On subgraphs of large girth In Honor of the 50th Birthday of Robin Thomas

> Vojtěch Rödl rodl@mathcs.emory.edu

joint work with Domingos Dellamonica

May, 2012

On the Genus of a Random Graph

Vojtěch Rödl*

Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322

Robin Thomas[†]

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160

ABSTRACT

Let p = p(n) be a function of n with $0 . We consider the random graph model <math>\mathscr{G}(n, p)$; that is, the probability space of simple graphs with vertex-set $\{1, 2, \ldots, n\}$, where two distinct vertices are adjacent with probability p, and for distinct pairs these events are mutually independent. Archdeacon and Grable have shown that if $p^2(1-p^2) \ge 8(\log n)^4/n$, then the (orientable) genus of a random graph in $\mathscr{G}(n, p)$ is $(1 + o(1))pn^2/12$. We prove that for every integer $i \ge 1$, if $n^{-i/(i+1)} \ll p \ll n^{-(i-1)/i}$, then the genus of a random graph in $\mathscr{G}(n, p)$ is $(1 + o(1))\frac{1}{4(i+2)}pn^2$. If $p = cn^{-(i-1)/i}$, where c is a constant, then the genus of a random graph in $\mathscr{G}(n, n) = 1$, but for i > 1 we were unable to compute this function. © 1995 John Wiley & Sons, Inc.

ARRANGEABILITY AND CLIQUE SUBDIVISIONS

Vojtěch Rödl* Department of Mathematics and Computer Science Emory University Atlanta, GA 30322

and

Robin Thomas^{**} School of Mathematics Georgia Institute of Technology Atlanta, GA 30332–0160

ABSTRACT

Let k be an integer. A graph G is k-arrangeable (concept introduced by Chen and Schelp) if the vertices of G can be numbered v_1, v_2, \ldots, v_n in such a way that for every integer i with $1 \leq i \leq n$, at most k vertices among $\{v_1, v_2, \ldots, v_i\}$ have a neighbor $v \in \{v_{i+1}, v_{i+2}, \ldots, v_n\}$ that is adjacent to v_i . We prove that for every integer $p \geq 1$, if a graph G is not p^8 -arrangeable, then it contains a K_p -subdivision. By a result of Chen and Schelp this implies that graphs with no K_p -subdivision have "linearly bounded Ramsey numbers," and by a result of Kierstead and Trotter it implies that such graphs have bounded "game chromatic number."

Thomassen's Conjecture The $g \leq 6$ case Graphs with large degree gap

An old question of Erdős and Hajnal

Is it true that for every k and g there exists $\chi = \chi(k,g)$ such that any graph G with $\chi(G) \ge \chi$ contains a subgraph $H \subset G$ with $\chi(H) \ge k$ and girth $(H) \ge g$?

Thomassen's Conjecture The $g \leq 6$ case Graphs with large degree gap

An old question of Erdős and Hajnal

Is it true that for every k and g there exists $\chi = \chi(k,g)$ such that any graph G with $\chi(G) \ge \chi$ contains a subgraph $H \subset G$ with $\chi(H) \ge k$ and girth $(H) \ge g$?

R (1977): True for g = 4, i.e., triangle-free subgraph H with large $\chi(H)$.

Thomassen's Conjecture The $g \leq 6$ case Graphs with large degree gap

Thomassen's conjecture

Let $d(G) = \frac{2e(G)}{v(G)}$ denote the average degree of G.

Conjecture (1983)

For every k and g there exists D = D(k,g) such that any graph G with $d(G) \ge D$ contains a subgraph $H \subset G$ with $d(H) \ge k$ and girth $(H) \ge g$.

Thomassen's Conjecture The $g \leq 6$ case Graphs with large degree gap

Thomassen's conjecture

Let
$$d(G) = \frac{2e(G)}{v(G)}$$
 denote the average degree of G.

Conjecture (1983)

For every k and g there exists D = D(k,g) such that any graph G with $d(G) \ge D$ contains a subgraph $H \subset G$ with $d(H) \ge k$ and girth $(H) \ge g$.

Note: trivial to get rid of odd cycles by taking a bipartite subgraph H.

Thomassen's Conjecture The $g \leq 6$ case Graphs with large degree gap

Known results

Pyber, R, and Szemerédi (1995): true for all graphs G satisfying Δ(G) ≤ e^{α_{k,g}d(G)}.

Known results

- Pyber, R, and Szemerédi (1995): true for all graphs G satisfying Δ(G) ≤ e^{α_{k,g}d(G)}.
- Kühn and Osthus (2004): true for g ≤ 6, i.e., can obtain bipartite subgraph H which is C₄-free;

- Pyber, R, and Szemerédi (1995): true for all graphs G satisfying Δ(G) ≤ e^{α_{k,g}d(G)}.
- Kühn and Osthus (2004): true for g ≤ 6, i.e., can obtain bipartite subgraph H which is C₄-free;
- Dellamonica, Koubek, Martin, R. (2011): an alternative proof of the above result (next slides).

- Pyber, R, and Szemerédi (1995): true for all graphs G satisfying Δ(G) ≤ e^{α_{k,g}d(G)}.
- Kühn and Osthus (2004): true for g ≤ 6, i.e., can obtain bipartite subgraph H which is C₄-free;
- Dellamonica, Koubek, Martin, R. (2011): an alternative proof of the above result (next slides).
- Dellamonica, R. (2011): true for all C_4 -free graphs G satisfying $\Delta(G) \leq e^{e^{\beta_{k,g}d(G)}}$ (this talk).

- Pyber, R, and Szemerédi (1995): true for all graphs G satisfying Δ(G) ≤ e^{α_{k,g}d(G)}.
- Kühn and Osthus (2004): true for g ≤ 6, i.e., can obtain bipartite subgraph H which is C₄-free;
- Dellamonica, Koubek, Martin, R. (2011): an alternative proof of the above result (next slides).
- Dellamonica, R. (2011): true for all C_4 -free graphs G satisfying $\Delta(G) \leq e^{e^{\beta_{k,g}d(G)}}$ (this talk).

Thomassen's Conjecture The $g \leq 6$ case Graphs with large degree gap

Alternative proof for $g \leq 6$

Definition (Intersection Pattern)

For k-partite k-graph \mathcal{H} on $V = V_1 \cup \cdots \cup V_k$, the *intersection pattern* of distinct $e, f \in \mathcal{H}$ is

$$\{i\in [k]: e\cap V_i=f\cap V_i\}.$$

Let $\mathcal{P}(\mathcal{H})$ denote the set of intersection patterns of all $e \neq f \in \mathcal{H}$.

 $J = \{2, 3\}$ is an intersection pattern

The $g \leq 6$ case Graphs with large degree gap

Alternative proof for $g \leq 6$

Definition (Intersection Pattern)

For k-partite k-graph \mathcal{H} on $V = V_1 \cup \cdots \cup V_k$, the *intersection pattern* of distinct $e, f \in \mathcal{H}$ is

$$\{i\in [k]: e\cap V_i=f\cap V_i\}.$$

Let $\mathcal{P}(\mathcal{H})$ denote the set of intersection patterns of all $e \neq f \in \mathcal{H}$.

Definition (Star, Kernel)

A hypergraph S is a *star* with *kernel* K if for all distinct $e, f \in S$, $e \cap f = K$.

Thomassen's Conjecture The $g \leq 6$ case Graphs with large degree gap

Alternative proof for $g \leq 6$

Definition (Strong)

A *k*-partite *k*-graph \mathcal{H}^* is called *t*-strong if for every $J \in \mathcal{P}(\mathcal{H}^*)$ and $e \in \mathcal{H}^*$ there is a star $S \subset \mathcal{H}^*$, containing *e*, with kernel e_J and |S| = t.

Thomassen's Conjecture The $g \leq 6$ case Graphs with large degree gap

Alternative proof for $g \leq 6$

Definition (Strong)

A k-partite k-graph \mathcal{H}^* is called *t-strong* if for every $J \in \mathcal{P}(\mathcal{H}^*)$ and $e \in \mathcal{H}^*$ there is a star $S \subset \mathcal{H}^*$, containing e, with kernel e_J and |S| = t.

Thomassen's Conjecture The $g \leq 6$ case Graphs with large degree gap

Alternative proof for $g \leq 6$

Definition (Strong)

A *k*-partite *k*-graph \mathcal{H}^* is called *t*-strong if for every $J \in \mathcal{P}(\mathcal{H}^*)$ and $e \in \mathcal{H}^*$ there is a star $S \subset \mathcal{H}^*$, containing *e*, with kernel e_J and |S| = t.

Thomassen's Conjecture The $g \leq 6$ case Graphs with large degree gap

Alternative proof for $g \leq 6$

Definition (Strong)

A *k*-partite *k*-graph \mathcal{H}^* is called *t*-strong if for every $J \in \mathcal{P}(\mathcal{H}^*)$ and $e \in \mathcal{H}^*$ there is a star $S \subset \mathcal{H}^*$, containing *e*, with kernel e_J and |S| = t.

12/34

Thomassen's Conjecture The $g \leq 6$ case Graphs with large degree gap

Alternative proof for $g \leq 6$

Lemma (Füredi, 1983)

For every k, t, there exists c = c(k, t) such that any k-graph \mathcal{H} contains a t-strong subhypergraph \mathcal{H}^* with $|\mathcal{H}^*| \ge c |\mathcal{H}|$.

Robin
MathThomassen's Conjecture
The $g \leq 6$ case
Graphs with large degree gap

A common trick: take a bipartite subgraph

A common trick: take a bipartite subgraph

A common trick: take a bipartite subgraph

A common trick: take a bipartite subgraph

RobinThomassen's ConjectureMathThe $g \leq 6$ caseGraphs with large degree gap

A common trick: take a bipartite subgraph

Repeat until no more edge between vertices of degree $> \delta$.

Robin
MathThomassen's Conjecture
The $g \le 6$ case
Graphs with large degree gapA common trick: take a bipartite subgraph

First case: at least half of the edges are red \implies G_{red} is almost regular, i.e. $\Delta(G_{red}) \leq \delta = O(d(G_{red}))$.

Robin
MathThomassen's ConjectureThe $g \le 6$ case
Graphs with large degree gap

A common trick: take a bipartite subgraph

First case: at least half of the edges are red $\implies G_{\text{red}}$ is almost regular, i.e. $\Delta(G_{\text{red}}) \leq \delta = O(d(G_{\text{red}}))$. Pyber-R-Szemerédi: G_{red} contains subgraph H with $d(H) \geq k$ and girth $(H) \geq g$. Robin
MathThomassen's Conjecture
The $g \le 6$ case
Graphs with large degree gapA common trick: take a bipartite subgraph

Second case: at least half of the edges are purple (crossing). Then set A = red set, B = blue set and $G = (A, B; E) = G_{\text{purple}}$.

Thomassen's Conjecture The $g \leq 6$ case Graphs with large degree gap

Applying Füredi's Lemma

A little more work yields a bipartite graph G = (A, B; E) where

Robin

Math

- $\deg_G(v) = d \gg k$ for all $v \in A$ and,
- $N_G(v) \neq N_G(w)$ for all $v \neq w \in A$.

Applying Füredi's Lemma

A little more work yields a bipartite graph G = (A, B; E) where

Robin

Math

- deg_G(v) = $d \gg k$ for all $v \in A$ and,
- $N_G(v) \neq N_G(w)$ for all $v \neq w \in A$.

Define \mathcal{H} as a *d*-graph with $V(\mathcal{H}) = B$ and edge set

$$\big\{N_G(v) : v \in A\big\}.$$

Applying Füredi's Lemma

A little more work yields a bipartite graph G = (A, B; E) where

Robin

Math

- deg_G(v) = $d \gg k$ for all $v \in A$ and,
- $N_G(v) \neq N_G(w)$ for all $v \neq w \in A$.

Define \mathcal{H} as a *d*-graph with $V(\mathcal{H}) = B$ and edge set

$$\{N_G(v) : v \in A\}.$$

Apply Füredi's Lemma with some large $t: \mathcal{H}^* \subset \mathcal{H}$ is *d*-partite and *t*-strong. Note $\mathcal{H}^* \leftrightarrow \mathcal{A}^* \subset \mathcal{A}$.

Thomassen's Conjecture The $g \leq 6$ case Graphs with large degree gap

The hypergraph from Füredi's Lemma

Recall $\mathcal{P}(\mathcal{H}^*) \subset 2^{[d]}$ is the family of all intersection patterns of \mathcal{H}^* . Let Γ be the shadow graph of $\mathcal{P}(\mathcal{H}^*)$:

$$\mathsf{\Gamma}=\Bigl([d],ig\{\{i,j\}\ :\ \exists J\in\mathcal{P}(\mathcal{H}^*),J\supseteq\{i,j\}\Bigr).$$

Recall $\mathcal{P}(\mathcal{H}^*) \subset 2^{[d]}$ is the family of all intersection patterns of \mathcal{H}^* . Let Γ be the shadow graph of $\mathcal{P}(\mathcal{H}^*)$:

Robin

Math

$$\mathsf{\Gamma} = \Bigl([d], \bigl\{ \{i,j\} \ : \ \exists J \in \mathcal{P}(\mathcal{H}^*), J \supseteq \{i,j\} \bigr\} \Bigr).$$

Either

• Γ has a large independent set I, or

Recall $\mathcal{P}(\mathcal{H}^*) \subset 2^{[d]}$ is the family of all intersection patterns of \mathcal{H}^* . Let Γ be the shadow graph of $\mathcal{P}(\mathcal{H}^*)$:

$$\mathsf{\Gamma} = \Bigl([d], \bigl\{ \{i,j\} \ : \ \exists J \in \mathcal{P}(\mathcal{H}^*), J \supseteq \{i,j\} \bigr\} \Bigr).$$

Either

- Γ has a large independent set I, or
- **2** $\Delta(\Gamma)$, the max degree of Γ , is large.

Alternative Proof for g = 6

 Γ has a large independent set I ⇒ the desired subgraph H
 (d(H) ≥ |I| ≥ k and girth(H) ≥ 6).

Alternative Proof for g = 6

 Γ has a large independent set I ⇒ the desired subgraph H
 (d(H) ≥ |I| ≥ k and girth(H) ≥ 6).

Claim. If $B = B_1 \cup \cdots \cup B_d$ are the classes of \mathcal{H}^* , then $H = G[A^*, \bigcup_{i \in I} B_i]$ is C_4 -free.

Robin

Alternative Proof for g = 6

 Γ has a large independent set I ⇒ the desired subgraph H
 (d(H) ≥ |I| ≥ k and girth(H) ≥ 6).

Claim. If $B = B_1 \cup \cdots \cup B_d$ are the classes of \mathcal{H}^* , then $H = G[A^*, \bigcup_{i \in I} B_i]$ is C_4 -free.

Robin

Math

Proof. If not...

Alternative Proof for g = 6

 Γ has a large independent set I ⇒ the desired subgraph H
 (d(H) ≥ |I| ≥ k and girth(H) ≥ 6).

Claim. If $B = B_1 \cup \cdots \cup B_d$ are the classes of \mathcal{H}^* , then $H = G[A^*, \bigcup_{i \in I} B_i]$ is C_4 -free.

Robin

Alternative Proof for g = 6

 Γ has a large independent set I ⇒ the desired subgraph H
 (d(H) ≥ |I| ≥ k and girth(H) ≥ 6).

Claim. If $B = B_1 \cup \cdots \cup B_d$ are the classes of \mathcal{H}^* , then $H = G[A^*, \bigcup_{i \in I} B_i]$ is C₄-free.

Robin

Math

Proof. If not ...

The intersection pattern J of $e_1 \cap e_2$ contains $\{i_2, i_4\} \subset I$. Hence $\{i_2, i_4\} \in \Gamma$, a contradiction!

Here $I=\{i_1,i_2,i_3,i_4\}$

Alternative Proof for g = 6

② $\Delta(\Gamma)$ is large \implies vertex $b \in B$, $X_b \subset N_G(b)$, $Y_b \subset B \setminus \{b\}$ such that $G[X_b, Y_b]$ has large degrees.

Alternative Proof for g = 6

② $\Delta(\Gamma)$ is large \implies vertex $b \in B$, $X_b \subset N_G(b)$, $Y_b \subset B \setminus \{b\}$ such that $G[X_b, Y_b]$ has large degrees.

Robin

Math

Alternative Proof for g = 6

② $\Delta(\Gamma)$ is large \implies vertex $b \in B$, $X_b \subset N_G(b)$, $Y_b \subset B \setminus \{b\}$ such that $G[X_b, Y_b]$ has large degrees.

Robin

Math

Alternative Proof for g = 6

② $\Delta(\Gamma)$ is large \implies vertex $b \in B$, $X_b \subset N_G(b)$, $Y_b \subset B \setminus \{b\}$ such that $G[X_b, Y_b]$ has large degrees.

Robin

Math

Alternative Proof for g = 6

② Δ(Γ) is large ⇒ vertex $b \in B$, $X_b \subset N_G(b)$, $Y_b \subset B \setminus \{b\}$ such that $G[X_b, Y_b]$ has large degrees.

Robin

Math

Alternative Proof for g = 6

② $\Delta(\Gamma)$ is large \implies vertex $b \in B$, $X_b \subset N_G(b)$, $Y_b \subset B \setminus \{b\}$ such that $G[X_b, Y_b]$ has large degrees.

Robin

Math

Alternative Proof for g = 6

② $\Delta(\Gamma)$ is large \implies vertex $b \in B$, $X_b \subset N_G(b)$, $Y_b \subset B \setminus \{b\}$ such that $G[X_b, Y_b]$ has large degrees.

Robin

Math

Alternative Proof for g = 6

② $\Delta(\Gamma)$ is large \implies vertex $b \in B$, $X_b \subset N_G(b)$, $Y_b \subset B \setminus \{b\}$ such that $G[X_b, Y_b]$ has large degrees.

Robin

Math

Robin Math Thomassen's Conjecture The $g \leq 6$ case Graphs with large degree gap

Alternative Proof for g = 6

Proof of Theorem.

If ① holds for G, we are done! Otherwise ② holds...

Robin Math Thomassen's Conjecture The $g \leq 6$ case Graphs with large degree gap

Alternative Proof for g = 6

Proof of Theorem.

If **1** holds for *G*, we are done! **Otherwise 2** holds...

The $g \leq 6$ case Graphs with larg

Alternative Proof for g = 6

Proof of Theorem.

If () holds for $G[X_{b_0}, Y_{b_0}]$, we are done! Otherwise () holds...

Robin T Math

Thomassen's Conjecture The $g \leq 6$ case Graphs with large degree gap

Alternative Proof for g = 6

Proof of Theorem.

If ① holds for $G[X_{b_0}, Y_{b_0}]$, we are done! Otherwise ② holds...

The $g \leq 6$ case Graphs with larg

Alternative Proof for g = 6

Proof of Theorem.

If () holds for $G[X_{b_1}, Y_{b_1}]$, we are done! Otherwise () holds...

Robin Math Thomassen's Conjecture The $g \leq 6$ case Graphs with large degree gap

Alternative Proof for g = 6

Proof of Theorem.

Robin Math Thomassen's Conjecture The $g \leq 6$ case Graphs with large degree gap

Alternative Proof for g = 6

Proof of Theorem.

Found a complete bipartite subgraph $G[\{b_0, \ldots, b_m\}, X_{b_m}]$.

Is there a hypergraph lemma similar to Füredi's that could be used to prove the general case of the conjecture?

More modestly, is there a hypergraph lemma that would allow us to prove the g = 8 case?

Robin Math Thomassen's Conjecture The $g \leq 6$ case Graphs with large degree gap

Graphs with large degree gap

Lemma (Dellamonica-R, 2011)

For all k and g there exist c and d_0 such that the following holds. In any C₄-free bipartite graph G = (A, B; E) satisfying

 $d \geq \max\{c \log \log \Delta(G), d_0\},\$

there exists $H \subset G$ such that $d(H) \ge k$ and $girth(H) \ge g$.

Graphs with large degree gap

Using the result of Kühn–Osthus (the numerical bounds in DKMR are inferior), yields:

Robin Math

Theorem

For all k and g there exist α, β , and d₀ such that for any graph G with

$$d({\sf G}) \geq {\sf max}ig\{lphaig({\sf log}\,{\sf log}\,{\sf \Delta}({\sf G})ig)^eta, d_0ig\}$$

there exists $H \subset G$ such that $d(H) \ge k$ and $girth(H) \ge g$.

Graphs with large degree gap

Using the result of Kühn–Osthus (the numerical bounds in DKMR are inferior), yields:

Robin Math

Theorem

For all k and g there exist $\alpha,\beta,$ and d_0 such that for any graph G with

$$d({\sf G}) \geq \maxig\{lphaig(\log\log\Delta({\sf G})ig)^eta, d_0ig\}$$

there exists $H \subset G$ such that $d(H) \ge k$ and $girth(H) \ge g$.

Recall: Pyber-R-Szemerédi yields same conclusion under stronger assumption

 $d \geq c \log \Delta(G).$

Proof of our lemma

Assume wlog that G = (A, B; E) is such deg_G(v) = d for all $v \in A$ and $|B| \le |A|$.

Robin Math

Take $\varrho = e^{\alpha_{k,g}d}$, $\varepsilon > 0$, and partition $B = B_0 \cup B_1 \cup \cdots \cup B_t$, where

$$\begin{split} B_0 &= \big\{ v \in B \ : \ \deg_G(v) \leq \varrho \big\}, \text{ and} \\ B_j &= \big\{ v \in B \ : \ \varrho^{(1+\varepsilon)^{j-1}} < \deg_G(v) \leq \varrho^{(1+\varepsilon)^j} \big\}, \text{ for } j = 1, \dots, t. \end{split}$$

Proof of our lemma

Assume wlog that G = (A, B; E) is such deg_G(v) = d for all $v \in A$ and $|B| \le |A|$.

Robin Math

Take $\rho = e^{\alpha_{k,g}d}$, $\varepsilon > 0$, and partition $B = B_0 \cup B_1 \cup \cdots \cup B_t$, where

$$\begin{split} B_0 &= \big\{ v \in B \ : \ \deg_G(v) \leq \varrho \big\}, \text{ and} \\ B_j &= \big\{ v \in B \ : \ \varrho^{(1+\varepsilon)^{j-1}} < \deg_G(v) \leq \varrho^{(1+\varepsilon)^j} \big\}, \text{ for } j = 1, \dots, t. \end{split}$$

 $t = O(\log \log \Delta(G)).$ For appropriate choice of c = c(k, g), $\Delta(G) \le e^{e^{cd}} \Longrightarrow t < \frac{d}{8k}.$ Robin Math Thomassen's Conjecture The $g \leq 6$ case Graphs with large degree gap

Proof of our lemma

Robin Math Thomassen's Conjecture The $g \leq 6$ case Graphs with large degree gap

Proof of our lemma

Easy case: $e_G(A, B_0) \ge \frac{e(G)}{2}$. Take $G^* = G[A \cup B_0]$ and note that $\Delta(G^*) \le \varrho \le e^{c^*d(G^*)}$.

Pyber–R–Szemerédi's result implies that G^* contains the graph we are looking for.

Proof of our lemma

Otherwise: by averaging, there exists $j \in [t]$ such that

$$egin{aligned} e_G(A,B_j) &\geq rac{\sum_{i=1}^t e_G(A,B_i)}{t} = rac{e(G) - e_G(A,B_0)}{t} \ &\geq rac{e(G)}{2t} \geq rac{d\,|A|}{2rac{d}{8k}} = 4k\,|A|. \end{aligned}$$

Proof of our lemma

Otherwise: by averaging, there exists $j \in [t]$ such that

$$e_G(A, B_j) \ge \max\Big\{4k |A|, \varrho^{(1+\varepsilon)^{j-1}}|B_j|\Big\}.$$

Proof of our lemma

Otherwise: by averaging, there exists $j \in [t]$ such that

Robin Math

$$e_G(A, B_j) \ge \max\left\{4k |A|, \varrho^{(1+\varepsilon)^{j-1}}|B_j|
ight\}.$$

- **1** Delete all vertices in $B \setminus B_j$.
- Sequentially delete vertices from A with degree < k and vertices of B_i with degree < D/4, where $D = \varrho^{(1+\varepsilon)^{j-1}}$.

Proof of our lemma

Otherwise: by averaging, there exists $j \in [t]$ such that

Robin Math

$$e_G(A, B_j) \ge \max\Big\{4k |A|, \varrho^{(1+\varepsilon)^{j-1}}|B_j|\Big\}.$$

- **1** Delete all vertices in $B \setminus B_j$.
- Sequentially delete vertices from A with degree < k and vertices of B_j with degree < D/4, where $D = \varrho^{(1+\varepsilon)^{j-1}}$.

Note: deleted at most
$$k \left| A \right| + rac{D}{4} |B_j| < rac{e_G(A,B_j)}{2}$$
 edges.

Proof of our lemma

Result: non-empty graph G with classes A and $B = B_j$ such that

- degrees in A are between k and d;
- degrees in B are between D/4 and $D^{(1+\varepsilon)} = \varrho^{(1+\varepsilon)^j}$.

Robin Math

Back to hypergraphs

Let ${\mathcal H}$ be a hypergraph with vertex set ${\mathcal B}$ and edges

Robin Math

 $\big\{N_G(v) : v \in A\big\}.$

Obs. 1: G is C_4 -free $\implies |e \cap f| \le 1$ for all $e, f \in \mathcal{H}$ (i.e., \mathcal{H} is a linear hypergraph).

Back to hypergraphs

Let \mathcal{H} be a hypergraph with vertex set B and edges

Robin Math

 $\big\{N_G(v) : v \in A\big\}.$

Obs. 1: G is C_4 -free $\implies |e \cap f| \le 1$ for all $e, f \in \mathcal{H}$ (i.e., \mathcal{H} is a linear hypergraph).

Obs. 2: a cycle of length 2ℓ in *G* corresponds to a cycle of length ℓ in \mathcal{H} : i.e., cycle $(v_0, v_1, \ldots, v_{2\ell-1})$ corresponds to $(e_0, e_1, \ldots, e_{\ell-1})$, where $e_i = N_G(v_{2i}) \in \mathcal{H}$.

Cycles in linear hypergraphs

Recall: $\delta(\mathcal{H}) \geq D/4$ and $\Delta(\mathcal{H}) \leq D^{1+\varepsilon}$. Let's count cycles of length ℓ .

Cycles in linear hypergraphs

Recall: $\delta(\mathcal{H}) \geq D/4$ and $\Delta(\mathcal{H}) \leq D^{1+\varepsilon}$. Let's count cycles of length ℓ .

Math

1 Pick an edge $e_0 \in \mathcal{H}$...

Cycles in linear hypergraphs

Recall: $\delta(\mathcal{H}) \geq D/4$ and $\Delta(\mathcal{H}) \leq D^{1+\varepsilon}$. Let's count cycles of length ℓ .

- **1** Pick an edge $e_0 \in \mathcal{H}$...
- **2** and $w_0 \neq w_1 \in e_0...$

Cycles in linear hypergraphs

Recall: $\delta(\mathcal{H}) \ge D/4$ and $\Delta(\mathcal{H}) \le D^{1+\varepsilon}$. Let's count cycles of length ℓ .

- **1** Pick an edge $e_0 \in \mathcal{H}$...
- **2** and $w_0 \neq w_1 \in e_0...$
- \bigcirc and $e_1 \ni w_1 \dots$

$$\# \leq |\mathcal{H}| imes d^2 imes D^{1+arepsilon} imes$$

Cycles in linear hypergraphs

Recall: $\delta(\mathcal{H}) \ge D/4$ and $\Delta(\mathcal{H}) \le D^{1+\varepsilon}$. Let's count cycles of length ℓ .

- **1** Pick an edge $e_0 \in \mathcal{H}$...
- **2** and $w_0 \neq w_1 \in e_0...$
- \bigcirc and $e_1 \ni w_1 \dots$
- and $w_2 \in e_1...$

$$\# \leq |\mathcal{H}| imes d^2 imes D^{1+arepsilon} imes d imes$$

Cycles in linear hypergraphs

Recall: $\delta(\mathcal{H}) \geq D/4$ and $\Delta(\mathcal{H}) \leq D^{1+\varepsilon}$. Let's count cycles of length ℓ .

Robin Math

- **1** Pick an edge $e_0 \in \mathcal{H}$...
- **2** and $w_0 \neq w_1 \in e_0...$
- \bigcirc and $e_1 \ni w_1 \dots$
- and $w_2 \in e_1...$

5 ...

$$\# \leq |\mathcal{H}| imes d^2 imes D^{1+arepsilon} imes d imes \cdots$$

Cycles in linear hypergraphs

Recall: $\delta(\mathcal{H}) \ge D/4$ and $\Delta(\mathcal{H}) \le D^{1+\varepsilon}$. Let's count cycles of length ℓ .

Robin Math

- **1** Pick an edge $e_0 \in \mathcal{H}$...
- **2** and $w_0 \neq w_1 \in e_0...$
- \bigcirc and $e_1 \ni w_1 \dots$
- and $w_2 \in e_1...$
- 5 ...
- **o** and $w_{\ell-1} \in e_{\ell-2}...$

$\# \leq |\mathcal{H}| imes d^{\ell} imes D^{(1+arepsilon)(\ell-2)} imes$

Cycles in linear hypergraphs

Recall: $\delta(\mathcal{H}) \ge D/4$ and $\Delta(\mathcal{H}) \le D^{1+\varepsilon}$. Let's count cycles of length ℓ .

Robin Math

- **1** Pick an edge $e_0 \in \mathcal{H}_{\cdots}$
- 2 and $w_0 \neq w_1 \in e_0...$
- \bigcirc and $e_1 \ni w_1 \dots$
- and $w_2 \in e_1...$
- 5 ...
- **(**) and $w_{\ell-1} \in e_{\ell-2}...$
- at most one possible edge $e_{\ell-1} \ni v_0, v_{2\ell-1}$.

 $\# \leq |\mathcal{H}| \times d^{\ell} \times D^{(1+\varepsilon)(\ell-2)} \times 1.$

Cycles in linear hypergraphs

Result: Number of cycles of length ℓ is

$$N_{\ell} \leq |\mathcal{H}| imes d^{\ell} imes D^{(1+\varepsilon)(\ell-2)}.$$

Cycles in linear hypergraphs

Result: Number of cycles of length ℓ is

$$N_{\ell} \leq |\mathcal{H}| imes d^{\ell} imes D^{(1+\varepsilon)(\ell-2)}.$$

Math

Randomly select edges of \mathcal{H} with probability p. How many cycles survive? In expectation, at most

$$p^{\ell} N_{\ell} \leq (p |\mathcal{H}|) imes p^{\ell-1} d^{\ell} D^{(1+arepsilon)(\ell-2)}$$

Cycles in linear hypergraphs

Result: Number of cycles of length ℓ is

$$N_{\ell} \leq |\mathcal{H}| imes d^{\ell} imes D^{(1+\varepsilon)(\ell-2)}.$$

Math

Randomly select edges of \mathcal{H} with probability p. How many cycles survive? In expectation, at most

$$p^\ell N_\ell \leq (p \, |\mathcal{H}|) imes \underbrace{p^{\ell-1} d^\ell D^{(1+arepsilon)(\ell-2)}}_{\ll 1 ext{ for small } p}.$$

Cycles in linear hypergraphs

Result: Number of cycles of length ℓ is

$$N_{\ell} \leq |\mathcal{H}| imes d^{\ell} imes D^{(1+\varepsilon)(\ell-2)}.$$

Robin Math

Randomly select edges of \mathcal{H} with probability p. How many cycles survive? In expectation, at most

$$p^\ell N_\ell \leq (p \, |\mathcal{H}|) imes \underbrace{p^{\ell-1} d^\ell D^{(1+arepsilon)(\ell-2)}}_{\ll 1 ext{ for small } p}.$$

Linearity of expectation: $p = D^{\varepsilon-1}$, $\varepsilon = \frac{1}{2g} \Longrightarrow \#$ of surviving edges is much larger than # of surviving cycles of length $\ell < g/2$.

Cycles in linear hypergraphs

Result: Number of cycles of length ℓ is

$$N_{\ell} \leq |\mathcal{H}| imes d^{\ell} imes D^{(1+\varepsilon)(\ell-2)}.$$

Robin Math

Randomly select edges of \mathcal{H} with probability p. How many cycles survive? In expectation, at most

$$p^\ell N_\ell \leq (p \, |\mathcal{H}|) imes \underbrace{p^{\ell-1} d^\ell D^{(1+arepsilon)(\ell-2)}}_{\ll 1 ext{ for small } p}.$$

Linearity of expectation: $p = D^{\varepsilon-1}$, $\varepsilon = \frac{1}{2g} \Longrightarrow \#$ of surviving edges is much larger than # of surviving cycles of length $\ell < g/2$.

Delete an edge for each cycle and destroy them all! Resulting hypergraph \mathcal{H}^* has $\Omega\big(D^\varepsilon |V(\mathcal{H})|\big)$ edges and no cycles of length < g/2.

Robin Math

Let *H* be the induced subgraph $G[A^* \cup V(\mathcal{H}^*)]$.

• girth(H) $\geq g$ because girth(\mathcal{H}^*) $\geq g/2$;

Robin Math

Let *H* be the induced subgraph $G[A^* \cup V(\mathcal{H}^*)]$.

- $girth(H) \ge g$ because $girth(\mathcal{H}^*) \ge g/2$;
- by construction, $\deg_H(v) \ge k$ for all $v \in A^*$, thus

$$d(H) = \frac{2e(H)}{v(H)} \ge \frac{2k |A^*|}{|A^*| + |V(\mathcal{H}^*)|} = \frac{2k |\mathcal{H}^*|}{|\mathcal{H}^*| + |V(\mathcal{H}^*)|} > k.$$

Robin Math

Let *H* be the induced subgraph $G[A^* \cup V(\mathcal{H}^*)]$.

- $girth(H) \ge g$ because $girth(\mathcal{H}^*) \ge g/2$;
- by construction, $\deg_H(v) \ge k$ for all $v \in A^*$, thus

$$d(H) = \frac{2e(H)}{v(H)} \ge \frac{2k |A^*|}{|A^*| + |V(\mathcal{H}^*)|} = \frac{2k |\mathcal{H}^*|}{|\mathcal{H}^*| + |V(\mathcal{H}^*)|} > k.$$

Robin Math

Let *H* be the induced subgraph $G[A^* \cup V(\mathcal{H}^*)]$.

- $girth(H) \ge g$ because $girth(\mathcal{H}^*) \ge g/2$;
- by construction, $\deg_H(v) \ge k$ for all $v \in A^*$, thus

$$d(H) = \frac{2e(H)}{v(H)} \geq \frac{2k |A^*|}{|A^*| + |V(\mathcal{H}^*)|} = \frac{2k |\mathcal{H}^*|}{|\mathcal{H}^*| + |V(\mathcal{H}^*)|} > k.$$

Hence, H is the desired subgraph!

- The conjectures of Thomassen and Erdős-Hajnal remain open.
- Is there a hypergraph lemma similar to Füredi's that can be used to prove Thomassen's conjecture for, say, g = 8?

Robin Math

- Can one extend the gap between d(G) and Δ(G) for which we can establish that the conjecture is true?
- Hypergraph version of Thomassen's conjecture: any "degree-gap" result in hypergraphs extends to graphs from our proof. Here the degree gap is polynomial Δ(H) ≤ δ(H)^{1+ε}.

Happy Birthday, Robin!!