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ABSTRACT  

In this paper we introduce new methods for real-time acousti-
cal tremor diagnosis. We outline the problems of tremor diagnosis  

in the clinical context and discuss how soni fication can comple-
ment and expand the existing tools neurologists have at their dis-
posal. Based on three preliminary soni fication experiments upon  
recorded tremor movement data, we show how temporal as well as  

spectral characteristics of tremor can be made audible in real-time.  

Our  first observations indicate that differences among tremor  

types can be made recognizable via soni fication. Therefore, we  
suggest that the proposed methods could allow for the formulation  

of more confident diagnoses. At the end of the paper, we will also  
shortly outline the central topics of future research.  

1. INTRODUCTION  

Tremor is the most common movement disorder. It is de fined as a  
rhythmic and involuntary oscillation of a body part, caused by re-
ciprocal nervous innervations of muscles [1]. The wide spectrum  

of tremor forms is summarized in the  1998  consensus statement  
of the Movement Disorder Society [2], whereas the most com-
mon forms include the essential tremor, parkinsonian tremor, dys-
tonic tremor and psychogenic tremor. It is well known that each  

different tremor form can be the symptom of a speci fic disease  
[1]. Therefore, reliable classi fication and quanti fication of differ-
ent tremor types is of strong clinical interest. A correct tremor  

diagnosis early in a diseases course is crucial in order to provide  

adequate treatment and medication for the patient.  

In many cases a con fident clinical diagnosis mainly based  
on the visual analysis of a tremor by neurologists experienced in  

movement disorders is possible. Nevertheless, these neurologists  

have to be highly specialized in this form of diagnosis and in some  
situations uncertainty remains. Therefore, further investigations  

based on structural and functional imaging, video analysis, ac-
celerometry and other electrophysiological investigations can be  

necessary. Although such methods offer important additional in-
formation for a  final diagnosis, the ex-post analysis and interpreta-
tion of recorded data is typically very time-consuming and hard to  

implement in the daily routine of clinical examinations. Besides,  
these methods do not support the neurologist during the personal  

contact with the patient.  
The sonification experiments presented in this paper aim at ex-

tending established tremor analysis methods by an acoustical in-
terface for tremor diagnosis. Based on real time soni fication of  
acceleration data, detailed information on the temporal as well as  

spectral characteristics of tremor could be made audible to the neu-
rologist while interacting with the patient. As soni fication could  
provide an additional modality to perception, it would allow for a  
holistic analysis of the observed tremor avoiding the major draw-
backs of ex-post analysis methods.  

2. AUDITORY DISPLAY FOR MOVEMENT DATA  

Sonification of movement data in the medical context is being em-
ployed in different areas and in conjunction with various motion  

capturing technologies. For example in virtual rehabilitation [3],  

sonification provides objective real-time information for analysis.  

In physiotherapy, soni fication has been used to offer clear feed-
back for therapists and patients during rehabilitation exercises, e.g.  

with the sonification ofEMG (Electromyogrphy) data [4]. Further,  
the auditory channel can be employed to augment the perception  

and proprioception of the subjects to heighten their motivation [5].  

From a more general perspective, auditory data displays also gain  

increasing interest in multimodal biomedical data representation  

[6], caused by the growing number of simultaneous data streams  
that have to be perceived and analyzed. However, the soni fication  
of tremor movements as a diagnostic tool is a novel research topic  

that has not been addressed until now.  

The sonification studies we present here concentrate on tremor  

in Parkinson's disease, essential tremor, and psychogenic tremor.  

From a medical point of view these are clinically sometimes dif-
ficult to distinguish and therefore a clear discrimination by means  

of acoustical tremor analysis would be of great importance.  

Since sonification will serve as a tool for neurologists, not  
sound specialists, our principal aim is to make differences between  

tremor types perceivable as clear as possible. To avoid auditory  

information overload, we try to lower the complexity of the soni-
fication, by associating only the most signi ficant and well-defined  
qualities of the data with distinct sound attributes. At the same  

time, we try not to oversimplify but to preserve all relevant infor-
mation present in the data.  

The preliminary experiments presented in this paper have been  

carried out on pre-labeled tremor data that has been captured by  

one of the authors during previous clinical studies. To evalu-
ate the quality of the proposed soni fication methods as diagnos-
tic tools, a prospective clinical study with multiple neurologists  
who have been trained with the soni fication system will be car-
ried out at the Medical University of Graz in  2012 . The neurol-
ogists will be asked to classify  30  different tremor patients with  
known diseases (approx.  10  per tremor form), basing their diag-
noses solely on audio  files representing sonifications of recorded  
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tremor data. Although such an "audio only" restriction does not  
reflect a real-world situation, it allows to asses the quality of the  

proposed method, when compared to the established standard of  

clinical tremor diagnosis.  

3. SONIFICATIONS  

In the following sections, we describe the three soni fication exper-
iments carried out on the data set we have at our disposal. At the  
end of each section, we briefly outline how the different tremor  

forms could be distinguished by the respective soni fication ap-
proach. 1 

 

The acceleration data we work with has been captured with a  

sampling rate of  fs  = 1  kHz  using a 3-axes accelerometer 2  taped  
to the backside of the proximal phalanx of the index  finger of a pa-
tient's hand. As the typical frequency range of pathological tremor  

lies approximately between  3  and  15  Hz, we apply a DC removal  
filter and a low pass  filter with a cutoff frequency of  fcL  = 70  Hz  
to the acceleration signals and upsample the data to  44 . 1  kHz .  
When the system will later be integrated as real-time diagnostic  

tool, the data will be captured using the same sensor, but already at  

audio rate. Therefore, real-time capability of the designed system  
has already been a crucial requirement for our preliminary studies.  

3.1. Frequency-Shifted Audification  

In our  first approach we aim at translating the acceleration data  

into sound in a simple and direct way i.e. without any sophisti-
cated pre-processing. As the signals we are confronted with ex-
hibit frequencies mostly below the audible range and our system  

has to be real-time capable, direct data audi fication (e.g. transpo-
sition via sample rate conversion) is not a viable option. However,  

as the ear is very sensitive to changes in amplitude and frequency,  

ranging from loudness  fluctuations to different forms of roughness,  

the tremor signals turned out to be especially well-suited to serve  

as modulators of  fixed frequency carriers. To highlight the rhyth-
mic structure of the observed tremor signals, we apply simultane-
ous amplitude (AM) and frequency modulation (FM) to the car-
rier signals. Since maxima in frequency coincide with maxima in  

amplitude of the resulting modulated signal, rhythmic or dynamic  

changes of the tremor become clearly audible.  

The following formula describes this soni fication approach for  
one axis:  

xson (n) = x̂ (n) sin (21rn (fx  +  kx (n)) ) 	(1)  

where  x̂ (n )  represents the half-wave recti fied acceleration signal  
x (n)  along the  x-axis to avoid a doubling of the perceived mod-
ulation frequency in relation to the observed tremor movements  

and the frequency  fx  of the carrier is  fixed. The amount of FM  
can be controlled by the modulation index  k , resulting in a pure  
amplitude modulation with suppressed carrier when  k  = 0. The  
signals  yson (n)  and  zson (n)  can be computed in the same way,  
but with different carrier frequencies  fy  and  fz . The simultaneous  
sonfication of all three axes can then be de fined as follows:  

totson (n) =  axxson (n) +  ay yson (n) +  az zson (n) 	(2)  

1 Examples: http://iem.kug.ac.at/index.php?id=13661  
2 Sensor details: http://www.biometricsltd.com/accelerometer.htm  

where the amplitudes  ax ,  ay  and  az  can be controlled separately,  
allowing to isolate single acceleration axes or planes for the soni-
fication; the squared sum of these weighting parameters is normal-
ized to one.  

Though quite basic, this approach allows us to rapidly explore  

the data and get a glimpse of how the different tremor typolo-
gies can be characterized. In particular, a  first distinction between  
tremor types can be based on their temporal characteristics. While  

the parkinsonian tremor shows a regular pulsation that can remain  

steady for long time intervals (10  — 20 seconds), there seems to  

be no regularity of any kind in most essential tremor cases as the  

sine is modulated by a quite noisy signal. In psychogenic tremor,  

pulses appear for short time intervals, but the beats do not present  

a steady repetition rate; they seem to falter, generating hesitating  

rhythms.  

3.2. Spectral Features  

As amplitude and frequency of a tremor are two very important pa-
rameters for the detection and quanti fication of tremor types, spec-
tral analysis of recorded accelerometry and EMG data has been  

used widely by neurologists [7, 8]. Typically a spectral represen-
tation of the investigated tremor signal (e.g. the power spectrum)  

is computed based on the Fourier transform, followed by the ex-
traction of speci fic spectral descriptors. Since many neurologists  

are familiar with these descriptors we want to make them audible  
in a real-time soni fication.  

The most commonly used parameters in the context of hu-
man tremor analysis are the peak tremor frequency, the total power  

of the spectrum between  1  and  30  Hz  and the half-width power,  
where the half-width is de fined as the frequency interval between  

the two values left and right to the main peak, at which the spectral  

power density is half of the peaks' power (see Figure 1). It is im-
portant to note that for clinical ex-post analysis, these features are  

typically computed over relatively long observation periods (e.g.  

30  seconds), which practically eliminates any temporal informa-
tion inside the signal.  

When analyzing the power spectra of different tremor forms,  

we can basically distinguish three different scenarios (see Figure  

1): a nearly harmonic spectrum, mostly in the Parkinson's dis-
ease (top); no narrow or clear peaks, but a broader region in the  

lower part of the spectrum, recurrent in the essential tremor (mid-
dle); only one prominent peak, frequent in the psychogenic tremor  

(bottom). To parametrize the soni fication algorithm, we therefore  
decided to use features similar to those depicted in Figure 1. We  

extract the central frequency of the main peak (if present), its half-
width power and we detect the presence of side peaks or harmon-
ics.  

As the relevant tremor frequencies lie in a very low and nar-
row part of the spectrum, we have to perform the real-time spectral  

analysis inside sliding windows of at least one second, in order to  

achieve the necessary frequency resolution. That way, the tem-
poral structure of the signal is preserved, but its level of detail is  
limited to the selected window length.  

In the sonification, where each axis can be soni fied individu-
ally, we use a Karplus-Strong [9] algorithm. The excitation signal  

of the algorithm is pink noise and the base frequency is propor-
tional to the central frequency of the main peak. The location of  

the main peak is determined by parabolic interpolation between  
neighbouring bins: this way, "jumps" of the base frequency are  

avoided when the the main peak of two consecutive frames resides  
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Figure 1: Typical power spectra RI tremor signals with indicated  
peak tremor frequencies (ptf), half widths (hw) and side peaks.  

in different bins. The width RI the main peak is used to control  

the feedback factor RI the delay line in the algorithm. If the peak  

is narrow, the feedback factor is nearly equal to  1 . 0 . Instead, if  
the peak gets broader, the feedback factor is diminished and gets  

down to  0 . 0  when no clear peaks are detected. The output is then  

passed through a low pass Þlter: if harmonics RI the main peak are  

detected, the cutoff frequency RI the Þlter is adjusted to EH eight  

times the base frequency and set to EH equal to LW if no signiÞcant  

side peaks appear in the spectrum.  
The resulting sound presents a clearly pitched tone, if the spec-

trum exhibits one or multiple peaks. When sonifying acceleration  
data RI a parkinsonian tremor, the spectrum RI the tone has more  

overtones and the pitch remains quite stable over longer time in-
tervals. On the contrary, when sonifying psychogenic tremor data,  

the generated tone can have more noise mixed in. It has a tighter  

spectrum and its base frequency moves quite frequently. Essen-
tial tremor generates a more noisy sound from which occasionally  
tones pop out but immediately disappear.  

3.3. Translation and Rotation  

For the Þnal soniÞcation approach we analyze the spatial move-
ment pattern RI the trembling hand. Since a soniÞcation based  

on detailed information on the exact hand movement would pre-
sumably provide too much auditory information, we developed a  

method to separate the observed motion into its major components.  
Assuming that the main components RI a hand movement are  

typically located on a slowly changing plane in space, we project  

the three dimensional acceleration vectors onto this plane, in the  

following referred to DV the "plane RI movement". This projec-
tion does not only reduce the dimensionality and amount RI data  
we have to process, but also offers important information on the  
investigated motion.  

To identify the plane RI movement RI a motion in real-time,  

we have to detect its major acceleration components during short  

observation periods. As the spatial spread RI successive acceler- 

ation vectors directly represents the amount RI acceleration into  

the respective directions, Principal Component Analysis (PCA) is  

a suitable method to identify the two main axes RI acceleration.  
PCA basically detects the direction RI the greatest variance RI the  

data and places a Þrst axis in this direction (the Þrst principal com-
ponent). The next axis (second principal component) is chosen  

perpendicular to the Þrst axis along the direction RI the next great-
est variance. Hence, the Þrst two principal components directly  

represent the vectors deÞning the plane RI movement.  

As we have to process the captured data in real-time, the prin-
cipal components are computed based on an iteratively updated co-
variance matrix  Σ(n ) . The Þrst two eigenvectors  [γ 1  ( n ) , γ2 (n )]  
RI  Σ (n )  represent the principal components that are used to project  

each three dimensional input sample  a (n) = [x (n) , y (n) , z (n)] T  
onto the plane RI movement. The resulting transformed input sam-
ples  ã (n )  are called ^^^^^ ^^^^^^^^ 

^
ã 1 (n ) 

^ 

ã (n) = 	= [γ 1 (n ) , γ2 (n )] T  a (n ) 	̂̂^ 
ã2 (n )  

Successive score vectors now deÞne a two dimensional trajec-
tory that offers important information on the amount RI transla-
tion and rotation inherent to the observed motion. This becomes  
clear, when we analyze the characteristic data distributions related  

to purely translational and rotational movements: a translational  

movement will lead to a "line-like" distribution RI acceleration  

values, DV only the sign and magnitude RI the acceleration vec-
tors changes over time, while a rotational movement will lead to a  
"circle-like" data distribution, DV only the direction RI the acceler-
ation vectors constantly changes.  

Considering these characteristic distributions projected onto  

the plane RI movement, we can now make two important obser-
vations: any progression along the axis deÞned by the Þrst prin-
cipal component can EH caused by rotation and translation, while  

changes along the second PCA axis can only EH caused by rota-
tional components. Therefore, the second element RI the score  

vector directly represent the rotational signal component  r (n)  RI  
an observed motion. To get a deÞnition RI the translational com-
ponent  t (n) , the inßuence RI the rotational component has to EH  
removed from the Þrst element RI the score vector. Hence, after  

calculating the Root Mean Square (RMS) RI each element RI the  
score vector, the translational component can EH obtained DV fol-
lows  

t (n) = 
 RMS{a 1 (n ) } −  RMS{ ã2 (n ) } 

 ã 1  (n ) 	(4)  
RMS{a 1 (n ) }  

In the soniÞcation we use the translational and rotational com-
ponents,  t (n)  and  r (n) , and the smoothed sum  s (n)  RI the  x, y  
and  z  components RI the acceleration signal.  

t (n ) HPF {s (n ) , 1000 }  +  r (n ) s (n ) sin (2π f n ) 	(5)  

In the Þrst part RI the soniÞcation we pass the signal  s (n )  through a  
second order high-pass Þlter  HPF{s (n ) , 1000}  with a cutoff fre- 
quency RI 1000 Hz and multiply the result with the translational  

component; this generates clicks or sort RI thumping beats. In the  

second part we use LW to modulate the amplitude RI a Þxed fre- 
quency sine and multiply the result with the rotational component.  

This way, we try to sonically separate and enhance transla- 
tional or rotational qualities RI movements by associating them  
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with two contrasting sound qualities that can be easily distin-
guished. Further, as the signal  s (n)  contains all the temporal de-
tails of the movement itself, we do not loose this information in the  
soniÞcation and can rely on it when making distinctions between  

the three tremor forms.  
Applying this analysis and the related soniÞcation to the accel-

eration signal, we can point out some important observations. In  

the essential tremor, the rotational component is most pronounced;  

even if the movement is highly disordered and not regular, the ma-
jor component is typically rotational, as the irregular clicks gen-
erated by the translational component remain in the background.  

The psychogenic tremor is mostly characterized by a strong trans-
lational component; the rotational component can also be present  

and even dominate, but only for short time intervals. In parkin-
sonian tremor, both components can be present, but in most cases  

clear and regular beats can be heard, helping to identify this tremor.  

4. DISCUSSION  

Our Þrst experiments showed that soniÞcation could indeed be a  

promising extension to the diagnostic tools already used by neurol-
ogists. In particular, the temporal qualities of tremor movements,  

which are transported by all our soniÞcation approaches, seem to  

bear important information that can be crucial in the distinction be-
tween the various forms. Besides, our approach to separate trans-
lational and rotational movement components is a novel analysis  
method and could also be an interesting step forward in clinical  
tremor research.  

Even if most of the tremor forms can be identiÞed via the soni-
Þcation, some cases remain unclear and a certain amount of ambi-
guity is inherent to all of the soniÞcations we presented. Although  
complementing one soniÞcation with another can sometimes be  

useful, it often leads to more confusing results, as it packs too  

much information into one sound.  
Considering the quite limited set of data examined so far, the  

new recordings that will be made in the next months will help us  
to sharpen the tools we created. Still, a different analysis approach  

that could eventually give us a more holistic view of tremor would  

be desirable. In the next section we will therefore introduce an  

analysis method that could possibly meet our needs in this respect.  

5. OUTLOOK  

As the preliminary evaluation results are very promising, we are  

planning to extend the current system with a more sophisticated  

data analysis method. In particular, the correct separation of simul-
taneous movement patterns or tremor modes inside overlapping  

frequency bands would offer valuable information for the soniÞ-
cation process.  

Depending on the investigated tremor type, the frequencies  

of individual tremor modes may signiÞcantly vary throughout a  

tremor recording. When using traditional spectral analysis meth-
ods (see section 3.2), it is often impossible to determine if differ-
ent peaks inside a spectrum represent the coexistence of separate  

tremor modes, one mode residing in multiple frequency bands or if  
they are caused by local oscillations during the observation period.  

To overcome these difÞculties, recent studies [10] propose to  

use empirical mode decomposition (EMD) [11], a relatively new  
time-frequency analysis method for nonlinear and non-stationary  

data, for the analysis of tremor signals. Unlike Fourier analysis,  

where signals are assumed to be a composition of linear, stationary  

components, EMD decomposes any arbitrary time series into a set  

of superimposed oscillations (AM/FM modulated signals), called  

intrinsic mode functions (IMF). Practical investigations on tremor  
data have shown that individual IMFs carry important information  

on the investigated tremor movement, as they adaptively follow the  

nonlinearities and non-stationarities inside the signal.  

Considering our observations presented in section 4, we are  

planning to apply EMD not only to the three dimensional accel-
erations vectors, but also to the rotational and translational signal  

components. The resulting IMFs could then serve as new input pa-
rameters for a temporally as well as spectrally detailed soniÞcation  

approach.  
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