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ABSTRACT

Enhanced Computerized Surgical Planning System in Craniomaxillofacial Surgery.

(May 2011)

Yu-Bing Chang, B.S., National Cheng Kung University;

M.S., National Taiwan University

Chair of Advisory Committee: Dr. Zixiang Xiong

In the field of craniomaxillofacial (CMF) surgery, surgical planning is an impor-

tant and necessary procedure due to the complex nature of the craniofacial skeleton.

Computed tomography (CT) has brought about a revolution in virtual diagnosis,

surgical planning and simulation, and evaluation of treatment outcomes. It provides

high-quality 3D images and models of skull for computer-aided surgical planning sys-

tem (CSPS).

During the planning process, one of the essential steps is to reestablish the den-

tal occlusion. In the first project, a new approach is presented to automatically and

efficiently reestablish dental occlusion. It includes two steps. The first step is to

initially position the models based on dental curves and a point matching technique.

The second step is to reposition the models to the final desired occlusion based on

iterative surface-based minimum distance mapping with collision constraints. With

linearization of rotation matrix, the alignment is modeled by solving quadratic pro-

gramming. The simulation was completed on 12 sets of digital dental models. Two

sets of dental models were partially edentulous, and another two sets have first pre-

molar extractions for orthodontic treatment. Two validation methods were applied

to the articulated models. The results show that using the proposed method, the

dental models can be successfully articulated with a small degree of deviations from

the occlusion achieved with the gold-standard method.
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Low contrast resolution in CBCT image has become its major limitation in build-

ing skull model. Intensive hand-segmentation is required to reconstruct the skull

model. Thin bone images are particularly affected by this limitation. In the second

project, a novel segmentation approach is presented based on wavelet active shape

model (WASM) for a particular interest in the outer surface of the anterior wall of

maxilla. 19 CBCT datasets are used to conduct two experiments. This model-based

segmentation approach is validated and compared with three different segmentation

approaches. The results show that the performance of this model-based segmentation

approach is better than those of the other approaches. It can achieve 0.25 ± 0.2mm

of surface error distance from the ground truth of the bone surface.

Field of view (FOV) can be reduced in order to reduce unnecessary radiation

dose in CBCT. This ROI imaging is common in most of the dentomaxillofacial imag-

ing and orthodontic practices. However, a truncation effect is created due to the

truncation of projection images and becomes one of the limitation in CBCT. In the

third project, a method for small region of interest (ROI) imaging and reconstruction

of the image of ROI in CBCT and two experiments for measurement of dosage are

presented. The first experiment shows at least 60% and 70% of radiation dose can

be reduced. It also demonstrates that the image quality was still acceptable with

little variation of gray by using the traditional truncation correction approach for

ROI imaging. The second experiment demonstrates that the images reconstructed

by CBCT reconstruction algorithms without truncation correction can be degraded

to unacceptable image quality.
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CHAPTER I

INTRODUCTION TO COMPUTERIZED SURGICAL PLANNING SYSTEM

(CSPS) IN CRANIOMAXILLOFACIAL (CMF) SURGERY

The field of craniomaxillofacial (CMF) surgery involves the correction of congenital

and acquired deformities of the skull and face. It includes dentofacial deformities,

congenital deformities, combat injuries, post-traumatic defects, defects after tumor

ablation, and deformities of the temporomandibular joint (TMJ). Due to the com-

plex nature of the craniofacial skeleton, the surgical correction of CMF deformities is

among the most challenging. These types of surgeries usually require extensive surgi-

cal planning. The success of these surgeries depends not only on the technical aspects

of the operation, but to a larger extent on the formulation of a precise surgical plan.

During the past 50 years, there have been significant improvements in the technical

aspects of surgery (e.g., rigid fixation, resorbable materials, distraction osteogenesis,

minimally invasive approaches, etc). However, the planning methods remain mostly

unchanged [1–4]. At present, in CMF surgery, it is clear that many unwanted surgical

outcomes are the result of deficient planning.

The advent of computed tomography (CT) and its 3D reconstruction have brought

about a revolution in diagnostic radiology since cross-sectional imaging becames avail-

able [5–7]. 3D rendered visualization provides a surgeon with readily recognizable im-

ages of complex anatomic structures. It can exactly record and represent the life-size

and the shape of soft tissure and bone for precise surgical planning and simulation.

In conjunction with appropriate computer software and hardware, computer-aided

surgical simulation (CASS) has been developed and has created a number of options

The journal model is IEEE Transactions on Medical Imaging.
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Data gathering

Cephalometric analysis and
quantification of the deformity

Establishment of a 
preliminary surgical plan

Validation and refinement of
the surgical plan by surgical 

simulation

Establishment of the 
final surgical plan

Transfer of the
surgical plan to the patient

Fig. 1. The flowchart of surgical planning in CMF surgery

for CMF surgeries [3], [8–12].

In the following, the traditional surgical planning and its current bottlenecks

in CMF surgeries will be first described in Section A. Next, a recently developed

computerized surgical planning system (CSPS) for CMF surgery will be introduced

in Section B. Although CSPS has solved most of the problems in the traditional

surgical planning and has reduced surgical planning time, it still has drawbacks and

creates new challenges. In Section C, three major existing drawbacks of CSPS will

be briefly addressed. The proposed approaches to overcoming these drawbacks will

be comprehensively described in Chapter II, III, and IV.
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A. Traditional Surgical Planning in CMF Surgery

The general procedure of traditional surgical planning in CMF surgeries is summa-

rized in Fig. 1. The first step in planning is data gathering. Currently, data is gath-

ered from multiple sources. The sources include the physical examination, medical

photographs, plain x-rays (cephalogram and orthopantomogram), computed tomog-

raphy (CT) and mounted plaster dental models. Each of these sources provides a

portion of the whole data set that is needed for successful planning.

The next step is the cephalometric analysis1 and quantification of the deformity.

It provides diagnostic information for quantifying the deformities and changes dur-

ing the treatment. The current standard is the 2D cephalometry using conventional

radiography such as x-ray film. Until now, surgeons have accomplished this by uti-

lizing a series of incomplete and unmatched data sets in a sequential manner. As an

example, they first examine the patient in the natural head position (NHP)2, they

then perform a cephalometric analysis with the cephalogram oriented to the Frankfort

Horizontal plane, they then visualize the bony and soft tissue anatomy on a CT that

has been obtained in the supine position, and finally, they evaluate the occlusion on

plaster dental modes that have been mounted to the Axis-Orbital plane. Therefore,

at no time during the process, the surgeon is able to see to whole picture. Moreover,

the use of different coordinate systems for each data set biases their observations.

These problems frequently result in a flawed analysis and a flawed surgical plan.

The next step in the planning is the formulation of a preliminary surgical plan.

This plan is then validated and refined during surgical simulation. The surgical sim-

ulation methods currently in use are very limited. In orthognathic surgery, surgeons

1Cephalometric analysis is the measurement of size, and relationships of the jaws,
teeth, and cranium in the human head.

2Natural head position is the orientation of the head when a patient is standing
or sitting, and his visual axis is horizontal.
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simulate outcomes by performing prediction tracings and dental model surgery. Pre-

diction tracing is done by tracing the silhouette of the facial bones from a cephalogram

into a piece of acetate. These tracings are then cut and moved to evaluate possible

outcomes. An obvious limitation of this technique is that it is 2D thus it is impossible

to simulate 3D complex surgeries like facial asymmetries. Dental models surgery is

done to establish the occlusion. A real limitation of dental model surgery is that

the dental models do not depict the surrounding bones. Therefore, the surgeon is

unable to visualize the effects of surgery on the facial skeleton, a really important

issue. For other types of surgery (e.g. trauma, pathology and reconstruction) the

current standard in surgical simulation is even more limited. Most of the time, these

types of surgeries are not simulated, although skeletal surgery can be simulated on

CT based physical models that are manufactured by different rapid prototyping tech-

niques (e.g., stereolithography). Drawbacks of this method are cost and the inability

to simulate different iterations of a given plan on a single model (once the model is

cut, the cut cannot be undone).

Once the final surgical plan has been formulated, it needs to be transferred to

the patient at the time of surgery. In cases involving the jaws, this is done by using

dental splints. These splints help the surgeon place the jaws in the desired position.

Currently, most surgeons make their own splints by hand, a process that is time con-

suming. Moreover, in cases that do not involve dentition, surgeons currently do not

have an accurate method of transferring the plan to the operating room. Certain

measurements taken during the planning process can be used to guide surgery but

most commonly, the placement of the bones in the desire position is more an art

than a science. There are reports on the use of navigation for this purpose, but this

technique has not been universally adopted.
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Composite skull model

Natural head position in composite 
skull model

Computer-aided surgical 
simulation

Transfer digital plan to 
patient

Fig. 2. The flowchart of CSPS

B. Computerized Surgical Planning System (CSPS) in CMF

Because of the problems mentioned in Section A, it is evident that the current methods

used to plan CMF surgery are often inadequate. In addition, it is also known that

in many cases these methods produce unwanted outcomes. Moreover, the whole

planning process is time consuming. An experienced surgeon frequently spends 4-6

hours to complete the surgical plan and to fabricate the splints. Finally, the cost of

planning a complex case, both in time and in resources can be fairly high. The need

to improve the current surgical planning methods has led surgeons to develop a 3D

CSPS. Fig. 2 shows the flowchart of the currently developed procedure of CSPS. It

will be addressed in the following subsections.

1. Composite Skull Model

The first step of CSPS is the creation of a skull model. The purpose of this step is

to merge all the patient’s information, including 3D CT scans, digital dental models

and reference planes into computer. To acquire a 3D skull image, the patient is first



6

scanned by CT. The 3D volumetric image is then reconstructed by CT reconstruction

algorithm such as filter-backprojection algorithm [13]. The image intensity in each

pixel is represented in terms of standard CT Hounsfield Unit (HU). Ideally, HU is a

linear transformation of the linear attenuation coefficient and a normalized unit to

represent different densities in scanned objects. Generally, the range of hard tissue

in HU is above 250 HU. The skull image can be segmented by choosing a threshold

near this value. This segmentation method is called threshold segmentation and

has been widely used because of its simple calculation to quickly obtain the image.

Since CT images can precisely display HU values of scanned objects, the threshold

segmentation is applicable in CT images. After the skull images are segmented and

labelled as bone images, the surface of the skull images can be calculated by Marching

Cube Algorithm (MCA) [14] to obtain 3D mesh datasets. The polygonal meshes are

mainly used for visualization and 3D modeling. Fig. 3 shows an axial slice of CT

skull image and visualization of mesh dataset.

Although CT imaging is excellent for generating bone models, the CT does not

accurately render the surfaces of teeth. Furthermore, orthodontic metal brackets and

dental restorations may lead to severe streak artifacts and affect several slices which

contain images of teeth in reconstructed 3D images. This is because when photons

of x-rays pass through the metallic dental restorations, insufficient photons reach the

detector. Fig. 3(b) illustrates the streak artifacts in the reconstructed skull model

due to dental restoration. For this reason, it is still infeasible to utilize the imper-

fect 3D images of dental models for visualization and perform digitally reestablishing

occlusion during surgical simulation. Therefore, it is necessary to develop a skull

model incorporated with high quality of dental models. Gateno et al. [15] developed

a computerized composite skull model which is created by incorporating the digital

dental models into a 3D CT bone model of the skull model. The high-resolution dig-
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(a) (b)

Fig. 3. (a) An axial slice of CT image. (b) Mesh dataset used for 3D visualization and

modeling.

ital dental models were obtained by scanning the dental impressions using a 3D laser

scanner. Swennen et al. [16] , [17] developed a procedure for creating an augmented

virtual skull model with a detailed dental volume model acquired by a high-resolution

cone-beam computed tomography (CBCT) scan of dental impressions. Those comput-

erized composite skull models provide an artifact-free and accurate dentition feasible

for CSPS. Fig. 4 (See [18]) illustrates the general procedure of creation of composite

skull model.

2. Natural Head Position in Composite Skull Model

Establishing NHP is a vital step to provide a reference plane for cephalometric analysis

and surgical planning. In CSPS, conventional radiography will be no longer required.

Instead, A 2D cephalogram can be emulated by ray-casting a 3D CT image. The
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Fig. 4. Composite skull model developed by Xia et al.. (a) The bite jig and facebow

with dental impression and fiducial markers (b) The patient bitting on the bite

jig and facebow during CT scan (c) The CT image of midface, mandible, and

fiducial marks (d) The plaster dental models are made from dental impression.

The upper and lower models and the fiducial markers are scanned by a laster

scanner separately. Their positional relationship is still kept. (e) The scanned

dental models and the fiducial markers. (f) By registering fiducial markers, the

high quality dental models are incorporated into the skull model.

algorithm calculates the projection of a 3D CT volumetric image as if a radiograph

was acquired. Fig. 5 (See [18]) shows an example of the 2D cephalogram obtained

by projecting the voxels of a 3D CT model into the sagittal plane. During CT scan,

the patient is in supine position, making it difficult to record NHP. Therefore, it is

necessary to orient the composite skull model to NHP in the computer. Generally,

NHP in the composite skull model can be defined by using standard cephalomet-

ric landmarks and intracranial planes [19]. However, because most of the patients

with CMF deformities have significant asymmetries of the upper face and skull base,

standard cephalometric landmarks and intracranial planes cannot be used to provide

a proper reference coordinate for digitally establishing NHP of the composite skull

model. It will be necessary to rely on an extracranial reference. One of the techniques

to establishing NHP for composite skull model can be referred to Xia et al. [18] and

shown in Fig. 6 (See [18]).
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Fig. 5. Cephalogram emulated using ray casting algorithm by projecting CT voxels

onto the sagittal plane.

3. Computer-aided Surgical Simulation (CASS)

After the composite skull model is created and the NHP is copied to the composite

skull model, the surgical simulation will be performed in the computer. The surgeon

will simulate any type osteotomy such Le FortI, sagittal split, maxillary and mandibu-

lar distraction. The bones can be osteotomized, moved, rotated digitally. One of the

advantages of CASS is that the surgeon can perform several surgical simulations to

compare the outcomes. It cannot be achieved when a physical skull model is used

for surgical planning. Fig. 7 illustrates the composite skull model before and after

CASS. In most of the clinical pratices, the upper and lower teeth have to be occluded

to achieve maximal intercuspation (MI) during performing surgical simulations. How-

ever, in the virtual world, it is difficult to align the lower jaw so that the upper and

lower teeth are perfectly occluded. It is almost impossible to be certain that what

is seen in the computer truly represents the best possible outcomes. Furthermore,

collision detection algorithm will be required to avoid penetration of two images.
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Fig. 6. Orientation of composite skull model to NHP. (a) Digital gyroscope attached

to bite jig and facebow (b) Pitch, roll, and yaw of gyroscope recorded (c) Us-

ing a computer, digital replica (computer-aided design model) of gyroscope is

registered to composite skull model (using fiducial markers) and the 2 objects

are attached to each other. (d) Recorded pitch, roll, and yaw applied to cen-

ter of gyroscope replica, reorienting composite skull model to NHP. (e) After

composite skull is oriented to NHP, gyroscope replica is marked hidden.

4. Transfer Digital Plan to Patient

After the surgical simulation is completed, the outcomes will be transferred to the

patient at surgical. Surgical dental splints and surgical templates can be created

according to the outcome of the surgical simulation. Surgical dental splints are used

to reposition dentate bony segments, and surgical templates are used to reposition

nondentate ones. In procedures that involve the teeth, the surgical dental splints

are created by inserting a digital wafer between the maxillary and mandibular dental

arches. A Boolean operation is then performed, resulting in a digital surgical splint

[Fig. 8(a)3]. In procedures that do not involve the teeth, the surgical template is

created to record the 3D surface geometry of the area of interest to fit the bony

segment (eg, chin segment) onto the recipient bone (eg, mandibular distal segment)

in a unique position [Fig. 8(b)]. Finally, the system exports the digital splints and

3Fig. 8 can be found in [18]
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Fig. 7. Illustration of computer-aid surgical simulation. (a) and (b) are the composite

skull model before performing surgical simulation. (c) and (d) illustrate the

surgical simulation in the computer by succesively osteotomizing, moving, and

rotating bone segments.

templates in .stl format. They are then fabricated using a rapid prototyping machine

and used at surgery [Fig. 8(c)-(f)].

C. The Organization of the Dissertation

Although the CSPS has eliminated most of the problems associated with traditional

planning methods, there are still challenging problems in order to improve the effi-

ciency and feasibility of the CSPS. In the following chapters, three research projects

regarding solving these problems are addressed and investigated.

The first project is the reestablishment of digital dental occlusion and will be

described in Chapter II. The reestablishment of dental occlusion is an essential step

during CASS. However, this step is still based on traditional approaches. Surgeons

still rely on the plaster dental models or manually perform 3D digital dental occlusion
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Fig. 8. Surgical dental splints and templates created using our computer-aided design-

ing/computer-aided manufacturing technique. (a) Digital surgical splint. (b)

Digital chin template. (b) Physical surgical splint. (d) Physical chin template.

(e) Use of physical surgical splint at surgery. (f) Use of physical chin template

at surgery.

in the computer. These current methods to digital establishing dental occlusion are

inefficient and infeasible. A new robust and automatic algorithm for digital dental

occlusion is proposed. This algorithm is designed to help surgeons achieve the MI

efficiently and accurately during surgical simulation in the computer.

The second project is the segmentation in CBCT skull image and will be de-

scribed in Chapter III. Currently, since the radiation dose in CT can be up to

hundreds of times more than in CBCT, many studies have been discussing the possi-

bility of replacing CT with CBCT in the field of medical imaging. It is still an open

topic in the field of CSPS for CMF surgery when the skull model is built using CBCT

instead of CT. However, building a CBCT skull model is a difficult task due to the

degraded image quality in CBCT. In Chapter III, a model-based segmentation for

CBCT image will be proposed. An particular interest in anterior maxilla of the skull
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model will be segmented by this segmentation approach. Its feasibility for CSPS will

be investigated.

The third project is the technique for ROI imaging in CBCT and will be pre-

sented in Chapter IV. ROI imaging becomes popular recently due to its flexibility

to a target in a patient subject. It can also reduce radiation dosage. Most of the

CBCT apparatuses for the dentomaxillofacial imaging and orthodontic practices have

smaller field of view (FOV) than CT since the focus for imaging is mained on facial

bones and teeth. Therefore, trunction effect becomes one of the limitations in CBCT.

In Chapter IV, a study regarding designing a method for ROI imaging and radiation

measurement during ROI imaging will be presented. From the results, the trunction

effect can be observed. This study can help understand how this effect reduces the

image quality for building a skull model in CBCT imaging. Furthermore, this study

provides experiments to show the amount of radiation dose in ROI imaging can be

reduced.
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CHAPTER II

REESTABLISHMENT OF DIGITAL DENTAL OCCLUSION∗

A. Introduction to Digital Dental Occlusion

The computer-aided surgical simulation (CASS) for craniomaxillofacial (CMF) surgery

system has eliminated most of the problems associated with traditional planning

methods. However, it has created a new problem because the reestablishment of the

dental occlusion (i.e., maximum intercuspation (MI) position) has become more dif-

ficult and time consuming than before. Without CASS, surgeons use stone dental

models to reestablish the occlusion. The physical action of aligning upper and lower

dental models into MI is quick and accurate [20]. The position of MI between the

dental arches can be achieved by first aligning the cusps1 and grooves2 of the plaster

onto their ideal relationship while the models are still apart from each other, then by

moving the plaster dental models towards each other until they collide, and finally by

oscillating the models until the occlusion is completely seated. The visual and tactile

feedback together with the cognitive insight makes dental articulation very simple.

An experienced operator can complete this task in a matter of seconds.

The same is not true in the virtual world, where the dental arches are represented

by two 3D images that lack collision constraints, i.e., the computer system does not

stop the images from moving through each other once the model surfaces have made

contact. In addition, the operator has no tactile feedback when articulating the digi-

tal dental models. Virtual articulation of an arch of 14 upper teeth (third molars are

∗ c©2010 IEEE Reprinted, with permission, from ”An automatic and robust algo-
rithm of re-establishment of digital dental occlusion” by Y. B. Chang, J. J. Xia, J.
Gateno, Z. Xiong, X. Zhou, S. T. C. Wong, Sep. 2010, IEEE Transactions on Medical
Imaging, 29(9):1652-1663.

1The small elevations on the grinding or chewing surface of a tooth.
2The valleys on the chewing surface of premolars and molars.
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usually not present) against 14 lower teeth into their best possible intercuspation3 is

a complex task. Ideally, the 14 buccal4 cusps and 4 incisal edges5 of the mandibular

teeth will make maximal contact against the corresponding fossae,6 marginal ridges,7

and lingual surfaces8 of the maxillary teeth at MI position. At the same time, the

palatal9 cusps of the maxillary teeth also need to make contact against the fossae and

marginal ridges of the lower teeth [21], [22]. Moreover, the dental midlines10 should

be coincidental, and the transverse relationship between the teeth should be appro-

priate. Finally, all of this needs to be accomplished without creating unwanted areas

of overlap. Because of these difficulties, it usually takes close to an hour to achieve

the ”visually best possible” intercuspation in the computer. More importantly, it

is almost impossible to be certain that what is seen in the computer represents the

true best possible alignment. For this reason, one has not been able to rely on com-

puterized dental alignment to treat real patients, because even a small deviation in

occlusion can cause significant clinical problems. To date, one has been forced to

first establish the final occlusion on physical models, scan them while in MI and then

transfer this registration into CASS software. If an accurate method to automatically

reestablish MI on the computer can be developed, it will result in substantial reduc-

tions in planning time and cost.

3The cusp-to-fossae relationship of the upper and lower posterior teeth with max-
imum contacting areas.

4The outer side of teeth toward the cheek.
5The cutting edges of an incisor or canine tooth.
6The valleys on the chewing surface of premolars and molars.
7An elevation of enamel that forms the proximal boundary of the occlusal surface

of a tooth.
8The inner side of teeth toward the tongue (as opposed to ”buccal”).
9The inner side of the maxillary teeth towards the palate (as opposed to ”buccal”).

10The imaginary line that passes between central incisors and divides the dental
model.
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During digital dental articulation, collision detection/avoidance plays an essen-

tial role in solving this problem. Each manual movement in digital dental models

is followed by one execution of collision detection which is a slow process used for

feedback. Because of irregular surfaces of teeth, it is challenging to estimate the next

movement for achieving best MI without collision. Therefore, this conventional trial-

and-error alignment in the virtual world with aid of visualizing and detecting areas

of collision is not practical as that in the physical world.

In this project, a solution is developed to this computerized automatic dental

articulation. Fig. 9 shows the flow diagram of the approach. In Section B, the acqui-

sition of digital dental data, the data format, and the preprocessing of the datasets

will be described. In Section C, an approach of dental alignment for initially artic-

ulating the models will be addressed. A new method of searching for feature points

on cusps, incisal edges, central grooves, and fossae will be developed based on the

criteria of dental occlusion in Section C.1. By using those feature points, the dental

models will be aligned to an initial and approximate occlusion using point matching

algorithm in Section C.2. In Section D, an iterative surface-based minimum distance

mapping (ISMDM) approach with occlusion constraints to complete the final align-

ment will be described. In Section F, the methods using 12 sets of the dental models

in this project will be validated. Finally, the approach in this project will be discussed

and compare it with other studies in Section G.

The notation used in this paper is described as follows. Bold symbols A and

a are represented as a matrix and a column vector, respectively. aT defines matrix

transpose of a. ‖a‖ ≡
√
aTa is the Euclidean norm of a column vector a. A point

a by a column vector of 3-tuple (x, y, z)T in a Cartesian coordinate system can be

represented as (ax, ay, az)
T . The identity matrix denotes I.
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Disarticulation of 
maxillary and 

mandibular models

Creation of digital 
dental models at MI 

(Section B)

Validation
(Section E)

Identification of 
feature points 
(Section C.1)

Initial alignment using 
point match algorithm 

(Section C.2)

Iterative surface-based 
minimum distance 
mapping (ISMDM) 

(Section D)

Fig. 9. The overview of the procedure for digital dental occlusion.

B. Data Acquisition and Preprocessing

A set of stone dental models were fabricated from the original dental impressions

of the patient. An experienced CMF surgeon (J. J. X.) hand-articulated the dental

models to the MI position. The models were then mounted on a specially designed

mounting jig to keep the maxillary and mandibular models in their MI relationship.

The surfaces of the models were then scanned using a 3D laser surface scanner with an

accuracy of 0.1mm by a commercially available service (GeoDigm Corp, Chanhassen,

MN), resulted in a set of digital dental models that were the exact replica of their

physical form at MI relationship. The dataset was saved in stereolithography (.STL)

format. This scanned set of the digital dental models served as a gold standard of

the occlusion at MI position in this project.

The digital dental models are closed mesh surfaces consisting of facets and ver-

tices. The models are characterized by that each vertex is shared by its known

neighboring facets, and each facet has a known normal vector going outwards from
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the closed surface (toward Gouraud or Phong shading). Fig. 10(a) shows an example

of a triangulated mesh surface. Although the penetration does not exist on the plas-

ter models, the upper and lower digital dental models penetrate each other with a

range of 0.08-0.35mm at the areas where the upper teeth and the lower teeth touched

[Fig. 10 (b)]. This is because the surface of the model is triangulated and slightly

expanded outwards.

Dental occlusion only involved the occlusal surfaces between the upper and lower

teeth. Therefore, it is necessary to segment the occlusal surfaces of the teeth and dis-

card the gums. Several approaches of teeth segmentation had already been developed

to segment the entire teeth from the gums [23], [24]. However, nearly all of the pa-

tients were under orthodontic treatment prior to their orthognathic surgery. The

braces and orthodontic wires were located in the middle of the buccal surfaces of

the teeth. Therefore, these published methods were not applicable in this patient

population. therefore, the occlusal surfaces using a commercially available software

(Magics RP, Materialise, Belgium) was manually segmented.

C. Initial Alignment

The main purpose of initial alignment is to obtain approximate dental occlusion be-

fore two dental models are finally articulated to an accurate and collision-free position

and orientation. When the two dental models are initially located at an arbitrary ori-

entation and position in a Cartesian coordinate system, it is necessary to estimate a

transformation to bring them relatively close to each other. Two pairs of correspond-

ing curves can be extracted from the maxillary and mandibular dental models. The

two curves in each pair should be matched. In the first pair, the buccal cusps of the

mandibular arch correspond to the central groove of the maxillary arch, while in the

second pair, the palatal cusps of the maxillary arch correspond to the central groove
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Fig. 10. The digital dental model scanned by laser scanner. (a) The surface of the

digital dental model is triangulated with the enlarged view of a cusp of the

molar. (b) The buccolingual cross-sectional view of upper and lower teeth

obtained from the gold standard. The models penetrate each other at the

contact areas due to the process of triangulation.

of the mandibular arch. Throughout this project, the first pair (Fig. 11) is used to

perform initial alignment of the models. The curve of maxillary teeth [Fig. 11(a)] is

extracted from maxillary fossae including the pits on incisal palatal surfaces and the

central grooves of premolars and molars. The curve of mandibular teeth [Fig. 11(b)]

is extracted from the incisal edges, and the buccal cusps of the premolars and molars.

Ideally, the two curves should be superimposed in the MI. Those dental curves can be

viewed as 3D continuous curves (not necessarily fitting polynomial curves) along the

dental arches. Based on those assumptions above, an automatic approach for initially

positioning the models has been developed. In the first step, feature points on the

cusps, incisal edges, central grooves, pits, and fossae are identified to approximately

represent the dental curves along the arches instead of finding the continuous dental
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Fig. 11. Illustration of dental curves for (a) the maxillary dental model and (b) the

mandibular dental model.

curves. In the second step, the dental curves of the maxillary and mandibular arches

are superimposed using a point matching algorithm to complete the initial alignment.

1. Identification of Feature Points on Maxillary and Mandibular Occlusal Surfaces

The occlusal plane (x-O-y plane) of the dental model is determined by identifying

distobuccal11 cusps of the first molar and the incisal edge of a central incisor12 [Fig.

12(a)]. A more sophisticated generation of occlusal surface can be found in [25]. A

range image (the heights of the digital model in the z-coordinate) is then calculated

[Fig. 12(b)]. Based on the range image and the two-step curve fitting approach in [23],

2D dental fitting curves in the maxillary and mandibular arches are computed. These

2D fitting curves are fourth-order polynomials on the occlusal plane and fit buccal

cusps and incisal edges in least square [Fig. 12(b)]. Of the note the fitting curves

are 2D fitting polynomials, which are different from the dental curves defined as 3D

continuous curves above in the maxillary and mandibular models. In the first step

of the initial alignment algorithm, the feature points of dental models are calculated

11In dentistry, ”Distal” is ”situated farthest from the middle and front of the jaw”.
12One of the two teeth located closest to the sagittal plane in the upper and lower

jaws.
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Fig. 12. The occlusal plane and range image of a dental model. (a) A and B are

the points on distobuccal cusps, and C is on the cutting edge of the incisors.

D and E are the points on the interstices between the canines and the first

premolars. Points A, B, and C define an occlusal plane of the model (the

x-O-y plane). (b) The range image and the 2D dental fitting curve calculated

on the x-O-y plane.

based on 2D fitting curves. In addition, one selects two points around the interstices13

between the first premolars and canines for identifying the anterior and posterior teeth

[Fig. 12(a)]. The details of feature point selection are described as follows.

The 2D fitting curves are equally sampled to obtain equal-spaced points with

an interval of 1.5mm. Along the dental arches, cross-sections (in the buccolingual

direction) which pass the sample points and perpendicular to the 2D fitting curve are

calculated. The intersections of the cross-sections and the 3D surface of dental models

are calculated. Fig. 13(a) illustrates the intersections (cross-sectional dashed curves)

of the cross-sections and dental surfaces. For simplicity, the set of intersectional

points at one buccolingual cross-section denotes {si}, their corresponding heights

are {hi} in the z-coordinate, and the projections of {si} onto the occlusal plane are

13A space or gap between two neighboring teeth.
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Fig. 13. Illustration of cross-sectional dental model and the extracted feature points.

(a) Illustration of intersections (dashed line) of cross-sections and dental sur-

faces. The occlusal plane is defined by x-O-y plane. (b) The cross-sectional

view (PQ) of the intersection. {s̃i} is the projections of {si} onto the 1D

coordinate of PQ, and {hi} is the corresponding height. s̃b and s̃l are the

most buccal and lingual values of {s̃i}. (c) Feature points acquired based on

cusps and incisal edges of the mandibular model.(d) Feature points acquired

based on central grooves, valleys, and pits of the maxillary model.
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assumed to be s̃i. The projections s̃i are located on a 1D coordinate which is the

intersection of the buccolingual cross-section and occlusal plane. Fig. 13(b) illustrates

the intersectional points and the projections in the cross-section PQ. Assume {s̃b}

and {s̃l} are the most buccal and lingual values of {s̃i}, and s̃l < s̃b. Define the set

S(s̃′l, s̃
′
b) ≡ {i : s̃l ≤ s̃′l < s̃i < s̃′b ≤ s̃b}, and s̃λ ≡ (1 − λ)s̃l + λs̃b, 0 ≤ λ ≤ 1.

The discussion will be made on how to choose the feature points on the anterior and

posterior teeth in the mandibular and maxillary models, and each feature point will be

selected in each set of intersectional points {si}. For partial edentulous dentition, it is

impossible to calculate the feature points in the missing teeth, i.e., {si} is an empty

set. The missing feature points can be obtained by interpolating the neighboring

feature points.

a. Feature Points in the Mandibular Model

The feature points on the posterior teeth are the peaks on the buccal cusps, and each

of them can be identified by

î = arg max
i∈S(s̃λ,s̃b)

hi (2.1)

where one chooses λ = 0.6 to identify buccal peaks at the buccal side of teeth. The

feature points on the anterior teeth are the peaks of canines and incisors, and each

of them is determined by

î = arg max
i∈S(s̃l,s̃b)

hi. (2.2)

Fig. 13(c) shows the feature points calculated in a mandibular model.

b. Feature Points in the Maxillary Model

The feature points on the posterior teeth are the central grooves and valleys between

the buccal and lingual peaks. Let the ĵ = argmaxi∈S(s̃l,s̃λ) hi with λ = 0.4 be the

feature point on the lingual cusps. Each of feature points on the central groove can
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be calculated by

k̂ = arg min
i∈S(s̃ĵ ,s̃î)

hi (2.3)

where î is calculated in the maxillary model using the same rule as (2.1). The max-

illary anterior teeth, however, do not possess deep grooves and valleys. Instead, the

lingual side of incisors and canines is characteristic of visible convex surfaces and pits.

Since the bending rate on the lingual surface of anterior teeth is not large enough to

detect the pits, approximate feature points of anterior teeth are calculated as follows.

Let h̄ be the averaged height of all the feature points of posterior teeth calculated by

(2.3). One chooses the feature points which are the closet to the plane z = h̄:

k̂ = arg min
i∈S(s̃l,s̃î)

|hi − h̄| (2.4)

where î is calculated in the maxillary model using the same rule as (2.2), which

corresponds to peaks of anterior teeth. Finally, the feature points of anterior teeth

are shifted by lc in the lingual direction while their heights remain unchanged. lc is

2mm for the feature point at the midline and decreased linearly in both the distal

directions for the feature points of anterior teeth until lc is 0mm for the feature

points at Point D and E of Fig. 12(a) (the interstices between the canines and the

first premolars). Fig. 13(d) shows the feature points calculated in a maxillary model.

2. Point Matching Algorithm

Let {pi}N−1
i=0 and {qj}K−1

j=0 be sets of 3D feature points of the maxillary and mandibular

dental models. The two sets of points are then matched by applying a point matching

approach as if the dental curves fit together when dental models are in the MI.

The following point matching algorithm is based on graduated assignment combining

”softassign” method [26] and a weighted least squares optimization [27]. The initial

alignment becomes to find a transformation and a correspondence between the two
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sets of feature points {pi} and {qj} and minimize an energy function. One calculates

a rotation matrix R, a translation vector t, and correspondence [M]ij ≡ mij which

minimize
N−1∑
i=0

K−1∑
j=0

mij‖pi − t−Rqj‖2 − α

N−1∑
i=0

K−1∑
j=0

mij

subject to
N−1∑
i=0

mij ≤ 1, ∀j,
K−1∑
j=0

mij ≤ 1, ∀i,

mij ∈ {0, 1}, ∀i, j. (2.5)

α a threshold biasing the objective function and rejecting outliers. When ‖pi − t −

Rqj‖2 < α, mij = 1 is preferred to mij = 0 for minimization of the objective func-

tion if all other m’s are zero in the ith row and the jth column. Hence, the pair

pi and qj will not be treated as outliers with respect to each other. The gradu-

ated assignment algorithm determines the correspondence matrix M and solves the

transformation {R, t} in an iterative manner. After either correspondence matrix or

the transformation is obtained, it can be easily used to determine the other. Given

the correspondence matrix, minimization of the energy function in (2.5) becomes a

weighted least square optimization.

The most challenging problem of minimizing (2.5) is to find a good correspon-

dence matrix. To illustrate the method of point match, one consider only the equal-

ities in the constraints of (2.5) and a square correspondence matrix. The corre-

spondence matrix becomes a permutation matrix whose entries are either 0 or 1

and has only one 1 in each row and column. Assume constraints on the correspon-

dence matrix with positive integer numbers are relaxed to be positive continuous real

numbers. The correspondence matrix becomes a doubly stochastic matrix with all

positives continuous entries and rows and columns summing to one. Based on the

concept proven by Sinkhorn [28] that a doubly stochastic matrix can be obtained by
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iteratively performing alternate row and column normalizations of any square matrix

with all positive entries, the initial square matrix with all positive entries can be as-

signed as mij = exp [β(α− ‖pi − t−Rqj‖2)] where β > 0 is a control parameter. As

β → ∞ , the exponentiation makes the maximum entry maxj mij in a row be equal

to 1 and the other entries become 0 during the process of row normalizations. The

same is true to the columns. The doubly stochastic matrix obtained by Sinkhorn’s

iterative method will be approximately a permutation matrix if β is large enough.

Therefore, a deterministic annealing method can be applied by increasing β for the

sake of getting more chances of jumping out the local minima in the point matching

optimization. The inequality constraints have to be considered in order to discard

the outliers. By introducing positive slack variables mNj and miK , the inequalities in

(2.5) can be rewritten as

N∑
i=0

mij ≤ 1, 0 ≤ j ≤ K − 1

K∑
j=0

mij ≤ 1, 0 ≤ i ≤ N − 1. (2.6)

The correspondence matrix is unknown at the beginning of the point matching

algorithm and has to be estimated appropriately based on the criteria of dental occlu-

sion. Fig. 14(a) shows a proper situation when the point matching algorithm on these

feature points is performed. The set of feature points on the arch of the mandibular

model is about to match that of the maxillary model in the MI. The situations illus-

trated in Fig. 14(b) do not happen in real life. However, it may happen during the

computation because the dental curves are relatively flat and symmetric with respect

to the central incisal midline. The correspondence matrix is calculated only based

on the feature points and without considering the other characteristics of the whole

models. They should be prevented during the initial alignment. In order to prevent

the situation of Fig. 14(b), one takes the occlusal planes of the dental models into
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Fig. 14. Match of feature points. (a) The dental models are properly articulated when

the feature points are matched. (b) The articulation is falsely made, even

though the feature points of the models are matched. (c) The normal vector

of the occlusal plane in the maxillary dental model. (d) The normal vector of

the occlusal plane in the mandibular dental model.

account.

Let nu and nv be the unit normal vectors of occlusal planes (defined in Section

C.1) of the maxillary and mandibular models, shown in Fig. 14(c) and 14(d). The di-

rections of the normal vectors are from tooth root toward tip. When −1 < nT
unv ≤ 0,

the occlusal surfaces of the dental models tend to face each other. When 0 < nT
unv ≤

1, they exhibit a tendency toward the same direction. Once the rotation matrix R

and translation vector t are calculated during the iteration, it is more likely to have

the situation of Fig. 14(b) in the following executions of the iteration if nT
un

′
v > 0,

where n′
v = Rnv. Therefore, one execute the following step immediately after the

transformation {R, t} is calculated each time:

n′
v ← Rnv
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if nT
un

′
v > 0 then

−R← R

end if

Algorithm 1 Point matching algorithm for initial dental alignment

t← 0,R← I

for β = βini to βmax do

while ε0 < ε′0 or the number of executions < I0 do

mij ← exp [β(α− ‖pi − t−Rqj‖2)]

m̃ij ← mij ; (Initialization of m̃ij)

while ε1 < ε′1 or the number of executions < I1 do

m̃ij ← m̃ij
∑N

i=0 m̃ij
, ∀j; (Row normalization)

m̃ij ← m̃ij
∑K

j=0 m̃ij
, ∀i; (Column normalization)

end while

mij ← m̃ij

Calculate R and t using mij

n′
v ← Rnv

if nT
un

′
v > 0 then

−R← R

end if

end while

β ← βincrβ

end for

Finally, the algorithm is summarized in Algorithm 1. ε0 is used for convergence

criterion and defined as
∑N−1

i=0

∑K−1
j=0 eij where eij is the absolute difference between

mij at the beginning and upgraded mij at the end in the outer while loop. ε′0 is a
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threshold for convergence. ε1 and ε′1 are in the same way and used for the convergence

criterion of m̃ij in the Sinkhorn’s normalization loop (the inner while loop). βincr is

the rate at which control parameter β is increased in the deterministic annealing. A

list of these variables and constants are in Table I.

The sign of rotation matrix R in Algorithm 1 is changed in order to guarantee

−1 < nT
un

′
v ≤ 0. The purpose of applying deterministic annealing is to seek a good

minimum. The execution of this step may increase the chances of being trapped

in local minima since the changed transformation does not minimize the objective

function given the current correspondence matrix. However, these steps will no longer

be executed when β → ∞, i.e., the objective function starts converging. Although

robustness of the algorithm is influenced by this modification, the situation of Fig.

14(b) can be prevented.

D. Dental Alignment Using Iterative Surface-based Minimum Distance Mapping

After the dental models are aligned to an approximate occlusion, they are finally

articulated digitally using an algorithm called iterative surface-based minimum dis-

tance mapping (ISMDM). The criterion based on maximal contact of the teeth at MI

is the key to develop the ISMDM. The articulation of the dental models can be mod-

eled by consecutive executions of translation and rotation and continuous changes

of rotational origin on the dental model. In order to automatically achieve maximal

contact between upper and lower teeth and reach the final occlusion in the MI, one

models this movement by iteratively minimizing distance of surfaces between lower

and upper teeth and updating the transformation. This method is based on the idea

of the iterative closest point algorithm [29] that is generally used in shape matching,

registration, and alignment of two similar datasets from the same object. In addi-

tion, an important component in this method is that constraints are adds to prevent
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Table I. A List of Symbols Appearing in the Point Matching Algorithm

Symbol(s) Description

β The control parameter in deterministic annealing

βini The initial value of the control parameter β

βmax The ending value of the control parameter β

βincr The incremental rate of control parameter β

ε′0 The threshold allowed for each value of control parameter β

ε′1 The threshold allowed for row and column normalization

ε0 The variable in the loop for each value of control parameter β

ε1 The variable in the loop of row and column normalization

I0 The maximum number of executions of iteration allowed for each value

of control parameter β

I1 The maximum number of executions of iteration allowed for row and

column normalization

m̃ij The variable in the loop of row and column normalization
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the two opposite surfaces from overlap. The detailed computational algorithms are

described as follows.

1. The Modelling of Dental Occlusion

Let {ui}M−1
i=0 and {vj}J−1

j=0 be two sets of M and J vertices of teeth in the digital

maxillary and mandibular dental models, respectively. In the following, assume the

maxillary model is in a static position. The transformation is performed on the

mandibular model. The transformed vj is modeled as:

v′
j(R̃, t̃) ≡ R̃(vj − õ) + õ+ t̃ (2.7)

where õ is a rotational origin (the pivot point) of the rotation matrix R̃, and t̃ is

the translation vector. Under the assumption that the two digital dental models

do not overlap, maximizing contact area is equivalent to maximizing the number of

contacting vertices in {vj}. However, not every vertex in {vj} will make contact

when the models are in the MI. Those contact areas are even more difficult to be

predicted precisely. Therefore, the distance of surfaces between lower and upper

teeth is modeled as:

dS ≡

√√√√ 1

J

J−1∑
j=0

‖uij − vj‖2. (2.8)

uij is a point closest to vj and is given by

uij = arg max
u∈{ui}

‖u− vj‖ (2.9)

where ij ∈ {0, 1, . . . ,M − 1}. Instead of directly maximizing contact area, one in-

creases the chances of making contact by minimizing dS. The rotational origin õ is

given by

õ = arg min
v∈{vj}

(
min

u∈{ui}
‖u− v‖

)
. (2.10)

Fig. 15(a) shows surfaces of upper and lower teeth are closer at one side than
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Fig. 15. The selection of origin and the constraints. (a) Surfaces of upper and lower

teeth are closer at the anterior teeth than the posterior teeth. The rotational

origin should be always updated and assigned near the anterior teeth of dental

models in order to gain more freedom of articulation. (b) A constraint of (2.11)

is a half-space defined by a plane Pj . The transformed vertex v′
j(R̃, t̃) is not

allowed to be in the other half-space, avoiding overlap of upper and lower

teeth.

the other side. Intuitively, rotational origin will be set at the closer side so that the

surface of the lower teeth at the contralateral14 side can be swung closer towards the

upper teeth. Because of the irregularity of teeth surfaces, dynamic change of the

rotational origin by (2.10) will enable a better occlusion of lower and upper teeth

surfaces.

Adding collision constraints is the most important step in digital dental occlusion.

A mechanism of avoiding collision in 3D dental datasets is created. The avoidance of

collision is formulated as constraints and will be incorporated into the optimization

programming. Fig. 15(b) illustrates how a constraint is imposed. For each pair of

points vj and uij , one creates a plane between them. Let Pj be a plane with a unit

normal vector nj and a point rj on it. When the transformed vertex v′
j(R̃, t̃) is not

14A term related to the opposite side.
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allowed to be at the opposite side of the plane, the constraint can be expressed as

[
v′
j(R̃, t̃)− rj

]T
nj > 0. (2.11)

rj can be given by

rj = uij − δnj (2.12)

where δ is allowable penetration depth. The vertices of lower teeth are allowed to

penetrate through the upper teeth surface with depth δ. The calculation of the unit

normal vector nj is demonstrated as follows. Since the datasets are triangulated

surfaces, the vertex uij is shared with a number of adjacent facets. Let the unit

normal vector of the kth facet sharing the vertex uij be n
(k)
j . The nj is determined

by

nj =

∑
k n

(k)
j

‖
∑

k n
(k)
j ‖

(2.13)

which is Mean Weighted Equally computation of normal. Since most of the areas

between upper and lower teeth will never make contact during the MI, a large number

of constraints added to the algorithm may be redundant. In order to reduce the

number of constraints, it is not necessary to add a constraint to a point pair vj and

uij if the distance between them is beyond a threshold ρ

2. Minimization of the Distance of Occlusal Surfaces and the Algorithm

Given a rotational origin õ, one calculates the rotation matrix R̃ and the translation

vector t̃ which minimize

d2S(R̃, t̃) ≡ 1

J

J−1∑
j=0

‖uij − v′
j(R̃, t̃)‖2

subject to
[
v′
j(R̃, t̃)− rj

]T
nj > 0. (2.14)
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The rotation matrix consists of non-linear terms which can be linearized by small-

angle approximation [30], [31]. When the two dental models are getting occluded, the

increment needed to seat the dental occlusion will gradually become smaller. There-

fore, errors caused by this approximation will become less significant. Approximate

the rotational matrix R̃ by linearizing it as

R̃ =

⎛
⎝ 1 −θz −θy

θz 1 −θx
θy θx 1

⎞
⎠ (2.15)

where θx, θy, and θz are rotational angles with respect to x−, y−, and z−axes. Define

θ = (θx, θy, θz)
T and Lj as

Lj =

⎛
⎝ 0 −vj,z + õz −vj,y + õy
−vj,z + õz 0 vj,x − õx
vj,y − õy vj,x − õx 0

⎞
⎠. (2.16)

(R̃− I)(vj − õ) can be rewritten as

(R̃− I)(vj − õ) = Ljθ. (2.17)

The objective function in (2.14) becomes

d2S(R̃, t̃) =
1

J

J−1∑
j=0

‖Ljθ + t̃+ bj‖2 (2.18)

where bj = vj − uij . Let x ≡ (t̃T , θT ) = (t̃x, t̃y, t̃z, θx, θt, θz)
T and L̃j ≡ [Lj I ].

Equation (2.18) becomes (without the scaling 1
J
)

xT

(
J−1∑
j=0

L̃T
j L̃j

)
x+ 2

(
J−1∑
j=0

bT
j L̃j

)
x +

J−1∑
j=0

‖bj‖2. (2.19)

With the linearization of rotation matrix, the objective function d2S becomes a quadratic

form, and (2.11) becomes a linear constraint. The minimization of (2.14) can be solved

by quadratic programming. The algorithm is summarized in Algorithm 2. S the

total number of executions in the iteration. ρ is the threshold for limiting the number
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of linear constraints.

Algorithm 2 ISMDM algorithm

for k = 0 to S − 1 do

for j = 0 to J − 1 do

uij ← argmaxu∈{ui} ‖u− vj‖

end for

õ← argminv∈{vj}
(
minu∈{ui}‖u− v‖

)
for j = 0 to J − 1 do

if ‖uij − vj‖ < ρ then

Add the linear constraint
[
v′
j(R̃, t̃)− rj

]T
nj > 0

end if

end for

Minimize (2.14) by quadratic programming

Update vj using (2.7)

end for

E. Validations and Results

12 sets of the digital dental models are used in the simulation. They are randomly se-

lected from the clinical archive database using a random number table. The selection

criteria include:

1. No early contact;

2. The patients underwent a single-piece maxillary surgery;

3. The models have a stable occlusion.

All the dental models have relatively normal dentition except two pairs of dental

models are partial edentulous (Fig. 16) and two pairs of models have first premolar
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Fig. 16. Two sets of partial edentulous dental models. (a) and (b) are the first set of

the mandibular and maxillary models, and (c) and (d) are the second set of

the mandibular and maxillary models.

extractions for orthodontic treatment. The occlusion at the MI is established by an

experienced CMF surgeon (J. J. X.). The models are scanned at MI position using a

laser scanner as a part of the clinical routine (described in Section B). The surface

datasets of the maxillary and mandibular models are saved in .STL format with a

resolution of 0.1mm. In this simulation, they are decimated to a resolution of 0.2mm.

The teeth, which are involved in occlusion, are segmented from the rest of the model.

These originally scanned digital models at MI position serve as a control group during

the validation processes.

The origin O of the Cartesian coordinate system is the centroid of the boundary

box of the mandibular model in the control group [Fig. 17(a)], which is determined

by the maximum and minimum of the range in the x- (mediolaterally), y- (antero-

posteriorly) and z- (superoinferiorly) directions. Three landmarks that are commonly

used in clinical practice are selected on the occlusal surface on the mandibular model.



37

Fig. 17. The Cartesian coordinates used for validations. (a) The Cartesian coordinate

system is defined to represent the sagittal, coronal, and axial planes in the

control model. The results are validated in Section F.1 at mesiobuccal cusps

(Point A and B) of the first molar, the mandibular central dental midline

(Point C), and the centroid (Point O) in the control model. (b) In Section

F.2, the sagittal angular deviation ω̂x is defined by the angle between the

dashed line and the z-axis. The dashed line is calculated by projecting the

z′-axis onto the y-O-z plane.

They are the mesiobuccal15 cusp of the first right molar (A), the mesiobuccal cusp of

the first left molar (B), and the central dental midline (C). The coordinates of these

landmarks are used later to compare with the same landmarks in the experimental

group.

In order to test the proposed approach, it is necessary to first disrupt this re-

lationship because the maxillary and mandibular digital dental models are scanned

in MI. To this end, one first duplicates the scanned mandibular teeth model and its

landmarks, and then systematically generate rigid transformations to disarticulate

the mandibular teeth model while the maxillary teeth model is kept constant. A

total of 80 disarticulations are generated in each set of the models by choosing five

15”Mesial” is opposite to ”distal.”
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Fig. 18. The plots of dS (mm) versus iteration k in the simulation of ISMDM for 12

sets of the models. The initial positions of the mandibular models for ISMDM

algorithm is calculated as follows: the mandibular models are disarticulated

from gold standard using rotational axis
(
−

√
2
2
,
√
2
2
, 0
)
, rotational angle , and

translation (-20mm, -20mm, -10mm) and then aligned by initial alignment

algorithm.

rotational matrices and 16 translations of rigid transformation. The rotational origin

corresponds to the centroid of the mandibular teeth model. Among five rotational

matrices, one rotation matrix is identity, and the other four rotation matrices are

calculated by choosing a normalized rotational axis and a rotational angle. Two nor-

malized rotational axes are
(√

2
2
,
√
2
2
, 0
)
and

(
−

√
2
2
,
√
2
2
, 0
)
. Two rotational angles of

−1
3
π and 1

3
π are applied with respect to each of the rotational axes. The translation

in z-coordinate is chosen as -10mm to vertically disarticulate the mandibular model

(separate the mandibular model apart from the maxillary model). Then, the trans-

lations in x- and y- coordinate are incrementally chosen from -20mm, -7mm, 7mm,

to 20mm. These systematically disarticulated models are enough to represent a pa-
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tient’s malocclusion caused by CMF deformities. These disarticulated models serve

as an experimental group. The landmarks A, B and C, and the centroid O and the

x-, y-, and z-coordinates in the control model become A′, B′ and C ′, and the centroid

O′ and the x′-, y′-, and z′-coordinates in the experimental model.

Once the models are systematically disarticulated, the maxillary and mandibular

models in the experimental group are initially articulated using the proposed initial

alignment algorithm described in Section C. The parameters used in point matching

algorithm are summarized in Table II. They are then finally aligned using the IS-

MDM algorithm described in Section D. The following parameters are applied in the

ISMDM algorithm: S = 60, ρ = 0.2mm, and δ = 0.1mm. Fig. 18 shows an example

of the plots of average distance of surface dS versus iteration k for 12 sets of the

models in the simulation of the ISMDM algorithm selected from 80 repeated exper-

iments. During the validation process, the maxillary model remains static while the

mandibular model seeks its MI position. Finally, validation is completed by calculat-

ing the transitional and rotational deviations of the mandibular models between the

control and the experimental groups. Based on the clinical experience and published

literature [32], there would be no clinical significance if the translational deviation

of the mandibular models between the control the experimental groups is less than

0.5mm and the angular deviation is less than 1◦ on sagittal, coronal, and axial planes

respectively.

1. Validation 1: Translational Deviations on Mesiobuccal Cusps, Central Dental

Midline, and Centroid

In the first validation, one computes the translational deviations (deltas) of the articu-

lated experimental models relative to the control model at the landmarks of mesiobuc-

cal cusps of the first molar, the central dental midline, and the centroid in x-, y-, and
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Table II. The Parameter in the Simulation of Initial Alignment

ε′0 ε′1 βini βmax βincr I0 I1 α

0.5 0.05 0.009 50 1.2 30 7 2

z-axis. It generates a total of 11,520 sets of deltas, 960 for each pair of the models.

The data is first screened and its distribution is normally shaped. In each pair of the

models, then the 80 repeated deltas resulted from 80 systematic disarticulations for a

given landmark at a given direction are averaged. Furthermore, Analysis of Variance

(ANOVA) for repeated measures is used to detect whether the delta is statistically

different from ”0”, a hypothetical ideal number of the delta. It is also used to detected

whether there is a statistically significant difference among the three directions (x-,

y-, and z-), and the four landmarks [(A′, A), (B′, B), (C ′, C), and (O′, O)] in final

results calculated by the ISMDM algorithm. The result shows the delta is no sta-

tistically significantly diverged from ”0” [F(1,11)=2.58, P=0.14] in Fig. 19(a). The

results also show there is no statistically significantly difference among three direc-

tions [F(2,22)=0.77, P=0.48], or four landmarks [F(3,33)=0.13, P=0.94]. Finally, the

mean translational deltas, the standard deviations (SDs) and the 95% of confidence

intervals (CIs) for the results calculated by the initial alignment algorithm (”Initial

alignment”) and for the final results calculated by the ISMDM algorithm (”ISMDM”)

are presented in Table III. They indicate that the models are articulated successfully

with a small degree of translational deviation.
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Table III. The Translational Deviations in the Simulation of Initial Alignment and

ISMDM

Initial alignment ISMDM

Mean SD 95% of CI Mean SD 95% of CI

x -0.068 0.536 (-0.409 , 0.272) -0.086 0.318 (-0.288 , 0.116)

(A′, A) y 0.548 1.224 (-0.230 , 1.325) -0.144 0.636 (-0.548 , 0.260)

z 1.436 0.682 (1.002 , 1.870) -0.065 0.169 (-0.172 , 0.042)

x -0.128 0.539 (-0.471 , 0.214) -0.098 0.327 (-0.306 , 0.110)

(B′, B) y 0.535 0.979 (-0.087 , 1.157) -0.131 0.440 (-0.410 , 0.149)

z 1.443 0.538 (1.101 , 1.786) 0.003 0.100 (-0.060 , 0.065)

x -0.116 0.747 (-0.951 , 0.358) -0.090 0.378 (-0.331, 0.150)

(C ′, C) y 0.583 0.681 (0.150 , 1.015) -0.130 0.220 (-0.269 , 0.010)

z 0.334 0.697 (-0.108 , 0.777) -0.108 0.332 (-0.320 , 0.103)

x -0.087 0.387 (-0.333 , 0.159) -0.082 0.225 (-0.226 , 0.060)

(O′, O) y 0.626 0.637 (0.221 , 1.031) -0.132 0.180 (-0.246 , -0.018)

z 1.175 0.429 (0.902 , 1.447) -0.050 0.105 ( -0.114 , 0.020)
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Fig. 19. Mean deviations. (a) Mean translational deviations (deltas) for each landmark

between the experimental and control groups in x-, y-, and z-directions. (b)

Mean rotational deviations (deltas) between the experimental and control

groups in angular deviations ω̂x, ω̂y, and ω̂z.

2. Validation 2: Angular Deviations

In the second validation, angular deviations are computed in view of sagittal (y-

O-z plane), coronal (x-O-z plane), and axial planes ( x-O-y plane) of the control

model. The experimental models are moved translationally so that the centroid O′

is matched to the centroid O in the control group. The sagittally angular deviation

is then calculated as follows. z′−axis is projected onto the y-O-z plane. One defines

an angular deviation ω̂x by calculating the angle between the projected z′-axis and

the z-axis. Fig. 17(b) illustrates the projected z′-axis (the dashed line) and a sagittal

angular deviation ω̂x. Similarly, one projects the z′-axis onto the x-O-z plane, and

the coronal angular deviation ω̂y is determined by the angle between the projected

z′-axis and z-axis. By projecting the y′-axis onto the x-O-y plane, the axial angular

deviation ω̂z is defined by the angle between the projected y′-axis and y-axis. It

generates a total of 2,880 sets of deltas, 240 for each pair of the models. The data is

first screened and its distribution is normally shaped. In each pair of the models, one

then averages the 80 repeated deltas resulted from 80 systematic disarticulations for
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Table IV. The Angular Deviations in the Simulation of Initial Alignment and ISMDM

Initial alignment ISMDM

Mean SD 95% of CI Mean SD 95% of CI

ω̂x -2.324 2.13 (-3.677 , -0.971) -0.185 0.792 (-0.688 , 0.319)

ω̂y 0.006 0.474 (-0.295 , 0.307) -0.100 0.162 (-0.203 , 0.004)

ω̂z 0.022 2.112 (-1.319 , 1.364) -0.014 1.234 (-0.799 , 0.77)

a given landmark at a given direction. Furthermore, ANOVA for repeated measures

is used to detect whether the delta is statistically different from ”0”, a hypothetical

ideal number of the delta. It is also used to detected whether there is a statistically

significant difference among the three directions (ω̂x, ω̂y, and ω̂z) in final results

calculated by the ISMDM algorithm. The results show the delta is not statistically

significantly diverged from ”0” [F(1,11)=0.32, P=0.58] in Fig. 19(b). The results

also show there is no statistically significantly difference among the three directions

[F(2,22)=0.16, P=0.84]. Finally, the mean angular deltas, the SDs and the 95% of CIs

for the results calculated by the initial alignment algorithm (”Initial alignment”) and

for the final results calculated by the ISMDM algorithm (”ISMDM”) are presented

in Table IV. They also indicate that the models are articulated successfully with a

small degree of rotational deviation.

F. Discussion

An automatic and robust approach to digitally articulating dental models has been

developed. This approach consists of two major steps. The first step is the initial
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alignment, in which the point match algorithm is used to match the feature points of

dental curves in order to bring the models relatively close to each other. The second

step is the final alignment, in which one develops the ISMDM algorithm to minimize

the average distance of surfaces of the models in order to articulate the maxillary and

mandibular models to the MI without overlapping each other. This approach has

been validated using 12 pairs of the dental models. The results of validation shows

the models are successfully articulated with a small degree of deviation. The accurate

results can be attributed to the intuitive assumption that maximizing contact areas

of upper and lower teeth is equivalent to minimizing the average distance defined in

(2.8).

The results of the validation show the robustness of the proposed approach. First,

the initial alignment algorithm can bring the models to proper positions even before

performing the ISMDM. Shown in Tables III and IV, the models aligned by the ini-

tial alignment algorithm are close enough to successfully complete final articulation

by the ISMDM. Second, each mandibular model is docked to a final occlusion since

the average distance of surface dS converges at k < 30 (illustrated in Fig. 18) using

ISMDM algorithm. Shown in Tables III and IV, the deviations are small enough to

satisfy clinical requirements. They demonstrate the feasibility of the proposed ap-

proach towards fully automatic digital dental articulation. In addition, the proposed

validation includes the models with special conditions: partial edentulous dentition

and first premolar extraction due to orthodontic treatment. One initially expects

these models may result in a larger deviation. However, even with the models with

special conditions, the models in experimental group still achieve a same small degree

of deviation. This further proves the robustness of the proposed approach. Of the

note a small portion of results of the y-axis (under ”ISMDM” in Table III) shows

the standard deviations of Point A and B are slightly larger (close to 0.5mm) than
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the others. This contributes to a larger range of angular deviation ω̂zon the axial

plane (under ”ISMDM” in Table IV). During the dental articulation, the mandibular

models have more rotational freedom on the axial plane in comparison to the sagittal

and coronal planes. A possible solution to reduce the rotational freedom on the axial

plane is to add more constraints, i.e., coincidence between maxillary and mandibular

dental midlines.

The proposed initial alignment algorithm plays an important role in reducing the

number of executions of nearest point searching of ISMDM. The high-quality dataset

of digital dental models may drastically increase the computational time in ISMDM

since the calculation of nearest point searching is tremendous. The initial alignment

algorithm is designed to bring the high-resolution digital dental models used in clinic

to an approximate MI position and orientation, without considering whether there

is a collision between the upper and the lower teeth. The advantage of using ini-

tial alignment is to tremendously increase the computational speed of convergence in

final alignment using ISMDM algorithm and significantly reduce the computational

time in planning the CMF surgeries. As illustrated in Fig. 18, all the models can be

quickly articulated in only 30 executions of iteration in ISMDM without intensively

searching for the position at MI. In the simulation, the computational time of both

initial alignment algorithm and the ISMDM for each set of the models is only several

minutes.

The final alignment is to bring the dental models from the position achieved

by initial alignment to their final occlusion at the MI and free of collision using the

ISMDM algorithm. In this algorithm, the convergence in average distance of surface

between the models can be used to decide whether the models have been articulated.

The correspondence of vertices in upper and lower teeth and linear constraints are

dynamically updated in each iteration, resulting in different parameters of quadratic
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programming in (2.19). In this algorithm, the optimal transformation is solved by

quadratic programming in each iteration. When the maxillary and mandibular mod-

els are getting closer to be articulated, the optimal transformation approximates

a null since these linear constraints prevent the models from overlap and stop the

models. Once this is achieved, the null transformation will not further update the

correspondence and constraints in following iterations. Thus, the average distance

will converge.

The final alignment should be completed without overlapping between the up-

per and the lower models. Another advantage of the ISMDM algorithm is that it

has successfully overcome the notorious problem of uncontrollable overlap by apply-

ing linear constraints and allowable penetration depth δ. Each of the constraints

is determined by one vertex in the upper teeth and its corresponding vertex in the

lower teeth. Therefore, the number of constraints depends on the parameter ρ and

resolution of datasets. However, the models may not be able to entirely articulate if

too many constraints are incorporated in quadratic programming. It i observed that

an appropriate value of the parameter ρ is approximate to the resolution of dataset.

Theoretically, the penetration depth is zero, leading to no overlap of upper and lower

teeth. However, since the surfaces of the digital models are slightly expanded out-

ward [Fig 10(b)] due to the process of triangulation, the articulated digital models

must have little overlap at the contact areas. Therefore, the choice of the allowable

penetration depth relies on the extent of overlap in the dataset. In this experiment,

one sets the penetration depth was 0.1mm.

Finally, the approach is different from others. The ultimate goal of the approach

is to digitally articulate dental models for patient treatment. Hiew et al. [32] used

the right and posterior surfaces of the model bases to perform the dental model align-

ment. They first trimmed the right and posterior surfaces of the upper and lower
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plaster model bases so they would be perfectly in the same plane with the teeth in

the correct occlusion. After the models were separately digitized, the centroids and

normal vectors of these surfaces were calculated by using a K-means plane detection

algorithm. This initial step was to align the digital models in anteroposterior (y-axis)

and transverse (x-axis) directions. The final alignment was then completed by ad-

justing one of the models in superoinferior (z-axis) direction. Finally, the vertical

alignment was optimized by collision detection, and the transformation was applied

to the lower model. However, this approach is not designed based on the occlusal

criteria. Thus it is impossible to incorporate their method into the actual surgical

planning procedure clinically. Zhang et al. [33] designed a two-stage occlusal analysis

algorithm. In the first stage, each vertex of the teeth models is checked whether it is

considered as a penetration. In the second stage, the distance of each vertex to the

opposing model was calculated, and the color ranges of distance were shown on the

3D teeth models. The color ranges are useful for manual alignment in the computer,

but it still needs iterative process of collision detection and manual transformation

of the models. Finally, DeLong et al. [34] utilized a ”3-point alignment” method.

Three pairs of contacting points on both the upper and lower teeth models were ini-

tially identified on the plaster models and then digitized onto the digital models. The

points on the lower teeth were aligned using a fitting algorithm to the points on the

upper teeth model, and the transformation was applied to the lower model. The es-

tablished occlusion was then visually checked, and the 3-point alignment method was

repeated by selecting different pairs of points until the visual outcome was satisfactory

and overlap of the models is free. One had independently developed and tested this

method before DeLong et al. published their results. Although this method could

bring the upper and lower teeth close to MI, it is almost impossible to be certain

that what is seen in the computer truly represents the best possible alignment. Since
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even a small deviation in the occlusion causes a significant clinical problem, this 3-

point alignment may be used as an initial alignment but one should not rely on this

method of dental alignment to treat real patients. Comparing to the above methods,

the proposed method is more practical and can be immediately used in the patient

surgical planning process.
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CHAPTER III

3D SEGMENTATION OF MAXILLA IN CONE-BEAM COMPUTED

TOMOGRAPHY IMAGING USING BASE INVARIANT WAVELET SHAPE

MODEL

A. Introduction

The field of craniomaxillofacial (CMF) surgery involves the correction of congenital

and acquired deformities of the skull and face. It includes dentofacial deformities,

congenital deformities, combat injuries, post-traumatic defects, defects after tumor

ablation, and deformities of the temporomandibular joint. Due to the complex na-

ture of the craniomaxillofacial skeleton, the surgical correction of CMF deformities is

among the most challenging. These types of the surgeries usually require extensive

surgical planning. The success of these surgeries depends not only on the technical

aspects of the operation, but to a larger extent on the formulation of a precise sur-

gical plan. During the past 50 years, there have been significant improvements in

the technical aspects of surgery (e.g., rigid fixation, resorbable materials, distraction

osteogenesis, minimally invasive approaches, etc). However, the planning methods

remain mostly unchanged [1–4]. At present, in CMF surgery, it is clear that many

unwanted surgical outcomes are the result of deficient planning.

The advent of computed tomography (CT) and its 3D reconstruction have brought

about a revolution in diagnostic radiology since cross-sectional imaging becomes avail-

able [5–7]. 3D rendered visualization provides a surgeon with readily recognizable im-

ages of complex anatomic structures. It can exactly record and represent the life-size

and the shape of soft tissure and bone for precise surgical planning and simulation.

In conjunction with appropriate computer software and hardware, computer-aided

surgical simulation (CASS) has been developed and has created a number of options



50

Fig. 20. A skull model reconstructed by Marching Cube Algorithm after thresholding

segmentation is performed on a 3D CBCT volumetric image.

for CMF surgeries [3, 8–12].

Cone-beam computed tomography (CBCT) has been adopted rapidly in the

past decades and widely used in dentomaxillofacial imaging and orthodontic prac-

tices [35–37]. The most important reason is that currently, the effective dose of

CBCT for a head scan (from several dozens up to several hundreds μSv) is signifi-

cantly lower than that of CT for a head scan (from several hundreds up to several

thousands μSv) [35, 38, 39]. Furthermore, reported spatial resolution (voxel resolu-

tion) varies from 0.076 to 0.4mm [35]. Although the spatial resolution of a slice in

CT can be as small as 0.4mm, the thinnest axial thickness is 0.625mm. CBCT also

offers particular accessibility for most of the medical units because of its low cost

compared with CT. Commercially available CBCT allows patients to seat or stand

vertically during scanning. Natural head position (NHP) can be acquired directly for

3D cephalometry. These advantages have created the possibilities of replacing CT

with CBCT for 3D imaging and modeling of CASS [40–43].

Surgical planning and CASS require accurate contours of facial bones1. The

acquisition of a skull model in traditional CT includes two steps: thresholding seg-

1Facial bones includes maxilla, zygomatic bone, lacrimal bone, nasal bone, and
volmer in lower part of cranium, and temporal bone, sphenoid bone, parietal bone,
and frontal bone in upper part of cranium
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mentation and bone surface reconstruction. The thresholding segmentation can easily

classify bone voxels because of the calibrated Hounsfield unit (HU) gray values and

high contrast resolution (signal-to-noise ratio) of CT. These bone images are then

fed to surface reconstruction algorithm such as Marching Cube Algorithm to ob-

tain bone surface. Therefore, accurate segmentation of bone voxels is one of the

most essential tasks for 3D rendering and CASS. However, poor image quality be-

comes its major limitation in establishing skull models in CBCT. Fig. 20 illustrates

a skull model obtained by thresholding segmentation and Marching Cube Algorithm

in CBCT imaging. The characteristics of degraded images in CBCT imaging can

be summarized as follows. First, intensities of CBCT images cannot be accurately

represented by standard HU because of no absolute HU calibration. It varies between

scanners and between scans. In order to reconstruct bone surfaces with reasonable

quality, deciding the threshold for segmenting bone images becomes an art (by guess-

ing and trying). Second, when a unique global threshold is applied, some thin bony

structures are usually not included. The sella turcia, orbital walls, nasal, surround-

ing thin bones of maxillary sinus, condyles, and ramus of the mandible are among

the most affected bone structures. This is mainly because their image intensities

are averaged with those of air during filter-backprojection reconstruction of CBCT.

Third, the effect of low contrast resoluton in CBCT creates randomly scattered noisy

images and the bumpy surfaces of the skull model. It results from any combinations

of beam-hardening effect, truncation effect, and Compton scattering. Finally, metal

artifact can be the most detrimental in building skull models. It is mostly unavoid-

able since the dental fillings, implants, surgical plates, and orthodontic appliances are

among the most common metallic materials existing inside patients’ teeth and heads.

Although metal artifacts are reduced in CBCT images compared with those in CT

images, its effect is still considerable compared with the other effects described above.
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(Section B)
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Statistical Models
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Segmentation
(Section E)

Fig. 21. The procedure of performing segmentation in the study. The statistical mod-

els are acquired off-line (enclosed by dashed lines) by using training CBCT

datasets. Once the statistical models are built, a new CBCT image (other

than the training datasets) is segmented based on the information of statistical

models.

In order to solve the addressed problems above, there are a number of the stud-

ies in advanced segmentation and reconstruction approaches of facial bone images in

CT and CBCT imaging. They are segmentations based on statistical shape model

(SSM) in CT imaging [44–46] and in CBCT imaging [47] and histogram thresholding

segmentation in CT imaging [48]. Loubele et al. [49] models local histogram as a mix-

ture of Gaussian distributions and determines the thresholds of jawbones (mandible

and part of maxilla) and soft tissues in CBCT imaging. However, studies on devel-

oping robust segmentation algorithms versatile for most of the facial bones in CBCT

imaging are still limited. Facial bones are characterized by complex and inhomoge-

neous structures (e.g. soft tissues, sinuses, and pieces of soft bones). Voxel-based

global and local segmentation based on assumption of homogeneous structures may

not be appropriate. Only the trained specialists can manually identify the internal
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(a) (b)

(c) (d)

Fig. 22. Four different skull models are illustrated in (a), (b), (c), and (d). The marked

regions are anterior maxilla in the left half of skull and will be the particular

interest in the study.

structures of facial bones. This limitation makes it difficult to design segmentation

algorithms for the bone voxels and bone surfaces of the internal structures of facial

bones. In CASS, the visualization and measurement of simulation relies on the outer

surfaces of facial bones. The requirement on accuracy of outer surface of facial bones

is more critical than that on accuracy of internal structures of facial bones.

In this study, a new segmentation approach based on wavelet density model

(WDM) for a particular interest on left half of anterior maxilla will be proposed.

This region consists of thin bones around maxilla simus and is most likely to be influ-

enced by limilation of CBCT. The procedure of performing segmentation throughout

this study is summarized step-by-step in Fig. 21. Table V lists all acronyms in the

study. This model-based segmentation approach calculates the outer bone surface on

left half of anterior wall of maxilla. Fig. 22 shows four different skulls. The marked

regions on left half of anterior wall of maxilla represent four different shapes. It is ob-

vious that the shape for SSM is a partial open-surface with closed boundary in a skull
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Table V. List of Acronyms

ASM Active Shape Model

BIWASM Base Invariant Wavelet Active Shape Model

CASS Computer-aided Surgical Simulation

CBCT Cone-beam Computed Tomography

CMF Craniomaxillofacial

CT Computed Tomography

CWBI Customized Wavelet Base Initialization

DSWT Discrete Surface Wavelet Transform

DWT Discrete Wavelet Transform

HU Hounsfield Unit

IFM Image Feature Model

RBI Registration-based Initialization

SSM Statistical Shape Model

PDM Point Distribution Model

WASM Wavelet Active Shape Model

WDM Wavelet Distribution Model
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model. The outline of this manuscript is listed as follows. First of all, the acquisition

and preprocessing of CBCT images will be presented in Section B. Then, a practical

procedure to creating training shapes with regularized landmarks will be proposed

in Section C. It includes extraction and customization of training shapes and land-

mark digitalization on training shapes. In Section D, we will describe two statistical

models. The first statistical model is wavelet-based SSM called WDM. The second

statistical model is IFM. Based on those two statistical models, a new model-based

segmentation algorithm BIWASM with a new initialization method CWBI will be

proposed in Section E. Next, BIWASM with CWBI will be validated and compared

with three different approaches in Section F. Finally, Section G will discuss these

approaches, results, and the feasibility of BIWASM in CASS.

The notation used in this paper is described as follows. Bold symbols A and

a are represented as a matrix and a column vector, respectively. aT defines matrix

transpose of a. ‖a‖ ≡
√
aTa is the Euclidean norm of a column vector a. A 3D point

a is represented as a 3-tuple column vector (ax, ay, az)
T in a Cartesian coordinate

system. The symbol T (•) with any kinds of subscripts and superscripts denotes spa-

tial transformation of 3D points. W and W−1 denote wavelet transform and inverse

wavelet transform.

B. Data Acquisition and Preprocessing

Nineteen patients were scanned using CBCT (Sirona, Bensheim, Germany) with a

voxel resolution of 0.287mm × 0.287mm × 0.287mm, 512 × 512 × 512 voxels, 0◦

gantry tilt, and 1:1 pitch. Nineteen CBCT volumetric images were acquired. Thresh-

olding segmetation was first applied to each of these volumetric images to obtain bone

images. Due to limitation in CBCT imaging, these bone images were recovered by

manually editing images slice by slice. Then, Marching Cube Algorithm was applied
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to each of the recovered bone images to calculate surfaces (meshes) of bone images.

Finally, the surfaces of bone images were smoothened using the software (Amira, San

Diego, CA) to remove the bumpy surfaces. These bone surfaces are the ground truths

for surfaces of physical skeleton. We will use these 19 ground truths of bone surfaces:

1) to customize the shapes and generate landmarks in Section C; and 2) to validate

the proposed segmentation approach in Section F.

C. Shape Customization and Surface Wavelet Transform

The shape information of a target in a subject is characterized by a dense set of points

and mesh structures. A SSM of the target is based on shape statistics of customized

points on a set of the training datasets. These customized points are called landmarks.

Before constructing a SSM, each training shape is remeshed into a new shape with

the same number of landmarks and same mesh structures by digitalizing the shape

either manaully or automatically. Landmarks must be placed at topologically and

structurally corresponding positions over all training shapes.

In this section, we will describe approaches to extracting and customizing a

shape from the ground truth of bone surface and generating its landmarks for SSM.

The shape (the target) in our study is the marked region on the skull (the subject)

illustrated in Fig. 22. In the following, we will use the shape in Fig. 22 (a) to

illustrate results calculated by each of the steps in the approaches. These steps are

summarized in Fig. 23.

1. Training Shape Extraction and Patch Decomposition

The training shape of the target is identified by first manually pinpointing anatomical

control landmarks on ground truth of bone surface and then determining the bound-

aries of the training shape. The training shape is the regions defined by these enclosed
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Training shapes with 
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Training shapes with
landmarks

Training shapes with 
landmarks

Fig. 23. The procedure of generating training shapes with digitalized landmarks.

These training shapes will be used to build SSM in Section D.

boundaries. Patch decomposition is performed by dividing the training shape into

several patches. It can be implemented similarly by manually pinpointing anatomi-

cal control landmarks on the training shape and then determining the boundaries of

patches. Each of the boundaries is obtained by calculating a shortest path or a path2

composed of several connected shortest paths on the ground truth of bone surface be-

tween the anatomical control landmarks. Fig. 24 (a) shows that 8 anatomical control

2When the shortest path cannot be found, several auxiliary points can be placed
in-between and connected by shortest paths form a path.
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(a) (b) (c)

Fig. 24. Training shape extraction and patch decomposition. (a) 9 anatomical control

landmarks. (b) Patch decomposition using shortest paths as boundaries. (c)

Extraction of the training shape and its patches.

landmarks are used to define the training shape, and one anatomical control landmark

is used to define four patches. Fig. 24 (b) illustrates the boundaries. Finally, these

patches are extracted from the bone surfaces to form a customized training shape

shown in Fig. 24 (c).

The shortest path on a mesh is defined and calculated as follows. Assume A and

B are two points on the mesh. When the mesh is unfolded onto a plane (by breaking

the connection of cells and rotating the cells), A and B are also translated onto the

plane accordingly. Let A′ and B′ be the points corresponding to A and B on the

plane, respectively. It is possible to draw a straight line between A′ and B′ on the

plane so that the line passes through cells of this unfolded mesh. This line on the

unfolded mesh corresponds to a path on the original mesh. Of the note that this path

passes through the valid cells on the mesh instead of only vertices and edges. The

shortest path on the mesh is the one with minimum distance (distance of straight line)

among all existing paths of that kind. Since calculating shortest paths without any

simplifications is computationally expensive, we use Chen & Han’s efficient algorithm

to calculate shortest paths [50]. Since this searching algorithm uses all the cells in

the mesh to find the shortest path, it is necessary to reduce the searching region [51].
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It can be done by two steps of precalculation to determine this searching region. The

first step of precalculation is that Dijkstra’s shortest path algorithm [52] is used to

calculate the Dijkstra’s shortest path between A and B. This algorithm can quickly

find the shortest path of connecting edges. The second step of precalculation is that

the searching region can be determined by searching all the neighboring cells in a

specific distance to the Dijkstra path. We use 0.2 times of the Dijkstra’s shortest

path as this specific distance.

2. Parameterization

Once the patches of the training shape are obtained, we will define their correspond-

ing planar parameterization domains and the mappings. We use one of the patches

(denoting P) shown in Fig. 2(a) to illustrate its planar parameterization domain and

mapping shown in Fig. 25(b).

First, the planar parameterization domain of P is determined as follows. Since

P is defined by anatomical control landmarks, the planar parameterization domain

can be defined as a polygon by those anatomical control landmarks. Assume {lk}Kp−1
k=0

denotes the Kp anatomical control landmarks forming P, and lk and l(k+1)Kp
are the

anatomical control landmarks connected by a boundary path of P, where (k)Kp means

k modulo Kp. Let {Ti}Kp−3
i=0 , Ti ≡ �(l0, li+1, li+2) be the planar triangles for patch P.

Since {Ti}Kp−3
i=0 are usually not coplanar, we can ”unfold” these planar triangles {Ti}

onto a common plane create a planar Kp-polygon. This new planar Kp-polygon will

become the parameterization domain for P. The edges of the planar Kp-polygon are

composed of line segments between lk and l(k+1)Kp
(distance between two points in

3D space) while the boundaries of P are formed by the shortest pathes on the mesh

between lk and l(k+1)Kp
. Therefore, it can be claimed that P resembles the planar

Kp-polygon.
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(a) (b)

Fig. 25. Illustration of parameterization. (a) One of four patches in Fig. 24(c). (b)

The polygonal domain and its parameterization mapping.

Second, the parameterization mapping of P will be calculated using barycentric

mapping [53]. Mean Value Coordinate will be used to calculate the spring constants.

The planar Kp-polygon is assumed to be convex in order to guarantee the bijectivity

of parameterization [53]. The convexity of the K-planar polygon can be achieved

by carefully configuring {lk}K−1
k=0 when performing patch decomposition. Moreover,

before calculating barycentric mapping, the mapping of boundaries between P and

its planar Kp-polygon has to be defined. A simple approach can be done by propor-

tionally projecting the boundary vertices of P onto the edges of its planar Kp-polygon

domain to obtain the boundary mapping.

3. 3D Landmarks Digitalization Using Catmull-Clark Subdivision

The landmarks of each training shape will be digitalized by the Catmull-Clark sub-

division proposed by Catmull et al. [54] in several steps. The first step is to use the

Catmull-Clark subdivision algorithm to generate new points on the parameterization

domain (i.e. planar Kp-polygon) of P. This planar Kp-polygon is a base mesh at

0-th subdivision. Fig. 26(a) illustrates base meshes of a triangle and a quadrilateral.

The vertices of the base meshes denote v0. After performing one subdivision on the

base meshes, it creates new points f1, and e1 and the updated vertices v1 shown in

Fig. 26(b). f1 is called face point corresponding to the cells at the base meshes. e1 is
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Fig. 26. Catmull-Clark subdivision. (a) Triangle base mesh and quadrilateral-like base

mesh. (b) The supermeshes generated by one subdivision of the base meshes.

called edge point corresponding to the edges at the base meshes. v1 corresponds to

the original vertex v0 at the base meshes. New edges of the supermesh are formed by

connecting f1 and e1 and by connecting v1 and e1. Before performing the next sub-

division, all f1, e1, and v1 are relabeled to v1 as the input of the second subdivision.

Similarly, after the jth subdivision is performed, vj (vertex), f j (face point),

and ej (edge point) can be acquired in the same way. The j-th Catmull-Clark subdi-

vision operated on vj−1 is summarized in Algorithm 3. nv is called the valence of

vertex vj (the number of edges connecting vj). The average operator k̄m means the

vertex of type m is obtained by using the neighboring vertices of k and calculating

the average of them. Fig. 27 summarizes all possible average operators. m represents

one of the corresponding averaged vertex, face point, and edge point. Of the note

that type m in k̄j−1
m is calculated by averaging centroid of face (f), midpoint of edge

(e), or original vertex (v) in the submesh [the mesh before performing subdivision]

instead. On the other hand, type m in k̄j
m is calculated by averaging vj , f j , or ej in

the supermesh (the mesh after performing subdivision).

At the second step, the patch P with landmarks are remeshed by inverse map-

ping the points (generated by subdivision) on the parameterization domains (planar

Kp-polygon) onto P. The same number of the subdivisions is applied to each of
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Fig. 27. The average operators k̄j
m without superscript index j.

the patches in each training shape. Finally, the remeshed shape with regularized

landmarks can be obtained by stitching these remeshed patches. Since two patches

sharing a boundary have the same parameterization mapping on the shared bound-

ary, both the patches will result in the same subdivision on this boundary. Hence, the

remeshed patches can be stitched by merging the vertices at boundaries. Fig. (28)

illustrates the remeshed and stitched training shape calculated after 0-th, first, third,

and fifth subdivision of four base meshes. The training shape corresponding to 0-th

subdivision is the mesh formed by anatomical control landmarks. In our study, the

number of the subdivisions is 5.

Algorithm 3 Catmull-Clark subdivision algorithm

f j ← v̄j−1
f

ej ← 1
2
(v̄j−1

e + f̄ je)

vj ← 1
nv
(f̄ jv + v̄j−1

v + (nv − 2)vj−1)

vj ← {f j , ej,vj}
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(a) (b)

(c) (d)

Fig. 28. The remeshed shape with landmarks after different number of Catmull-Clark

subdivisions. (a) 0-th subdivision. (b) First subdivision. (c) Third subdivi-

sion. (d) Fifth subdivision.

D. Wavelet Active Shape Model

Two statistical models summarized in Fig. 29 will be built by using N training images

and their corresponding N training shapes with regularized landmarks (calculated in

Section C). The first statistical model is WDM using training shapes. It is the

multiscale statistical shape model based on PDM (Section D.1) by using DSWT

(Section D.2). The second statistical model is IFM created by using both training

shapes and training images.

1. Point Distribution Model

Point distribution model (PDM) is introduced by Taylor et al. [55]. Let Si be the set

of n landmarks [illustrated in Fig. 28(d)] in ith training shape. We say Si consists
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Fig. 29. The flowchart of creating WDM and IFM.

of landmarks in the image space. All the training shapes are transformed (rotation,

translation, and scaling) to a common coordinate of model space using Procrustes

Analysis [56] to minimize their squares of distance. Let S̃i be the transformed train-

ing shape. We say S̃i is the ith training shape in the model space. Assume xi is the

3n-dimensional shape vectors formed by concatenation of the coordinates of all trans-

formed landmarks in S̃i. xi can be expressed by the mean vector x̄ ≡ 1
N

∑N−1
i=0 xi and

shape variation vectors Δxi ≡ xi − x̄. The distribution of SSM can be characterized

by the covariance matrix of shape variation vectors given by

Cx ≡
1

N − 1

N−1∑
i=0

ΔxiΔxT
i . (3.1)

In order to capture the dominant shape variations, Principle Component Analysis

is applied to the set of shape variation vectors. A set of orthogonal principle axes

(also called principle modes) of shape variations can be found by calculating the

orthogonal eigenvectors of Cx, and the corresponding eigenvalues are the variances
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of the distribution in the direction of principle axes. Assume the columns of P are

the orthogonal eigenvectors with the corresponding nonzero eigenvalues λk in the

descending order. A shape vector x̃ in the model space can be generated by a shape

parameter b̃:

x̃ = x̄+Pb̃. (3.2)

Any shape vector x in the model space can be approximated by projecting the shape

variation vector Δx ≡ x− x̄ onto the subspace (spanned by P) of the model

x ≈ x̄ +Pb. (3.3)

Its shape parameter b can be calculated by the least square solution of minimizing

‖Δx−Pb‖2

b = PTΔx. (3.4)

A shape vector x is said to be defined in the model space if it is expressed by

(3.2) or approximated by (3.3). A shape vector y is said to be defined in an image

space if its landmark points are located under the coordinate of a volumetric image.

Once the PDM is built, a shape vector in the image space can be represented or

approximated by a shape vector in PDM. Assume a PDM with shape priors (P, λk)

is calculated from {Si}. Let y be a shape vector of an arbitrary shape S in the image

space. Of the note that the shape S is not among any of the training shapes Si. One

of the approaches to calculating a shape vector in the model space to best represnet

y is to find a transformation T and a shape parameter b to minimize mean squares:

‖y − T (x̄+Pb‖2. (3.5)

T is transformation consisting of rotation, translation, and scaling of a shape.

The eigenvalues λk can be used to provide the bounds of the model in order to
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ensure the shape is plausible. The values of b are constrained between

−a
√

λk < bk < a
√

λk (3.6)

where 2 ≤ a ≤ 3 generally, and bk is an element of b. A simple algorithm of calculat-

ing suboptimal T and b by minimizing mean squares (3.5) and incorporating shape

constraints is summarized in Algorithm 4.

Algorithm 4 A simple algorithm of calculating suboptimal T and b by minimizing

(3.5) and incorporating shape constraints.

b← 0

while Until convergence do

x← x̄ +Pb; generate a shape in the model space using (3.2).

Calculate T by minimizing ‖y − T (x)‖2 using [57]

x′ ← T −1(y); calculate inverse spatial transformatoin of y.

b← PT (x′ − x̄); calculate the shape parameters fitting x′ using (3.3).

Apply shape constraints on b using (3.6)

end while

2. Discrete Surface Wavelet Transform Based on Catmull-Clark Subdivision

In the following, we will perform multiscale analysis on each aligned training shape S̃i

in the model space. By properly choosing anatomical control landmarks and perform-

ing patch decomposition (such as Fig. 1), we can generate landmarks on the training

shapes with a rectilinear structure at any level of Catmull-Clark subdivision. Since

the rows and columns of the rectilinear training shapes can be well-defined, DSWT of

the training shapes can be calculated by performing 2D DWT on rectilinear shapes
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(a) (b) (c)

(d) (e) (f)

Fig. 30. Illustration of scaling coefficients for different patch decomposition of the

shape. (a) Different patch decomposition applied to the same shape in Fig.

24. (b) The extracted shape (c) The shape at five Catmull-Clark subdivi-

sions. (d) Scaling coefficients after one decomposition of DSWT. (e) Scaling

coefficients after three decomposition of DSWT. (f) Scaling coefficients (base)

after five decompositions of DSWT.

in x-, y-, and z-coordinate3.

However, there are exceptions. When the training shape is decomposed into

patches such as the ones in Fig. 30(a) using the same set of anatomical control land-

marks, there are two pentagon-like patches and one quadrilateral-like patch forming

the training shape [Fig. 30(b)]. After any level of Catmull-Clark subdivision on the

patches is performed and the remeshed patches are stitched, the resulting training

shape always has an extraordinary landmark (except landmarks on the boundaries)

with valence three [54]. Fig. 30(c) shows the remeshed shape with the fifth subdivi-

3It is equivalent to perform 2D DWT on a 2D image. The image intensity is each
of the coordinates (e.g. x-coordinate) of landmarks.



68

L

H

2

2

L

H

2

2

L

H

2

2

Fig. 31. The decompositions in 1D DWT.

sion. It is obvious that 2D DWT cannot be performed on this grid-like mesh since

rows and columns of a rectilinear structure are not well-defined.

To overcome this problem, Bertram et al. [58] proposed a new construction of

wavelet on Catmull-Clark subdivision surfaces of arbitrary two-manifold topology by

designing a new lifting scheme of biorthogonal wavelet transform. The training shape

and its patches can be customized, and its DSWT can be constructed accordingly.

The lifting scheme of 2D DWT and Bertram et al.’s proposed lifting scheme will be

first introduced based on the rectilinear grid. Then, we will discuss how this new

lifting scheme can skillfully perform multiscale decomposition on the training shape

with a non-rectilinear structure.

Fig. 31 shows the decompositions in 1D DWT. An input sm,J at a resolution

of J-scale can be decomposed into wavelet coefficients wm,J−1 and scaling coefficients

sm,J at (J − 1)-scale by a high pass filter (H) and a low pass filter (L) followed by

downsampling. wm,J−1 represents the signal details of sm,J at (J − 1)-scale, whereas

sm,J−1 represents the content of coarser scale of sm,J . It is shown that one decomposi-

tion of any classic DWT with finite filters in Fig. 31 can be implemented by starting

from the Lazy wavelet transformation (splitting) and then performing a finite number
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of alternating lifting steps [59]. The DWT using lifting scheme consists of two steps.

At the first step of lifting scheme, the scaling coefficient sm,j at j-th scale is split into

s-set and w-set:

sm,j−1 ← s2m,j (3.7)

wm,j−1 ← s2m+1,j . (3.8)

At the second step of lifting scheme, a number of consecutive lifting steps are cal-

culated. Only one of s-lifting (3.9) and w-lifting (3.10) steps is calculated at l-th

lifting step:

sm,j−1 ← α(l)sm,j−1 +
∑
k

α
(l)
k wk,j−1 (3.9)

wm,j−1 ← β(l)wm,j−1 +
∑
k

β
(l)
k sk,j−1 (3.10)

The inverse DWT using lifting scheme is simply the analogous operations of (3.9) and

(3.10) in the reverse order to satisfy perfect reconstruction:

sm,j−1 ←
1

α

(
sm,j−1 −

∑
k

αkwk,j−1

)
(3.11)

wm,j−1 ←
1

β

(
wm,j−1 −

∑
k

βksk,j−1

)
(3.12)

Fig. 32(a) shows lifting steps of one decomposition of 2D DWT. 1D DWT is first

performed on the rows and then performed on the columns by using lifting steps.

The new lifting scheme designed by Bertram et al. is shown in Fig. 32(b).

Instead of performing the lifting steps first on the rows and then on the columns,

each row lifting step and its corresponding column lifting step will be performed at

the same time before moving on the next row and column lifting steps. Since lifting

steps are linear operations, the resulting decomposition of 2D DWT in Fig. 32(b)

is equivalent to the one in Fig. 32(a). This new lifting scheme also consists of two
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Lifting 1 ….

Row wavelet decomposition

Lifting 2 Lifting Ln

Lifting 1 ….

Column wavelet decomposition

Lifting 2 Lifting Ln

(a)

Lifting 1 ….

Row

Lifting 2 Lifting Ln

….

Column

Lifting LnLifting 1 Lifting 2

(b)

Fig. 32. (a) One decomposition of 2D DWT using lifting steps (b) One decomposition

of 2D DWT using composite liting steps.

steps. At the first step of the new lifting scheme, the splitting is performed on the

landmarks of the training shape based on the structure of Catmull-Clark subdivision.

As described in Section C.3, the landmarks of the training shape are obtained by

Catmull-Clark subdivision and can be classified into vertex v, face points f , and edge

points e before relabeling in Algorithm 3 (The superscript is ignored for simplicity).

v is split as scaling coefficients similar to (3.7). f is split as wavelet coefficients similar

to (3.8). e can be split as scaling coefficients (when s-lifting is performed) or wavelet

coefficients (when w-lifting is performed). At the second step of the new lifting

scheme, the operations of lifting steps in each of row and column liftings) are defined

as

sm,j−1 ← αsm,j−1 + α̃(wm,j−1 + wm−1,j−1) (3.13)

wm,j−1 ← βwm,j−1 + β̃(sm,j−1 + sm−1,j−1) (3.14)

The superscript l is ignored for simplicity. It can be shown in Appendix B that

the composite s-lifting step for each of the vertex v and each of the edge points e
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can be determined by

v ← α2v + 4α̃2f̄v + 4αα̃ēv (3.15)

e ← αe+ 2α̃f̄e

It can be found that the composite s-lifting step is simply an expression of the

generalized s-lifting step in (3.9). Similarly, the composite w-lifting step for each

of the face points f and each of the edge points e has the following expression:

f ← α2f + 4α̃2v̄f + 4αα̃ēf (3.16)

e← αe+ 2α̃v̄e

After one decomposition of 2D DWT is completed, the resulting v is the scaling co-

efficients as the input of the next decomposition of 2D DWT. The resulting f and e

are the wavelet coefficients of 2D DWT.

It can be found that (3.15) is involved with the average of four neighboring edge

points and the average of four face points for all v. If an extraordinary vertex exists

with valence nv, f̄v and ēv of (3.15) can be generalized to the average of nv neigh-

boring face points and the average of nv edge points, respectively. Therefore, the

composite lifting steps in (3.15) and (3.16) can be performed no matter whether rows

and columns are well-defined. It simply requres the structure of Catmull-Clark sub-

division. The inverse lifting steps can be obtained similarly using (3.11) and (3.12).

In this study, the wavelet and scaling filters construction is based on dyadic

refinement of linear B-spline scaling function. The lifting scheme of this wavelet

construction based on linear B-spline scaling function is composed of only two com-

posite lifting steps in each of 2D DWT decomposition: one composite s-lifting step

followed by one composite w-lifting step. The parameters in (3.15) and (3.16) are

α = 1, α̃ = −1
2
, β = 1, and β̃ = 1

4
. Fig. 33 shows the scaling coefficients after one,
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(a) (b) (c)

Fig. 33. DSWT of Fig. 28(d) (a) Scaling coefficients after one decomposition of

DSWT. (b) Scaling coefficients after three decomposition of DSWT. (c) Scal-

ing coefficients after five decompositions of DSWT

three, and five decompositions of Fig. 28(d) by using this new lifting scheme. Fig.

30(d)-(f) shows the scaling coefficients of another customized shape shown in Fig.

30(c), in which there is an extraordinary landmark with valence three. This exam-

ple (shown in Fig. 30) demonstrates that DSWT of arbitrarily customized training

shapes can be constructed accordingly.

3. Wavelet Distribution Model

Since the rank of covariance matrix Cx in PDM is at most N − 1, the number of the

valid principle axes corresponding nonzero eigenvalues is at most N − 1. Typically, it

is the case that n� N in the 3D SSM. The number of the principle axes may not be

sufficient enough to well-represent a shape with a large number of landmarks. More-

over, since each shape in PDM is a global linear combination of principle axes, PDM

may not be able to capture fine shape details. Davatzikos et al. [60] first proposes

multiscale SSM to solve this problem. Several studies applying different multiscale

analysis to SSM are proposed such as spherical wavelet on spherical topology [61],

subdivision based surface wavelet [62] on spherical topology, and diffusion wavelet on

arbitrary surface topology [63].
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In the following, DSWT will be incorporated with PDM to form a multiscale

SSM. The training shapes in the model space are decomposed into multiscale rep-

resentations, and a PDM is built in the subspace associated with each scale. This

wavelet-based SSM is called wavelet density model (WDM). For simplicity of nota-

tion, all the scaling coefficients at 0-scale will be viewed as wavelet coefficients at

(−1)-scale. Let ŵi,k,l be DSWT of S̃i at scale l, spatial location k, shape i. Define

a collection of wavelet coefficients Bi,l = {ŵi,k,l, ∀k} at each scale, and concatenate

them to form wi,l ≡ (ŵT
i,0,l, ŵ

T
i,1,l, . . . )

T . Finally, PCA is performed on wi,l at each

scale over all the training shapes to obtain the matrices Pl of eigenvectors. A set

of wavelet coefficients w̃l of a shape at specific scale l can be generated by a shape

parameter b̃l

w̃l = w̄l +Plb̃l (3.17)

Similarly, the wavelet coefficients wl of any shape at scale l can be approximated by

projecting wl onto the subspace of Pl

wl ≈ w̄l +Plbl (3.18)

with

bl = PT
l (wl − w̄l) (3.19)

It can be found that the total number of the eigenvectors in the model is increased by

around J times. Similarly, the algorithm of minimizing (3.5) can be developed and is

summarized in Algorithm 5.

4. Image Feature Model

In addition to WDM, IMF is built by using training images and shapes (before per-

forming Procrustes alignment) to describe the image features embedded on the land-

marks in the image space. For each of the landmarks of Si in the image space, a line
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Algorithm 5 A similar algorithm analogous to Algorithm 4 when WDM is used.

bl ← 0

while Until convergence do

wl ← w̄l +Pbl; generate wavelet coefficients in the model space using (3.17).

x←W−1(wl); Calculate inverse DSWT of wl.

Calculate T by minimizing ‖y − T (x)‖2 using [57]

x′ ← T −1(y); calculate inverse spatial transformation of y

wl ←W(x′); Calculate DSWT of x′

bl ← PT
l (wl − w̄l); calculate the shape parameters fitting wl using (3.19).

Apply shape constraints on bl analogous to (3.6)

end while

L passing through it and perpendicular to the shape is calculated [Fig. 34(a)]. Then

L is uniformly sampled to obtain a set of ordered 2M+1 points {zm}Mm=−M (M points

on each side). Image intensities along the line can be interpolated at each point zm.

Fig. 34(b) illustrates a set of the sampled points along L and their image intensities.

An image feature vector g (such as first order derivative of image intensity) can be

calculated using the interpolated image intensities. Let ḡ and Sg be the mean and

covariance matrix of g over all the training images. The IFM is characterized by ḡ

and Sg.

In our study, three kinds of image features are calculated: zero order (g(0)), first

order (g(1)), and second order (g(2)) derivatives of image intensity. g(i) is normalized

by ‖g(i)‖ in order to avoid the effect caused by non-calibration in CBCT imaging.

E. Base Invariant Wavelet Active Shape Model

Once the statistical models are built, we will calculate the outer surface of anterior

wall of maxilla in a CBCT image by using statistical priors of the statistical models. In
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Fig. 34. The image profile in IFM. (a) At each of the landmarks, a line L (dashed

line) perpendicular to the training shape in the image space is defined for

calculating the image feature. (b) The interpolated image profile on sample

points along line L. Without loss of generality, z0 is the landmark.

the following, we propose a novel model-based algorithm called base invariant wavelet

active shape model (BIWASM) based on WDM with an initialization method called

customized wavelet base intialization (CWBI) to calculate it. A brief flowchart is

summarized in Fig. 35.

1. Preliminary Studies

In the following, we will introduce two model-based segmentation algorithms ASM

and WASM and one of the most common initialization methods called RBI. ASM is

introduced by Cootes et al. [64] and is an active contour iterative searching algorithm

using PDM. WASM is the variation of ASM by applying multiscale analysis and is

introduced in [60] using WDM. The final shape can be calculated by RBI followed by
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BIWASM (Section E.3)BIWASM (Section E.3)BIWASM (Section E.3)

CWBI (Section E.2)CWBI (Section E.2)CWBI (Section E.2)

CBCT Image

Final shape

Manual selection of points 
(Section E.1) 

Manual selection of points
(Section E.1) 

Manual selection of points 
(Section E.1)

Fig. 35. The flowchart of performing the proposed CWBI and BIWASM.

two-step iterative shape searching of WASM (ASM) based on WDM (PDM).

RBI can be one of the most simple initializations for ASM and WASM. The

mean shapeW−1({w̄l, ∀l})4 [See (3.17)] in the model space can be viewed as the most

probable shape for initialization. The initial shape can be obtained by transforming

the mean shape from the model space to the image space. Therefore, RBI can be

performed in two steps. The first step of RBI is to use user interaction to select a

number of the points in the image space described in Appendix C. They correspond

to control landmarks of the mean shape. The control landmarks of a shape are defined

based on the construction of the training shape and are described as follows. In Fig.

4It can be shown that mean shapes of PDM and WDM are exactly the same given
the same training shapes are used, i.e. x̄ [See (3.2)] =W−1({w̄l, ∀l})
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28(a), 9 anatomical control landmarks of the training shape form a mesh at 0-th

subdivision. After any level of subdivision is performed, new landmarks are added.

It can be observed that these 9 landmarks exist in the remeshed training shape at

each level of subdivision. We define these 9 landmarks as control landmarks of a

shape. Fig. 36(a) shows these enumerated 9 control landmarks [they correspond

to anatomical 9 control landmarks of the mesh at 0-th subdivision in Fig. 28(a)].

Therefore, there are 9 corresponding control landmarks in the mean shape. The

selection of the points in RBI is based on the assumption: if we were able to know

the true shape5 (in the image space) composed of regularized landmarks with the

same mesh structure as the shape in SSM, each of these selected points (in the image

space) is assumed to be exactly one of the control landmarks on the true shape (in

the image space). Furthermore, the selection criterion in RBI is the same as the

configuration of anatomical control landmarks for training shapes demonstrated in

Fig. 24(a). However, the datasets used for selection of the points are different: the

points selected for calculation of initial shape are pinpointed on slices of the image

using user interaction (Appendix C); and the points selected for patch decomposition

and shape extraction in Section C.1 are pinpointed on the ground truth of bone

surface. Two examples of point selection for calculation of initial shape in RBI are

shown in Fig. 36(a) and Fig. 36(b). The first example is that we can select 4 points

corresponding to 4 of the control landmarks (such as the corner control landmarks)

of the mean shape (in the model space). The second example is that we can select 9

points corresponding to 9 control landmarks of the mean shape (in the model space).

At the second step of RBI, a transformation from the model space to the image space

can be calculated by registering these selected points (in the image space) and their

corresponding control landmarks of the mean shape (in the model space). The initial

5The true shape means the most ideal shape
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(a) (b) (c)

Fig. 36. Control landmarks of a shape. (a) Nine control landmarks of a shape are

defined and derived from anatomical control landmarks of the mesh at 0-th

subdivision in Fig. 28(a). (b) Four selected points using user interaction

(Appendix C). These points with labeled numbers are assumed to be eactly

the same as the corresponding (See the corresponding numbers) control land-

marks of the true shape. (c) Nine selected points correspond to all the control

landmarks of the true shape.

shape calculated by RBI using 9 selected points is illustrated in Fig. 37(a)

The first step of iterative shape searching of WASM (ASM) is that given a shape

ỹ(k) in the image space at the kth iteration, each candidate landmark is examined

along the line passing through it and perpendicular to the evolving shape ỹ(k) by

using IFM. Similar to the notation in Section D.4, a set of ordered 2K + 1 points

{zm}Km=−K can be acquired along the line, where K > M . The image feature vector

g̃ ≡ (g−K , g−K+1, . . . , gK) with length 2K +1 can be calculated. A searching window

defining a temporary image feature vector gm ≡ (g−M+m, g−M+m+1, . . . , gM+m), m =

−(K −M), . . . , (K −M) with length 2M + 1 scans the image feature vector g̃. The

candidate landmark zm̂ can be selected among {zm}(K−M)
m=−(K−M) so that

m̂ = argmin
m

f(gm) (3.20)

Where f ≡ (g − ḡ)TS−1
g (g − ḡ) is Mahalanobis distance evaluated at g. The land-

marks calculated by 3.20 form a new evolving shape y(k).
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(a)

(b)

Fig. 37. The initial shapes. (a) The initial shape (accompanied with a slice in the

image space) calculated by RBI using 9 selected points. (b) The initial shape

(accompanied with a slice in the image space) calculated by CWBI using 9

selected points.

It can be observed that when the distribution of g is assumed to be jointly Gaus-

sian, (3.20) is equivalent to finding a image feature vector maximizing the probability

of a joint Gaussian distribution and then assigning the center point of the optimal

image feature vector g to be the candidate point. However, this assumption is not

appropriate in our study. Therefore, we set the covariance of image feature vector

to be identity, i.e. Sg = I. Furthermore, a new evaluation function in (3.20) for

candidate landmarks is defined as f̃ ≡ f (0) + f (1) + f (2) in our study, where f (i) is

Mahalanobis distance for image feature vector g(i)

The second step of iterative shape searching of WASM (ASM) is to generate

a shape in the model space and transform it to obtain a shape ỹ(k+1) in the image

space in order to fit y(k). ỹ(k+1) can be calculated by minimizing ‖ỹ(k+1)−y(k)‖2 using

Algorithm 5 (Algorithm 4). The algorithm of WASM (ASM) is summarized in

Algorithm 6.
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Algorithm 6 WASM (ASM)

while Until convergence do

y(k) ← ỹ(k); calculate a candidate shape by examining the neighboring region of

each of the landmark points.

ỹ(k+1) ← y(k) ; given y(k), calculate ỹ(k+1) by minimizing ‖ỹ(k+1) − y(k)‖ using

Algorithm 5 (for WASM) or Algorithm 4 (for ASM).

end while

2. Customized Wavelet Base Initialization

Although RBI incorporated with user interaction can quickly generate an initial

shape, this initial shape contains only information of the mean shape, i.e. bl = 0 (in

WASM) or b = 0 (in ASM). We will exploit the information of selected points to

design a customized initial shape by using WDM.

Let Sb be the mesh formed by 9 selected points by using user interaction on

slices of images illustrated in Fig. 36(c). Assume yb is the 27 × 1 vector formed by

concatenation of the coordinates of all the points in Sb. Define

f(T ,bl, ∀l) ≡ ‖yb − T
(
x̃(bl, ∀l)

)
‖2 (3.21)

where

x̃(bl, ∀l) ≡ C
(
W−1(w̄l +Plbl, ∀l)

)
. (3.22)

C(•) is the operator identifying the corresponding control landmarks from a shape in

the model space and concatenating the coordinates of all the control landmarks to

form a 27× 1 vector (same formation as yb). Therefore, x̃(bl, ∀l) is a 27× 1 vector.

To generate a better initial shape, we need to calculate optimal T ∗ and b∗
l , ∀l so
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that (3.21) is minimized:

(T ∗,b∗
l , ∀l) = arg min

T ∗,b∗
l ,∀l

f(T ,bl, ∀l) (3.23)

The initial shape can be determined by

ỹ(0) = T ∗
(
W−1(w̄l +Plb

∗
l , ∀l)

)
(3.24)

It can be observed that f(T ,bl, ∀l) is a non-linear function. We can use sim-

ulated annealing approach to solve it. However, this optimal searching approach is

computationally expensive. Therefore, in this study, we propose a simple and efficient

approach (CWBI) to estimate an initial shape as follows.

There are two observations for Catmull-Clark subdivision and DSWT of a train-

ing shape. The first observation is as follows. Each of the training shapes is remeshed

using Catmull-Clark subdivision to generate landmarks [Fig. 28(d)]. To construct

WDM, each of the remeshed shapes with regularized landmarks is aligned to the

model space using Procrustes alignment and decomposed into scaling coefficients and

wavelet coefficients by DSWT. Based on the construction of DSWT described in Sec-

tion D.2, the scaling coefficients at each scale correspond to the landmarks at each

level of subdivision (i.e. they have same mesh structure). For example, when the

scale coefficients at coarsest scale [Fig. 33(c)] is reached, they correspond to the mesh

at 0-th Catmull-Clark subdivision [Fig. 28(a)]. Although the mesh of the scaling

coefficients at each scale and the remeshed training shape at its corresponding level

of Catmull-Clark subdivision have the same mesh structure, they are defined in differ-

ent ways: the former is in wavelet domain, and the latter is in the model space. The

second observation is as follows. In each training shape, there are 8 vertices at the

boundaries of the base mesh and one vertex at the central area of the base mesh [Fig.

28(a)]. Since the operation of Catmull-Clark subdivision on these 8 corresponding
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vertices at the boundaries of the training shape cannot be well-defined using Algo-

rithm 3 at each level of subdivision, these vertices at the boundaries of the training

shape are unchanged at each level of subdivision. Similarly, when the remeshed

training shape is decomposed into wavelet coefficients and scaling coefficients, the

corresponding 8 scaling coefficients at the boundaries of the scaling mesh cannot be

well-defined using (3.15) at each scale. These 8 corresponding scaling coefficients at

the boundaries of scaling meshes are kept unchanged during wavelet decomposition

at each scale of DSWT. Therefore, the values of these 8 corresponding vertices at the

boundaries of the training shape are unchanged at all levels of Catmull-Clark subdi-

vision and the same as the values of the corresponding 8 scaling coefficients of scaling

meshes at all scales of DSWT. For example, the values of 8 vertices at the boundaries

of the mesh illustrated in Fig. 33(a) are exactly the same as the corresponding 8

scaling coefficients at the boundaries of the coarsest scaling mesh illustrated in Fig.

28(c). However, the values of the vertex at the central area of the mesh are usually

not equal to the values of its corresponding scaling coefficient at the central areas of

the coarsest scaling mesh.

Based on two observations above, we claim that there exists bl, l ≥ 0 so that the

value of each element in x̃(bl, ∀l) [see (3.22)] can be approximated by the value of

each element in w̄−1 +P−1b−1 given b−1:

x̃(bl, ∀l) ≈ w̄−1 +P−1b−1 (3.25)

Based on the assumption in (3.25), we reduce complexity of the problem in (3.23) by

calculating

(T ∗,b∗
−1) = arg min

T ,b−1

‖yb − T (w̄−1 +P−1b−1)‖ (3.26)

(3.26) can be solved (approximately) using Algorithm 4 without applying shape

constraints. Let Tb be the suboptimal transformation of (3.26). It will be used to
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define a transformation between the model space and image space and will play an

essential role in the proposed BIWASM. A new base in the model space is defined by

x̃b ≡ T −1
b (yb) (3.27)

We define a new scaling coefficient w−1,b at the coarsest scale by assigning the values

of w−1,b to be x̃b. Based on the similar assumption in (3.25), we claim that there

exists bl, l ≥ 0 so that

x̃b ≈ C
(
W−1(w−1,b ∪ {w̄l +Plbl, ∀l ≥ 0})

)
(3.28)

By combining local details using the mean wavelet coefficients {w̄l, l ≥ 0} of WDM,

the initial shape can be constructed by

ỹ(0) = Tb
(
W−1(w−1,b ∪ {w̄l, l ≥ 0})

)
(3.29)

Algorithm 7 summarizes CWBI. Fig. 36(b) illustrates the initial shape generated

by the proposed CWBI.

Algorithm 7 Customized Wavelet Base Initialization (CWBI)

Tb ← (yb,P−1, w̄−1); use Algorithm 4 to calculate the suboptimal transformation

Tb of (3.26) without shape constraints.

x̃b ← T −1
b (Sb)

w−1,b ← x̃b; define a new scaling coefficients w−1,b at the coarsest scale based on

the assumption of (3.28) and set it equal to x̃b.

x←W−1(w−1,b ∪ {w̄l, l ≥ 0})

ỹ(0) ← Tb(x)
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3. Base-Invariant Wavelet Active Shape Model

In most of the studies, the shapes of subjects are closed surfaces such as spherical

topology [45,61,65–68], open surfaces representing most of the whole subject [63,69],

and tubular topology [70]. The shape in our study is different. It is a partial surface in

skull model and is a shape-customized open surface with closed boundary. We observe

that WASM and ASM may become unreliable in order to recognize the corresponding

partial surface in the skull model. At the first step of WASM and ASM, they recognize

the topology of the true partial shape by searching for the topology of neighboring

candidate landmarks. The candidate landmarks at the boundary of this open surface

are most likely to be out of the true shape (such as the parts of maxilla near nasal

bones and orbits). Once the candidate landmarks out of the true shape, the evolving

shape at the second step of WASM and ASM will erroneously fit these candidate

landmarks. This is because WASM and ASM are involved with update of T from

the model space to the image space. Therefore, it is necessary to incorporate selected

points Sb defined in Section E.2 to constrain the evolving shape.

Based on the concept in Section E.2, we design a new model-based algorithm

(BIWASM) based on WDM to overcome this problem. It is similar to WASM, but

the differences are described as follows. First, the transformation between model space

and image space is no longer be calculated during the iterative steps. Tb in (3.27) is

used to define this invariant transformation. Second, the coarsest scaling coefficients

w−1,b will be used instead of generating a new coarsest scaling coefficients w−1 using

(3.17). Third, to keep the evolving shape constrained by the selected points Sb, the

control landmarks of the evolving shape corresponding to Sb in the image space will be

unchanged during the iteration of BIWASM. The proposed BIWASM is summarized

in Algorithm 8.
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Algorithm 8 Base Invariant Wavelet Active Shape Model (BIWASM)

(ỹ(0), Tb,w−1,b)← (yb,P−1, w̄−1); use Algorithm 7 to calculate the initial shape,

the transformation, and scaling coefficients at the coarsest scale.

while Until convergence do

y(k) ← ỹ(k); calculate a candidate shape by examining the neighboring region of

each of the landmark points, and the corresponding control landmark points in

y(k) are replaced with Sb.

x′ ← T −1
b (y(k)); calculate inverse transformation of y(k)

wl ←W(x′); DSWT.

bl ← PT
l (wl − w̄l), l ≥ 0; calculate the shape parameter fitting wl using (3.19).

Apply the constraints on bl, l ≥ 0 using (3.6)

wl ← w̄l +Pbl, l ≥ 0; generate wavelet coefficients using (3.17)

x←W−1(w−1,b ∪ {wl, l ≥ 0}); inverse DSWT.

ỹ(k+1) ← Tb(x);

end while
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Fig. 38. The flowchart of data preparations.

F. Validations and Results

Nineteen sets of CBCT images were used for the validation. Their ground truths

of bone surface were manually established as described in Section B. They served

as a control group. The outer surfaces of anterior wall of maxilla, illustrated in

Fig. 22, were segmented using our BIWASM with CBWI. The same images were also

segmented using ASM with Registration-Based Initialization (RBI), WASM with RBI,

and WASM with CWBI, respectively. They all served as an experimental group.
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1. Data Preparation

The segmentation dataset, referred as the datasets to test segmentation approaches,

were labeled Di, i = 1, 2, . . . , 19. Each of the segmentation datasets Di consisted of a

set of CBCT volumetric images (target datasets) and its corresponding ground truth

of bone surface. The model datasets, referred as the training datasets in the base

invariant active shape model, were defined by 19 shapes and 19 sets of CBCT volu-

metric images. They were labeled Mi, i = 1, 2, . . . , 19 in the same order. Those 19

shapes were extracted from 19 ground truths of bone surface and were decomposed

into patches using the approaches described in Section C.1. Nine anatomical con-

trol landmark points were pinpointed to form four patches in each of the shapes as

illustrated in Fig. 24(a) and (b). The patches in each of the shapes were parameter-

ized (Section C.2), subdivided five times, remeshed, and stitched to form a remeshed

shape (Section C.3) with 4225 regularized landmarks (illustrated in Fig. 28(d)).

Once N model datasets were built as training datasets, one segmentation (target)

dataset, other than N model datasets, was used to compare our developed approaches

to the three traditional approaches. The preparation of target dataset was completed

in the following four steps and summarized in Fig. 38. Step 1 was landmark digitiza-

tion. Nine control landmarks were digitized interactively as described in Section E.1

for initialization. They were selected based on the same criterion as control landmarks

illustrated in Fig. 24(a). A set of 9 landmarks was digitized in each segmentation

dataset. Once digitized, these landmarks were used for all the experiments. Step 2

was initialization. The digitized control landmarks were used to create two initial

shapes using two initialization methods: RBI and our newly developed CWBI. RBI

was used to register these selected control landmarks of the shapes in the image space

and their corresponding control landmarks of mean shape in the model space, and

to transform the mean shape in the model space into the image space. The resulted
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initial shape served as the input of ASM and WASM. CWBI was used to calculate a

transformation between the image space and the model space by using those 9 selected

points. It was also used to add the mean local details using WDM to obtain an initial

shape. The resulted initial shape served as the input of WASM and BIWASM. Step

3 was to calculate the final shapes. The shapes initialized by RBI were fed into ASM

and WASM approaches respectively, resulting in ASM-RBI and WASM-RBI final

shapes. They represented the final shapes calculated by the traditional approaches.

In addition, the shapes initialized by CWBI were fed into WASM approach and our

newly developed BIWASM approaches respectively, resulting in WASM-CWBI and

BIWASM-CWBI final shapes. While WASM-CWBI shape represented the outcome

generated using our initialization and the traditional segmentation approaches, the

latter represented the outcome generated using both our developed initialization and

final segmentation approaches. During the computation, the number of the iterations

in ASM and WASM approaches (Algorithm 6) is 20. The number of the iterations

in BIWASM (Algorithm 6) is 20. The maximum number of the iterations in Al-

gorithm 4 is 40, and 10 in Algorithm 5. We intentionally reduce the maximum

iterative number in Algorithm 5 to 10 instead of 40. This was because DSWT was

computationally expensive. In all of ASM, WASM, and BIWASM approaches, 23

points (K = 12) were sampled along a line perpendicular to landmarks in order to

exam neighboring region and find candidate landmarks. The sample distance was

0.2mm. In addition, the shape constraints were a = 3 for both b in PDM and bl

in WDM. This step produced four kinds of final shapes: ASM-RBI, WASM-RBI,

WASM-CWBI, and BIWASM-CWBI. Step 4 was to compare the ground truth to the

final shapes generated by different approaches. It was done by calculating surface

deviations, the closest distances, and Hausdorff distance between the ground truths

and the final shapes generated in step 3. Surface deviation was a set of the closest
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distances between the landmarks of the ground truth and the final shape. Hausdorff

distance was also calculated. Therefore, there were 4225 surface distances and one

Hausdorff distance produced from each target dataset. The validation was achieved

by two sets of comparisons. In the following, the first set of the comparisons was to

detect the variabilities amongst 4 approaches when the number of training datasets

was static. The second set of comparisons was to detect the variabilities amongst

4 approaches when the number of training datasets was dynamic. In addition, the

computational times were also compared amongst the 4 approaches.

The first set of comparisons was conducted using leave-one-out arrangement

(cross validation). Six groups (total of 69) leave-one-out experiments were conducted:

i = 1, 2, . . . , 19 (19 experiments), i = 1, 2, . . . , 16 (16 experiments), i = 1, 2, . . . , 13

(13 experiments), i = 1, 2, . . . , 10 (10 experiments), i = 1, 2, . . . , 7 (7 experiments),

i = 1, 2, . . . , 4 (4 experiments). The dataset was randomly selected using SPSS soft-

ware. In each experiment, the target dataset was excluded from the training datasets.

For example, in the second group, the experiment of the datasets i = 1, 2, . . . , 16 was

conducted using Mi, i = 1, 2, . . . , 11, 13, . . . , 16, and the target D12 dataset was ex-

cluded from the training dataset. After final shapes were generated by four approaches

(ASM-RBI, WASM-RBI, WASM-CWBI, BIWASM-CWBI), they were compared to

their ground truths. In each of the six groups of experiments, the mean and standard

deviation of surface distances were calculated over 80275 (19 × 4225), 67600 (16 ×

4225), 54925 (13 × 4225), 42250 (10 × 4225), 29575 (7 × 4225), and 16900 (4 ×

4225) surface distances, respectively. The mean Hausdorff distances was also calcu-

lated over the 19, 16, 13, 10, 7 and 4 final shapes, respectively. The results are shown

in Fig. 39 (a)-(c).

The second set of comparisons was conducted by using 13 segmentation datasets

Di, i = 1, 2, . . . , 13 and varying the number of model datasets by 12, 15, and 18.
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Fig. 39. (a), (b), and (c) are mean surface distances, standard deviation of surface

distances, and mean Hausdorff distances in the first set of the experiements.

(d), (e), and (f) are mean surface distances, standard deviation of surface

distances, and mean Hausdorff distances in the second set of the experiements.
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The dataset was also randomly selected using SPSS software. Three groups of the

datasets were used to conduct 39 experiments. Again, the target dataset was excluded

from the training datasets. The first group of the datasets were Di, i = 1, 2, . . . , 13

and Mi, i = 1, 2, . . . , 13. Each experiment was conducted by choosing one seg-

mentation dataset from Di, i = 1, 2, . . . , 13, and the rest 12 model datasets from

Mi, i = 1, 2, . . . , 13. The second group of the datasets were Di, i = 1, 2, . . . , 13

and Mi, i = 1, 2, . . . , 16. Each experiment was conducted by choosing one seg-

mentation dataset from Di, i = 1, 2, . . . , 13, and the rest 15 model datasets from

Mi, i = 1, 2, . . . , 16. The third group of the datasets were Di, i = 1, 2, . . . , 13 and

Mi, i = 1, 2, . . . , 19. Each experiment was conducted by choosing one segmenta-

tion dataset from Di, i = 1, 2, . . . , 13, and the rest 18 model datasets from Mi, i =

1, 2, . . . , 18. In each group, 13 experiments were conducted using each segmentation

approach, respectively. Means and standard deviations of surface distances were cal-

culated over 54925 (13 × 4225) surface distances, respectively. The mean Hausdorff

distances were also calculated over the 13, 13, and 13 final shapes, respectively. The

results are shown in Fig. 39 (d)-(f).

2. Results

The results (Fig. 39) showed that our BIWASM-CWBI approach outperformed the

others in each of six groups (the first set of comparisons) and in each of three groups

(the second set of comparisons). It also indicated that the more accurate result was

achieved with more training dataset. The results indicated that our BIWASM-CWBI

approach was capable of capture the outer surface of thin bones (1mm) in the skull

model. Fig. 40 shows the visualization of the evolving shapes and the ground truth in

a single experiment. This single experiment was in the first set of experiment based

on Di and Mi, i = 1, 2, . . . , 16, 18, 19.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 40. The initial and final shapes (blue meshes) calcuated by four approaches using

the segmentation dataset (D17) and 18 model datasets. (a) The left half of

the anterior surface of the skull is segmented and extracted manually from

the ground truth of bone surfaces to validate the results. It is visualized as

the red mesh in the rest of the subfigures. (b) and (e) are the initial and final

shapes in ASM-RBI, respectively. (c) and (f) are the initial and final shapes in

WASM-RBI, respectively. It can be found (b) and (c) are the same when they

are calculated using RBI under PDM and WDM. (d) is the initial shape in

both WASM-CWBI and BIWASM-CWBI. The final shapes in WASM-CWBI

and BIWASM-CWBI are shown in (g) and (h), respectively.
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Table VI. The Computation Times in the First Experiment

ASM-RBI WASM-RBI WASM-CWBI BIWASM-CWBI

164s 575s 618s 205s

Finally, the computational times of the 4 approaches are presented in Table

VI. This was calculated in the first set of experiment based on Di and Mi, i =

1, 2, . . . , 16, 18, 19. The computer was Intel i7 2.8Hz with 4G RAM. The result re-

vealed that the computational time of our approach was comparable with that of

ASM-RBI and significantly shorter than WASM-RBI and WASM-CWBI.

G. Discussion

The correspondence of landmarks over all the training shapes can be properly con-

structed structually and geometrically by using patch decomposition and mesh sub-

division. In Section C, the training shapes are extracted from ground truths of bone

surfaces. Each of the training shapes is partitioned into several polygon-like patches.

These patches can be customized according to anatomical structures of the training

shapes. When the boundaries of patches are chosen along high curvature ridges and

edges of the training shapes, structural shape correspondence is created. When each

of the patches is characterized by smooth surface and barely has prominent features,

the correspondence of landmarks among the corresponding patches can be constructed

geometrically by regular subdivision. The shape correspondence constructed by patch

decomposition and regular subdivion can be done in a short time compared to the

description length approach for model building in [68]. This approach may take hours

to days to build a 3D SSM.
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The shortest path used to create boundaries of patches is different from other

studies. In [65, 71–73], they use Dijkstra’s algorithm to define patches. It will lead

to zigzag boundaries along the patches. Barycentric mapping used to calculate pa-

rameterization of patches is simple and fast. It requires the boundary of a patch to

be fixed onto a convex topology. However, if the boundary of the convex topology

cannot reflect the 3D boundary of the patch, high distortion on parameterization

mapping will occur near the boundary [74]. Therefore, the shortest path calculation

we apply in the study can prevent it since the patch boundary resembles straight

lines on the mesh. Regarding the computational time of shortest path calculation in

our study, the calculation of each shortest path in Fig. 24 (b) requires from 2s to 5s.

Hence, patch decomposition on each of the training shapes used in our study can be

completed in less a minute.

WDM provides more dimensions and captures more local features to model a

shape than PDM. However, it does not mean WASM can always outperform ASM.

We will have two observations from the results to demonstrate it. First, it can be

found in the studies of Davatzikos et al. [60] and Nain et al. [61] that there are no sig-

nificant differences of mean distance between ASM and WASM in occasional circum-

stances when the number of the models are increased. Our results also demonstrate

the point. The mean distances in ASM-RBI and WASM-RBI have no significant dif-

ferences when at least 15 models are used [shown in Fig. 39 (a) and (d)]. Second, the

STD distance and Hausdorff distance in WASM-RBI are larger than that in ASM-

RBI. By visualizing the results on a single case in Fig. 40, the shape at the boundary

is distorted in both WASM-RBI and ASM-RBI. WASM-RBI has higher dimensions

to capture this distortion while ASM-RBI has fewer dimensions to capture it (instead,

ASM-RBI constrains it). Therefore, ASM-RBI has smaller Hausdorff distance than

WASM-RBI. Since WASM-RBI still captures local details better than ASM-RBI, it
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is explained that the range (STD) of surface distance in WASM-RBI can be larger

than that in ASM-RBI.

According to the results shown in Fig. 39, our approach BIWASM-CWBI can

achieve mean surface distance as low as 0.25mm and standard deviation of surface

distance less than 0.2mm. Due to the limitation of CBCT, transition of image in-

tensities from soft tissues to bone is very smooth. The thinnest visible anterior wall

in CBCT image can be as small as 1mm6. It means that our approach can capture

the outer surface of maxillary thin bones without significant loss of the shapes in

the skull model. Quantitatively, we can expect our BIWASM-CWBI incurs 0.25 ±

0.2 surface errors when performing any kinds of surgical planning and simulations in

CASS system. Based on our clinical experience and published literature [15, 75–77],

there would be no clinical significance if the surface error is less than 0.5mm. There-

fore, we demonstrate that our approach BIWASM-CWBI is robust in building CBCT

skull model for CASS.

6This measurement is based on our experiences on CBCT datasets. The real bone
thickness of anterior maxillary walls can be smaller than 1mm.
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CHAPTER IV

REGION OF INTEREST RECONSTRUCTION AND DOSE REDUCTION

ESTIMATION IN COLLIMATED CONE-BEAM COMPUTED TOMOGRAPHY

IMAGING∗

A. Introduction

Circular scanning cone-beam computerized tomography (CBCT) with C-arm flat

panel detectors (FPD) has become a prevalent 3-dimensional (3D) imaging system

for clinical application. Its fast acquisition of 2-dimentional (2D) projections and re-

construction of 3D volumetric image allow the feasibility of interventional radiology

procedures [78]. The mobile Carm system provides full access to patient without

detrimentally repositioning in the operating room. Advanced post-processing such

as scatter correction, beam hardening correction, truncation correction, and ring cor-

rection has been developed for achieving low contrast imaging of CBCT instead of

increasing radiation dose for the same contrast resolution [79].

Because the x-ray tube in CBCT generates rays in all directions, collimators are

used for eliminating unnecessary x-ray beams outside the field of view (FOV) where

imaging is not necessary and reducing scatter effect; the last proved to degrade image

quality [80]. They restrict the x-ray beams such that the FOV exactly fits the whole

area of FPD. When imaging a large object such as the body core, this may cause

mild truncation on projection data. The object is entirely visible at several views of

the x-ray tube, but truncation occurs at the other views. The reconstruction leads

∗Part of the content described in this chapter is reprinted with permission from
”Dynamically collimated c-arm flat panel detector CT imaging for focused region-of-
interest reconstruction and radiation dose reduction” by S. Fung, Y. B. Chang, R.
Pino, E. Hui, X. Zhou, M. Alvarado, G. Benndorf, M. diaz, R. Klucznik, Z. Xiong, S.
Wong, and K. Li, 2011, Proc. of ASNR 49th Annual Meeting, Seattle, WA, Copyright
2011 by ASNR



97

to bright band artifacts extending inside scan FOV and incorrect image intensity

around the edges of scan FOV while part of reconstructed image is not distorted [81].

A number of truncation correction techniques have been proposed in [82–86].

Collimators can be designed as variable diaphragms including two movable pieces

of lead in the longitudinal direction (perpendicular to the plane of the circular tra-

jectory) and two in the transverse direction (tangential to the circular trajectory).

This design makes region of interest (ROI) imaging available in CBCT, and imaging

a desired region of the patient becomes on demand in order to reduce the radiation

dose exposure to both patients and surgeons. As the collimators customize a FOV

to fit a ROI completely encompassed in the patient, projection images at all views

contain truncations. This situation is well-known as the interior problem and is not

solvable by general analytical reconstruction approaches. Although some studies have

discussed the capability of other reconstruction algorithms on this problem [87–89],

the truncation correction technique may be an alternative and practical approach to

help reconstruct ROI image if the image quality remains acceptable. The purpose of

this prospective study was to investigate the feasibility of imaging as a small ROI as

possible using collimators and to estimate the amount of reduction on radiation dose

for CBCT system.

B. Materials and Methods

1. CBCT Imaging System and Collimators

The CBCT imaging was based on the C-arm FPD system (Siemens Medical Solutions,

Forchheim, Germany), and the physical specifications of the CBCT system are shown

in Table VII. Fig. 41 illustrates the geometry of the CBCT system with collimators.

The collimators are between the object and the x-ray source and are made of lead

with a thickness of 5mm. They can be adjusted transversely and longitudinally to
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Table VII. Physical Specifications of the CBCT System.

Source-to-detector distance 1200mm

Source-to-isocenter distance 750mm

Size of the detector 300 × 400mm2

Size and resolution of projection images 1240 × 960 (0.308mm × 0.308mm)

Number of projections 543

Scan angle 220◦

Scan time 20s

customize an open rectangular area according to the ROI. Since the lead shield with a

thickness of 1.1 mm can attenuate 100 kV x-ray beams to 0.1% [90], these lead-made

collimators are enough to reduce the intensity of x-ray beams close to zero. The full

field imaging is expressed as ”without collimation” when the open area is large enough

to allow the x-ray beams to be projected onto the full field of the detector. In contrast,

”with collimation” means the collimators are adjusted to customize a smaller open

area such that only the ROI is imaged. The transverse length and longitudinal width

of rectangular projection images customized by collimators are defined as Ct and Cl,

respectively. The projection images were stored in integers with a range of [32,4096].

2. ROI Reconstruction Using Truncation Correction

Cylindrical polystyrene phantom with 30mm diameter and 25mm eight is used as

the object in the ROI and water as the background. The cylindrical polystyrene was
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Fig. 41. ROI imaging with movable collimators. The longitudinal collimators can be

adjusted in the longitudinal direction, and the transverse collimators in the

transverse direction. The open area is customized according to the size of

ROI.

stack above a cylindrical plastic water phantom with the same size inside a water tank.

These materials and background provide constant attenuation coefficients which can

clearly show the variation of ROI images. The projection of the cylindrical polystyrene

was in the isocenter of the detector at all views. Three experiments were done: the

first was ”without collimation”, and the other two were ”with collimation”; they

are with Ct = 150mm, Cl = 83mm, and with Ct = 110mm, Cl = 77mm. The last

experiment ”with collimation” was conducted with the smallest ROI such that the

projection of the cylindrical polystyrene exactly fits FOV at all views. First, the

projection data was exported from the CBCT system for truncation compensation.
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Fig. 42. Illustration of truncation correction. (a) The projection image without trunca-

tion and the coordinate definition. (b) ur and ul are the edges of the truncated

projection. (c) Extrapolation with mirror symmetry. (d) Cosine weighting.

The intensity of the truncated part of projections is assumed to be 3300 in a range of

[32,4096]. The truncation correction technique is designed as following. Let Pk(u, v)

be the k-th projection image with u−v coordinate, as shown in Fig. 42(a), and assume

it has been converted to an accumulated attenuation projection from intensity-based

on the detector. For simplicity, the index k of Pk(u, v) is ignored. The projection

truncated due to reduced FOV [as illustrated in Fig. 42(b)] is expressed as
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PFOV (u, v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 u > ur

0 u < ul

P (u, v) ul ≤ u ≤ ur

(4.1)

where ur and ul are determined by the right and left edges of the truncated projection

PFOV (u, v). The lengths for extrapolations at the both sides are Nr and Nl, where

0 < Nl, Nr < ur−ul. Based on the symmetric mirroring extrapolation technique [83],

the extrapolated projection (Fig. 42(c)) is

Pex(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
2PFOV (ur, v)− PFOV (−u + 2ur, v)

)
Nr + ur ≥ u > ur(

2PFOV (ul, v)− PFOV (−u+ 2ul, v)
)

ul −Nl ≤ u < ul

PFOV (u, v) ul ≤ u ≤ ur

0 otherwise.

(4.2)

Assume the image variation in ROI is small compared with the magnitudes of PFOV (ur, v)

and PFOV (ul, v). This assumption, in general, is held for a small ROI imaging of a

body or head. Therefore, the extrapolated projection Pex(u, v) is positive under this

assumption:

PFOV (ur, v) > |PFOV (ur, v)− PFOV (−u+ 2ur, v)| (4.3)

PFOV (ul, v) > |PFOV (ul, v)− PFOV (−u+ 2ul, v)| (4.4)

To obtain smooth transition of the extrapolated data to zero, Pex(u, v) is weighted

by

w(u, v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2

(
1 + cos

(
π(u−ur)

Nr

))
u > ur

1 ul ≤ u ≤ ur

1
2

(
1 + cos

(
π(u−ul)

Nl

))
u < ul

(4.5)
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The weighted extrapolation is illustrated in Fig 42(d). The extrapolation lengths Nr

and Nl are assumed to be half of Ct. Secondly, the processed projection data was

imported back to the CBCT system. Finally, the Feldkamp, Davis, Kress (FDK) re-

construction algorithm [91] with ring correction, scatter correction, and overexposure

correction was performed in the CBCT system.

3. Analytical Reconstruction in Collimated ROI Imaging

The imaged object was a head phantom (Phantom Laboratory) with tissue-like ma-

terial and bones. Two experiments were conducted. One was ”without collimation”

imaging, and the other was ”with collimation” imaging with Ct = 130mm and Cl =

130 mm, respectively. The projection images were scaled to [0,1] . The correction

of the noncircular C-arm imaging gantry is not calculated before the reconstruction.

Two reconstruction algorithms were performed in the computer simulation. The one

is the FDK reconstruction algorithm of filtered-backprojection (FBP), the other is

π-line backprojection-filtration (BPF) algorithm [92]. The details implementing the

π-line BPF algorithm are provided in Appendix D.

4. Evaluation of Radiation Dose Reduction

An ”entrance dose” of x-rays is the dose absorbed at the skin surface, where x-ray

beams enter. When x-ray beams enter the body, a small number of beams exit the

body on the opposite side, where the detector is exposed. The rest of beams that

never exit from the body are absorbed as extra energy by the body’s internal organs

and bones. In Fig. 43(a), there is a virtual plane between the collimators and the

patient. This virtual plane is parallel to the detector and close to the top of the

patient. It could be viewed as a virtual entrance of x-ray beams when they are about

to enter the patient body. The entrance dose is defined as energy of x-ray beams
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Fig. 43. Entrance dose calculation. (a) The virtual entrance plane is defined at the

top of the patients. (b) The geometry of projection onto the virtual plane.

(c) The illustration of obliquity effect.

passing through the virtual plane. Let the x-ray intensity be a unit of energy per

unit area, and Es the energy obtained by integrating the x-ray beam intensity with a

small sphere surrounding the x-ray source. In Fig. 43(b), d is the source-to-virtual-

plane distance, O is the origin of the coordinate system of the virtual plane, r is the

distance between the source, and Q is an arbitrary point on the virtual plane. The

intensity IO at the point O is given by

IO =
Es

4πd2
(4.6)

where 4πd2 is the surface area of a sphere with radius d. Assume that the coordinate

of the point Q is (x, y). The intensity IQ at Q is

IQ =
Es

4π(d2 + x2 + y2)
. (4.7)
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From (4.6) and (4.7), IQ becomes

IQ = IO
d2

4π(d2 + x2 + y2)
. (4.8)

The obliquity effect takes place because the surface of the detector is not perpen-

dicular to the direction of x-ray beams propagation. In Fig. 43(c), the x-ray beams

perpendicularly pass through the origin O of the virtual plane. AO denotes the cross-

section unit area of the x-ray beams. The cross-section area of the x-ray beams on

the virtual plane becomes AQ = AO

cos(θ)
when the same x-ray beams with cross-section

unit area AO are projected onto the point Q with an angle θ. The measured intensity

IQ caused by obliquity alone is

I ′Q = IQ cos(θ) (4.9)

where cos(θ) = d
r
.

The combination of inverse square law and obliquity effect is multiplicative. From

(4.8) and (4.9), the overall intensity at the point Q is given by

I ′Q = IO
d3

(d2 + x2 + y2)
3
2

. (4.10)

Let the area projected on the virtual plane within FOV be AFOV , shown in Fig. 43(a).

The entrance dose DE is calculated by integrating I ′Q over the area AFOV as follows:

DE =

∫∫
AFOV

I ′Q dA. (4.11)

Let AFOV,m be the maximal area on the virtual plane when the full field imaging is

applied, and DE,m denotes the corresponding entrance dose. Define entrance dose

relative to that in the full field imaging as

D% =
DE

DE,m
× 100% (4.12)
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Fig. 44. The CTDI head phantom was placed in the center of the trajectory with an

ion chamber inserted alternately at the center and periphery (the solid points).

where D% is the entrance dose relative to the maximal entrance dose DE,m.

Dose measurement was made using a cylindrical CT dose index (CTDI) phan-

tom (ImPACT) with a diameter of 160mm. This is the standard PerspexR CTDI

head phantom with a central hole and four peripheral holes of 10 mm diameter below

the surface. Fig. 44 shows the CTDI head phantom during CBCT scans from the

longitudinal view and the two locations at which an ion chamber (10X5-3T, Radcal

Corporation) in conjunction with the radiation monitor (1015C, Radcal Corporation)

was inserted. The ion chamber was inserted in either the center or the peripheral po-

sition during each scan. The gantry rotation was over β = −90◦˜130◦. The measured

doses R are in a unit of roentgen. The relationship between measured doses R and

CTDI100 is

CTDI100 = 0.876× 2× R (4.13)
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where 2 is a correction factor for the specific ion chamber, and 0.876 is a factor

converting roentgen into rad in the air. The weighted dose CTDIw was calculated by

CTDIw =
1

3
CTDI100,c +

1

3
CTDI100,p (4.14)

where CTDI100,c and CTDI100,p are the measured doses of the center and the periph-

eral positions, respectively. The radiation doses were measured with different open

areas of transverse and longitudinal collimators. A radiologist watched the numerical

values of the monitor and confirmed the results. Two experiments were conducted.

In the first, the length Ct was varying with a fixed Cl = 295mm, and in the sec-

ond, both the length Ct and width Cl were varying. The dose of full field (”Without

collimation”) was normalized to 100%.

C. Results

1. ROI Reconstruction Using Truncation Correction

Fig. 45 shows the reconstruction of these three experiments on the midplane (z = 0),

on which the circular trajectory of CT scan lies. Most of the parts in the ROI are

recovered except for slightly nonuniform gray values close to the peripheral of the ROI.

This distortion becomes obvious in Fig. 45(c). The intensity of Fig. 45(b) and (c) is

slightly biased compared to that of the ”without collimation” imaging. The intensity

of x-ray beams varied because of automatic exposure control, and, therefore, the

background of projection images (the part that x-ray beams pass through the air) is

not always kept the same. This information is lost when the projections are truncated.
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Fig. 45. The reconstruction of ”without collimation” (a), Ct = 150mm, Cl = 83mm

(b), and Ct = 110mm, Cl = 77mm (c). The images at the top were displayed

in Hounsfield units of a range of [-1000 1000]. The intensity of the dashed lines

of the top images was shown at the bottom. The solid lines of the bottom

represent the intensity of ”without collimation imaging” while the dotted lines

of the bottom are that of ”with collimation”.

2. FDK and Π-line Reconstruction under Severe Truncation

Fig. 46 shows the reconstructed images by the FDK (Fig. 46(a) and (b)) and by

the π-line algorithm in the midplane (z = 0). In Fig. 46(b) and (d), only the ROI

within FOV was displayed. The bright artifacts exist not only around the ROI but in

the middle. Compared to the reconstruction from truncation projections in [83], [93],

when ROI is small enough, the artifacts will be too prominent to ruin the whole

images.
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Fig. 46. The images are shown in the display window [0.002 0.007] (a) The FDK

reconstruction of ”without collimation” imaging. (b) The π-line reconstruc-

tion of ”without collimation” imaging. (c) The FDK reconstruction of ”with

collimation” imaging with Ct = 130mm and Cl = 130mm. (d) The π-line

reconstruction of ”with collimation” imaging with Ct = 130mm and Cl =

130mm.



109

Fig. 47. The graph shows the entrance dosage D relative to full field in % versus the

AFOV

Table VIII. Dose, Tube Voltages, and Tube Currents with Fixed Cl = 295mm

Ct Center Peripheral

Dose KV mA Dose KV mA

25mm 1.82 92 216 0.74 92 217

85mm 1.75 78 257 1.10 78 256

145mm 2.18 80 249 1.71 80 249

205mm 2.21 80 251 1.85 80 250

265mm 2.23 80 250 1.95 79 251

325mm 2.23 80 250 1.96 79 251
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3. Reduction of Radiation Dose

The calculation of entrance dose was based on specifications in Table VII. The

estimated source-to-virtual-plane distance was 650mm, and the estimated AFOV,m

35213.75mm2 (162.5 × 216.7mm ), which was the AFOV when the ”without collima-

tion” imaging was applied. Fig. 47 shows the D% versus AFOV with fixed ratio of

width to length 3:4, and a logarithmic (base 10) scale was used for the axis of AFOV .

In the dose measurement, the size Ct × Cl of full field (”without collimation”)

was 385 × 295mm2, and its measured doses, tube voltages, and tube current at the

center and at the peripheral were 2.35 roentgen, 79 kV, 251 mA, 2.03 roentgen, 79kV,

and 251mA, respectively. The doses, tube voltages, and tube currents at the center

and periphery were measured in these two experiments, as shown in Table VIII and

Table IX. Fig. 48 shows the dose relative to full field (”Without collimation”) versus

varying areas of FOV. A logarithmic (base 10) scale was used for the axis of areas.

The doses for Cl = 25mm in Fig. 48 should be lower and below those for Cl = 85mm.

It is worth noticing that the doses at the smallest open areas (Cl = 25mm) of the

collimators were not the lowest among those of Cl �= 25mm in Table VIII and Table

IX. The tube voltges and currents for Cl = 25mm in Table VIII and Table VIII were

above 90 kV and below 220mA compared with those for Cl = 25mm at about 80 kV

and 250mA. This could be explained by automatic exposure control in the CBCT

system. The tube voltage of x-ray beams would be automatically increased for fewer

photons detected on the detector. Due to the exposure control mechanism, the same

tube voltage and current are not able to be used for all the measurements. It is not

possible to scale the doses to those with fixed tube voltage and current due to the lack

of relationship with dose and tube parameters of collimated imaging. For the other

measurements, the variation of tube voltages and currents was within 5% relative to

80kV and 250mA, and this measured dose was still reliable in this study.
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Fig. 48. Relative central and peripheral dose. (a) and (b) are the relative central and

peripheral dose according to the Table VIII, and (c) is its relative weighted

dose. (d) and (e) are the relative central and peripheral dose according to the

Table IX, and (f) is its relative weighted dose.
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Table IX. Dose, Tube Voltages, and Tube Currents with Varying FOV

Ct × Cl Center Peripheral

Dose KV mA Dose KV mA

25 × 25mm2 0.743 98 203 0.343 97 204

85 × 85mm2 0.422 80 250 0.571 83 240

145 × 145mm2 0.861 77 260 0.72 81 247

205 × 205mm2 1.49 80 248 1.35 80 249

265 × 265mm2 1.70 80 250 1.63 76 261

325 × 295mm2 1.89 79 251 1.76 79 251

D. Discussion

The ROI imaging is necessary when only a target inside the body of the patient is

needed for 3D image visualization. During the interventional procedures, the whole

body of the patient is imaged before and after the surgery in order to see the change

in the region where the surgery is performed. A head phantom or body phantom was

not used in the experiments of ROI reconstruction since these phantoms do not reflect

constant density. Instead, cylindrical polystyrene was the target, and the water was

used to emulate the background. The results imply that the contrast information

is still kept in the ROI though a small bias of the image exists. The intensity of

the object is not distorted compared to the nontruncation case. The different kernel

filters in the FDK algorithms are derived from the ramp filter which is formed by

Sinc function [94]. These filters have an impulse response with fast decay in both
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sides. Since the FDK reconstruction is involved with convolution of the filter and

projections, the reconstructed images towards the isocenter do not undergo much

distortion. If one properly extend the truncated projections by extrapolation, it will

mitigate the variation of reconstructed images caused by filtering truncated projec-

tions. The distortion in gray values becomes more obvious for reconstructed images

distant from the isocenter. In the study [93], the discontinuity around the peripheral

of the ROI could be largely removed using the prior knowledge which is the projection

data of the first scan before the surgery. The results showed that the images around

the peripheral of the ROI are still recognizable and enough to identify the structure

around the object. The limit of ROI is exploited, and it can be discovered that the

extrapolation technique in truncation correction with the FDK reconstruction can

largely recover ROI image with an extremely small size of ROI. This size is small

enough to demonstrate the possibility of ROI reconstruction with the smallest FOV.

Until now, this is the most efficient implementation to reduce a large amount of ra-

diation dose and to provide tolerable image quality.

The main purpose of simulating the two analytical reconstruction algorithms

is to explain the impossibility of ROI reconstruction under severe truncation. Fig.

49(a) is the illustration of an object under ROI imaging with two π-line segments L1

and L2. It can be observed that L1 passes through the support set of the object in

ROI, but part of intersection L2 with the object is not inside the ROI. During the

π-line reconstruction, each projection contains sufficient information for back projec-

tion onto the L1 regardless the partial truncation, but this is not true for the L2.

Correct reconstruction along L2 is not able to be obtained when performing filtering

on incompletely backprojected images. That explains why the artifacts appear only

when there is missing data in the filtered images. When ROI is entirely within the

object as in Fig. 49(b), every π-line segment such as L3 contains part of the object
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Fig. 49. The intersection of L1 with the object is entirely inside the ROI, but L2 and

L3 are not.

outside the ROI. Like FBP analytical reconstruction algorithms, it is impossible for

BPF reconstruction algorithms to avoid filtering insufficient data when the ROI is

inside the object.

The experimental results showed that the use of collimators can reduce patient

expose by up to 70%. Because the measurement was done using the standard CTDI

head phantom, the radiation dose reported herein should reasonably fit the actual

circumstances for real patients. Since the collimators block x-ray beams such that

exposure control mechanism increased the xray intensity during the scan, the results

of dose measurement may be biased. The results showed the dose increased by auto-

matic exposure control is generally less than that reduced by collimators. This dose

reduction is more obvious at the peripheral of CTDI dose phantom; the collimators

effectively absorb the unnecessary dose. Since scatter of x-ray beams is more severe

in CBCT than traditional fane-beam CT, the dose applied to the patient will be dif-

ferent from patient to patient. The calculation of entrance dose provides a good way
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to estimate the reduction in radiation dose of the collimated CT imaging irregardless

of patients. The amount of entrance dose could be served as an appropriate indicator

of how much radiation dose the patient would be potentially exposed to. Since it

does not need to take scatter of x-ray beams into account, the computation is not

as complicated as Monte Carlo dose simulation [95–97]. Furthermore, entrance dose

computed in percentage is not affected by intensity of x-ray tube.

The limitation of this study is that the tube current and voltage could not be

fixed all the time. This gives less reliable evaluation of image quality such as contrast-

to-noise ratio. In the study [98], the contrast-to-noise ratio was calculated to prove

it was improved since the collimators alleviated scatter of x-ray beams from the

peripheral. However, the transverse collimators were not applied; the influence of

truncation did not exit. In this study, the distortion caused by truncation instead of

the contrast-to-noise ratio is mainly concerned.
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CHAPTER V

CONCLUSION

In the first project, a two-step approach was developed to automatically and digitally

articulate the maxillary and mandibular teeth. The first step was the initial procedure

that aligned the mandibular dental model relatively closer to the maxillary model in

an approximate MI. Two set of the feature points of dental curves were extracted.

One was the feature points for the curve of central groove and pits of the maxillary

dental model, and the other was the feature points for the curve of the cusps and

incisal edges of the mandibular dental model. By matching these two set of the fea-

ture points using the point matching algorithm, an initial occlusion can be achieved

by intentionally ignoring any possible collision between digital dental models. The

second step was the final procedure. The initially-aligned models were aligned and

fine-tuned to their final occlusion that was collision-free using the ISMDM algorithm.

Two controlling mechanisms were designed. The first was the collision constraints to

detect and prevent the penetration between the maxillary and the mandibular dental

models. The second was the minimization of average distance of surface between

the models in order to articulate the models. These two mechanisms were incorpo-

rated into an optimization problem and can be solved by quadratic programming.

The proposed approach was validated by using 12 sets of the dental models. Using

proposed approach, the maxillary and mandibular models can be successfully artic-

ulated. There was only a small degree of deviation between the digitally articulated

occlusion established with proposed approach and the scanned occlusion established

using the current gold standard. This small degree of deviation did not have clinical

significance.

In the second project, a segmentation approach BIWASM and an initialization

approach CWBI were developed to calculate the outer surface of anterior wall in
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maxilla. This segmentation approach was based on customized WDM. The training

shape was customized, extracted, decomposed into patches. Then, these patches are

parameterized, subdivided, and stitched to form a remeshed training shape with reg-

ularized landmarks. The WDM can be built by aligning the training shapes to the

model space and applying Principle Component Analysis to wavelet coefficients of the

training shapes. By selecting several control landmarks to form a base in the image

space, CWBI calculated a customized initial shape and a transformation between the

base formed by selected control landmarks and a base in the model space. This trans-

formation was fixed during each iteration of BIWASM. Only the shape parameters

were changed in order to search for the candidate shape. Two sets of the experiments

were designed to validate the proposed segmentation approach by using 19 CBCT

datasets. Three other model-based segmentation approaches were also applied in the

experiments to compare their results. The proposed approach outperformed the other

three approaches in both sets of the experiments. It achieved 0.25 ± 0.2 surface er-

rors.

In the third project, a method to performing small ROI imaging was presented

using lead collimators. Two experiments were conducted. In the first experiment, an

imaged cylinder made of polystyrene was within ROI of diameters 70mm and 94mm

in a water tank as background, and the truncation correction technique with FDK

was applied. The concept of entrance dose for estimating the radiation dose absorbed

in the body was used, and dose measurement was conducted with ROI imaging. It

was found at least 60% and 70% of radiation dose was reduced for ROI of diameters

70mm and 94mm, respectively, according to the radiation dose measurement. Fur-

thermore, the image quality was still acceptable with little variation of gray values.

In the second experiment, a fixed area of ROI within a head phantom was imaged and

reconstructed by both FDK and π-line reconstruction algorithm. It can be demon-
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strated that it was not possible to reconstruct a ROI which was totally encompassed

by the object by analytical reconstruction algorithms. Although the ROI imaging

using the collimators caused the notorious truncation artifacts, the variation of gray

values was mild enough for recognition of the ROI image after applying the truncation

correction technique. The small ROI imaging enabled us to visualize the ROI with

almost no loss of image quality and benefit from considerable reduction in radiation

dose.
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APPENDIX A

BARYCENTRIC MAPPINGS

The parameterization over the mesh is a homeomorphism mapping ϕ : ΩS → ΩD

between the shape ΩS and a base domain ΩD with known topology. Pratically, the

mapping is defined by the vertices ri of a mesh and their corresponding points pi in

the base domain

ϕ : ri → pi (A.1)

In barycentric mapping, pi is defined in a known planar topology and is a linear

combination of its neighboring points. A simple approach to construct barycentric

mapping is based on the physical model of springs. The springs are the analogy of

edges in the mesh. When the boundaries of spring network (mesh) are fixed on the

boundaries of the known planar topology, the interior spring network will be relaxed

according to its most efficient engergy configuration. Assume the spring is stable

and returning to the rest state when all nodes of spring network lie on the planar

topology. These nodes at stable state can be regarded as parameterization points.

The parameterization of the mesh over a plane can be formed by a mapping between

those corresponding nodes before and after relaxation of springs.

Let s be the spring constant and l be the length of the spring. The potential

engergy is given by E = 1
2
sl2. For simplicity, ri, i = 0, 1, . . . , N − Nb − 1 denote the

interior vertices of the mesh, and i = N +Nb, . . . , N − 1 are the boundaries vertices.

Assume the mapping of boundary points between the mesh and the planar topology

(i.e. ϕ : ri → pi, i = N + Nb, . . . , N − 1) is known. The potential engergy of the

spring network (network composed of the parameterization points) can be given by

E =
1

2

N−Nb−1∑
i=0

∑
j∈Ci

1

2
sij‖pi − pj‖2 (A.2)
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where Ci is the set of indices of vertices connecting to ri, and sij is the spring constant

between the connecting points pi and pj . The second 1
2
ensures the potential spring

engergy is calculated only once due to sij = sji. To achieve ”stable spring state”, E is

minimized with respect to pi, ∀i. Since (A.2) is a quadratic expression, the condition

when it is minimized is ∑
j∈Ci

sijpi =
∑
j∈Ci

sijpj (A.3)

The pi can be expressed in terms of affine combinations of its connecting points as

pi =
∑
j∈Ci

λ̃ijpj (A.4)

where

λ̃ij =
sij∑

k∈Ci
sik

. (A.5)

It indicates ∑
i

λ̃i = 1. (A.6)

λ̃ij is called barycentric coordinate of pi in terms of connecting vertices of pj , j ∈ Ci

if both (A.4) and (A.6) are satisfied. If λ̃ij >= 0, this linear combinatoin becomes the

combination. The positive λ̃ij can reduce the chance of overlapping triangles in the

parameterization domain [53]. This can be achieved by choosing sij as Mean Value

Coordinate proposed by Floater [99]. Of the note that Mean Value Coordinate con-

tains information of edge lenghths and face angles in the mesh and is not necessarily

symmetric, i.e. sij �= sji.

To calculate the parameterization by minimizing spring engergy E in (A.2),

(A.4) can be reformulated as a sparse linear system. Given known boundary points

pi, i = N +Nb, . . . , N − 1 in the parameterizatoin domain and λ̃ij, the interior points

pi, i = 0, 1, . . . , N−Nb−1 can be calculated by solving the sparse linear system using

sparse linear solver.
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APPENDIX B

COMPOSITE LIFTING STEP

Assume the rectilinear grid is applied. Fig. 50 shows an example of the grid. r and

c denote the row and column indices. The s-lifting step in the row using (3.13) is

vr,c ← αvr,c + α̃(er,c + er,c+1) (B.1)

ẽr,c+i ← αẽr,c+i + α̃(fr+i,c + fr+i,c+1) (B.2)

Similarly, the s-lifting step in the column using (3.13) can be written by

vr,c ← αvr,c + α̃(ẽr,c + ẽr+1,c) (B.3)

er+i,c ← αer+i,c + α̃(fr,c+i + fr+1,c+i) (B.4)

Incorporated with (B.1), (B.3) can be written as

vr,c ← α2vr,c + 4α̃2(f̄r,c) + 4αα̃ēr,c (B.5)

where ēv,r,c ≡ ẽr,c+ẽr+1,c+er,c+er,c+1

4
and f̄r,c ≡ fr,c+fr+1,c+fr,c+1+fr+1,c+1

4
. (B.5) is the

composite s-lifting step on vertex point. (B.2) and (B.4) become the s-lifting step

of edge points around the vertex vr,c.

Fig. 50. An example of a rectilinear grid.
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APPENDIX C

USER INTERACTION FOR INITIALIZATION

The user interaction can be implemented by incorporating CBCT volumetric image

and its skull shape [Fig. 51(a)]. This skull shape is calculated by the simplest

approach: thresholding segmentation and March Cube Algorithm. It is only used to

provide reference for user interaction. Only a slice of the volumetric image is visualized

in 3D space each time. It can be switched to the previous slice or the next slice. The

skull shape can be temporarily hidden to visualize the internal content of the slice.

Therefore, one has two objects to help identify a desired landmark point: the rough

skull model and slices of the volumetric image. Landmark points are pinpointed on

the slice of the image, and their coordinates are recorded.

(a) (b)

Fig. 51. (a) Selection of landmark points for initialization using user interaction. (b)

The same user interaction but the skull shape is hidden to visualize the inter-

nal content of the slice.
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APPENDIX D

Π-LINE BPF ALGORITHM

Fig. 52(a) shows the geometry and the trajectory of circular cone-beam CT in the

midplane. θ is defined as the gantry rotational angle of the source starting from y-

axis counterclockwise. The π-line concept is originated from the helical cone-beam

CT reconstruction algorithms [100], but the modification in circular cone-beam CT

geometry was first introduced by Pan et al. [101]. Fig. 52(b) shows the 3D view of the

gantry rotation and π-line segments. The trajectory of the source lies on z = 0 plane,

and the imaginary trajectories (dotted circles) on the planes with z �= 0. The π-line

segments are defined as parallel chords on these circular trajectory and imaginary

ones. Let r = (xr, yr, zr) be a point on the π-line segment CD of the z = zr plane and

r(θA) and r(θB) points A and B on the trajectory, where θA and θB are the rotational

angles of the source at A and B. All parallel π-line segments have the same direction

defined by a unit vector:

uπ =
r(θA)− r(θB)

‖r(θA)− r(θB)‖
. (D.1)

Assume the π-line segment AB has the same x- and y- coordinates as the CD except

that they are at different z planes. Hence, the point r in 3D space with a specific

π-line direction uπ can be uniquely determined by a quadruple (λ, θA, θB, zr) as

r = r(θA) + zruz + λuπ (D.2)

where λ ∈ [0, 1], and uz = (0, 0, 1). The reconstruction has two steps: first, backpro-

ject the projections into the k -line segments, and secondly, perform Hilbert trans-

formation along each of π-line segments. The 3D volume is union of π-line segments

and, for simplicity, one can describe the practical reconstruction of 3D images only

on a π-line segment based on the theoretical results in [100].
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Fig. 52. Geometry of π-line reconstruction. (a) the trajectory in midplane z = 0. (b)

π-line segments are defined as the chords on the circular trajectory which lies

on the midplane z = 0 and imaginary ones (dotted circles).

Consider the π-line segment AB. Let ¶θ(u, v) be the projection image at some

rotational angle θ with the same u-v coordinate mentioned above and L be the dis-

tance between the source and the detector. By (D.2), r is equivalent to (λ, θA, θB, zr).

The backprojected image b(λ, θA, θB, zr) or b(r) on the π-line segment CD is expressed

as

b(λ, θA, θB, zr) =

∫ θB

θA

L2

(R + x sin θ − y sin θ)2
∂

∂u

(
R√

u2 + v2 + L2
Pθ(u, v)

)
(u,v)=(ur,vr)

dθ

+
PθB(ur, vr)

d(r, θB)
− PθA(ur, vr)

d(r, θA)
(D.3)
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where d(r, θ) is defined as the distance between r and r(θ). Pθ(ur, vr) is the line-

integral which starts from the source at the rotational angle θ , passes through the

point r, and ends at a point (ur, vr) on the detector. Finally, the reconstructed image

along the π-line segment CD is

f̂(λ, θA, θB, zr) =
1

2π
H
{√

(λB − λ)(λ− λA)b(λ, θA, θB, zr)
}

+
1

2π
√
(λB − λ)(λ− λA)

(
PθA(uc, vc) + PθB(uc, vc)

)
(D.4)

where c is the midpoint of CD, and H
{
a(λ)

}
is the Hilbert transform of a(λ).

[λA, λB] is an interval so that
{
r(θA)+zruz+λuπ|λ ∈ [λA, λB]

}
includes the support

set of the object and belongs to the segment CD.
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