On subgraphs of large girth In Honor of the 50th Birthday of Robin Thomas

> Voitěch Rödl rodl@mathcs.emory.edu

joint work with Domingos Dellamonica

May, 2012

On the Genus of a Random Graph

Vojtěch Rödl*

Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322

Robin Thomas[†]

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160

ABSTRACT

Let $p = p(n)$ be a function of *n* with $0 < p < 1$. We consider the random graph model $\mathcal{G}(n, p)$; that is, the probability space of simple graphs with vertex-set $\{1, 2, ..., n\}$, where two distinct vertices are adjacent with probability p , and for distinct pairs these events are mutually independent. Archdeacon and Grable have shown that if $p^2(1-p^2) \ge 8(\log n)^4$ / *n*, then the (orientable) genus of a random graph in $\mathcal{G}(n, p)$ is $(1 + o(1))pn^2/12$. We prove *n*, then the (orientable) genus of a random graph in $\mathcal{B}(n, p)$ is $(1 + o(1))pn$ /12. We prove
that for every integer $i \ge 1$, if $n^{-i/(i+1)} \le p \le n^{-(i-1)/i}$, then the genus of a random graph in
 $\mathcal{B}(n, p)$ is $(1 + o(1))$ \frac random graph in $\mathcal{G}(n, p)$ is $(1 + o(1))g(i, c, n)pn^2$ for some function $g(i, c, n)$ with $\frac{1}{12}$ $g(i, c, n) \le 1$, but for $i > 1$ we were unable to compute this function. © 1995 John Wiley & Sons, Inc.

ARRANGEABILITY AND CLIQUE SUBDIVISIONS

Voitěch Rödl* Department of Mathematics and Computer Science Emory University Atlanta, GA 30322

and

Robin Thomas** School of Mathematics Georgia Institute of Technology Atlanta, GA 30332–0160

ABSTRACT

Let k be an integer. A graph G is k -arrangeable (concept introduced by Chen and Schelp) if the vertices of G can be numbered v_1, v_2, \ldots, v_n in such a way that for every integer i with $1 \leq i \leq n$, at most k vertices among $\{v_1, v_2, \ldots, v_i\}$ have a neighbor $v \in \{v_{i+1}, v_{i+2}, \ldots, v_n\}$ that is adjacent to v_i . We prove that for every integer $p \geq 1$, if a graph G is not p^{8} arrangeable, then it contains a K_p -subdivision. By a result of Chen and Schelp this implies that graphs with no K_n -subdivision have "linearly bounded Ramsey numbers," and by a result of Kierstead and Trotter it implies that such graphs have bounded "game chromatic number."

An old question of Erdős and Hajnal

Is it true that for every k and g there exists $\chi = \chi(k, g)$ such that any graph G with $\chi(G) \geq \chi$ contains a subgraph $H \subset G$ with $\chi(H) \geq k$ and girth $(H) \geq g$?

An old question of Erdős and Hajnal

Is it true that for every k and g there exists $\chi = \chi(k, g)$ such that any graph G with $\chi(G) \geq \chi$ contains a subgraph $H \subset G$ with $\chi(H) \geq k$ and girth $(H) \geq g$?

R (1977): True for $g = 4$, i.e., triangle-free subgraph H with large $\chi(H)$.

Thomassen's conjecture

Let $d(G) = \frac{2e(G)}{v(G)}$ denote the average degree of G .

[Robin](#page-1-0) [Math](#page-7-0)

Conjecture (1983)

For every k and g there exists $D = D(k, g)$ such that any graph G with $d(G) \ge D$ contains a subgraph $H \subset G$ with $d(H) \ge k$ and girth $(H) \geq g$.

Thomassen's conjecture

Let $d(G) = \frac{2e(G)}{v(G)}$ denote the average degree of G .

[Robin](#page-1-0) [Math](#page-7-0)

Conjecture (1983)

For every k and g there exists $D = D(k, g)$ such that any graph G with $d(G) \ge D$ contains a subgraph $H \subset G$ with $d(H) \ge k$ and girth $(H) \geq g$.

Note: trivial to get rid of odd cycles by taking a bipartite subgraph H.

Known results

• Pyber, R, and Szemerédi (1995): true for all graphs G satisfying $\Delta(G) \leq e^{\alpha_{k,g}d(G)}$.

Known results

- Pyber, R, and Szemerédi (1995): true for all graphs G satisfying $\Delta(G) \leq e^{\alpha_{k,g}d(G)}$.
- Kühn and Osthus (2004): true for $g \le 6$, i.e., can obtain bipartite subgraph H which is C_4 -free;

Known results

- · Pyber, R, and Szemerédi (1995): true for all graphs G satisfying $\Delta(G) \leq e^{\alpha_{k,g}d(G)}$.
- Kühn and Osthus (2004): true for $g \le 6$, i.e., can obtain bipartite subgraph H which is C_4 -free;
- Dellamonica, Koubek, Martin, R. (2011): an alternative proof of the above result (next slides).
- Pyber, R, and Szemerédi (1995): true for all graphs G satisfying $\Delta(G) \leq e^{\alpha_{k,g}d(G)}$.
- Kühn and Osthus (2004): true for $g \le 6$, i.e., can obtain bipartite subgraph H which is C_4 -free;
- Dellamonica, Koubek, Martin, R. (2011): an alternative proof of the above result (next slides).
- Dellamonica, R. (2011): true for all C_4 -free graphs G satisfying $\Delta(G) \leq e^{e^{\beta_{k,g}d(G)}}$ (this talk).
- Pyber, R, and Szemerédi (1995): true for all graphs G satisfying $\Delta(G) \leq e^{\alpha_{k,g}d(G)}$.
- Kühn and Osthus (2004): true for $g \le 6$, i.e., can obtain bipartite subgraph H which is C_4 -free;
- Dellamonica, Koubek, Martin, R. (2011): an alternative proof of the above result (next slides).
- Dellamonica, R. (2011): true for all C_4 -free graphs G satisfying $\Delta(G) \leq e^{e^{\beta_{k,\mathcal{S}}d(G)}}$ (this talk).

[Thomassen's Conjecture](#page-7-0) The $g \leq 6$ case [Graphs with large degree gap](#page-59-0)

Alternative proof for $g \leq 6$

Definition (Intersection Pattern)

For k-partite k-graph H on $V = V_1 \cup \cdots \cup V_k$, the intersection *pattern* of distinct $e, f \in \mathcal{H}$ is

$$
\{i\in[k]:\ e\cap V_i=f\cap V_i\}.
$$

Let $\mathcal{P}(\mathcal{H})$ denote the set of intersection patterns of all $e \neq f \in \mathcal{H}$.

 $J = \{2, 3\}$ is an intersection pattern

[Thomassen's Conjecture](#page-7-0) The $g < 6$ case [Graphs with large degree gap](#page-59-0)

Alternative proof for $g < 6$

Definition (Intersection Pattern)

For k-partite k-graph H on $V = V_1 \cup \cdots \cup V_k$, the intersection *pattern* of distinct $e, f \in \mathcal{H}$ is

$$
\{i\in[k]:\ e\cap V_i=f\cap V_i\}.
$$

Let $\mathcal{P}(\mathcal{H})$ denote the set of intersection patterns of all $e \neq f \in \mathcal{H}$.

Definition (Star, Kernel)

A hypergraph S is a star with kernel K if for all distinct $e, f \in S$, $e \cap f = K$.

The $g \leq 6$ case [Graphs with large degree gap](#page-59-0)

Alternative proof for $g \leq 6$

Definition (Strong)

A *k*-partite *k*-graph \mathcal{H}^* is called *t-strong* if for every $J \in \mathcal{P}(\mathcal{H}^*)$ and $e \in \mathcal{H}^*$ there is a star $\mathcal{S} \subset \mathcal{H}^*$, containing e , with kernel e_J and $|\mathcal{S}| = t$.

[Thomassen's Conjecture](#page-7-0) The $g \leq 6$ case [Graphs with large degree gap](#page-59-0)

Alternative proof for $g \leq 6$

Definition (Strong)

A *k*-partite *k*-graph \mathcal{H}^* is called *t-strong* if for every $J \in \mathcal{P}(\mathcal{H}^*)$ and $e \in \mathcal{H}^*$ there is a star $\mathcal{S} \subset \mathcal{H}^*$, containing e , with kernel e_J and $|\mathcal{S}| = t$.

The $g \leq 6$ case [Graphs with large degree gap](#page-59-0)

Alternative proof for $g \leq 6$

Definition (Strong)

A *k*-partite *k*-graph \mathcal{H}^* is called *t-strong* if for every $J \in \mathcal{P}(\mathcal{H}^*)$ and $e \in \mathcal{H}^*$ there is a star $\mathcal{S} \subset \mathcal{H}^*$, containing e , with kernel e_J and $|S| = t$.

[Thomassen's Conjecture](#page-7-0) The $g \leq 6$ case [Graphs with large degree gap](#page-59-0)

Alternative proof for $g \leq 6$

Definition (Strong)

A *k*-partite *k*-graph \mathcal{H}^* is called *t-strong* if for every $J \in \mathcal{P}(\mathcal{H}^*)$ and $e \in \mathcal{H}^*$ there is a star $\mathcal{S} \subset \mathcal{H}^*$, containing e , with kernel e_J and $|\mathcal{S}| = t$.

The $g \leq 6$ case [Graphs with large degree gap](#page-59-0)

Alternative proof for $g \leq 6$

Lemma (Füredi, 1983)

For every k, t, there exists $c = c(k, t)$ such that any k-graph H contains a t-strong subhypergraph \mathcal{H}^* with $|\mathcal{H}^*| \geq c |\mathcal{H}|$.

[Robin](#page-1-0) [Math](#page-7-0) The $g \leq 6$ case [Graphs with large degree gap](#page-59-0)

A common trick: take a bipartite subgraph

From arbitrary G_0 with $d(G_0) \ge D \gg k$, get $G \subset G_0$ with $\delta = \delta(G) \geq d(G_0)/2.$

[Graphs with large degree gap](#page-59-0) A common trick: take a bipartite subgraph

From arbitrary G_0 with $d(G_0) \ge D \gg k$, get $G \subset G_0$ with $\delta = \delta(G) \geq d(G_0)/2.$

[Robin](#page-1-0) [Math](#page-7-0)

The $g \leq 6$ case

A common trick: take a bipartite subgraph

From arbitrary G_0 with $d(G_0) \ge D \gg k$, get $G \subset G_0$ with $\delta = \delta(G) \geq d(G_0)/2.$

[Robin](#page-1-0) [Math](#page-7-0)

The $g \leq 6$ case [Graphs with large degree gap](#page-59-0)

A common trick: take a bipartite subgraph

From arbitrary G_0 with $d(G_0) \ge D \gg k$, get $G \subset G_0$ with $\delta = \delta(G) \geq d(G_0)/2.$

[Robin](#page-1-0) [Math](#page-7-0)

The $g \leq 6$ case [Graphs with large degree gap](#page-59-0)

[Robin](#page-1-0) [Math](#page-7-0) The $g \leq 6$ case [Graphs with large degree gap](#page-59-0)

A common trick: take a bipartite subgraph

Repeat until no more edge between vertices of degree $> \delta$.

[Robin](#page-1-0) [Math](#page-7-0) The $g \leq 6$ case [Graphs with large degree gap](#page-59-0) A common trick: take a bipartite subgraph

First case: at least half of the edges are red $\implies G_{\text{red}}$ is almost regular, i.e. $\Delta(G_{\text{red}}) \leq \delta = O(d(G_{\text{red}})).$

[Robin](#page-1-0) [Math](#page-7-0) The $g \leq 6$ case [Graphs with large degree gap](#page-59-0) A common trick: take a bipartite subgraph

First case: at least half of the edges are red $\implies G_{\text{red}}$ is almost regular, i.e. $\Delta(G_{\text{red}}) \leq \delta = O(d(G_{\text{red}})).$ Pyber-R-Szemerédi: G_{red} contains subgraph H with $d(H) \geq k$ and girth $(H) > g$.

[Robin](#page-1-0) [Math](#page-7-0) The $g \leq 6$ case [Graphs with large degree gap](#page-59-0) A common trick: take a bipartite subgraph

Second case: at least half of the edges are purple (crossing). Then set $A =$ red set, $B =$ blue set and $G = (A, B; E) = G_{purple}$.

Applying Füredi's Lemma

A little more work yields a bipartite graph $G = (A, B; E)$ where

- deg_G $(v) = d \gg k$ for all $v \in A$ and,
- $N_G(v) \neq N_G(w)$ for all $v \neq w \in A$.

Applying Füredi's Lemma

A little more work yields a bipartite graph $G = (A, B; E)$ where

[Robin](#page-1-0) [Math](#page-7-0)

- deg_C $(v) = d \gg k$ for all $v \in A$ and,
- $N_G(v) \neq N_G(w)$ for all $v \neq w \in A$.

Define H as a d-graph with $V(H) = B$ and edge set

 $\{N_G(v): v \in A\}.$

Applying Füredi's Lemma

A little more work yields a bipartite graph $G = (A, B, E)$ where

[Robin](#page-1-0) [Math](#page-7-0)

- deg_C $(v) = d \gg k$ for all $v \in A$ and,
- $N_G(v) \neq N_G(w)$ for all $v \neq w \in A$.

Define H as a d-graph with $V(H) = B$ and edge set

$$
\big\{N_G(v)\,:\ v\in A\big\}.
$$

Apply Füredi's Lemma with some large t: $\mathcal{H}^* \subset \mathcal{H}$ is d-partite and t-strong. Note $\mathcal{H}^* \leftrightarrow \mathcal{A}^* \subset \mathcal{A}$.

The $g \leq 6$ case
[Graphs with large degree gap](#page-59-0)

The hypergraph from Füredi's Lemma

Recall $\mathcal{P}(\mathcal{H}^*) \subset 2^{[d]}$ is the family of all intersection patterns of \mathcal{H}^* . Let Γ be the shadow graph of $\mathcal{P}(\mathcal{H}^*)$:

$$
\Gamma = \Big([d], \big\{ \{i,j\} \ : \ \exists J \in \mathcal{P}(\mathcal{H}^*), J \supseteq \{i,j\} \big\} \Big).
$$
Recall $\mathcal{P}(\mathcal{H}^*) \subset 2^{[d]}$ is the family of all intersection patterns of \mathcal{H}^* . Let Γ be the shadow graph of $\mathcal{P}(\mathcal{H}^*)$:

$$
\Gamma = \Big([d], \big\{ \{i,j\} \ : \ \exists J \in \mathcal{P}(\mathcal{H}^*), J \supseteq \{i,j\} \big\} \Big).
$$

Either

1 Γ has a large independent set I, or

Recall $\mathcal{P}(\mathcal{H}^*) \subset 2^{[d]}$ is the family of all intersection patterns of \mathcal{H}^* . Let Γ be the shadow graph of $\mathcal{P}(\mathcal{H}^*)$:

$$
\Gamma = \Big([d], \big\{ \{i,j\} \ : \ \exists J \in \mathcal{P}(\mathcal{H}^*), J \supseteq \{i,j\} \big\} \Big).
$$

Either

- **1** Γ has a large independent set I, or
- **2** $\Delta(\Gamma)$, the max degree of Γ , is large.

Alternative Proof for $g = 6$

1 C F has a large independent set $I \implies$ the desired subgraph H $(d(H) \geq |I| \geq k$ and girth $(H) \geq 6$).

Alternative Proof for $g = 6$

1 Γ has a large independent set $I \implies$ the desired subgraph H $(d(H) \geq |I| \geq k$ and girth $(H) \geq 6$).

Claim. If $B = B_1 \cup \cdots \cup B_d$ are the classes of \mathcal{H}^* , then $H = G[A^*, \bigcup_{i \in I} B_i]$ is C_4 -free.

Alternative Proof for $g = 6$

1 Γ has a large independent set $I \implies$ the desired subgraph H $(d(H) \geq |I| \geq k$ and girth $(H) \geq 6$).

Claim. If $B = B_1 \cup \cdots \cup B_d$ are the classes of \mathcal{H}^* , then $H = G[A^*, \bigcup_{i \in I} B_i]$ is C_4 -free.

[Robin](#page-1-0) [Math](#page-7-0)

Proof. If not...

The $g \leq 6$ case [Graphs with large degree gap](#page-59-0)

Alternative Proof for $g = 6$

1 Γ has a large independent set $I \implies$ the desired subgraph H $(d(H) \geq |I| \geq k$ and girth $(H) \geq 6$).

Claim. If $B = B_1 \cup \cdots \cup B_d$ are the classes of \mathcal{H}^* , then $H = G[A^*, \bigcup_{i \in I} B_i]$ is C_4 -free.

 $a₁$ Proof. If not... $a₂$ A* B_{11} , B_{12} , B_{13} , B_{14} Here $I = \{i_1, i_2, i_3, i_4\}$

[Thomassen's Conjecture](#page-7-0) The $g < 6$ case [Graphs with large degree gap](#page-59-0)

Alternative Proof for $g = 6$

1 C F has a large independent set $I \implies$ the desired subgraph H $(d(H) \geq |I| \geq k$ and girth $(H) \geq 6$).

Claim. If $B = B_1 \cup \cdots \cup B_d$ are the classes of \mathcal{H}^* , then $H = G[A^*, \bigcup_{i \in I} B_i]$ is C_4 -free.

Proof. If not...

The intersection pattern J of $e_1 \cap e_2$ contains $\{i_2, i_4\} \subset I$. Hence $\{i_2, i_4\} \in \Gamma$, a contradiction!

Here $I = \{i_1, i_2, i_3, i_4\}$

Alternative Proof for $g = 6$

2 $\Delta(\Gamma)$ is large \implies vertex $b \in B$, $X_b \subset N_G(b)$, $Y_b \subset B \setminus \{b\}$ such that $G[X_b, Y_b]$ has large degrees.

Alternative Proof for $g = 6$

2 $\Delta(\Gamma)$ is large \implies vertex $b \in B$, $X_b \subset N_G(b)$, $Y_b \subset B \setminus \{b\}$ such that $G[X_b, Y_b]$ has large degrees.

The $g \leq 6$ case [Graphs with large degree gap](#page-59-0)

Alternative Proof for $g = 6$

2 $\Delta(\Gamma)$ is large \implies vertex $b \in B$, $X_b \subset N_G(b)$, $Y_b \subset B \setminus \{b\}$ such that $G[X_b, Y_b]$ has large degrees.

Proof of [2](#page-35-0):

The $g \leq 6$ case [Graphs with large degree gap](#page-59-0)

Alternative Proof for $g = 6$

2 $\Delta(\Gamma)$ is large \implies vertex $b \in B$, $X_b \subset N_G(b)$, $Y_b \subset B \setminus \{b\}$ such that $G[X_b, Y_b]$ has large degrees.

The $g \leq 6$ case [Graphs with large degree gap](#page-59-0)

Alternative Proof for $g = 6$

2 $\Delta(\Gamma)$ is large \implies vertex $b \in B$, $X_b \subset N_G(b)$, $Y_b \subset B \setminus \{b\}$ such that $G[X_b, Y_b]$ has large degrees.

The $g \leq 6$ case [Graphs with large degree gap](#page-59-0)

Alternative Proof for $g = 6$

2 $\Delta(\Gamma)$ is large \implies vertex $b \in B$, $X_b \subset N_G(b)$, $Y_b \subset B \setminus \{b\}$ such that $G[X_b, Y_b]$ has large degrees.

The $g \leq 6$ case [Graphs with large degree gap](#page-59-0)

Alternative Proof for $g = 6$

2 $\Delta(\Gamma)$ is large \implies vertex $b \in B$, $X_b \subset N_G(b)$, $Y_b \subset B \setminus \{b\}$ such that $G[X_b, Y_b]$ has large degrees.

The $g \leq 6$ case [Graphs with large degree gap](#page-59-0)

Alternative Proof for $g = 6$

2 $\Delta(\Gamma)$ is large \implies vertex $b \in B$, $X_b \subset N_G(b)$, $Y_b \subset B \setminus \{b\}$ such that $G[X_b, Y_b]$ has large degrees.

The $g \leq 6$ case [Graphs with large degree gap](#page-59-0)

Alternative Proof for $g = 6$

Proof of Theorem.

If \bullet holds for G , we are done! Otherwise \bullet holds...

The $g \leq 6$ case [Graphs with large degree gap](#page-59-0)

Alternative Proof for $g = 6$

Proof of Theorem.

If \bullet holds for G, we are done! Otherwise \bullet holds...

The $g \leq 6$ case [Graphs with large degree gap](#page-59-0)

Alternative Proof for $g = 6$

Proof of Theorem.

If \bullet holds for $G[X_{b_0}, Y_{b_0}]$, we are done! Otherwise \bullet holds...

The $g \leq 6$ case [Graphs with large degree gap](#page-59-0)

Alternative Proof for $g = 6$

Proof of Theorem.

If \bullet holds for $G[X_{b_0}, Y_{b_0}]$, we are done! Otherwise \bullet holds...

The $g \leq 6$ case [Graphs with large degree gap](#page-59-0)

Alternative Proof for $g = 6$

Proof of Theorem.

If \bullet holds for $G[X_{b_1}, Y_{b_1}]$ $G[X_{b_1}, Y_{b_1}]$ $G[X_{b_1}, Y_{b_1}]$, we are done! Otherwise \bullet holds...

The $g \leq 6$ case [Graphs with large degree gap](#page-59-0)

Alternative Proof for $g = 6$

Proof of Theorem.

The $g \leq 6$ case [Graphs with large degree gap](#page-59-0)

Alternative Proof for $g = 6$

Proof of Theorem.

Found a complete bipartite subgraph $G[\{b_0, \ldots, b_m\}, X_{b_m}].$

Is there a hypergraph lemma similar to Füredi's that could be used to prove the general case of the conjecture?

More modestly, is there a hypergraph lemma that would allow us to prove the $g = 8$ case?

[Thomassen's Conjecture](#page-7-0) The $g < 6$ case [Graphs with large degree gap](#page-59-0)

Graphs with large degree gap

Lemma (Dellamonica–R, 2011)

For all k and g there exist c and d_0 such that the following holds. In any C_4 -free bipartite graph $G = (A, B; E)$ satisfying

 $d \geq \max\bigl\{c \log \log \Delta(G), d_0\bigr\},$

there exists $H \subset G$ such that $d(H) \geq k$ and girth $(H) \geq g$.

[Thomassen's Conjecture](#page-7-0) The $_{I\!F} < 6$ case [Graphs with large degree gap](#page-59-0)

Graphs with large degree gap

Using the result of Kühn–Osthus (the numerical bounds in DKMR are inferior), yields:

[Robin](#page-1-0) [Math](#page-7-0)

Theorem

For all k and g there exist α, β , and d_0 such that for any graph G with

$$
d(G) \geq \max \bigl\{\alpha \bigl(\log\log\Delta(G)\bigr)^{\beta}, d_0 \bigr\}
$$

there exists $H \subset G$ such that $d(H) \geq k$ and $girth(H) \geq g$.

[Thomassen's Conjecture](#page-7-0) e $g \leq 6$ case [Graphs with large degree gap](#page-59-0)

Graphs with large degree gap

Using the result of Kühn–Osthus (the numerical bounds in DKMR are inferior), yields:

[Robin](#page-1-0) [Math](#page-7-0)

Theorem

For all k and g there exist α, β , and d₀ such that for any graph G with

$$
d(G) \geq \max \bigl\{\alpha \bigl(\log\log\Delta(G)\bigr)^{\beta}, d_0 \bigr\}
$$

there exists $H \subset G$ such that $d(H) \geq k$ and girth $(H) \geq g$.

Recall: Pyber-R-Szemerédi yields same conclusion under stronger assumption

$$
d\geq c\log\Delta(G).
$$

Proof of our lemma

Assume wlog that $G = (A, B; E)$ is such $deg_G(v) = d$ for all $v \in A$ and $|B| \leq |A|$.

[Robin](#page-1-0) [Math](#page-7-0)

Take $\rho = e^{\alpha_{k,g}d}$, $\varepsilon > 0$, and partition $B = B_0 \cup B_1 \cup \cdots \cup B_t$, where

$$
B_0 = \{v \in B : \deg_G(v) \le \varrho\}, \text{ and}
$$

\n
$$
B_j = \{v \in B : \varrho^{(1+\varepsilon)^{j-1}} < \deg_G(v) \le \varrho^{(1+\varepsilon)^j}\}, \text{ for } j = 1, ..., t.
$$

Proof of our lemma

Assume wlog that $G = (A, B; E)$ is such $deg_G(v) = d$ for all $v \in A$ and $|B| \leq |A|$.

[Robin](#page-1-0) [Math](#page-7-0)

Take $\rho = e^{\alpha_{k,g}d}$, $\varepsilon > 0$, and partition $B = B_0 \cup B_1 \cup \cdots \cup B_t$, where

$$
B_0 = \{v \in B : \deg_G(v) \le \varrho\}, \text{ and}
$$

\n
$$
B_j = \{v \in B : \varrho^{(1+\varepsilon)^{j-1}} < \deg_G(v) \le \varrho^{(1+\varepsilon)^j}\}, \text{ for } j = 1, ..., t.
$$

 $t = O(\log \log \Delta(G)).$ For appropriate choice of $c=c(k,g)$, $\Delta(G)\leq e^{e^{cd}}\Longrightarrow t<\frac{d}{8d}$ $\frac{d}{8k}$. [Math](#page-7-0)

The $g\leq 6$ case
[Graphs with large degree gap](#page-59-0)

Proof of our lemma

Proof of our lemma

[Robin](#page-1-0) [Math](#page-7-0)

Easy case: $e_G(A, B_0) \geq \frac{e(G)}{2}$ $\frac{(G)}{2}$. Take $G^*=G[A\cup B_0]$ and note that $\Delta(G^*) \leq \varrho \leq e^{c^*d(G^*)}$.

Pyber-R-Szemerédi's result implies that G^* contains the graph we are looking for.

[Graphs with large degree gap](#page-59-0)

Proof of our lemma

Otherwise: by averaging, there exists $j \in [t]$ such that

$$
e_G(A, B_j) \ge \frac{\sum_{i=1}^t e_G(A, B_i)}{t} = \frac{e(G) - e_G(A, B_0)}{t}
$$

$$
\ge \frac{e(G)}{2t} \ge \frac{d |A|}{2\frac{d}{8k}} = 4k |A|.
$$

[Graphs with large degree gap](#page-59-0)

Proof of our lemma

Otherwise: by averaging, there exists $j \in [t]$ such that

$$
e_G(A, B_j) \geq \max\Bigl\{4k |A|, \varrho^{(1+\varepsilon)^{j-1}}|B_j|\Bigr\}.
$$

Proof of our lemma

Otherwise: by averaging, there exists $j \in [t]$ such that

$$
e_G(A, B_j) \geq \max\Bigl\{4k |A|, \varrho^{(1+\varepsilon)^{j-1}}|B_j|\Bigr\}.
$$

- $\textbf{\textup{1}}$ Delete all vertices in $B \setminus B_j.$
- **2** Sequentially delete vertices from A with degree $\lt k$ and vertices of B_j with degree $< D/4$, where $D = \varrho^{(1+\varepsilon)^{j-1}}.$

Proof of our lemma

Otherwise: by averaging, there exists $j \in [t]$ such that

$$
e_G(A, B_j) \geq \max\Bigl\{4k |A|, \varrho^{(1+\varepsilon)^{j-1}}|B_j|\Bigr\}.
$$

- $\textbf{\textup{1}}$ Delete all vertices in $B \setminus B_j.$
- **2** Sequentially delete vertices from A with degree $\lt k$ and vertices of B_j with degree $< D/4$, where $D = \varrho^{(1+\varepsilon)^{j-1}}.$

Note: deleted at most
$$
k |A| + \frac{D}{4} |B_j| < \frac{e_G(A, B_j)}{2}
$$
 edges.

Proof of our lemma

Result: non-empty graph G with classes A and $B = B_i$ such that

- degrees in A are between k and d ;
- degrees in B are between $D/4$ and $D^{(1+\varepsilon)}=\varrho^{(1+\varepsilon)^j}.$

Back to hypergraphs

Let H be a hypergraph with vertex set B and edges

[Robin](#page-1-0) [Math](#page-7-0)

 $\{N_G(v): v \in A\}.$

Obs. 1: G is C_4 -free \implies $|e \cap f| \leq 1$ for all $e, f \in \mathcal{H}$ (i.e., \mathcal{H} is a linear hypergraph).
[Thomassen's Conjecture](#page-7-0) The $g < 6$ case [Graphs with large degree gap](#page-59-0)

Back to hypergraphs

Let H be a hypergraph with vertex set B and edges

[Robin](#page-1-0) [Math](#page-7-0)

 $\{N_G(v): v \in A\}.$

Obs. 1: G is C_4 -free \implies $|e \cap f| \leq 1$ for all $e, f \in \mathcal{H}$ (i.e., \mathcal{H} is a linear hypergraph).

Obs. 2: a cycle of length 2 ℓ in G corresponds to a cycle of length ℓ in H: i.e., cycle $(v_0, v_1, \ldots, v_{2\ell-1})$ corresponds to $(e_0, e_1, \ldots, e_{\ell-1})$, where $e_i = N_G (v_{2i}) \in \mathcal{H}$.

[Robin](#page-1-0) [Math](#page-7-0) [Graphs with large degree gap](#page-59-0)

Cycles in linear hypergraphs

Recall: $\delta(\mathcal{H}) \geq D/4$ and $\Delta(\mathcal{H}) \leq D^{1+\varepsilon}$. Let's count cycles of length ℓ .

Cycles in linear hypergraphs

Recall: $\delta(\mathcal{H}) \geq D/4$ and $\Delta(\mathcal{H}) \leq D^{1+\varepsilon}$. Let's count cycles of length ℓ .

[Robin](#page-1-0) [Math](#page-7-0)

1 Pick an edge $e_0 \in \mathcal{H}$...

Cycles in linear hypergraphs

Recall: $\delta(\mathcal{H}) \geq D/4$ and $\Delta(\mathcal{H}) \leq D^{1+\varepsilon}$. Let's count cycles of length ℓ .

[Robin](#page-1-0) [Math](#page-7-0)

- **1** Pick an edge $e_0 \in \mathcal{H}$...
- 2 and $w_0 \neq w_1 \in e_0...$

Cycles in linear hypergraphs

Recall: $\delta(\mathcal{H}) \geq D/4$ and $\Delta(\mathcal{H}) \leq D^{1+\varepsilon}$. Let's count cycles of length ℓ .

- **1** Pick an edge $e_0 \in \mathcal{H}$...
- 2 and $w_0 \neq w_1 \in e_0...$
- 3 and $e_1 \ni w_1 \dots$

$$
\# \leq |\mathcal{H}| \times d^2 \times D^{1+\varepsilon} \times
$$

Cycles in linear hypergraphs

Recall: $\delta(\mathcal{H}) \geq D/4$ and $\Delta(\mathcal{H}) \leq D^{1+\varepsilon}$. Let's count cycles of length ℓ .

- **1** Pick an edge $e_0 \in \mathcal{H}$...
- 2 and $w_0 \neq w_1 \in e_0...$
- 3 and $e_1 \ni w_1 \dots$
- 4 and $w_2 \in e_1...$

$$
\# \leq |\mathcal{H}| \times d^2 \times D^{1+\varepsilon} \times d \times
$$

Cycles in linear hypergraphs

Recall: $\delta(\mathcal{H}) \geq D/4$ and $\Delta(\mathcal{H}) \leq D^{1+\varepsilon}$. Let's count cycles of length ℓ .

[Robin](#page-1-0) [Math](#page-7-0)

- **1** Pick an edge $e_0 \in \mathcal{H}$...
- 2 and $w_0 \neq w_1 \in e_0...$
- 3 and $e_1 \ni w_1 \dots$
- 4 and $w_2 \in e_1...$

 \bullet ...

$$
\# \leq |\mathcal{H}| \times d^2 \times D^{1+\varepsilon} \times d \times \cdots
$$

Cycles in linear hypergraphs

Recall: $\delta(\mathcal{H}) \geq D/4$ and $\Delta(\mathcal{H}) \leq D^{1+\varepsilon}$. Let's count cycles of length ℓ .

- **1** Pick an edge $e_0 \in \mathcal{H}$...
- 2 and $w_0 \neq w_1 \in e_0...$
- 3 and $e_1 \ni w_1 ...$
- 4 and $w_2 \in e_1...$
- ⁵ ...
- **6** and $w_{\ell-1} \in e_{\ell-2}...$

$\# \leq |\mathcal{H}| \times d^{\ell} \times D^{(1+\varepsilon)(\ell-2)} \times$

[Robin](#page-1-0) [Math](#page-7-0) [Thomassen's Conjecture](#page-7-0) The $g < 6$ case [Graphs with large degree gap](#page-59-0)

Cycles in linear hypergraphs

Recall: $\delta(\mathcal{H}) \geq D/4$ and $\Delta(\mathcal{H}) \leq D^{1+\varepsilon}$. Let's count cycles of length ℓ .

- **1** Pick an edge $e_0 \in \mathcal{H}$...
- 2 and $w_0 \neq w_1 \in e_0...$
- 3 and $e_1 \ni w_1...$
- 4 and $w_2 \in e_1...$
- ⁵ ...
- 6 and $w_{\ell-1} \in e_{\ell-2}$...
- **2** at most one possible edge $e_{\ell-1} \ni v_0, v_{2\ell-1}$.

 $\# \leq |\mathcal{H}| \times d^{\ell} \times D^{(1+\varepsilon)(\ell-2)} \times 1.$

[Graphs with large degree gap](#page-59-0)

Cycles in linear hypergraphs

Result: Number of cycles of length ℓ is

$$
N_{\ell} \leq |\mathcal{H}| \times d^{\ell} \times D^{(1+\varepsilon)(\ell-2)}.
$$

[Robin](#page-1-0) **[Math](#page-7-0)**

Cycles in linear hypergraphs

Result: Number of cycles of length ℓ is

$$
N_{\ell} \leq |\mathcal{H}| \times d^{\ell} \times D^{(1+\varepsilon)(\ell-2)}.
$$

[Robin](#page-1-0) [Math](#page-7-0)

Randomly select edges of H with probability p. How many cycles survive? In expectation, at most

$$
p^\ell N_\ell \leq (p\,|\mathcal{H}|) \times \ p^{\ell-1} d^\ell D^{(1+\varepsilon)(\ell-2)}\,.
$$

Cycles in linear hypergraphs

Result: Number of cycles of length ℓ is

$$
N_{\ell} \leq |\mathcal{H}| \times d^{\ell} \times D^{(1+\varepsilon)(\ell-2)}.
$$

[Robin](#page-1-0) [Math](#page-7-0)

Randomly select edges of H with probability p. How many cycles survive? In expectation, at most

$$
\rho^{\ell} N_{\ell} \leq (\rho |\mathcal{H}|) \times \underbrace{\rho^{\ell-1} d^{\ell} D^{(1+\varepsilon)(\ell-2)}}_{\ll 1 \text{ for small } \rho}.
$$

[Thomassen's Conjecture](#page-7-0) The $g < 6$ case [Graphs with large degree gap](#page-59-0)

Cycles in linear hypergraphs

Result: Number of cycles of length ℓ is

$$
N_{\ell} \leq |\mathcal{H}| \times d^{\ell} \times D^{(1+\varepsilon)(\ell-2)}.
$$

[Robin](#page-1-0) [Math](#page-7-0)

Randomly select edges of H with probability p. How many cycles survive? In expectation, at most

$$
\rho^\ell N_\ell \leq (\rho \, |\mathcal{H}|) \times \underbrace{\rho^{\ell-1} d^\ell D^{(1+\varepsilon)(\ell-2)}}_{\ll 1 \; \text{for small } \; \rho}.
$$

Linearity of expectation: $p = D^{\varepsilon-1}$, $\varepsilon = \frac{1}{2g} \Longrightarrow \#$ of surviving edges is much larger than $#$ of surviving cycles of length $\ell < g/2$.

[Thomassen's Conjecture](#page-7-0) The $g < 6$ case [Graphs with large degree gap](#page-59-0)

Cycles in linear hypergraphs

Result: Number of cycles of length ℓ is

$$
N_{\ell} \leq |\mathcal{H}| \times d^{\ell} \times D^{(1+\varepsilon)(\ell-2)}.
$$

[Robin](#page-1-0) [Math](#page-7-0)

Randomly select edges of H with probability p. How many cycles survive? In expectation, at most

$$
\rho^\ell N_\ell \leq (\rho \, |\mathcal{H}|) \times \underbrace{\rho^{\ell-1} d^\ell D^{(1+\varepsilon)(\ell-2)}}_{\ll 1 \; \text{for small } \; \rho}.
$$

Linearity of expectation: $p = D^{\varepsilon-1}$, $\varepsilon = \frac{1}{2g} \Longrightarrow \#$ of surviving edges is much larger than $\#$ of surviving cycles of length $\ell < g/2$.

Delete an edge for each cycle and destroy them all! Resulting hypergraph \mathcal{H}^* has $\Omega\big(D^\varepsilon\,|\,\mathcal{V}(\mathcal{H})|\big)$ edges and no cycles of length $\langle g/2 \rangle$.

Recall: edges of \mathcal{H}^* correspond to vertices in $\mathcal{A}^* \subset \mathcal{A}$ $(e \in \mathcal{H}^* \leftrightarrow v \in \mathcal{A}^*, e = N_G(v)).$

Recall: edges of \mathcal{H}^* correspond to vertices in $\mathcal{A}^* \subset \mathcal{A}$ $(e \in \mathcal{H}^* \leftrightarrow v \in \mathcal{A}^*, e = N_G(v)).$

Let H be the induced subgraph $G[A^* \cup V(\mathcal{H}^*)]$.

 $\text{girth}(H) \geq g$ because $\text{girth} (\mathcal{H}^*) \geq g/2;$

Back to graphs

Recall: edges of \mathcal{H}^* correspond to vertices in $\mathcal{A}^* \subset \mathcal{A}$ $(e \in \mathcal{H}^* \leftrightarrow v \in \mathcal{A}^*, e = N_G(v)).$

[Robin](#page-1-0) [Math](#page-7-0)

Let H be the induced subgraph $G[A^* \cup V(\mathcal{H}^*)]$.

- $\text{girth}(H) \geq g$ because $\text{girth} (\mathcal{H}^*) \geq g/2;$
- by construction, $deg_H(v) \geq k$ for all $v \in A^*$, thus

$$
d(H) = \frac{2e(H)}{v(H)} \ge \frac{2k |A^*|}{|A^*| + |V(H^*)|} = \frac{2k |\mathcal{H}^*|}{|\mathcal{H}^*| + |V(\mathcal{H}^*)|} > k.
$$

Back to graphs

Recall: edges of \mathcal{H}^* correspond to vertices in $\mathcal{A}^* \subset \mathcal{A}$ $(e \in \mathcal{H}^* \leftrightarrow v \in \mathcal{A}^*, e = N_G(v)).$

[Robin](#page-1-0) [Math](#page-7-0)

Let H be the induced subgraph $G[A^* \cup V(\mathcal{H}^*)]$.

- $\text{girth}(H) \geq g$ because $\text{girth} (\mathcal{H}^*) \geq g/2;$
- by construction, $deg_H(v) \geq k$ for all $v \in A^*$, thus

$$
d(H) = \frac{2e(H)}{v(H)} \ge \frac{2k |A^*|}{|A^*| + |V(H^*)|} = \frac{2k |\mathcal{H}^*|}{|\mathcal{H}^*| + |V(\mathcal{H}^*)|} > k.
$$

Recall: edges of \mathcal{H}^* correspond to vertices in $\mathcal{A}^* \subset \mathcal{A}$ $(e \in \mathcal{H}^* \leftrightarrow v \in \mathcal{A}^*, e = N_G(v)).$

[Robin](#page-1-0) [Math](#page-7-0)

Let H be the induced subgraph $G[A^* \cup V(\mathcal{H}^*)]$.

- $\text{girth}(H) \geq g$ because $\text{girth} (\mathcal{H}^*) \geq g/2;$
- by construction, $deg_H(v) \geq k$ for all $v \in A^*$, thus

$$
d(H) = \frac{2e(H)}{v(H)} \ge \frac{2k |A^*|}{|A^*| + |V(H^*)|} = \frac{2k |H^*|}{|H^*| + |V(H^*)|} > k.
$$

Hence, H is the desired subgraph!

● The conjectures of Thomassen and Erdős–Hajnal remain open.

[Robin](#page-1-0) [Math](#page-7-0)

- Is there a hypergraph lemma similar to Füredi's that can be used to prove Thomassen's conjecture for, say, $g = 8$?
- Can one extend the gap between $d(G)$ and $\Delta(G)$ for which we can establish that the conjecture is true?
- Hypergraph version of Thomassen's conjecture: any "degree-gap" result in hypergraphs extends to graphs from our proof. Here the degree gap is polynomial $\Delta(\mathcal{H}) \leq \delta(\mathcal{H})^{1+\varepsilon}.$

Happy Birthday, Robin!!!