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ABSTRACT

Stochastic Modeling and Analysis of Plant Microtubule System Characteristics.

(May 2012)

Ezgi Can Eren, B. S., Bogazici University

Chair of Advisory Committee: Dr. Natarajan Gautam

In this dissertation, we consider a complex biological system known as cortical

microtubule (CMT) system, where stochastic dynamics of the components (i.e., the

CMTs) are de�ned in both space and time. CMTs have an inherent spatial dimen-

sion of their own, as their length changes over time in addition to their location.

As a result of their dynamics in a con�ned space, they run into and interact with

each other according to simple stochastic rules. Over time, CMTs acquire an ordered

structure that is achieved without any centralized control beginning with a completely

disorganized system. It is also observed that this organization might be distorted,

when parameters of dynamicity and interactions change due to genetic mutation or

environmental conditions. The main question of interest is to explore the charac-

teristics of this system and the drivers of its self-organization, which is not feasible

relying solely on biological experiments. For this, we replicate the system dynamics

and interactions using computer simulations. As the simulations successfully mimic

the organization seen in plant cells, we conduct an extensive analysis to discover the

e�ects of dynamics and interactions on system characteristics by experimenting with

di�erent input parameters. To compare simulation results, we characterize system

properties and quantify organization level using metrics based on entropy, average

length and number of CMTs in the system. Based on our �ndings and conjectures

from simulations, we develop analytical models for more generalized conclusions and
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e�cient computation of system metrics. As a �rst step, we formulate a mean-�eld

model, which we use to derive su�cient conditions for organization to occur in terms

of input parameters. Next, considering the parameter ranges that satisfy these condi-

tions, we develop predictive methodologies for estimation of expected average length

and number of CMTs over time, using a �uid model, transient analysis, and ap-

proximation algorithms tailored to our problem. Overall, we build a comprehensive

framework for analysis and control of microtubule organization in plant cells using

a wide range of models and methodologies in conjunction. This research also has

broader impacts related to the �elds of bio-energy, healthcare, and nanotechnology;

in addition to its methodological contribution to stochastic modeling of systems with

high-level spatial and temporal complexity.
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CHAPTER I

INTRODUCTION

In this chapter, we introduce the research problem studied in this dissertation. We

begin with a discussion of the underlying motivation and background followed by a

de�nition of the problem in detail.

I.1. Motivation and Background

Since mathematical and computational methodologies began to be employed to study

biological systems and their dynamics, biosciences have signi�cantly bene�ted from

quantitative modeling applications and their use in conjunction with experimental

studies. Mathematical and computational techniques can be broadly classi�ed as two

types: simulation and analytical. Simulation techniques have been widely used as they

can replicate real systems to a great detail. Analytical e�orts often rely on stronger

assumptions to describe the system in mathematical equations and get closed-form

solutions or generalized conclusions. Together, these mathematical and computa-

tional methodologies enable e�cient analysis of biological systems which would take

enormous time and e�orts - or even would be infeasible in most cases - relying only

on biological experiments. As a result, they help better understand and explore

mechanisms in living things.

Modeling and analysis of mechanisms in biology and life sciences in general cre-

ates a potential for development of novel techniques and new technologies in quan-

titative sciences and engineering. It has recently been realized that some engineered

complex systems such as Internet and computer chips possess many features of molec-

The journal model is IIE Transactions.
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ular interaction networks within a living cell (Skjeltrop and Belushkin, 2005). In a

way, nature has inherent mechanisms that are worth mimicking in arti�cially manu-

factured systems. Sensory functions, adaptability to environmental conditions, and

atomic-level distributed autonomic control of self-assembled structures are a few ex-

amples of intriguing properties of biological systems that are leveraged for emerging

technologies. Developing structures without centralized control, such as carbon nan-

otubes, sensor dust, etc., is a major objective in manufacturing of very small scale

systems. Further innovations in nano-technology, sensor development and other re-

lated areas rely highly on the discovery and better understanding of processes in living

organisms.

Having made a case for the use of mathematical and computational methods

for bio-systems, as well as the use of bio-systems in developing arti�cially engineered

systems, there are several challenges to consider. For example, it is not possible to

study living systems just by analyzing their components individually. A systems ap-

proach is required to take into account the interactions between the components that

are highly nonlinear in nature. These interactions together with dynamics de�ned

in the system lead to emergence of complex functionality which is critical for sur-

vival of living organisms. Although several methods have been applied to analyze

complex physical systems such as the atmosphere and oceans, living cells present an

unprecedented complexity due to signi�cant molecular mechanisms, which creates a

continuing challenge for discovery and analysis as well as opportunities to engineer

similar systems. Such systems typically exhibit inherent complexity at both spatial

and temporal levels, where randomness and organization coexist in an intriguing man-

ner. A basic common example would be pattern formation on animal coats, such as

zebra stripes and leopard spots. The coat patterns are speci�c to the species, they

would help identify the type of the animal with certainty in most cases. However, it



3

would not be possible to �nd the exact replica of prints of an animal on another indi-

vidual of the same type. Plants also exhibit similar pattern formation in their leaves

and �owers. Systems biology has recently developed an understanding that the com-

plexity of biological systems begins at the cellular level (Ghosh et al., 2006). Thus,

discovering the mechanisms of the cellular activities are essential in understanding

higher level biological systems, including humans.

Our work is motivated by a special system in living cells, namely the cortical

microtubule (CMT) system, which serves as the skeleton of plant cells (see Figure

1). They are essential for development of the cell shape, maintenance of the cell

structure, and other critical functions including cellular transportation and division.

Microtubules are �ber-like structures that are formed by the polymers inside the

cell and appear in clusters or arrays according to the cell type and function. Cortical

microtubules form ordered arrays that are similarly aligned to each other on the plant

cell wall. They are observed to acquire this ordered structure by self-organizing from

a completely disorganized system of tiny CMTs that are distributed randomly over

the cell surface (cortex) growing in random directions. This organization is achieved

despite the lack of any central control mechanism, relying only on the individual

dynamics of CMTs and interactions among them.

In addition to the spatial and temporal complexity of the whole CMT system,

inherent dynamics of CMTs introduce an additional spatial dimension to the problem.

Both the dynamics and interactions in the system are governed by stochastic rules and

processes. Traditional modeling approaches are unsuitable for modeling such complex

stochastic distributed systems with spatio-temporal properties. Our objective is to

develop methods to model and analyze this complex system that will answer questions

related to its characteristics including organization and other performance measures

of CMT length and number in the system. We �rst develop a computer simulation
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Fig. 1. Plant Cell Microtubules

model to replicate the dynamics and interactions of CMTs based on the data from

biological experiments, that is microscopic studies of live plant cells. Simulations

provide a means to characterize system properties including CMT organization and

develop related metrics as well as identify possible types of system behavior. Using the

quanti�cation metrics, we test the impacts of CMT dynamics and interactions (input

parameters) on system characteristics (output measures). Based on our conjectures

from the simulations that we conduct, our next objective is to formulate analytical

techniques that are more e�cient and will lead to more generalized results and con-

clusions in terms of the relations between input parameters and output measures.

First, we theoretically determine the conditions for organization in terms of system

parameters. Finally, focusing on that region, we develop predictive methodologies

to estimate certain system metrics (expected average CMT length and number) and

their evolution in time based on a given set of inputs. Overall, we build a frame-
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work using computational and analytical methods all together for a comprehensive

quantitative modeling of the system characteristics.

In addition to its short-term objective of studying self-organization and other

characteristics of plant CMTs, this research also has some broader reaching impacts.

It contributes to our understanding of similar microtubule arrays that are gener-

ated without any central control in specialized animal cells such as neurons and

muscle cells, where ordered arrays are critical for the specialized morphology and

functions. This research is also related to the �eld of biofuel engineering, as CMT

organization directly in�uences the ordered deposition of cellulose micro�brils, the

most abundant biopolymer on the planet. Finally, as we mentioned above, the com-

plex structure of living systems exhibit unique mechanisms that can be harnessed in

manufacturing of arti�cial systems. In this context, there are current studies that

relate self-organization of microtubules to design and assemble of nanostructures for

the directional transport or delivery of materials at the nanoscale (Goel and Vogel,

2008).

I.2. Problem De�nition

In this dissertation, we consider a CMT system with dynamics and interactions de-

�ned over time and space. We describe system properties based on experimental data

from relevant literature (Dixit and Cyr, 2004; Shaw et al., 2003). We begin by describ-

ing the dynamics for a single CMT, and subsequently consider interactions between

CMTs. CMTs are �ber-like structures that have an approximately linear shape. They

are formed by head-to-tail assembly of tubulin dimers which are the building blocks

(see Figure 2). Their formation results in distinct dynamics at both ends. One end

is highly dynamic and �grows� on average, which is designated as the �leading end�;
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whereas the other end is less dynamic, �shortening� on average and accordingly called

the �lagging end�. More speci�cally, the leading end stochastically switches between

growth (G), shortening (S) and pause (P ) phases, whereas the lagging end alternates

only between shortening (S) and pause (P ) phases. Growth occurs by assembling

more dimers to the leading end, and shortening occurs by breaking down into the

dimer level on either end. The length of the CMT at time t, L(t), changes according

to its state at time t, M(t), which is de�ned as a two-tuple of leading and lagging end

phases. A sample path for the state of a CMT with the corresponding length graph

is plotted in Figure 3. Note that while in a state, the length of the CMT changes

with a constant velocity.

Fig. 2. Structure of a CMT with Leading (+) and Lagging (-) Ends and Leading End

Dynamics

Having described the dynamics of a single CMT brie�y, we now put this in the

context with other CMTs in a plant cell. CMTs appear randomly over time at random

locations over the cell wall with an arbitrary orientation that is determined by the
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Fig. 3. Realization of the Length Process, L(t) of a CMT Based on Its State, M(t)

growth direction of the leading end. As a result of the distinct dynamics at both ends,

a CMT moves in the direction that its leading end grows. Hence, it runs into other

CMTs in the system, which results in CMT interactions. These interactions occur

on an approximately planar area as CMTs are attached to the cell surface (cortex)

tightly and potentially result in a change in the dynamics and orientation of the CMT.

According to experimental data, there are three possible outcomes when a CMT runs

into another one that we call the �barrier�. We use Figure 4 to describe events that

can occur as a result of a CMT interaction. The CMT can bend in the direction of

the barrier and continue to grow along it forming a bundle at the point of collision.

This �bundling� would happen with a curvature, however we are approximating it

by a linear shape in the �gure. Another possibility is that facing the barrier, the
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leading end of the CMT immediately leaves the growth phase and transitions into

the shortening phase, which is called a (collision-induced) �catastrophe�. Finally, the

CMT can cross over the barrier neither changing its dynamics nor orientation. These

events are experimentally observed to be dependent on the collision angle between the

two CMTs and plant cell type, which we will explain in more detail in Chapter III.

a a 

a 

a 

Fig. 4. Events Induced by CMT Interactions

It is observed in plant cells that over the course of time disorganized CMTs

with random orientations get organized to be aligned with similar orientations as

seen in Figure 5. What is remarkable is that there is no centralized control and this

organization emerges purely by the dynamics and interactions of individual CMTs

that we described. This motivates the question of whether it would be possible to

replicate this self-organization by simulating CMT dynamics and interactions. It

turns out that using simulations that start with a disorganized set of CMTs, they

indeed evolve similarly, self-organizing into ordered arrays as seen in the simulated

example in Figure 5, which we will discuss in Chapter III. Having con�rmed that,

our main point of interest is that CMT organization can be distorted by genetic

mutations or environmental conditions that alter dynamics and interactions in plant
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cells. Hence, certain CMT systems might stay disorganized, which has signi�cantly

adverse e�ects on the functionality of the cell. Our objective in this dissertation is

to quantitatively characterize this complex system and particularly its organization,

to develop predictive methodologies for its characteristics, and explore underpinnings

of self-organization in terms of system parameters. For this, we next describe a

framework of our approach.
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Fig. 5. CMT Organization in a Plant Cell and Replication in a 3D Simulation Model

I.3. Objectives and Framework

In summary, the crux of this research is in the development of computational and

analytical models and methodologies for the CMT system that will answer questions

such as:

• Can we replicate the system using computational and analytical models, by

mimicking the CMT dynamics and interactions observed in real cells to obtain

similar behavior?
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• How can properties related to the length, number and orientation of CMTs

including organization in the system be characterized?

• What are the e�ects of CMT dynamics and interactions on organization and

other system characteristics such as average CMT length and number?

• Is it possible to predict organization, average CMT length and number in time

for a given system?

Primarily, we are interested in developing methods to explore the e�ects of parameters

related to CMT dynamics and interactions on the properties of the whole system

as well as predicting evolution of system characteristics in time. A representative

diagram for the implementation of such methods outlining their inputs and outputs is

given in Figure 6. A related objective is to develop measures that characterize system

properties (outputs) to be able to conduct a quantitative comparison of results.

Outputs: 
 

System Organization 
 

Performance Measures 

Computational and 

Analytical Model 

and Methodologies 

Inputs: 
 

 Dynamics and 

Interaction Parameters 

Fig. 6. Input-Output Diagram for Computational and Analytical Methods

This dissertation takes a systematic approach to the problem considered. A

detailed framework of the derivation of models and analysis is presented in Figure

7. First, we use computer simulations to replicate the dynamics and interactions of

CMTs based on data from biological experiments. We test di�erent scenarios changing

input parameters of the simulation algorithm. We compare simulation results based

on certain performance measures including organization, length and number of CMTs,



11

which are the major determinants of the system structure. For system organization,

we use a metric that characterizes the distribution of CMT orientations, which we

also employ on real cell pictures via imaging techniques in order to compare simulated

and real systems more quantitatively. Based on simulation results and conjectures, we

develop a mean-�eld model for CMT dynamics and interactions; and use it to derive

su�cient conditions for system organization in terms of problem parameters. Finally,

considering the parameter regions that guarantee organization, we develop predictive

methodologies for other system metrics such as expected number and average length

of CMTs over time. This �nal step of research brings a uni�ed approach including

a �uid model for CMT dynamics, approximation algorithms and simulations applied

in conjunction to derive an estimation method that is well-suited for the considered

system. We verify results of our analytical methodologies using simulations.

I.4. Organization of the Dissertation

This dissertation is organized as follows. In Chapter II, we review the related lit-

erature by classifying it into two major areas: i) computational and mathematical

biology, and ii) complex system dynamics and self-organization. In this chapter, we

also present a detailed discussion of papers that focus speci�cally on modeling of

CMTs. In Chapter III, we introduce a mathematical framework for the developed

models, quanti�cation of system properties and a discussion of the simulation model

with its validation and results. Chapter IV describes the mean-�eld model for system

organization together with its analysis and results. In Chapter V, we present the

�uid model for single CMT dynamics and related methodologies for estimation of

system metrics. We include a numerical comparison of outputs to simulation results.

Finally, we conclude in Chapter VI with a summary of contributions and ideas for
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future research.
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Fig. 7. A Framework of the System Analysis Approach



13

CHAPTER II

LITERATURE REVIEW AND BACKGROUND RESEARCH

Having described our problem and its underlying motivation, we review in this chapter

two related research areas. We �rst summarize relevant computational and mathe-

matical biology literature, and next brie�y discuss the area of complex systems with

an emphasis on emergent behavior such as self-organization observed in the CMT

system that we consider. Note that those two areas are major �elds that we review

here very concisely to establish the connections and di�erences of our problem with

respect to some prior studies. Finally, we devote a separate section for the stud-

ies under the category of computational and mathematical biology literature that

particularly focus on CMT systems.

II.1. Computational and Mathematical Biology

Computational and mathematical biology is an active fast-growing research �eld

which requires an interdisciplinary approach. A compilation of computational studies

in the �eld of systems biology can be found in Kriete and Eils (2006), including a

discussion of information technologies that enable computational analysis of biologi-

cal data. Murray (1993) presents a detailed discussion of several models developed in

the broad area of the mathematical biology. A signi�cant portion of research in this

area focuses on ecological and epidemiological models. In addition to discrete mod-

els, continuous approximations are widely used to model population dynamics, which

generally yields to so-called �reaction-di�usion� equation systems. In this approach,

the entities are considered as particle-like structures where their interaction frequen-

cies are formulated as functions of the spatial densities of their species and others.

Cantrell and Cosner (2003) speci�cally focus on modeling of ecological systems using
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reaction-di�usion equations. Curry and Feldman (1987) develop stochastic models

of population dynamics in agricultural ecosystems and provide a comparison to the

deterministic approaches in terms of estimation of mean performance measures. They

also study derivation of optimal control policies for insect populations. Other major

phenomena considered in mathematical biology include travelling wave-like motion

of chemicals and organisms, such as spreading epidemics; analysis of biological oscil-

lators with time-periodic dynamics, examples of which can be listed as the breathing

process and the pacemaker of the heart. Another widely studied topic is spatial pat-

tern formation in living organisms, which is also related to the concept of emergent

behavior seen in complex systems (and will be discussed in Section II.2). The problem

that we consider in this research distinguishes itself from prior studies in general, as

we consider micro-level dynamics in time and space, where the components (CMTs)

have an inherent spatial dimension of their own (as CMT length changes in time)

and interact with each other accordingly. Hence, they are not suitable to be modeled

as particle systems and do not exhibit any spatial or temporal periodicity in their

dynamics.

Among quantitative methodologies, operations research techniques have been

fairly applied to the area of genomics and molecular biology. Waterman (1995) in-

cludes applications of several combinatorial and statistical tools such as graph theory,

integer programming, heuristics and renewal theory for modeling biological data as

sequences and maps. There have been introductory e�orts to employ network the-

ory for the study of interactions between components of biological systems (Palsson,

2006), in line with the transition from reductionist approaches to a systems perspec-

tive for analysis of bio-systems. Still it is a perceived fact that operations research

techniques, including especially stochastic modeling approaches, have been underused

to study biological mechanisms. Our objective in this research is to develop method-
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ologies that account for both the stochastic dynamics and spatio-temporal nature of

the biological system that we consider, making use of the best-suited techniques.

There are a few studies that speci�cally focus on microtubule systems, which

fall under the category of computational and mathematical biology. We review these

models in Section II.3 in the end of this chapter. Here, we continue with a discussion

of the relevant literature in complex systems area in the following section.

II.2. Complex System Dynamics and Self-Organization

The study of complex systems is an emerging �eld that focuses on systems with

inter-connected parts where the aggregate behavior can not be described by the sin-

gle components but depends highly on their interactions (Bar-Yam, 1997). It can be

de�ned as the �ultimate of the inter-disciplinary �elds� as it brings a seemingly lim-

itless number of disciplines together. In biology, it is possible to �nd in�nitely many

examples of complex systems. One fundamental phenomenon related to complexity is

structuring and di�erentiation of a large variety of functions and systems from similar

cells.

Having established the relation between the complex systems �eld and bio-

sciences in general, we discuss some major characteristics of complex systems that are

related to the problem that we consider. Self-organization is an emergent property

seen in several complex systems, where the components gain an ordered structure

in time through local interactions among themselves despite the absence of a central

control mechanism. One of the major research topics at the intersection of mathemat-

ical biology and complex systems literature is the spatio-temporal pattern formation

in living things. A standard application is the study of patterns in animal coats,

wings etc. (Chaplain et al., 1999), although there exists a wider range of domains
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from the structures observed in skin, hair (Nagorcka and Adelson, 1999) and capillary

networks (Chaplain and Anderson, 1999) to the pattern formation in cancerous cells

(Sherratt et al., 1999). A review and classi�cation of mathematical models used in

biological pattern formation can be found in Murray (1993) and Maini (1999). For

a more recent and methodology-based review of modeling and analysis of pattern

formation, the reader is referred to Hoyle (2006) and Desai and Kapral (2009).

Another type of self-organization seen in living systems is ordered motion where

organisms change their active movement in response to the local interactions with

other members, which leads to an harmonious motion of the whole group, as seen

in �sh schools and insect societies. Mikhailov and Calenbuhr (2002) study several

topics in this area including dynamical clustering, synchronization of motion, and

hierarchical organization of living systems. Schieve and Allen (1982) compile studies

on uncovering the mechanisms of this type of self-organization in chemical, biological

and social systems.

Another emergent property seen in complex systems is chaos, which is the irreg-

ular behavior in systems that are de�ned by simple rules; doesn't repeat itself; and

is unpredictable because of its sensitivity to the initial conditions which are never

exactly known (Ott, 1993). The analysis of unpredictable chaotic behavior is mainly

based on investigation of the attractors of the system, i.e. the sets of states toward

which the dynamical system evolves over time. Chaos exhibited in biological complex

systems is a result of interactions between components and generally observed at both

spatial and temporal dimensions. Kaneko and Tsuda (2001) study analysis of deter-

ministic chaotic behavior in complex systems with applications to the life sciences

(some of the examples include the immune system and chaotic information process-

ing in the brain). Bifurcation is an important concept in the analysis of complex

chaotic behavior as it establishes relations between system parameters and stabil-
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ity. A compilation of recent studies of bifurcation in nonlinear systems can be found

in Sun and Luo (2006). Crauel and Gundlach (1999) present studies that focus on

stochastic analysis of similar dynamical systems.

The problem studied in this research is related to both concepts in the complex

systems theory that are mentioned above. The system that we consider is an exam-

ple of a self-organized system with spatio-temporal properties. Moreover, unlike the

self-organizing systems mentioned above, CMTs also possess inherent spatial struc-

ture that a�ects their interactions with the rest of the system. That is, their length,

which changes as a result of their stochastic dynamics, adds another dimension to

the problem. CMT system exhibits also chaotic properties, as system behavior and

organization in plant cells is quite unpredictable although the dynamics and inter-

actions are de�ned by simple rules. Moreover, there is a high variability of output

measures observed in simulations under similar conditions, which will be discussed

in Chapter III. Thus, an analysis of this potentially chaotic behavior and system

stability is required to better understand system dynamics.

In summary, the problem that we study has distinct characteristics among the

common self-organized and chaotic systems considered in the related literature. We

believe that the analysis of CMT system will lead to development of novel techniques

for study of stochastic processes with high-level spatial and temporal complexity, in

addition to contributing to the area of mathematical and computational biology.

II.3. Computational and Analytical Models for Microtubules

Having discussed some major �elds related to the considered problem, in this section

we focus on studies of CMT and other microtubule systems in more detail. We

mainly include properties related to modeling and results, and refer the reader to
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Eren et al. (2012) for more biological details. We �rst begin by reviewing a few

papers that consider only the dynamics of microtubules with no interactions. This

types of microtubule systems are mainly found in animal cells and form an aster-

like structure centered at a compartment of the cell (centrosome). Unlike CMT

systems, the organization is typically controlled by this central mechanism rather

than being generated by interactions of microtubules. Such microtubule systems

have been generally modeled by formulating their dynamics in terms of continuum

di�erential equation systems and using computer simulations. Cytrynbaum et al.

(2003) present a quantitative model of microtubules which is numerically simulated

in one-dimensional and two-dimensional surfaces to study generation of aster-like

arrays. In Cytrynbaum et al. (2006), they also provide an asymptotic solution of the

problem for the one-dimensional case. Maly (2002) develops a di�usion approximation

for the stochastic dynamics of a single microtubule that switches between states of

growth, shortening and pause. Finally, extending the microtubule dynamics model

by Dogterom and Leibler (1993), Yarahmadian et al. (2011) develop a generalized

convection-di�usion model where the transition rates between growth and shortening

phases are dependent on the concentration of tubulin (which is the raw material for

CMTs), and conduct an analysis to investigate existence and stability of steady-state

solutions.

CMT organization in plant cells is one intriguing example of self-organization

mechanisms widely seen in living things. There is rising interest in modeling the

CMT system, particularly its organization into ordered arrays and the mechanisms

that facilitate this organization. Most of the studies so far focus on self-organization

of CMT arrays starting from a randomly oriented population and investigate answers

to questions such as:
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• Are simple dynamics and interactions between CMTs su�cient to result in or-

ganization? How does this self-organization occur? What are the necessary

conditions for emergence of ordered CMT arrays?

• What are the e�ects of altering dynamics, interactions, and properties of cell

edges on the CMT self-organization? What are the relative contributions of

these di�erent mechanisms on organization?

There is also an even more recent line of research which models molecular and

mechanical behavior of CMTs to understand the mechanisms that govern their inter-

actions as well as their individual tendencies for orientation based on cell geometry.

In other words, these models delve into the details of events that are induced by

interactions of CMTs with other CMTs and the constraints of the space that they are

con�ned in. More speci�cally, the objective of such studies might be answering one

or more of the following questions:

• How do interactions such as CMT bundling and collision- induced catastrophe

occur? Why are those events dependent on the collision angle?

• How does the attachment (anchoring) of CMTs to the cell surface (cortex) occur

and what are its e�ects on CMT interactions?

• How do the interactions with the space and geometry constraints occur?

It is worth noting that our classi�cation is inspired by the cell-level vs. molecular-

level questions in Allard et al. (2010b), although we extend their de�nition to include

mechanical models which focus on bending mechanisms of CMTs based solely on

their elasticity and geometric constraints -which include interactions with the cell

boundaries as well as the parameters that determine the size of the system- with-

out considering their interactions with other CMTs. In this section, we refer to the
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�rst class of models as the �organization-oriented� models and the second class of

models as the �interaction-oriented� models. In the following, we begin by review-

ing organization-oriented models leaving a few interaction-oriented studies for later

discussion.

II.3.1. CMT Organization-Oriented Models

There have been both computational and analytical approaches to address CMT

self-organization emerging due to the interactions in the system. Simulation tech-

niques o�er the advantage of replicating real systems to a great detail and conducting

computational experiments to test di�erent scenarios easily by modifying the input

parameters. On the other hand, analytical e�orts often rely on stronger assumptions

to get closed-form solutions or more general conclusions while enabling even more e�-

cient analysis. There are certain properties common to both analytical and simulation

studies of CMT organization in general, such as modeling CMTs as line segments and

considering their dynamics as being identical in the absence of interactions. As a

result, CMTs can be roughly modeled similar to interacting particles although with

a certain length and orientation. In simulations, coordinates of CMTs are updated

according to the dynamics and interactions in accordance with the assumptions of

the particular model. Analytical e�orts usually rely on spatial homogeneity assump-

tion, which allows ignoring coordinates and formulation based on average density of

CMTs over the whole area. For both types of models, bundling mechanism results

in the possibility of multiple segments with di�erent orientation for a single CMT.

Having described some general characteristics of CMT models, we continue with a

discussion of some fundamental simulation studies and their major �ndings related

to the impact of interactions on array organization.

To the best of our knowledge, the �rst published attempt to model CMT orga-



21

nization computationally is by Dixit and Cyr (2004). They developed a Monte Carlo

simulation with a limited number of CMTs in the system where the appearance of new

CMTs is not considered. Their simulations show that simple rules for CMT interac-

tions extracted from biological experiments can result in a parallel CMT array from a

randomly arranged population. They found that bundling and catastrophes are both

necessary and su�cient for CMT organization, although this conclusion might be re-

lated to the restricted size of the simulations, as stated by the authors. As a matter of

fact, more complex models distinguish between the relative signi�cance of those two

mechanisms, which we will address in the following subsection. Baulin et al. (2007)

model a CMT system where they incorporate the appearance process of new CMTs.

However, in their simulations, interaction mechanisms and dynamics are simpli�ed

as follows. Dynamics of a single CMT are assumed to be deterministic where the

leading end grows and lagging end shortens continuously with their corresponding

time-averaged velocities. When a CMT runs into another one, it pauses for the dura-

tion that it is blocked by the barrier, which is called stalling. Their simulations show

that even these overly simpli�ed interaction mechanism and dynamics are enough

to achieve self-organization. However, their model is limited in the sense that only

growth-prone dynamics with a positive net velocity can be studied due to exclusion

of multiple states. Shi and Ma (2010) consider similar interaction mechanism with

stalling -that they call steric interactions- and model the CMT dynamics at both

ends. They particularly focus on analyzing the e�ects of dynamicity parameters on

the organization of CMTs by conducting an extensive simulation study. Tindemans

et al. (2010) consider bundling and catastrophe interactions as well as possibility of

growth and shortening (a two-state model) at the leading end, complementing their

analytical model in Hawkins et al. (2010). According to their models, CMT lagging

end is always static, which reduces the dimensional complexity of the problem. Allard
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Table 1. Summary of CMT Models in the Literature
Leading End Lagging End Interactions Appearance

Dixit and Cyr (2004) G, S Static C∗, B∗∗ -
Baulin et al. (2007) G S Stalling Y
Shi and Ma (2010) G, S S Stalling Y
Tindemans et al. (2010) G, S Static C, B Y
Hawkins et al. (2010) G, S Static C, B Y
Allard et al. (2010b) G, S, P S C, B Y
Our models G, S, P S, P C, B Y

∗ �Catastrophe� is abbreviated as �C�
∗∗ �Bundling� is abbreviated as �B�

et al. (2010b) consider a model with three states by incorporating the possibility of

pausing at the leading end. They also consider a continuously shortening lagging end

with the time-averaged velocity based on the data from biological experiments. In

our simulation model, we consider stochastic dynamics at both ends in addition to

bundling and catastrophe interactions, which we will discuss in Chapter III. Table

1 summarizes certain properties of CMT organization models in the literature. Note

that the table lists the phases considered for each end of a single CMT according to

the notation in Section I.2, in addition to the type of interactions modeled. Finally,

the last column stands for whether the appearance of new CMTs is considered in the

model. Di�erent scenarios might be tested using each model, however we roughly list

the properties that correspond to the baseline scenario for each study.

In addition to the simulation studies, there are also a few analytical e�orts to

model the CMT organization. In general, analytical models of CMT organization

are complementary to the respective simulation models to provide further insights

and more e�cient analysis. They usually consider a spatially homogeneous system

and model CMT densities per unit area according to their dynamics and interactions.

Baulin et al. (2007) formulate the average densities of CMTs as a function of length

and orientation using di�usion equations. The impact of interactions are approxi-
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mated inspired by the kinetic theory of gases based on the average length, velocity

and density of CMTs in the system. Interaction (stalling) frequency is orientation-

dependent to account for the fact that CMTs with similar angles run into each other

less frequently. This relation is not considered while modeling the rescue frequency for

a blocked CMT (frequency of being released for a stalling CMT), which is a function

of the average length of the blocking CMT. This average length (and, accordingly,

the rescue frequency) is assumed to be independent of orientation, which might be

the reason for the disagreement between the results of simulations and the analytical

model especially for the time after ordered CMT domains start to emerge. However,

it is worth noting that authors relate this disagreement to the homogeneity assump-

tion which con�icts with the emergence of locally ordered domains observed in their

2D simulations. Hawkins et al. (2010) develop a stronger model with a similar ap-

proach, where they consider bundling and catastrophe interactions instead of stalling

and consequently the possibility of CMTs with multiple segments. Considering static

lagging ends, they call the segment of a CMT with the leading end as the active

segment and the rest of the segments as the inactive ones (if any). There is some

history dependence in their model introduced by the bundling event as the inactive

segments can be reactivated by the shortening and elimination of previously bundled

segments. However, they eliminate this history dependence for the isotropic solution,

where CMT densities are uniformly distributed with respect to their angles. They

conduct a bifurcation study around this isotropic solution to investigate parameter

regions where stable ordered solutions may potentially exist, implying possibility of

organization. Further, they relate this to a control parameter that they develop,

which is a function of the input parameters of the model. In Tindemans et al. (2010),

they show that the predictions of this model agree well with their simulations, al-

though there is certain discrepancy from the simulations with bundling. Finally, Shi
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and Ma (2010) conduct a similar bifurcation analysis for their model, in which they

formulate interactions using a mean-�eld theory approach. Although their interaction

mechanism is quite simplistic similar to that of Baulin et al. (2007), their formulation

results in fairly well predictions in agreement with their simulations. Using both the-

ory and simulations, they provide further insights into the dependence of emergent

behavior of the system on the competition between dynamics and interactions.

In summary, there are a few diverse modeling e�orts for the microtubule systems,

particularly CMTs. Due to the computational and analytical challenges associated

with the complexity of the considered system, there are certain assumptions consid-

ered by each study to facilitate modeling and analysis. In addition to the varying

properties of the models, di�erent studies seem to give di�erent weights to the im-

pacts of certain parameters or mechanisms related to either interactions or dynamics

during the analysis, which might be one of the reasons for contradictory results. Our

objective in this research is to use simulation and analytical models in conjunction

to develop a methodology well-suited to the characteristics of the considered CMT

system. We take into account the stochastic nature of both the dynamics and in-

teractions. Further, we employ a systematic approach beginning with a replication

of the dynamics and interactions using simulations, and characterization of system

behavior and properties accordingly. This provides a means to observe relations be-

tween parameters and performance measures related to both the whole system and

its components. Based on our conjectures and observations of the simulated system,

we select and employ analytical techniques that aid in more e�cient and generalized

analysis and results. We develop two di�erent analytical approaches which are tuned

according to the particular objective considered and properties of which are veri�ed

using simulations. Before discussing the methodologies that we develop, we con-

tinue to review the papers in the literature presenting further details systematically
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according to di�erent types of results and analysis.

II.3.1.1. Relative Contribution of Bundling vs. Catastrophe Interactions

Necessity of interactions for organization is commonly agreed upon among di�erent

modeling studies (Allard et al., 2010b; Baulin et al., 2007; Dixit and Cyr, 2004;

Hawkins et al., 2010; Tindemans et al., 2010). However, there are varying results

regarding the relative contribution of bundling vs. catastrophes. Tindemans et al.

(2010) conclude that catastrophes are su�cient to induce organization even in the

absence of bundling, in line with their theoretical result in Hawkins et al. (2010).

They show that bundling has only a minor contribution on organization beyond the

bifurcation point (see Subsection II.3.1 for details). On the contrary, Allard et al.

(2010b) �nd bundling as the main contributor of organization and conclude that

catastrophes are neither necessary nor su�cient to organize CMTs into ordered arrays.

These di�ering conclusions might be due to di�erent choice of dynamicity parameters

and assumptions, which is not addressed thoroughly in any of the studies. Tindemans

et al. (2010) and Hawkins et al. (2010) consider only the dynamicity parameters in

the region of bounded growth with a negative average net velocity, where CMTs have

�nite length even in the absence of interactions. They model CMT lagging ends

as static in both their analytical and simulation studies. It is possible that the

impact of bundling on organization is underestimated due to combination of these

factors. A static lagging end assumption would be expected to reduce the impacts

of the bundling mechanism as it does not allow shortening of unbundled (previously

existent) segments of bundled CMTs. In such a setting, considering a negative average

net velocity for the leading end would hypothetically make the bundling process pretty

much reversible by favoring pre-existing segments over the newly formed ones that

contain the active leading ends, thus reducing its contribution to array organization.
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On the other hand, Allard et al. (2010b) might be overlooking the indirect e�ect of

catastrophes on organization by regulating the CMT density in the system especially

for the region of unbounded growth dynamics with a positive average net velocity.

Although their inputs seem to include dynamicity parameters that result in both

negative and positive average net velocity values; the mean CMT length seems to

stay bounded in all their simulations that they present. They conclude that an

extensive random sweep of dynamicity parameters shows that catastrophes are only

e�ective in the limit where the shortening velocity and the transition rate from growth

to shortening are approximately zero, and the rate of transition from shortening to

growth is relatively much larger. Note that in the limit, this scenario approaches to

the setting considered in Baulin et al. (2007) with continuously growing leading end.

II.3.1.2. E�ect of Dynamicity Parameters on Organization

Shi and Ma (2010) is the only study which thoroughly analyzes the e�ects of dy-

namicity parameters on organization. They classify the CMT organization into three

phases: isotropic state, where the CMTs are disorganized with roughly uniform ori-

entation, nematic I state where ordered long CMTs are distributed in a narrow ori-

entation (high level of organization), nematic II state where ordered short CMTs are

distributed in a broad orientation (lower level of organization). They explore the

CMT phase behavior by extensive computational experiments based on a wide range

of dynamicity parameters. Their results show that self-organization can be regulated

by controlling solely CMT dynamics. They obtain similar results with their analytical

model. However, as we mentioned in Subsection II.3.1, they consider only the stalling

mechanism, which does not capture the range of CMT interactions that occur in cells.

As a result, none of the models conduct a thorough analysis of the e�ects of CMT

dynamics and di�erent types of interactions on organization simultaneously.
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II.3.1.3. Quanti�cation of CMT Array Organization

There are a diverse number of techniques used to quantify CMT organization in

di�erent studies. Baulin et al. (2007) use a cost function that measures the overall

proximity of CMT angles to the dominant orientation based on the cosine of angle

di�erences. The dominant orientation is derived quantitatively by maximizing this

cost function. They also introduce an alternative version of this metric where the

contribution of each CMT is weighted by its length. Shi and Ma (2010) employ a

completely di�erent method that relies on computation of eigenvalues of a standard

nematic order matrix (Chaikin and Lubensky, 1995). Hawkins et al. (2010) and

Tindemans et al. (2010) employ another nematic liquid crystal order parameter based

on the orientation and length densities of CMTs. Allard et al. (2010b) use a modi�ed

version of the cost function in Baulin et al. (2007) that represents the di�erence

between total projected CMT length in the dominant direction and its perpendicular

direction. Despite the diversity of methodologies used to measure CMT organization,

it is worth noting that Allard (2010) found that the metrics used by Shi and Ma

(2010), Tindemans et al. (2010), Allard et al. (2010b) and Baulin et al. (2007) are

equivalent.

While all of the available metrics for measuring CMT organization rely on the

orientation of the CMTs in the models, a systematic comparison of the performance

of these metrics is lacking. In addition, these metrics need to be applied to data ob-

tained from living cells to determine if they can robustly distinguish between di�erent

stages/types of CMT organization seen in plants.
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II.3.1.4. E�ects of Boundary Conditions on Orienting the CMT Array

Despite the varying conclusions related to the relative contributions of di�erent inter-

action mechanisms and dynamics, CMT modeling studies reveal that there is heuris-

tically no need for a complicated system to get parallel arrangement of CMTs. Still,

these mechanisms fail to explain how cells orient the whole array in a particular ori-

entation in the absence of a central control mechanism, as observed in plant cells at

certain stages. The net orientation of the CMT array in a cell can change depending

on developmental and environmental cues. For example, in rapidly elongating cells

of the root, the CMT array is typically arranged transverse to the cell elongation

axis (see Figure 5). When these cells stop elongating, the CMT array is typically

longitudinally or obliquely arranged with respect to the long axis of the cell.

One potential mechanism to orient the entire CMT array in the cell in a par-

ticular orientation is introducing two catastrophe-inducing edges that oppose each

other. According to this, if a CMT encounters one of those edges, it immediately

switches from growth to shortening. Allard et al. (2010b) show that this mechanism

of catastrophe-inducing edges is su�cient to bias the dominant orientation. They

observe that even in the complete absence of CMT interactions, those edges lead to

a certain amount of ordering near them. CMT interactions allow this edge-induced

orientation to propagate further into the center. However, Allard et al. (2010b) also

found that presence of catastrophe interactions with catastrophe-inducing edges is

still not enough to result in organization.

The recent paper by Ambrose et al. (2011) conducts an extensive study of ef-

fects of di�erent edge behavior induced by a certain protein on CMT orientation. By

live-cell imaging, they �rst determine the e�ects of this particular protein on di�erent

types of edges in terms of facilitating the growth around the edge. Based on their
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observations, they develop a simulation model approximating the cell shape as a cube

and considering varying catastrophe inducing impacts for di�erent edges. In addition

to employing variable catastrophe probabilities among distinct edges, they also con-

sider non-uniform behavior along an edge, such as permitting passage only through

the center. Overall, their simulations show that the geometric constraints of the cell,

speci�cally di�erential catastrophe-inducing e�ects of surface edges, are su�cient to

bias CMT array orientation. Extending this line of research to more realistic cell

shapes is an intriguing subject matter that is open to further investigation.

II.3.1.5. Microtubule-Dependent Appearance (Nucleation) of New CMTs and Array

Organization

As noted in Chapter I, new CMTs are introduced into the cell randomly in time with

an arbitrary growth direction. These appearances (so-called nucleations) occur from

multiple sites that are almost uniformly distributed over the cell surface. In addition

to this regular type of nucleation, it is also observed that new CMTs can originate in

a microtubule-dependent manner. In that case, the newly formed CMT grows either

at an acute angle to the mother CMT (called branch-form nucleation) or parallel to

the mother CMT (Ambrose and Wasteneys, 2008; Chan et al., 2009; Murata et al.,

2005). In Allard et al. (2010b), they considered only branch-form nucleation in their

simulations, implementing it with and without regular nucleation. Incorporation of

branch-form nucleation in their simulations is not observed to have a signi�cant e�ect

on the degree and rate of CMT organization. However, branch-form nucleation by

itself results in unrealistic CMT organization with highly sparse arrays (Allard et al.,

2010b).

A recent study by Deinum et al. (2011) more completely analyzes the e�ects

of branch-form nucleation on CMT organization by considering di�erent branching
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processes and dynamicity parameters. They extend their simulations in Tindemans

et al. (2010) to include the shortening of the lagging end along with the microtubule-

dependent nucleation. The authors keep the overall appearance rate constant, while

the fraction of microtubule-dependent nucleation increases as a function of the total

CMT length in the system. Under these conditions, all CMT nucleations are regu-

lar ones at the beginning of the simulations and the ratio of microtubule-dependent

nucleation keeps increasing as the system becomes more crowded. They modify their

control parameter in Hawkins et al. (2010) to incorporate the shortening velocity of

the lagging end along with the other dynamicity parameters. It is worth noting that

their results are again limited to the range where the control parameter is negative,

which implies bounded growth dynamics with a negative average net velocity. For this

range, they estimate the critical control parameter which represents the point beyond

which system will show at least some degree of order, and quantify the degree of orga-

nization using simulations. Their results show that microtubule-dependent nucleation

improves parallel CMT organization and widens the range of parameters for which

organization occurs. The authors test di�erent scenarios with more weight given to

either branch-form or parallel nucleation. To be able to compare these mechanisms

quantitatively, they use a co-alignment factor based on the second Fourier coe�cient

of the branch angle distribution. Based on this, they show that this factor, which is a

measure of the co-alignment with the mother CMT during nucleation, is the main de-

terminant of the e�ect of microtubule-dependent nucleation on organization. In fact,

the critical control parameter seems to be similar for di�erent nucleation mechanisms

with the same dynamicity parameters and co-alignment factor. In particular, they

found parallel CMT nucleation to have a strong impact on CMT array organization.

In general, greater co-alignment of newly appearing CMTs to their mother CMT was

found to enhance parallel array organization as expected. In their simulations, the
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authors observed that branch-form nucleation had only a modest e�ect on enhancing

array organization, consistent with the results of Allard et al. (2010b) discussed above.

Deinum et al. (2011) note that the main contribution of branch-form nucleation was

to result in spatially more homogeneous arrays than achieved by parallel nucleation

alone.

II.3.1.6. Factors That Result in CMT Array Skewing

Some CMT arrays are observed to orient obliquely with respect to the elongation axis

in plant cells. To discover the conditions that result in such skewed arrays, Deinum

et al. (2011) test the impact of distorting the symmetry of branch-form nucleation so

that more weight is given to nucleation from a particular side of the mother CMTs.

They report that skewing of ordered CMTs occurs only for an extreme degree of

bias towards one particular side of branching from mother CMT and for a limited

range of parameter sets. The only settings that yields skewing was parameter sets

that guaranteed too �uid and weakly ordered systems, which still failed to produce

consistent results. CMT skewing and its driving factors form a research topic that

needs further focus.

II.3.2. CMT Interaction-Oriented Models

In addition to the e�orts to discover the mechanisms underpinning CMT self-organization

by using computational and analytical models, there have been some recent studies

that address the CMT interactions in more detail. The paper by Allard et al. (2010a)

is the �rst attempt to model CMT interactions at a molecular level isolated from the

rest of the system. These authors �rst model CMT anchoring, which is the process

that keeps CMTs attached to the cell surface (cortex) and is essential to facilitate

their interactions by con�ning them to an approximately two-dimensional space. The
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CMT anchoring is modeled as a Poisson process in space, where the distance between

anchors on a CMT is exponentially distributed. Based on this, the authors derive the

free CMT length distribution, i.e. the distribution of the distance from the leading

end of the CMT to the �rst anchor. This anchoring model is later used to study the in-

teractions between CMTs based on the competition between cross-linker -based CMT

bundling, CMT �exural rigidity, and CMT growth (Allard et al., 2010a). Probabili-

ties for catastrophe vs. crossover are derived using a dimer-level (building-block-level)

model incorporating the linear elastic rod energy of CMTs, which is a function of the

free length distribution. However, this model fails to explain the angle dependence of

catastrophe events observed experimentally in plant cells (Dixit and Cyr, 2004). The

e�ect of the collision angle is considered while modeling the bundling mechanism. The

relative probabilities of bundling vs. crossover are derived for each encounter angle

based on the minimization of energies associated with each event. For the bundling

mechanism, this includes the chemical energy associated with cross-linker proteins, in

addition to the mechanical energies based on the bending elasticity of CMTs. Their

results show that bundling probability decreases monotonically with collision angle,

in line with the experimental data in Dixit and Cyr (2004).

There are also studies that focus solely on the mechanical properties of CMTs,

particularly their elasticity. Lagomarsino et al. (2007) studied microtubules grown

within microfabricated chambers of cellular dimensions and characterized their organi-

zation based on microtubule length, elasticity and the geometric constraints imposed

by the chamber. Although their objective is to discover the e�ects of these factors

on array orientation, we classify their model as an interaction model that practically

considers a single CMT represented by its length and elasticity con�ned in an area

with a certain geometry and size. They compare the theoretical bending energies

corresponding to transverse vs. longitudinal orientations and estimate the preferred
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orientation with respect to the CMT length and size of the cylindrical surface of the

cell. Their results show that longitudinal helices are favored for long �laments and

large aspect ratios of the cell, whereas transverse helices may be favored for shorter

microtubules. However, the minimal energy con�guration is found to be neither a

helix nor a transverse array, but rather an oscillating one where the CMTs cross back

and forth between the two end walls of the cylinder. This result holds regardless of

the edge properties at the end walls. Overall, the authors conclude that microtubule

elasticity and cell geometry fail to explain the typical CMT transverse orientation, in-

dicating the need for active mechanisms such as CMT interactions for the emergence

of standard CMT organization. In general, incorporation of the mechanical aspects of

CMTs into organization-oriented models might provide further insights that neither

type of modeling currently does.
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CHAPTER III

MATHEMATICAL FRAMEWORK AND SIMULATION MODEL

As discussed in Chapter II, CMT system is a complex system that exhibits properties

that can not be described from its interconnected individual parts. Due to highly

nonlinear interactions in addition to multi-dimensionality of the problem considered

with its spatio-temporal properties, it is challenging to build a theory that will di-

rectly result in a mathematical model and closed-form solutions. As a result, we

employ computational techniques to model and simulate the system according to the

mechanisms and parameters derived by biological experiments.

Another challenge related to the analysis of the CMT system is regarding the

interpretation of simulation results. For this, we develop methods to characterize

di�erent system properties, particularly organization. Using these system metrics,

we compare the results for di�erent scenarios by varying input parameters of the

simulation. A framework of the approach taken for development of the simulation

model, quanti�cation methods and related analysis is provided in Figure 8. Note

that this is a part of the general framework provided in Figure 7 of Chapter I that

corresponds to the scope of the current chapter.

We begin by developing a mathematical notation and framework for the CMT

system which is employed in the rest of the dissertation. We present it in its most

generalized form, however we will note when we use di�erent versions of this notation

for the sake of simplicity while formulating di�erent models. We also include some

modeling details of the processes de�ned in Chapter I based on experimental data.
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Fig. 8. A Framework of the Simulation and Quanti�cation Methodologies

III.1. Mathematical Framework and Notation

Let us indicate CMTs by i = 1, ..., I(t), where I(t) is the total number of CMTs in the

system at time t. Note that a CMT can have more than one segment as a result of

bundling with other CMTs. Let Ni(t) be the number of segments of CMT i at time t,

for all i = 1, 2, ..., I(t). We denote the orientation and length of nth segment of the ith

CMT at time t by θni (t) and lni (t) respectively, where θni (t) ∈ Φ360 = {0o, 1o, ..., 359o}

(see Figure 9 for a representative sketch). Note that the segments of CMTs are

counted according to the order they appear. Hence, the leading end of CMT i is

located at its Ni(t)
th segment at time t, whereas the lagging end is always at the

�rst segment. The total length for CMT i at time t is given by Li(t) =
∑Ni(t)

n=1 lni (t).

Note that a CMT i disappears and departs the system if it shrinks to length zero. It

is worth noting that we renumber the indices every time a CMT departs or when a

segment disappears due to shortening of the lagging end, which does not a�ect our

analysis.

Dynamics of CMT i is modeled as governed by the environment process {Mi(t) :
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Fig. 9. Sketch of a CMT with Multiple Segments and the Corresponding Variables

t ≥ 0}, which corresponds to its state that includes the phases of leading and lagging

ends as de�ned in Chapter I. Experimental data suggests that both ends spend an

exponentially distributed amount of time in each phase and switch to one of the

other possible phases. Since the transitions are Markovian, the state process can be

modeled as a continuous-time Markov chain (CTMC) with an in�nitesimal generator

matrix Q = [qm,n], m,n ∈ {GS,GP, SS, SP, PS, PP}.

We de�ne the individual velocities for each phase of both ends in addition to the

net velocities for each state, as they are all required for modeling. The absolute veloc-

ities corresponding to each phase are given by the matrix v+ = diag(vG+ , vS+ , vP+)

for the leading end, and by the matrix v− = diag(vS− , vP−) for the lagging end,

where diag(·) stands for a diagonal matrix with its corresponding diagonal entries

starting in the upper left corner. Note that vP+ = vP− = 0, since the velocity is

zero in the pause phase. As a result, we can de�ne a diagonal net velocity matrix

V = diag(vm) = diag(vG+ − vS− , vG+ ,−vS+ − vS− ,−vS+ ,−vS− , 0) that composes of

the net velocities for each state m ∈ {GS,GP, SS, SP, PS, PP}, which are generated

according to Q.

We next present CMT interactions in more detail and de�ne the related param-

eters. It is possible to state some basic rules to explain the CMT interactions based

on the experimental data. The outcome of any interaction depends on the collision
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angle, α, and a critical interaction angle speci�c to the system, θc. If a CMT runs

into another one (barrier) with a collision angle that is less than the critical inter-

action angle, i.e. α ≤ θc (see Figure 10), bundling occurs with probability pb and

results in generation of an additional segment with a parallel orientation to that of

the barrier. As a result, the leading end is located at the tip of the new segment,

whereas the lagging end stays at its original location on the already existing segment.

If the collision angle is greater than the critical interaction angle, i.e. α > θc, the

CMT undergoes catastrophe with probability pc. For both cases, if the probabilities

do not hold, i.e. with probability (1 − pb) for the α ≤ θc case and with probability

(1 − pc) for the α > θc case, the CMT crosses over the barrier neither changing its

orientation nor state (see Figure 10).

α 

α 

α  α ≤ θc 
pb 

(1-pb) 

 α > θc 
pc 

(1-pc) 

α 

α 

α 

Fig. 10. Events Induced by CMT Interactions

In summary, the matrices Q and V are the parameters related to single CMT

dynamics, and the interaction parameters include θc, pb, and pc. Additionally, new
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Table 2. Problem Parameters

Notation Parameter

Dynamicity Parameters

Q = [qm,n] in�nitesimal generator for the state process

V = diag(vm) velocity matrix for the CMT states

Interaction Parameters

θc critical interaction angle

pb bundling probability

pc catastrophe probability

Parameters Related to the Arrival Process and Initial Conditions

λa appearance rate for new CMTs

l0 initial length of an appearing CMT

I(0) initial number of CMTs in the system

CMTs are introduced into the system following a Poisson process with an appearance

rate of λa. The initial length of any CMT, l0, is typically tiny and the initial angle

(orientation) assigned to it belongs to the set Φ360. Initially there are I(0) CMTs in

the system with a length of l0, and orientation for each CMT sampled from a discrete

uniform distribution. The complete set of input parameters including the ones for

the initial conditions of the system is given in Table 2. These parameters can take on

di�erent values depending on the plant type, genetics and environmental conditions.

Having described the properties and notation for the system that we consider

as well as the input parameters, our main objective is to develop methodologies to

discover the e�ects of these simple parameters on characteristics of the whole system.

In other words, given the parameters for dynamics and interactions of CMTs as well

as the initial conditions at time t = 0, we are interested in predicting properties of
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the set of CMTs in time such as

• whether they achieve self-organization in time,

• the expected number of CMTs in the system at time t > 0,

• the expected average length of CMTs in the system at time t > 0.

Having de�ned the input parameters of the problem considered, next we discuss some

metrics that are used to quantify system properties, which will be the output measures

of the developed methods.

III.2. Metrics for Quanti�cation of System Properties

In order to characterize system organization, we �rst describe angular distributions

of CMTs weighted with respect to their length. We weigh this measure with respect

to the CMT length as a longer CMT plays a more important role in the system dy-

namics and structure compared to relatively shorter ones. We classify CMT segments

according to their orientation, so that each segment belongs to one of the classes θ′

∈ Φ180 = {0, ..., 179}. For this, each segment with θni (t) in {0o, ..., 179o} is assigned

to the same class as its angle, whereas each segment with θni (t) in {180o, ..., 359o} is

mapped to class θni (t)− 180. In other words, we distinguish CMT segments by their

slopes rather than their exact orientations, as their alignment is the actual determi-

nant of the organization level. For each θ′ ∈ Φ180, we calculate

k(θ′, t) =

∑I(t)
i=1

∑Ni(t)
n=1 lni (t)1{θni (t)→θ′}∑I(t)
i=1

∑Ni(t)
n=1 lni (t)

, (1)

where 1{θni (t)→θ′} stands for the indicator function of whether the angle θni (t) belongs

to class θ′. Note that Equation (1) represents the ratio of the total length of segments

which belong to class θ′ to the total length of all CMT segments in the system at
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time t.

In order to characterize the angular distribution of CMTs, we employ Shannon's

entropy formula (Martin et al., 2006; Shannon, 1948), which quanti�es the diversity

or uniformity level of a system for any property of interest (Gray, 1990; Lu et al.,

2008). Applying the entropy metric on the angle distributions of CMTs given by

Equation (1), entropy of the system at time t, H(t), is given by

H(t) = −
179∑
θ′=0

k(θ′, t)ln (k(θ′, t)) . (2)

Note that the entropy value would approach its maximum value of − ln(1/180) = 5.19

if CMTs were perfectly uniformly distributed with respect to their alignment and

a minimum value of 0 if all CMTs had the same alignment. As entropy scale is

logarithmic, relatively small changes in larger values of entropy imply relatively large

changes in CMT organization.

Some other performance measures that we use to characterize the set of CMTs

are the total number of CMTs in the system and the average CMT length over time.

Total number of CMTs present in the system at time t is given by I(t) as described

in Section III.1, and the average CMT length at time t is given by

L̄(t) =

∑I(t)
i=1

∑Ni(t)
n=1 lni (t)

I(t)
. (3)

Those two metrics can also be used to de�ne the total CMT length in the system by

∑
L(t) = I(t)L̄(t), (4)

which also gives a measure of the crowdedness (or density) of CMTs for a given area.

We utilize these metrics to quantify organization, characterize system behavior

and properties for the outputs of the simulation model that we develop. The entropy
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metric is also used as a Lyapunov function for the stability analysis of the proposed

mean-�eld model equations, that we will discuss in Chapter IV. Further, we develop

methodologies to predict expected values of some of these metrics e�ciently utilizing

simulation and analytical approaches based on some �uid models, which is the subject

of Chapter V.

III.3. Simulation Model and Results

Based on the system description in Section I.2, we developed a simulation model that

replicates the dynamics and interactions between CMTs. We consider dynamics of all

CMTs as being stochastically identical in the absence of any interactions. A CMT is

modeled as a line segment that can grow multiple segments as a result of bundling.

On the other hand, a CMT segment can be eliminated as a result of shortening to

zero length.

We model a setting where the CMTs reside on a planar area, as they are attached

to the cell surface. This two-dimensional surface corresponds to the lateral surface

of a cylinder, which is closest to the shape of a plant cell (see Figure 5), although

our methodology would not be a�ected by the shape considered. We model the

edges of this surface as periodic edges which are de�ned as follows: Any CMT that

encounters a periodic edge appears from the opposite edge continuing its original

dynamics. This also results in formation of an additional segment for simulation

purposes, although this new segment is only a continuation of the original one. In

certain simulations, we additionally model catastrophe-inducing edges in line with

the cylindrical cell shape considered (see Figure 5). In that case, two opposite edges

of the planar surface that correspond to the circumference of the top and bottom of

the cylinder induce catastrophe such that any CMT leading end encountering one of
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those edges immediately switches from growth phase to shortening.

III.3.1. Derivation of Input Parameters

We derive input parameter values based on experimental data from plant cell studies.

Table 3 lists raw data used, including the frequency of transitions between phases

(Ki−j, i, j ∈ {G,S, P}), the percentage of time spent and velocity in each phase of

the leading and lagging ends. We use �Time in Phase� data to estimate steady-state

probabilities in phases, π+
G, π

+
S , π

+
P for the leading end; and π−S , π

−
P for the lagging

end. The elements of the Q matrix are estimated according to

K+
i−j = π+

i q
+
ij

K−i−j = π−i q
−
ij

where K+
i−j, q

+
ij are used to denote the transition rates for the phases of the leading

end; and K−i−j, q
−
ij stand for the rates of the lagging end. The Q matrix is constructed

using q+
ij and q

−
ij values.

The �rst two columns of Table 3 include the data set that we refer to as the

baseline scenario (shown as I) which is based on Shaw et al. (2003). It leads to a Q

matrix given by

Q =



−8.925 6.72 1.485 0 0.72 0

2.427 −4.632 0 1.485 0 0.72

3.537 0 −11.192 6.72 0.935 0

0 3.537 2.427 −6.898 0 0.935

5.05 0 2.376 0 −14.1 6.72

0 5.05 0 2.376 2.427 −9.85


.

Note that the velocities for each phase are given as intervals Ai ± Bi median of
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Table 3. Raw Data for CMT Dynamics
Lagging End Leading End

I I II III IV V

Transitions
(events per min.)
KG−S 0.52 0.97 0.17 1.59 0.38 0.82
KG−P 0.28 0.47 0.2 0.38 0.2 0.96
KP−G 0.26 0.51 2.01 1.4 1.56 0.7
KP−S 1.3 0.24 1.02 0.7 0.56 0.62
KS−P 1.09 0.23 0.31 0.44 0.59 1.21
KS−G 0.59 0.87 1 1.99 1.18 0.61

Time in phase
Growth 8.4% 65.3% 72.0% 68.0% 71.0% 35.0%
Pause 66.3% 10.1% 8.0% 16.0% 10.0% 45.0%
Shorten 25.3% 24.6% 20.0% 16.0% 19.0% 20.0%

Velocities
(µm/min.)
Growth - 3.69±1.9 3.5±1.9 6.5±3.5 2.5±1.5 2±1.5
Shortening 2.78±2.13 5.88±5.07 9±5.8 12.4±9.3 6.2±4.3 3.8±3.1

which is taken as the average value. In fact, experimental data shows that phase ve-

locities are distributed normally. Accordingly, we sample the velocities for each phase

i from a normal distribution with mean µi = Ai and standard deviation σi = Bi/3

every time one of the ends of a CMT transitions into a new phase in our simula-

tions. However, it is worth noting that we disregard the standard deviation values

in our analytical models, as they are relatively small compared to their mean values

resulting in an ignorable squared coe�cient of variation (� 1). It is also veri�ed

by simulations that their omittance do not cause any remarkable changes. Hence,

we use only the mean values of the velocities which results in the velocity matrix

V = diag(0.91, 3.69,−8.66,−5.88,−2.78, 0).

The interaction parameters for the baseline scenario are given by θc = 40o; pb = 1;

pc = 0.3. That is, all the collisions with an angle less than 40o result in a bundling

event, whereas the collisions with an angle greater than 40o result in a catastrophe

with 0.3 probability and a crossover with 0.7 probability.
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There are no exact data for the initial conditions of the CMT system as well as

the appearance rate of new CMTs. We determine these parameters based on trials

with several di�erent values and assessing the proximity of simulation outputs to the

properties seen in living cells. According to this, the appearance rate is set as 100

CMTs per min. and the initial length for newly appearing CMTs is 0.1 µm; i.e.

λa = 100, l0 = 0.1. Simulations are started with 100 CMTs (I(0) = 100) of length l0

at state PP where both ends are pausing.

The last four columns of Table 3 include data for leading end dynamics corre-

sponding to di�erent mutants and di�erent environmental conditions from relevant

literature (Kawamura and Wasteneys, 2008). The corresponding input parameters

are listed in Appendix A. Having described derivation of input parameters, we next

discuss the con�guration and algorithm for simulations.

III.3.2. Con�guration and Algorithm

We developed a simulation algorithm that was implemented in MATLAB. CMTs are

introduced into the system as tiny line segments with a random orientation at an

arbitrary location over a planar surface of 30 µm by 50 µm, which falls in the range

for a typical plant cell size. The simulation works iteratively by considering each

CMT in a sequential order at each time step. According to the state of the CMT,

its coordinates and segments are updated considering the possibility of interactions,

if its leading end is at the growth phase. As a result, the snapshot and metrics of the

system are updated and recorded at each time step, which is set as a minute.

An outline of the main steps of the simulation is given in Algorithm III.1.

Algorithm III.1. (Simulation Algorithm)

0: FOR t FROM 0 TO MAXTIME BY ∆t DO
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1: FOR i FROM 1 TO I(t) DO

2:t2 = t;

3: WHILE t2 < (t+ ∆t) DO

//Leading end dynamics:

4: IF Mi(t2) = GS OR Mi(t2) = GP THEN //in growth phase

5: Update the coordinates of CMT i according to its growth velocity and time;

//Interactions with other CMTs:

6: FOR j FROM 1 TO I(t) DO

7: IF j 6= i THEN //a CMT cannot interact with itself

8: FOR n FROM 1 TO Nj(t2) DO //consider all segments

9: IF tan(θ
Ni(t2)
i ) 6= tan(θnj ) THEN //eliminate the segments that have the same

slope as CMT i

10: IF the segments are intersecting inside the surface limits THEN

11: Calculate the collision angle, α;

12: IF α ≤ θc THEN

13: p = RAND(); //generate a random variable in (0, 1)

14: IF p < pb THEN //bundling occurs

15: Calculate the collision time tc according to the positions of the segments;

16: Update the coordinates of CMT i to form the new segment;

17: Ni(tc) = Ni(tc) + 1; //segment number of CMT i is increased by 1

18: END IF

19: ELSE //α > θc

20: p = RAND(); //generate a random variable in (0, 1)

21: IF p < pc THEN //catastrophe occurs

22: Calculate the collision time tc according to the positions of the segments;

23: Mi(tc) = SS or Mi(tc) = SP //update state by changing the phase of the leading
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end while keeping the lagging end at its original phase

24: Assign a time for shortening;

25: END IF

26: END IF

27: END IF

28: END IF

29: END FOR

30: END IF

31: END FOR

32: Update t2;

33: Check interactions with surface edges, and update the coordinates accordingly;

34: END IF

35: IF Mi(t2) = SS OR Mi(t2) = SP THEN //leading end in shortening phase

36: Calculate the shortening distance until min{t+ ∆t, end of shortening phase};

37: Calculate l
Ni(t2)
i (t2);//the length of the segment that contains the leading end

38: IF shortening distance > segment length THEN //shortening distance exceeds

the segment length

39: WHILE Ni(t2) > 1 AND shortening distance > segment length DO

40: Eliminate segment;

41: Ni(t2) = Ni(t2)− 1; //segment number of CMT i is decreased by 1

42: Update t2;

43: Update shortening distance and l
Ni(t2)
i (t2);

44: END WHILE

45: IF Ni(t2) == 1 THEN

46: IF shortening distance > segment length THEN

47: Eliminate CMT completely;
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48: Update t2;

49: I(t2) = I(t2)− 1; //number of CMTs is decreased by 1

50: ELSE

51: Update the coordinates of CMT i according to the shortening distance;

52: END IF

53: END IF

54: END IF

55: END IF

56: //If in pause phase, do nothing.

57: If the phase is ending before time t2, assign new state and sojourn time, and

update velocities;

58: Update t2;

59: END WHILE

60: Consider the dynamics of the lagging end similarly (shortening and pause phases);

61: END FOR

62: Introduce new CMTs that appear between time t and time t+ ∆t at an arbitrary

location; assign a random orientation; implement their dynamics and interactions;

63: Record system snapshot and system metrics, I(t), L̄(t), and H(t);

64: Update t = t+ ∆t;

65: END FOR

III.3.3. Results

Using simulations with the baseline scenario, we were able to replicate the CMT

organization seen in the plant cells. Snapshots of the system at di�erent time points

(from 0 to 500th minute) for a sample simulation run are provided in Figure 11.
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t=0 min t=30 min

t=60 min t=120 min

t=200 min t=500 min

Fig. 11. Snapshots of the Simulated CMT System at Di�erent Time Points

The course of organization observed in simulations is as follows: The system begins

with a certain amount of tiny CMTs growing at random directions. They grow into

a highly disorganized array early in the process. However, over time, they become

more crowded and longer on average, and as a result they start to interact with each

other, continuously transforming into better ordered arrays as seen in living cells.

An analysis of the angle distributions over time shows similar course of orga-

nization (see Figure 12) as seen in the snapshots. In the beginning, CMT angles

are scattered akin to a uniform distribution. As time passes, they cluster around a

few dominant orientations. Those dominant angles subsequently become more pro-

nounced although they can �uctuate to some degree. These observations are also

supported by the entropy plots, which show a continuous decrease in value (followed

by a small increase early in the simulations), indicating increased organization over
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Fig. 12. Angle Distribution Plots for the Simulated CMT System

time. Figure 13 shows entropy plots for ten independent runs of the simulation model

for the baseline scenario. Note that the time units are in minutes unless otherwise

stated.

Having observed CMT organization and related metrics produced by baseline

simulations, we next discuss results for other system metrics that we de�ned in Sec-

tion III.2. It is observed that both total number and average length of CMTs begin to

increase quickly early in simulations (see Figure 14). This is quite intuitive as input

parameters of the baseline scenario suggest a positive net growth on average, and the

appearance rate of new CMTs in the system is set to a relatively high value. However,

as CMTs grow longer and begin to interact with each other, the rate of increase for

I(t) and L̄(t) start to decrease. It is observed that those metrics temporarily stabilize

such that they tend to stay roughly constant beginning around the time the interac-

tion frequencies reach their peak. After stabilizing for a limited amount of time, as
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Fig. 13. H(t) vs. t for Multiple Independent Runs of the Simulation

the organization is settled to a certain degree, they continue to increase inde�nitely.

We will refer to this notion as �pseudo-stabilization� of system metrics. This trend can

be explained in a relation to the frequency of interactions among CMTs, particularly

that of catastrophes. The catastrophe frequency in the system keeps varying over time

according to the course of organization and has a direct e�ect on regulating length

and number of CMTs in the system by controlling the transition rate from growth

to shortening in a dynamic manner. As seen in Figure 15, catastrophe frequency per

CMT, c(t), initially keeps increasing until it reaches a peak, and stays around this

high value, after which it starts decreasing. The eventual decline is a result of the

fact that CMTs encounter catastrophe much less frequently as the system gets better

organized in time.

Having tested the simulation model with a baseline scenario, we next try di�erent

parameter sets to analyze e�ects of dynamics and interactions on system properties

and organization. These include altering dynamicity parameters; eliminating impacts
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Fig. 14. L̄(t) vs. t and I(t) vs. t for Multiple Independent Runs of Simulation

of interactions, i.e. bundling and/or catastrophe events, via setting pb = 0 and/or

pc = 0; changing impacts of interactions by selection of a di�erent critical angle, θc,

or pb, pc. In the following we discuss major results and observations that are mostly

relevant for the entirety of this dissertation. Remainder of the analysis is presented

in Appendix B. For some further details and biological interpretation of results, the

reader is referred to Eren et al. (2010).

III.3.3.1. E�ects of Interactions on System Metrics

In order to assess the role of interactions on CMT array organization, we modeled a

scenario where CMT interactions are eliminated. In other words, all bundling and

catastrophic collisions are replaced by cross-over events (pb = pc = 0). We observed

that CMTs fail to self-organize into ordered arrays in the absence of interactions as

seen in Figure 16. Unlike simulations with interactions, entropy values do not decrease

but rather increase and approach the maximum suggesting a uniform distribution of

CMT orientations and accordingly a disorganized system (see Figure 17).

A side e�ect of elimination of interactions is that CMTs become more crowded
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Fig. 15. Graph of c(t) vs. t for Multiple Independent Runs of Simulation

and longer in time as long as the parameters for CMT dynamics fall under the region

of unbounded growth with a positive average net velocity (see Figure 18). Also,

simulation runs with no interactions show much less variability among system metrics

of independent runs compared to the simulations with interactions. Interactions are

observed to increase the variation between system metrics, pronounced especially

after CMTs grow long enough to interact with each other (see Figures 13 and 14).

We have also investigated relative contributions of bundling vs. catastrophe

events to CMT organization by setting pc = 0 and pb = 0 in relative order. That

is, each mechanism is replaced by �crossover� when eliminated. Simulations with no

bundling show much less ordering compared with simulations that have both inter-

action mechanisms present. Eliminating catastrophic collisions have a less signi�cant

impact on CMT organization relative to the bundling as suggested by the entropy

plots (see Figure 19). However, results show that catastrophes have a major role in

regulating the number and length of the CMTs in the system, which in turn con-
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t=0 min t=30 min

t=60 min t=120 min

Fig. 16. Snapshots of the Simulated CMT System without Interactions

tributes to the characteristics of the system including organization. In fact, simula-

tions with no catastrophes result in average length and number values quite similar

to the case with no interactions as seen in Figure 20 (compare with Figure 18). On

the other hand, when only bundling is eliminated, the average length and number

values stay even lower than those in the baseline case, as catastrophes continue to

occur at a relatively high frequency when the CMTs stay oriented dissimilarly due to

the lack of bundling (see Figure 21, compare to Figures 14 and 20).

We observed that the system organization is mostly robust to the values of pb

and pc as long as they are not set to zero and dynamicity parameters ensure a growing

system on average. That can be explained by the fact that, CMTs would continue col-

liding with each other and encounter the impact of interactions eventually as long as

they keep growing regardless of interaction parameters. Small changes in the critical

interaction angle (in the range of 0o to 10o) also does not a�ect CMT organization.

However, larger changes in θc lead to weaker organization, although organization is

still achieved. Setting θc to 20o results in relatively shorter CMTs and poor organi-
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Fig. 17. Comparison of Entropy Plots for Simulations with and without Interactions

zation compared to the control simulations (Figure 22). On the other hand, a larger

θc (such as 60o) caused CMTs grow longer on average. Although these simulations

with larger θc initially show faster organization, they eventually stabilize at a higher

entropy value than the control simulations (compare Figure 22 with Figure 13). In

these experiments that we alter the critical interaction angle, we adjusted the catas-

trophe frequency so that it is similar to the baseline scenario in order to more reliably

evaluate the impacts of changing the angle.

III.3.3.2. E�ects of CMT Dynamics on System Metrics

We also tried changing dynamicity parameters in simulations, where we used data

from biological experiments that correspond to di�erent mutants tested at di�erent

temperatures (Kawamura and Wasteneys, 2008). The input parameter sets are pro-

vided in the Appendix A based on the data from Table 3 (II-V). We have another

parameter set corresponding to another mutant (Mutant VI) which alters the CMT

dynamics such that the lagging end remains static at all times (Burk et al., 2001;

Burk and Ye, 2002). Among these cases, only Mutant V failed to achieve organiza-

tion as CMTs remain too short to interact enough. All other cases resulted in ordered
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Fig. 18. L̄(t) vs. t and I(t) vs. t for Simulations with No Interactions

arrays although the degree of organization showed variety (Figure 23). The structure

seen in each snapshot shows close similarity with the images of CMTs in living cells

corresponding to the data set.

It is worth noting that we have also tested di�erent appearance rate parameters

in our simulations. Appearance rate has a signi�cant impact on the rate of organiza-

tion. Overall, having a greater arrival rate of new CMTs into the system speeds up

organization, whereas setting it too high distorts the degree of organization achieved.

III.3.3.3. E�ects of Surface Edges on System Metrics

As mentioned above, we also model catastrophe-inducing surface edges in line with

the cylindrical shape of the plant cell. In that case, the two opposite walls of the

planar surface that correspond to the circumference of the top and bottom of the

cylinder are assigned as catastrophe-inducing edges. That is, if the leading end of

a CMT encounters one of those edges, it immediately switches from growth phase
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Fig. 19. Comparison of Entropy Plots for Simulations without Bundling and Catas-

trophes

to shortening. Although this change does not a�ect the level of organization in the

system signi�cantly as long as the simulation area is not set too small, it results

in ordering of the overall CMT array in a particular dominant orientation rather

than an arbitrary dominant angle. This emergent orientation is selected such that

the frequency of running into catastrophe-inducing edges is minimized. A sample

snapshot for this setting with the corresponding 3D picture is provided in Figure 24.

Figure 25 presents plots of the average angle weighted by the CMT length in time

for multiple independent simulations of this case and the baseline scenario. Note

that the average angle values are adjusted to fall in the set Φ180 instead of Φ360

as in quanti�cation of organization so that averaging works properly. As the edge

properties are not observed to have a signi�cant e�ect on the level of organization

reached as well as other system metrics that we are interested in, we consider only

periodic edges in the rest of the dissertation as described for the baseline scenario.
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Fig. 20. L̄(t) vs. t and I(t) vs. t for Simulations with No Catastrophe

III.3.4. Validation

Using the simulation algorithm that we developed, it was possible to replicate organi-

zation observed in CMT arrays. This is supported by the fact that snapshots from the

simulations look similar to the live cell images; and input parameters corresponding

to mutant data result in similar output as seen in plant cells. Moreover, the average

length metric around the time organization is achieved (∼ 10 µm) in the simulations

of baseline scenario matches well with the experimentally reported values (8.6-12.4

µm). Finally, the timing around which organization emerges in simulations and plant

cells are quite similar (around 120-150 min.).

In order to compare the organization achieved in simulations to that in living

cells more quantitatively, we employ the entropy metric introduced in Section III.2

to the live cell images with organized and disorganized CMT arrays and compare the

obtained values to the ones in simulations. For this, we implement some imaging

techniques in MATLAB, using built-in functions to detect the line segments on a

given image. The algorithm that we use and the related functions can be summarized
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Fig. 21. L̄(t) vs. t and I(t) vs. t for Simulations with No Bundling

as follows:

1. Read the given CMT photo using �imread� function.

2. Convert the image to grayscale using �rgb2gray� function.

3. Detect the edges in the image using �edge� function.

4. Use the �houghpeaks� and �houghlines� functions to form a matrix of the line

segments with their coordinates (Shapiro and Stockman, 2001).

5. Calculate the entropy corresponding to the extracted array of line segments.

We calibrate the parameters used for the functions in the algorithm to best

capture the CMT arrays in the microscopy images of plant cells. Parameters used for

di�erent functions can be listed as follows:

• For the �edge� function, we use �Canny� method (Canny, 1986), as this method

is the one that is most robust to noise among di�erent alternatives.

• For the �houghpeaks� function, we set number of peaks as 100.
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Fig. 22. Comparison of Entropy Plots for Simulations with Di�erent θc

• For the �houghlines� function, we set �FillGap� parameter as 4 units, and �Min-

Length� parameter as 1 unit. That is, the line segments with a distance of

less than 4 units are merged together; and merged lines shorter than 1 unit are

discarded.

Figures 26 through 29 present CMT snapshots from live cells and their processed

images used to calculate corresponding entropy metrics. Figures 26 and 27 show

organized CMT arrays with entropy values lower than 3. Studying snapshots and

entropy plots of the baseline scenario carefully, CMT entropies corresponding to live

cell images are found to be similar to the entropy values seen in simulations after

organization is achieved to a signi�cant degree (around t = 200) with similarly struc-

tured CMT arrays. Figures 28 and 29 correspond to poorly organized CMTs, which

match well to the entropy values and CMT snapshots early in baseline simulations

(around t ∈ [30, 60]).
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III.3.5. Conclusions

Due to the complexity of the problem considered, we �rst began by developing a

detailed simulation algorithm of the CMT system where all the dynamics and in-

teractions in living cells were replicated based on experimental data. Simulations

showed similar course of organization as observed in plant cell CMT arrays, ending

up with emergence of a dominant orientation where most of the CMTs are aligned

according to it. We introduced metrics to quantitatively compare organization and

other system characteristics seen in di�erent scenarios. Simulations were also able

to reproduce similar structure observed in plant cell experiments corresponding to

parameter sets of di�erent mutants, etc. We investigated e�ects of dynamicity and

interaction parameters on system organization and other properties such as CMT

number and length. Overall, our results suggest that:

• Interactions between CMTs are necessary for the self-organization to occur.

• CMTs need to grow long enough to interact for the organization to be achieved.

In fact, when the dynamics ensure that the average net velocity for a single

CMT is strictly positive, it is observed that interactions are facilitated and

organization is achieved independent of interaction and appearance parameters,

as long as they are not completely eliminated.

• For organized systems, it is observed that certain metrics such as average length

and total number of CMTs temporarily stabilize such that they �uctuate around

a constant value for a limited amount of time until organization settles to a cer-

tain degree, after which they keep increasing (�pseudo-stabilization� of system

metrics).

• System organization is robust to small changes in critical interaction angle,
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θc. However signi�cant changes result in weaker organization, although it still

occurs. System organization is also mostly robust to the other interaction pa-

rameters, pb and pc, as long as they are not set to zero, especially for cases that

guarantee a positive net growth on average.

• Bundling mechanism seems to contribute to the organization more directly by

reorienting CMTs, whereas catastrophe mechanism is observed to be more e�ec-

tive in regulating average length and number of CMTs by controlling transition

rate of the leading ends from growth to shortening.

• Interactions, especially catastrophes, are observed to increase the variation be-

tween system metrics of independent runs with the same parameter set. This

variation is signi�cantly pronounced after CMTs grow long enough to interact

with each other.

• It is observed that CMTs align in a way parallel to the catastrophe-inducing

edges (if any) so that they minimize the frequency of running into them. In the

case where all surface edges are periodic (baseline scenario), the dominant orien-

tation attains an eventual random value which is roughly uniformly distributed

over the range of [0, 180).

Finally, we conducted a comparison of the system generated by simulations to the

plant cell CMTs using imaging techniques and metrics developed to the extent possible

with the available data. The quantitative analysis of live cell images supported the

reliability of simulations in line with qualitative comparisons.
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Fig. 23. Snapshots and Entropy Plots for Di�erent Dynamicity Parameters
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Fig. 24. A Sample Snapshot for a Simulation with Catastrophe-Inducing Edges and

Its Corresponding 3D Plot
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Fig. 26. Real and Processed Image of an Organized CMT Array (Entropy=2.6)

Fig. 27. Real and Processed Image of an Organized CMT Array (Entropy=2.25)

Fig. 28. Real and Processed Image of a Poorly Organized CMT Array (Entropy=3.9)
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Fig. 29. Real and Processed Image of a Poorly Organized CMT Array (Entropy=4.24)
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CHAPTER IV

MEAN-FIELD MODEL FOR CMT ORGANIZATION

Having discussed the simulation model and its major results, we develop more e�cient

and generalized methodologies to establish relations between input parameters and

system characteristics de�ned in Sections III.1 and III.2. Despite the advantage of

incorporating all the details of dynamics and interactions described in Section I.2, and

accelerating the tests with di�erent parameters tremendously compared to biological

experiments; simulations are still computationally expensive due to the complexity of

the system and interaction mechanisms incorporated. Simulating a large number of

runs that yields reliably conclusive results requires huge computational time. There-

fore, we develop analytical models that aid in development of more e�cient techniques

as well as generalizing certain results that are conjectured based on simulations. In

this chapter, we present a mean-�eld model for CMT dynamics and interactions,

which is used to derive conditions in terms of input parameters that are su�cient to

generate organization in the system. We begin by explaining objectives in relation

to the observations from the simulation study. The framework corresponding to the

analysis in this chapter is provided in Figure 30.

IV.1. Objectives and Relation to the Simulation Results

As explained in Section III.3.3, di�erent system behavior and properties are observed

in CMT simulations for varying parameters of dynamicity and interactions. We

roughly classify these as three distinct cases. Before introducing this classi�cation

of the system structure, we introduce the related terminology that we use in De�ni-

tions 1 and 2.
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Fig. 30. A Framework of the Mean-Field Model and Analysis

De�nition 1. A CMT system is de�ned as disorganized if the entropy metric given

by Equation (2) satis�es

lim
t→∞

H(t) = 5.19;

and it is de�ned as organized if the following condition holds

lim
t→∞

H(t) = 0.

De�nition 2. A deterministic system metric G(t) (particularly, I(t) or L̄(t)) is de-

�ned to be stable if

lim
t→∞

G(t) <∞;

and it is de�ned to be unstable otherwise, i.e.

lim
t→∞

G(t) =∞.

Our classi�cation of possible system behavior based on simulation results is as

follows:

1. Organized, pseudo-stable case, where angle distributions of CMTs are biased
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towards a dominant angle in time and accordingly entropy values are contin-

uously decreasing; and system metrics such as average length and number of

CMTs temporarily stabilize around a constant value after an initial increase.

These system metrics tend to increase inde�nitely, once a certain degree of

organization is achieved.

2. Disorganized, stable case, where CMTs stay disorganized with non-decreasing

entropy values and a corresponding angle distribution close to uniform; and

system metrics stay �nite around a rather low value. In such systems, CMTs

do not grow long and crowded enough to interact.

3. Disorganized, unstable case, where CMTs stay disorganized and system metrics

keep increasing inde�nitely. In such systems, CMTs do not interact enough to

generate organization despite running into each other.

Note that by stability here we refer to the system metrics such as length and number

remaining �nite over time as described in De�nition 2. In fact, each case is stable

in terms of angle distributions corresponding to an organized or disorganized system.

Sample plots of independent simulation results for all three cases are presented in

Figure 31 for better comparison. The plots show realizations of average length of

CMTs vs. time, however the realizations for number of CMTs vs. time show quite

similar characteristics. Corresponding entropy plots that give a measure of organi-

zation level in time are also provided. As a side note, by a queueing analogy to the

classical stability conditions for queues, those three cases can be considered roughly

similar to i)λ ≈ µ, ii) λ < µ, iii) λ > µ, where λ and µ are de�ned as the arrival rate

into the system and the service rate in respective order. Note that for case i, µ would

in fact be time-dependent and would approach λ only for a temporary amount of time

according to the status of organization. Also, case ii requires λ to be signi�cantly
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less than µ, as otherwise the system approaches to a heavy-tra�c queue.
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Fig. 31. Sample Average Length and Entropy Plots for Independent Simulations of

Cases (i), (ii) and (iii)

Among these three types of systems, the preferred one is case (i). That is in

a plant cell, observed system behavior coincides with this case where CMTs exist

as organized arrays. This organization may be distorted by a genetic mutation or

environmental conditions that cause a change in system parameters, which results

in one of the other cases. We are particularly interested in exploring conditions for

case (i) to be guaranteed, which would facilitate engineering of settings that will

maintain or generate organization in plant cells. Building on our observations from

simulations, we continue to establish stronger analytical relations between problem

parameters and system properties. Next, we present the mean-�eld model that we

use to derive su�cient conditions for organization to be achieved.
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IV.2. Model Equations and Analysis

In this section, we present the formulation for a mean-�eld model of CMT dynamics

and interactions (Section IV.2.1) followed by an equilibria analysis of model equations

(Section IV.2.2). We derive su�cient conditions for organization using Lyapunov

stability concepts.

IV.2.1. Problem Formulation

We consider a mean-�eld model where CMTs are distributed around the surface ho-

mogeneously. We alter the bundling mechanism for modeling purposes as follows:

In case of a bundling event, the colliding CMT of length l completely aligns with

the barrier CMT with probability pb(l) rather than forming a new segment. That

is, with a certain probability which is a function of length, the CMT changes its

orientation parallel to that of the barrier. As a result, each CMT has only a single

segment throughout its lifetime. The bundling probability is considered as a decreas-

ing function of the CMT length to account for the fact that bundling is more likely

to be reversible for relatively longer CMTs due to di�erent dynamics at the leading

and lagging ends. It is worth noting that this mechanism was tested using simula-

tions and veri�ed not to change the overall system characteristics. Based on these and

other properties and notation described in Section I.2, we derive an integro-di�erential

equation system as follows. We de�ne pm(l, θ, t) as the density of CMTs with length l

and angle θ that are at state m at time t, where m ∈ {GS,GP, SS, SP, PS, PP}. For

example, pGS(l, θ, t) stands for the density of CMTs with length l, angle θ that has a

growing leading end and shortening lagging end at time t. Recall that qm,n for m,n ∈

{GS,GP, SS, SP, PS, PP} correspond to the elements of the in�nitesimal generator

matrix, Q; and vm stands for the velocity in statem. Based on these, model equations
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can be stated as:

∂pGS(l, θ, t)

∂t
= −vGS ∂pGS(l, θ, t)

∂l
+ pGS(l, θ, t)qGS,GS

+ pSS(l, θ, t)qSS,GS + pPS(l, θ, t)qPS,GS + pGP (l, θ, t)qGP,GS

− Cs(l, θ, t)−Bs(l, θ, t) +B∗s (l, θ, t),

∂pGP (l, θ, t)

∂t
= −vGP ∂pGP (l, θ, t)

∂l
+ pGP (l, θ, t)qGP,GP

+ pSP (l, θ, t)qSP,GP + pPP (l, θ, t)qPP,GP + pGS(l, θ, t)qGS,GP

− Cp(l, θ, t)−Bp(l, θ, t) +B∗p(l, θ, t),

∂pSS(l, θ, t)

∂t
= −vSS ∂pSS(l, θ, t)

∂l
+ pSS(l, θ, t)qSS,SS

+ pGS(l, θ, t)qGS,SS + pPS(l, θ, t)qPS,SS + pSP (l, θ, t)qSP,SS

+ Cs(l, θ, t)

∂pSP (l, θ, t)

∂t
= −vSP ∂pSP (l, θ, t)

∂l
+ pSP (l, θ, t)qSP,SP

+ pGP (l, θ, t)qGP,SP + pPP (l, θ, t)qPP,SP + pSS(l, θ, t)qSS,SP

+ Cp(l, θ, t)

∂pPS(l, θ, t)

∂t
= −vPS ∂pPS(l, θ, t)

∂l
+ pPS(l, θ, t)qPS,PS

+ pGS(l, θ, t)qGS,PS + pSS(l, θ, t)qSS,PS + pPP (l, θ, t)qPP,PS,

∂pPP (l, θ, t)

∂t
= +pPP (l, θ, t)qPP,PP

+ pGP (l, θ, t)qGP,PP + pSP (l, θ, t)qSP,PP + pPS(l, θ, t)qPS,PP ,

(5)

where 0 < l, t < ∞ and θ ∈ Φ180 = {0, 1, ..., 179}. Note that we consider only the

angles in Φ180 as two CMTs with orientation θ and θ + 180 are equivalent in terms

of dynamics and interactions (when coordinates are not considered), as well as their

contribution to system organization. Formulation of Equation (5) follows considering

pm(l, θ, t+∆t), for each m ∈ {GS,GP, SS, SP, PS, PP}, where ∆t is a small positive
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real number:

pm(l, θ, t+∆t) = pm(l−vm∆t, θ, t)(1+qm,m∆t)+
∑
n6=m

pn(l−vn∆t, θ, t)qn,m∆t+o(∆t).

(6)

Note that Equation (6) follows from the fact that the length of a CMT in any state n

would change by vn∆t in ∆t time, and conditioning on the transitions from all states

n ∈ {GS,GP, SS, SP, PS, PP} to state m, as the transition probability from state n

to m in ∆t time is given by qn,m∆t+o(∆t) if n 6= m and 1+qm,m∆t+o(∆t) if n = m,

where o(∆t) is a collection of terms of higher order than ∆t such that o(∆t)/∆t→ 0

as ∆t→ 0. Subtracting pm(l, θ, t) from each side of the equation and dividing by ∆t,

we obtain

pm(l, θ, t+ ∆t)− pm(l, θ, t)

∆t
=
pm(l − vm∆t, θ, t)− pm(l, θ, t)

∆t

+
∑
n

qn,mpn(l − vm∆t, θ, t) + o(∆t)/∆t.

Letting ∆t→ 0 yields

∂pm(l, θ, t)

∂t
= −vm∂pm(l, θ, t)

∂l
+
∑
n

qn,mpn(l, θ, t),

which describes part of the equations in (5) that corresponds to CMT dynamics.

The remaining terms in Equation (5) are related to interactions. In particular,

Bs(l, θ, t) denotes the frequency of CMTs with length l and angle θ that has a growing

leading end and a shortening lagging end to run into another CMT and bundle with it

at time t, whereas Bp(l, θ, t) stands for similar frequency for CMTs with with length

l and angle θ, a growing leading end, and a pausing lagging end. Note that notations

are distinguished according to the phase of the lagging end, as the leading ends

of CMTs that run into others in the system can only be at growth phase. Similarly,

Cs(l, θ, t) and Cp(l, θ, t) are the frequencies for CMTs with length l, angle θ to undergo
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catastrophe, i.e. collide with another CMT and transition into a new state such that

their leading ends leave the growth phase and begins shortening immediately at time

t. Finally, B∗s (l, θ, t) and B
∗
p(l, θ, t) stand for the frequency of CMTs with angle θ to

act as a barrier and result in the bundling of other CMTs of length l by switching their

orientation to θ, where the subscripts again stand for the phase of the lagging ends of

bundling CMTs. We approximate these interaction frequencies as a function of sine

of the di�erence in angles of the two colliding CMTs similar to the methodology in

Hawkins et al. (2010). According to this, the interaction frequency for parallel CMTs

is zero and it increases as the collision angle increases. The resulting formulation is

as follows:

Cs(l, θ, t) = v+
GpGS(l, θ, t)

∑
θ′∈Θ

pc|sin(θ − θ′)|∫
l′
dl′l′(p̄G(l′, θ′, t) + p̄S(l′, θ′, t) + p̄P (l′, θ′, t)),

Cp(l, θ, t) = v+
GpGP (l, θ, t)

∑
θ′∈Θ

pc|sin(θ − θ′)|∫
l′
dl′l′(p̄G(l′, θ′, t) + p̄S(l′, θ′, t) + p̄P (l′, θ′, t)),

Bs(l, θ, t) = v+
GpGS(l, θ, t)

∑
θ′∈Θ∗

pb(l)|sin(θ − θ′)|∫
l′
dl′l′(p̄G(l′, θ′, t) + p̄S(l′, θ′, t) + p̄P (l′, θ′, t)),

Bp(l, θ, t) = v+
GpGP (l, θ, t)

∑
θ′∈Θ∗

pb(l)|sin(θ − θ′)|∫
l′
dl′l′(p̄G(l′, θ′, t) + p̄S(l′, θ′, t) + p̄P (l′, θ′, t)),
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B∗s (l, θ, t) =

(∫
dl′l′(p̄G(l′, θ, t) + p̄S(l′, θ, t) + p̄P (l′, θ, t))

)
∑
θ′∈Θ∗

v+
GpGS(l, θ′, t)pb(l)|sin(θ − θ′),

B∗p(l, θ, t) =

(∫
dl′l′(p̄G(l′, θ, t) + p̄S(l′, θ, t) + p̄P (l′, θ, t))

)
∑
θ′∈Θ∗

v+
GpGP (l, θ′, t)pb(l)|sin(θ − θ′),

where

Θ = {θ + θc + 1, ..., θ + (180− θc)− 1} mod 180 ,

Θ∗ = {0, 1, ..., 179} −Θ− {θ} mod 180,

where the �mod� function is to adjust all the negative degrees and degrees that are

equal to or greater than 180 in Θ and Θ∗ to fall in the set Φ180; and p̄G(l, θ, t),

p̄S(l, θ, t), p̄P (l, θ, t) denote the total density of CMTs with length l and angle θ that

has a growing, shortening and pausing leading end in respective order. That is,

p̄G(l, θ, t) = pGS(l, θ, t) + pGP (l, θ, t),

p̄S(l, θ, t) = pSS(l, θ, t) + pSP (l, θ, t),

p̄P (l, θ, t) = pPS(l, θ, t) + pPP (l, θ, t).

The limits of summations are de�ned according to the critical interaction angle and

the rules explained in Section I.2. Note that the interaction frequencies are functions

of the velocities of the leading ends rather than the net velocities of growing CMTs,

as collisions are directly generated by the dynamics of the leading end. Finally, the

boundary condition is given as a function of the appearance rate:

pGS(0, θ, t) =
λa

180A
, (7)

were A is the area of the surface that CMTs reside on. The boundary condition
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indicates that CMTs appear with a 0 length in the GS state (rather than a length of

0.1 in PP state as in simulations in order to not have a discontinuity at l = l0 > 0).

Note that Equation (7) is just given for the sake of completeness and does not a�ect

the analysis and results that we discuss next.

IV.2.2. Equilibria Analysis

Having derived an integro-di�erential equation system for the dynamics and interac-

tions of CMTs, we use Lyapunov stability concepts to characterize its solutions (Long

et al., 2008). It is worth noting that by stability, here we imply the convergence of

solutions in time to an equilibrium point considered rather than the stability notion

used to characterize system properties in Section IV.1. One of the equilibrium points

of (5) given by

δpGS(l, θ, t)

δt
= 0,

δpGP (l, θ, t)

δt
= 0,

δpSS(l, θ, t)

δt
= 0,

δpSP (l, θ, t)

δt
= 0,

δpPS(l, θ, t)

δt
= 0,

δpPP (l, θ, t)

δt
= 0

is

P ∗ = {(pGS(l, θ, t), pGP (l, θ, t), pSS(l, θ, t), pSP (l, θ, t), pPS(l, θ, t), pPP (l, θ, t))

s.t. k(θ∗, t) = 1, k(θ, t) = 0 ∀θ 6= θ∗},

(8)

where k(θ, t) is given by Equation (1) in Chapter III. Note that Equation (8) cor-

responds to an ideally organized solution where all CMTs in the system are aligned

with the same orientation. We employ the entropy metric de�ned in Equation (2)

as a Lyapunov function to establish conditions for its stability. Use of entropy as a

Lyapunov function is rarely seen in the related stability literature. Here, it is very ap-
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propriate as organization is directly characterized by the entropy metric. Rearranging

Equation (2) in terms of model variables, we obtain

H(t) = −
179∑
θ′=0

k(θ′, t)ln (k(θ′, t)) , (9)

where for all θ, t,

k(θ, t) =

∫∞
0
l(p̄G(l, θ, t) + p̄S(l, θ, t) + p̄P (l, θ, t))dl∑179

θ=0

∫∞
0
l(p̄G(l, θ, t) + p̄S(l, θ, t) + p̄P (l, θ, t))dl

, (10)

where p̄G(l, θ, t), p̄S(l, θ, t), p̄P (l, θ, t) denote the CMT densities with respect to the

phase of the leading end as de�ned in Section IV.2.1. For the solution given by

Equation (8), since k(θ∗, t) = 1 and k(θ, t) = 0 ∀ θ 6= θ∗, the entropy of the system

is zero, which we will denote by H(t) |P=P ∗= 0. For all other solutions P 6= P ∗, the

entropy is positive, i.e. H(t) |P> 0. Hence, Equation (9) can be used as a Lyapunov

function to prove the asymptotic stability of P ∗, or in other words, the convergence of

the system towards P ∗ (hence organization) eventually starting at any other solution.

Prior to stating our main result of this section in Proposition 1, we provide a lemma

which is used in its proof.

Lemma 1. Given two di�erent sequences (x1, x2, ...xN) and (y1, y2, ...yN) with xi > 0,

i = 1, ..., N and
∑N

i=1 xi = 1,
∑N

i=1 yi = 1; assume that for any two pairs of xi, yi and

xj, yj, i, j = 1, ..., N , xi ≥ xj if and only if yi ≥ yj and (yi − xi) ≥ (yj − xj), i.e.

sequences and their di�erence increase and decrease in the same order. Let f(x) > 0

be a decreasing function of x. Then the following inequality holds

N∑
i=1

f(xi)(yi − xi) < 0. (11)

Proof: Let us de�ne zi = (yi − xi) i = 1, ..., N . We group zi values in three sets
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as follows:

I+ = {i ∈ {1, N} : zi > 0}

I0 = {i ∈ {1, N} : zi = 0}

I− = {i ∈ {1, N} : zi < 0}.

As
∑N

i=1 yi −
∑N

i=1 xi = 0, it follows that

N∑
i=1

zi =
∑
i∈I+

zi +
∑
i∈I−

zi = 0. (12)

Let us divide zi values into in�nitesimal pieces of the same size, denoted by ∆z > 0,

such that for each i ∈ I+, zi = wi∆z and for each i ∈ I−, zi = −wi∆z, i = 1, ..., N ,

where ∆z > 0 and wi are positive real numbers. Equation (12) can be rewritten as

∑
i∈I+

wi −
∑
i∈I−

wi = 0. (13)

Hence, we have an equal number (
∑

i∈I+ wi =
∑

i∈I− wi := W ) of ∆z pieces that

belong to sets I+ and I−. Note that ∀ zi with i ∈ I+ and zj with j ∈ I−, it follows

from the de�nition of zi values that zi > zj, and consequently xi > xj from the given

ordering relation between the sequences xi, and zi; and �nally f(xi) < f(xj) due to the

decreasing property of f(·). Let us rede�ne the sequence of xi, i = 1, ..., N such that

its values are copied wi times for each xi value so that every ∆z has its corresponding

x′i′ and f(x′i′) values, where i
′ = 1, ...,W . Adjusting I+ and I− accordingly as I ′+, I

′
−,

for each ∆z value that belongs to set I+, there is a ∆z which is multiplied with a

larger value in I− in the following equation:

∑
i′∈I′+

f(x′i′)∆z −
∑
i′∈I′−

f(x′i′)∆z < 0,

which gives the desired result. �
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Next, we state the proposition regarding the asymptotic stability of P ∗ given in

Equation (8).

Proposition 1. For a system with pb(l), pc > 0, a su�cient condition for the global

asymptotic stability of P ∗ de�ned in (8) is given by

p+
G(t)vG+ − p+

S (t)vS+ − p−S (t)vS− > 0,

where p+
G(t) and p+

S (t) stand for the total density of CMTs that have a growing and

shortening leading end in respective order at time t. Similarly, p−S (t) stands for the

total density of CMTs that have a shortening lagging end at time t. In other words,

p+
G(t) :=

∑
θ

∫ ∞
0

(pGS(l, θ, t) + pGP (l, θ, t))dl,

p+
S (t) :=

∑
θ

∫ ∞
0

(pSS(l, θ, t) + pSP (l, θ, t))dl,

p−S (t) :=
∑
θ

∫ ∞
0

(pGS(l, θ, t) + pSS(l, θ, t) + pPS(l, θ, t))dl.

Proof: According to Lyapunov's stability theory, a su�cient condition for the

global asymptotic stability of an equilibrium point P ∗ is existence of a Lyapunov

function L(·) such that

• L(t) |P> 0, ∀P 6= P ∗ and L(t) |P= 0 only for P = P ∗,

• ∂L(t)
∂t
|P< 0, ∀P 6= P ∗ and ∂L(t)

∂t
|P=P ∗= 0.

We set our Lyapunov function as the entropy metric, H(·) in Equation (9). We

already know that the �rst condition holds for H(·), as H(t) |P=P ∗= 0 and H(t) |P> 0

∀P 6= P ∗. What is left to check is the sign of the derivative of the Lyapunov function

with respect to t, which is given by

∂H(t)

∂t
= −

179∑
θ=0

k′(θ, t)ln(k(θ, t)) + k′(θ, t), (14)
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where

k′(θ, t) =
∂ k(θ, t)

∂t
. (15)

Let us de�ne the total density of CMTs with length l and angle θ at time t by

p̄(l, θ, t) := p̄G(l, θ, t) + p̄S(l, θ, t) + p̄P (l, θ, t).

Using Equation (10), we can rewrite Equation (15) as

k′(θ, t) =

(∫∞
0
l dp̄(l,θ,t)

dt
dl
)∑179

θ=0

∫∞
0
lp̄(l, θ, t)dl −

(∫∞
0
lp̄(l, θ, t)dl

)∑179
θ=0

∫∞
0
l dp̄(l,θ,t)

dt
dl(∑179

θ=0

∫∞
0
lp̄(l, θ, t)dl

)2 .

Summing equations in (5) side by side, multiplying both sides with l and integrating

with respect to l over (0,∞), we obtain the derivative of total length of all CMTs

with angle θ at time t as

L′θ(t) :=

∫ ∞
0

l
dp̄(l, θ, t)

dt
dl

= (v+
G − v

−
S )p̃GS(θ, t) + v+

G p̃GP (θ, t)

− (v+
S + v−S )p̃SS(θ, t)− v+

S p̃SP (θ, t)− v−S p̃PS(θ, t)

− v+
G

∫ ∞
0

p̄G(l, θ, t)ldl
∑
θ′∈Θ∗

pb|sin(θ − θ′)|
∫
l′
dl′l′p̄(l′, θ′, t)

+ v+
G

∫
l′
dl′l′p̄(l′, θ, t)

∑
θ′∈Θ∗

pb|sin(θ − θ′)
∫ ∞

0

p̄G(l, θ′, t)ldl,

where p̃m(θ, t) :=
∫∞

0
pm(l, θ, t)dl, m ∈ {GS,GP, SS, SP, PS, PP} stands for the

total density of CMTs with angle θ at state m at time t. We denote the sum of

L′θ(t) over all θ by
∑
L′(t) :=

∑179
θ=0 L

′
θ(t), which gives the derivative of total length

of all CMTs in the system at time t. De�ning total length of CMTs with angle θ

at time t as Lθ(t) :=
∫∞

0
lp(l, θ, t)dl, and the total length of all CMTs at time t as
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∑
L(t) :=

∑360
θ=1 Lθ(t), and plugging these into Equation (14) results in

dH(t)

dt
= −

179∑
θ=0

L′θ(t) ln
(

Lθ(t)∑
L(t)

)∑
L(t)− Lθ(t) ln

(
Lθ(t)∑
L(t)

)∑
L′(t)

(
∑
L(t))2

.

Rearranging terms, we obtain

dH(t)

dt
= −

179∑
θ=0

L′θ(t)∑
L′(t)

ln
(

Lθ(t)∑
L(t)

)
− Lθ(t)∑

L(t)
ln
(

Lθ(t)∑
L(t)

)
∑
L(t)

∑
L′(t)

. (16)

Let us denote aθ :=
L′θ(t)∑
L′(t)

and bθ := Lθ(t)∑
L(t)

. By de�nition, it follows that
∑179

θ=0 aθ = 1,∑179
θ=0 bθ = 1, and bi > 0. Assuming

∑
L′(t) > 0, i.e. the net total CMT length change

in time is positive, we are interested in the sign of

∑
− ln(bθ)(aθ − bθ). (17)

If the sign for Expression (17) is negative, then Equation (16) is negative, i.e. dH
dt
< 0,

and the stability condition is satis�ed. A su�cient condition to ensure this follows

from Lemma 1 as −ln(b) is a decreasing function of b for 0 < b < 1. Accordingly,

we require the two sequences aθ and bθ, and their di�erence aθ − bθ to increase and

decrease in the same order. This roughly means that if CMTs with an angle θ have a

larger total length compared to the total length of CMTs with angle θ′ 6= θ, they also

grow larger in ratio in total length on average, and vice versa. This property follows

by careful observation of model equations and the property that pb(l) is decreasing in

l.

Finally, in order to ful�ll
∑
L′(t) > 0, it is required that the problem parameters

satisfy

∑
θ

(v+
G−v

−
S )pGS(θ, t)+v+

GpGP (θ, t)−(v+
S +v−S )pSS(θ, t)−v+

S pSP (θ, t)−v−S pPS(θ, t) > 0, ,

(18)
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∀t, which can be stated as

∑
θ

p+
G(θ, t)vG+ − p+

S (θ, t)vS+ − p−S (θ, t)vS− > 0, (19)

by rearranging terms.�

Note that Inequality (19) ensures a positive net change in CMT length on average.

We conjecture that this condition will be satis�ed if

π+
Gv

+
G − π

+
S v

+
S − π

−
S v
−
S > 0, (20)

where π+
G, π

+
S , π

−
S are the long-run probabilities for the phases of the leading and

lagging ends of a single CMT with no interactions. In particular, π+
G and π+

S stand

for the long-run probabilities that the leading end is in growth and shortening phases

in respective order; and π−S is the long-run probability that the lagging end is in short-

ening phase as described in Section III.3.1 and can also be derived using in�nitesimal

generator Q.

In fact, Proposition 1 and our related conjecture show that CMT organization

is roughly robust to interaction parameters as long as CMTs are growing on average,

in line with the simulation results. This outcome is quite intuitive as interactions

are easily kept at a high frequency regardless of the particular values of pb and pc as

long as they are not set to zero, as CMTs keep running into each other in a growing

system. In fact, for the case
∑
L′(t) < 0, following similar procedure as in the proof of

Proposition 1, our conjecture is that organization can be achieved especially for values

close to zero, but this is heavily dependent on interaction parameters to maintain a

certain frequency of bundling and catastrophe.
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Table 4. π+
Gv

+
G − π

+
S v

+
S − π

−
S v
−
S Values for Di�erent Parameter Sets

Parameter Set Status π+
Gv

+
G − π

+
S v

+
S − π

−
S v
−
S

I organized 0.260

II organized 0.017

III organized 1.733

IV organized -0.106

V disorganized -0.763

VI organized 0.963

IV.3. Conclusions

In this chapter, we developed a model for CMT dynamics and interactions using a

mean-�eld approach, which resulted in a system of integro-di�erential equations as

a function of CMT densities with respect to their state, length and orientation. We

conducted a stability analysis using Lyapunov's theorem and was able to derive su�-

cient conditions that guarantee convergence to an organized solution asymptotically.

According to this, if the average net velocity for a single CMT is positive, organiza-

tion is achieved regardless of interaction parameters as long as they are not eliminated

completely. This is in line with our observations from simulations. Table 4 lists the

organization results for di�erent parameter sets given in Appendix B according to

simulations and the corresponding value of π+
Gv

+
G − π

+
S v

+
S − π

−
S v
−
S for each case.

As seen in Table 4, cases I, II, III and VI satisfy the su�cient condition for orga-

nization given in Equation (20) and result in organized systems accordingly regardless

of the interaction parameters, whereas case V fails to get organized as its dynamicity

parameters correspond to an average net velocity that is signi�cantly less than zero.

On the other hand, case IV achieves organization despite not satisfying the su�cient



83

condition, however heavily dependent on the interaction parameters as discussed in

Section IV.2.2. This is quite intuitive, as the condition we derived is a su�cient one

but not necessary, so it is possible to have organization even when it is not satis�ed,

especially for the cases where the average net velocity is close to zero. If we make an

analogy to the queueing systems as in Section IV.1, the condition in Equation (20)

corresponds to an unstable system with λ > µ, growing on average (although µ is

increased to approach λ in time due to interactions); and a setting with λ slightly less

than µ, even though theoretically stable, corresponds to a heavy-tra�c queue, which

is quite close to the required condition.

The relation between dynamicity parameters and system organization established

in this chapter is potentially useful for generating and maintaining organization in

plant cells by regulation of CMT dynamics. Finally, in addition to deriving su�cient

conditions that guarantee CMT organization, this chapter also provides a theoretical

explanation for the continuous entropy drop seen in the simulations in the course

of organization, by using the entropy metric as a Lyapunov function in the stability

analysis.
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CHAPTER V

FLUID MODEL FOR SINGLE CMT DYNAMICS AND APPROXIMATION OF

SYSTEM METRICS

Having analytically derived su�cient conditions for self-organization of CMTs, in this

chapter we develop methodologies to estimate certain system metrics (expected num-

ber and average length in time) for the parameter regions that these conditions hold,

hence when organization is achieved. Among the cases discussed in the Section IV.1,

the organized pseudo-stable case is the most challenging to estimate such metrics, due

to its complex and chaotic properties, and accordingly high variation between sim-

ulation runs. These are systems with time-varying interaction frequencies that are

hard to estimate. For systems that stay disorganized, interactions can in general be

ignored, and system metrics can be estimated mainly based on single CMT dynamics

regardless of their stability. However, in organizing systems, interaction frequencies

change dynamically according to the status of organization, and the system metrics

typically exhibit pseudo-stabilization trend with subsequent time phases that we dis-

cussed in Section III.3.3. As a result, we employ a combination of various techniques

to develop a predictive methodology that is compatible with the considered problem

characteristics. These include a �uid model for single CMT dynamics, Laplace in-

version techniques to calculate related distributions, approximation algorithms that

are used to estimate impact of interactions, and simulations. A framework for the

analysis in this chapter similar to previous chapters of the dissertation is provided in

Figure 32.
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Fig. 32. A Framework of the Fluid Model and Approximation Methodologies

V.1. Objectives and Relation to the Simulation Results

In simulations which result in organization, it's generally observed that around the

time the frequency of collision induced catastrophes in the system per unit time

reaches its peak, total number and average length of CMTs in the system as well

as the total length in the system stays temporarily around a constant value. Once

system organization is settled to a certain degree, total number and average length of

CMTs continue to grow inde�nitely (see Case (i) in Figure 31). Hence, there are three

phases of realization of such system metrics in time, associated with an initial increase

followed by a roughly stable phase and eventually an inde�nite increase in time. A

sample hypothetical plot for an estimation of expected system metrics for these three

phases can be summarized as described in Figure 33. The system initially starts

with tiny CMTs where interactions do not have a signi�cant e�ect until they get long

and crowded enough. As a result, metrics begin increasing with a high initial rate,

which decreases as frequency of interactions increases and reaches its peak at around
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time T1. Between T1 and T2, system metrics roughly �uctuate around a constant

value. Hence, T2 corresponds to a time point that organization has already settled.

It is worth noting that we are particularly interested in the region until this time

point, as it is already beyond the state experimentally observed in plant cells, and

these cells typically move to a completely di�erent set of events (such as cell division,

etc.) at some time t, such that T1 < t < T2. Hence, we develop methodologies to

estimate expected values of system metrics up until this time, after which they are

considered to remain constant for our purposes. In this chapter, we �rst introduce a

�uid model that considers detailed dynamics of a single CMT at both ends, ignoring

the e�ect of interactions. Based on this model, we develop predictive methodologies

for expected realizations of system-wide metrics using a transient analysis and certain

approximation techniques tailored to our problem.

Time (t) 

E[I(t)] 

E[L(t)] 

T1 
T2 

Fig. 33. Sample Plot for Estimation of Expected System Metrics for an Organized

Case
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V.2. Model Equations and Analysis

In this section, we present the formulation for the �uid model of single CMT dy-

namics and derive the Laplace transform for the corresponding lifetime distribution

(Section V.2.1). Following this, we provide a Laplace inversion algorithm to calculate

the lifetime distribution numerically (Section V.2.2).

V.2.1. Problem Formulation

As described in Section III.1, the total length of CMT i at time t is denoted by Li(t).

In the following, we remove index i from our notations, as we are considering single

CMT dynamics. As described in Chapter I, the length of a CMT at time t, L(t),

changes according to its state at time t, M(t) (see Figure 3). Accordingly, dynamics

of the length process, {L(t), t ≥ 0} is given by

d(L(t))

dt
=



v+
G − v

−
S , if M(t) = GS,

v+
G, if M(t) = GP,

−v+
S − v

−
S , if M(t) = SS, and L(t) > 0

−v+
S , if M(t) = SP, and L(t) > 0

−v−S , if M(t) = PS, and L(t) > 0

0, if M(t) = PP or L(t) = 0.

(21)

Note that the �L(t) = 0� condition on the last line of Equation (21) follows from

the fact that {(M(t), L(t)), t ≥ 0} is a Markov process with an absorbing barrier at

L(t) = 0, as a CMT disappears and departs the system if it shrinks to zero length.

Considering a CMT that appears at time t = 0, its lifetime, τ , is de�ned as

τ = inf{t > 0 : L(t) = 0}.
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We next de�ne a slightly di�erent dynamics for the length process, which we will use

to derive the lifetime distribution of a CMT.

d(L(t))

dt
=



v+
G − v

−
S , if M(t) = GS,

v+
G, if M(t) = GP,

−v+
S − v

−
S , if M(t) = SS, and L(t) > 0

−v+
S , if M(t) = SP, and L(t) > 0

−v−S , if M(t) = PS, and L(t) > 0

0, if M(t) = PP or L(t) = 0 and M(t) = SS, SP, PS.

(22)

Equation (22) considers that a CMT stays in the system and continues its dynamics

even if it shrinks to zero length. That is, once the CMT transitions into a state with

a positive velocity, it resumes growth. As the lifetime of a CMT is actually a �rst

passage time, and Equations (21) and (22) de�ne similar dynamics up until hitting

zero length, lifetime distribution implied by both equations are equivalent. We de�ne

the joint distribution function for the lifetime of a CMT and its �nal state conditioned

on the initial state and length as

Fab(l, t) = P{τ ≤ t,M(τ) = b|L(0) = l,M(0) = a},

where a, b ∈ {GS,GP, SS, SP, PS, PP} represent the initial and �nal states of the

CMT in respective order, and l stands for the initial length. We also de�ne the vec-

tor, Fb(l, t) = [FGSb(l, t) FGPb(l, t) FSSb(l, t) FSPb(l, t) FPSb(l, t) FPPb(l, t)] for any

�nal state, b. The following theorem states the partial di�erential equations for this

joint distribution function, in terms of the in�nitesimal generator matrix Q, and the

velocity matrix V de�ned in Section III.1,
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Theorem 1. Fab(l, t) is a solution to the following partial di�erential equation

δFab(l, t)

δt
− va δFab(l, t)

δl
=
∑
c

qacFcb(l, t), (23)

or in the matrix form,

δFb(l, t)

δt
− V δFb(l, t)

δl
= QFb(l, t), (24)

where boundary and initial conditions are given by,

Fbb(0, t) = 1 for vb < 0,

Fab(0, t) = 0 for a 6= b, va < 0,

Fab(l, 0) = 0 for a 6= b, l ≥ 0,

Fbb(l, 0) = 0 for l > 0.

Proof: Consider Fab(l, t+ h), where h is a small positive real number. It can be

written as

Fab(l, t+ h) = P{τ ≤ t+ h,M(τ) = b|L(0) = l,M(0) = a}.

Conditioning on the �rst transition from the initial state, we obtain

Fab(l, t+ h) =P{τ ≤ t+ h,M(τ) = b|L(0) = l,M(0) = a}

=
∑
c 6=a

P{τ ≤ t+ h,M(τ) = b|L(0) = l,M(0) = a,M(h) = c}

P{M(h) = c|M(0) = a, L(0) = l}

+ P{τ ≤ t+ h,M(τ) = b|L(0) = l,M(0) = a,M(h) = a}

P{M(h) = a|M(0) = a, L(0) = l}.

As M(t) process is independent of L(0), and the length would change by vah by time
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h, when the CMT is in state a at time 0,

Fab(l, t+ h)

=
∑
c 6=a

P{τ ≤ t+ h,M(τ) = b|L(h) = l + vah,M(h) = c}P{M(h) = c|M(0) = a}

+ P{τ ≤ t+ h,M(τ) = b|L(h) = l + vah,M(h) = a}P{M(h) = a|M(0) = a}

=
∑
c 6=a

P{τ ≤ t,M(τ) = b|L(0) = l + vah,M(0) = c}P{M(h) = c|M(0) = a}

+ P{τ ≤ t,M(τ) = b|L(0) = l + vah,M(0) = a}P{M(h) = a|M(0) = a}.

As the transition probability from state a to c in time h is given by qach + o(h) if

c 6= a and 1 + qaah+ o(h) if c = a, where o(h) is a collection of terms of higher order

than h such that o(h)/h→ 0 as h→ 0, it follows

Fab(l, t+ h) =
∑
c 6=a

Fcb(l + vah, t)qach+ Fab(l + vah, t)(qaah+ 1) + o(h).

Subtracting Fab(l, t) from each side of the equation, dividing by h and rearranging

terms results in

Fab(l, t+ h)− Fab(l, t)
h

=
Fab(l + vah, t)− Fab(l, t)

h
+
∑
c

qacFcb(l + vah, t) + o(h)/h.

Letting h→ 0 yields Equation (23), and rewriting in the matrix form gives Equation

(24). Next, we describe the boundary conditions for all a, b and t. As the lifetime

would be zero if CMT appeared with zero length at state b such that vb < 0, it follows

Fbb(0, t) = 1 for vb < 0.

The second boundary condition,

Fab(0, t) = 0 for a 6= b, va < 0,
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follows from the fact that although the lifetime is zero, the probability that the state

is b when the lifetime is reached is zero (since at time t = 0 the state is a with va < 0).

Finally, the last two conditions follow from the fact that lifetime cannot be reached

at state b at time t = 0 if the initial state is a 6= b for any initial length; or if the

initial state is b for a positive initial length. �

Let F ∗b (l, w) be the Laplace transform (LT) of Fb(l, t) with respect to t. We

denote the LT of F ∗b (l, w) with respect to l by F ∗∗b (s, w). The next theorem gives the

equations for F ∗∗b (s, w).

Theorem 2. The solution to Equation (24) in transform space is given by

F ∗∗b (s, w) = (V s− wI +Q)−1(w−1(V ej)), (25)

where I is the identity matrix and ej is the j
th unit vector, with the sizes compatible

with V and Q.

Proof: Taking the LT of Equation (24) with respect to t gives

(wI −Q)F ∗b (l, w) = V
δF ∗b (l, w)

δl
. (26)

Taking the LT of Equation (26) with respect to l results in

(wI −Q)F ∗∗b (s, w) = V [sF ∗∗b (s, w)− F ∗b (0, w)]. (27)

De�ne ej as the j
th unit vector. Plugging in the boundary condition

F ∗b (0, w) = w−1ej if vj < 0,

we get

(V s− wI +Q)F̃ ∗b (s, w) = w−1(V ej).

Rearranging terms yields Equation (28). �
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Considering the transform of the lifetime distribution independent of the �nal

state of the CMT, we obtain

F ∗∗(s, w) = (V s− wI +Q)−1(w−1(V e3 + V e4 + V e5)). (28)

Note that the reason we multiply V with ej, where j = 3, 4, 5 is that a CMT can only

disappear at one of the corresponding states in the set {GS,GP, SS, SP, PS, PP},

as SS, SP , and PS are the only ones with a negative net velocity. Finally we are

interested in [0 0 0 0 0 1]F ∗∗, as the initial state of CMTs upon appearance is set as

PP , i.e. the state at which both ends are pausing.

V.2.2. Numerical Inversion of Laplace Transforms

Having derived the LT of lifetime distribution, we follow the methodology in Kharoufeh

and Gautam (2004) to conduct a two-dimensional Laplace transform inversion for nu-

merical computation of F (l, t) for given l and t. Based on the approaches introduced

in Choudhury et al. (1994) and Moorthy (1995), an approximation for the inverse

function F (l, t) is given by

F (l, t) ≈ (1/2) exp(c1l + c2t)(T
−2)

{
F ∗∗(c1, c2)/2 +

3∑
i=1

ki

}
(29)

where

k1 =
∞∑
m=1

Re{F ∗∗(c1, c2+iπm/T )} cos(mπt/T )−Im{F ∗∗(c1, c2+iπm/T )} sin(mπt/T ),

k2 =
∞∑
n=1

Re{F ∗∗(c1 + iπn/T, c2)} cos(nπl/T )− Im{F ∗∗(c1 + iπn/T, c2)} sin(nπl/T ),
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k3 =
∞∑
n=1

∞∑
m=1

Re{F ∗∗(c1 + iπn/T, c2 + iπm/T )} cos(nπl/T +mπt/T )

+Re{F ∗∗(c1 + iπn/T, c2 − iπm/T )} cos(nπl/T −mπt/T )

−Im{F ∗∗(c1 + iπn/T, c2 + iπm/T )} sin(nπl/T +mπt/T )

−Im{F ∗∗(c1 + iπn/T, c2 − iπm/T )} sin(nπl/T −mπt/T ),

c1 = A1/(2ll1),

c2 = A2/(2tl2).

Note that Re(·) and Im(·) functions stand for the real and imaginary parts of the

input complex number respectively, and A1, A2, l1, l2 are parameters used to control

discretization and roundo� errors. We employ the epsilon algorithm (MacDonald,

1964; Wynn, 1966) to compute the in�nite series in Equation (29), and set T =

0.65Tmax, where Tmax = max{l, t}.

Our �rst observation is that the parameter values A1 = A2 = 28.324 and

l1 = l2 = 3, which are suggested for cumulative probability functions in Choudhury

et al. (1994), do not work well for our problem. We conjecture the reason for this

incompatibility is the ill-conditioned nature of the lifetime distribution (F (l,∞) < 1)

when the average net growth rate for a CMT is positive. As recommended in Abate

and Whitt (2006), we use multi-precision software and additionally employ varying

parameters for di�erent points of the function that we are trying to calculate. It

is worth noting that our methodology is related to certain concepts and issues dis-

cussed in Abate and Whitt (1992) and Avdis and Whitt (2007), although we are

not employing any particular method developed previously. In fact, we have tested

some methodologies suggested in those studies on our problem, such as convolution

smoothing, probabilistic scaling and di�erent versions of inversion algorithms, none of



94

which improved results signi�cantly. Instead, we employ a heuristic approach, where

initially l2 parameter is set to a relatively high value, and reduced as the value of t that

we are interested in decreases. For the points that still result in stability problems

and give divergent results, we make use of single CMT simulations by simplifying the

algorithm in Section III.3.2. These simulations have much less computational com-

plexity compared to our original simulations, as they consider a single CMT setting

with no interactions. Hence we are able to run thousands of single CMT simulations

to obtain a statistically signi�cant data set.

V.3. Estimation of System Metrics

Next, we conduct a transient analysis to derive the expected number of CMTs in the

system according to the lifetime distribution calculated. As CMTs appear according

to a Poisson process, and there is no external capacity regarding the number of

CMTs in the system that we are considering, we can formulate the expected number

of CMTs at time t, E[I(t)] similar to the approach in Wol� (1989), where the service

time distribution is given by F (l, t). According to this,

E[I(t)] = λa

∫ t

0

[1− F (l0, u)]du, (30)

where λa is the rate parameter for the appearance (arrival) process, and l0 is the

initial length, as given in Section III.1. Note that this approach would actually work

to approximate only the early phase of simulations, where the interactions are quite

rare and ignorable.

In order to compute the integral in Equation (30), we use a summation ap-

proximation, based on discrete time points, ti = 0, t1, t2, ...tn = t. Denoting the
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approximation for
∫ ti

0
[1− F (l0, u)]du by

∫̂
F̄ (ti),∫̂

F̄ (tn) =

∫̂
F̄ (tn−1) +

(F (l0, tn−1)− F (l0, tn))

2
(tn − tn−1) + F (l0, tn)(tn − tn−1),

for n = 1, 2, ... where
∫̂
F̄ (0) = 0.

The approximation for Equation (30) is given by

E[I(t)] ≈ Ê[I(tn)] = λa

∫̂
F̄ (tn) + I(0)(1− F (l0, tn)). (31)

Note that we included the second term in the right-hand side of Equation (31) con-

sidering the possibility of having an initial set of CMTs present in the system at time

t, i.e. I(0) > 0.

In order to speed up our algorithm, we select intervals such that they get longer

for larger t values, as the increment in F (l0, t) for subsequent time points gets quite

negligible as the t value keeps increasing. More particularly, a CMT has a high disap-

pearance probability early after its appearance as it initially has a tiny length. Given

that it survives, its length grows quickly due to the positive average net velocity

common to the parameter sets that we are considering, and probability of disappear-

ance decreases rapidly. We will study some speci�c numeric examples in Section V.4;

in summary, it is observed that the approximation works quite well compared to

simulation results especially for early periods, where e�ects of interactions are rela-

tively low. As interactions become more frequent (towards time T1 in Figure 33) the

estimates expectedly deviate from the simulation results. Therefore, we develop a

method to adjust these estimates to account for the impacts of interactions. Before

introducing this smoothing technique, we next describe the methodology that we use

for estimating expected average length metric, E(L̄(t)).

To estimate E(L̄(t)), we do not use the �uid model for the length process, as
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Equations (21) and (22) are no longer equivalent and would yield di�erent distribu-

tion functions of L(t). Instead, we employ a heuristic approach based on simpli�ed

simulations for a single CMT with no interactions. Let us denote the approximate

expected average length based on these single CMT simulations by L̄1(t) for di�erent

time points ti = 0, t1, t2..., tn given that CMT is still in the system at time t. Note

that we use thousands of simulations to estimate this average length, which is feasi-

ble as single CMT simulations are computationally inexpensive, as described above.

De�ning Ai as the appearance time of CMT i and Di as its disappearance time, based

on the relation

E[L̄(t)] = E

[∑I(t)
i=1 Li(t)

I(t)

]
= E

[∑I(t)
i=1 Li(t)|Di > t,Ai

I(t)

]
,

E(L̄(t)) is approximated using average of the following two estimates where expected

average length and number of CMTs are treated as if independent:

Ê1[L̄(tn)] =

∑n
i=1 L̄

1(tn − ti)λa(ti − ti−1)(1− F (tn − ti)) + L̄1(tn)I(0)(1− F (tn))∑n
i=1 λa(ti − ti−1)(1− F (tn − ti)) + I(0)(1− F (tn))

,

(32)

and

Ê2[L̄(tn)] =

∑n
i=1 L̄

1(tn − ti−1)λa(ti − ti−1)(1− F (tn − ti−1)) + L̄1(tn)I(0)(1− F (tn))∑n
i=1 λa(ti − ti−1)(1− F (tn − ti−1)) + I(0)(1− F (tn))

,

(33)

such that

E[L̄(t)] ≈ Ê[L̄(tn)] =
Ê1[L̄(tn)] + Ê2[L̄(tn)]

2
. (34)

Note that according to Equation (32) CMTs arriving in [ti, ti+1) are assumed to appear

in the beginning of the time period, ti, whereas according to Equation (33) arrivals

in [ti, ti+1) are moved to appear at the end of the time period, ti+1. Both equations

account for the initially existing CMTs similarly.
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Having described the approximation techniques used for expected average length

and number of CMTs, we continue to describe the algorithm we use to adjust those

estimations to account for the e�ects of interactions. These e�ects are observed to be

roughly proportionate to the total length reached in the system during organization,∑̂
L ∼

∑
L(T2) among di�erent settings with varying input parameters of simula-

tions. As a result, we use simulation results for a baseline scenario with a single set

of pre-determined parameters to determine weights for smoothing approximations of

E[L̄(t)] and E[I(t)]. These weights are used for predictions of any scenario with a

new set of parameters running only a single simulation of the new scenario. We �rst

summarize steps used to determine weights for estimation based on a set of base-

line simulations in Algorithm V.1, followed by further description of our predictive

methodology.

Algorithm V.1. (Determination of weights)

0: Run R independent simulations of the baseline setting to obtain R realizations of

both system metrics: L̄r(t), Ir(t), r = 1, ..., R, t = 1, ..., T . Calculate their mini-

mum, maximum, and average values among independent runs, minr L̄r(t), minr Ir(t);

maxr L̄r(t), maxr Ir(t);
¯̄L(t), Ī(t) respectively for t = 1, ..., T . Note that the total

length in the system reaches
∑̂
L at time T .

1: Set the initial weight for E[L̄(t)], δ1 = 1 and the one for E[I(t)], γ1 = 1, and error

check and control parameters for both metrics, ρcL, ρ
c
I , ρ

g
L, ρ

g
I .

2: Initialize estimations Ẽ[L̄(1)] = Ê[L̄(1)], Ẽ[I(1)] = Ê[I(1)], and
∑̃
L(1) =

Ẽ[L̄(1)]Ẽ[I(1)]; and the vector used to store the total length values corresponding

to the base weights calculated in this algorithm, LB(1) = 1.

3: FOR t = 1 TO T

4: Ẽ[L̄(t+ 1)] = Ẽ[L̄(t)] + δt(Ê[L̄(t+ 1)]− Ê[L̄(t)])
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5: ρL = Ẽ[L̄(t+1)]− ¯̄L(t+1)
¯̄L(t+1)

//Calculate deviation from the average.

6: IF ρL < ρcL AND minr L̄(t + 1) < Ẽ[L̄(t + 1)] < maxr L̄(t + 1) //Check if

deviation is lower than the critical value and if the estimation is in the range between

the minimum and maximum of realizations.

7: δt+1 = δt

8: ELSE

9: WHILE (ρL > ρcL OR Ẽ[L̄(t+ 1)] > maxr L̄(t+ 1)) AND δt+1 > 0.05

10: δt+1 = δt+1 − 0.05 //Update weight.

11: Ẽ[L̄(t+1)] = Ẽ[L̄(t)]+δt+1(Ê[L̄(t+1)]−Ê[L̄(t)]) //Update estimation.

12: ρL = Ẽ[L̄(t+1)]− ¯̄L(t+1)
¯̄L(t+1)

//Update deviation from average.

13: END WHILE

14: END IF

15: Repeat similar cycle (steps 4-14) for estimating Ẽ[I(t+ 1)] and γt+1.

16:
∑̃
L(t+ 1) = Ẽ[L̄(t+ 1)]Ẽ[I(t+ 1)] //Calculate the estimated total length.

17: LB(t + 1) =
∑̃
L(t + 1) //Store the total length values corresponding to the

weights.

18: END FOR

Algorithm V.1 determines the weights to �t the estimations over the range of

realizations of the baseline scenario, maintaining a certain deviation from the mean

realization. Having explained computation of weights for the approximation methods

and the corresponding total length values, we now discuss the proposed approach to

estimate the expected system metrics for any given new scenario (in the parameter

range for the organized case). For any problem with a new parameter set, only a single

simulation is run to roughly determine the
∑̂
L value at which the system temporarily

stabilizes, and its ratio to the corresponding value for the baseline scenario,
∑̂
LB.
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According to this ratio, β, the weights are adjusted and estimations are calculated

using the steps listed in the next algorithm.

Algorithm V.2. (Prediction algorithm)

0: Calculate β =
∑̂
L∑̂
LB

//Ratio of total length capacity to that of the baseline.

1: Initialize estimations Ẽ[L̄(1)] = Ê[L̄(1)], Ẽ[I(1)] = Ê[I(1)], and
∑̃
L(1) =

Ẽ[L̄(1)]Ẽ[I(1)]; weights for estimations wL = wI = 1 and positions for these weights

pL, pI = 1 in the pre-determined weight vectors (see Algorithm V.1).

2: FOR t = 1 TO T ′//A maximum time point for estimations.

3: IF
∑̃
L(t) <

∑̂
L //Total length cap not exceeded.

4: Ẽ[L̄(t+ 1)] = Ẽ[L̄(t)] + wL(Ê[L̄(t+ 1)]− Ê[L̄(t)])

5: Ẽ[I(t+ 1)] = Ẽ[I(t)] + wI(Ê[I(t+ 1)]− Ê[I(t)])

6: ELSE

7: Ẽ[L̄(t+ 1)] = Ẽ[L̄(t)]; Ẽ[I(t+ 1)] = Ẽ[I(t)].

8: END IF

9:
∑̃
L(t+ 1) = Ẽ[I(t+ 1)]Ẽ[L̄(t+ 1)]

10: FOR u = pL : Tmax

11: IF
∑̃
L(t + 1) > βLB(u) //Updates weights if required comparing total

length values to the pre-calculated base values (Algorithm V.1).

12: wL = δ(u), pL = u //Update weights and position in the base vector.

13: Ẽ[L̄(t+1)] = Ẽ[L̄(t)]+wL(Ê[L̄(t+1)]− Ê[L̄(t)]) //Update estimation.

14: END IF

15: END FOR

16: Ẽ[L̄(t+ 1)] = Ẽ[L̄(t)] + wL(Ê[L̄(t+ 1)]− Ê[L̄(t)])

17: Repeat Steps 10-15 similarly for wI , pI and Ẽ[I(t+ 1)].

18: Ẽ[I(t+ 1)] = Ẽ[I(t)] + wI(Ê[I(t+ 1)]− Ê[I(t)])
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19: END FOR

In summary, Algorithm V.2 generates smoothed estimations with respect to the

values obtained by Equations (31) and (34) employing weights calculated in Algo-

rithm V.1. The total length parameters corresponding to the weights are adjusted

according to the ratio of the total length capacity (around which the system stabi-

lizes during organization) to that of the baseline. Note that our methodology requires

just running one simulation for any new scenario with a given parameter set, which

reduces computational time tremendously compared to running a large number of

simulations. Having explained our methodology in detail, next we present some nu-

merical examples.

V.4. Numerical Results

Having described our proposed methodology for estimation of expected system met-

rics, we �rst apply Algorithm V.1 on the baseline scenario (parameter set I), and

determine weights to be used in Algorithm V.2 for other scenarios (Parameters sets

II-IV). In order to test our methodology further, we consider three more problems

where we generate input parameters with varying characteristics staying in the re-

gion of interest. The set of input parameters for all numerical examples are pro-

vided in Appendix A. Here, we list the parameters used for approximations and

algorithms. For the approximations in Equations (31) and (34), we use time points

t = 0, 0.25, 0.5, 1, 2, .... Note that the intervals get larger for higher t values, as ex-

plained in Section V.3. For Algorithm V.1, we set ρcL = 0.02, ρgL = 0.01, ρcI = 0.04,

ρgI = 0.03, based on our trials with various values. According to this, the plots of

�tted values for the baseline scenario along with results of 10 independent simulation

runs are plotted in Figure 34. Note that this case is used to estimate weights δt, γt and



101

corresponding total length (LB(t)) values to be fed into Algorithm V.2 to calculate

estimations for the rest of the scenarios.
base 

Fig. 34. 10 Independent Realizations of the Baseline Scenario with Fitted Values

Having calculated the weights (for estimation) using simulation results of the

baseline scenario, we follow with implementation of prediction algorithm on the other

parameter sets. Our �rst four examples are also based on data from biological exper-

iments that were also used in previous chapters and listed in Appendix A with the

rest of the parameters sets. Here, we present the corresponding β value for each set,

which is an approximate ratio of the total length the system reaches during the time

metrics stabilize to that of the baseline scenario. The β value is determined running

a single simulation with the new parameter set, and is used to adjust the total length

values corresponding to the pre-determined weights properly. It also gives an idea

about how crowded the system is expected to get with respect to the baseline case.

Example 1: For this case (parameter set II), β ≈ 2.2, which implies that the

total system length is roughly 2.2 times that of the baseline case around the time

organization settles. Implementing Algorithm V.2, the estimated system metrics are

presented in Figure 35 together with realizations from simulations.
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WT21 

Fig. 35. Estimations for Example 1 with 10 Independent Realizations

Example 2: Next we consider a case (parameter set III) β ≈ 6.1. Resulting

estimations are presented in Figure 36.WT31 

Fig. 36. Estimations for Example 2 with 10 Independent Realizations

The estimations of our proposed method seem to stay around the range of sim-

ulation results. It is worth noting that both examples correspond to parameter sets

which cause highly dynamic behavior. As a result, organization occurs quite rapidly,

and the pseudo-stabilization of system metrics last for a very short time. Further, as

seen in Figures 35 and 36, metrics continue to slowly increase rather than stabilizing.
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However, the proposed methodology still captures the average trend over time.

Example 3: In this example, we consider parameter set IV with an approximate

β value of 2.1. The results are provided in Figure 37. Note that this is an organized

scenario despite the fact that the parameter set does not satisfy the condition for

organization derived in Chapter IV. Results suggest that our estimation method also

works for such a case.mor21 

Fig. 37. Estimations for Example 3 with 10 Independent Realizations

We continue with two other numerical examples, where we derive the parameters

to test some scenarios that complements our study. Two of the parameter sets that

we generate correspond to relatively less dynamic settings with β < 1. Finally, we

test a problem with di�erent interaction parameters and appearance rate.

Example 4: The input parameters used in this example are given in the Ap-

pendix A (set VII) and are generated by reducing the dynamicity parameters and

appearance rate of the baseline scenario (I) by half. This scenario corresponds to a

β value of 0.95. The results are provided in Figure 38.

Note that the total length reached in this case (as well as the average length and

total number values) is quite close to that of the baseline scenario although both the
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Betasmall 

Fig. 38. Estimations for Example 4 with 10 Independent Realizations

average length change for a single CMT and the appearance rate of new CMTs are

reduced by half. This is quite intuitive as the system stabilizes around a time where

the arrival process and length dynamics balance each other. It is also worth noting

that having a less dynamic system delays organization as observed in results. For the

next example, we only reduce the appearance rate keeping other parameters constant

to test a case where the β value is signi�cantly reduced.

Example 5: For this case, we use the parameter set of the baseline scenario (I)

with an appearance rate of λa = 50. The resulting β value is 0.6, which corresponds

to a much less crowded system with respect to the baseline. Results are presented in

Figure 39.

Finally, we present a case with di�erent interaction parameters.

Example 6: In this example, we generate a setting with di�erent interaction

parameters and appearance rate with respect to the baseline scenario (pb = 0.5,

pc = 0.6, θc = 600). The resulting β value is around 0.95. Estimations are provided

in Figure 40 together with sample simulation plots.
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Nuc50 

Fig. 39. Estimations for Example 5 with 10 Independent Realizations

V.5. Conclusions

In this chapter, we developed a methodology to estimate average length and number

of CMTs in time for a given set of parameters. We �rst developed a �uid model for

dynamics of a single CMT in the absence of interactions, and a method to calculate

corresponding lifetime distribution using Laplace inversion techniques. We developed

approximation algorithms for estimating expected system metrics based on lifetime

distributions and data from single CMT simulations. For this, it is required to run an

initial set of original simulation algorithm for a baseline scenario so that certain pa-

rameters used in the prediction algorithm can be determined. The sequential steps to

predict system metrics for a given set of input parameters implementing the method-

ologies derived in this chapter and Chapter IV are outlined in Figure 41. For a given

set, we �rst check if the condition for organization holds and accordingly continue to

estimate expected average length and number values using related algorithms. This

includes �rst calculating the lifetime distribution and expected average length values

for a single CMT, and next expected values of average CMT length and number in

the system in the absence of interactions. Finally, using the prediction algorithm
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Inter 

Fig. 40. Estimations for Example 6 with 10 Independent Realizations

and pre-determined weights, we smooth the estimations by approximating the im-

pact of interactions. This requires running a single simulation of the system to adjust

parameters related to the algorithms accordingly.

Numerical results suggests that our predictive methodology works well for cases

with both di�erent dynamicity and di�erent interaction parameters, consequently

varying characteristics. Although developed methodology requires applying a set of

techniques in conjunction, it reduces computational complexity signi�cantly com-

pared to running a large number of simulations.
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Given 

 

(pre-determined using 

baseline simulations), 

Calculate lifetime distribution for a single CMT,            using 
 
 

and Laplace inversion algorithm;  

calculate expected average length values using single CMT simulations. 

Yes 

Check whether 
 

 

holds. 

For given 
 

 

and interaction parameters, 

Calculate 
 
 

Estimate expected values for number and 

average length of CMTs under no interactions, 

 

Run prediction algorithm 

to estimate 

 

Fig. 41. Flowchart for Estimation of System Metrics for a Given Set of Input Param-

eters
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CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

In this dissertation, we studied a biological system inspired by cortical microtubules

(CMTs) that serve as the skeleton of plant cells facilitating critical cellular processes.

This system exhibits complex properties which are challenging to characterize, due

to existence of both spatial and temporal dimensions as well as interactions among

its components. Therefore, we used a wide range of methodologies in conjunction

to model the system and conduct a thorough analysis. We began by simulating the

system to model dynamics and interactions in detail based on data from biological

experiments. We employed some quantitative metrics for comparing simulation re-

sults as well as using them in proposed analytical approaches. We used simulations

to distinguish between di�erent system characteristics, which we used to develop rel-

evant analytical models. In particular, we developed a mean-�eld model and derived

su�cient conditions for organization to be achieved employing Lyapunov stability

concepts on a system of integro-di�erential equations. Finally, we developed a pre-

dictive methodology for estimating expected system metrics (expected number and

average length of CMTs) in time based on a �uid model for single CMT dynamics.

This approach uses a combination of tools including simulations, Laplace inversion

techniques and approximation algorithms tailored to estimate e�ects of interactions

on the expected average length and total number of CMTs.

This research provides an analysis of a complex biological system that would

be infeasible relying on biological experiments. On the methodological side, it con-

tributes to development of quantitative techniques for modeling complex stochastic

systems with spatial and temporal properties. This research also has potential broader

reaching impacts related to the �elds of bio-energy, healthcare, and nanotechnology,
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as explained in Chapter I. In this chapter, we summarize the conclusions of this

study, followed by a discussion of future research directions.

VI.1. Conclusions

The simulation algorithm developed for the CMT system successfully replicated the

organization seen in living cells using data from related literature. Our tests with

di�erent input parameters in Chapter III showed that interactions are necessary to

achieve organization. In particular, bundling was found to contribute to organi-

zation directly by reorienting CMTs, whereas catastrophes facilitate elimination of

misaligned CMTs and regulation of the density of CMTs in the system. In fact the

catastrophe frequency per CMT changes in time parallel to the state of organization.

Initially CMTs do not interact frequently; as they get long enough to interact, the

frequency of catastrophes increases and peaks, followed by a continuous decrease as

the system gets better organized.

We also investigated e�ects of other parameters on system organization and

characteristics. Selecting a greater or lower critical interaction angle did not distort

organization completely although both resulted in weaker organization, supporting

the compatibility of naturally selected parameters. System organization was found

to be robust to bundling and catastrophe probabilities as long as CMT dynamics

guaranteed a positive net growth on average. We were also able to replicate system

behavior seen in certain mutants and under varying conditions by altering the input

parameters in accordance with the data from relevant literature.

We developed a quanti�cation method based on entropy of angle distributions of

CMTs in order to compare simulation results more reliably. In addition, we have also

used this metric to measure the entropy values corresponding to live cell images, which
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we observed to fall into similar ranges with simulation results. Hence, in addition to

comparing the structure seen in living cells and our simulations qualitatively, we were

also able to conduct a quantitative comparison by using entropy data and some other

metrics (such as the average CMT length reported for living cells).

In addition to system organization, we also observed di�erent characteristics for

other system metrics such as average length and total number of CMTs and their

evolution in time in simulations. Overall, in organized systems those metrics were

observed to increase quickly at �rst until CMTs became long and crowded enough to

interact, after which they stabilized around a constant value temporarily until orga-

nization is settled, and �nally continued to increase inde�nitely. In a way, the CMT

system gets organized as a result of the balance between dynamics and interactions.

Systems that fail to organize are roughly the ones that do not interact enough either

due to lack of dynamics or interactions.

Having characterized di�erent cases of system behavior and properties according

to simulations, we developed two separate analytical methodologies in Chapters IV

and V, to derive conditions for the organized (preferred) case, and estimate expected

evolution of metrics related to CMT length and number in organized systems, in

respective order. In Chapter IV, we modeled CMT dynamics and interactions based

on a mean-�eld approach which led to a system of integro-di�erential equations. We

conducted a stability analysis using entropy as a Lyapunov function and derived

su�cient conditions for organization in terms of input parameters. This analysis also

provided insights for convergence to an organized solution with a continuous decrease

of entropy as seen in simulations, in addition to showing that is is possible to control

system organization by regulating dynamicity parameters.

Finally, Chapter V contributes to prediction of performance measures such as

expected total CMT number and average length in time for organized systems. We
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developed an e�cient methodology based on lifetime distribution and average ex-

pected length suggested by a �uid model of single CMT dynamics and single CMT

simulations. The e�ect of interactions were estimated relying on a base set of simu-

lations that are used to set certain weights for the predictive algorithm and running

a single simulation for each problem with a new set of parameters.

It is worth noting that our models result in some intriguing insights in addition

to agreeing well with experimental results and with each other. One property that we

did not consider is that the building blocks for CMTs are kept at a roughly constant

amount in the cell during organization, resulting in an upper-bound on the total

system length, which seems to coincide with the total length capacity concept in our

models. It is not currently feasible to determine the amount of this raw material

in the plant cells relying on experimental methodologies. However as new measuring

technologies emerge, if these parameters become available for modeling, our predictive

approach can be improved to eliminate its reliance on a single simulation run for each

scenario with a given parameter set. In general, the metrics that we extracted using

simulations to characterize the system, provide biologists with measures that need to

be tracked in living systems as well as new hypotheses to be tested.

VI.2. Future Research Directions

The methodologies and analysis presented in this dissertation can be extended to

consider the following:

• Other aspects of organization: There are certain aspects seen in an organized

system of CMTs other than being aligned in similar orientations to each other,

such as the polarity which is de�ned as the dominant growth direction of CMTs

in a system. Polarity is related to a di�erent type of CMT appearance process,
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where new CMTs are introduced into the system randomly on the already ex-

isting ones. Another property of interest is the overall orientation of the CMT

array, which is observed to be speci�cally determined in most plant cells ac-

cording to environmental and developmental cues. In fact, we have modeled

both mechanisms using simulations (see Appendix B), where we were able to

obtain some useful results and insights. However, incorporation of these into the

analytical models requires consideration of system coordinates, which further

complicates the tractability of formulations.

• New quanti�cation metrics: The metric for organization can be improved to

include other attributes of CMTs such as the density and bundling structure

of arrays, in addition to their alignment. Such an extension would generalize

it enough to distinguish cases such as a strongly-organized system with a very

short and small number of CMTs, which is not a functionally preferred CMT

structure. Techniques from data envelopment analysis are potential tools for

combining multiple attributes of the CMT system to obtain a uni�ed measure.

• Improvement of methods based on experimental data: Acquisition of more data

on real CMT dynamics may result in improvement of developed methodologies,

particularly reducing the reliance of predictive algorithms on simulations as

discussed in Section VI.1. In fact, those types of models bring insights and

new hypotheses to be tested on living systems and are bound to be updated

iteratively as new experimental data are revealed, and vice versa.

• Microtubule systems in animal cells: Finally, this research can be applied on

certain microtubule systems in specialized animal cells (such as neurons and

muscle cells) that lack a central control mechanism similar to CMT systems.
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APPENDIX A

INPUT PARAMETER SETS (DYNAMICS)

Parameter Set II:

Q =



−7.234 6.72 0.236 0 0.278 0

2.427 −2.941 0 0.236 0 0.278

5 0 −13.27 6.72 1.55 0

0 5 2.427 −8.977 0 1.55

25.125 0 12.75 0 −44.595 6.72

0 25.125 0 12.75 2.427 −40.302



V = diag(0.72, 3.5,−11.78,−9,−2.78, 0)

Parameter Set III:

Q =



−9.617 6.72 2.338 0 0.559 0

2.427 −5.324 0 2.338 0 0.559

12.438 0 −21.908 6.72 2.75 0

0 12.438 2.427 −17.614 0 2.75

8.75 0 4.375 0 −19.845 6.72

0 8.75 0 4.375 2.427 −15.552



V = diag(3.72, 6.5,−15.18,−12.4,−2.78, 0)

Parameter Set IV:
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Q =



−7.537 6.72 0.535 0 0.282 0

2.427 −3.244 0 0.53521 0 0.282

6.211 0 −16.036 6.72 3.105 0

0 6.211 2.427 −11.742 0 3.105

15.6 0 5.6 0 −27.92 6.72

0 15.6 0 5.6 2.427 −23.627



V = diag(−0.28, 2.5,−8.98,−6.2,−2.78, 0)

Parameter Set V:

Q =



−11.806 6.72 2.343 0 2.743 0

2.427 −7.512 0 2.343 0 2.743

3.05 0 −15.82 6.72 6.05 0

0 3.05 2.427 −11.527 0 6.05

1.556 0 1.378 0 −9.653 6.72

0 1.556 0 1.378 2.427 −5.36



V = diag(−0.78, 2,−6.58,−3.8,−2.78, 0)
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APPENDIX B

ADDITIONAL SIMULATION RESULTS AND DISCUSSION

In this appendix, we present the results from our simulation study that were not

included in Chapter III. While introducing our conclusions, we also discuss some

relations to the other literature that were reviewed in Chapter II.

Microtubule-Dependent Appearance (Nucleation) of New CMTs and Array Organi-

zation

In our simulations, we also tested the impact of microtubule-dependent nucleation,

where a new CMT appears on an already existing one, which is called the mother

CMT, rather than an arbitrary location overall the cell surface, as de�ned in Sec-

tion II.3.1.5. The new CMT either grows along its mother CMT or at an acute angle

to it, which is called the branch angle. The relative probabilities along with the dis-

tribution for branch angle are determined based on experimental data from Murata

et al. (2005) and Chan et al. (2009). According to this, a new CMT grows along its

mother CMT with a 0.38 probability; or it grows at an angle that is sampled from

a distribution with a mean of 40o. Branching to the left or right side of the mother

CMT is equally likely and the new CMTs originate with their leading ends facing

toward the leading end of the mother CMT. The location of appearance is uniformly

distributed among the existing growing segments of CMTs. We have incorporated

microtubule-dependent nucleation together with the regular appearance process at an

equal average rate, keeping the total arrival rate of new CMTs into the system same

as the baseline rate. Our results show that incorporation of microtubule-dependent

nucleation in simulations does not have a signi�cant e�ect on the degree and rate of
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CMT organization, in line with the results of Allard et al. (2010b) as discussed in

Section II.3 (see Figure 42). However it has a remarkable impact on array polarity,

which will be discussed next.
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Fig. 42. Comparison of Entropy Plots for Simulations with and without Micro-

tubule-Dependent Nucleation

Factors that A�ect Array Polarity

In addition to ordering into parallel arrays and the overall orientation of CMTs,

another characteristic of CMT organization is polarity, which is a measure of similarity

of the growth direction of CMTs. Certain recent studies based on live-cell imaging

of plant cells revealed that well-ordered CMT arrays can have one or more domains

of net polarity, with the bulk of the CMTs facing one direction within these domains

(Chan et al., 2007; Dixit et al., 2006); whereas other researchers have found little net

polarity in CMT arrays (Shaw and Lucas, 2011). In our simulations, we observed

that it is not possible to obtain such polarity with only regular appearance process

(i.e., CMTs originating from randomly assigned nucleation sites (points) over the cell

surface). However, incorporating microtubule-dependent CMT nucleation together

with regular appearance process, the frequency of observing net polarity in ordered

CMT arrays increased signi�cantly. A sample plot of angular distributions for a
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simulation with microtubule-dependent nucleation that shows net polarity compared

to its counterpart with the baseline setting are presented in Figure 43.

microtubule-dependent regular 

Fig. 43. Sample Angle Distribution Plots for Simulations with and without Micro-

tubule-Dependent Nucleation

Factors that Result in CMT Array Skewing

In our 3D simulations with catastrophe inducing edges on the top and bottom of the

cylindrical cell surface as described in Section III.3, CMTs are organized roughly par-

allel to these edges, so that they form shallow helical arrays along the planar surface

of the cylinder (Figure 24) similar to the helical arrangements of CMTs observed in

many plant cell types (Sugimoto et al., 2000). The helical CMT arrays are observed

irrespective of whether microtubule-dependent nucleation is included or not in our

simulations.

Certain CMT arrays are observed to organize in an oblique manner, as described

in some experimental studies with mutants that twist the growth dynamics of CMTs

in plant cells (Ishida et al., 2007a; Thitamadee et al., 2002). It is not known whether

the changes in CMT dynamics contribute to the formation of an oblique CMT array.

To determine if defective CMT dynamics can change the overall pitch of the CMT

array, we simulated the parameters from related mutants that, respectively, show
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right- and left-handed skewed CMT arrays (Ishida et al., 2007a). Our results show

that the CMT dynamics of these mutants result in either short CMTs that fail to

become organized or relatively poorly organized CMT arrays that do not exhibit

skewing. Thus, in line with our results in Chapter III, the defective CMT dynamics

cannot explain overall orientation of the CMT array, particularly how oblique CMT

arrays are formed in this case.

To explore possible mechanisms that are responsible for oblique CMT arrays, we

simulated the following scenarios, inspired by the conceptual framework for the role

of CMT appearance, particularly branch-form nucleation, in CMT array orientation

(Wasteneys and Ambrose, 2009):

• an increase or decrease in the mean branch angle on both sides of the mother

CMT during microtubule-dependent CMT nucleation;

• introducing a bias for one side of the mother CMT (i.e., nucleation on either

the left or the right of the mother CMT);

• an increase or decrease in the mean branch angle on only one side of the mother

CMT;

• assigning only one of the end walls of the cylinder as a catastrophe-inducing

edge.

Note that microtubule-dependent CMT nucleation is included in all of these scenarios.

In these experiments, we de�ned an oblique array as one that shows at least a 20o shift

from the transverse orientation. This is a conservative de�nition based on the aver-

age skewing angle of 10o reported in experimental studies of twisted growth mutants

(Ishida et al., 2007a). Our results show that all of the tested mechanisms increase the

frequency of observing oblique CMT array formation compared with control experi-
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Table 5. Skewing of CMT Arrays under Di�erent Conditions
Condition Runs (Skewed) Ave. Skew. Angle

Baseline case 0% -
(i) 60o mean branch angle 40% 32o

(ii) 20o mean branch angle 30% 23o

(iii) Left-side branching 20% 30o

(iv) 60o mean branch angle on the left 20% 35o

(v) 20o mean branch angle on the left 40% 31o

(vi) Only one catastrophe-inducing edge 50% 21o

ments without these modi�cations (Table 5; Figure 44). Table 5 lists the percentage

of runs that showed skewed arrays for each mechanism along with the average skewing

angle. Note that plots in Figure 44 are numbered in line with the conditions listed

in Table 5. Our results regarding CMT skewing are in line with the conjectures that

di�erent mechanisms might be operational in the di�erent mutants and experimental

treatments that lead to twisting of CMT arrays (Ishida et al., 2007b). Among the

conditions that we tested, changing the edge properties and the mean branch angle

on either one side or both sides of a mother CMT were found to be particularly ef-

fective in changing the pitch of the CMT array. These conditions however did not

skew CMT arrays with a �xed handedness. We tested if the extent and timing of

branch-form CMT nucleation can confer �xed handedness during skewing of CMT

arrays based on a concept proposed by Wasteneys and Ambrose (2009). The scenario

that worked best involved �rst allowing CMTs to organize into a transverse array in

the absence of any microtubule-dependent nucleation followed by a switch to 100%

branch-form CMT nucleation. Under these conditions, we obtained oblique arrays

that consistently skewed in the same direction (Figure 45). We note that inclusion

of CMT nucleation along the mother CMT (38% of the total microtubule-dependent

nucleation) in this scenario disrupted the formation of oblique CMT arrays.

As mentioned in Section II.3, Deinum et al. (2011) simulated a related situation
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in which CMT appearance process continuously transitions from exclusively regular to

more frequent microtubule-dependent nucleation with increasing CMT density. This

scenario did not result in consistent array skewing in their simulations. However,

it is not easy to exactly compare this study with ours, as the nucleation scenarios,

modeling of edges, and parameter ranges di�er signi�cantly between the two.

Other Analysis Regarding the CMT Lifetime, Length, Number and Orientation

In this section, we present some other analysis and results regarding the relations

between certain attributes of CMTs in simulated systems, such as their lifetime,

length, number and orientation. A graph of the lifetimes of individual CMTs from

a sample simulation plotted against their appearance (birth) time and orientation

(at the time of disappearance) is given in Figure 46. As seen in the �gure, most of

the CMTs have a relatively short lifetime, whereas a small number of them have an

extremely long lifetime. The relatively longer lifetime values are clustered around the

dominant angles that appear during simulations as expected. The overall character

of the lifetime distribution (see Figure 47 for a sample histogram) is roughly similar

to the one derived for single CMTs in Chapter V, where there is a high probability

for small time values that decreases quickly as the values keep increasing. It is worth

noting that this distribution is a multimodal one with more than one local maxima,

although not noticeable from the �gure.

We also analyzed the relations between length and number of CMTs based on

simulation results. As seen in Figures 48 and 49, there is a roughly linear relation

between the number of CMTs, I(t), and the average CMT length, L̄(t), and accord-

ingly a quadratic relation between the number of CMTs, I(t), and the total CMT

length in the system,
∑
L(t). In Figure 48, three lines for di�erent trends in the data
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(similar to the three-phase behavior seen in the course of organization as discussed

in Section V.1) are �tted using linear regression.
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Fig. 44. Sample Angle Distribution Plots and 3D Snapshots of Simulations with Dif-

ferent Scenarios for CMT Array Twisting
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Time: 150 min Time: 150 min 

Time: 200 min Time: 200 min 

Time: 240 min Time: 240 min 

Fig. 45. Sample Angle Distribution Plots and 3D Snapshots of Simulations for

Fixed-Handed CMT Array Twisting
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Fig. 46. Lifetimes of CMTs Plotted against Their Birthtime and Angle Values

Fig. 47. Histogram of Lifetime Distribution for CMTs Based on a Sample Simulation
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Fig. 48. Average Length vs. Total Number of CMTs Averaged over Multiple Indepen-

dent Simulation Runs

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

I(t)

L
(t

)
A

v
er

ag
e 

 ∑
 L

(t
) 

Average  I(t) 

Fig. 49. Total Length vs. Total Number of CMTs Averaged over Multiple Independent

Simulation Runs
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