ¬∧
�′ for some �′ ⊆ �. By Remark 3.2, then, ϒ ⇒ ¬∧

�′ ∈ ArgL(S1 ∪ S2). Again, by
the uniformity of L, we have that A1 = ϒ ∩ S1 ⇒ ¬∧

�′ ∈ ArgL(S1). Clearly, A1 R-attacks B.

In each case, then, there is a formula ψ1 such that the argument ϒ ∩ S1 ⇒ ψ1 is in ArgL(S1) and
R-attacks B. �

Notation A.7 E+
S,R = {A ∈ ArgL(S) | there is a B ∈ E such that B R-attacks A for some R ∈ R}.

Lemma A.8 Let AFL(S) = 〈ArgL(S),A〉 be a sequent-based argumentation framework, where L is an
¬∧-expanding logic and R is a set of prem-attack rules. Suppose that E ∈ Cmpl(AFL(S)) and that A =
ϒ ⇒ � and A′ = ϒ ′ ⇒ �′ are derivable sequents where ϒ ′ ⊆ ϒ and ϒ ′ ⊆ S. Then:

(1) If A ∈ E then A′ ∈ E .
(2) If A′ ∈ E+

S,R then A ∈ E+
S ′,R, where S ′ is any set containing ϒ and S.

Proof To see the first item, note that since E is a complete extension, we only have to show that E defends
A′. Suppose then that B = � ⇒ ψ ∈ ArgL(S)R-attacks A′ where R ∈ R. We show that B ∈ E+.

• If R is a direct prem-attack or (Compact) Undercut, then B also attacks A, and so B ∈ E+.
• In the other cases (Defeat, Compact Defeat, Canonical Undercut) ψ ⇒ ¬∧

ϒ ′ is derivable. Since L
is ¬∧-expanding, ψ ⇒ ¬ ∧

ϒ is derivable. By Remark 3.2, B′ = � ⇒ ¬ ∧
ϒ ∈ ArgL(S). Clearly,

B′ R-attacks A and so B′ ∈ E+. However, since B′ has the same premise set as B, also B ∈ E+.
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For the second item, let B = � ⇒ ψ be an argument in E that R-attacks A′ for some R ∈ R. Again, we
consider two cases.

• If R is a direct prem-attack or (Compact) Undercut, clearly B R-attacks A.
• Let R be Defeat, Compact Defeat or Canonical Undercut. Then ψ ⇒ ¬∧

ϒ ′ is derivable, and since
L is ¬∧-expanding also ψ ⇒ ¬ ∧

ϒ is derivable. By Remark 3.2, B′ = � ⇒ ¬∧
ϒ ∈ ArgL(S).

Clearly, B′ R-attacks A. By Item 1, B′ ∈ E .

In both cases there is an argument in E that R-attacks A, and so A ∈ E+
S ′,R. �

The main lemma for Propositions A.2 and A.3 is the following:

Lemma A.9 Let L be a uniform, consistency-enforcing, and ¬∧-expanding logic, and let R be a set of
prem-attack rules. If S1 is irrelevant to S2, then:

(1) If E ∈ Cmpl(AFL(S1 ∪ S2)) then E+
S1,R = (E ∩ ArgL(S1))

+
S1,R.

(2) If E ∈ Cmpl(AFL(S1 ∪ S2)) then E ∩ ArgL(S1) ∈ Cmpl(AFL(S1)).
(3) If E ∈ Cmpl(AFL(S1)) then E ∈ Adm(AFL(S1 ∪ S2)).
(4) If E ∈ Prf(AFL(S1 ∪ S2)) then E ∩ ArgL(S1) ∈ Prf(AFL(S1)).
(5) If E ∈ Stbl(AFL(S1 ∪ S2)) then E ∩ ArgL(S1) ∈ Stbl(AFL(S1)).
(6) If E ∈ Cmpl(AFL(S1)) there is E ′ ∈ Cmpl(AFL(S1 ∪ S2)) such that E ⊆ E ′.
(7) If E ∈ Prf(AFL(S1)) there is E ′ ∈ Prf(AFL(S1 ∪ S2)) such that E ⊆ E ′.
(8) If Grnd(AFL(S1)) = {E} and Grnd(AFL(S1 ∪ S2)) = {E ′} then E ⊆ E ′.

Proof Let L, R, S1 and S2 be as in the lemma.

Item 1: Obviously, (E ∩ ArgL(S1))
+
S1,R ⊆ E+

S1,R. For the converse, let B ∈ ArgL(S1) be an argument in

E+
S1,R. Then there is an argument A = ϒ ⇒ ψ ∈ E that R-attacks B. By Lemma A.6 (which is applicable

here, since by Corollary A.5, E ∩ Arg⊥
L (S1 ∪ S2) = ∅), there is an argument A′ = ϒ ∩ S1 ⇒ ψ ′ such that

A′ R-attacks B. By Lemma A.8(1), A′ ∈ E , and so B ∈ (E ∩ ArgL(S1))
+
S1,R.

Item 2: Let E ∈ Cmpl(AFL(S1 ∪ S2)). In particular, E and all its subsets are conflict-free, thus
E ∩ ArgL(S1) is conflict-free. To see that E ∩ ArgL(S1) is admissible, suppose that A ∈ ArgL(S1) attacks
some B ∈ E ∩ ArgL(S1). Then, since E is complete in AFL(S1 ∪ S2), A ∈ E+

S1∪S2,R and hence A ∈ E+
S1,R.

By Item 1, A ∈ (E ∩ ArgL(S1))
+
S1,R. Thus E ∩ ArgL(S1) indeed defends itself. It remains to show that

E ∩ ArgL(S1) defends exactly itself. For this, suppose that E ∩ ArgL(S1) defends some A ∈ ArgL(S1).
Assume for a contradiction that A ∈ E ∩ ArgL(S1) and hence A ∈ E . Since E is complete, E does not defend
A. Hence, there is an argument B = ϒ ⇒ ψ ∈ ArgL(S1 ∪ S2) such that B R-attacks A and B ∈ E+

S1∪S2,R.

Suppose first that B ∈ Arg⊥
L (S1 ∪ S2). Since L is consistency-enforcing, there is an argument C = ⇒ φ that

attacks B. Since C ∈ Arg∅
L(S1 ∪ S2) ⊆ Root(AFL(S1 ∪ S2)) ⊆ E we have that C ∈ E , which is a contra-

diction to our assumption that B ∈ E+
S1∪S2,R. Hence, B ∈ ArgL(S1 ∪ S2)− Arg⊥

L (S1 ∪ S2). By Lemma A.6

(which again is applicable here, since by Corollary A.5, E ⊆ ArgL(S1 ∪ S2)− Arg⊥
L (S1 ∪ S2)), there is

a B1 = ϒ ∩ S1 ⇒ ψ ′ ∈ ArgL(S1) that R-attacks A. Hence, since E ∩ ArgL(S1) defends A, B1 ∈ (E ∩
ArgL(S1))

+
S1,R ⊆ (E ∩ ArgL(S1))

+
S1∪S2,R. But then by Lemma A.8(2), also B ∈ (E ∩ ArgL(S1))

+
S1∪S2,R

and thus B ∈ E+
S1∪S2,R – a contradiction.

Item 3: Obviously E is conflict-free in 〈ArgL(S1 ∪ S2), R〉, since it is conflict-free in 〈ArgL(S1), R〉.
Suppose that A = ϒ ⇒ ψ ∈ ArgL(S1 ∪ S2) R-attacks some B ∈ E . If A ∈ Arg⊥

L (S1 ∪ S2) then by
Equation (A1) in the proof of Corollary A.5, A ∈ Root(〈ArgL(S1), R〉)+ and so A ∈ E+

S1,R (since E
is complete AFL(S1)). Suppose now A ∈ Arg⊥

L (S1 ∪ S2). Thus, by Lemma A.6, there is an argument
A1 = ϒ ∩ S1 ⇒ ψ ′ ∈ ArgL(S1) such that A1 R-attacks B. Since E is admissible in AFL(S1), A1 ∈ E+

S1,R.

Thus, by Lemma A.8(2), also A ∈ E+
S1∪S2,R. Hence, E ∈ Adm(AFL(S1 ∪ S2)).

Item 4: Suppose for a contradiction that E ∩ ArgL(S1) ∈ Prf(AFL(S1)). Then there is a set E ′ � E ∩
ArgL(S1) which is complete in AFL(S1). Let E ′′ = E ′ ∪ E . Since E ∈ Prf(AFL(S1 ∪ S2)) and E � E ′′,
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E ′′ is not admissible in AFL(S1 ∪ S2). Thus, either E ′′ is not conflict-free or E ′′ is not defended. Assume
first that E ′′ is not conflict-free. Hence, either there is some A ∈ E ′ that attacks some B ∈ E , or there is
some C ∈ E that attacks some D ∈ E ′. Suppose the first case. Since E is defends itself, there is a B′ ∈ E
that attacks A and hence we’re in the second case. Note that by Corollary A.5, C /∈ Arg⊥

L (S1 ∪ S2) since E
is complete. Thus, by Item 1, there is an argument C1 ∈ E ∩ ArgL(S1) that attacks D. But this means that
E ′ is not conflict-free – a contradiction. We have thus established that E ′′ is conflict-free. Hence, E ′′ is not
defended. However, since by Item 3, E ′ ∈ Adm(AF(S1 ∪ S2)), and since E ∈ Adm(AF(S1 ∪ S2)) and
E ′′ is conflict-free, it is easy to see that E ′′ is defended – a contradiction. Thus, we have established that
E ∩ ArgL(S1) is maximally admissible in ArgL(S1), which means that E ∩ ArgL(S1) ∈ Prf(AFL(S1)).

Item 5: Let A ∈ ArgL(S1). Since E is stable in AFL(S1 ∪ S2), it is also complete and E ∪ E+
S1∪S2,R =

ArgL(S1 ∪ S2). Hence, either A ∈ E , which implies that A ∈ E ∩ ArgL(S1) (since A ∈ ArgL(S1)), or A ∈
E+
S1∪S2,R, which implies that A ∈ E+

S1
(by the definition of E+

S1
and again since A ∈ ArgL(S1)). In the latter

case, by Item 1, A ∈ (E ∩ ArgL(S1))
+
S1,R. Since A is arbitrary in ArgL(S1) this shows that (E ∩ ArgL(S1)) ∪

(E ∩ ArgL(S1))
+
S1,R = ArgL(S1). By Item 2, E ∩ ArgL(S1) is complete in AFL(S1). Thus, E ∩ ArgL(S1)

is stable in AFL(S1).

Item 6: Let E ∈ Cmpl(AFL(S1)). By Item 3, E ∈ Adm(AFL(S1 ∪ S2)). The rest follows by the fact
that if E ∈ Adm(AFL(S1 ∪ S2)) then there is a E ′ ∈ Cmpl(AFL(S1 ∪ S2)) such that E ⊆ E ′.

Item 7: Since E is in particular complete in 〈ArgL(S1), R〉, by Item 6 there is an extension E ′ ∈
Cmpl(AFL(S1 ∪ S2)) for which E ⊆ E ′. The rest follows immediately by the fact that each complete
extension is included in some preferred extension of the same framework.

Item 8: By Item 2, E ′ ∩ ArgL(S1) is complete in AFL(S1), and thus E ⊆ E ′ ∩ ArgL(S1) ⊆ E ′. �

Now we can turn to the proofs of the main results of this Appendix:

Proof of Proposition A.2. Suppose that S1|∼∀
L,R,Semψ , and let E be an extension in Sem(AFL(S1 ∪ S2)).

First, we treat grounded semantics. By our assumption, there is an argument � ⇒ ψ in the grounded exten-
sion of AFL(S1). Thus, by Lemma A.9(8), � ⇒ ψ is in the grounded extension of AFL(S1 ∪ S2), that
is, in E . Thus S1,S2|∼∀

L,R,Semψ . Suppose now that the semantics is either complete, preferred or stable.
Again, by our assumption, there is an argument of the form � ⇒ ψ in every element of Sem(AFL(S1)).
By Lemma A.9, E ∩ ArgL(S1) ∈ Sem(AFL(S1)), and so there is a sequent of the form � ⇒ ψ in
E ∩ ArgL(S1). In particular, E contains a sequent of the form � ⇒ ψ , and so S1,S2|∼∀

L,R,Semψ . �

Proof of Proposition A.3. Suppose that S1|∼∃
L,R,Semψ . Hence, there is some extension E in

Sem(AFL(S1)) that contains a sequent of the form � ⇒ ψ for some � ⊆ S1. By Lemma A.9, there
is an extension E ′ in Sem(AFL(S1 ∪ S2)) that contains the extension E . Thus, � ⇒ ψ is in E ′, and so
S1,S2|∼∃

L,R,Semψ . �

Corollary A.10 Let L = 〈L, �〉 be a uniform, ¬∧-expanding and consistency-enforcing logic, and let R
be a set of prem-attacking rules.

• |∼∀
L,R,Sem is crash resistant when Sem is a complete, grounded, preferred or stable semantics.

• |∼∃
L,R,Semψ is crash resistant when Sem a complete, grounded or preferred semantics.

The proof of Item 1 (respectively, of Item 2) is similar to that of Proposition 5.18, using Proposition A.2
(respectively, Proposition A.3) instead of Proposition 5.14.
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