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Abstract—We present and analyze the Motion Grammar: a
novel unified representation for task decomposition, perception,
planning, and control that provides both fast online control of
robots in uncertain environments and the ability to guarantee
completeness and correctness. The grammar represents a policy
for the task which is parsed in real-time based on perceptual
input. Branches of the syntax tree form the levels of a hierarchical
decomposition, and the individual robot sensor readings are given
by tokens. We implement this approach in the interactive game
of Yamakuzushi on a physical robot resulting in a system that
repeatably competes with a human opponent in sustained game-
play for the roughly six minute duration of each match.

I. INTRODUCTION

As robots come into increasing contact with humans, it is
absolutely vital to prove that these potentially dangerous ma-
chines are safe and reliable. Furthermore, applying robots to
increasingly complicated and varied tasks requires a tractable
way to generate desired behaviors. Typical reactive strategies
focus on efficiency rather than proving how the system will
respond during complicated tasks with uncertain outcomes
[29, 2]. Existing deliberative planners do provide guarantees
but often simplify the control system or have prohibitive
computational cost [31]. By representing perception, planning,
and control of robotic systems using Context-Free Grammars
(CFG), the Motion Grammar (MG) [9] enables robots to
handle uncertainty in the outcomes of control actions through
online parsing. Furthermore, MG makes it possible to prove
that the system will correctly respond to all possible situations.

Imagine a robot searching for earthquake survivors. This
robot must carefully remove pieces of rubble while ensuring
that the larger structure does not collapse. It must also co-
ordinate its efforts with other robots and human rescuers. We
consider a simplified version of this scenario in the two-player
game of Yamakuzushi. While the game is adversarial, the robot
and human collaborate to safely disassemble a pile of Shogi
pieces. The game contains many of the challenging elements
of physical human-robot interaction. Both the robot and human
make careful contact with pieces without causing them to fall.
The robot slides pieces without losing contact. It also observes
human actions and handles dangerous conditions. The key to
all these interactions is that the robot must handle uncertainty.
Our Motion Grammar guarantees that the robot responds to the
complete range of uncertain outcomes online.

The Motion Grammar is a linguistic approach to robot
control with significant benefits over existing techniques. The
fast algorithms for Context-Free parsing enable the robot to
quickly react online without lengthy deliberative planning.
CFGs represent a balance between power and provability. This
allows the system designer to tackle a broader class of prob-
lems and still prove desired response with model-checking.

Most robot tasks can be recursively divided into a number
of simpler subtasks. The hierarchical nature of grammatical
productions and the corresponding parse trees are well suited
to representing this hierarchical task decomposition. To our
knowledge, these benefits are not found together in any prior
methods for robot control

This paper discusses related work, the theory behind the
Motion Grammar, and presents our experimental validation us-
ing the game of Yamakuzushi. Sect. III,IV formally define the
Motion Grammar and explain the requirements for applying
CFGs to robotic systems. Sect. V describes our application
of the MG to the interactive game Yamakuzushi. Sect. VI
analyzes provability and properties of the MG. Finally, Sect.
VII introduces some of the numerous possible extensions to
the MG approach.

II. RELATED WORK

Literature on grammars from the Linguistic and Computer
Science communities has a number applications related to
robotics focusing primarily on image processing. [17, 19, 25,
34] use grammars to syntactically describe structural relations
in images and point clouds. B. Stilman’s Linguistic Geometry
applies a syntactic approach to deliberative planning and
search in adversarial games [33]. These works show that
grammars are useful beyond their traditional role in the Lin-
guistic, Theoretical, and Programming Language communities.
Our approach applies grammars to online control of robotic
systems.

Existing methods for planning and policy generation typ-
ically trade off efficiency for analytical properties such as
completeness. Classical planners based on first-order logic [31]
guarantee completeness. However, plan generation requires
an NP-complete logical inference [31], and additionally sym-
bolic methods do not explicitly address continuous domains.
Partially Observable Markov Decision Processes explicitly
represent domains with uncertainty, but their solvers are also
NP-complete [27]. The MG provides a natural representation
for hybrid continuous-discrete systems through parsing of
Context-Free Languages (CFL). The online response for any
event string has maximum O(n3) runtime [11]. Behavior-
based methods are widely fielded approaches for efficient
decision making [6, 2]. However, their primary validation
has been experimental due to infeasible computation time
requirements of earlier formal methods [29]. We argue that
the common applications of behavior-based robotics including
defense and personal assistance require formal verification.
The MG provides an efficient control policy, and its structure
can guarantee that robots will not cause accidental injury or
damage.
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There are many alternative formal control methods. Control
of Discrete Event Systems is explained in [30, 7]. [22]
describes a domain specific language for robot control whereas
the MG describes the language produced by the robot itself.
[23] uses graph grammars to organize many simple agents,
while we use a CFG for one complex agent. We show that MG
extends to correlated dimensions, human-robot interaction,
and high-dimensional manipulation. Hybrid [7] and Maneu-
ver [16] Automata switch continuous controllers in a Finite
State Machine, whereas the MG uses CFGs which allow the
controller to keep a memory of prior actions, build models,
and improve decisions. Our language-theoretic approaches to
analysis are complementary to existing methods for proving
the stability of hybrid systems [35, 4]. The Motion Description
Language (MDL) [5, 12, 13] describes robot operation with
strings of symbols each representing continuous-valued con-
trollers. These strings are generated off-line. Instead, the MG
parses a string of tokenized sensor readings online. The string
and associated parse tree evolve to represent the history of
system execution. MDLe [28] also handles reactive planning;
however, as shown in [21], it is not strictly more expressive
than Hybrid Automata. More detailed relationships between
MG and existing approaches are discussed in [10].

Model-checking approaches [3] are widely used to develop
high-reliability systems. [15, 26, 24] use Linear Temporal
Logic to formally describe uncertain multi-agent robotics by
a finite state partitioning of the 2D environment. We adopt
a discrete representation more suitable to high dimensional
spaces; our manipulation task uses a 7-DOF robot and 40
movable objects making complete discretization computation-
ally infeasible. Typically, model-checking uses a finite state
model of the system. However, there are algorithms to check
Context-Free systems as well [14]; we describe the specific
language classes for which this is possible in Sect. VI-B.

III. THE MOTION GRAMMAR

The Motion Grammar (MG) is a tool for designing and
analyzing robot controllers through formal language. Results
from language and automata theory are directly applicable to
MG making it possible to prove correctness and completeness.
This paper introduces an implementation of MG and analyzes
those guarantees. First, we review formal language.

A. Review of Grammars and Automata

Grammars define languages. For instance, C and LISP are
computer programming languages, and English is a human
language for communication. A formal grammar defines a
formal language, a set of strings or sequences of discrete
tokens.

Definition 1 (Context Free Grammar, CFG):
Π = (Z,V,P,S) where Z is an alphabet of symbols called
tokens, V is a set of symbols called nonterminals, P is the
set of mappings V 7→ (V ∪Z)∗ called productions, and S ∈ P
is the starting production.

The productions of a CFG are conventionally written in
Backus-Naur form, A→ X1X2 . . .Xn, where A is some nonter-
minal and X1 . . .Xn is a sequence of tokens and nonterminals.

This indicates that A may expand to all strings represented by
the right-hand side of the production. For additional clarity,
nonterminals may be represented between angle brackets 〈〉
and tokens between floor brackets bc.

Grammars have equivalent representations as automata. In
the case of a Regular Grammar – where all productions are
of the form 〈A〉 → bac〈B〉, 〈A〉 → bac, or 〈A〉 → ε – the
equivalent automaton is a Finite Automaton (FA), similar to
a Transition System with finite state. A CFG is equivalent
to a Pushdown Automaton, which is an FA augmented with
a stack; the addition of a stack provides the automaton with
memory and can be intuitively understood to permit counting.

Definition 2 (Finite Automata, FA): M = (Q,Z,δ ,q0,F),
where Q is a finite set of states, Z is a finite alphabet of
tokens, δ : Q×Z 7→Q is the transition function, q0 ∈Q is the
start state, F ∈ Q is the set of accept states.

Definition 3 (Acceptance and Recognition): An
automaton, M, accepts some string σ if M is in an
accept state after reading the final element of σ . The set of
all strings that M accepts is the language of M, LM , and M
is said to recognize LM .

Any string in a formal language can be represented as
a parse tree. The root of the tree is the start symbol. As
the start symbol is recursively broken down into tokens and
nonterminals according to the grammar syntax, the tree is
built up according to the productions that are expanded. A
production A→ X1 . . .Xn will produce a piece of the parse
tree with parent A and children X1 . . .Xn. The children of each
node in the parse tree indicate which nonterminals or tokens
that node expands to in a given string. The internal tree nodes
are nonterminals, and tree leaves are tokens. The parse tree
conveys the full syntactic structure of the string.

While grammars and automata describe the structure or
syntax of strings in the language, something more is needed
to describe the meaning or semantics of those strings. One
approach for defining semantics is to extend a CFG with
additional semantic rules that describe operations or actions to
take at certain points within each production. Additional values
computed by a semantic rule may be stored as attributes,
which are parameters associated with each nonterminal or
token, and then reused in other semantic rules. The resulting
combination of a CFG with additional semantic rules is called
a Syntax-Directed Definition (SDD).

B. Motion Grammar Definition

The Motion Grammar (MG) is a Syntax-Directed Definition
(SDD) expressing the language of interaction between agents
and real-world uncertain environments. In this paper, the
agent is a robot and the example language represents the
game of Yamakuzushi (Sect. V). Like SDDs for programming
languages, the MG must have two components: syntax and
semantics. This paper focuses on the syntax of the MG, its
expressivity, and formal analysis of MG languages. MG tokens
are system states or discretized sensor readings. MG strings
are histories of states during system execution. The syntax thus
represents the ordering in which system events and states may
occur. The semantics defines the response to those events. The
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Fig. 1. Operation of the Motion Parser.

MG uses syntax to decide from the set of system behavior and
semantics to interpret the state and make continuous control
decisions. This SDD given by the MG is used to generate the
Motion Parser which drives the robot as in Fig. 1.

Definition 4: The Motion Grammar (MG), GM , is a tuple
GM = (Z,V,P,S,Z ,U ,η ,K):

Z set of tokens representing robot state
V set of nonterminals
P set of productions
S starting nonterminal, S ∈V
Z space of robot sensor readings
U space of robot inputs
η tokenizing function, η : Z 7→ Z
K set of semantic rules, each associated

with one and only one production.

Definition 5: The Motion Parser (MP) is a program that
recognizes the language specified by the Motion Grammar and
executes the corresponding semantic rules for each production.

Consider the illustration in Fig. 1. The output of the robot
z is discretized into a stream of tokens ζ for the parser to
read. Based on the sequence of tokens seen so far, the parser
decides upon a control action u to send to the robot. The token
type ζ is used to pick the correct production to expand at that
particular step, and the semantic rule for that production uses
the continuous value z to generate the input u. Thus, the MG
Grammar represents the language of robot sensor readings.
The MP for that grammar is a transducer that translates the
language of tokenized sensor readings into the language of
controllers or actuator inputs.

C. Robot and Controller

The robot and the controller are both mappings between the
input and sensor spaces.

Definition 6: The robot is a function f : U 7→ Z with
internal state (q f , x f ) where q f is a discrete valued vector
and x f ∈ℜm.

Definition 7: The controller is a function g : Z 7→U with
internal state (qg, xg) where qg is a discrete valued vector and
xg ∈ℜn.
The MG represents a language that is produced by the robot
and consumed by the controller. The physical robotic system,
coupled with the tokenizer η produces a string of tokenized
sensor readings. The Motion Parser is the controller which uses
semantic rules, K, to determine continuous input. Both discrete
and continuous information are passed between the robot and
the controller. Discrete events are generated by η , becoming
part of the string. The continuous portion of controller state
xg comes from sensor readings z ∈ Z and semantic rules
K. It is stored by the parser in the attributes of tokens and
nonterminals.

1: procedure A
2: Choose a production for A, A→ X1 . . .Xn
3: for i = 1,n do
4: if nonterminal? Xi then call Xi
5: else if Xi = η (z(t)) then continue
6: else error
7: end if
8: end for
9: Execute semantic rule for A→ X1 . . .Xn

10: end procedure
Fig. 2. Procedure for 〈A〉 in a recursive parser for GM

We emphasize that the MG is not a Domain Specific Lan-
guage or Robot Programming Language [8, p339] but rather
the direct application of linguistic theory to robot control.
Furthermore, the MP does not require the Markov Assumption.
It maintains a history or memory in parse tree nodes and node
attributes or equivalently as the stack the pushdown automata.

IV. GRAMMARS FOR ROBOTIC SYSTEMS

A MG for any given task is developed based on the task
specification and the robot hardware to be used. The spaces
U and Z are the inputs and sensors that the robot possesses.
The token set Z should be designed as the collection of events
that may occur during task execution. The system designer
must create the tokenizing function η to map from Z to Z.
Then, the nonterminals V and productions P can be created
by hierarchically decomposing the task into progressively
simpler subtasks until finally bottoming out in a continuously
valued control-loop. Once the productions have been created,
the semantic rules K for each production can be developed.
These rules will compute the input to the robot based on
continuous values stored as node attributes. Finally, the starting
nonterminal S is selected from V as the top level of the
hierarchical decomposition and the grammar is complete.

A. Tokenizing

Tokens are events. These may be changes in a discrete
state, timeouts, thresholds, or entry into regions where the
continuous dynamics change. Whenever one of these events
occurs, the parser is given the next token.

B. Parsing

Once the MG for the task is developed, it must be transformed
into the Motion Parser. There are many different parsing
techniques, however the online nature of the MG constrains
this choice. First, the parser must expand productions left
to right as that is the order in which it receives the tokens.
Second, the input to give the robot must never be ambiguous;
this limits the ability of the parser to lookahead and backtrack.
For our proof-of-concept application, we used a hand-written
recursive descent parser, an approach also employed by GCC
[18]. A recursive descent parser is written as a set of mutually-
recursive procedures, one for each nonterminal in the grammar.
An example of one of these procedures is shown in Fig.
2, based on [1, p219]. Each procedure will fully expand
its nonterminals via a top-down, left-to-right derivation. This
approach is a good match for the MG’s top-down task decom-
position and its left-to-right temporal progression.



MESA SR4000 Schunk LWA3 Robot End-Effector

Computer

Microphone
Mountain of Shogi Pieces

Fig. 3. Our experimental environment for linguistic physical human-robot
games of Yamakuzushi.

C. Semantics

Semantic rules are procedures that are executed when the
parser expands a production. They represent the continuous
domain dynamics as state-space differential equations by com-
puting attribute values. While the token type encodes a dis-
crete event, attributes associated with tokens and nonterminals
represent the continuous system state. Some attributes are ob-
tained directly from the sensors: positions from encoders, force
from load cells, time from the clock. The rest are computed
according to the semantic rules. Attributes for a nonterminal
node in the parse tree are synthesized from child nodes and
inherited from both the parent nodes and the left-siblings
of that nonterminal. Attributes are thus passed between the
tokens and nonterminals in the grammar to implement the
continuous domain semantics. Hybrid control is achieved by
combining the discrete decisions of the Motion Parser’s syntax
with continuous functions defined by the semantics.

V. HUMAN-ROBOT GAME APPLICATION

We implemented and evaluated the performance of the Motion
Grammar on the Japanese game Yamakuzushi (yama). This
game is similar to Jenga. In yama, a mountain of Shogi pieces
is randomly piled in the middle of a table as shown in Fig. 3.
Each of the two players tries to clear the pieces from the table.
Each player is only allowed to use one finger to move pieces.
If a player causes the pieces to make a sound, it becomes the
other players turn. The winner is the player who removes the
most pieces.

In our implementation, a human plays against the Schunk
LWA3 7-DOF robot arm. The robot has a 6-axis force-torque
sensor at the wrist that we used for force control. A Mesa
Swiss Ranger allowed the robot to locate the Shogi pieces,
and a microphone detected sounds indicating turn loss. We
used a Kalman filter on the force-torque sensor and both
median and Kalman filters on the Swiss Ranger to handle
sensor uncertainty. The robot used a speaker and text-to-speech
program to communicate with its human opponent. The lowest
levels of our grammatical controller operated at 1kHz.

A. Tokens and Semantics

The tokens and attributes used by the yama grammar encode
the hybrid system dynamics. Both are summarized in Fig.
4. The tokenizer η produces each token ζ by thresholding

Token Description

bα ≤ t < βc Within time Range
bcontactc E.E. touching piece
bno contactc not touching piece
bdestinationc at traj. end
bhuman piecec removed by human
brobot piecec removed by robot
bclearc board cleared
bsoundc noise removing piece
bquietc no noise made
binspacec human in workspace
b¬inspacec not in workspace
bpointc element of point cloud

(a) Tokens

Attr. Description

Sensor Driven
t Current Time
x Act. Robot/Point Pos.
f Act. E.E. Force

Inherited/Synthesized
tα Duration or Timeout
xr Ref. Robot Pos.
ẋr Ref. Robot Vel.
x0 Traj. Start Pos.
xn Traj. End Pos.
fr Ref. E.E. Force

(b) Attributes
Fig. 4. Tokens, Attributes for the Yama Motion Grammar

PRODUCTIONS SEMANTIC RULES
〈g〉 → 〈g′〉 u = ẋr−Kp(x− xr)−K f ( f − fr)
〈g′〉 → bt < 0c xr = 0, ẋr = 0
〈g′〉 → b0≤ t < t1c xr = x0 +

1
2 ẍmt2, ẋr = tẍm

〈g′〉 → bt1 ≤ t < t2c xr = x0 +
1
2 ẍmt2

1 + ẋm(t− t1), ẋr = ẋm
〈g′〉 → bt2 ≤ t < tnc xr = xn− 1

2 ẍm(tn− t)2, ẋr = ẋm + ẍm(t2− t)
〈g′〉 → btn < tc xr = 0, ẋr = 0

Fig. 5. Syntax-Directed Definition that encodes impedance control over
trapezoidal velocity profiles.

the current sensor reading. The Motion Parser uses tokens
to determine syntactically correct expansions of productions
according to the grammar.

The semantic rules in yama assign updated sensor readings
to attributes, maintain previously computed attributes, deter-
mine new targets for the controller, and send control input. In
this paper, we give one key example of robot control through
semantic rules.

The SDD presented in Fig. 5 illustrates the semantics of
trapezoidal velocity profiles. Expanding 〈g′〉 yields distinct
semantic rules depending on t, the time attribute of the current
nonterminal. For each stage of the trajectory we target distinct
reference positions and velocities. The semantic rule for 〈g〉
defines the control output as a target velocity, u, based on
the references provided by expanding 〈g′〉 and the current
force attribute. This demonstrates how the continuous domain
control of physical systems can be encoded in the semantics
of a discrete grammar.

B. Touching Pieces

The Finite State Machine in Fig. 6(a) could be used to make
the robot touch a Shogi piece. This state machine is equivalent
to the grammar in Fig. 6(b). In the grammar, the tokenizing
function η applies a threshold to the force-torque sensors
and produces bcontactc if the end-effector forces exceed the
threshold or bnocontactc otherwise. To expand the 〈touch〉
nonterminal, the parser consumes a bcontactc and returns, or
it consumes a bnocontactc, moves down a small increment
using the trapezoidal velocity profile in 〈touch′〉 and 〈g〉, and
recurses on 〈touch〉. This behavior is mirrored by the state
transitions in Fig. 6(a).

We implemented this grammatical controller for touch-
ing Shogi pieces on the LWA3 and compared it to a
pure continuous-domain impedance controller. Due to the
large physical constants of the LWA3, we implemented our
impedance controller on top of a velocity controller. This ap-
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〈touch〉 → bcontactc

| bno contactc〈touch′〉〈touch〉
〈touch′〉 → bt > tnc | bt≤ tnc〈g〉〈touch′〉

(b) Equivalent MG Fragment
Fig. 6. Illustration of control for piece touching.'
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〈slide〉 → bcontactc〈g〉〈slide〉
| bno contactc〈g〉〈slide〉
| bdestinationc
| 〈reacquire〉bcontactc〈g〉〈slide〉

〈reacquire〉 → bno contactc〈touch〉

Fig. 8. Grammar fragment to reacquire lost pieces.

proach has the potential for oscillation, especially when gains
are large, yet even under these circumstances, the grammati-
cal controller achieved superior performance. The impedance
controller in Fig. 7(a) with an appropriate gain is able to make
contact with the piece, but it does suffer from some oscillation
and overshoot. An impedance controller with high gains in Fig.
7(b) has severe oscillation and very poor performance. The
grammatical controller in Fig. 7(c) has both less overshoot
and less oscillation than the purely continuous impedance
controller. Additionally, we also observed the grammatical
controller to be much more robust to sensing errors. If we
estimated the height of a piece incorrectly, the impedance
controller would often completely fail to make contact due
to limited ability to increase gains; however, the grammatical
controller would still be able to find the piece.

C. Sliding and Reacquiring Lost Pieces
The grammar in Fig. 8 describes how the robot slides pieces
and how it can reacquire pieces it has lost. This grammar
again uses the trapezoidal velocity profile 〈g〉. The tokenizer
η supplies bdestinationc when robot has moved the piece to
the desired location. If the robot momentarily loses contact

(a) contact (b) no contact (c) destination
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Fig. 9. Application of sliding grammar in Fig. 8 when contact is lost.

with the piece, it will continue expanding 〈slide〉; however,
when the contact loss is long enough for the robot to move
past the piece, the robot must backtrack to the last contact
position to reacquire the piece. This action is performed by
〈reacquire〉. Following this grammar allows the robot to move
pieces across the table and recover any pieces that it loses.

Our implementation of this grammar on the LWA3 slides
pieces and recovers them after any contact loss. As the robot
moves through the sequence in Fig. 9, it uses the end-effector
forces shown in Fig. 9(d) to make its decisions regarding piece
contact. At 6s, the robot begins moving down to touch the
piece. It acquires the pieces at 6.8s, Fig. 9(a) and begins
sliding. At 10.8s, Fig. 9(b), it loses contact with the piece.
Recognizing this, the robot backtracks, and again makes
contact with the piece at 18.5s. It then continues sliding the
piece, reaching the destination at 28.3s, Fig. 9(c).

D. Selecting Target Pieces

The grammar in Fig. V-D describes how the robot chooses a
target piece to move. The Swiss Ranger provides a point cloud
from the stack of pieces, Fig. 10(a). From this point cloud,
a set of planes is progressively built based on the distance
between the test point and the plane and on the angle between
the plane normal and the normal of a plane in the region of the
test point. Using only these identified planes, the robot selects
a target piece. The precedence of the target plane is based on
height above the ground, a clear path to the edge of the table,
and whether the piece may be supporting stacked neighboring
pieces. The parser will select the highest precedence plane as
the target to move, Fig. 10(b).
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〈act〉 → 〈target〉〈touch〉〈slide〉

〈target〉 → 〈plane〉0 | . . . | 〈plane〉n
〈planei〉 → bpointcj | bpointcj 〈planei〉

(c) MG Fragment
Fig. 10. Deciding target piece and direction.'
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〈winner〉 → 〈draw〉 | 〈robot〉 | 〈human〉
〈draw〉 → ε

| brobotpiecec〈draw〉bhumanpiecec〈draw〉
| bhumanpiecec〈draw〉brobotpiecec〈draw〉

〈robot〉 → 〈draw〉brobotpiecec〈draw〉
| 〈draw〉brobotpiecec〈robot〉

〈human〉 → 〈draw〉bhumanpiecec〈draw〉
| 〈draw〉bhumanpiecec〈human〉

Fig. 11. Grammar fragment to decide winner

E. Deciding the Winner

An example of a Context-Free system language is deciding
the winner of the game. The grammar fragment for this task
is shown in Fig. 11. This grammar will count the number of
pieces removed by the human bhuman piecec and the robot
brobot piecec. The 〈draw〉 nonterminal serves to match up a
piece removed by the human and a piece removed by the
robot. The 〈robot〉 and 〈human〉 nonterminals consume the
extra tokens for pieces removed by the robot or the human,
indicating that player is the winner. An example parse tree
for a draw condition is given in Fig. 12. This parse tree
demonstrates how each 〈draw〉 matches one brc and one bhc
token which requires a CFL [20, p125]. This solution to the
counting problem for deciding the winner demonstrates the
advantage of using a Context-Free model for the MG.'
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〈winner〉

〈draw〉

brc 〈draw〉

brc 〈draw〉

ε

bhc 〈draw〉

ε

bhc 〈draw〉

bhc 〈draw〉

ε

brc 〈draw〉

ε

Fig. 12. Parse tree for winner decision problem in draw case:
bhc ≡ bhumanpiecec, brc ≡ brobotpiecec
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〈game〉 → 〈robot turn〉bclearc〈winner〉
| 〈robot turn〉〈humanturn〉bclearc〈winner〉
| 〈robot turn〉〈humanturn〉〈game〉

〈robot turn〉 → 〈act〉bquietc〈robot turn〉
| 〈act〉bsoundc
| bclearc

〈humanturn〉 → 〈waitsound〉〈waitsafe〉
〈waitsound〉 → bsoundc

| bclearc
| bquietc〈waitsound〉

〈waitsafe〉 → binspacec〈waitsafe〉
| b¬inspacec

Fig. 13. Complete Yama Grammar. This is the remaining set of productions
used in the game.

F. Complete Game
The remaining productions to implement a full game of Ya-
makuzushi are given in Fig. 13. A game consists of alternating
robot and human turns until the board is clear. During the
〈robot turn〉, it will repeatedly 〈act〉 to remove pieces until
it causes bsoundc by making a noise exceeding the preset
threshold or until it clears the board. During the 〈humanturn〉,
the robot will simply wait until it detects a bsoundc or sees that
the board has been cleared. After the human makes a bsoundc,
the robot will wait until the human is out of the workspace
before beginning its turn.

VI. ANALYSIS

In this section, we investigate analytical properties of the
Motion Grammar for correctness and completeness of the
resulting system. First Sect. VI-A demonstrates grammar com-
pleteness ensuring that the robot will respond to all situations.
Then Sect. VI-B presents one approach to proving correctness,
ensuring that the grammatically-controlled system satisfies a
target constraint.

One key element of our analysis is that Motion Grammars
use a Context-Free system model. This representation provides
an appropriate balance between power of the computational
model and provability of the resulting system. Regular lan-
guages are a simpler representation whose response can be
just as easily proven, but they are very limited in what
they can represent. Context-Sensitive Languages are somewhat
more powerful than Context-Free, but Context-Sensitive pars-
ing is PSPACE-Complete. Recursively-enumerable languages
are more powerful, but by Rice’s Theorem, any nontrivial
property of a Turing Machine is unprovable [20, p188]. The
online parsing of a CFL is polynomial time, and the offline
verification is still decidable. Thus, CFLs are an appropriate
representation for robotic systems that must operate in real-
time and whose behavior should be verified.

A. Completeness
By formalizing the hybrid control problem as a grammar
that recognizes the language of the robotic system, we can
precisely determine what situations we are able to handle. This
allows us to guarantee that the robot will never give up. We



define a complete MG as one that will direct the robot to take
some action in all possible circumstances.

Definition 8: Let LGM be the set of all strings accepted by
Motion Grammar GM . Let Lg be the set of all strings produced
by the robotic system. Then complete{GM} ⇐⇒ Lg ⊆ LGM .

Now we give one method for proving completeness of a
MG. Though the general subset relation between two CFLs
is undecidable [20, p203], we can take advantage of the
constraints imposed by continuous-domain dynamics to decide
complete{GM}. This approach combines the First and Follow
sets used in compiler theory [1, p220] and the Invariant Set
Theorem from Lyapunov theory [32, p68] to show that the
system will always remain in a region that is defined by the
grammar. We use a variation of the conventional follow(A),
which is based on unions, and instead base our xfollow(A) on
the intersections of tokens that may follow A.

Definition 9: xfollow(A) is the intersection of all tokens
that may follow nonterminal A in the grammar. Specifically,
xfollow(S) = $ where $ indicates the end of the input string and
S is not a child in any production. For all A 6= S, xfollow(A) is
the intersection of first(β ) for all productions B→ αAβ and
of xfollow(B) for all productions B→ αA.

Lemma 10: If a top-down parser receives token ζ after
expanding some production A→ X1 . . .Xn and ζ ∈ xfollow(A),
then ζ will not generate a syntax error.

Proof: Since ζ ∈ xfollow(A), all parent productions of A
must be able to accept ζ following their expansion of A. Thus
ζ cannot cause a syntax error.

Theorem 11: For Motion Grammar GM in Chomsky normal
form with productions p = (A→ χ) ∈ P, let

• S be the starting nonterminal
• X = ℜn be the continuous, finite-dimensional, state of

the robot and x ∈X
• hp(x) : X 7→Z
• R0(p) = {x | η(hp(x)) ∈ first(χ)}
• R1(p) = {x | η(hp(x)) ∈ xfollow(A)}
• ζ0 be the first token received by the Motion Parser.

If, ζ0 ∈ first(S) and for all p ∈ P, R0(p)⊆R1(p) and R0(p)
or R1(p) is an Invariant Set, then complete{GM}.

Proof: We prove this theorem inductively. For the induc-
tive case, the Motion Parser expanding some p ∈ P must start
with x ∈ R0(p). If R0(p) ⊆ R1(p) and R0(p) or R1(p) is
an Invariant Set, then at the end of expanding p, the system
will have x ∈ R1(p). This will generate a subsequent token
ζ ∈ xfollow(A) and Lemma 10 shows that this will not cause
a syntax error. For the base case, the Motion Parser is given
ζ0 as the first token. Since ζ0 is in first(S), it will not generate
a syntax error.

Theorem 11 shows that a system is fully represented by a
MG. If our MG is not complete, we can fix this by modifying
semantic rules K to create the invariant set property or by
creating more productions in P to respond to the additional
cases. When the grammar is complete, it guarantees a response
to all situations and additionally lets us use the discrete syntax
to represent the system. We use the syntax to guarantee that
the system is correct.

Lr ∈LR Lr ∈LD Lr ∈LC
LGM ∈LR yes yes no
LGM ∈LD yes no no
LGM ∈LC yes no no

Fig. 14. Decidability of correct{GM ,Lr} by language class.

B. Correctness
In addition to ensuring that the robot takes some action for all
circumstances, it is also important to evaluate the correctness
of the action. We define the correctness of a language specified
by the MG, LGM , by relating it to a constraint language,
Lr. While LGM for a given problem integrates all problem
subtasks, as shown in Sect. V, the constraint language targets
correctness with respect to a specific criterion. Criteria can be
formulated for general tasks including: safe operation, target
acquisition, and the maintenance of desirable system attributes.
By judiciously choosing the complexity of these languages,
we can evaluate whether or not all strings generated during
execution are also part of language Lr.

Definition 12: A Motion Grammar GM is correct with re-
spect to some constraint language Lr when all strings in the
language of GM are also in Lr: correct{GM,Lr} ⇐⇒ LGM ⊆ Lr.

The question of correct{GM,Lr} is only decidable for
certain language classes of LGM and Lr. Hence, the formal
guarantee on correctness is restricted to a limited range
of complexity for both systems and constraints. We prove
decidability and undecidability for combinations of Regular,
Deterministic Context-Free, and Context-Free Languages.

Lemma 13: Let LR be the Regular set, LD be the Deter-
ministic Context-Free set, and LC be the Context-Free set.
R ∈LR, D ∈LD, and C ∈LC. Then,

1) C ⊆C′ is undecidable. [20, p203]
2) R⊆C is undecidable. [20, p203]
3) C ⊆ R is decidable. [20, p204]
4) R⊆ D is decidable. [20, p246]
5) D⊆ D′ is undecidable. [20, p247]
Corollary 14: Based on LR ⊂LD ⊂LC, the results from

[20] extend to the following statements on decidability:
1) D⊆ R and R⊆ R are decidable.
2) D⊆C undecidable.
3) C ⊆ D is undecidable.

Combining facts about language classes, the system designer
can determine which types of languages can be used to define
both grammars for specific problems and general constraints.

Theorem 15: The decidability of correct{GM,Lr} for Reg-
ular, Deterministic Context-Free, and Context-Free Languages
is specified by Fig. 14.

Proof: Each entry in Fig. 14 combines a result from
Lemma 13 or Corollary 14 with Definition 12. The algorithms
that perform each subset evaluation and therefore the evalua-
tion of correct{GM,Lr} are given in [20].

Theorem 15 ensures that we can prove the correctness of a
MG with regard to any constraint languages in the permitted
classes. We are limited to Regular constraint languages except
in the case of a Regular system language which allows a Deter-
ministic Context-Free constraint. Regular constraint languages
may be specified as Finite Automata, Regular Grammars, or
Regular Expressions since all are equivalent. Furthermore,



since we can determine the complement of any Regular or De-
terministic Context-Free language, we can specify constraints
in terms of events that should never happen, LGM ⊆ L̄e. Both
positive and negative constraints allow existing algorithms to
guarantee that a MG-based system is safe and reliable.

This approach to proving correctness is very similar to the
model checking of [3, 14]. We note that while model-checking
is a computationally expensive operation, it is one that we can
perform offline. Since the MG represents a policy, once we
have verified the grammar, all online operation is performed as
efficient parsing. Verifying an efficiently implementable policy
permits guarantees while maintaining fast online performance
and response to uncertain events.

C. Example Correctness Verification
We present a simple correctness verification to demonstrate
the approach.

Claim 16: Let G be the grammar in Fig. 8, and let Lr be the
language represented by regular expression (.∗ bdestinationc).
Then correct{G ,Lr}.

Proof: We prove this claim by induction. For the base
case, the start symbol of G , 〈slide〉, expands immediately to
bdestinationc. For the inductive step, 〈slide〉 otherwise expands
with a rightmost recursive call to 〈slide〉. Thus, we will see
recursive calls to 〈slide〉 until bdestinationc, so bdestinationc
must at some point occur and end the string.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented a novel approach to perception,
planning, and control using grammars. Our Motion Grammar
demonstrates that you can have both formal guarantees and
computationally efficient performance, crucial properties in the
development of robots that are safe and reliable. We showed
how the MG can be used to prove a system will be robust
to uncertainty, responding to every possible situation, and we
described how to develop such a complete grammar. We also
showed how to provide guarantees on the correct operation of
the system. Finally, we have demonstrated the efficacy of this
approach by developing a physical robotic system to play the
game Yamakuzushi against a human opponent.

There are many avenues to enhance the guarantees, expres-
siveness, and power of our MG. Firstly, a parser generator to
produce a Motion Parser from the MG would automate much
of the implementation details. Applying type theory could pro-
vide for stricter definitions and guarantees. We will continue
exploring these approaches to improve the capabilities and
guarantees of the resulting system.
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