
For the Statistics Editor 
 

In the first edition, to distinguish between the two contributions on goodness 
of fit, after we had written and submitted it, the title of the Rayner & Best article was 
changed to Goodness of fit Tests and Diagnostics. This wasn’t the brief we were 
given and didn’t well reflect the content. A different title for this edition is certainly 
necessary. We suggest Assessing Statistical Distribution Models: Goodness of fit 
Tests. 

We have two prejudices we hope will be indulged. We never use  
• the hyphenated ‘goodness-of-fit’ and 
• the Pearson chi-squared test. 

In regard to the latter it seems to us that a test cannot be uniquely identified by its 
distribution, so we prefer simply the Pearson test, in line with the Pearson-Fisher and 
other tests. Exceptions to this rule occur in references, where if an article includes 
‘goodness-of-fit’ or chi-squared test in the title, these unfortunate choices are 
unavoidable. 

The word count is a bit long at 6976 words. 
There are 50 references, not 15 to 30. 
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Assessing Statistical Distribution Models: Goodness of fit Tests 
 
 
1. Introduction  
 
The purpose of a one-sample test of fit is to give an objective measure of how well a 
probability model agrees with observed data. Otherwise, as Pearson (1900, p. 171) 
said: ‘the comparison of observation and theory in general amounts to a remark - 
based on no quantitative criterion.’ Reviews of Pearson's paper may be found in 
Plackett (1983) and Rayner and Best (2009, Sect. 2.2). The multiple sample goodness 
of fit problem assesses whether data from a number of populations are consistent with 
having come from the same population. If the answer is affirmative, then the one 
sample question may be appropriate. We will not consider the multiple sample 
problem here. 

In many situations it will be valuable to find out if data for a particular event 
are consistent with an established pattern or model. Specifically, (a) can extreme 
events such as flood heights, insurance losses and equity risks be modelled by the 
extreme value distribution, (b) are right skewed data, that might arise, for example, in 
life testing and reliability contexts, consistent with the Rayleigh distribution, and (c) 
are data, usually binomial in similar scenarios but too over-dispersed to be so in the 
current context, consistent with the beta-binomial? This sometimes occurs with taste-
test and market research data. 

Rayner and Best (2009) identify three benefits of having applied a goodness of 
fit test: 

• a compact description of the data; 
• illumination of the data generation mechanisms; and 
• validation or not of distributional assumptions necessary for the application of 

powerful parametric procedures. 
The best of modern methods add another benefit: selection of a more valid model than 
that originally hypothesized. 

Here we discuss tests for multinomial models, tests based on the empirical 
distribution function (EDF), and the construction of the Neyman-Barton smooth tests. 
In the final section we then address some modern developments in smooth testing: 
diagnostics, Cholesky components and model selection. Other tests of fit have been 
suggested, but we shall not consider these here, except to briefly mention two. 
Correlation tests are sometimes suggested in conjunction with quantile-quantile or 
probability plots of the data. The Shapiro-Wilk test of normality, for example, may be 
considered a correlation test. See D'Agostino and Stephens (1986). Tests based on the 
empirical Laplace transform are a general class of tests and often have competitive 
power. See, for example, Henze and Meintanis (2002, 2012). 

 
 

2. Tests for Multinomial Models 
 
For Pearson's test, sometimes called the Pearson chi-squared test, observations O1, O2, 
…, Om are assumed to come from m non-overlapping classes that are expected to 
contain E1, E2, …, Em observations. The test statistic is 
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Pearson (1900) assumed that parameters of the probability model giving rise to the 
cell expectations were known, and showed that the asymptotic distribution of 2

PX  is 
the 2

1−mχ  distribution. 
There is a considerable literature on how, when there is choice, the cells may 

best be constructed. The recommendation that for the χ2 approximation to be adequate 
the cell expectation be at least five, goes back to Sir Ronald Fisher writing in the 
1920s. This advice is now seen as extremely conservative.  

Most interesting applications involve estimating parameters. Pearson 
incorrectly asserted that estimating parameters makes no difference to the asymptotic 
null distribution of the test statistic. If the cell expectations are calculated from 
parameters estimated efficiently from the grouped data, then Sir Ronald Fisher, again 
writing in the 1920s, showed that if q parameters are estimated from the grouped data 
using maximum likelihood the asymptotic distribution is 2

1−−qmχ . However if 
estimation is via maximum likelihood using the ungrouped data Chernoff and 
Lehmann (1954) showed that Pearson's statistic no longer had an asymptotic chi-
squared distribution. See Rayner et al. (2009) for a fuller discussion of cell 
construction and multinomial testing when parameters need to be estimated. 

There are many possible generalizations of Pearson's test. Neyman's version is 
based on the test statistic 
 

2
NX  = (Oi !Ei )

2 /Oi
i=1

m

" . 

 
One interesting possibility is the Cressie-Read family, based on the test statistic 
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Taking λ = 1 leads to 2

PX , λ = –1 leads to a modified likelihood ratio statistic, λ = 0 
is the usual likelihood ratio statistic, λ = – 0.5 is the Freeman-Tukey statistic, and λ = 
–2 leads to 2

NX . Other choices can lead to tests with excellent properties; see Read 
and Cressie (1988). 
 
 
3. EDF Tests 
 
Much data is essentially continuous, and grouping it to permit the use of 2

PX  and 
other statistics based on the multinomial loses information and often power. A 
different approach that does not group the data is to compare the empirical 
distribution function (EDF) with the distribution function specified by the 
hypothesized probability distribution. The Russian mathematician Kolmogorov 
(1933) proposed the first such test. EDF tests of fit, especially for continuous 
distributions, are reviewed in D'Agostino and Stephens (1986). Tests of fit for discrete 
distributions using the EDF approach are considered in Choulakian et al. (1994). See 
also Spinelli and Stephens (1997). 

If we have n data points, the EDF Fn(x) is given by 
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Fn(x) = (number of observations < x)/n. 

 
Tests of fit for a hypothesized distribution function, F(x), can be made by looking at 
the difference between Fn(x) and F(x) for each data point. Kolmogorov (1933) 
suggested the statistic 
 

KS = maxx |Fn(x) – F(x)| 
 
while a generally more powerful test is based on the Anderson-Darling (1954) 
statistic. Its calculation is illustrated in Example 1 below. 

It can be shown that the EDF test statistics are linear combinations of 
components with decreasing weights. The components are similar to those defined in 
Section 4 for smooth tests. See, for example, Stephens (1974). If the null hypothesis 
specifies a discrete distribution where the number of classes is fixed and not too large 
(say five or less) we suggest calculating XP

2  to assess goodness of fit. Otherwise, the 
Anderson-Darling test is a good choice, as it weights the important early components 
heavily and gives a powerful omnibus assessment.  

 
3.1 Example 1: Testing Normality 
Consider the following set of examination marks from 20 students: 

53, 15, 70, 73, 79, 48, 91, 20, 24, 91, 87, 15, 3, 78, 78, 62, 16, 15, 20, 32. 
Are these data normally distributed?  

First we apply the Pearson-Fisher test with class boundaries – 12.5, 12.5, 37.5, 
62.5, 87.5, 112.5 and midpoints 0, 25, 50, 75, 100. The cell counts are 1, 8, 3, 6, 2. 
We find 2

PFX  = 5.22 with p-value 0.07 using the 2
2χ  distribution. The normality 

assumption would seem to be marginal.  
We now apply the Anderson-Darling test. We calculate x  = 48.5 and s = 30.8 

and then find yi = (xi – x )/s for i = 1, …, 20, where the xi are the 20 exam marks. 
Next use a computer routine or tables of the standard normal distribution to find 

 

zi = ∫
∞−

−=
iy

i dx)/xyF 2exp(
2
1)( 2

π  

 
and order the zi as z(1), z(2), …, z(n). Then the Anderson-Darling statistic, AD say, is 
 

AD = − n − n!1 (2i!1){log z(i) + log z(n+1!i)}
i=1

n

" , 

 
which, for the above data, takes the value 0.931. From tables of critical values such as 
D'Agostino and Stephens (1986, Table 4.9), or using MINITAB's Normplot routine, 
we find a p-value of 0.014. This implies the normality hypothesis is doubtful and the 
marks are not well summarized by x  ± s. We revisit this example later. 
 
3.2 Example 2: Testing the Poisson Assumption 
Consider the number of people in a shopping mall contributing to a charity collector 
during five-minute intervals: 
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Number of contributors 0 1 2 3 4 5 6 7 8 

Number of intervals 9 27 26 17 10 8 4 3 1 
 
The sample size is n = 105. Let the observed and expected counts assuming a Poisson 
distribution be oj and ej = npj, respectively, for j = 0, 1, …, 8. Pooling cells from 7 
onwards to get all cell expectations greater than one, we find 2

PFX  = 8.62 with p-value 
0.20 using the 2

7χ  distribution. At all reasonable levels the Poisson assumption is 
acceptable. 

Now let zj = (oi ! ei )i=0

j
" , in which case 

 

AD = 1
n

ẑ j
2 p̂ j

ĥj (1! ĥj )j=0

7

"  

 
where the ‘^’ indicates we have estimated the Poisson parameter by the sample mean. 
We find that AD = 1.178, and, using Spinelli and Stephens (1997, Table 1), the p-
value is between 0.025 and 0.050. Thus the distribution is not well fitted by a Poisson 
model. It seems plausible that contributors come in clusters rather than at random, as 
a Poisson model would imply. The Pearson-Fisher test is far less critical of the 
Poisson assumption than the Anderson-Darling test. 
 
 
4. Neyman Smooth Tests 
 
One problem with Pearson's chi-squared test is that it is an omnibus test, with some 
power against general alternative distributions to the hypothesized distribution, but 
with relatively poor power against important directional alternatives. Alternatives 
which are often of great practical importance are differences between the data and the 
mean, variance and, to a lesser extent, the skewness and kurtosis of the specified 
distribution. A test that does have good power at detecting these moment alternatives 
is Neyman's (1937) ‘smooth’ test. It has the useful property that it can readily be 
partitioned into components that give a powerful and detailed scrutiny of the data. See 
Rayner and Best (2009, Sect. 4.1) for a review of Neyman (1937). 

The Neyman smooth tests may be applied to both categorized and 
uncategorized distributions and distributions that may or may not involve nuisance 
parameters. See Rayner and Best (1990) and Rayner et al. (2011) for overviews. Most 
modern authors use orthonormal functions, as did Neyman (1937), and permit 
nuisance parameters, contrary to Neyman (1937). The smooth tests may be used to 
test for very general distributions, provided orthonormal functions on the specified 
distribution may be constructed. Recurrence formulae for orthonormal polynomials 
are given for univariate distributions in Rayner et al. (2008) and for bivariate 
distributions in Rayner et al. (2013). 

The test is based on the score statistic, and hence is weakly optimal, and the 
test statistic has a convenient asymptotic chi-squared distribution. In our preferred 
formulation components are readily available, and are asymptotically independent, 
each asymptotically having the standard normal distribution. The components are 
often the basis for well-known tests of fit in their own right, but more importantly, 
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may permit a detailed, convenient and informative scrutiny of the data. The order of 
the test (see below) is at the user’s discretion, and it may be chosen to give an 
omnibus or directional test, or something between. 

Suppose we wish to test for a probability density function fX(x; β), where β = 
(β1, …, βq)T is a q × 1 vector of parameters (such as µ and σ in the normal case). This 
null probability density function is nested in the order k probability density function 
 

gk
N(x;!,")  = C(!,")exp{ !i# i (x;")

i=1

k

! } fX (x;")  

 
(N is for Neyman) where θ = (θ1, …, θk)T is a vector of k real parameters, C(θ, β) is a 
normalizing constant that is assumed to exist, and {πi(x; β)} is a set of functions 
orthonormal on fX(x; β) with π0(x; β) = 1 for all x. Thus for fX(x; β) continuous, 
 

∫
∞

∞−

x;xf;x;x Xii )d()()( ββπβπ = 1 for i = j and zero otherwise. 

 
Sometimes C(θ, β) may not exist but the statistic we are about to define will. Using a 
random sample X1, …, Xn we test for fX(x; β) parametrically, by testing H0: θ = 0 
against K: θ ≠ 0, with β a vector of nuisance parameters. For small k the alternatives 
vary ‘smoothly’ from the null, in the sense of Neyman (1937). As an example of this, 
in testing for the standard normal distribution, the order one alternative is a normal 
distribution with a mean shift, the order two alternative is a normal distribution with 
both a mean shift and a variance shift, and the third order alternative is more involved, 
with mean, variance and skewness differences from the hypothesized normal 
distribution. 

Neyman (1937) developed this approach for the case of no nuisance 
parameters. In this situation the probability integral transformation converts the 
problem of testing for a completely specified distribution to testing for the uniform (0, 
1) distribution. Thomas and Pierce (1979) and Kopecky and Pierce (1979) considered 
smooth tests for general distributions involving nuisance parameters. Their tests are 
based on a family of alternatives specified using powers of the cumulative distribution 
function rather than orthogonal polynomials as Neyman (1937) used, and as a 
consequence they require tables of coefficients for their implementation. Our 
preferred formulation permits nuisance parameters and uses orthonormal functions, 
thereby avoiding the need for tables of coefficients. For a more detailed account of the 
history of the smooth tests, see Rayner and Best (2009, Sect. 1.2). 

When no nuisance parameters are present, the smooth test statistic based on 
the model gk

N(x;!,")  is  
 

22
1 kk V...VS ++=  

 
in which the components Vr are given by 
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When testing for a distribution from an exponential family of distributions, 
such as the binomial, Poisson, geometric or normal, the likelihood equations for β̂ , 
the maximum likelihood estimator of β, are rV̂  = Vr( β̂ ) = 0 for r = 1, …, q. The 
model gk

N(x;!,")  results in a singular asymptotic covariance matrix for ( rV̂ ). This 
can be resolved by removing θ1, …, θq from the model, that is, by modifying 
gk
N(x;!,")  to C(!,")exp{ !i# i (x;")i=q+1

q+k
! } fX (x;") . What is happening here is that 

θ1, …, θq are playing the same role as the elements of β, so the presence of all these 
parameters in the model leads to a redundancy. The test statistic is  
 

22
1 kqqk V̂...V̂Ŝ ++ ++=  

 
in which n/ˆ;XV̂ n

j jir ∑ =
=

1
)( βπ . 

When testing for a distribution outside of an exponential family the score test 
statistic is not a simple sum of squares: it is a quadratic form. This will be considered 
in the next section. 

It may occur that in gk
N(x;!,")  a normalizing constant C(θ, β) cannot be 

found. An alternative smooth model is due to Barton (1953, 55, 56):  
 

gk
B(x;!,")  = );(});(1{

1
ββθ xfxh

k

i
ii∑

=

+ . 

 
(B is for Barton.) These densities don’t require the existence of the normalizing 
constant, but may be negative. This negativity may be handled using adjustments such 
as those proposed in Gajek (1986) and in Glad et al. (2003), but this is only a problem 
for nonparametric density estimation and not for the smooth tests discussed here. For 
the Barton model the relevant previous results for the Neyman alternatives remain 
true. 
 
Example 2 Revisited: 
For the Poisson, the appropriate orthonormal polynomials are known as Poisson-
Charlier polynomials. We have 
 

πr(y) = ∑
=

−−
r

j
j

y-j
j

rjrr λj!r!
0

)C)()()(C()1()/(λ , 

 
where y = 0, 1, 2, …, from which the orthonormal polynomials to second order are 
 

π0(y) = 1 for all y, π1(y) = (y/λ – 1)√λ, π2(y) = {(y(y – 1)/λ2 – 2y/λ + 1}λ/√2. 
 
Due to the estimation of λ, 1V̂  = 0. For the data here 2V̂  = 2.12, suggesting a model 
with greater dispersion than the Poisson. Note that 2V̂  is a standardized version of 
Fisher's Poisson Index of Dispersion. 
 

For count data the objective is to test for a multinomial distribution with 
specified cell probabilities p1, ..., pm. When there are no nuisance parameters this is 
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done by imbedding these probabilities in the smooth alternative cell probabilities 
 

πj = j

k

i
iji phC })exp{(

1
∑
=

θθ , j = 1, ..., m 

 
and testing H0: θ = 0 against K: θ ≠ 0. In this formulation the θi, i = 1, ..., k are real 
parameters, θ = (θ1, ..., θk)T, C(θ) is a normalising constant so that π1 + … + πm = 1, 
and the hrs satisfy, for r, s = 1, ..., m, 
 

∑
=

m

j
jsjrj phh

1
= δrs, with hmj = 1, j = 1, ..., m. 

 
Given cell counts N1, …, Nm, the score test statistic when k = m – 1 is Pearson’s 2

PX  = 

∑ =
−

m
j jjj npnpN
1

2 )/()( ; more familiarly XP
2 = (Oi !Ei )

2 / Eii=1

m
" . 

A generalisation of this formulation to allow for nuisance parameters leads to 
the Pearson-Fisher test when the cell probabilities are estimated by maximum 
likelihood from the multinomial, and to the Rao-Robson (1974) test when the cell 
probabilities are estimated by maximum likelihood from the ungrouped data. These 
are thus identified as smooth tests. 

It should be emphasized that using different orthonormal functions in the 
smooth model results in different tests that detect different alternatives. Which 
orthonormal functions should be chosen depends on which alternatives one hopes to 
most powerfully detect. If the hypothesized distribution were uniform, we could 
choose the Legrendre polynomials, as did Neyman (1937). If it were desirable to test 
for periodic alternatives we could consider using the series {sin(iπx) √2}, or the 
Walsh functions as did Hamdan (1964). The aim is to find an orthonormal series that 
represents the alternatives of interest in as few terms as possible. Greater power 
results from doing this. A helpful R package is available at  
http://www.biomath.ugent.be/~othas/smooth2/Home.html. 

Each smooth test for a particular distribution requires an independent study. 
The small sample distributions of the test statistic and its components should be 
investigated. Generally the approach to the asymptotic chi-squared distribution is so 
slow that we recommend finding p-values using the parametric bootstrap. Moreover 
the powers of the smooth tests should be compared with appropriate competitor tests. 
In general the most powerful smooth test of fit test is likely to be the sum of the 
squares of the first few non-zero components; Ŝq+k  with k = 2, 3 or 4. We recommend 

augmenting this by the use of the components V̂q+1
2 , …, 2

kqV̂ +  in an exploratory data 
analysis fashion. However, in particular cases there are variations to this advice. 

Sometimes the data are only available in grouped form. See Best and Rayner 
(2007) for testing for the grouped exponential and Best et al. (2008) for testing for the 
grouped normal. 

 
Example 1 Revisited: 
For the exam mark data in Section 2.1, calculate yi = (xi – x )/s. The orthonormal 
polynomials appropriate for testing normality are often called the Hermite-Chebyshev 
polynomials. We have 
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π0(y) = 1 for all y, π1(y) = y, π2(y) = (y2 – 1)/√2, π3(y) = (y3 – 3y)/√6, 
π4(y) = (y4 – 6y2 + 3)/√24, π5(y) = (y5 – 10y3 + 15y)/√120, and 

π6(y) = (y6 – 15y4 + 45y2 – 15)/√720. 
 
Given these we calculate, for the above data, 1V̂  = 2V̂  = 0, due to the estimation of µ 
and σ, and 3V̂  = – 0.0361, 4V̂  = – 1.4656, 5V̂ = – 0.0462, 6V̂  = 1.8907. Note that 3V̂  

and 4V̂  are standardized versions of the usual skewness and kurtosis coefficients. As 

3V̂ , …, 6V̂  have asymptotic standard normal distributions, we see that 6V̂  is near 

significance at the 5 percent level and that 4V̂  and 6V̂  are much larger than the odd-

order moment statistics 3V̂  and 5V̂ . These observations suggest an alternative 
probability model that is symmetric and shorter tailed than the normal. Thus a 
uniform distribution is a possibility so that we could summarize the data as ‘evenly’ 
spread over the range (0, 100) rather than as 48.5 ± 30.7. If the odd order rV̂  had 
dominated the even order values then a skewed alternative model is suggested, while 
if both odd and even rV̂  are large, | rV̂ | > 1.65 say, then a symmetric alternative with 
longer tails then the normal, such as the Laplace, is indicated. 
 
 
5. Modern Developments in smooth testing 
 
5.1 Are components diagnostic? 

When testing for a distribution from an exponential family the smooth test 
statistic is the sum of the squares of specified components. In particular a single 
component can be used to test for the distribution. There is a considerable literature in 
recent years on whether a test based on the rth component may be interpreted as 
diagnosing the failure or not of the data to be consistent with the rth moment of the 
specified distribution. Simulation studies demonstrate that for virtually any null 
distribution component tests are not diagnostic. It is now known that if Vr is 
significantly large, then any or all of the non-null moments up to the 2rth could be the 
cause. 

This issue would all be resolved if, in the score test statistics, the asymptotic 
covariance matrix was replaced by one that estimated the component variances and 
covariances consistently, under both the null and alternative hypotheses. Henze and 
Klar (1996), Henze (1997) and Klar (2000) worked in this vein. Unfortunately the 
simulation studies in Klar (2000) and Thas et al. (2009) show that convergence of 
these ‘rescaled’ components to their asymptotic limits is extremely slow, with 
samples as large as 10,000 required to achieve satisfactory results. Thus rescaling 
does not create diagnostic components and inference, for example to obtain p-values, 
should involve resampling methods rather than the asymptotic distributions of the 
statistics involved. Nevertheless, although in the finite samples that occur in practice 
the rescaled components may be somewhat ‘tainted’ by higher order moments, it is 
reasonable to say they are more diagnostic than the raw, unscaled components. 

In the power studies we have sighted, powers based on the rescaled 
components are often less than those based on the unscaled components, and where 
power gains are achieved it is often at the expense of power loss for alternatives 
elsewhere in the parameter space.  

Our personal preference is to not use rescaled components. When testing for 
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distributions within exponential families, for formal testing we prefer to use 
V̂q+1
2 +...+ V̂q+k

2  with k = 2, 3 or 4, depending on the hypothesized distribution, and use 
the individual components in a data analytic fashion, as in Example 1 revisited. The 
first significant component beyond the qth at best suggests that the corresponding 
moment is the cause of the model failure. Outside of exponential families the situation 
is a little different. 

 
5.2 Generalised smooth tests and Cholesky components 

The score test statistic for a smooth model is a quadratic form in the 
components. If the null hypothesis specifies a distribution from an exponential family 
of distributions then the score test statistic kŜ  has the appealing form of being a sum 
of squares of components that under the null hypothesis are asymptotically 
independent and asymptotically standard normal. Outside of exponential families this 
convenient form cannot be expected. This includes when testing for the zero-inflated 
Poisson, extreme-value, negative binomial, generalized Pareto (see Rayner et al. 
2009, Chapter 11), gamma (De Boeck et al. 2011) and inverse Gaussian distributions 
(Best et al. 2012). The difficulty for these distributions is that the components are not 
even asymptotically uncorrelated, so the significance of one component may be 
associated with the significance of others.  

Outside of exponential families an alternative approach is to use the 
generalized score test. Information about generalised score tests is given, for example, 
in Rippon and Rayner (2010) and Thas (2010). The generalised smooth tests use the 
generalised score tests, with the q × 1 nuisance parameter β being estimated by 
solving Vr = 0, for r = 1, …, q. The solution, 0

~
β , is a method of moments estimator. 

These estimators are not usually fully efficient, and their use often means estimating 
efficiency is sacrificed to gain interpretable components. 

The generalised score test statistic for the Neyman and Barton models is of the 
form VV T ~~~ 1−Σ , where Σ~  is a consistent estimator of the asymptotic covariance matrix 
of the score V~  = ( !Vq+1 , ... + !Vq+k )T. A Cholesky decomposition of 1~−Σ  gives 1~−Σ  = 

MMT, where M is upper triangular. Putting *~V  = MTV~  = ( *
1

~
+qV , ... + *~

kqV + )T gives 

VV T ~~~ 1−Σ  = ** ~~ VV T . Thus the generalised score test statistic is of the form 2*
1)

~( +qV  + ... 

+ 2* )~( kqV + . Since for most distributions of interest a multivariate central limit theorem 

applies and *~V  has asymptotic covariance matrix the identity, the elements *~
rV  of *~V  

are asymptotically independent and asymptotically standard normal. 
Since MT is lower triangular, *~

rV  is the sum of the first r elements of V~ . It 
follows that the previous discussion about whether or not the components rV̂  in the 
smooth test are diagnostic applies equally to the components *~

rV  in the generalised 
smooth test. 

The outcome of this discussion is that when testing for any distribution, the 
generalized score test and Cholesky decomposition together yield components that are 
equally as convenient as those resulting from the score test when testing for 
distributions from exponential families. Moreover, because of their construction using 
the Cholesky decomposition, the data and the model agree in moments up to the qth. 
If the rth (r > q) is first significant Cholesky component, this suggests the data and the 
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model do not agree in moments up to the rth, although the significance may be due to 
moments up to the 2rth. 

The only caveat on this approach is that the orthonormal polynomial of order r 
requires the existence of the first 2r moments of the null distribution. Thus, for 
example, using this approach it is not possible to directly test for the Cauchy, which 
has no moments of any order. One option would be to use the probability integral 
transformation to essentially test for the continuous uniform distribution on (0, 1). 
However the resulting components are then difficult to interpret in terms of the 
original null hypothesis. 
 
5.3 Data driven testing 

One of the difficulties associated with the definitions of gk
N(x;!,")  and 

gk
B(x;!,")  is the determination of the order k. In finite samples mis-specifying the 

order k can seriously affect the power of the test. If k is chosen to be large, the test 
will give good protection against a wide range of alternatives. However, the power to 
detect any particular alternative in the parameter space will decrease as k increases. 
Conversely, if k is chosen to be small, the test will be quite directional, giving good 
protection against a small set of alternatives, and none against all others.  

The idea behind data-driven smooth tests is to let the data make the decision 
about the order. See Ledwina (1994), Kallenberg and Ledwina (1995, 1997a, 1997b) 
and Inglot et al. (1997). The order is chosen to optimize a specified criterion. If Lk is 
the likelihood of a random sample of size n from a distribution that is an alternative of 
order k, it would be natural to maximize Lk by choice of k in some set, say {1, 2, …, 
d}, where d is specified before sighting the data. Here d is the maximum order one is 
prepared to accept. However this procedure would simply choose k = d. A penalty 
term is needed to discourage complexity. The Bayesian Information Criterion (BIC)  
 

BICk = – 2log Lk + k log n 
 
is appropriate, but the computationally easier modified BIC, kŜ  + k log n is often 
preferred. The optimal order, K say, is taken to be the smallest order that maximizes 
BICk. The test statistic is then chosen to be the score or generalised score statistic 
involving the first K components. This reduces to the sum of squares of the first K 
components or Cholesky components, as previously defined. An alternative option is 
to use Aikaike’s information criterion (AIC) 
 

AICk = – 2log Lk + 2k, 
 
or its modified form kŜ  + 2k. BIC penalizes complex models more heavily than AIC. 
The point is that many different model selection rules are possible. In different 
circumstances different rules will be appropriate. 

Since the order is no longer a predetermined constant but a random variable, 
the test statistic KŜ  is no longer asymptotically χ2 distributed, even when testing for 
distributions from exponential families. Although asymptotic distribution theory has 
been developed for some of the data-driven tests, critical values and p-values are best 
determined using resampling methods.  

These data-driven smooth tests have competitive power. Inasmuch as they 
give protection against mis-specifying the order, it would be unreasonable to expect 
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them to have greater power than all smooth tests of specified order. If there is any 
vagueness in the class of alternatives one hopes to best detect, data-driven smooth 
tests are an excellent choice.  

A more flexible method and one of wider applicability, but one which does not 
result in omnibus consistent tests, is given in Claeskens and Hjort (2004). They fix the 
maximal order, and they also consider subset selection. This means that for a given 
maximal order, say d, the model selection criterion can select any subset of indexes 
from {1, …, d} and the data-driven test statistic is then built from the corresponding 
components Vj with j in the selected index set.  
 
5.4 Model selection 

Suppose now that the order k of a smooth alternative has been determined, and 
a smooth or generalized smooth test of this order applied. If this test statistic or 
indeed, any of its components is significant, what can be said about the true model? 
The moment interpretation of the components may not provide helpful insight. The 
insignificant θr in the order k alternative could be replaced by zero, significant θr by 
their method of moments estimators rθ

~ , and β by its method of moments estimator 
under the null hypothesis, 0

~
β . This approach seems intuitively reasonable, but are 

there better options? 
In Rayner et al. (2009, Chapter 10) two approaches are described: model 

selection through hypothesis testing and model selection using model selection 
criteria. Here we focus on the first of these. First suppose Sh = {1, 2, …, d} is an index 
set called the horizon. We may use either Neyman or Barton models, but in iterative 
work it is far more convenient to work with the Barton smooth models 
 

),;( βθS
B
S xg  = );(});(1{ ββθ xfxh

Si
ii∑

∈

+  

 
in which S ⊂ Sh, θS = {θi: i ∈ S} and {hi(x; β)} is a set of functions orthonormal on 
f(x; β). The nonpositivity of ),;( βθS

B
S xg  is not an issue for score tests. Clearly 

),;x(g
hh S

B
S βθ  is the most complex model we are prepared to accept. A horizon of 

four clearly limits the maximal order more than one of 44 does. 
We describe model selection through hypothesis testing, which is similar to 

the familiar forward selection and backward elimination techniques used in regression 
analysis. In forward selection at the uth step the model is ( )βθ ,; S

B
S xg  and we 

consider whether or not to add a single θi term to the model, where θi ∈ 
uS

θ , for every 
possible θi not already in the model. A slightly modified score test is derived to test 
each of these hypotheses. If any are significant at a predetermined level, then the θi 
corresponding to the most significant test is added to the model. Backward 
elimination is similar, with the least significant θi being eliminated from successively 
reduced models until only significant terms remain in the model. The score test 
statistics change at each iteration. 

It has previously been argued that when a data-driven smooth test rejects the 
null hypothesis it may be informative to investigate the selected components, even 
though the diagnostic property may not be guaranteed. Another way forward, 
however, is to plot the density estimate that corresponds to the selected model. The 
Barton model is particularly convenient for this purpose. Suppose that Ŝ  contains the 
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indexes of the selected components, and the appropriate nonparametric density 
estimate is given by  
 

)~,~;x(g Ŝ
B
Ŝ 0βθ  = )~;x(f})~;x(h~{

Ŝi
ii 001 ββθ∑

∈

+ . 

 
This density estimate is referred to as the improved density estimate, but it can only be 
considered as a genuine density estimate after correcting for the non-positivity, using 
the methods proposed in Gajek (1986) and Glad et al. (2003). In Rayner et al. (2009, 
Chapter 10) we suggest using the plot of the improved density as the basis for the 
formulation of the conclusions. Since the improved density is merely a graphical 
representation of the information contained in the data-driven smooth test statistic, the 
conclusions will be consistent.  
 
 
6. Examples and Conclusion 
 
Example 3: Angus Data 
Angus (1982) gives 20 operational lifetimes in hours: 

6278, 3113, 5236, 11584, 12628, 7725, 8604, 14266, 6125, 9350, 
3212, 9003, 3523, 12888, 9460, 13431, 17809, 2812, 11825, 2398. 

In testing the null hypothesis that the data follow the exponential distribution, the 
Chernoff-Lehmann test with four classes, the Anderson-Darling, Cramer-von Mises 
and Shapiro-Wilk tests give bootstrap p-values 0.01, 0.01, 0.01 and 0.00 respectively. 
It would appear that the data are not consistent with exponentiality, as Angus (1982) 
also found. See Figure 1. 

We also find 4Ŝ  = 2
2̂V  + … + 2

5̂V  = 8.8 with 2
4χ  p-value is 0.07 and bootstrap 

p-value based on 1,000 bootstrap runs of 0.02. In addition 2̂V  = –1.7, 3̂V  = –1.9, 4̂V  = 

–1.4, 5̂V  –0.8. The corresponding asymptotic two-sided p-values are 0.10, 0.06, 0.16 
and 0.44, with bootstrap p-values based on 1,000 bootstrap runs 0.00, 0.00, 0.04 and 
0.22 respectively. Here and elsewhere use of the asymptotic null distribution of the 
components and the test statistic itself can be misleading. In general it is more 
desirable to use bootstrap p-values  

The first two components contribute most to 4Ŝ , suggesting at least dispersion 
and skewness departures from what would be expected under the exponential model. 
However the cause of the significance of the order two component could be due to the 
third and fourth moments of the true distribution differing from those of the 
exponential; both corresponding components have p-values less than 5%. Similarly 
the significance of the order three component could be due to moments of the true 
distribution up to the sixth, and at this point the order six component hasn’t been 
assessed.  

Now suppose an horizon of {2, …, 6} is taken; order one is omitted because 
the rate is a nuisance parameter and fills the same role as θ1. In forward selection at 
the first step the test statistics corresponding to θ2 to θ5 are all significant at the 5% 
level, but that corresponding to θ3 is most significant, so that term is included in the 
model, and this new model assessed. This next assessment finds the term 
corresponding to θ4 should be included in the model. A new assessment shows that no 
further terms are significant, and assessment stops. 
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Figure 1: Histogram, density estimates of the hypothesized exponential distribution 
(dashed line) and the improved density (full line) for the Angus lifetimes data. 
Lifetimes are given in thousands of hours. The counts in the four classes are 5, 8 6 
and 1. 
 

In backward elimination the initial model includes θ2 to θ6 and successively 
eliminates first θ6, then θ5, then θ2, and then finds that no further terms warrant 
removal. Although it need not be the case in general, both forward selection and 
backward elimination agree here. 

Figure 1 shows the hypothesized and the improved density estimates. From 
this it may be concluded that the true density is probably not a monotonically 
decreasing density such as the hypothesised exponential density. The improved 
density suggests that there is a mode close to 5 and that the distribution is skewed 
with a tail toward the larger lifetimes. 

 
Statistical model assessment is at the heart of good statistical practice, and is 

the genesis of modern statistics. In general we suggest using the Anderson-Darling 
test as an omnibus test. For a more detailed scrutiny of the data we recommend testing 
using the smooth or generalized smooth tests with uncorrelated components. These 
tests generally have competitive power and the uncorrelated components facilitate 
exploratory data analysis. In exploratory data analysis a significant rth component 
suggests non-zero θr and hence the data and the null model differ in moments up to 
the rth. However with arbitrary alternatives moments up to the 2rth may be the cause 
of the model failure. Model selection techniques may be used to construct smooth 
models consistent with the data. It is more informative and accurate to base 
exploratory data analysis on these models and their graphical representations than on 
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the components themselves. However these techniques may use many criteria, so 
there are many possible density plots. Each selected model has implications about 
which moments may be the cause of model failure, but it is important to remember 
that this is exploratory data analysis, and perhaps it is the envelope of possible 
densities that gives insights rather than any particular choice. 
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