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ABSTRACT

Critical Cliques and Their Application to Influence Maximization in Online Social

Networks. (May 2012)

Nikhil Pandey, B.Tech., Motilal Nehru National Institute of Technology

Chair of Advisory Committee: Dr. Jianer Chen

Graph decompositions have useful applications in optimization problems that

are categorized as NP-Hard. Modular Decomposition of a graph is a technique to

decompose the graph into non-overlapping modules. A module M of an undirected

graph G = (V,E) is commonly defined as a set of vertices such that any vertex outside

of M is either adjacent or non-adjacent to all vertices in M . By the theory of modular

decomposition, the modules can be categorized as parallel, series or prime modules.

Series modules which are maximal and are also cliques are termed as simple series

modules or critical cliques.

There are modular decomposition algorithms that can be used to decompose the

graph into modules and obtain critical cliques. In this current research, we present

a new algorithm to decompose the graph into critical cliques without applying the

process of modular decomposition. Given a simple, undirected graph G = (V,E), the

runtime complexity of our proposed algorithm is O(|V | + |E|) under certain input

constraints. Thus, one of our main contributions is to propose a novel algorithm for

decomposing a simple, undirected graph directly into critical cliques.

We apply the idea of critical cliques to propose a new way for solving the in-

fluence maximization problem in online social networks. Influence maximization in

online social networks is the problem of identifying a small, initial set of influential

individuals which can influence the maximum number of individuals in the network.

In this research, we propose a new model of online social networks based on the notion
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of critical cliques. We utilize the properties of critical cliques to assign parameters for

our proposed model and select an initial set of activation nodes. We then simulate

the influence propagation process in the online social network using our proposed

model and experimentally compare our approach to the greedy algorithm proposed

by Kempe, Kleinberg and Tardos. Our main contribution in the influence maximiza-

tion research is to propose a new model of online social network taking into account

the structural properties of the social network graph and a new, faster algorithm for

determining the initial set of influential individuals in the online social network.
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CHAPTER I

INTRODUCTION

A. Critical Cliques

Fig. 1. Critical cliques.

A critical clique C of an undirected graph G = (V,E) is a clique such that

all the vertices v ∈ C are adjacent to the exact same set of vertices in G (same

closed neighborhood property) and C is maximal under the same closed neighborhood

property. In Figure 1, the dotted ovals represent the critical cliques of the shown

graph.

The inherent structure of critical cliques has the clique property as well as that

of being a module property. These two combined properties make critical cliques

interesting graph structures with applications to graph related problems. Consider the

following application (related to the kernelization for the problem of Cluster Editing)

discussed in [1]. The problem of cluster editing asks if a given graph G = (V,E)

along with a parameter k ≥ 0, can be transformed into a union of vertex-disjoint

cliques (cluster graph) by atmost k edge deletions and insertions. Since atmost k

The journal model is IEEE Transactions on Automatic Control.
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edge modifications are allowed, atmost 2k vertices in G will be touched (or modified).

Therefore, to obtain a kernel for cluster editing, the main question revolves around

obtaining an upper bound on the vertices that are untouched by edge modifications.

This can be done by observing that in the final solution graph, the set of vertices

untouched by edge modifications and which belong to the same clique would form a

critical clique in G. In addition, we can also observe that critical cliques of large sizes

along with their neighbors should be preserved in the cluster graph. This makes it

easier to study this problem in the context of critical cliques (by dividing the original

input graph G into critical cliques) and then obtaining reduction rules for the kernel

of the cluster editing problem.

Based on the notion of critical cliques, we have 4k [2] and 2k [3] kernel for the

fixed parameterized tractable version of the cluster editing problem. As mentioned

in [3], the cluster editing problem has application in areas like computational biology

and machine learning. In this research, we also propose a novel application of the

critical cliques to the problem of influence maximization in online social networks.

We believe that critical cliques have more widespread applications than those that

have been discovered so far and an algorithm to identify critical cliques directly (as

proposed in this research) will facilitate their use in further different areas of research.

B. Influence Maximization Problem

We present an application of the critical cliques algorithm in the context of

influence maximization problem in online social networks. An online social network

can be represented as a graph where the vertices in the graph represent the individuals

which are a part of the social network and an edge between two vertices signifies a

form of relationship between the two corresponding individuals. Such edges (or links)
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between nodes can be thought of as carriers of information from one individual to the

other.

In recent years, there has been extensive research related to social network analy-

sis. One category of such research has focussed on the question of how social networks

can be used to efficiently disperse information across the entire network. Influence

Maximization in online social networks is the problem of identifying a small set of in-

fluential individuals which when influenced can help maximize the spread of influence

(or ideas/information/strategies) across the entire online social network. Identifying

such a set of individuals has been shown to be NP-Hard [4].

Influence Maximization problem is greatly significant in the context of word of

mouth propagation of ideas and influences across the social network. Consider an

example discussed in [5] and [6]. A small company wants to market their online

application to users in an online social network like Facebook or MySpace. The

company has a limited budget and it wants to target a few users in the online social

network and allow them the access and use of their online application for free. What

the company hopes in this scenario is that the initial set of selected users will tell

their friends about this online application and might influence them to sign up for it.

In turn, the influenced friends of the initial set of targeted users will influence their

other friends and so on. This could possibly lead to a trigger of a large number of

signups for the online application which would ultimately prove to be beneficial for

the company. The problem that the company would face is to determine the initial

set of target users who could lead to a large number of signups for their application

and thus, maximize the influence spread across the social network. This example

shows that the problem of influence maximization is important in the area of viral

marketing based on word of mouth propagation of ideas in online social networks.
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CHAPTER II

RELATED WORK

In the current literature, modular decomposition is also known as substitution

decomposition, disjunctive decomposition or X-join decomposition. The origin of the

theory of modular decomposition is usually attributed to the work of Gallai in [7]. In

his work, Gallai introduced the idea of a modular decomposition tree which is a tree

representing the modules of an undirected graph. Since the work of Gallai, modular

decomposition has found a wide variety of combinatorial applications in the context

of graph theory. The modular decomposition tree can be utilized using the Divide

and Conquer technique for solving a variety of hard problems if the graph can be

decomposed non-trivially [8]. Families of graphs such as cographs [9] or permutation

graphs [10] can be identified by studying their modular decomposition tree. In the

area of fixed parameterized tractability, modular decomposition has been used for

kernelization of several problems, such as flip consensus tree [11] or bicluster editing

[12].

A number of algorithmic approaches for modular decomposition of undirected

graphs have been proposed in the literature. The first algorithm for modular de-

composition was proposed in 1972 by Cowan et al. in [13]. This algorithm had a

polynomial time complexity of O(n4). There were also several proposed algorithms

with a runtime complexity of O(n3) or O(nm) ([14], [15], [16], [17]) and O(n2) ([18],

[19]). Linear time algorithms for modular decomposition first appeared in the 1990s

by R.M. McConnell and J. Spinrad. in [20] and also by A. Cournier and M. Habib

in [21]. However, these linear time algorithms were complex with not much practical

significance. Later on, simplified algorithms with linear runtime([22], [23]) and almost

linear runtime([24], [25], [26]) were proposed. For a survey on the algorithms related
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to modular decomposition, refer to [27].

In this current research, we are interested in extracting critical cliques from

an undirected graph without applying the process of modular decomposition. Even

though the linear time modular decomposition algorithms can be used to extract

critical cliques, these algorithms are complex to implement and have a large constant

factor [23] which makes the overall process of modular decomposition to extract crit-

ical cliques expensive. To the best of our knowledge, we are not aware of algorithms

that directly extract the critical cliques from undirected graphs in the literature as

proposed in this current research.

We aim to show an application of the critical cliques algorithm to the problem of

influence maximization in online social networks. There has been extensive research

on the problem of influence maximization in the domain of social computing and

social network analysis. This problem was first studied as an optimization problem

and shown to be NP-Hard by Kempe et al. in [4]. Kempe et al. also introduced

a greedy approximation algorithm with an approximation factor of ( 1 - 1/e) in [4].

However, the greedy algorithm proposed by Kempe et al. had a significantly large

running time even for smaller social network graphs with few thousands of vertices.

Since then, there have been various approaches proposed that improve the running

time of the greedy algorithm. The problem of influence maximization exhibits the

submodular property and Leskovec et al. used this to propose a ”Cost-Effective Lazy

Forward” (CELF) optimization in [28] to considerably improve the running time of

the greedy algorithm in [4]. Other notable approaches are [5], [6] and [29] which

propose different heuristics to speed up the running time of the greedy algorithm

while not significantly changing the influence spread across the social network.

The greedy algorithm based approaches for the problem of influence maximiza-

tion in online social networks suffer from a serious drawback: the runtime efficiency of
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the algorithm. In addition to this, these approaches do not consider how individuals

in the social network are grouped by their common likes or dislikes which can cause

the influence of one individual over another to vary. Davis in [30] stated the following:

[30] Because cliques are defined in terms of high rates of positive ties,

adoption of a new attitude or activity by a member will be followed by

acceptance within the clique. Because, however, members of other sub-

groups and isolates have less positive or even negative bonds with members

of the innovating group, they will tend to resist or be late adopters.

In this research, we aim to study the problem of influence maximization by de-

composing the online social network graph into clusters of individuals such that within

each cluster, all the individuals are bound by a form of relationship (e.g. friendship)

to each other and have a high degree of similarity with each other. Intuitively, the

idea of a graph decomposition into critical cliques matches well with the identifica-

tion of clusters of individuals sharing a high degree of similarity in the social network

graph. As far as we are aware, this is the first such application of critical cliques to

the problem of influence maximization in online social networks.
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CHAPTER III

ALGORITHM FOR CRITICAL CLIQUES

A. Definitions

In this research, we consider only simple, undirected graphs. Let G = (V,E)

denote a graph where V is the set of vertices and E is the set of edges in the graph

G.

• Open neighborhood of a vertex

Open neighborhood of a vertex v ∈ V is defined to be the set of all vertices that

are immediately adjacent to v i.e. all such vertices w ∈ V such that (v, w) ∈ E.

We denote the open neighborhood of the vertex v by N(v).

• Closed neighborhood of a vertex

Closed neighborhood of a vertex v ∈ V is denoted by N [v]. The closed neigh-

borhood of the vertex v is the union of the open neighborhood of v with v itself.

Thus, closed neighborhood of v is defined as:

N [v] = N(v) ∪ {v}

• Module

A module M is defined as a subset of vertices (M ⊆ V ) such that any vertex

v ∈ V \M satisfies exactly one of the following properties:

• (u, v) ∈ E ∀u ∈M

A vertex v satisfying this property implies that v is adjacent to all the

vertices in M .

• (u, v) /∈ E ∀u ∈M

A vertex v satisfying this property implies that v is adjacent to none of
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the vertices in M .

From the above two properties, it is easy to infer that from the perspective of

any vertex v ∈ V \M , the vertices in the module M are indistinguishable from

each other.

• Strong Module

A module M which does not overlap with any other module is termed as a

strong module.

Two modules M1 and M2 are said to overlap if they satisfy all of the following

conditions:

• M1 ∩M2 6= ∅

This property implies that the two modules share common vertices.

• M1 6⊂M2 and M2 6⊂M1

This property implies that no module is contained within the other.

It is easy to see that in a graph G with n vertices, there cannot be more than

O(n) strong modules.

• Modular Decomposition

Modular decomposition of an undirected graph G is a process where the graph

is recursively decomposed into a tree-like structure with the nodes of the tree

representing strong modules. We denote the modular decomposition tree by

MD(G). The root node of the modular decomposition tree MD(G) is the set

of vertices V and each vertex v ∈ V is a leaf node. Note that the nodes in the

modular decomposition tree MD(G) represent the complete set of the strong

modules of G.
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The edge formations in the modular decomposition tree MD(G) can be ex-

plained by the recursive construction of MD(G) in the following way: if M

is an internal node in MD(G) representing a strong module, then the subtree

rooted at M is the modular decomposition tree of the subgraph induced by M

i.e. G[M ].

Fig. 2. Modular decomposition of an undirected graph.

(Source: http://en.wikipedia.org/wiki/File:ModularDecomposition.png)

Figure 2 shows the modular decomposition tree for an undirected graph with 11

vertices. Note that the nodes of the tree satisfy the property of being a strong

module.

• Parallel, Series and Prime modules

The modular decomposition tree of an undirected graph can only contain three

different types of modules as stated in the following theorem:

Theorem: [31] Let MD(G) be the modular decomposition tree of

http://en.wikipedia.org/wiki/File:ModularDecomposition.png
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A

D

B

C

E

G

F

H
J

I
K

Fig. 3. Types of modules.

graphG = (V,E), andM be an internal node with children S1, S2, ..., Sr.

Then exactly one of the following three cases holds for M , based on

the relation of Si:

• Parallel : There is no edge between Si and Sj for any i 6= j. In

Figure 3, {F, G} is an example of a parallel module.

• Series : There is an edge (u, v) between any pair of vertices u ∈ Si

and v ∈ Sj for any i 6= j. In Figure 3, {C, D} is an example of a

series module.

• Prime : None of above two applies to the children.

• Simple Series Modules or Critical Cliques

A Simple Series Module or a Critical Clique C is a series module with the

following properties:

• For any two vertices u ∈ C and v ∈ C, (u, v) ∈ E. This is the clique

property i.e. any two vertices in C are adjacent to each other.

• For any two vertices u ∈ C and v ∈ C, N [u] = N [v], where N [x] denotes

the closed neighborhood of a vertex x. This property is because of C being
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a series module.

• C should be maximal under the above two properties.

In Figure 3, {C, D} and {H, I, K} are examples of critical cliques.

B. Main Algorithm

In this section, we present the algorithm for obtaining critical cliques in an

undirected graph G = (V,E). We assume that each v ∈ V is represented by a unique

id or number that is assigned from the interval [0, |V |−1]. We use ADJ(v) to denote

all the vertices which are adjacent to v (adjacency list of vertex v) and ADJnew(v)

to denote the modified adjacency list of vertex v. We allow concatenation to the

adjacency list using the plus(+) operator.

The algorithm comprises of three phases, each of which is described as follows:

1. Preprocessing Phase

Algorithm B.1 Preprocess(G)

1: for all v ∈ V do

2: ADJnew(v)← [v] + ADJ(v)

3: ADJnew(v)← sort(ADJnew(v))

4: l← |N [v]|

5: ADJnew(v)← [v] + [l] + ADJnew(v)

6: end for

7: max ← maximum(|ADJnew(v)|) ∀v ∈ V

8: return ADJnew(v) ∀v ∈ V , max

In this phase, the adjacency list for each vertex v ∈ V is modified in the following
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manner: ADJnew(v) = [v, |N [v]|, v1, v2, v3....vk], where |N [v]| is the size of the set of

the closed neighborhood of v and all of v1, v2, v3...vk ∈ N [v].

The order of v1, v2, v3...vk is in increasing order by their unique ids such that:

v1 < v2 < v3... < vk. This is ensured by the sort() method used in the algorithm

which sorts the list of vertices passed as an input parameter in a non-decreasing order.

We can avoid the sort step in the preprocessing phase in the actual implementation

of the algorithm if the adjacency list of all vertices v ∈ V for the input graph G is

already provided in the sorted order.

The preprocessing phase returns the modified adjacency list ADJnew(v) ∀ v ∈ V

and another parameter max which is the maximum length of a modified adjacency

list amongst all such lists. These two returned parameters are used in the next phase

of the algorithm.

2. Sorting Phase

Algorithm B.2 Sorting(G,ADJnew(v),max)

1: L← [ ]

2: for all v ∈ V do

3: Add ADJnew(v) to L

4: end for

5: i← 1

6: while i < max do

7: RadixSort(L, i)

8: i← i+ 1

9: end while

10: return L
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In this phase, radix sort is performed on the list of modified adjacency lists L.

Suppose that the list L at the end of step 4 is constructed as follows:

L = [ADJnew(v1), ADJnew(v2), ... ADJnew(vn)], where n = |V |

Except for the first entry in each ADJnew(v) ∈ L, we apply the RadixSort procedure

using all other elements in ADJnew(v) in step 7, assuming an increasing priority of

elements in ADJnew(v) from right to left. Thus, the rightmost element in each of the

ADJnew(v) will be the least significant and RadixSort procedure will arrange the lists

in L using this rightmost element in the first iteration. Note that the second input

parameter i to the RadixSort procedure signifies that radix sort will be executed

using i′th element from the last from each list l ∈ L.

Subsequent iterations of RadixSort will consider elements by moving from right

to left, one element at a time, upto the second element from the start of the list. It

might so happen that a list l = ADJnew(v) ∈ L gets exhausted during one of the

iterations of the RadixSort procedure. In such case, l will not be considered for

sorting while the other lists are shuffled during that iteration.

At the end of this sorting phase, we would have sorted all the lists in L us-

ing RadixSort by considering their elements from right to left (except the leftmost

element). This list L is returned and used in the next phase of our algorithm.

3. Merging Phase

Since the last element on which radix sort is performed for each list l = ADJnew(v) ∈

L is the size of the closed neighborhood of v, we note that after the last pass of

the radix sort, all the vertices which have equal size of closed neighborhood will be

consecutively aligned. In addition, all such vertices v with equal size of closed neigh-

borhood will have the list of vertices in their closed neighborhood in a sorted order

in ADJnew(v) (due to the earlier passes of the RadixSort procedure).
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We now iterate through the list L to obtain all the critical cliques in graph G.

Let’s say u is the first element of L(1) and v is the first element of L(2). It is easy to

figure out the critical cliques based on the property that two vertices u ∈ V and v ∈ V

belong to the same critical clique if N [u] = N [v]. If N [u] 6= N [v], then u cannot be

a part of any other critical clique including vertex z, because then the list with first

element as vertex z would have appeared above L(2). Thus, in case N [u] 6= N [v], we

identify u as a single vertex critical clique and compare N [v] to N [w], where w is the

first element of L(3). This process is performed until all the lists l ∈ L are exhausted.

Algorithm B.3 Merge(G,L)

1: CC ← ∅

2: T ← ∅

3: lu ← L(1)

4: u← first element of lu

5: T ← T ∪ {u}

6: for i = 2→ |V | do

7: lv ← L(i)

8: v ← first element of lv

9: if lu = lv from second element to the last element then

10: T ← T ∪ {v}

11: else

12: CC ← CC ∪ {T}

13: T ← {v}

14: end if

15: lu ← lv

16: end for

17: CC ← CC ∪ {T}
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In the pseudocode for the merging phase, eventually all critical cliques are iden-

tified and added to the set CC.

C. Proof of Correctness

We now prove the correctness of our algorithm for finding critical cliques. We

show that any two vertices u, v ∈ V belonging to a critical clique C will always be

grouped together in the same critical clique. The proof is by contradiction. Suppose

that u and v have been grouped under two different critical cliques. As u and v

should actually belong to the same critical clique, they have the exact same set of

closed neighborhood in their modified adjacency lists. Suppose that at the end of the

sorting phase, the modified adjacency list of u appears before the modified adjacency

list of v in the sorted order. There can be two possible cases: either the modified

adjacency lists of u and v lie consecutively or they are separated by modified adjacency

lists of vertices w ∈ V which have the same closed neighborhood as u and v. If the

closed neighborhood of the vertex w is not the same as that of u and v, then the

modified adjacency list of w cannot be an intermediate list as it would violate the

sorted order of all the modified adjacency lists. Now in the merging phase, the whole

group of modified adjacency lists - of vertex u upto vertex v will be merged together

in the same critical clique by the condition that they have the exact same set of closed

neighborhood. This contradicts our initial assumption that u and v were placed in

different critical cliques.

We also note that the closed neighborhood property guarantees the clique prop-

erty of the critical clique. In addition, since any two vertices in the same critical

clique would always be grouped together, this would guarantee the maximal property

of the critical cliques formed.
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D. Complexity

• Preprocessing phase

The main computation in this phase is the sorting of the adjacency list of the

vertices. As mentioned earlier, this sorting can be avoided if the input graph

G is provided with the adjacency list of vertices already in a sorted order. If

this is the case, the computations required to perform in this step would be to

create modified adjacency lists for all vertices v ∈ V by adding (v, |N [v]|) before

each adjacency list and adding v in the modified adjacency list maintaining the

sorted order. This can be done by creating another empty list, leaving its first

two entries empty and copying elements from the original adjacency list in this

new list. While copying the elements, we can place v in sorted order in this new

list and also maintain a count of the number of elements read and copied from

the original adjacency list. At the end of the scan of the original adjacency list

of v, we can place (v, |N(v)|+ 1) at the beginning of the new adjacency list to

create a modified adjacency list for v. The overall runtime complexity of this

phase will be O(|E|+ |V |) and the space complexity is also O(|E|+ |V |) due to

the creation of modified adjacency lists.

In case the adjacency lists of the vertices are not in sorted order, we will need

to sort them in the preprocessing phase. A good alternative for sorting would

be to use a count sort algorithm knowing that the range of unique ids assigned

to the vertices are in the interval [0, |V | − 1]. A count sort would also work in

case we know an upper bound on the vertices of the graph. To sort the vertices

using count sort would take O(|E|+ |V |2) running time and O(|V |) space.

It is a practically feasible assumption to expect the input graph G to be given

such that the vertices are assigned unique ids between [0, |V | − 1] and the
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adjacency lists for the vertices are provided in a non-decreasing order of these

ids. Unfortunately, if this is not the case, we would need to preprocess the

graph G before identifying the critical cliques. This would incur an extra cost

in the preprocessing phase due to the sort procedure. For further purposes

of calculating the run time complexity, we assume that the input graph G is

given in the manner where the vertices have been assigned unique ids and the

adjacency lists are in non-decreasing order by their ids.

• Sorting phase

In this phase, the main computation is that the modified adjacency lists for all

vertices v ∈ V are sorted using RadixSort procedure. The implementation of

RadixSort procedure for this step can be done by using a hashtable with |V |+2

buckets (from 0 to |V | + 1). In each step of the RadixSort(L, i) procedure,

the appropriate pointer to the modified adjacency list l ∈ L can be placed in

the bucket H(i) if the i′th element from the last in list l = i. Once all the

modified adjacency lists are placed in the buckets, we get a new ordering of all

the lists l ∈ L. This new ordering can then be used in the next iteration of

the RadixSort(L, i) procedure. In subsequent iterations, we can get the new

ordering of the lists by creating another hashtable H ′, reading all the lists from

hashtable H from buckets 0 to |V |+ 1 in that order, placing them in H ′ based

on the current input parameter i, deleting hashtable H and assigning H = H ′.

As mentioned earlier, if any list l ∈ L gets exhausted in any iteration of the

RadixSort procedure, we do not need to touch that list l again and we can

continue with the shuffling of other lists. For such an earlier exhausted list

l, we can remove it out from the RadixSort procedure while remembering its

position in the current bucket in H.
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The runtime for placing the modified adjacency lists ∀v ∈ V in L isO(|V |) (steps

2 to 4). These steps require moving the appropriate pointers for the modified

adjacency lists to L. As the modified adjacency list for all vertices v ∈ V

need to be read before the lists are finally sorted, the run time complexity of

the RadixSort procedure is atleast O(|E| + |V |). We also have an additional

complexity of scanning the hashtable H from buckets 0 to |V | + 1 in each

iteration of the RadixSort procedure. Since the iterations run a total of max

times, where max is the maximum length among all the modified adjacency

list, this additional complexity is: O(max.|V |). We note that max is bounded

by the maximum degree d of the graph G.

Thus, the overall runtime complexity for this phase is O(d.|V |+|E|). This phase

also requires a space complexity of O(|E|+ |V |) due to the use of hashtable.

• Merging phase

In this phase, we compare successive sorted modified adjacency lists l ∈ L and

identify vertices which belong to the same critical cliques. To compare two

modified adjacency lists of respective vertices u ∈ V and v ∈ V , we will have to

read both the modified adjacency lists to check for the critical clique condition:

N [u] = N [v]. To facilitate this check, it might be easier to generate a signature

for the part of the modified adjacency lists that are being compared. This

signature can be a simple string signature formed by concatenating the relevant

elements along with a delimiter in the actual implementation.

The runtime complexity of this phase is O(|E|+|V |) as each modified adjacency

list needs to be read atleast once. The space complexity for this phase is O(|V |)

which is used for constructing the set CC which is the set of all the critical

cliques.



19

• Overall Runtime Complexity

Given that the vertices v ∈ V of the input graph G have been assigned unique

ids in the interval [0, |V | − 1] and the adjacency lists of the vertices of G are

provided in sorted non-decreasing order by these ids in the preprocessing phase,

the runtime complexity of the algorithm is: O(d.|V | + |E|) where d is the

maximum degree in G. In case of an input graph G where d is upper bounded

by a constant value, the runtime complexity of the algorithm will be linear i.e.

O(|E|+ |V |).

Note that there are two main factors contributing to the overall runtime com-

plexity of our algorithm: the factor d.|V | (sorting phase) and scanning the

modified adjacency lists in each phase. The constant factor due to scanning the

modified adjacency lists of all vertices is small as we scan the modified adjacency

lists a total of three times, once during each phase of the algorithm.

• Space Complexity

The additional space required by this algorithm is: O(|V |+ |E|).

E. Summary

We proposed a new algorithm for decomposition of a simple, undirected graph

G = (V,E) into simple series modules or critical cliques. The key idea of our algo-

rithm utilized the property of critical cliques that they are maximal cliques under

the condition that any two vertices in a critical clique share the same closed neigh-

borhood. Using this property, we first assigned each vertex a unique integer id and

sorted the set of closed neighborhood of each vertex v ∈ V on those ids. Then, we

applied a radix sort procedure on the closed neighborhood of each vertex v, with the

last iteration of the radix sort being performed on the size of the closed neighborhood
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of v i.e. |N [v]|. These steps ensured that the vertices in the same critical cliques will

be aligned successively and using a linear scan of N [v] (∀v ∈ V ) in the sorted order,

we determined the critical cliques of the input graph G.

The runtime complexity of our algorithm is determined to be O(d.|V | + |E|).

The space complexity of the algorithm is calculated to be O(|V |+ |E|). Note that the

runtime complexity is linear under the constraint that the adjacency lists of vertices in

the given input graph are sorted in non-decreasing order based on the unique integer

ids assigned to the vertices and the maximum degree of the graph is bounded by a

constant.
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CHAPTER IV

INFLUENCE MAXIMIZATION IN ONLINE SOCIAL NETWORKS

A. Influence Maximization Problem

An online social network can be represented as an undirected graph G = (V,E)

where the vertices v ∈ V represent the individuals present in the social network while

an edge (u, v) ∈ E represents a relationship between the individuals u ∈ V and v ∈ V .

Influence maximization in online social networks is the problem of identifying a small

set of individuals in G which when influenced can further influence the maximum

number of individuals in the network and thus, help in maximizing the influence

spread. This problem has been shown to be NP-Hard with a reduction from the

known SetCover problem [4].

In [4], Kempe et al. presented a greedy hill climbing algorithm for the influence

maximization problem. A general outline of their algorithm discussed in [5] and [6]

is simply stated as follows:

Algorithm A.1 Greedy Hill-Climbing Algorithm

1: Set A ←− φ

2: for i = 1→ k do

3: Choose a node v ∈ V \A maximizing σ(A ∪ {v})

4: Set A ←− (A ∪ {v})

5: end for

Here k is the initial set of individuals that must be chosen from the online social

network graph G. σ() represents the influence function. More precisely, given a set S

of initial activated nodes (or initial influenced individuals), σ(S) represents the final

influence spread achieved. σ(S) is measured in terms of the expected (or average)
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number of finally activated nodes.

This proposed algorithm in [4] guarantees an influence spread with an approxima-

tion factor of (1−1/e). Kempe et al. also showed that their algorithm is significantly

better than using degree or centrality based heuristics. However, one of the major

drawback of this algorithm is its run-time efficiency which is very large even for de-

termining a small set of initial active nodes in a medium sized social network. This

is because step 3 in the greedy hill climbing algorithm is run a large number of times

for each vertex v ∈ V to get a more precise value of σ(A ∪ {v}).

B. Diffusion Models

There are several diffusion models which describe how the influence(or flow of

information etc.) propagates through the online social network. We mention the

following two fundamental diffusion models as discussed in [4]:

• Independent Cascade Model

In the independent cascade diffusion model, a propagation probability p(u,v) is

assigned to each edge (u, v) ∈ E and an initial set A of nodes is activated. The

diffusion process proceeds as follows:

At a given time step t, any active node u gets one chance to activate all its

inactive adjacent neighbors. u can activate v ∈ N(u) with a probability of p(u,v).

Irrespective of whether u succeeds or fails in activating v ∈ N(u) at time step

t, at any further time step, u cannot take part in activating its adjacent nodes.

If v has multiple adjacent nodes that are active, each of them will make an

attempt to activate their neighbors in an arbitrary order. The nodes activated

at time step t will then try to activate their inactive adjacent neighbors at time

step t+ 1. Once no more nodes can be activated, the diffusion process ends.
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• Linear Threshold Model

In the Linear Threshold diffusion model, each edge (u, v) ∈ E is assigned a

weight w(u,v), v ∈ N(u) such that: Σv∈N(u)w(u,v) ≤ 1. An activation threshold

θu is selected by each node u, uniformly and randomly from the interval [0, 1]

and an initial set A of nodes is activated. The diffusion process proceeds as

follows:

An inactive node u is activated at time step t+1 if at time step t: Σv∈N(u)w(u,v) ≥

θu. Once no more nodes can be activated, the diffusion process ends.

The influence spread of the initial activation set A in both the diffusion models is

measured in terms of the final number of nodes that have been activated. Note that

in this current research, we consider the independent cascade diffusion model during

the experimental analysis.

C. Online Social Network Graph Representation

The online social network is represented as a simple, undirected graph G = (V,E).

The set of vertices V is considered to be a union of the following two sets: V = I ∪

CH , where I is the set of all users in the online social network and CH is the set of

available choices to all the users in I. Each user u ∈ I is assigned a unique integer id

between the interval [0, |I|− 1]. Each choice c ∈ CH is also assigned a unique integer

id between [|I|, |I|+ |CH| − 1].

For any two vertices u ∈ I, v ∈ I, an edge (u, v) exists between u and v only if u

and v know each other. An edge (u, c) also exists between u ∈ I and c ∈ CH if the

user represented by u exhibits a choice c.
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D. Key Idea

The central idea of this research originates from a paper by Davis [30] in which

he made the following observations:

[30] The general idea of group effects and opinion leadership can be stated

in the language of our theory in terms of a general proposition and a series

of subsidiary propositions specifying variations in the process.

D24. Person is more likely to adopt an innovation if he has a positive tie

of liking or similarity to the innovator.

D25. Innovations tend to diffuse rapidly within cliques but slowly be-

tween them.

D26. Within a group the rate and degree of the acceptance of an innova-

tion is proportional to the degree of liking of the members for each other.

D27. Within a group the rate and degree of acceptance of an innovation

is proportional to the homogeneity of the members in social characteristic.

The underlying theme of this research is to come up with a new model of online

social network graph taking into account the group effects and the degree of simi-

larity between individuals and use this new model for maximizing the diffusion of

information across the social network. The idea of clusters of like-minded individuals

which form cliques (critical clusters) fits well with the observations made in [30]. In

the next section, we provide a description of critical clusters, their relation to critical

cliques and the key observations made in [30].

E. Critical Clusters

We attempt to give an overview of the relationship between critical cliques and

the identification of clusters of like-minded individuals who know each other in an



25

online social network (termed as critical clusters). Consider the properties of such a

cluster in an online social network. Primarily, such a cluster should have the following

two properties:

• Everyone knows everyone - Influencing one individual in such a cluster would

lead to a high chance of influencing all other individuals in that cluster. This

idea is thus synonymous with the observation made in [30] (D25).

This property is similar to the property of a critical clique where for any two

vertices u and v belonging to the critical clique, there must be an edge between

them. The two vertices u and v signify the individuals while the edge between u

and v represents the relationship that they are friends or they know each other.

• Everyone is like-minded - Two individuals are like-minded if they have the same

set of choices. More the similarity or like-mindedness between the individuals,

higher the chance of the individuals influencing each other. This idea fits well

with the observations made in [30](D24, D26, D27).

This property is analogous to the property of a critical clique where for any two

vertices u and v belonging to the critical clique, u and v have the same closed

neighborhood. The closed neighborhood represents the set of choices which are

preferred by both the individuals represented by u and v.

Note that the closed neighborhood property of the critical cliques induces an ad-

ditional constraint on the critical clusters : For any edge (u, v), u ∈ I, v ∈ I in a

critical cluster, u and v should have the same closed neighborhood w.r.t all the ver-

tices w ∈ I, where w is an adjacent vertex to u and v. Even with this additional

constraint, the two properties in a critical cluster of everyone knows everyone and

everyone is like-minded are still valid.
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F. Calculating Influences Within and Between Critical Clusters

In this section, we define our calculations about how well an individual in the

online social network can influence another individual, when they belong to the same

or different critical clusters. We define this influence by assigning a weight w ∈ [0, 1]

to each edge between two individuals in the online social network graph. This weight

represents the probability of influence of the edge.

Our calculations for the probability of influence of edges are made on the following

observations which are primarily based on the ideas presented in [30]:

1. Within the same critical cluster, the influence of one individual over another

should be high and uniform throughout the cluster. This is because each critical

cluster represents a group of like-minded individuals who know each other and

have the exact same set of choices. In comparison, influences between individ-

uals in different clusters should be less than the influences within the cluster.

2. As the size of a critical cluster increases, the influence within the cluster is likely

to decrease as a smaller cluster implies more cohesion between the individuals

of the cluster.

3. Apart from the critical cluster size, the total choices preferred by each individual

in the cluster is also an indication of the like-mindedness among the individuals

in that cluster. A higher number of common choices indicates a higher degree

of like-mindedness between the individuals and affects the influence within the

cluster positively.

Based upon these observations, we define the probability of influence PC for all

internal edges within a critical cluster C (comprising of atleast two individuals) as

follows:
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PC = weightcluster ∗
min-size-cluster(G)

size(C )
+weightchoices ∗

choices(C )
max-choices-in-a-cluster(G)

where,

min-size-cluster(G) = number of vertices w ∈ I in the minimum size critical cluster

(comprising of atleast two individuals) in G,

max-choices-in-a-cluster(G) = number of vertices c ∈ CH in a critical cluster (com-

prising of atleast two individuals) in G with maximum number of choices,

size(C) = number of vertices w ∈ I in the critical cluster C,

choices(C) = number of vertices c ∈ CH in the critical cluster C

The terms weightcluster and weightchoices represent the contribution that comes

from the two main factors for defining influences within a critical cluster, namely the

cluster size and the number of choices of individuals in that cluster. In this research,

we assume an equal contribution from both these factors and assign weightcluster =

weightchoices = 0.5. However, for purposes of future research, it would be interesting

to study these two factors experimentally and define a measure that evaluates the

contribution of these two factors.

Probability of influence of edges between critical clusters is assigned a low, con-

stant probability. For any edge (u, v) where u,v ∈ I and u, v belong to different

critical clusters, we define this probability as follows:

Pu,v = k ∗min{PC}, where,

k < 1 is a constant,

min{PC} = minimum probability of influence for internal edges among all the critical

clusters of atleast two individuals.

Note that in this current research, for experimental purposes, we have assigned a

probability of 0.01 for probability of influence of edges between clusters. This constant

probability of 0.01 satisfies our defined criteria for probability of influence of an edge
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between critical clusters in our experiments. In addition to this, it also helps us to

perform a comparison of our approach to the greedy approach proposed by Kempe

et al. [4] as they also used a constant probability of 0.01 in their experiments.

G. Influence Maximization Algorithm

The Influence Maximization Algorithm comprises of the following steps:

1. Identify critical clusters

Identify the critical clusters in the social network graph by using the algorithm

of critical cliques mentioned in Chapter III. Note that the set of vertices used

by the algorithm is V = I. Since any vertex c ∈ CH is in the adjacency list

of v ∈ I if v exhibits a choice of c, the critical cliques algorithm would directly

give us the critical clusters.

2. Calculate probability of influence of edges

Assign the probability of influence for each edge, within and between critical

clusters.

3. Determine the initial set of k activation nodes

We apply heuristics to determine the selection for an initial set of k individuals.

Our heuristics are based on the key observation that within each critical cluster,

we need to influence only one individual who in turn can strongly influence other

individuals in the same critical cluster.

We consider the following heuristics for our initial activation set:

(a) Selection in the order of critical cluster size

Arrange the critical clusters in decreasing order of their sizes and choose

an individual u ∈ I from each of the first k critical clusters.
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(b) Selection in the order of number of choices

Arrange the critical clusters in decreasing order of their choices count and

choose an individual u ∈ I from each of the first k critical clusters.

(c) Selection in the order of probability of influence of internal edges

Arrange the critical clusters in decreasing order of the probability of in-

fluence of their internal edges and choose an individual u ∈ I from each of

the first k critical clusters.

(d) Random selection

Randomly select k individuals after breaking the social network graph into

critical clusters.

Note that our main proposed heuristics are based on size of the critical cluster,

choices and the probability of influence of edges within the critical clusters. The

last heuristic mentioned is for the purpose of comparison of our main heuristics

to the random selection approach.

4. Determine the final influence spread

We take the independent cascade model as our diffusion model. In this model,

the influence propagates in discrete time steps. In the first time step t, each

individual u ∈ I in the initial activation set(determined in step 3) tries to

influence its inactive neighboring individual v, (u, v) ∈ E. It succeeds with a

probability of influence P(u,v) which has already been calculated for each edge

(u, v) in step 2. An individual u has only one attempt to influence its inactive

neighbor v. After this first step, u cannot influence any other of its adjacent

neighbors.

The individuals v that were successfully influenced in the first step now try

to influence their inactive neighbors w, succeeding with a probability P(v,w).
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Just as before, they get one chance to influence their adjacent neighbors. This

process continues till there are no more individuals which can be influenced.

At the end of this step, we get the count of the number of individuals activated

by the initial activation set. This gives us the measure of the influence spread.

Note that we run our algorithm a large number of times (1000 times) to get a

better approximation of the influence spread.

H. Runtime Complexity

In this section, we analyse the runtime complexity of our algorithm for deter-

mining the initial set of k activation nodes.

In a social network graph, bounding the maximum degree of a user u by a

constant is a fairly practical assumption and acceptable as we can (generally) place

an upper bound on the number of friends a user u has in an online social network.

Also, in the context of this research, the choices u exhibits can be considered to

be small when compared to the number of friends v ∈ I of individual u. Thus,

determining the critical clusters can be done in O(|V | + |E|) time using the critical

cliques algorithm discussed in Chapter III.

There can be atmost |V | critical clusters. Determining the attributes (size,

choices, probability of influence of internal edge) of each critical cluster can be done

in O(|E| + |V |) time. Finally, we do require a sorting algorithm based on these

attributes (in step 3) and since there are atmost |V | critical clusters, the sorting algo-

rithm will have a runtime of O(|V |.log|V |). Thus, the overall runtime of our algorithm

is O(|E|+ |V |.log|V |) for the selection of k initial activation nodes.
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I. Experimental Results

1. Collaboration Network Graph

For our experiments, we use the Arxiv HEP-PH collaboration network dataset.

This dataset covers scientific collaborations between authors of papers submitted to

the category of High Energy Physics - Phenomenology from January 1993 to April

2003.

Using this dataset, we generate an undirected graph for our experiments. The

number of nodes in the generated graph is 12008 with a total of 237010 edges. The

diameter of the graph is 13 and the clustering coefficient of the graph is 0.6115. Our

approach relies on two sets of data nodes: the user nodes and the choice nodes.

However, this collaboration network graph cannot be divided into two distinct set of

users and their respective choices. Hence, for this experiment, we assume that the

set of neighbors of the users in a critical cluster is the same as the set of choices for

that critical cluster. In the context of this dataset, this translates to the fact that

the authors which collaborate with each other have the same set of choices(authors)

with whom they are collaborating.

In our experiments, the size of our initial set of k activation nodes is taken from

the set S = {5, 10, 15, 20}. For each value of k ∈ S, we run our algorithm a total of

1000 times. After the 1000 iterations for each value of k, we approximate the average

number of nodes that are finally influenced for that value of k.

We divide the experiments on the collaboration network graph into following two

parts:

1. In the first part, we assign a uniform probability of influence of 1%(.01) to all

the edges (u, v), u, v ∈ I. Thereafter, we compare our proposed heuristics based

selection approaches to the greedy approach proposed by Kempe et al. [4]
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2. In the second part, we calculate the probability of influence as defined in our

proposed model. Then, we present the results of our heuristics based selection

approaches.

Fig. 4. Comparison of influence maximization heuristics.

The result of the first part of our experiments is shown in the Figure 4. From

the experimental results, we observe that the heuristics based on critical cluster’s

sizes and probability of influence of edges are slightly better than the greedy algo-

rithm suggested by Kempe et al. [4] in the independent cascade diffusion model. The

heuristic based on the critical cluster’s choices is comparably equal to the greedy

approach. However, we note that randomly selecting nodes after breaking the online

social network graph into critical clusters performs the worst among all the heuristics.

We show the results of the second part of our experiment on the collaboration
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Fig. 5. Comparison of influence maximization heuristics in the proposed model.

network graph in the Figure 5. We note that the heuristics based on critical cluster’s

size, choices and probability of influence of an edge have a better influence spread

under our proposed model. The heuristic based on random selection performs the

worst in this case.
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2. Collaboration Network Graph with Choices

In this set of experiments, we modify the collaboration network graph by adding

choice nodes which represent the choices of the individuals in the collaboration net-

work. In particular, we perform 3 simulations by adding 2, 5 and 8 choices to the

collaboration network graph. For each user u, we flip a coin for each of the choice c

and decide with a 50% chance if the user u exhibits the choice c. It is noticeable that

as the choices increase, the number of critical clusters of size > 1 rapidly decreases.

This is expected since a set of many choices available to each user means that the

chances of a group of users being like-minded are low. For determining the initial

set of activation nodes, we run our three main proposed heuristics - based on critical

cluster size, number of choices in critical cluster and the probability of influence of

internal edges in the critical cluster.

1. Two Available Choices

In this simulation, we provide a set of two choices for each user in the collabora-

tion network graph. The results of the performance of the heuristics are shown

in Figure 6.

We notice that since the choices are few, the critical clusters (size > 1) do

not decrease significantly than in the original collaboration graph. Also, the

heuristic based on critical cluster size performs the best as compared to the

other two heuristics.
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Fig. 6. Comparison of influence maximization heuristics with 2 choices.

2. Five Available Choices

We provide a total of 5 available choices to each user. The results of the per-

formance of the heuristics are shown in the Figure 7.

We observe that the maximum influence spread for any value of k is lower than

the maximum influence spread for that k from the previous simulation with two

choices. This matches our intuition that as the total available choices increases,

the similarity between users will be lesser and the influence spread will decrease

as a consequence.
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Fig. 7. Comparison of influence maximization heuristics with 5 choices.

3. Eight Available Choices

The setup for this simulation is the same as the previous ones with eight avail-

able choices for each user. The results are shown in Figure 8.

We notice that with total available choices as 8, the number of critical clusters

(size > 1) in the social network graph reduce significantly. Also, the maximum

influence spread for any k is lower when compared to the maximum influence

spread for that k in experiments with total choices as two and five respectively.

Since the number of critical clusters with size > 1 are less and the users are

mostly single node critical clusters, the influence spread by the various proposed

heuristics lie close to each other.
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Fig. 8. Comparison of influence maximization heuristics with 8 choices.
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3. Critical Cliques in Real World Datasets

We conclude our experimental analysis by analysing real world datasets for crit-

ical cliques. The motivation for this analysis is to show that the proposed model of

online social network in this research has a practical application to real world data.

Table I. Critical cliques in real world datasets.

Description Nodes Edges CC Nodes CC

Collaboration network

of Arxiv Astro Physics

18,772 396,160 5,215 1770

Collaboration network

of Arxiv Condensed

Matter

23,133 186,936 7,813 3059

Collaboration network

of Arxiv General Rel-

ativity

5,242 28,980 1,847 712

Collaboration network

of Arxiv High Energy

Physics

12,008 237,010 3,558 1112

Collaboration network

of Arxiv High Energy

Physics Theory

9,877 51,971 2,222 955

Email communication

network from Enron

36,692 367,662 8,704 3592

Table I lists our analysis on the real world datasets. The datasets are taken
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from Stanford Large Network Dataset Collection. Our analysis is based on the real

world undirected graphs present in this collection. For each dataset, we calculate the

number of critical cliques comprising of atleast two nodes (column CC in Table I)

and the total number of such critical cliques nodes (column CC Nodes in Table I).

Our analysis shows that we do get a sufficient number of critical cliques of

size > 1 (and critical cliques nodes) in the real world data. Based on these findings,

we believe that our online social network modeled on critical clusters has practical

applications to real world data.
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CHAPTER V

FUTURE WORK AND CONCLUSION

A. Future Work

In this research, we presented an algorithm for breaking a simple, undirected

graph into critical cliques and later on, we presented an application of the critical

cliques in the domain of social computing. We presented a new model of online social

network by partitioning the online social network graph into critical clusters and

utilized their structural properties to solve the problem of influence maximization.

However, we believe that the following key points related to our work in the influence

maximization problem have further scope of future work:

1. Relaxing the Criteria of Membership in Critical Clusters

Our definition of critical clusters is restrictive in the sense that it requires the set

of people within a critical cluster to have the exact same set of choices. In addition

to this, the inherited property of critical cliques also induces a constraint that the

individuals belonging to a critical cluster must have the same closed neighborhood

(in terms of the individuals known) as all the other individuals in that cluster.

We believe that we can relax the definition of critical clusters by allowing the

following:

• Allowing individuals belonging to a critical cluster to have a majority of their

choices to be the same

• Relaxing the property of critical clusters of being cliques. In other words, we

could allow critical cluster to be a dense subgraph of the online social network

rather than a clique.
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Relaxing the criteria for membership of critical clusters would help us in getting

a better realistic partitioning of the online social network graph. Thus, this forms an

interesting area of future research which we would like to explore further.

2. Determining Probability of Influence in Critical Clusters

We consider two factors in determining the influence spread within a critical

cluster C which are the size of C and the number of choices in that cluster C. An equal

contribution from both these factors is assumed while determining the probability of

influence of an edge in a critical cluster. However, we believe that the contribution

from both these factors can be more effectively determined by analysing real world

data sets and studying how the influence spread varies with changes in the size of a

cluster and the number of choices within a cluster.

B. Conclusion

The main contribution of this research can be summarized as follows:

• Even though there are a number of linear time modular decomposition algo-

rithms for undirected graphs that can be used to obtain critical cliques, yet

using the modular decomposition process to obtain critical cliques is not a pre-

ferred approach because of the following reasons:

(a) It is complex to implement the linear time modular decomposition algo-

rithms.

(b) The use of intermediate data structures like PQ trees, ordered chain par-

titions etc. add to the overall complexity (constant factors).

In this research, we proposed a simple algorithm to directly decompose a graph
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into its constituent critical cliques. Our algorithm utilized the fundamental

property of a critical clique which is that it is a maximal clique under the

condition that all the vertices within this clique have the same closed neigh-

borhood. The main advantage of our algorithm for critical cliques is that it is

simpler and easier to implement. Also, the constant factors associated with the

runtime complexity of our algorithm are small as discussed earlier in Chapter

III, Section D.

• We presented a new application of critical cliques in the domain of social net-

work analysis. We proposed a new model for structuring the online social net-

work based on the idea of critical cliques. Also, we proposed a set of heuristics

based on the properties of critical clusters for identifying the initial set of nodes

in an online social network graph to solve the problem of influence maximiza-

tion. The key contributions of our work related to influence maximization in

online social networks are:

• A proposed new model of online social network in terms of critical clusters

which takes into account the structure of the online social network graph.

• A new and faster algorithm for selection of initial set of activation nodes

based on our proposed model. The greedy algorithm proposed by Kempe et

al. in [4] has a running time of O(k.|V |.R.|E|) to select k initial activation

nodes. Here, R is the number of times the influence spread is determined

for each v ∈ V to get a better approximation for the influence spread of

v. In comparison, our algorithm has a runtime complexity of O(|E| +

|V |.log|V |) for determining the initial set of k activation nodes.
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