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Abstract

Obesity-linked insulin resistance is mainly due to fatty acid overload in non-adipose 

tissues, particularly skeletal muscle and liver, where it results in high production of 

reactive oxygen species and mitochondrial dysfunction. Accumulating evidence indicates 

that resistance and endurance training alone and in combination can counteract the 

harmful effects of obesity increasing insulin sensitivity, thus preventing diabetes. This 

review focuses the mechanisms underlying the exercise role in opposing skeletal muscle 

insulin resistance-linked metabolic dysfunction. It is apparent that exercise acts through 

two mechanisms: (1) it stimulates glucose transport by activating an insulin-independent 

pathway and (2) it protects against mitochondrial dysfunction-induced insulin 

resistance by increasing muscle antioxidant defenses and mitochondrial biogenesis. 

However, antioxidant supplementation combined with endurance training increases 

glucose transport in insulin-resistant skeletal muscle in an additive fashion only when 

antioxidants that are able to increase the expression of antioxidant enzymes and/or the 

activity of components of the insulin signaling pathway are used.

Introduction

Obesity is one of the most important public health 
problems in the world, reaching epidemic proportions 
in several industrialized countries (Ogden et  al. 2014) 
and rising in many developing countries (Popkin 1994). 
Indeed, consequence of the obesity is the increased risk 
for various illnesses, such as diabetes mellitus, gallbladder 
disease, osteoarthritis, coronary artery disease and some 
forms of cancer (Vona-Davis et al. 2007).

In the last century, the disease that is increased the 
most in obese people, compared with lean ones, is type 2 
diabetes mellitus (T2DM), a condition resulting from the 
metabolic changes associated with excess fat.

A pivotal role in T2DM development is played 
by insulin resistance (IR) that is the reduction of the 

response of peripheral target tissues to a physiological 
concentration of insulin. Skeletal muscle plays a central 
role in whole body IR (Zierath et al. 2000), so that skeletal 
muscle IR is a predictor of the T2DM development and 
maintenance of adequate muscle glucose disposal may 
help to prevent diabetes.

The prevalent theory on impaired insulin signaling 
in obesity links IR to the increase of circulating FFA and 
excessive deposition of lipids in non-adipose tissues, 
including liver and skeletal muscle (Sethi & Vidal-Puig 
2007). However, two different mechanisms centered 
on mitochondria function have been proposed to 
explain the onset of IR in skeletal muscle following lipid 
storage. Indeed, either a decrease in mitochondrial fatty 
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acid oxidation due to mitochondrial dysfunction or 
enhancement in mitochondrial oxidant production in 
response to excess fuel has been thought to contribute 
to IR development in skeletal muscle. Actually, the 
observation that increased production of radicals and 
other reactive oxygen species (ROS) is an early event 
in the development of IR (Houstis et  al. 2006) suggests 
that mitochondrial dysfunction is a complication of the 
hyperlipidemia-induced ROS production, which might 
promote mitochondrial alterations, lipid accumulation 
and inhibition of insulin action.

Recently, due to the observation that IR and related 
disorders are growing dramatically all over the world, 
the efforts to identify and develop effective approaches 
for their treatment have been intensified. In addition 
to dietary regimes aimed at weight loss, two major 
non-pharmacological approaches to improve insulin 
sensitivity have included antioxidant supplementation 
and exercise training.

In recent years, antioxidants have been used 
extensively to overcome the effects of excess of 
ROS in several pathologies. However, antioxidant 
supplementation, used in an attempt to protect against 
IR and related complications, has supplied contrasting 
results (Abdali et al. 2015).

The health-promoting effects of the physical activity 
have been known for a longer time. Already in ancient 
China the need to promote and prescribe exercise for 
health-related benefits was recognized (Viña et al. 2012). 
Currently, physical inactivity is considered as a risk 
factor for cardiovascular disease and a widening variety 
of other chronic diseases, including diabetes, cancer 
(colon and breast), obesity, hypertension, bone and joint 
diseases (osteoporosis and osteoarthritis), and depression 
(Warburton et  al. 2006). Conversely, regular physical 
activity is considered to produce healthy effects, including 
increases in tissue metabolism, due to mitochondrial 
proliferation (Venditti et  al. 2014a,b, 2016), insulin 
sensitivity and cardiorespiratory fitness, so that it is able 
to prevent diabetes (Colberg 2007) and coronary heart 
disease (Wannamethee et al. 1998).

The beneficial effects of exercise are evident, not only 
in healthy persons but also in patients, because, suitably 
graded, exercise is useful as an adjunctive therapy in 
the treatment of patients with several chronic diseases 
(Warburton et al. 2006).

The mechanisms underlying obesity-induced IR 
development have been recently reviewed (Di Meo et al. 
2017), so that this review, after briefly examining the link 

among obesity, IR and ROS, focuses the attention on the 
potential role of exercise training in opposing metabolic 
dysfunction in patients with IR by describing possible 
cellular and molecular mechanisms.

Obesity, diabetes and insulin resistance

Obesity is a medical condition mainly due to a chronic 
imbalance between energy intake and energy expenditure, 
which causes or exacerbates several chronic diseases, 
including T2DM (Kopelman 2000). T2DM is characterized 
by too high plasma glucose levels and often it is the result 
of IR, i.e. tissue failure to respond to insulin, which is often 
accompanied by a variety of metabolic and cardiovascular 
abnormalities (DeFronzo et al. 1991).

It is also well established that skeletal muscle plays an 
important role in whole body IR (Zierath et al. 2000) so 
that many researchers focused on this tissue.

The mechanisms of IR remain largely unknown, but 
impaired glucose uptake characterizing skeletal muscle IR 
seems to result from defects in insulin receptor signaling 
(Goodyear et al. 1995, Bjornholm et al. 1997).

Insulin signaling in normal and  
insulin-resistant muscle

Normally, insulin regulates glucose transport into the 
muscle by activating a protein signaling cascade (Zierath 
et al. 2000). After binding with insulin, the insulin receptor 
is autophosphorylated on tyrosine residues allowing the 
binding and consequent phosphorylation of the insulin 
receptor substrates 1 and 2 (IRS-1, IRS-2). IRS binding 
to the phosphatidylinositol 3-kinase (PI3K) results in 
activation of a PI3K-dependent pathway comprising 
phosphoinositide-dependent kinase (PDK), atypical 
protein kinase C (aPKC) and protein kinase B (PKB/Akt). 
Among the Akt substrates, a protein of 160 kDa (AS160) 
was found to be an important molecule in the activation 
of glucose transport in muscle. AS160 phosphorylation 
by Akt removes inhibition of the glucose transporter 
(GLUT4) translocation from inner vesicles to plasma 
membrane where it promotes glucose uptake whose full 
stimulation also requires an atypical protein kinase C 
(PKCζ) (Bandyopadhyay et al. 1997) (Fig. 1).

In obesity (Goodyear et  al. 1995) and T2DM 
(Bjornholm et al. 1997) there is a reduction in IRS-1 and 
IRS-2 tyrosine phosphorylation, which has been related 
to their increased serine/threonine phosphorylation 
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(Paz  et  al. 1997) by kinases, such as inhibitor kappa B 
kinase (IKK) (Gao et  al. 2002), c-Jun amino-terminal 
kinases (JNK) (Aguirre et al. 2000) and mammalian target 
of rapamycin (mTOR) (Li et  al. 1999). As a result PI3K 
levels are reduced with subsequent decrease in Akt (Kim 
et  al. 1999) and atypical PKC (Kim et  al. 2003) activity 
and glucose uptake, likely due to reduced GLUT4 activity/
translocation (Shulman 2000).

Mechanisms of obesity-induced 
insulin resistance

One of the most harmful effects of obesity is the lipid 
deposition in non-adipose tissues that occurs when the 
capacity of adipose tissue to store lipids is overwhelmed 
(Sethi & Vidal-Puig 2007) and may lead to lipotoxicity 
and IR development (Shulman 2000).

The IR dependence on tissue lipid overload and 
the finding of mitochondrial dysfunction in obese 
and insulin-resistant patients (Kelley et  al. 1999, 
Simoneau et al. 1999) suggested that a decrease in total 
mitochondrial oxidative capacity could contribute to IR 
reducing skeletal muscle capacity to manage increased 
FFA influx. In fact, mitochondrial dysfunction would 

decrease lipid utilization thereby contributing to fatty 
acid overload and muscle IR development. In particular, 
when faced with a chronic dietary overload with saturated 
fatty acids, muscle cells produce many lipid metabolites, 
including diacylglycerol (DAG), ceramide (CER) and 
derived gangliosides, which are considered maladaptive 
signals arising from disordered lipid metabolism (Savage 
et al. 2007, Watt & Hoy 2012). The accumulation of DAG 
and CER is tightly associated with the IR development 
since such molecules impair insulin signaling activating 
aPKC isoforms that inhibit IRS1 and Akt, respectively 
(Powell et  al. 2003, Li 2004). CER also achieves Akt 
inhibition through activation of protein phosphatase 
2A (PP2A) (Stratford et al. 2004), while GM3, a ceramide-
derived ganglioside, inhibits the insulin receptor (Lipina 
& Hundal 2015).

Reactive oxygen species production

Despite the strong association between IR and impaired 
oxidative capacity in skeletal muscle, the idea that in 
obesity IR is due to a mitochondrial dysfunction is not 
supported by the observation that high ROS production, 
but not low oxidative capacity, is a requirement for the 

Figure 1
Schematic representation of the signaling pathways mediating insulin- and exercise-induced skeletal muscle glucose transport. In normal conditions, 
insulin binding to its receptor results in the phosphorylation of the insulin receptor substrate (IRS) on tyrosine residues allowing the activation of the 
phosphatidylinositol 3-kinase (PI3K), which leads to phosphorylation of phosphoinositide-dependent kinase (PDK). PDK, in turn, activates protein kinase 
B (Akt) and atypical protein kinase C (PKCζ). Akt inhibits a 160 kDa protein (AS160), thus promoting the translocation of the glucose transporter type 4 
(GLUT4) to the plasma membrane, in which PKCζ is also involved. PI3K also increases NADPH oxidase (NOX) activity, leading to increased production of 
O2

•− that is converted to H2O2 by superoxide dismutase (SOD). H2O2 enhances glucose uptake by inhibiting protein tyrosine phosphatases (PTPs) and 
promoting tyrosine phosphorylation of IRS. Muscle contraction activates an insulin-independent mechanism that stimulates glucose transport. The two 
pathways converge in their distal parts in which AS160 and aPKC are involved. A pivotal role is played by AMP-activated protein kinase (AMPK), and 
Ca2+- and calmodulin-dependent protein kinases. AMPK is activated by an increase in the AMP:ATP ratio, a serine threonine kinase (LKB1) and calcium/
calmodulin-dependent protein kinase kinase (CaMKK). The Ca2+/calmodulin-dependent kinase II (CaMKII) also seems to be implicated in glucose 
transport.
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early phases of IR development in obesity (Fisher-Wellman 
et al. 2014).

ROS, which are generated in processes occurring in 
mitochondria and other cellular sites (Venditti et al. 2015, 
Di Meo et  al. 2016), include superoxide anion radical 
(O2

•−), hydrogen peroxide (H2O2) and hydroxyl radical 
(•OH). Of these, •OH is the most reactive and initiates 
chain reactions leading to cell structural and functional 
alterations (Valko et al. 2007).

When ROS generation exceeds cellular antioxidant 
defenses, oxidative stress develops (Sies 1997), a detrimental 
process that has been related to many pathological 
conditions (Valko et  al. 2007, Reed 2011, He & Zuo 
2015), and is also involved in the IR etiology (Henriksen 
et al. 2011).

It is now clear that ROS can be either harmful or 
beneficial to living systems because they may cause organ 
dysfunction if occurring in a massive extent, but they 
are essential for several physiological processes when 
moderately produced. Their role also depends on the 
type of reactive species produced and localization of their 
source and their targets (Finkel & Holbrook 2000). Thus, 
H2O2 can exert stimulatory or inhibitory effects on insulin 
signaling, depending on its concentration and the site 
of production relative to various components of insulin 
signaling pathway(s) (Rindler et al. 2013).

Dual role of NADPH oxidase-derived H2O2

Since the 1970s it was shown that exogenously added 
H2O2 could mimic the insulin signaling activity (Czech 
et  al. 1974a) and oxidation of key fat cell sulfhydryls 
in response to insulin-stimulated glucose transport 
(Czech et  al. 1974b). Subsequently, it was found that 
H2O2 produced by a plasma membrane NADPH oxidase 
facilitated normal signal transduction by insulin (May 
& de Haen 1979). NADPH activity is increased by PI3K 
activation resulting from its binding to IRS-1 and leads to 
increased H2O2 concentration near the receptor (Espinosa 
et al. 2009).

Actually, NADPH oxidase-derived H2O2 can also reduce 
insulin sensitivity as demonstrated by the observation 
that cultured cardiomyocyte exposure to high glucose, 
which activates NOX2, impairs insulin signaling that is 
rescued by treatment with a NOX2 activation inhibitor 
(Balteau et al. 2011).

A NOX-mediated contribution to skeletal muscle IR 
seems to be provided by the overactivity of the renin-
angiotensin system (RAS). Indeed, angiotensin II (Ang II) 

impairs glucose transport system in skeletal muscle 
(Ogihara et al. 2002). Such an effect is due to Ang II ability 
to inhibit the insulin-PI3K signaling pathway stimulating 
serine phosphorylation of IRS-1 (Wei et al. 2006). The Ang 
II effects seem to depend on capacity of Ang II to generate 
ROS in various cell types including skeletal muscle 
(Shiuchi et al. 2004, Blendea et al. 2005). Moreover, the 
observations that obesity is associated with overactivation 
of both sistemic and adipose RAS in humans and animals 
(Kalupahana & Moustaid-Moussa 2011) and blockade of 
Ang II type 1 receptor (AT1R) improves IR and glucose 
intolerance in obese rodents (Chu et al. 2006) suggest that 
obesity plays a role in RAS stimulation and IR onset.

Mitochondria-derived H2O2

Houstis and coworkers (2006) first showed a link between 
mitochondrial-derived ROS and IR and subsequent 
studies using MnSOD mimetics (Chen et  al. 2008) and 
MnSOD overexpression (Hoehn et al. 2009, Boden et al. 
2012) suggested a role for O2

•− in the impairment of 
insulin sensitivity. However, the observation that targeted 
overexpression of the catalase gene to mitochondria 
(MCAT) protected from lipid-induced muscle IR (Lee 
et  al. 2010), whereas SOD2 overexpression did not 
alleviate muscle IR alone and did not increase the effect 
of H2O2 scavenging (Lark et al. 2015) demonstrated H2O2 
involvement in IR.

The obesity-induced increase in mitochondrial ROS 
production could be due to the inverse relationship 
between electron flow rate and electron leak along the 
respiratory chain. In vitro, in presence of ADP (State 3), 
respiration rate is high and ROS generation is low, whereas, 
in the absence of ADP (State 4), respiration rate is low 
and ROS production is high (Chance & Williams 1956). 
In vivo, near state 4 conditions and high ROS production 
likely occur during periods of nutrient overload combined 
with minimal ATP demand, that is, high caloric intake 
combined with a sedentary lifestyle.

Increase in mitochondrial ROS generation might also 
depend on the enhanced circulating levels of triglycerides 
and free fatty acids that induce a metabolic shift in 
skeletal muscle toward increased reliance on fat relative 
to glucose for energy production (Muoio & Neufer 2012). 
Indeed, mitochondrial H2O2 production is greater when 
fatty acids relative to the glycolytic metabolite pyruvate 
are oxidized (Anderson et al. 2007, Seifert et al. 2010).

Moreover, accumulation of various lipid metabolites 
that are able to interact with the mitochondrial inner 
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membrane disrupts electron transport and stimulates 
mitochondrial ROS production (Schonfeld & Wojtczak 
2008, Seifert et al. 2010).

The ROS effect on IR has been attributed to alterations 
in various intracellular signaling pathways. Among 
the proposed effectors there are various kinases such as 
PKCs, IKK β, JNK, p38 mitogen-activated protein kinase 
(MAPK), which catalyze the phosphorylation of serine 
residues in IRS-1, thus reducing the phosphorylation of 
its tyrosine residues by insulin and inhibiting its activity 
(Paz et al. 1997).

Several reports suggest that high mitochondrial H2O2 
release could contribute to IR via dissociation of hexokinase 
II (HKII) from mitochondria. Glucose phosphorylation 
is impaired in high-fat diet-fed rats (Furler et  al. 1997, 
Halseth et al. 2000) and T2DM patients (Bonadonna et al. 
1996). HkII expression is increased by insulin (Vogt et al. 
2000) and decreased in patients with T2DM (Kruszynska 
et  al. 1998, Pendergrass et  al. 1998). HKII association 
with the mitochondrial outer membrane is promoted by 
insulin (Chen-Zion et al. 1992, Vogt et al. 1998) via Akt 
phosphorylation of HKII (Pastorino et al. 2005), whereas 
exogenous H2O2 dissociates HKII from mitochondria in 
cultured cardiomyocytes (Wu et al. 2011).

The increased production of ROS can also contribute 
to IR development causing mitochondrial dysfunction. 
Indeed, when ROS are produced at high rate, a substantial 
part of them escapes the mitochondrial antioxidant 
systems oxidatively damaging DNA, lipids and proteins, 
and leading to impairment of important mitochondrial 
functions. Oxidative damage to mitochondria is due 
to •OH radicals, which can also damage other cellular 
structures. Indeed, although it is unlikely that such 
radicals are released by mitochondria, other ROS, such 
as H2O2, are able to cross mitochondrial membranes 
and reach such structures where, in the presence of Fe2+ 
ligands, it can generate •OH radical.

In conclusion, mitochondrial dysfunction found in 
IR is a complication of the hyperlipidemia-induced ROS 
production in skeletal muscle, even though, when the 
mitochondrial oxidative capacity decreases, the lipid 
metabolism also decreases leading to fat accumulation 
thus contributing to the IR development.

Exercise and insulin resistance

It is known that regular exercise elicit adaptive 
responses that improves the metabolism of glucose 

and lipids in skeletal muscles during the resting state. 
Moreover, it is well established that health preservation 
and prevention of age-related disorders requires the 
adoption of appropriate lifestyles including a habitual 
exercise regimen (Ciolac 2013). Indeed, regular aerobic 
physical activity (training) induces cardiorespiratory and 
musculoskeletal adaptive responses (Warburton et  al. 
2006), which increase resistance to conditions leading 
to increased ROS production including prolonged or 
strenuous exercise (Ebbeling & Clarkson 1989). Moreover, 
it maintains insulin sensitivity and cardiorespiratory 
fitness, preventing T2DM (Colberg 2007, Colberg & 
Grieco 2009) and coronary heart diseases (Thompson et al. 
2003). Regular physical activity can also be used in the 
management of patients affected by T2DM (O’Gorman 
& Krook 2008) and chronic heart failure (Edelmann et al. 
2014). This suggests that the improvement, produced 
by exercise, in insulin action on skeletal muscle glucose 
metabolism in insulin-resistant individuals could 
decrease conversion rates to overt diabetes, as well as 
reduce cardiovascular mortality.

The beneficial effects of training could appear to  
conflict with reports indicating that physical unac-
customed or strenuous exercise, particularly that 
characterized by remarkable component of eccentric 
contraction, causes damage, including structural and 
functional alterations in skeletal muscle and other 
tissues (Gollnick & King 1969, King & Gollnick 1970, 
McCutcheon et al. 1992, Clarkson 1997).

The opposite effects of acute exercise and training 
are in great part due to the ability of ROS to play a dual 
role in animal organisms. Indeed, the high levels of 
ROS produced during a single session of acute exercise 
leads to cellular damage and dysfunction, whereas the 
low levels of ROS produced during the single sessions 
of a training program can induce adaptive responses 
beneficial for the organism (Di Meo et al. 2016). During 
physical activity, several ROS sources are activated 
contributing to the oxidative damage and/or to the 
adaptive processes (Di Meo et  al. 2016). However, the 
existence of a substantial interplay between various 
ROS sources suggests that the activation of one can 
lead to activation of the others inducing a positive 
feedback loop (Di Meo et al. 2016). This phenomenon, 
strengthening cellular oxidative damage, makes it 
more difficult to identify the primary generator of 
ROS activated by exercise unless fluorescent protein-
based probe is used to obtain a reliable organelle 
specific measurement.
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Contraction-induced glucose transport

In skeletal muscle, glucose transport can be activated 
by at least two separate pathways, one stimulated by 
insulin, insulin-mimicking agents and insulin-like 
growth factors, and one activated by muscle exercise 
and hypoxia (Zierath et  al. 2000). Although it has been 
long known that glucose transport into muscle can also 
be stimulated by an insulin-independent mechanism 
activated by contractions (Goldstein et  al. 1953), only 
relatively recently it has been shown that the increase 
in muscle glucose transport elicited in response to 
contractions is primarily due to translocation of GLUT4 
from cellular storage sites (Goodyear et  al. 1991). Much 
less is currently understood regarding the intracellular 
signaling mechanisms responsible for this contraction-
dependent pathway. However, it is generally believed that 
the molecular signaling mechanism leading to GLUT4 
translocation during muscle contraction is distinct from 
that of insulin (Lund et  al. 1995), The two pathways 
appear at least partially converge in their distal parts, and 
the possibility has been raised that AS160 operates as a 
common, downstream point of convergence mediating 
the effects of both insulin and contraction on GLUT4 
translocation (Kramer et al. 2006). Contraction-stimulated 
glucose uptake also seems to be mediated by aPKC because 
increased activity of the protein has been demonstrated 
in skeletal muscle of endurance-trained humans (Nielsen 
et al. 2003).

There is evidence indicating roles of AMP-activated 
protein kinase (AMPK), and several Ca2+-dependent 
mechanisms, including calcineurin and Ca2+- and 
calmodulin-dependent protein kinase in contraction-
induced glucose transport (Wright et al. 2004) (Fig. 1).

AMPK is activated by a complex mechanism 
involving an increase in the AMP:ATP ratio and allosteric 
modification and phosphorylation by one or more 
upstream kinases, including the serine threonine kinase 
named liver kinase B1 (LKB1) (Sanders et  al. 2007) and 
the calcium/calmodulin-dependent protein kinase kinase 
β (CaMKKβ) activated in response to Ca2+ signaling 
(Jorgensen & Rose 2008). Protein kinases, such as Ca2+/
calmodulin-dependent kinase II (CaMKII), have also been 
implicated as critical molecules underlying contraction-
stimulated glucose transport in skeletal muscle (Witczak 
et al. 2007), even though the mechanism of the glucose 
transport stimulation is still a matter of debate.

The observation that glucose transport can be 
stimulated by contractions through an insulin-
independent mechanism suggests that muscle contraction 

can be one alternative mean to activate glucose transport 
in insulin-resistant conditions which are not consequence 
of generalized resistance in the mechanism(s) involved in 
GLUT4 translocation. In fact, it has been demonstrated 
that short-term exercises of moderate-to-heavy intensity 
stimulate glucose transport in skeletal muscle from 
diabetic rats (Wallberg-Henriksson & Holloszy 1984, 
1985) and insulin-resistant patients (Wahren et al. 1975).

The improvement in glucose uptake induced by a 
single bout of exercise also continues for several hours after 
exercise and often persists until the next day. The increase 
in post-exercise glucose uptake is mainly mediated by 
insulin-dependent glucose uptake (Hamada et al. 2006).

It is worth nothing that strenuous or exhaustive 
exercise results in muscle fatigue and frequently causes 
post-exercise muscle damage that does not induce 
metabolic improvement but rather impairs it. For 
example, muscle damage suppresses insulin sensitivity 
compared to the resting state and it has been proposed 
that the increase in ROS produced by exercise not only 
generates muscle damage but also impairs insulin-
stimulated glucose uptake (Kirwan et al. 1991). This idea is 
consistent with the suggested close relationship between 
oxidative stress and IR (Fisher-Wellman & Neufer 2012).

However, in order to establish the obesity-linked 
alterations that result in IR, it is necessary to examine 
what alterations are prevented or attenuated by the 
chronic exercise which is the only able to elicit adaptive 
responses in skeletal muscle resulting in IR improvement.

Muscle adaptive responses to training

Exercise training is able to induce major adaptations in 
skeletal muscle, which are dependent on the nature of the 
adaptive stimulus.

Heavy resistance exercise, also referred to as 
strength training, typically consists of a small number of 
contractions (often fewer than 10–20) with development 
of a relatively high force. It results in hypertrophy of the 
muscle cells with an increase in strength, without major 
changes in biochemical makeup. The gain in muscle 
cross-sectional area found in resistance-trained subjects is 
mainly due to an increase in the number of myofibrils, 
whereby the fast fiber types (type IIA and type IIX) are 
mostly responsible for the net increase in muscle size 
(Gonyea & Sale 1982).

Endurance exercise training is characterized by a large 
number of contractions (often many thousand) performed 
with development of a relatively low force. It increases 
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the capacity of muscle for aerobic metabolism promoting 
its adaptation toward a more oxidative phenotype 
without muscle hypertrophy or an increase in strength. 
Specifically, endurance exercise training leads to fiber-type 
transformation, mitochondrial biogenesis, angiogenesis, 
and other adaptive changes in skeletal muscles (Yan et al. 
2011). These adaptations make it possible for previously 
untrained individuals to markedly increase their ability 
to exercise for prolonged periods at exercise intensities 
that could be maintained for only a few minutes in the 
untrained state.

Both types of training can improve insulin action 
and glucoregulation, although it is not clear if these 
methods of training achieve the same outcome by 
identical mechanisms.

Resistance exercise

Skeletal muscle is a plastic tissue that rapidly adapts to 
its mechanical environment (Goldberg 1968). Increased 
load across a muscle, such as from strength exercise, 
results in a compensatory increase in muscle size. The size 
increase comes largely from the growth of existing cells 
rather than an increase in cell number (Goodman et al. 
2011), even though eccentric strength training seems to 
be able to cause muscle fiber neoformation (Antonio & 
Goneya 1993).

Tissue size is determined by the balance between the 
rates of protein synthesis and degradation within the 
cells (Rennie et al. 2004) so that in muscle a net positive 
or net negative myofibrillar protein balance results in 
hypertrophy or atrophy, respectively. In healthy adults, 
rates of myofibrillar protein synthesis fluctuate between 
periods of net positive balance after protein feeding, 
and net negative balance during fasting and the change 
in muscle mass over time is very small (Phillips et  al. 
2011). While both rates of myofibrillar protein synthesis 
and breakdown fluctuate during anabolic and catabolic 
conditions, in the non-diseased state the regulation 
of skeletal muscle mass is primarily dictated by the 
regulation of muscle protein synthesis (Greenhaff et  al. 
2008, Phillips 2009).

Adaptive response to resistance exercise is not limited 
to the increase in muscle mass and strength. Indeed, 
recent prospective study, examining the role of weight 
training in the primary prevention of T2DM, suggests 
that the training is associated with a significantly lower 
risk of T2DM independent of aerobic exercise (Grøntved 
et al. 2012).

Moreover, in the past decades several studies 
demonstrated that resistance training is able to lower the 
percentage of glycosylated hemoglobin, increase glucose 
disposal, and improve metabolic and lipidic profiles 
decreasing cardiovascular disease risk in patients with 
T2DM (Zanuso et  al. 2010). However, the mechanisms 
underlying such changes were not clear. Because body 
sensitivity to insulin appeared to be directly proportional 
to muscle mass the effects of resistance training on insulin 
sensitivity were initially attributed to the increase in 
muscle mass (Miller et al. 1984). Subsequently, however, it 
was reported that resistance training can increase insulin 
sensitivity by qualitative changes independent of a gain 
in muscle mass (Ishii et al. 1998).

The increase in lean mass also results in an increased 
resting metabolic rate, triggering an upward spiral of 
metabolic health (Speakman & Selman 2003). Moreover, 
because skeletal muscle mass declines at a rate of 3–8% 
each decade after 30  years of age (Lexell et  al. 1988), 
leading to increased risk of IR and T2DM, muscle mass 
gain elicited by resistance training remains an important 
objective in the elderly.

Although classic strength training protocols impact 
predominantly on muscle and cross-sectional area of its 
fibers, it has been shown that regular resistance training 
is effective in reducing abdominal fat among individuals 
with T2DM (Kwon et al. 2010), thus contributing to the 
decrease of one of the major risk factors for IR.

Mechanisms responsible for increase in muscle mass

One of the main pathways responsible for muscle 
hypertrophy via increased protein synthesis is the insulin-
like growth factor 1 (IGF-1)/PI3K/Akt pathway. IGF-1 is a 
factor promoting the growth which is involved in growth 
and regeneration of the skeletal muscle. IGF-1 binding 
to its receptor triggers intracellular signaling pathways 
ultimately leading to tyrosine residue phosphorylation 
on Akt activating this kinase (Schiaffino & Mammucari 
2011). Akt in turn acts on proteins including the forkhead 
box O (FoxO) transcription factor family, which is 
involved in several cellular processes including protein 
metabolism (Tzivion et  al. 2011). Akt phosphorylates 
and represses FoxO thus leading to protein degradation 
inhibition. Furthermore, Akt stimulates protein synthesis 
through mammalian target of rapamycin (mTOR), which 
is constituted by two multiprotein complexes, mTOR 
complex 1 (mTORC1) and mTOR complex 2 (mTORC2), 
characterized by different sensitivities to rapamycin 
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(Toschi et  al. 2009). Activation of mTORC1 leads to 
phosphorylation of ribosomal protein S6 as well as other 
factors involved in translation initiation and elongation 
which results in increased protein synthesis (Schiaffino & 
Mammucari 2011).

Although this pathway is essential for muscle growth 
during development and regeneration, its role in adult 
muscle response to mechanical load is less clear.

Mechanisms responsible for increase in  
glucose clearance

The examination of the available literature shows that 
resistance training induces several changes in skeletal 
muscle, which are relevant to increase glucose clearance. 
An important adaptation elicited by resistance training 
in normal (Yaspelkis et al. 2002) and high-fat fed (Krisan 
et al. 2004) rodent skeletal muscle is an increase in total 
skeletal muscle GLUT4 protein concentration. Such an 
increase is significant because GLUT4 concentration is 
directly related to the rate of insulin-stimulated skeletal 
muscle glucose transport. However, this change alone not 
fully accounts for increased rates of insulin-stimulated 
glucose transport in the skeletal muscle from resistance-
trained animals. In fact, resistance training increases 
insulin-stimulated carbohydrate metabolism in normal 
skeletal muscle and reverses high-fat diet-induced skeletal 
muscle IR by altering the activity of components of the 
insulin signaling cascade, such as PI3K, PKCζ and Akt 
(Krisan et al. 2004).

Another effect of resistance training, which is 
important for its benefits on glucose metabolism, is the 
stimulation of the glycogen synthesis. It is well known 
that skeletal muscle is the largest reservoir of glycogen 
in the human body and glycogen synthase (GS) is the 
enzyme responsible for catalyzing the (1→4) linkage in 
the formation of glycogen. Glucose storage in the form 
of glycogen is regulated by the protein kinase glycogen 
synthase kinase-3β (GSK-3β), another direct target of PI3K/
Akt. Increased expression and activity of skeletal muscle 
GSK-3β have been implicated in the pathogenesis of IR 
(Nikoulina et  al. 2000). Conversely, resistance training 
results in stimulation by Akt of glycogen synthesis via 
inhibition of GSK-3β (Case et  al. 2011). Akt can inhibit 
GSK3β by phosphorylation at a serine residue (Ser9 in GSK-
3β) and GSK3β deactivation leads to dephosphorylation 
and activation of GS, thus contributing to the stimulation 
of glycogen synthesis. The increase in Akt-mediated 
GS activity plays a major role in non-oxidative glucose 

disposal and is therefore an important adaptation toward 
glycemic control in response to resistance training.

It has been observed that, during a single bout of 
resistance exercise, AMPK activity is increased (Dreyer 
et  al. 2006). This activation suppresses muscle protein 
synthesis by inhibiting mTOR signaling pathway through 
reduced phosphorylation of downstream components 
of the mTOR pathway. However, 1–2 h after exercise, 
inhibition is removed and protein synthesis can occur in 
the muscle in association with mTOR activation (Dreyer 
et al. 2006). The transient activation of AMPK also leads to 
phosphorylation of target proteins involved in a number 
of metabolic pathways, which result in an increase of 
ATP-generating processes such as fatty acid oxidation 
and glucose uptake, the rate-limiting step in the hexose 
utilization, via increased GLUT4 translocation (Mu et al. 
2001). However, the absence of active AMPK only partially 
suppresses the contraction ability to activate glucose 
transport, suggesting the existence of AMPK-independent 
signaling pathways for a full biological response (Mu 
et al. 2001).

Hyperinsulinemia decreases β-oxidation in insulin-
resistant subjects thus reducing fatty acid utilization (Xu 
et  al. 1995). The insulin-sensitizing effect of resistance 
training releases the brake on β-oxidation and contributes 
to improved metabolic flexibility and a more balanced 
utilization of fatty acids as substrates. Increased insulin 
sensitivity might therefore contribute to increased lipid 
clearance from the blood. Another important adaptation 
responsible for the insulin-sensitizing effect of the training 
independent of an increase in muscle mass might be the 
enhanced insulin receptor protein expression (Holten 
et  al. 2004). These adaptations might be responsible for 
restoring metabolic flexibility in T2DM in response to 
resistance training.

Resistance training and mitochondria

For a long time a predominant view has been that 
endurance and strength training are distinct exercise 
modalities, whose effects on skeletal muscle are related 
to increase in mitochondrial density (Davies et al. 1981) 
and increase in myofibrillar units (Gonyea & Sale 1982), 
respectively. More recent researches, however, suggest that 
mitochondrial biogenesis is stimulated by both training 
modalities (Pesta et al. 2011). Indeed, 10-week resistance 
training was found to enhance mitochondrial respiration 
to the same extent as aerobic training in skeletal muscle 
of lean, previously sedentary adults. The  enhanced 
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oxidative capacity was mainly due to qualitative 
mitochondrial changes, whereas tissue mitochondrial 
density contributed to a smaller extent (Pesta et al. 2011). 
Subsequent study, investigating effects of different types 
of exercise on mitochondrial content and substrate 
oxidation in T2DM patients (Sparks et  al. 2013), found 
that 9-month resistance or endurance training increased 
mitochondrial content in the skeletal muscle, and this 
change was associated with clinical improvements. 
Furthermore, combined training improved all measures of 
lipid and carbohydrate oxidation as well as mitochondrial 
content and enzyme activity, indicating that long-term 
combined training is an effective lifestyle therapy for 
T2DM (Sparks et al. 2013).

These reports are of great interest and support the 
view that mitochondrial derangement can be one of the 
factors responsible of IR and T2DM, even though they do 
not address the problem of the ROS production and its 
possible involvement in mitochondrial dysfunction.

At present, whether resistance training reduces the 
mitochondrial ROS production remains unknown. A 
recent report (Flack et  al. 2016) suggests that resistance 
training does not reduce ROS production in older adults. 
This observation appears inconsistent with previous 
observations suggesting that lipid (Vincent et al. 2002) and 
DNA (Parise et al. 2005a) oxidative damage was reduced, 
whereas antioxidant enzyme activity was increased (Parise 
et al. 2005b) following resistance training in older adults. 
Moreover, it has been reported that resistance training 
combined with antioxidant supplementation significantly 
increases free fat mass without concomitant improvement 
in insulin sensitivity in older adults (Bobeuf et al. 2010).

Endurance exercise

Evidence that the increase produced by endurance 
training in skeletal muscle metabolic capacity was due to 
increases in both tissue mitochondrial protein content 
and mitochondrial respiratory capacity was initially 
obtained in rats subjected to a program of treadmill 
running (Holloszy 1967). Subsequent studies confirmed 
the finding of exercise-induced mitochondrial biogenesis 
(Baldwin et  al. 1972), but showed that swim training 
induces an increase in the mitochondrial population 
which is characterized by a lightly reduced aerobic 
capacity (Venditti et al. 1999, 2014b).

Despite increase in mitochondria, aerobic exercise 
training reduces lipid and protein oxidative damage in 
skeletal muscle (Venditti et  al. 2014b). Furthermore, it 

renders tissue less susceptible to the oxidative damage 
in conditions leading to increased ROS production. For 
example, it was found that training prevented lipid 
peroxidation increase induced by moderate intensity 
exercise in rat muscle (Alessio & Goldfarb 1988). 
However, other studies suggested that training did not 
affect the extent of lipid peroxidation due to exhaustive 
swimming but decreased the rate of the peroxidative 
reactions, thus allowing trained animals to sustain the 
activity for a longer period before the fatigue became 
limiting (Venditti & Di Meo 1996, 1997). The increase 
induced by exercise in tissue resistance to oxidative 
challenges seems to be associated with increased cellular 
antioxidant defenses. Several studies examined the effect 
of endurance training on the activities of antioxidant 
enzymes. Much of these studies cannot be directly 
compared to each other because of the differences in 
experimental design, animal model and analytical 
procedures. However, in the whole they show that 
training results in an increase in activity of skeletal 
muscle antioxidant enzymes, such as SOD, GPX, CAT 
and glutathione reductase (GR) (Powers et al. 1999), even 
though some studies failed to find enhanced antioxidant 
activity after training. In fact, the determination of single 
enzyme activity and single scavenger concentration 
provides only a limited assessment of the tissue ability 
to prevent generation of or scavenge ROS. However, 
measurement of total antioxidant capacity of skeletal 
muscle indicates that such a capacity is increased by 
endurance training (Venditti & Di Meo 1996, 1997), 
supporting the view that the resistance of skeletal muscle 
against free radical-induced lipid peroxidation is at least 
in part due to increased antioxidant defenses.

Surprisingly, there are few studies concerning the 
effect of training on antioxidant enzyme expression. 
Such studies showed increases in Cu/ZnSOD and MnSOD 
protein level only in some muscles but not in others (Gore 
et al. 1998, Hollander et al. 1999).

It is likely that training exerts its protective effects 
also decreasing H2O2 production, even though scarce 
information is available on training impact on cellular 
ROS sources. The rate of mitochondrial H2O2 release 
was decreased in skeletal muscle (Venditti et  al. 1999, 
2014b) from rats trained to swim. Conversely, no effect 
on H2O2 release by intermyofibrillar and subsarcolemmal 
mitochondria was found in skeletal muscle mitochondria 
following voluntary wheel training (Servais et al. 2003).

Measurements of H2O2 release rate in the presence 
of respiratory inhibitors suggested that training reduces 
the concentration of the autoxidizable electron carriers 
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located at Complexes I and III in the muscle mitochondria 
(Venditti et al. 2014b).

However, other swim training-induced adaptations 
can contribute to the reduction of the H2O2 release rate 
found in the muscle mitochondria. These could include 
the increased activity of the H2O2-metabolizing enzyme 
GPX, which is coupled with the increase in GR activity, in 
the muscle mitochondria (Venditti et al. 2014b).

The decrease in H2O2 release might also be due 
to increased uncoupling of the inner mitochondrial 
membrane linked to increased levels of members of the 
mitochondrial transporters family, uncoupling protein 
3 (UCP3) and uncoupling protein 2 (UCP2), which are 
primarily expressed in skeletal muscle. However, this 
idea is not supported by the observation that endurance 
training decreases Ucp2 and Ucp3 expression in fast-
twitch fibers of skeletal muscle in both rodents (Boss et al. 
1998) and humans (Schrauwen et  al. 1999) and UCP3 
protein content in all types of fibers in humans (Russell 
et al. 2003).

Studies dealing with exercise training effects on 
NADPH oxidase activity are limited but some data suggest 
that exercise training is able to modulate NADPH oxidase 
activity in obese but not in lean subjects. Indeed, it has been 
reported that endurance training reduced microvascular 
endothelial NOX content in muscle biopsies from vastus 
lateralis of obese (Cocks et al. 2016) but not of lean men 
(Cocks et al. 2013).

Endurance training in T2DM: prevention and 
management

The benefits of physical activity are evident in healthy 
people but there is also strong evidence of the effectiveness 
of regular physical activity in the primary and secondary 
prevention of several chronic diseases such as diabetes 
(Pedersen & Saltin 2006, Warburton 2006).

Several studies support the idea that aerobic exercise, 
as well as resistance exercise, is associated with a decreased 
risk of type 2 diabetes. In early prospective study, each 
increase of 500 kcal in energy expenditure per week was 
associated with a decreased incidence of type 2 diabetes 
of 6% (Helmrich et al. 1991). The observation that such 
a benefit was particularly evident among people with a 
high body mass index was subsequently supported by 
several other studies. For example, randomized trials 
found that lifestyle interventions including physical 
activity, combined with diet-induced weight loss, reduced 
the risk of type 2 diabetes by 42% (Pan et al. 1997) and 

58% (Tuomilehto et  al. 2001), respectively, in high-risk 
subjects. On the other hand, interventions of exercise 
alone appeared to be just as effective in terms of prevention 
of T2DM as programs of diet alone or diet and exercise 
combined (Pan et al. 1997, Tuomilehto et al. 2001).

Physical activity has also been recommended by 
physicians in managing patients with T2DM because 
improvements in insulin sensitivity through regular 
exercise could overcome defects in insulin signal 
transduction noted in muscle from T2DM patients. 
Thus, endurance exercise training was shown to improve 
insulin sensitivity in patients with T2DM (Dela et  al. 
1995, Lazarevic et al. 2006) and to enhance both insulin-
stimulated and non-insulin-mediated glucose uptake in 
skeletal muscle (Dela et al. 1992, 1994).

These results agree the observations of the existence 
of a strong association between exercise and reduced 
rates of death from any cause and from diabetes in 
particular. Indeed, a prospective cohort study showed 
that physically inactive men with established T2DM had 
a 1.7-fold increased risk of premature death compared 
with physically active men with T2DM (Wei et al. 2000). 
Another cohort study showed that walking at least 2 h per 
week was associated with a reduction in the incidence 
of premature death of 39–54% from any cause and of 
34–53% from cardiovascular disease among patients 
with diabetes (Gregg et al. 2003). Moreover, walking that 
led to moderate increases in heart and breathing rates 
was associated with significant reductions in all-cause 
mortality and cardiovascular-related mortality (Gregg 
et al. 2003).

Mechanisms of adaptive responses to 
endurance training

Mitochondrial biogenesis

Although it was long known that endurance exercise 
induces an increase in muscle mitochondria number 
(Holloszy 1967), the mechanisms underlying such an 
increase were elucidated only at the beginning of the 
twenty-first century. This was due to a lack of information 
regarding how mitochondrial biogenesis, which requires 
the orchestrated expression of the genes encoded in the 
mitochondrial genome and the nuclear genes encoding 
mitochondrial proteins, is regulated.

Advancement in the understanding of the 
mitochondrial biogenesis regulation was reached with the 
discovery of the transcription factors, nuclear respiratory 
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factors 1 (NRF-1) (Evans & Scarpulla 1990) and 2 (NRF-2) 
(Virbasius et al. 1993). Further advancement was reached 
with the discovery of an inducible coactivator, the 
peroxisome proliferator-activated receptor γ coactivator-
1α (PGC-1α), which activates the transcription factors 
NRF-1 and NRF-2 (Puigserver et al. 1998). These in turn 
promote the transcription of oxidative phosphorylation 
genes, and other specific mitochondrial genes, including 
those involved in the transcription and replication of 
mtDNA, such as the factor of transcription A (TFAM) (Wu 
et al. 1999).

PGC-1 protein expression increases quickly in muscle 
cells stimulated to contract (Irrcher et al. 2003). Moreover, 
Pgc-1 gene expression increases in rat skeletal muscle after 
a single bout of exercise (Baar et al. 2002) and in human 
skeletal muscle after endurance training (Wang et  al. 
2011). Resistance training, performed after endurance 
exercise, amplifies the adaptive signaling response of 
mitochondrial biogenesis compared with single-mode 
endurance exercise, suggesting that concurrent training 
may be beneficial for the adaptation of muscle oxidative 
capacity (Wang et al. 2011). Increase in PGC-1α level was 
also found in rat skeletal muscle after 10 weeks of training 
to swimming, and such an increase was associated with 
increases in NRF-1 and NRF-2 levels (Venditti et al. 2014b).

It is worth noting that stimuli, activated during 
exercise, can contribute to eliciting the PGC-1 gene 
response. First, acute exercise results in rapid activation of 
p38 MAPK (Boppart et al. 2000) which activates PGC-1α 
by phosphorylation (Puigserver et al. 2001) and mediates 
the increase in its expression (Knutti et al. 2001). Then, the 
activated PGC-1α moves into the nucleus and coactivates 
the transcription factors that regulate expression of 
mitochondrial proteins.

Other exercise-activated stimuli inducing Pgc-1 
gene response include: (i) increase in cytosolic calcium 
concentration, which activates various signaling pathways 
regulated by the calcineurin phosphatase and the 
calmodulin-modulated kinase, (ii) the decrease in levels 
of high-energy phosphates, leading to the activation of 
AMPK, (iii) stimulation of the adrenergic system, leading 
to cyclic AMP synthesis, and activation of protein kinase 
A and other kinases (Kang & Ji 2012).

Furthermore, PGC-1α function is not only regulated 
by phosphorylation, but also by other covalent 
modifications among which acetylation, methylation and 
ubiquitination (Fernandez-Marcos & Auwerx 2011).

It seems that Pgc-1 expression is also upregulated 
by ROS. Indeed, the observation that the increase in 
Pgc-1α mRNA, induced by electrical stimulation in cell 

culture of rat skeletal muscle, is prevented by antioxidant 
incubation (Silveira et al. 2006) suggests ROS involvement 
in exercise-induced stimulation of Pgc-1α expression. 
Thus, the observation that the H2O2-induced increase 
in the mRNA content of Sod, Cat and Gpx in Pgc-1α 
KO fibroblasts is lower than that in wild-type fibroblasts 
(St-Pierre et  al. 2006) indicates that the upregulation of 
antioxidant enzymes can be mediated by PGC-1α.

Moreover, notwithstanding disagreeing results exist 
in literature (Higashida et al. 2011), several experimental 
studies reported that antioxidant supplementation 
attenuated the Pgc-1 gene expression (Ristow et al. 2009, 
Paulsen et al. 2014) and PGC-1 protein content (Gomez-
Cabrera et al. 2008, Venditti et al. 2014a,b, 2016). It was 
also reported that vitamin E supplementation prevented 
the increase in activator and coactivator levels induced by 
physical training in rat liver, muscle and heart (Venditti 
et  al. 2014a,b, 2016). These results suggest that the 
ROS produced during each session of exercise are able 
to modify mitochondrial population acting as signals 
regulating molecular events crucial for adaptive responses 
to training of rat tissues.

Although ROS ability to act as signaling molecules 
for the tissue adaptation induced by training seems to 
contrast with the oxidative damage and dysfunction 
elicited by acute exercise, an explanation can be 
provided by differences in extent and temporal pattern 
of ROS generation. Thus, a moderate, intermittent ROS 
production during short time periods in a program of 
graduate aerobic training can activate signaling pathways 
leading to cellular adaptation and protection against 
future stresses. Conversely, moderate levels of ROS 
production over long time periods (e.g. hours) or high 
levels produced during brief strenuous exercise can lead 
to structural and functional tissue damage inactivating 
important cellular molecules.

Insulin resistance improvement

The training-induced increase in PGC-1 expression 
seems to be also involved in signaling pathways, which 
might result in improvement of skeletal muscle insulin 
sensitivity. Indeed, besides regulating the mitochondrial 
biogenesis, PGC-1 is able to regulate expression of 
endogenous antioxidants, such as Cu/ZnSod, MnSod 
and Gpx, in skeletal muscle (Olesen et al. 2010, Kang & Ji 
2012). It is likely that this coordination of the proliferation 
of ROS-producing organelles with the increase in the 
antioxidant levels helps to maintain redox homeostasis. 

http://dx.doi.org/10.1530/JOE-17-0186


AUTHOR COPY ONLY
Review R170Exercise and insulin resistance

DOI: 10.1530/JOE-17-0186

Jo
u
rn

al
o
f
En

d
o
cr
in
o
lo
g
y

s di meo and others

http://joe.endocrinology-journals.org © 2017 Society for Endocrinology
Printed in Great Britain

Published by Bioscientifica Ltd.

234:3

In addition, PGC-1α promotes mSirt3 gene expression, 
which is mediated by an endoplasmic reticulum-binding 
element mapped to the SIRT3 promoter region (Kong et al. 
2010). In turn, SIRT3 binds to, deacetylates and activates 
mitochondrial enzymes, including MnSOD, through a 
posttranslational mechanism (Shi et al. 2005).

Because PGC-1α is able to regulate the mRNA 
expression of Ucp2 and Ucp3 in muscle cell culture 
(St-Pierre et al. 2003), it was suggested that PGC-1α could 
increase the uncoupling capacity and concomitantly 
reduce mitochondrial ROS production (Kang & Ji 2012). 
However, it is doubtful that an increase in uncoupling 
protein expression is elicited by endurance training since 
an increase in UCP3 protein has been observed in rat 
muscle only after acute exercise (Zhou et  al. 2000) and 
short-term training (10 days) (Jones et al. 2003).

The molecular mechanism for enhanced glucose 
uptake with long-term exercise training can be in part 
related to increased expression and activity of key 
proteins involved in the regulation of glucose uptake 
and metabolism in skeletal muscle. Molecular candidates 
for improved glucose homeostasis in connection with 
exercise include GLUT4, HK and GS.

GLUT4 has been identified as a key player in the exercise 
regulation of glucose transport, because the protein, 
recruited from intracellular sites by exercise, moves to the 
cell surface, where it mediates glucose transport into the 
muscle cells (Holloszy 2003). A direct connection between 
increased GLUT4 protein expression and increased basal 
and insulin-stimulated glucose transport and metabolism 
was found in GLUT4-transgenic mouse models (Hansen 
et  al. 1995). Furthermore, it was shown that GLUT4 
overexpression in skeletal muscle could prevent impaired 
whole-body glucose homeostasis associated with various 
states of IR. For example, modest overexpression (twofold) 
of GLUT4 in heart, skeletal muscle and adipose tissue in 
transgenic mice prevented the impairment of glycemic 
control and the associated hyperglycemia caused by high-
fat feeding (Ikemoto et al. 1995).

The effect of high-fat diet on GLUT4 expression in 
skeletal muscle appears to be variable because either 
decrease or lack of change of GLUT4 expression has been 
reported (Zorzano et al. 2005). However, in IR conditions, 
the ability of insulin to stimulate GLUT4 translocation 
decreases, resulting in a reduced GLUT4 content at the 
plasma membrane (Zierath & Wallberg-Henriksson 2002).

Conversely, besides increasing mitochondrial 
biogenesis, exercise enhances expression of the GLUT4 
glucose transporter (Rodnick et  al. 1990). The increase 

in GLUT4 occurs in parallel with, and is mediated by, 
the same signals and some of the same transcription 
factors as the increase in mitochondrial biogenesis. Thus, 
PGC-1 stimulates Glut4 expression (Lehman et al. 2000) 
by activating NRF-1, which in turn increases myocyte 
enhancer factor 2A (MEF-2A) expression (Baar et al. 2003), 
and by coactivating MEF-2A, which further increases 
GLUT4 transcription.

It should be noted that exercise-induced improvement 
in insulin signaling is not exclusively restricted to increased 
GLUT4 protein expression. Indeed, it seems that, although 
exercise increases GLUT4 protein in diabetic patients 
(Dela et  al. 1995), the main mechanism is the increase 
in post-receptor insulin signaling, especially at the distal 
step of the insulin PI3K cascade (which results in GLUT4 
translocation and glucose uptake) (Zierath 2002).

Increase in GLUT4 transcription and expression of 
Glut4 mRNA has been shown to persist for 3–24 h after 
single bout of exercise (Kraniou et  al. 2006, Richter & 
Hargreaves 2013). In this way, regular exercise translates 
into a steady-state increase of GLUT4 protein expression, 
and subsequent improvement in glucose control over 
time (Richter & Hargreaves 2013).

It is worth noting that even resistance training 
increases the rate of insulin-stimulated glucose transport 
and GLUT-4 protein concentration, but, differently 
from aerobic exercise, such changes are not associated 
to changes in oxidative capacity in rodent (Krisan et al. 
2004) and human (Holten et  al. 2004) skeletal muscles. 
This difference between endurance- and resistance-
trained skeletal muscle was difficult to explain considering 
the effect of resistance training on levels of PGC-1, 
which regulates the expression of genes involved in 
oxidative phosphorylation (Bonen 2009). A study using 
stimulations at different frequencies, simulating strength 
and endurance training in isolated rat extensor digitorum 
longus and soleus muscles, showed selective activation of 
the Akt-mTOR signaling cascade with the strength and 
preferential activation of AMPK-PGC-1α signaling with 
the endurance protocol (Atherton et al. 2005). However, 
subsequently, it was reported that resistance exercise, as 
well as endurance training, enhanced Pgc-1α expression 
due to transcriptional regulation (Deldicque et al. 2008). 
More recently, a form of Pgc-1α (Pgc-1α4) has been 
identified, which is preferentially induced in mouse and 
human muscle during resistance exercise (Ruas et al. 2012). 
PGC-1α4 does not regulate most of the known PGC-1α 
targets such as the mitochondrial genes of oxidative 
phosphorylation, but rather regulates the insulin-like 
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growth factor-1 and myostatin pathways (Ruas et  al. 
2012), both of which are known regulators of muscle size 
and strength (Florini 1987, McPherron et al. 1997).

Glucose phosphorylation appears to be another site 
of regulation and a potential barrier to glucose uptake and 
utilization. It is well known that glucose, which is entered 
into the muscle cell, undergoes phosphorylation to glucose 
6-phosphate (G-6-P) by HKII. Glucose is then metabolized 
through the glycolytic and oxidative pathways leading 
to energy generation during exercise or is converted to 
glycogen in the post-exercise period. Although glucose 
transport is generally believed to be rate limiting for 
insulin-mediated glucose metabolism in muscle (Fink 
et  al. 1992), the rate-limiting step could shift beyond 
transport under hyperglycemic or hyperinsulinemic 
conditions (Yki-Jarvinen et al. 1987).

A possible role for HK in training-linked improvement 
of glucose homeostasis was supported by the observation 
that transgenic overexpression of HKII led to increased 
basal and insulin-stimulated glucose uptake (Chang et al. 
1996). Theoretically, impairment in insulin-stimulated 
muscle glucose uptake shown in animals fed a high-fat 
diet can be due to deficits in one or more of the steps 
required for glucose uptake: (i) delivery of glucose to 
the muscle membrane, (ii) transport across the muscle 
membrane, (iii) intracellular phosphorylation by HK, and 
(iv) glycogen synthesis.

It was demonstrated that the impairment in muscle 
glucose uptake induced by consumption of a high-
fat diet was due not only to impairment in glucose 
transport but also to defects in glucose delivery and 
phosphorylation (Halseth et  al. 2000). Subsequent work 
showed that transgenic HKII overexpression was able to 
improve exercise-stimulated but not insulin-stimulated 
glucose uptake in mice fed a high-fat diet (Fueger et  al. 
2004). A difference between stimulation by exercise vs 
insulin is that exercise results in a massive hyperemia 
that lowers the barrier to glucose delivery. Therefore, the 
above results confirm that high-fat feeding increases the 
resistance to muscle glucose uptake even at sites upstream 
of glucose phosphorylation (i.e., glucose delivery and 
membrane transport). However, they also indicate that 
when the barriers to glucose transport and delivery are 
minimized during exercise as a result of hyperemia and 
contraction-stimulated GLUT4 translocation, impairment 
in glucose phosphorylation, which is improved by HKII 
overexpression, can be shown.

Some reports show that even glycogen storage is 
involved in training-induced improvement in glucose 

disposal. Traditionally, GS has been considered to catalyze 
the key step of glycogen synthesis and exert most of the 
control over this metabolic pathway. Insulin signaling 
stimulates the non-oxidative glucose metabolism 
involving GS activation, the rate-limiting enzyme in the 
storage of glucose in glycogen particles (Roach 2002). It 
has been reported that, in response to 3  weeks of one-
legged endurance exercise training, insulin-stimulated 
glucose uptake markedly increased in trained compared 
with untrained muscle (Frøsig et al. 2007). This increase 
coincided with an increase in protein expression of 
GLUT4, and HK II, as well as increased GS total activity 
in skeletal muscle. These adaptations are likely able to 
improve the intracellular conditions for uptake and 
metabolism of glucose (Frøsig et  al. 2007). Increased 
expression and activity/phosphorylation of Akt and 
AS160 were also evident after training. However, the 
sequence leading from Akt activation to GS activation in 
skeletal muscle was not affected by endurance training, 
suggesting that Akt1 is not a major kinase regulating GS in 
human skeletal muscle in response to insulin stimulation 
(Frøsig et al. 2007).

The increase in GS activation was also observed in 
response to strength training regimen (Holten et al. 2004), 
but, in contrast to endurance training, strength training 
also led to detectable significant change in GS protein 
expression. Furthermore, it was shown that endurance 
training increased GS activity and GLUT4 expression and 
improved glucose disposal in diabetic patients (Christ-
Roberts et al. 2004). In the whole, the results suggest that 
exercise training increases insulin-stimulated glucose 
disposal primarily by increasing GLUT4 protein expression 
without enhancing insulin-stimulated PI3K signaling, and 
that once the glucose enters the myocyte, increased GS 
activity preferentially shunts it into glycogen synthesis.

Interestingly, evidence is available implicating an 
inhibitory role in insulin signaling for mTOR pathway 
via an increased serine phosphorylation of IRS-1 
(Tzatsos & Konstantin 2006). Such a process can have 
many consequences, including dissociation of IRS 
proteins from the insulin receptor, blockage of certain 
Tyr phosphorylation sites of IRS, and induction of IRS 
protein degradation (Pederson et al. 2001). Furthermore, 
phosphorylation of IRS-1 at Ser 636–639 was found to be 
involved in cases involving obesity-linked IR and T2DM 
(Khamzina et al. 2005). Both mTOR and the ribosomal S6 
kinase 1 (S6K1), a downstream effector of mTOR, appeared 
to be involved in the Ser 636–639 phosphorylation 
of IRS-1 (Khamzina et  al. 2005). It was also found that 
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a chronic increase in physical activity inhibited fed-
state mTOR/S6K1 signaling and reduced IRS-1 serine 
phosphorylation in rat skeletal muscle (Glynn et al. 2008). 
Reduced mTOR/S6K1 signaling during chronic increases 
in physical activity may play an important regulatory role 
in the serine phosphorylation of IRS-1, which should be 
examined as a potential mechanism for IR attenuation 
associated with increased IRS-1 serine phosphorylation.

PGC-1 and training protection against 
insulin resistance

Endurance training induces increases in muscle levels 
of PGC-1α which mediates a series of changes which 
potentially could protect the tissue against IR. Therefore, 
it is opportune to examine data dealing with the effects 
of possible changes of PGC-1 α levels in untrained and 
trained insulin-resistant animals.

Reductions in expression of Pgc-1α and genes 
encoding for oxidative phosphorylation were found in 
skeletal muscle of T2DM patients and it was proposed 
that such reductions explained the alterations in 
mitochondrial metabolism in T2DM (Mootha et al. 2003, 
Patti et al. 2003). Interestingly, diabetes is also associated 
with reduced expression of mitofusin 2 (Mfn2) (Bach 
et  al. 2005), which belongs to the families of dynamin-
like proteins required for mitochondrial outer membrane 
fusion (Palmer et  al. 2011). The observation that Mfn2 
can be induced by PGC-1 through interaction with the 
transcription factor ERRα (Liesa et  al. 2008), and that 
inhibition of fusion results in decreased mitochondrial size 
and function (Palmer et al. 2011) suggests the existence 
of another mechanism linked to PGC-1 deficiency which 
can contribute together with dysregulation of respiratory 
chain to the development of IR and T2DM.

In the light of the above considerations it is surprising 
that overexpression of Pgc-1α in skeletal muscle results in 
an increase in IR in response to a high-fat diet, an effect 
which has been attributed to an increased fatty acid influx 
in myocytes which exceeds their capacity of consumption 
(Choi et al. 2008, Wong et al. 2015).

Conversely, controversial results were obtained 
studying the effect of training on skeletal muscle IR in 
PGC-1 overexpressing mice. Indeed, it was reported 
that insulin action remained lower in the transgenic 
compared with the control group, even after voluntary 
exercise (Wong et  al. 2015). It was also found that in 
insulin-resistant subjects a bout of exercise induced 
a delayed and reduced response in Pgc-1α mRNA 

and protein and transient phosphorylation of AMP-
dependent protein kinase, and did not increase none 
of the genes downstream of PGC-1α (De Filippis et  al. 
2008). In contrast, in another work, endurance training 
was found not only to rescue the IR, but in fact render 
the mice more insulin sensitive than similarly exercised 
wild-type controls (Summermatter et  al. 2013). Thus, 
it is unclear whether muscle PGC-1α overexpression 
results in enhancement of the insulin-sensitizing effects 
of exercise, and whether PGC-1 insufficiency ultimately 
contributes to muscle IR. Conversely, the aforementioned 
observations clearly indicate that the increases in PGC-1 
levels obtained by pharmacological exercise mimetics 
are different from those obtained by habitual physical 
activity in which other factors contribute to salutary 
effects normally attribute to PGC-1. In fact, the activity 
and expression of PGC-1α not only respond to a variety of 
positive and negative signaling pathways (Boppart et al. 
2000, Knutti et al. 2001, Puigserver et al. 2001, Fernandez-
Marcos & Auwerx 2011, Kang & Ji 2012), but it is also 
not exclusively required for the expression of respiratory 
chain and antioxidant proteins (Leick et  al. 2010), 
although it is required for normal basal expression levels 
(Adhihetty et al. 2009). Because of the complexity of the 
signaling pathways involved in the regulation of the 
mitochondrial biogenesis as well as antioxidant defense 
system, other studies are necessary to establish the 
mechanisms underlying the muscle response to programs 
of endurance training.

Because ROS seem to be involved in exercise-induced 
stimulation of PGC-1α expression, the question arises 
whether antioxidant integration can block the adaptive 
responses to endurance training mediated by PGC-1 in 
insulin-resistant muscle. Previous works examining the 
impact of antioxidants on exercise-induced adaptations 
showed varying response to antioxidant supplementation 
on exercise-induced effects in healthy humans and rodents.

Thus, it was reported that combination of vitamin 
C and vitamin E blocked training-induced increases in 
insulin sensitivity, mitochondrial biogenesis, and MnSod, 
Cu/ZnSod and Gpx expression as well as increases in 
PGC-1 expression in healthy humans (Ristow et al. 2009). 
Similar results were found in rats trained to run, where 
vitamin C supplementation blunted exercise-induced 
increases in endurance capacity, in MnSod and Gpx 
expression, and mitochondrial biogenesis markers NRF-1 
and Tfam (Gomez-Cabrera et al. 2008). Moreover, in rats 
trained to swim vitamin E supplementation attenuated 
the exercise-induced reduction in mitochondrial H2O2 
release rate and prevented the increases in GPX and GR 
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activities, and mitochondrial biogenesis, as well as PGC-1, 
NRF-1 and NRF-2 protein content (Venditti et al. 2014b).

In contrast, other studies reported that vitamin  E 
and vitamin C supplementation had no effect on 
exercise adaptations in both humans and rodents. 
Indeed, antioxidant supplementation did not alter 
exercise-induced increases in oxygen consumption, 
insulin sensitivity and markers of muscle adaptation, 
including GLUT4 and HKII in subjects trained to bicycle 
exercise (Yfanti et al. 2010, 2011), and insulin sensitivity, 
mitochondrial protein content, MnSOD, Cu/ZnSOD, and 
GLUT4 protein content in rats trained to swim (Higashida 
et al. 2011).

Although there is the possibility that the contradictory 
results are due to differences in the exercise protocols, 
antioxidant supplementation doses and methods for 
parameter measurement, the problem of the effects 
of antioxidants on adaptive responses to training and 
therefore role of ROS as initial stimuli for such adaptations 
remains controversial.

Controversy also exists on the effects of antioxidant 
supplementation on the response to training in obese, 
insulin-resistant and diabetic animals and humans.

It was previously shown that the antioxidant α-lipoic 
acid (LA) combined with endurance training increased 
glucose transport in insulin-resistant skeletal muscle 
in an additive fashion (Saengsirisuwan et  al. 2001). 
The possible cellular mechanisms responsible for this 
interactive effect were investigated evaluating the effects 
of LA, endurance training, and the two interventions 
combined on insulin-stimulated glucose transport, 
protein expression and functionality of specific insulin 
signaling factors in soleus muscle of obese Zucker 
rats. The results indicated that the improvements of 
insulin action in insulin-resistant skeletal muscles after 
α-LA or endurance alone and in combination were 
associated with increases in expression of IRS-1 protein 
and IRS-1 associated with p85 regulatory subunit of 
PIK3 (Saengsirisuwan et  al. 2004). However, endurance 
training also resulted in increases in GLUT4 protein and 
activities of total hexokinase, which were not modified 
following treatment combination.

Improvement of insulin action in the obese Zucker 
rats was obtained by additive interactions between 
exercise training and angiotensin-converting enzyme 
inhibitors (Steen et  al. 1999), and exercise training and 
thiazolidinediones, a class of antidiabetic drugs that 
improve metabolic control in patients with T2DM 
increasing insulin sensitivity (Hevener et al. 2000).

In contrast, more recent data indicate that vitamin E 
and vitamin C supplementation in obese rodents does 
not modify exercise-induced improvements in insulin 
sensitivity but reduces mitochondrial biogenesis and 
mitochondrial protein expression (Picklo & Thyfault 2015).

It is unclear why the effects of vitamin E and 
vitamin C supplementation are so different from those of 
α-LA. However, many of effects of α-LA, which has long 
been touted only as an antioxidant, are not due to its 
antioxidant properties. Beneficial effects are achieved with 
low micromolar levels of LA, suggesting that some of its 
therapeutic potential extends beyond the strict definition 
of an antioxidant. Moreover, it has also been shown to 
improve glucose and ascorbate handling, to increase 
eNOS activity, to activate Phase II detoxification via the 
transcription of the nuclear factor erythroid 2-related 
factor 2 (Nrf2) (Shay et al. 2009).

Normally, Nrf2 is located in the cytoplasm and kept 
dormant by a cytoplasmic repressor named Kelch-like 
ECH-associated protein 1 (Keap1). A variety of activators, 
including oxidative free radicals, release and translocate 
Nrf2 into the nucleus where it regulates the expression 
of antioxidant enzymes such as NAD(P)H quinone 
dehydrogenase 1, glutathione s-transferase, GPX, and 
heme oxygenase 1 (Lee et al. 2011).

LA, acting as a pro-oxidant, may increase Nrf2-
dependent transcriptional activity by forming lipoyl-
cysteinyl mixed disulfides on Keap1 protein that sequesters 
Nrf2 (Dinkova-Kostova et al. 2002). The effect of LA on 
Nrf2 is interesting because a critical role has recently been 
described for the transcription factor against oxidative 
stress in health and during diabetes.

However, this is not the only mechanism by which 
LA is able to improve glucose uptake in skeletal muscle. 
Studies using insulin-sensitive adipocyte and muscle 
cell lines indicated that in vitro LA exposure increased 
phosphorylation and/or the activity of several components 
of the insulin signaling pathway, including the insulin 
receptor, IRS-1, type I PI3K, Akt and p38 AMPK (Yaworsky 
et  al. 2000, Konrad et  al. 2001). Subsequently, LA was 
found to both enhance the IRS1 protein expression in 
muscle of obese Zucker rats and association of IRS1 with 
the p85 regulatory subunit of PI3K (Saengsirisuwan et al. 
2001) and activate AMPK (Lee et al. 2005).

The observation that α-LA enhances antioxidant 
enzyme expression and activates AMPK indicates that 
the acid is able to improve insulin sensitivity through 
mechanisms similar to those put in motion by the 
endurance training. Therefore, it is understandable that 
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the effects of LA and training are additive, differently from 
what occurs with other antioxidants and thus such effects 
are not at odd with the idea that ROS are able to function 
as an initial stimulus for the increased PGC-1 expression 
and adaptive responses to training.

Conclusions

Available evidence indicates that both resistance and 
endurance training are able to counteract the harmful effects 
of obesity, which predisposes to IR and T2DM. However, at 
present, there is no evidence that the beneficial effects of two 
types of training depend on similar mechanisms even though 
in the skeletal muscle both exhibit as a common effect the 
stimulation of mitochondrial biogenesis and the increase in 
respiratory capacity. The protection exerted by endurance 
training seems to be due to ROS produced in low amount 
during the single sessions of exercise, which can activate 
signaling pathways leading to both increased capacity to 
counteract oxidative stress and increased mitochondrial 
biogenesis. Conversely, disagreeing reports are available 
about the role played by ROS in the protection offered by 
resistance training against obesity-linked IR skeletal muscle 
so that further studies are necessary to clarify this topic.
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