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Abstract
In this paper we develop a relativistic model of a normal–superconductor junction based on the
generalized semiconductor model together with the Dirac–Bogoliubov–de Gennes equations to
describe the reflection and transmission of particles at an N–S boundary with a barrier potential.
The theory is illustrated with a calculation of the I –V curves, the differential conductance and
the excess current. As expected, we observe that relativistic effects are very small in
superconducting junctions, but their effect is to increase the effective strength of the barrier.

1. Introduction

The BCS theory of superconductivity is generally accepted
to have been one of the most difficult theories in physics. It
was over 40 years between the discovery of superconductivity
by Onnes [1] and the advent of an acceptable theory [2, 3].
This theory has been written about many times [4–6], and
it leads to agreement with experiment for a large number of
superconducting properties. A relativistic version of the theory
was only forthcoming in 1995 [7].

An interface or junction between two materials is a
fundamental system in the theory of transport. The standard
approach to the calculation of characteristic curves for
junctions is linear response theory, where the current is
calculated as a function of applied potential difference. Using
a tunnelling term as a perturbation and Fermi’s golden rule, the
current across a junction between two metals can be written
in terms of the tunnelling matrix element, the Fermi–Dirac
distribution function and the densities of states in the two
metals. If one of the metals is in the superconducting state there
is a fundamental change in the current because the relevant
quantity in the superconductor becomes the quasiparticle
density of states [5] and the superconducting gap � [8] opens
up so no current is observable for eV < �. While the
perturbation theory approach to such problems works well, it is
intrinsically approximate because higher order terms exist [9],
and it lacks transparency. Other approaches make use of Green
functions at various levels of complexity [10–12], but again
these methods are rather physically opaque.

When an electron from a normal metal is incident upon
an interface with a superconductor, four different processes
can occur, normal reflection, normal transmission, Andreev
reflection and quasiparticle transmission. Andreev reflection
is a process whereby an electron (strictly an electron-like

quasiparticle) of energy Ee < �/2 is incident upon the
interface (we have placed the zero of energy at the Fermi
energy in the middle of the energy gap) and it is reflected as
a hole with equivalent energy Eh = −Ee.

One of the successes of the BCS theory is the extension
to a description of inhomogeneous superconductors via the
Bogoliubov–de Gennes formalism [4] and its use to describe
a variety of superconducting properties including transport
properties of junctions. The basic equations of this formalism
are a pair of coupled Schrödinger-like equations that describe
paired electron-like and hole-like quasiparticles. A particularly
well cited application is the paper of Blonder et al [13],
that sets up and solves the BTK model of transport for a
simple model of superconducting microconstrictions. The
metal is modelled as a zero potential system and the conducting
particles are therefore plane waves. In the superconductor the
model is again a system with zero external potential, but with
a superconducting order parameter and gap function (taken as
a constant). The interface itself is described by a δ-function
potential. The incident electrons in the normal metal may be
reflected as electrons or undergo Andreev scattering [5] and be
reflected as holes. These are matched onto the solutions of the
Bogoliubov–de Gennes equations at the boundary and currents
can be calculated as a function of applied voltage using a
simple method based on a Boltzmann equation approach. The
characteristic I –V curve can then be written as a function of
temperature and Z , a parameter that describes the strength of
the δ-function barrier. This original paper has been generalized
in several directions [14, 15] to three dimensions [16, 17], and
to deal with magnetic metals [18] and has been used to interpret
experiment and to determine material parameters many times;
a particularly impressive example for Cu–Nb point contacts is
reported by Blonder and Tinkham [19], but see also [20–22]
for example.
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Figure 1. Schematic diagram of the energy band structure (E versus
k) on each side of the interface of an N–S junction. The zero of
energy is taken to be the chemical potential. (a) The normal metal
where the incident electron I with wavevector q+ may result in a
reflected electron B with wavevector −q+ or hole A with wavevector
−q− through normal reflection or Andreev scattering, respectively.
(b) The superconductor where a particle (C) may emerge from the
barrier with a wavevector (k+) that is on the same side of the Fermi
surface as the incident particle, or where a particle (D) may emerge
with a wavevector (−k−) that is on the opposite side of the Fermi
surface from the incident particle.

The purpose of this paper is to set up a relativistic general-
ization of this theory and to examine any differences between
the relativistic and non-relativistic models. In practice, we ex-
pect the effects of relativity in BCS superconductors, and in
this model for realistic values of the parameters, to be very
small. However, we contend that the formalism is itself of in-
terest and how relativity affects the properties of superconduc-
tors is of interest even if too small to be directly observable. In
this paper we will be concerned with the energy regime close to
experiments and will examine the negative energy states within
such a model in a future publication.

2. The model

We confine our attention to the interface between a normal
metal and a superconductor, and by focusing on Andreev

reflection we are able to calculate characteristic I –V curves
without the additional complication of Josephson effects. We
employ the same generalized semiconductor model that was
discussed by Blonder et al. In this model the Bogoliubov–
de Gennes equations are used to model the interface, and this
enables us to treat all junctions from a clean interface to one
with a strong barrier layer on an equal footing. By matching
wavefunctions at the interface we calculate probability currents
using fully relativistic quantum theory and use these in the
evaluation of the I –V curves. In figure 1 we show the energy–
momentum relation on both sides of the interface, and this
tells us which transitions are allowed energetically. In the
normal metal we have an initial electron I with wavevector
q+ and energy E moving in the positive z-direction incident
upon the interface. q+ is assumed to be greater then the Fermi
wavevector. Two things can happen, either the electron will be
reflected as a particle with energy E moving in the negative
z-direction (B), or Andreev scattering may occur and a hole
of energy −E is emitted from the interface (A). If Andreev
scattering occurs there must be two extra electron on the
superconducting side of the barrier. On the superconducting
side we may get an electron with energy E and wavevector
k+ outside the Fermi surface (C) and/or an electron with
energy E and wavevector −k− inside the Fermi surface (D).
As explained by Blonder et al [13], the hole is generated as
far below the chemical potential as the electron is above. Once
the energetically allowed processes have been identified, the
relativistic Bogoliubov–de Gennes equations can be used to
determine their probability densities.

3. Theory

3.1. The relativistic Bogoliubov–de Gennes equation

Capelle and Gross [7] were the first to derive a satisfactory
relativistic description of inhomogeneous superconductors.
The relativistic generalization of the non-relativistic singlet
order parameter [4] is required to be a Kramers pair, and
symmetry considerations then tell us it is given by

�(r) = �T(r)η�(r) (1)

with

η =
⎛
⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎠ . (2)

Their theory is then based upon the Hamiltonian

Ĥ =
∫

d3r�†(r)(cα.p̂ + (β − I )mc2 + eαν Aν)�(r)

−
∫

d3r
[
�(r)D∗(r)+ h.c.

]
(3)

where �(r) represents the four-component Dirac spinor field
operator, D(r) is the pair potential, α and β are the usual
relativistic matrices in the standard representation and

Aν = ((U0(r)− μ)/e, A(r)) (4)

with U0 the scalar potential, A(r) the usual vector potential
and μ the chemical potential. We have subtracted the electron
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rest mass from the Hamiltonian to facilitate comparison
with the non-relativistic limit. The first term in (3) is
a single particle Dirac Hamiltonian containing an effective
electrostatic potential U0(r), which in principle consists of the
Coulomb potential of the lattice and any external potential
difference applied to the system. For the purposes of this
paper we will assume no magnetic fields are present. The
second term contains the coupling of the pair potential to the
superconducting order parameter.

The derivation of the relativistic Bogoliubov–de Gennes
equation proceeds by application of a relativistic generalization
of the Bogoliubov–Valatin [23, 24] transformation.

�i(r) =
∑

k j

[
uik jγk j + v∗

ik j (r)γ
†
k j

]
. (5)

The operators γ
†
k j and γk j are creation and annihilation

operators for the new quasiparticles. The index k represents the
quantum numbers while i and j refer to the four components of
the spinors. Interestingly, in principle this transformation (5)
combines elements of the spinors associated with both spins
and with particle and antiparticle states. This transformation
diagonalizes the Hamiltonian and leads to a set of coupled
differential equations, which can be written succinctly as

(
ĤD �(r)
�†(r) −Ĥ ∗

D

)(
u(r, t)
v(r, t)

)
= ih̄

∂

∂ t

(
u(r, t)
v(r, t)

)
. (6)

This is the Dirac–Bogoliubov–de Gennes equation. It is an 8×
8 equation; u(r, t) and v(r, t) are four component quantities.
ĤD is the standard single particle Dirac Hamiltonian [25]

ĤD = cα. p̂ + (β − I )mc2 + U0(r)− μ. (7)

One key element of this analysis is the position of the
zero of energy. Equation (7) sets the zero of energy at the
chemical potential. This means that energies below the Fermi
energy are negative. Negative energies in this context should
not be confused with the negative energies usually discussed
in relativistic quantum theory, which have a correspondence to
antiparticles.

Before solving these equations generally, consider what
happens as � → 0. In this case the equations separate into
two 4 × 4 Dirac equations, one of which describes an elec-
tron above the Fermi energy. The Dirac equation in v(r, t)
requires slightly more interpretation. Acting upon it with the
time-reversal operator yields the Dirac equation at negative en-
ergies, so v(r, t) represents a time-reversed electron below the
Fermi energy.

To solve equations (6) we will follow the spirit of Blonder
et al [13] and set μ and U(r) constant and let �(r) → �η

with� constant. We will also limit ourselves to one dimension
(z) and then

u(r, t) → u(z, t) =
⎛
⎜⎝

u1

u2

u3

u4

⎞
⎟⎠ ei(pz−Et)/h̄ = u(z)ei(pz−Et)/h̄ (8)

v(r, t) → v(z, t) =
⎛
⎜⎝
v1

v2

v3

v4

⎞
⎟⎠ ei(pz−Et)/h̄ = v(z)ei(pz−Et)/h̄ (9)

where we have assumed that the elements in the column
matrices are independent of both z and time. It is trivial to
generalize the non-relativistic interpretation of u and v [6].
|u1(2)|2 is the probability that the quasiparticle is a spin
up (down) electron and |v1(2)|2 is the probability that the
quasiparticle is a spin up (down) hole. Putting equations (8)
and (9) into equation (6), remembering that αz = α∗

z , p̂∗
z =

− p̂z and insisting that � is real we obtain

(cαz pz + (β − I )mc2 + U0 − μ)u(z)+�ηv(z) = Eu(z, t)

(10)

−(−cαz pz + (β − I )mc2 + U0 − μ)v(z)

− �ηu(z) = Ev(z, t). (11)

Now we will follow Capelle and Gross [7] and set U0 = 0
and note that � is very small. Therefore, it is still a very good
approximation to write

(cαz pz + (β − I )mc2)u(z) = (W − mc2)u(z) (12)

where W is the energy of a relativistic free particle. W is
independent of the direction of travel and so we can simplify
equations (10) and (11),

(W − mc2 − μ)u(z)+�ηv(z) = Eu(z)

−(W − mc2 − μ)v(z)−�ηu(z) = Ev(z).
(13)

Equations (13) are actually eight simultaneous algebraic
equations in eight unknowns. It is useful to write these out
explicitly,

(E − (W − mc2 − μ))u1 −�v2 = 0

(E − (W − mc2 − μ))u2 +�v1 = 0

(E − (W − mc2 − μ))u3 −�v4 = 0

(E − (W − mc2 − μ))u4 +�v3 = 0

(E + (W − mc2 − μ))v1 +�u2 = 0

(E + (W − mc2 − μ))v2 −�u1 = 0

(E + (W − mc2 − μ))v3 +�u4 = 0

(E + (W − mc2 − μ))v4 −�u3 = 0.

(14)

It is clear that the eight equations have separated into four
sets of two equations, which are now trivial to solve. This
separation was facilitated by choosing z as the direction of
motion. Each pair of equations has a non-trivial solution if

E(k) =
√
(W (k)− mc2 − μ)2 +�2 (15)

with

W (k) = ±
√
(c2h̄2k2 + m2c4) (16)

where we have explicitly indicated the dependence of the
energy on wavevector. This energy spectrum has four
branches corresponding to the four possible choices of sign.
Equation (15) has the correct limits as � → 0, and as
v/c → 0 it becomes the well known equation of BCS theory
Ek = ±

√
h̄2k2/2m + |�|2. Clearly from equations (14) we
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can set six of u1 · · · u4 and v1 · · · v4 equal to zero and solve
the Bogoliubov–de Gennes equations for just two non-zero
components of the wavefunction. We will also insist on the
normalization

4∑
j=1

(|u j |2 + |v j |2) = 1. (17)

Equations (14) are purely real and u j and v j can be chosen to
be real when (15) is satisfied. This will always be true when the
solution to the Bogoliubov–de Gennes equation is wavelike. If
we choose u1 and v2 as the non-zero parts of the wavefunction
and take the positive square root in equation (15) we then find

u2
1 = 1

2

(
1 + (E2 −�2)1/2

E

)

v2
2 = 1

2

(
1 − (E2 −�2)1/2

E

) (18)

and we obtain identical expressions if we choose the pairs
(u2, v1), (u3, v4) or (u4, v3) to be the non-zero components.
If we had taken the negative square root in equation (15) the
expressions would have looked very similar; the only change
would have been that the signs after the 1 in the brackets would
have swapped between the u1 and the v2 equations. For a given
energy there are two allowed values of the wavevector

k± = 1

ch̄

((
μ+ mc2 ± (E2 −�2)1/2

)2 − m2c4
)1/2

. (19)

So, our solutions to the Bogoliubov–de Gennes equations are

ψ(r, t) =
(

u(r, t)
v(r, t)

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1

0
0
0
0
v2

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e±i(p+
z z−Et)/h̄

ψ(r, t) =
(

u(r, t)
v(r, t)

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v2

0
0
0
0
u1

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e±i(p−
z z−Et)/h̄

(20)

and similarly for the (u2, v1), (u3, v4) and (u4, v3) combina-
tions, and a general solution is a linear combination of these
four independent sets of solutions.

While equations (20) represent the general solution
of the Bogoliubov–de Gennes equations under the given
approximations, they do not satisfy the boundary condition that
they must become solutions of the usual free particle Dirac
equation when � → 0. To satisfy this condition we require
the solutions to the free particle Dirac equation. These have
been evaluated many times [25] and we just quote the results

here. For particles free to move in the positive z-direction

ψ1(z) = 1√
V

(
W + mc2

W

)1/2

⎛
⎜⎜⎝

1
0

ch̄k
W+mc2

0

⎞
⎟⎟⎠ ei(pz z−Wt)/h̄

ψ2(z) = 1√
V

(
W + mc2

W

)1/2

⎛
⎜⎝

0
1
0

− ch̄k
W+mc2

⎞
⎟⎠ ei(pzz−Wt)/h̄

ψ3(z) = 1√
V

(
W + mc2

W

)1/2

⎛
⎜⎜⎝

ch̄k
W+mc2

0
1
0

⎞
⎟⎟⎠ ei(pz z+Wt)/h̄

ψ4(z) = 1√
V

(
W + mc2

W

)1/2

⎛
⎜⎜⎝

0
− ch̄k

W+mc2

0
1

⎞
⎟⎟⎠ ei(pzz+Wt)/h̄

(21)
corresponding to a spin up positive energy particle, a spin down
positive energy particle, a spin up negative energy (in this case
we mean negative energy in the sense of corresponding to an-
tiparticle states) particle and a spin down negative energy par-
ticle respectively. Here V is the normalization volume. For
particles travelling in the negative z-direction we just change
the sign of k in these expressions. In the columns in ψn(x) the
unity element is called the large component of the wavefunc-
tion and the other non-zero component is the small component.

Now solutions of the form (20) must map onto
solutions (21) when� → 0. Equation (20) represents a spin up
particle coupled to a spin down hole. It has only two non-zero
components whereas it should have four for these solutions to
map onto (21). Insisting that this limit is obeyed brings about
a considerable simplification.

u3 = cpz

W + mc2
u1 u4 = − cpz

W + mc2
u2

v3 = − cpz

W + mc2
v1 v4 = cpz

W + mc2
v2

(22)

and the final solutions are

ψ(r, t) = c

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1

0
cpz

W+mc2 u1

0
0
v2

0
cpz

W+mc2 v2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ei(p+
z z−Et)/h̄

+ d

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v2

0
− cpz

W+mc2 v2

0
0
u1

0
− cpz

W+mc2 u1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e−i(p−
z z−Et)/h̄ (23)
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for a quasi-particle composed of a spin up electron and a spin
down hole if there is no branch crossing or a spin up hole and
a spin down electron if there is branch crossing.

ψ(r, t) = e

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
u2

0
− cpz

W+mc2 u2v1

0
− cpz

W+mc2 v1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

ei(p+
z z−Et)/h̄

+ f

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
v1

0
cpz

W+mc2 v1

u2

0
cpz

W+mc2 u2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e−i(p−
z z−Et)/h̄ (24)

for a quasiparticle composed of a spin down electron and a spin
up hole if there is no branch crossing or a spin down hole and
a spin up electron if there is branch crossing. There should be
no confusion between the coefficient c in equation (23) and the
speed of light c.

3.2. The normal/superconductor junction

We are now in a position to set up a model of a normal
metal/superconductor junction. The normal metal is described
in the free electron approximation and the superconductor as
the free solutions of the Bogoliubov–de Gennes equations
described above. The boundary will be described by a delta-
function potential, i.e. V (z) = H δ(z); H is an adjustable
parameter representing the strength of the barrier. Rigorously,
a δ-function potential leads to considerable difficulties in
relativistic quantum theory. Because it is higher than 2mc2

it can lead to the Klein paradox, and, as discussed by
Fairbairn [26] among others in the context of the Kronig–
Penney model, the δ-function can be written as a mathematical
limit in several different ways and the physics of the model
is determined by how that limit is taken. If the δ-function
is described as some limit of a potential barrier as the
height becomes infinite and the width infinitesimal, it becomes
necessary to solve the Bogoliubov–de Gennes equations in the
barrier, and this adds an extra unnecessary layer of complexity
that is contrary to the spirit of the BTK model. We do not
expect that particle/antiparticle creation has a significant role to
play in the properties of superconducting junctions, as we work
at energies much smaller than mc2. Therefore, we employ
a simple relativistic generalization of the non-relativistic δ-
function boundary conditions. This, at least, has the correct
non-relativistic limit.

Starting with equations (6) it is straightforward to derive
the appropriate boundary conditions that have to be obeyed by
steady state plane wave solutions at the N–S interface. They
are the following.

(1) The large components of the wavefunctions either side of
the boundary have to match onto one another.

(2) The small components of the wavefunction are chosen so
that the wavefunction at the boundary is a solution of the
Bogoliubov–de Gennes equation, i.e.

−ih̄cαz(uS(0)− uN (0))+ H u(0) = 0

ih̄cαz(vS(0)− vN (0))+ Hv(0) = 0
(25)

where uS(N) are the top four components of the
wavefunction on the superconducting (normal) side of
the barrier, and vS(N) are the equivalent lower four
components.

It will be important to determine the current densities
for the various processes that may occur at the superconduct-
ing/normal interface. The expression we have to use to calcu-
late this is derived in appendix A. In units of 2c2 pF/(W +mc2)

(which reduces to the Fermi velocity in the non-relativistic
limit) we find they are

A(E) = −|a|2 B(E) = −|b|2

C(E) = (|u1|2 − |v2|2)|c|2

D(E) = (|u1|2 − |v2|2)|d|2

H (E) = (|u2|2 − |v1|2)|e|2

F(E) = (|u2|2 − |v1|2)| f |2.

(26)

Since plane waves are spatially uniform, there is no need to
specify position in these definitions. a and b in equations (26)
are the coefficients of the Andreev reflected hole and the
reflected electron respectively.

3.3. Scattering at the interface in the BTK approximation

In this section we report a direct relativistic generalization
of the BTK results, following their methods and making
equivalent approximations to that paper. While we expect
relativistic effects at the normal/superconductor interface to
be small at most, the relativistic formalism automatically
manifests the effects of spin on the scattering as well. Let
us consider a spin up electron incident upon the boundary
from the normal metal side. Then there are in principal four
possibilities for scattering on the normal side. After scattering
we can have on the normal side (i) a spin up electron and a
spin down hole, (ii) a spin up electron and a spin up hole, (iii)
a spin down electron and a spin up hole, (iv) a spin down
electron and a spin down hole. If the incident electron is
spin down then all the conclusions of the following sections
are still valid, provided we everywhere replace spin up with
spin down and vice versa. We now examine each of these
possibilities in turn. The wavefunction on the superconducting
side of the boundary is given by the sum of equations (23)
and (24) (we have dropped the irrelevant time dependence).
The normalization has also been dropped, as it would cancel
later in the calculation anyway. This is a scattering problem
and conventionally we normalize to a unit incident particle.
The prefactor I in front of the incident particle is indeed unity
unless otherwise stated.
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3.3.1. A spin up electron and a spin up hole. In this case both
the incident electron and the scattered hole have parallel spin.
The incident and normally reflected electron still have the same
spin, i.e. we have not allowed any spin flip at the interface. The
particle on the normal side of the interface is given by

ψn(z) = I

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0

ch̄k
W+mc2

0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ei pz z/h̄ + a

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
i
0

− icpz

W+mc2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ei p+
z z/h̄

+ b

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0

− ch̄k
W+mc2

0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e−i pz z/h̄ . (27)

The boundary conditions can then be written down and they
are trivial to deal with. It is immediately obvious that

c = d = e = f = a = 0 (28)

and there is no solution for b, which means that this process is
not possible.

3.3.2. A spin up electron and a spin down hole. In this
instance we take the case where the electron may undergo
normal reflection or Andreev scattering as a spin down hole,
i.e. the electron does not undergo a spin-flip at the boundary.
So, on the normal side of the barrier the electron wavefunction
is

ψn(z) = I

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0

ch̄k
W+mc2

0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ei pz z/h̄ + a

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
i
0

icpz

W+mc2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ei p+
z z/h̄

+ b

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0

− ch̄k
W+mc2

0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e−i pz z/h̄ (29)

where the i in the Andreev scattering term is a phase factor

simply introduced to facilitate some of the arithmetic. There
is no loss of generality in including this as it will also be
incorporated into a.

If I = 1 the first boundary condition gives us

1 + b = cu1 + dv2

ia = cv2 + du1

0 = eu2 + f v1

0 = ev1 + f u2

(30)

and the second boundary condition yields

− i h̄c2 pz

W + mc2
((cu1 − dv2)− (1 − b))+ H (1 + b) = 0

− i h̄c2 pz

W + mc2
(ia − (cv2 − du1))− i H a = 0

( f v1 − eu2) = 0

( f u2 − ev1) = 0.

(31)

Evidently these immediately give e = f = 0. Analogously to
Blonder et al, we set

Z = (W + mc2)H

2h̄c2 pz
≈ (W + mc2)H

2h̄2c2kF
(32)

where kF is the Fermi wavevector and

γ = Z 2(|u1|2 − |v2|2)+ |u1|2 (33)

and a little further algebra yields

a = − iu1v2

γ
b = − (|u1|2 − |v2|2)(Z 2 + i Z)

γ

c = (1 − i Z)u1

γ
d = i Zv2

γ
.

(34)

These equations look very similar to their non-relativistic
equivalents. Following BTK we have set k+ = k− =
q+ = q− = kF, as this should be an excellent
approximation and simplifies the mathematics considerably.
If we consider the non-relativistic limit of Z , W → mc2

and

Z → m H

h̄ pF
= H

h̄vF
(35)

where vF is the Fermi velocity and this equation is identical to
the definition of Z given by Blonder et al [13].

We are now in a position to calculate these current
densities using the parameters within the model and
equations (26). Typical values for these parameters are
shown in figure 2. These are characterized by H rather
than the more conventional Z to facilitate comparison with a
later section, where Z is an inappropriate parameter. These
curves were calculated using the relativistic formalism, but
are identical to the non-relativistic curves of BTK for the
same value of H . The reason for this is clear. Any

6
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(a) (b)

(c) (d)

Figure 2. Reflection and transmission coefficients at the N–S interface for a variety of barrier strengths as a function of energy. This is for the
case of a spin up electron and a spin down hole on the normal side of the barrier. The quantities plotted are given by equations (26) and (43)
and (44). The energy coordinate has been made independent of the size of the model parameters by writing it in units of the energy gap. A is
the probability of Andreev reflection, B is the probability of normal reflection, C is the probability of transmission through the interface
without a band branch crossing and D is the probability of transmission with a band branch crossing.

problem is defined by the value of two quantities, the gap
� and Z . Once these have been defined, the solutions
for energy E involve equations (18) and (34). These are
identical to their non-relativistic counterparts, even though the
definition of E differs in the two cases. So we are solving
exactly the same equations as the non-relativistic case, so
no relativistic effects can be manifest. It is inconceivable
that relativity could play no part in the description of the
N–S junction for some values of the parameters. However,
we have made the BTK approximation that k+ = k− =
q+ = q− = kF. Of course, this removes some
relative motion from the problem and so removes relativistic
effects.

3.3.3. A spin down electron and a spin up hole. In this case
the normal state wavefunction is

ψn(z) = I

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0

ch̄k
W+mc2

0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ei pz z/h̄ + a

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
i
0

− icpz

W+mc2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ei p+
z z/h̄

+ b

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0

ch̄k
W+mc2

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e−i pz z/h̄ (36)

7
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(a) (b)

(c) (d)

Figure 3. The same reflection and transmission coefficients calculated for the same parameters as in figure 2 and on the same scale, but with
the speed of light set equal to 1/1000th of its actual value to emphasize relativistic effects. The calculations are shown for H = 0.24 and
H = 0.80. Full lines are the non-relativistic result, dashed lines are the results of the relativistic theory. (a) The probability of Andreev
reflection; (b) the probability of normal reflection; (c) the probability of transmission with no band branch crossing; (d) the probability of
transmission with a band branch crossing.

and again the boundary conditions lead to a set of equations
that are inconsistent and so there is no general solution.
However, if we set I = 0 so there is no incident particle the
equations do have a consistent non-trivial solution. One of the
coefficients is chosen arbitrarily and the remainder are written
in terms of it. We choose to write the other coefficients in terms
of f ,

I = c = d = 0 a = Z(v2
1 − u2

2)− iu2

(1 + i Z)u2
f

b = v1

1 + i Z
f e = − i Zv1

(1 + i Z)u2
f

(37)

and if we evaluate the total current density it is

JT(E) = 2c2 pz

W + mc2

(|u2|2 − |v1|2
) | f |2 (38)

which is what we would expect. The probability of being in
any state has been written in terms of f and the current density
is just the usual prefactor multiplied by the probability that
the quasiparticle is an electron minus the probability that it
is a hole. In this case the model appears to be predicting a
spontaneous process that may occur only in the absence of
an incident electron. In general though, we find that these
processes either do not conserve energy or do not conserve
particles. In fact, with no incident electron there is no
energy incident upon the interface, so none of these processes
can occur except as fluctuations within the uncertainty
principle.

8
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3.3.4. A spin down electron and a spin down hole. In this
case the incident particle wavefunction is

ψn(z) = I

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0

ch̄k
W+mc2

0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

eipz z/h̄ + a

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
i
0

icpz

W+mc2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

eip+
z z/h̄

+ b

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0

ch̄k
W+mc2

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e−ipz z/h̄ . (39)

The boundary conditions soon lead to

b = e = f = 0 a = −i
v2

u1

c = 1 − i Z

u1
d = i Zv2

u2
1

.

(40)

These results are the same as in the section on a spin up electron
and a spin down hole when b has been set equal to zero. This
is reassuring, as the results have to be identical in this limit.
Interestingly, this limit gives us further insight into that case.
These results for a, b, c and d are what the results for the spin
up electron and spin down hole reduce to if |u1|2 = |v2|2. One
may examine equations (33) and (34) further and we see then
that the term in Z 2 in the definition of γ only arises because
normal reflection is possible. In general, the Z 2 term increases
the denominator and hence reduces the magnitude of c and
d . This is reasonable because the fact that electrons may be
reflected reduces the number of electrons that tunnel into the
superconductor and hence reduces the current density in the
superconductor.

3.4. Scattering at the interface beyond the BTK approximation

It is clear that if we wish to see any relativistic effects in the I –
V curves at a normal/superconductor junction it is necessary
to go beyond the BTK theory. We do this in the most minimal
way possible. We relax our approximations on the wavevector
slightly, but still insist that

k+ = q+ k− = q−. (41)

We do not insist that either k+ or k− are equal to the
Fermi wavevector. This approximation makes the arithmetic
considerably more complicated. Defining

Z+
k = (W (k+)+ mc2)H

2h̄2c2k+ Z−
k = (W (k−)+ mc2)H

2h̄2c2k−
(42)

(a)

(b)

Figure 4. Current (vertical axis) versus potential difference
(horizontal axis) curves for a variety of barrier strengths at T = 0 for
the case of a spin up electron and a spin down hole on the normal
side of the barrier. The current is calculated using equation (45) with
2N(0)vF� set equal to unity. Both the current and potential
difference are written in dimensionless units to facilitate comparison
with the non-relativistic results [13]. The potential difference is
multiplied by the electronic charge (unity in these units) and divided
by the energy gap to make it dimensionless (eV/�) and as
independent as possible of the parameters of the model. The current
is multiplied by the electronic charge and a unit resistance and
divided by the energy gap for the same reason (eI R/�).
(a) Relativistic theory with the speed of light set to its actual value.
These results are identical to those found within the non-relativistic
theory by Blonder [13]. (b) Relativistic theory with the speed of light
set equal to 1/1000th of its actual value to emphasis relativistic
effects.

we eventually find

d(E) = 2Z−
k (Z

−
k − Z+

k + 2i Z−
k Z+

k )v2(E)

× {4(Z+
k Z−

k (1 + i Z+
k )(1 − i Z−

k ))u
2
1(E)

+ (Z−
k − Z+

k + 2i Z−
k Z+

k )
2v2

2(E)}−1 (43)

and the remaining coefficients can be written in terms of
this as

9
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(a) (b)

(c) (d)

Figure 5. Differential conductance RndI/dV where Rn is a unit resistance included to make the differential conductance dimensionless and
directly comparable with Blonder et al [13] as a function of energy in units of the energy gap. This is for the case of a spin up electron and a
spin down hole on the normal side of the barrier. The results are plotted for a variety of barrier strengths. In each graph the full line is the true
relativistic result and the dashed line is the result with the speed of light set equal to 1/1000th of its value: (a) H = 0; (b) H = 0.4;
(c) H = 0.8; (d) H = 4.0.

c(E) = 2Z+
k (1 − i Z−

k )u1(E)

(Z−
k − Z+

k + 2i Z−
k Z+

k )
d

b(E) = c(E)u1 + d(e)v2 − 1

a(E) = c(E)v2 + d(E)u1.

(44)

Equations (43) and (44) reduce to the BTK limit if we set Z−
k =

Z+
k . The reflection and transmission coefficients can now be

calculated using equations (43) and (44) in equations (26).
The results are not presented separately here because they are
very similar indeed to those shown in figure 2. For reasonable
values of the parameters the difference between the relativistic
and non-relativistic theories is indistinguishable on this scale.
Generally, we find that even in the most advantageous case the
difference between the two approaches is about one part in 104

and so completely negligible.
It is of interest to see how relativity affects these

coefficients, and we can do this artificially either by reducing

the speed of light or increasing the energy gap until relativistic
effects become appreciable. In figure 3 we show the
transmission coefficients calculated for the same gap as in
figure 2, but with the speed of light set equal to 1/100th of its
actual value. These are displayed for H = 0.24 and H = 0.80
only because relativistic effects are less visible in the more
extreme values of H .

The qualitative reasons for the observed effects of
relativity are simple to understand. With c set sufficiently low,
the numerators of equations (42) are no longer so dominated
by the mc2 and Z becomes a much more sensitive function of
k and hence of E . In figure 2Z (≡ H ) is constant; in figure 3H
remains constant; but Z increases substantially as we move
from left to right on each figure. Therefore the coefficients are
characteristic of a higher Z on the right of the figure than they
are on the left of the figure. A change in curvature of A and B
at low energy at H = 0.25 is just visible in these figures. As
relativistic effects become more important, energy is no longer

10
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quadratically dependent on momentum and this leads to the
observed effect.

3.5. The normal/superconductor boundary at finite voltage

Our discussion of the calculation of current–voltage and
differential conductance curves as well as excess current is
identical to that of BTK [13]. To minimize repetition we refer
the reader to that paper and only mention here the essential
points.

If a potential difference V is applied across the nor-
mal/superconductor boundary non-equilibrium quasiparticle
populations will be generated in general, which can be de-
termined by solving the Boltzmann equation self-consistently.
If we make the assumption that all incoming particles are de-
scribed by a standard Fermi–Dirac distribution function f0(E),
the problem is greatly simplified and the expression for the cur-
rent is derived by Blonder et al [13] as

IN S = 2N(0)evF�

×
∫ [

f0(E − eV )− f0(E)
]

[1 + A(E)− B(E)] dE

(45)

where � is the area of the junction, N(0) is the density of
states per spin direction at the Fermi energy and vF is the Fermi
velocity. In the absence of Andreev scattering this reduces to
an Ohm’s law form,

IN N = 2N(0)e2vF�

1 + Z 2
V = V

RN
(46)

which defines the normal metal ohmic resistance. In figure 4
we show some I –V curves calculated using equation (45) for
a range of values of the parameters. Figure 4(a) is the usual
relativistic result and represents identical results to those shown
in figure 6 of Blonder et al [13], although the vertical scale in
their picture differs from ours. In figure 4(b) we display the
same quantities with the speed of light set equal to 1/1000th
of its actual value. Again we can see the effect of relativity
easily. For a given barrier and potential difference the current
is lower in figure 4(b) than 4(a). This is because, although H
is the same in both diagrams in figure 4(b), Z increases more
rapidly with energy and so when compared with figure 4(a) the
curves in figure 4(b) tend to higher values of Z . From these
curves it is trivial to calculate the differential conductances
dI/dV and these are shown in figure 5 for a representative set
of barrier strengths. Again, the full lines have the speed of
light as its actual value and the results are essentially identical
to figure 7 of Blonder et al. As one might expect from the
previous discussion, the effect of relativity is shown to make
the peak in this curve sharper, i.e. to make it more like the non-
relativistic result for higher Z .

In some junctions, where Andreev scattering is significant,
the I –V curves are still approximately linear, but do not
extrapolate to zero. At the point where such curves intersect the
I -axis we can define an ‘excess current’. This can be defined
as

Iexc = IN S − IN N |eV��

=
∫ ∞

0

1 + Z 2

eRN

[
A(E)− B(E)+ Z 2

1 + Z 2

]
dE . (47)

Figure 6. The excess current as a function of barrier strength H
calculated using equation (47) and relativistic values of the
parameters calculated from equations (26) and (43) and (44). The
result is for the case of a spin up electron and a spin down hole on the
normal side of the barrier and is independent of the value used for the
speed of light. Obviously therefore this result is identical to the
non-relativistic value.

In figure 6, we show the excess current calculated using
equation (47), and it is essentially identical to the non-
relativistic result. Relativity seems to have no effect on this
quantity. Although the integrand differs for different values
of the speed of light (especially B(E) as exemplified in
figure 3(b)), the integral is independent of it.

4. Conclusions

The original BTK paper [13] derived and interpreted a simple
model of a normal metal/superconductor junction that was
able to explain several experimental observations, including
characteristic I –V curves for junctions with an arbitrary
barrier strength, excess currents, current conversion and charge
imbalance. We have derived a relativistic generalization of
the BTK theory of transport through normal/superconducting
contacts. This has been shown to reduce to the non-relativistic
theory correctly as c → ∞. We have observed that if we
make the same approximations as the BTK theory there are
rigorously no relativistic effects. However, we have been
able to use this formalism to gain further insight into the
scattering by demonstrating that the Z 2 term in the definition
of γ arises from the fact that normal reflection is allowed. If
the BTK approximations are not made, relativistic effects are
found to be very small in systems with realistic values of the
parameters. As we have shown, this tells us that the relativistic
theory describes all the physics that the non-relativistic theory
describes. With artificial values of the parameters we have been
able to show that the effect of relativity is to make the effective
barrier strength greater and hence to enhance the scattering. We
reaffirm the statement made in the introduction that the main
results of interest in this work are the formalism itself and the
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insight gained into the effect of relativity on junctions rather
than any deeper interpretation of experiment.

Appendix A. Conservation laws

Here we consider the equation of continuity obeyed by the
solutions of the Bogoliubov–de Gennes equations. Using
standard methods [25], we can derive an equation of the form

∂ρ(z, t)

∂ t
= − d

dz
j (z, t). (48)

where the probability density and current are given by

ρ(z, t) = |u(z, t)|2 + |v(z, t)|2 (49)

j (z, t) = u†(z, t)cαzu(z, t)+ v†(z, t)cαzv(z, t) (50)

where the dagger represents the hermitian conjugate matrix.
Interestingly, the current has a positive sign in it while
the non-relativistic theory has a negative sign. One would
expect the hole current to be in the opposite direction to the
electron current, so this looks incorrect. However, the αz

matrix contains negatives and combines with the signs in the
eigenfunctions to always yield the hole current in the opposite
direction to the electron current in the superconductor.

We can also derive a conservation law for quasiparticle
charge. An electron has a charge +e and a hole has a charge
−e and so the quasiparticle charge density is

Q = e(|u(z, t)|2 − |v(z, t)|2). (51)

With this definition it is straightforward to derive the
conservation law of the form

∂Q

∂ t
= −∇ JQ(z, t)− ∇ JS(z, t). (52)

The first term here is written in terms of the quasiparticle
current

JQ(z, t) = ecRe
(
u†(z, t)αzu(z, t)− v†(z, t)αzv(z, t)

)
.

(53)
The second term on the right here is a source/sink term that
represents the supercurrent.

JS(z, t) = 4e�

h̄

∫
Im(u†(z, t)ηv(z, t)) dz. (54)

Appendix B. A simple model

In this appendix we examine the simplest model possible that
may capture the quasiparticle current being converted into
the condensate current. This model was also examined non-
relativistically by Blonder et al [13]. We consider the case
H = 0 where there is no barrier between the normal metal
and the superconductor. We will also look at the case when
E < �. In this case b = d = 0. We will look at the case of
an incident spin up particle, and we also know from earlier that
e = f = 0 in this case. Furthermore, a and c simplify to

a = iv2

u1
c = 1

u1
. (55)

Now, on the normal side of the barrier there is no reflected wave
and aa∗ = 1 so the electron is entirely Andreev reflected, so
the wavefunction is

ψn(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0

ch̄k
W+mc2

0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

eip+
z z/h̄ + a

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
i
0

icpz

W+mc2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

eip−
z z/h̄ (56)

and on the superconducting side it is

ψ(r, t) = c

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1

0
cpz

W+mc2 u1

0
0
v2

0
cpz

W+mc2 v2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e(ip+
z z−Et)/h̄ . (57)

Now we have a steady state with a current passing through it.
The current can be calculated anywhere and so is independent
of z and t . Let us start by evaluating it on the normal side of
the interface. Using equation (56) in (53) we find

JQ = 4ec2 pz

W + mc2
. (58)

This can be checked by taking the non-relativistic limit and
comparing with Blonder et al [13], and in perfect agreement
with them we find

lim
c→∞

4ec2 pz

W + mc2
= 2evF (59)

if pz is taken to be the Fermi momentum. vF is the Fermi
velocity. Next we evaluate JQ within the superconductor using
the wavefunction (57). We need to know p+ and this is given
by equation (19). Approximating

h̄2k+2

2m
= W − mc2 (60)

and remembering that we are considering the case when E <

� we get

k+ = kF + 1

h̄vF
(E2 −�2)1/2 = kF + iξ

h̄vF
(61)

where

ξ = (�2 − E2)1/2 (62)

k+ is imaginary and so the wavefunction decreases exponen-
tially. This is to be expected; it is clear from (15) that there is
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no wavelike solution in this energy regime. The wavefunction
becomes

ψ(r, t) = c

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1

0
cpz

W+mc2 u1

0
0
v2

0
cpz

W+mc2 v2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ei(kF+iξ/h̄vF)z (63)

and calculating JQ using equation (53) we find

JQ = 2ec2 pz

W + mc2

( |u1|2 + |v2|2
|U1|2

)
exp

(−2ξz

h̄vF

)
. (64)

When E < � |u1|2 = |v2|2 and so

JQ = 4ec2 pz

W + mc2
exp

(−2ξz

h̄vF

)
. (65)

Clearly at z = 0 this is identical to equation (58) but as
we get deeper into the superconductor the current decreases
exponentially. This has to be taken care of via the source/sink
term in (52). We now evaluate this directly using equation (63)
in the source term.

It is easy to show that

u†(z, t)ηv(z, t) = v2

u1

2W

W + mc2
exp

(
−2ξz

h̄vF

)
(66)

and a little further algebra shows that

Js(z) = 4epzc2

W + mc2

(
1 − exp

(
−2ξz

h̄vF

))
. (67)

Clearly, adding this to (65) we get back equation (58) as we
must. This term represents the supercurrent, which increases
to its asymptotic value as z → ∞.
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