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ABSTRACT  

This paper presents a  Modular Computer Vision Soni^ication  

Model  which is a general framework for acquisition, exploration  

and sonification of visual information to support visually  
impaired people. The model exploits techniques from Computer  

Vision and aims to convey as much information as possible  

about the image to the user, including color, edges and what we  
refer to as  Orientation maps  and  Micro-Textures . We  
deliberatively focus on low level features to provide a very  

general image analysis tool. Our sonification approach relies on  

MIDI using "real-world" instead of synthetic instruments. The  

goal is to provide direct perceptual access to images or  

environments actively and in real time. Our system is already in  

use, at an experimental stage, at a local residential school,  

helping congenital blind children develop various cognitive  

abilities such as geometric understanding and spatial sense as  

well as offering an intuitive approach to colors and textures.  

1. INTRODUCTION  

Sonification is defined in [1] as "use of non-speech audio to  

convey information". It describes both a scientific and an artistic  

discipline. In recent times it is even used to audibly browse the  

RNA structure [2] or model an acoustical representation of the  
standard model of particle physics [3]. In this paper we address  

the sub-field of developing sonification methods to support  
visually impaired people. In the last years, we have seen a  

number of special purpose devices that help visually impaired  
people to solve everyday problems, such as finding their way [4]  

or reading text. These devices tend to be restricted to a specific  

problem by extracting very specific information from the input  

data or by relying on additional information, such as positioning  
systems. In contrast, our goal is to develop a general-purpose  

system that can be used in a wide range of situations. Our  

system analyzes visual data using general image descriptors  

from computer vision, and maps these to auditory signals.  
Unlike approaches that use, for example, face detectors, we  

deliberately focus on low-level descriptors such as colors and  

edges in order to obtain a device that can sonify any given  

image and help to solve any given question that persons with  

normal vision could solve: We want to enable users to recognize  

what kind of scene is shown, find objects in this scene, or  
explore the photos of a friend. Unlike high-level image analysis,  

our device gives direct feedback on what is where in the image.  

We are inspired by the way how visually impaired persons can  

explore reliefs of scenes with their fingers and get a direct haptic  

experience of the shapes and locations of objects — they can feel  

what the peak of a mountain or a what cloudy sky is. Due to the  
simplicity and directness of the sensory mapping from visual to  

auditory, we harness the human ability to learn, so we consider  
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the brain of the user as part of the system.  
There has been done previous work on the sonification of low-
level characteristics of images for visual impaired. [5] generates  
sounds depending on a pixel's lightness and its position within  
the image. [6] demonstrates a technique, using color patches  
within images as chromatic patterns that can be put together to  
form a melody. [7] uses color attributes to filter an underlying  
white noise using  Suhtractive Synthesis . [8] mixes 8 pre-
recorded musical timbres depending on the quantity of 8 hue  
values within an image. All such synthesized sounds are not  
easily interpreted at first. Especially the last two approaches  
map all attributes of a certain color onto a single sound  
parameter, such as timbre, pitch or frequency spectrum. Such  
mappings are hardly reversible and might lead to identical sound  
synthesis from different input color combinations. Our  
contribution to previous work is to present a new and holistic  
approach to color and texture sonification, which is intuitive  
enough not only to be understood and applied by congenital  
blind, but also helps to convey e.g. the concept of colors and  
color mixing itself. We consider our approach to be holistic, as  
it maps each attribute of a particular color within a color-space — 
such as hue, saturation and lightness - to an intuitive, but  
separate, counterpart within the sound space at once.  
Additionally we map texture features to unique sound in the  
same way. The sonification of colors is important for two  
reasons, first, to offer a way to congenital blind people to  
understand colors and to be able to communicate with non-
visually impaired about such fundamental quality of human  
vision. Second, in illuminated environments, colors are crucial  
in the process of detecting objects. If our sonification is intuitive  
enough, a person will quickly learn to understand the concept of  
colors and textures as well as the audification, recognize objects,  
interpret images and develop their own strategies. Designing  
such a system, we face the following challenges:  
• 	Sensory input: We propose a system that analyzes images  

that users may find in a photo collection, on the internet,  
or capture with a still camera. Future devices could allow  
for depth information (stereo or time-of-flight devices),  
motion or other input.  
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several tasks aboutwhatfeatures shall be calculated and  

sonified are determined and passed through during exploration.  

Next step in the process is the creation of a  pixel descriptor  
"(x y)  - a vector gathering all the information to be sonified.  

The descriptor captures image information in the local  

neighborhood of  ^x y)  and is calculated using computer vision  
techniques. This information might be very fundamental such as  
color, texture, edges as well as more complex such as an  
estimation of depth or whether the current pixel belongs to a  

face. Every feature  i  makes an element  di ̂ x y)  of the pixel  
descriptor  "  x y)  and is transferred to the sonification unit. In the  
next sections, we discuss each module and describe our specific  

design and its implementation.  

3. SENSORICS  
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Figure 2: The  Modular Computer Vision Soni^ication Model.  

• Design the most appropriate visual descriptors to represent  
particular image values. They should be informative,  
general and stable under transformations such as  
illumination and pose.  

• Define a way to sonify these image descriptors. The goal  
is to convey as much information as possible without  
interaction between the channels as well as to give an  
auditory perception that enables users to develop an  
"intuition" about the visual data.  

• Develop an exploration paradigm. Human vision has  
many aspects of parallel processing: Much of the visual  
pathway in transmits information from different parts of  
the visual field in parallel, and pre-attentive vision (pop-
out effects) indicates parallel processing on higher levels.  
In contrast, an auditory signal mostly is a sequential data  
stream. This implies that it is hard to map an entire image  
to a single, constant auditory signal. Therefore, we  
decided that users should explore the image locally, for  

example on a touch screen.  
Our paper is on the interface between computer vision and  
sonification. Our contribution is the general concept of a  
Modular Computer Vision Soni^ication Model  with the  
components  Sensorics - Exploration - Machine Vision - 
Soni^ication - Human Learning , and a specific setup that  
implements this concept and that we present and evaluate below.  
As the notation " Computer Vision " implies, we focus upon  
working with visual data. More abstract models for the process  
of data sonification in general have been formulized e.g. in [9].  
The importance of interaction in sonification is argued in [ 10].  

2. THE MODULAR SONIFICATION MODEL  

Figure 2 gives an overview of the general concept of our  
Modular Computer Vision Soni^ication Model.  Stage one is the  

The sensory module acquires the data to be sonified. In the  

system presented in this paper, we rely on still images that are  

available as files. It is easy to apply our system to still images  

from a camera operated by the user, or on images from web  

pages. Future extensions may include depth information (from  

stereo vision or depth sensors), infrared images, GPS  

positioning, and motion information in videos.  

4. EXPLORATION  

Our exploration module has two major tasks. First, during the  

image acquisition, it allows the user to transmit control  
commands to the sensory module such as activating certain  

sensors or controlling their viewing direction. Second, it  

enables the user to navigate within an image, passing on its  

position  ^x y)  to the descriptor computation unit, along with  

several tasks that determine which features of  "  x y)  shall be  
sonified at all.  

4.1. Navigation  

Navigating within an image requires an appropriate interface.  

The computer-mouse, which is popular among users with  
normal vision, drops out as it does not deliver any absolute  

coordinates, which are necessary for a blind user to know the  

position in the image. Hence, we worked with several  

interfaces, as shown in Fig. 1, to see what suits best to a blind  

person. The pen - tablet interaction method functioned far  

better than the mouse, as it can be set to absolute coordinates.  

However, it turned out, that a direct touch helps to orient within  
the flat image, as analogous to moving the tip of the finger  
along a relief. Touch pads without a pen usually provide only  
relative positioning (similar to a mouse). For training and  

several user studies in section 7 we utilized a touch screen that  
allows the user to interact direct with the image plane (without  

seeing the image). Even though it does not make sense for a  
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proved very successful. Therefore we implemented a more  

effective and far cheaper interaction method, applying a  

camera-based finger position tracking based on  LJ<..'M"7N'38  
pose tracking system [11]. The same camera as to acquire the  
visual data is utilized to detect a marker, attached to the user's  

fingernail, which is thereafter calculated back to estimate the  

fingers position within the image.  

4.2. Control Gestures  

The use of a pose tracking system turns out to be of great  

interest in controlling the whole system as well. As the utilized  

LJ<..'M"7N'38  is able to deal with several markers at once it  
allows us to recognize many finger and hand gestures to submit  

control commands to the sensory module as well as sonification  

tasks to the descriptor computation unit. In contrast, a keyboard  

or virtual buttons on the touch screen are difficult to operate for  

blind users.  

5. PIXEL DESCRIPTOR COMPUTATION  

The  6"=&' 2&8#0"67.0  ">=?@A  holds all relevant features to be  

sonified at an image position  >=?@A . We focus on fundamental  
characteristics such as colors and what we call  :0"&*7%7".*  
5%68  and  !"#0.;<&=730&8. However, as intended, the module  
can be extended to extract and store more complex information.  

5.1. Color Information  

There are different color systems with several motivational  

backgrounds, as shown in Fig. 3. The  JK)  model uses additive  
mixtures of red, green and blue. It is motivated by the human  

eye receptors [12] and applied, e.g. in many display devices.  

However, providing a non-visual access to colors, as in our  
case, requires a more intuitive system, especially for congenital  

blind persons. This is why we prefer the  G9H  model [ 13], where  
each color value is described by hue  $ , saturation  8  and  
lightness  '. What makes color sonification difficult is the fact  

that color values often change rapidly from pixel to pixel even  

if there are only minute variations in textures and materials.  

Often, the reason is image noise by the camera. It is obvious  

that such changes clearly overburden a blind user. Therefore we  

smooth the image patch around the pixel position  >=?@A  based on  
)"'%7&0%' O"'7&0"*I  [14], as shown in Fig. 4, which filters noise  
while preserving edges within an image and will play a  
significant role in finding orientation maps. Subsequently, we  

use the smoothed color values as the first three elements of our  

pixel descriptor  ">=?@AP  

2Q  >=?@A  =  $85..7$  >=?@A ? 	2R  >=?@A  =  885..7$  >=?@A ? 	2S  >=?@A  =  '8  5..7$  >=?@A  

5.2. Orientation Maps  

The rationale behind  :0"&*7%7".* !%68  and  !"#0.;<&=730&8  is  

to create something like an acoustical relief that allows the user  

to hear what is under his fingers, instead of feeling it. While  

micro-textures - explained in the next section - express the  
overall roughness characteristics of a particular patch,  

orientation maps represent dominant structures within the  

image. We consider dominant structures single or repetitive sets  

of significant edges of the same orientation and a particular  

direction of propagation. Our method is based on the  
observation that standard edge detectors such as  4%**@  [15]  
produce multiple edges and spurious, misleading signals that  

confuse the user. Therefore the calculation of orientation maps  

involves filtering important from distracting structures, which  
may be motivated biologically from the  9300.3*2 T*$"B"7".*  in  
the human visual system that improves contour detection [ 12].  

Moreover, regular repeating patterns of a certain size tend to be  

human made, unlike the more fractal patterns that are often  

found in nature [16]. Finding human made structures is  

important when using the system to orient within an  

environment to find windows, doors, ways, tables, shelves and  
so forth.  

UDRDQD 4%'#3'%7"*I :0"&*7%7".* !%68  

In the first step of calculating orientation maps, we use cascades  
of  !&2"%*  [17] and  )"'%7&0%' O"'7&0"*I  to suppress both noise  
and small corners, as shown in Fig. 4 (b). Then, we reduce the  

spatial resolution of the red, green and blue color channels to  

obtain a  K%388"%* T5%I& N@0%5"2  [18], as shown in Fig. 5 (a).  
On each level, the width and height is reduced by a factor of 2.  

This reduction process removes low-scale variations which may  

be irrelevant for the task of the user. By later combining  
information of different layers using the image pyramid we can  

select the most appropriate resolution for each visual feature.  

Next, we perform a  K%B.0 <0%*8+.05  [19] on each channel  
separately and build a final response image by measuring all  

individual responses. The transform relies on  K%B.0 V%C&'&78  

WX ? Y >=?@A  [20]  

,@) _ & 

where the parameters  X  and  Y  define the orientation and scale of  

the Gabor kernel and  Z  is the standard deviation of the Gaussian  
window in the kernel, i.e. the size of the window.  /X ? Y  is the wave  
vector, combining orientations and the spatial frequency in the  
frequency domain. Gabor Wavelets are widely used in computer  
vision [20], because they provide an analysis of spatial  
frequency that is local, unlike the global analysis in a Fourier  

Transform [17]. To filter orientation maps, we choose  Y  = 1 and  
later combine their particular response — inspired by the  
cascading of several  8"56'& #&''8  to form  4.56'&= 4&''8  [12] in  
the human visual cortex. We apply them in 32 orientations  X  =  
10°, 5.625°, 11.25°,16,875,..., 180°1.  For the carrot and the orange  
in Fig. 4 (a), such response images are shown in Fig. 5 (b). The  
32 orientations  X  are visualized by gray scale values. We  
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an individual gray scale image  #\, where  #\>=?@A  = 255,  in case of  
an edge and  #\>=?@A  = 0  otherwise. One fundamental idea of  
orientation maps is that the user should not have to follow  
contours of objects or structures to estimate their silhouette,  

which would be tedious and slow. To make it easier for users to  
find contours, we distribute them around the edge by a kind of  

diffusion approach. Therefore, we calculate for each image  
position  >=?@A  the  C%0"%*#& ZR >=?@A  of values  #\  on its local  
neighborhood on each of the 8 images  #\, to obtain what we call  
:0"&*7%7".* !%68  $\ :  

where  _>=?@A "8  the mean and  ]  the size of the local  
neighborhood.  :0"&*7%7".* !%68  $\  for the carrot and orange  
(Fig. 4 (a)) are shown in Fig. 6. Each coherent patch of gray  

scale pixels, on each orientation map is referred to as  

:0"&*7%7".* N%7#$ -\?". As the diffusion approach might cause  
overlap in image positions  >=?@A  of different oriented orientation  
patches, as illustrated in Fig. 7 (a), we now compare orientation  

patches and emphasize the dominating ones while suppressing  

insignificant and therefore distracting others.  

UDRDRDL <.6.'.I"#%' J&60&8&*7%7".* .+ :0"&*7%7".* N%7#$&8  

We consider orientation patches as dominant if they have a  

certain size — which is the number of their pixel positions. So  
far, we handle 4 cases. Case 1: If an image area is dominated by  

two very big orientation patches of almost equal sizes, both  

above a certain threshold  78"1&  and such patches differ in  
orientation by more than 22.5°, they are retained as coexisting.  

This happens to be the case for a rectangular grid or a wall of  

bricks, where two orthogonal orientations are permanently  

present and form the particular textures of the image region.  

Case 2: If the image area is dominated by two orientation  

patches, both greater than  78"1&  , having an orientation difference  

of only 22.5°, which is the smallest possible difference, these  

patches are combined into a single orientation patch by merging  

the smaller one into the bigger one. Each pixel of the smaller  
orientation patch is assigned to the orientation map of the bigger  
one. After that, the smaller orientation patch is erased from its  

orientation map. Case 3: If the image area contains a large  

orientation patch, with a size greater than  78"1&, and further  
patches, whose sizes are below  78"1&?  such smaller patches are  

(a) 	 (b)  
Figure 8: (a)  K.  of Fig 6 (a). (b)  K#  of Fig. 6 (a).  

either (a) merged into the big one, as described in case 2, or (b)  

deleted from their orientation maps, depending on whether their  

particular centers lie within the large orientation patch or not.  

Case 4: If the image area contains several orientation patches,  

whose sizes are below  78"1&, they are merged as in case 2, in case  
both their center positions overlap and their orientation  

difference is equal to 22.5°. Otherwise they coexist. To  

implement the rules described in this section, we build a  

topological representation of all overlapping orientation patches  

in that area by the following procedure. At first, we apply a  

#.*7.30 +"*2"*I %'I.0"7$5  [21] on each orientation map  $\  that  
retrieves a sequence of all contour pixels as well as all enclosed  

image positions found within the map. Each contour, as well as  

the enclosed pixel positions, belong to an orientation patch  -\?". 
 

We now represent each  -\"  as a single image, as illustrated in  
Fig. 7 (a). So far, for each  V\,"  we have its size and can calculate  

its center of gravity. Starting with a particular orientation patch  

-\?", we now check pixel by pixel for overlaps with each  
different oriented orientation patch. In case of overlapping, we  

compute the number of mutual pixel positions and whether the  

center of one orientation patch lies within the other. The results  

can be processed by  I0%6$ 7$&.0@  [22] in the following way.  
Overlapping orientation patches can be modeled as an  

3*2"0&#7&2 K0%6$ K .  b c-?Fd?  where  /*.78 -  represent all  
orientation patches and  &2I&8 F  represent the existence of an  

overlap between a pair of different oriented orientation patches.  

A second graph  K#  is set up to represent only such overlaps,  

where at least the center  #  of one of the two orientation patches  

involved is found inside the related orientation patch, as  
visualized in Fig. 7 (b). In this case connections may be only in  
one direction, so  K#  is a  2"0&#7&2 I0%6$ . Both graphs  K.  and  K# ,  
for all orientation patches of the carrot image (Fig. 6 (a)), are  

illustrated in Fig. 8. Such topological representations can now  
be used to find which of the 4 previously mentioned cases fit.  

For the carrot image we find, based on  K .  and  K#  (Fig.  
that  -`a? Q  and  -`a?R  merge into  -QUeDUa? Q  applying case 3a and  -̀ a? S  

is deleted, applying case 3b. Hence, the final orientation maps  

$`a, $QSUa  and  $QUeDUa  are shown in Fig. 7 (c). In contrast, the  
Graph  K.  based on the orientation maps of the orange image,  

Fig. 6 (b), would result in a ring shaped connected structure,  

where every knot would be about the same size. Hence, such  
orientation patches are left as they are, according to case 4.  

Eventually, we can assign the shares of all eight orientation  

maps at a particular pixel position  >=?@A  to the pixel descriptor  

8 (c))  
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Figure 9: 4 types of textures with increasing  F*70.6@.  

">=?@AD  We define  f2\  >=?@A f  {0,11  to be either 1, in case  
$\  >=?@A >0, or0,if $\  >=?@A =0.  

2g  >=?@A  =  f2`a  >=?@A ? 	2U  >=?@A  =  f2RRDUa  >=?@A 	2h  >=?@A  =  f2gUa  >=?@A ?  
2e  >=?@A  =  f2 heDUa  >=?@A ?  2[  >=?@A  =  f2i`a  >=?@A ? 	2i  >=?@A  =  f2 QQRDUa  >=?@A ?  
2Q`  >=?@A  =  f2QSUa  >=?@A ?  2QQ  >=?@A  =  f2QUeDUa  >=?@A 

 

Note that as borders of orientation patches fade out, caused by  

our  C%0"%*#& ZR  2"++38".*  approach, we are also able to have  f2\  

>=?@A  run from 0 to 1 in several steps:  f2\  >=?@A f  {0,...,11 .  

5.8. Micro Textures  

What we call  !"#0.;<&=730&8  in our system captures the  
roughness and local structure at a point in an image. Examples  

of textures that we want to distinguish are shown in Fig. 9:  

regular lines, brick walls, ingrain wallpaper or carpet. In the  

Computer vision literature, there are many approaches to  

describe texture, even though it is difficult to give a general  

definition. [13] describes three different groups of texture  

measures. First, there are  O"087 :02&0 97%7"87"#%' <&=730&  

!&%830&8  [17] such as the  5&%* _  and  C%0"%*#& ZR  of color  
values in a local neighborhood. Second, there are  9&#.*2 :02&0  
97%7"87"#%' <&=730& !&%830&8. These texture measures do not  

analyze single intensities, but correlations between pairs of  

pixel values. An example of this approach are  G%0%'"#/ 7&=730&  
5&%830&8  based on  4.;:##300&*#&;!%70"#&8  [23].  
Unfortunately, a major drawback are high calculation costs.  

There have been efforts to speed up the processing using GPU  

[24]. Finally there is  96&#70%' T5%I& L*%'@8"8  such as e.g. the  
O%87 O.30"&0 <0%*8+.05  [ 17] or  K%B.0 <0%*8+.05. To build  
micro-textures we use the  K%B.0 <0%*8+.05  and compute the  
F*70.6@  as a texture measure.  

UDSDQD F*70.6@ %8 <&=730& !&%830&  

The  K%B.0 <0%*8+.05  is applied to the original image and not to  
the bilateral filtered image, as we now want to preserve  

roughness information.  F*70.6@, generally measures the disorder  
within a physical system, and is used in various scientific fields.  
Having zero entropy means to have maximum information about  

the state of a system [25]. In information theory, it is formulated  
as:  

	

with 	j " 	(3)  6
" 

 j  
We calculate the  F*70.6@ G>=?@A  for each pixel position  >=?@A ?  
based on the  K%B.0 <0%*8+.05  response within a local  
neighborhood. The variable  6"  is the probability for a certain  
orientation  X "  estimated from its occurrence  j"  divided by the  
total number  j  of all orientations  X  that occur within the  
window. Based on  G>=?@A  we can now measure the roughness of  

an image region and assign it to the last element of  ">=?@AP  

	

0 (85..7$ 830+%#&A , 	if  jk j5  "*"535  

2QR >=?@A  = 1 (%*"8.70.6"# 0.3I$*&88A , if  ` l G>=?@A k G "8.70.6"#  

2 ("8.70.6"# 0.3I$*&88A , if  G"8.70.6"#  l G>=?@A  

lor  

We utilize state of the art segmentation algorithms to separate  

the image into regions that are likely to show different real life  

objects. The goal is to help users find and scrutinize objects and  

other entities in the image, based on orientation maps and  

micro-textures calculated for such parts only. Image  

Segmentation or more precisely a foreground / background  
segmentation - is performed using  K%388"%* !"=730& !.2&'8  
calculated using  F=6&#7%7".*;!%="5"1%7".*  and  K0%6$ 4378  
[26], [27], [28]. First, the user moves over an area of interest and  
initiates the segmentation procedure by pressing a button or by  

gesture. Based on the users current position  >=?@A  we apply a  
+'..2;+"''  algorithm [29] that iteratively adds pixels to an area  

around  >=?@A ?  if their color distance to the average color of the  

region is below a threshold. The color distances are calculated  

as the Euclidean distance  11...11  in  4"&H%B  [13] Color Space, as  
illustrated in Fig. 4 (c). All these selected pixels are marked as  
"definite foreground", all others as "probably background", and  

both groups serve as first segmentation estimation and as input  

to the  F=6&#7%7".* !%="5"1%7".*  and  K0%6$ 437  algorithms,  
which then calculate the final segmentation. Fig. 10 shows some  

exemplary results of the segmentation, as well as the responses  

of the  K%B.0 <0%*8+.05  applied to such segmentations. The  
whole segmentation process takes approximately  gDU  seconds  
and can therefore be considered for interactive usage.  

6. SONIFICATION CONCEPT  

The previous sections dealt with extracting features to form the  

pixel descriptor  ">=?@AD  We now discuss the question of how to  

sonify those features. A great challenge is to avoid conflicting  

signals and information overload, as well as the transformation  

of quasi-static 2D image data into a dynamic audio stream.  
Though humans can distinguish many attributes such as  6"7#$?  
C.'35&?  Lm9J;430C&?  7"5B0&?  0.3I$*&88 .0 C"B0%7. , it is still  
impossible to transport all potential descriptors of visual  

information simultaneously. Unlike approaches that sonify a  

whole image sequentially e.g. by scanning its pixels row by row  

[30] we want the user, as already described, to fully interact  

with the visual data in real- time and to be able to hear what is  

currently under his finger. Second, we want a method to  

simultaneously sonify features such as color, orientation maps  

and micro-textures and even more, instead of focusing on a  

single feature such as the progression of edges [31], [32]. Third  

the sonification model should meet aesthetical demands that are  

important for comfortable and extensive usage.  

6.1. Sonification of Color Information  

Sonification systems may use different techniques of sound  

synthesis, such  %8 93B70%#7"C& 9@*7$&8"8 ,  L22"7"C& 9@*7$&8"8 ?  
K0%*3'%0 9@*7$&8"8 ?  N$@8"#%' !.2&'"*I  or  O! 9@*7$&8"8  [33].  
The methods presented in this paper rely on sounds from  

common instruments based on the General MIDI (GM) Standard  

(based on  V%C&7%B'& 9@*7$&8"8  [33]). Visual impaired people  

G  
" 

j  

1  

6 "  log  6 "  
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(a)  (b) 
 

(a) 	(b) 	 (c)  
F2D ame 2D spline deformed given 6  
c 	 # .  6& p>$? 8A  scheme around yellow.  

(c)  

Figure 11: (a)  4.56'&5&*7%0@ T*87  
.66.*&*7 #.'.08. (b)  Lm9J  Envelop  
(c) Lightness  ' f  {0,...,1}  and musica  
Brown notes are the added thirds.  

may find this a comfortable and soon a familiar way to get  

perceptual access to colors and textures. Instead of strictly  

learning particular associations between instruments and colors  

(which they do not see and therefore have to memorize) we  

want to help them to build connections between sonification  
signals and objects of their daily life. In fact, in our experiments,  

we often heard participants say that an image region "sounds  

like a tomato" or any other object rather than announcing the  

correct mixture of colors, such as red — as in case of the tomato.  

hDQDQD 4.56'&5&*7%0@ T*87035&*78  

As we use common instruments to sonify visual information, we  
propose a concept that represents each color value in the  G9H  

model as a mixture of instruments, inspired by Hering's  7$&.0@  

.+ .66.*&*7 #.'.08  [12]. In principle, we use what we call  
4.56'&5&*7%0@ T*87035&*78  to represent the  .66.*&*7 #.'.0  

6%"08  red-green and blue-yellow, as shown in Fig. 11 (a), and  
later combine adjacent instruments to represent color mixtures.  

As no mixture of a pair of opponent colors exists [ 12], there will  
be no mixture of a pair of complementary instruments in the  

sonification model either. Further we apply a musical scale to  

represent the luminance scale from black to white.  

Complementary instruments therefore must guarantee certain  

characteristics. First, they must possess a relatively stable  
frequency spectrum over time. That means that in terms of  

L77%#/;m&#%@;9387%"*;J&'&%8& ; L56'"732& &*C&'.6& >Lm9JA , as  
shown in Fig. 11 (b), they should have a short  L77%#/;  and  
m&#%@; , an infinite  9387%"*;  and a short  J&'&%8&;N$%8& . To avoid  
mutual masking of instruments, their frequency spectra should  

have narrow bandwidths (i.e. little noise components). In  

addition to appropriate  Lm9J -characteristics, there are further  

criteria that a set of 4 complementary instruments has to fulfill:  

9&6%0%B"'"7@  ensures that instruments, assigned to adjacent  

colors can be clearly distinguished even when they are played as  

mixtures. This criterion does not need to be met by  
complementary instruments. Second we need  n*"o3&*&88P  Even  
complementary instruments need to be unique enough to be  
associated with its particular color. Finally, we want to make  
sure that mixtures of instruments do not sound like other, new  
instruments. Fig. 11 (a) shows our final selection of instruments:  

Choir (red), bagpipe (yellow), organ (green), strings (blue) and  

flute (white, black, gray). The software allows users to assign  

own selection of preferred instruments. The specific role of  
gray-scale, black and white with only one instrument will be  

explained in the next section.  

hDQDRD <$& 4.*#&67 .+G9H;4.'.0 9.*"+"#%7".*  

As explained in section 5 the  G9H  color model describes a  
certain color using hue  $ , as an angle from 0° to 360°, lightness  '  
and saturation  8 . This color information of a pixel is stored in  

the first three element of  ">=?@AP  $ b 2Q >=?@A ?  8 b 2R >=?@A ?  'b 2S >=?@A . 

Based on our idea to assign complementary instruments to  

certain hues, we sonify intermediate color tones as mixtures of  

two adjacent instruments, and represent the color mixture ratio  

by their partial volume. The fade of saturation  8 , moving inward  
to the center of Fig. 11 (a), is considered as a general absolute  
decrease in volumes of any two color instruments playing  

simultaneously, while their relative volume ration is maintained.  

However, below a certain threshold  85"*  we regard the color as  
gray and sonify it using a single instrument, the flute. In general,  

gray is not considered a color, and the  G9H  model assigns it an  
arbitrary hue  $  = -1 and a saturation 8  = 0. Still, we found it  
helpful to use a separate instrument for gray, which partly  

reflects the fact that many languages have a separate name for it.  

The lightness  '  of gray or any other (combination of) colors is  

sonified as the pitch of the tone. Gray scale images, therefore  

will be sonified as a flute playing at varying pitch. Based on a  

musical scale, as shown in Fig. 11 (c), black, as the lowest  

lightness value, is assigned to the tonic keynote, whereas white  
to its octave. In between there are six whole tones and 11  

semitones. For harmonic reasons we only utilize the whole tones  

of the octave and map each lightness value  '  between 0 and 1 to  
one of the eight tones. Further, we add thirds to all six  

intermediate tones. This creates a more comforting and  

aesthetical resonance and offers an elegant way to recognize  

whether one has reached the top or bottom of the scale, as they  

are played without thirds. Otherwise, users would need perfect  

pitch to recognize black and white. When working with scales in  

MIDI, each note has to be triggered and released, which, again,  

is why a very short  L77%#/;  and  m&#%@;and as well a short  
J&'&%8&;N$%8&  is essential to maintain a close-to-continuous  

signal. In contrast, mixing colors on a constant luminance takes  

place solely within the  9387%"* 6$%8&  for arbitrary time - the  
note itself does not change.  

hDQDSD 4%'#3'%7".* .+ -.'35& 9$%6&8  

Calculating the volumes of instruments in a mixture of sounds  

for all intermediate colors is an interpolation problem. Simple  
linear (barycentric) interpolation would be too restricted  

because once the overall volume of each instrument is set, there  
would be no way to counteract the dominance of some  

instruments in some specific mixtures. Therefore, we use  7$"*  

6'%7& 86'"*& "*7&06.'%7".*  [34] based on a set of control points.  
The fundamental idea behind the method is the physical model  

of a flat thin medal plate as in Fig. 12 (a) that is deformed by a  

few punctual strains, which we will call control values  # . The  
plate is than forced into a new form that minimizes the  

126  



2  2  2  2  2  2  
2  

j  (5)  
2$28  2  

($ ,  8 )  F  #"  2  
" $8  1 	l 8  $  1 

Proceedings of the 18th International Conference on Auditory Display, Atlanta, GA, USA, June 18-21, 2012  

(a)  

(a) 	 (b)  
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(color: yellow), 	 g 	() 
should be 100% at hue  $  = 60° and full saturation  8  = 1, and 0%  
at hues  $  equal to 0° and 120° or greater, disregarding any  

saturation 8 . To control the volumes in mixed sounds, we add  

control values  #  in new positions  >$#?8cA . The calculation of such  
volume shapes  p>$?8A  involves linear combinations of  0%2"%'  
B%8"8 +3*#7".*8 +>$? 8A  [34]:  

j 

( $ ,  8 ) 

 ;Z
^ Y l "

+
"
( $ , 8 ) 	

(4) 
 

1  

where  q "  represents weighting of each  +">$? 8A  involved. These  
weights are found by minimizing a cost function that involves  

the sum of squared distances to all control values  #", as well as  
the integral of the squares of the second partial derivatives of  

p>$?8A ?  serving as a smoothness term:  

6.7. Sonification of Texture Information  

Sonifying both texture and color information is challenging in  

many ways. On the one hand we have to make sure that  
simultaneously played information is distinguishable, on the  
other hand we want to maintain a pleasing sound.  

hDRDQD L#.387"#%' J&'"&+8 ; G&%0"*I :0"&*7%7".* !%68  

We decided to utilize four more instruments, playing an octave  

below our keynote, to represent orientation maps of  \  = 10°,  
45°, 90°, 135°]. The instruments we chose: Didgeridoo (0°),  

wood percussion (45°), uilleann pipes (90°), metal percussion  

(135°), create a hum alike sound at 0° and 90° and a percussion  

sound at 45° and 135°, to quickly distinguish horizontal and  

vertical from diagonal structures. Again, the framework allows  
exchanging instruments according to personal taste. To avoid  
%32"7.0@ 5%8/"*I  [35] 

 

we should guarantee that the Volume  -\  

of all orientation map instruments are always lower than  p>$? 8A  
for all  $ %*2 8D  The four orientation maps in between  \  =  
122.5°, 67.5°, 112.5°,157.5°] are expressed using combinations  

of two neighbored  :0"&*7%7".* 5%6  instruments, both playing at  
50 %  -\.  

-`a  >=?@A b 2g  >=?@A ? 	-RRDUa  >=?@A b 2 U  >=?@A ?  -gUa  >=?@A b 2 h  >=?@A ?  
-heDUa  >=?@A b 2 e  >=?@A ? 	-i`a  >=?@A b 2[  >=?@A ? 	-QQRDUa  >=?@A b 2i  >=?@A ?  
-QSUa  >=?@Ab 2Q`  >=?@A ? 	-QUeDUa  >=?@A b 2 QQ  >=?@A  

hDRDRD L32"B'& J.3I$*&88 ; 9.*"+"#%7".* .+!"#0.;<&=730&8  
Micro-Textures are sonified using one more instrument that has  

a vibrant temper. As [36] pointed out "a good  C"B0%7.  is a  
pulsation of pitch, usually accompanied with synchronous  
pulsations of loudness and timbre, of such extent and rate as to  

give a pleasing flexibility, tenderness, and richness to the tone",  

which is an intuitive way to represent roughness acoustically.  

Figure 14: Histograms for (a) Exp. 1a/b and (b) Exp. 2a/b.  j  
elements (@ E %="8) recognized in how many sec. (= E %="8) each.  

As anisotropic rough structures are visually salient and rarely  
occur in most environments, they are sonified more vibrant and  

at a Volume  -!"#0.  being louder:  

0%, if  2QR >=?@A  = 0 (85..7$ 830+%#&A  
-!"#0.  >=?@A = 	50%, if  2QR >=?@A  = 2 ("8.70.6"# 0.3I$*&88A  

100%, if  2QR >=?@A b  1 (%*"8.70.6"# 0.3I$*&88A  

7. USER STUDIES  

We did user studies on two groups of participants, following  

different motivations. First, as a proof of concept of our  

framework, we asked a congenital blind, 54 year old adult  
academic, who had acquired a geometric understanding and  

spatial sense throughout his life to solve several tests after 4  

hours of training with our system. The participant was to solve  
three naming tasks at increasing difficulty:  
• F=6&0"5&*7 Q%  was about identifying one out of four  

elements (orange, tomato, apple and lemon — as in Fig. 13  
(a)) only by color while sonification of orientation maps  

and micro-textures was deactivated. Note that the target  

objects used for the task have the same spherical shape. In  

each of 60 trials, one of the 4 objects was selected at  
random and displayed at an arbitrary position on the touch  

screen. This was achieved by selecting one out of 40  

images (10 per object, with the object in different  
positions) at random. The task of the participant was to  

find and name the object. In the evaluation, we focus on  

the time between the moment when the participant finds  

the object (which depends on where he starts and is  

therefore not very informative), and the moment when he  

names the object verbally to the experimenter (Table 1 and  

Fig. 14). The average time to simply find an object's  

position on the screen was about 1.7 seconds. Chance level  

(pure guessing) is 25% in this experiment.  

• F=6&0"5&*7 R%  involved orientation maps and color. This  
time, the participant had to recognize one out 7 objects  
(orange, tomato, apple, banana, cucumber, carrot, lemon),  

as shown in Fig. 13 (a), so both color and shape are  

important for correctly naming the object. Again, each  

element was presented individually (chance level: 14%) at  

arbitrary positions and also in one of eight orientations, as  
illustrated in Fig. 13 (b). The database consisted of 56  
images (8 for each element, varying position and  

orientation). Again, times were measured between finding  
and naming the object verbally, as shown in Fig 14 and  

Table 1.  
• F=6&0"5&*7 S  was about recognizing an object within a set  

of other objects. Therefore, we presented images like the  

" 
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one shown in Fig. 13 (a) on the touch-screen. In our  

database of 7 images, we made sure that two objects of  

equal color (e.g. banana and lemon) would not be  
positioned next to each other. In each trial, an image was  

presented and the participant was told, which object he had  

to find, based on a random generator. This time, we  
measured the overall time until an element was named.  

In Experiment 1b and 2b, we tested the system on a group of  

congenital blind 14 year old teenagers. Unlike the adult  

participant, they had little geometric understanding and sense of  
space. We hope that our system can not only support them in  

everyday life, but also help them to develop cognitive abilities  

in geometry and spatial orientation. We performed an  

experimental evaluation of our system to measure their progress  
and compare it with the results of the adult participant. Three  

teenagers were trained about 5 hours with the system. This also  

included fundamental lecturing about basic geometry. Then, we  
asked them to perform Experiment 1b and 2b, which had the  

same setup as 1a and 1b described above. Surprisingly, the  

teenagers were able to perform the tests with similar hit rates  

and times as our adult participant (Table 1 and Fig. 14).  

RESULTS  P  Hit rate  X a  a  
Experiments  -  %  elem.  sec  sec  sec  
Exp. 1a  A  100.0  60/60  1.3  1.8  1.4  

T 1  91.6  55/60  2.2  2.6  1.5  
Exp.1b  T2  93.3  56/60  1.5  2.3  1.9  

T3  100.0  60/60  1.3  1.7  1.1  
Exp.2a  A  93.3  42/45  5.6  7.0  3.9  

T 1  88.8  40/45  12.1  13.3  4.7  
Exp.2b  T2  93.3  42/45  11.9  12.5  5.5  

T3  88.8  40/45  10.1  11.4  6.6  
Exp.3  A  100.0  45/45  5.6  10.6  12.0  

Table 1. Hit rates and times (median  9, mean  u , and standard  
deviation  a), for each trial and participant  P.  

8. CONCLUSIONS  

We have presented a general framework and a sample  

implementation of a device that can support blind and visually  
impaired persons in exploring images or scenes. Many details  
of our implementation, such as the choice of local image  

descriptors, may be modified or improved further. However, we  

tried our best to design descriptors that are most promising  

from the theoretical and most informative from the practical  

point of view. The same is true for our sonification concepts:  

they are only one way how this can be achieved, yet we argue  

that it is an appropriate and powerful way to do it. The  

experimental results indicate that the system enables users to  

solve simple recognition tasks fast and reliably. In future  

experiments, we are planning to consider more and more  

difficult tasks with cluttered scenes and a wider variety of  

objects. Both the design of image descriptors and sonification  

concepts went through many experimental steps, and we  
discarded many alternative designs before we ended up with the  

solution that we present here. Feedback from the users was that  

they found the setup that we presented in this paper both  
intuitive and helpful. Still, it is our goal to start a fruitful  
discussion about 1: which features of an image are most  
informative in this framework, and 2: how can sonification  

convey as much relevant information to the user as possible. As  

we mentioned in the paper, there are also many possible  
extensions in terms of sensorics (cameras, tracking systems)  

and exploration paradigms. In future work, we are planning to  

continue to improve and extend our system along these lines.  

Our vision is to provide visually impaired persons with  
software for web browsers, image "viewers", and on portable  

systems such as smart phones.  
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