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ABSTRACT 

 

Vibration Suppression and Flywheel Energy Storage in a Drillstring Bottom-Hole-

Assembly. (May 2012) 

Ahmed Mohamed Saeed, B.S.; M.S., Alexandria University-Egypt 

Co-Chairs of Advisory Committee:  Dr. Alan Palazzolo 
Dr. Shehab Ahmed 

 

In this study, a novel concept for a downhole flywheel energy storage module to 

be embedded in a bottom-hole-assembly (BHA) is presented and modeled, as an 

alternative power source to existing lithium-ion battery packs currently deployed in 

measurement-while-drilling (MWD) or logging-while-drilling (LWD) operations. 

Lithium-ion batteries disadvantages include deteriorated performance in high 

temperature, limited lifetime that necessitates frequent replacement which elevates 

operational costs, and environmental disposal. Extreme and harsh downhole conditions 

necessitate that the flywheel module withstands temperatures and pressures exceeding 

300 ̊F and 20 kpsi, respectively, as well as violent vibrations encountered during drilling. 

Moreover, the flywheel module should adhere to the geometric constraints of the 

wellbore and its corresponding BHA.  

Hence, a flywheel sizing procedure was developed that takes into consideration 

the required energy to be stored, the surrounding environmental conditions, and the 

geometric constraints. A five-axis magnetic levitation control system was implemented 

and tuned to maintain continuous suspension of the flywheel under the harsh lateral, 
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axial and torsional drilling vibrations of the BHA. Thus, an integrated finite element 

model was developed that included the rotordynamic behavior of the flywheel and the 

BHA, the component dynamics of the magnetic levitation control system, and the cutting 

dynamics of the drillbit for both PDC and tricone types. The model also included a 

newly developed coupling between lateral, axial and torsional vibrations. It was 

demonstrated through simulations conducted by numerical integration that the flywheel 

maintains levitation due to all different types of external vibration as well as its own 

lateral vibration due to mass unbalance. Moreover, a passive proof-mass-damper 

(PPMD) was developed that suppresses axial bit-bounce vibrations as well as torsional 

vibrations, and was extended to also mitigate lateral vibrations. Optimized values of the 

mass, stiffness and damping values of the PPMD were obtained by the hybrid analytical-

numerical Chebyshev spectral method that was superior in computational efficiency to 

iterative numerical integration. This also enabled the fine-plotting of an operating 

stability chart indicating stability regions where bit-bounce and stick-slip are avoided. 

The proof-mass-damping concept was extended to the flywheel to be an active proof-

mass-damper (APMD) where simulations indicated functionality for a light-weight 

BHA. 
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NOMENCLATURE 

 

a Drillbit Radius 

AMB Active Magnetic Bearing 

APMD Active Proof-Mass-Damper 

b Roller-Cone Drillbit Factor 

BHA Bottom-Hole-Assembly 

C Damping Matrix 

cabs Shock Absorber Damping 

CAMB AMB Equivalent Damping 

cf, cfT PPMD Axial & Torsional Damping 

CG Center of Gravity 

CT BHA Torsional Damping-to-Ground 

c1, c2 Axial Applied Load – ROP Relation Factors 

d, dn Total Depth of Cut & Depth of Cut/Blade 

Di Inner Pipe Diameter 

E Energy Stored in Flywheel 

e Error Voltage 

e0 BHA Mass Unbalance Eccentricity 

FEM Finite Element Model 

fm, fnm Magnetic, Non-Magnetic Forces 

FOS Factor of Safety 
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Fr, Ft Radial & Tangential BHA-Wellbore Contact Forces 

Fy, Fz Lateral Forces Due to BHA Mass Unbalance in Y & Z Directions 

Gp Controller Proportional Gain 

Gd Controller Derivative Gain 

iPA Power Amplifier/Coil Current 

J BHA Inertia 

Jf Flywheel Inertia 

K Stiffness Matrix 

kabs Shock Absorber Stiffness 

KAMB AMB Equivalent Stiffness 

KB Wellbore Contact Stiffness 

kc Equivalent Rock Formation Stiffness 

kf, kfT PPMD Axial & Torsional Stiffness 

Ki Current Stiffness 

KL Lead/Lag Compensator Gain 

KPA Power Amplifier Overall Gain 

kPA Power Amplifier Feed-Forward Gain 

KS Position Sensor Gain 

KT BHA Torsional Stiffness-to-ground 

Kx Position Stiffness 

L Coil Inductance 

l Drillbit Wearflat Length 
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LWD Logging While Drilling 

M Mass Matrix 

mabs Shock Absorber Mass 

mDC Drill-Collar/BHA Mass 

MWD Measurement While Drilling 

MR Magneto Rheological 

n Number of Blades 

p Lead/Lag Compensator Pole 

PD Proportional Derivative 

PDC Polycrystalline Diamond Compact 

PID Proportional Integral Derivative 

Pmax Maximum Downhole Pressure 

PPMD Proof-Mass-Damper 

rfi Inner Flywheel Radius 

rfo Outer Flywheel Radius 

Q Notch Filter Quality Factor 

R Coil Resistance 

r Radial Displacement of BHA CG 

rc Radial BHA-Wellbore Clearance 

ROP Rate of Penetration 

s, s0 Formation, Mean Formation Elevation 

Sa Alternating Stress 



 x 

Se Endurance Strength 

Sm Mean Stress 

Sy Yield Stress 

t time 

Tc, Tf Cutting, Friction Components of TOB 

Td Top Drive Torque 

TOB Torque on Bit 

tpipe Pipe Thickness 

tn Blade Time Delay 

ve, vPA, vPD, vR, vS Error, Power Amplifier, PD, Reference, Sensor Voltage 

Wc, Wf Cutting, Friction Components of WOB 

Wo Axial Applied Load at the Top of the Drill Rig 

WOB Weight on Bit 

xd,yd, zd BHA CG Displacements in X, Y & Z Directions 

xf,yf, zf PPMD Displacements in X, Y & Z Directions 

z Lead/Lag Compensator Zero 

α Inclination of WOB with Respect to BHA 

ε Rock Specific Intrinsic Energy 

ζ Drillbit-Formation Interaction Factor 

ϕ Drillbit Angular Displacement 

ϕf PPMD Angular Displacement 

γ Power Amplifier Feedback Gain 



 xi 

µ, µ0 Drillbit-Formation Stribeck & Mean Contact Friction 

µw Wellbore-BHA Mean Contact Friction 

υ Poisson’s Ratio 

ρ Material Density 

σ Rock Cutting Stress 

σmax Permissible Normal Stress 

σθ Tangential Normal Stress 

τc, τf, τs Controller, Filter, Sensor Time Constants 

Ω Drillbit Angular Velocity 

ωc BHA CG Whirling Rate 

ωd Top Drive Spin Velocity 

ωf Flywheel Spin Velocity 

ωmin, ωmax Minimum, Maximum Flywheel Spin Velocity 
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1. INTRODUCTION 

1.1   Statement of the Problem 

As the quest for exploiting underground reservoirs have become more 

challenging than in the past, oil and gas companies are continuously deploying 

sophisticated operations than ever before.  Logging-while-drilling (LWD) or 

measurement-while-drilling (MWD) operations utilize downhole lithium-ion batteries to 

supply power supply to the logging/measurement tools. However, lithium-ion batteries 

have to be replaced after a short period of time, and their operation deteriorates under 

high temperatures in ultra-deep wells in addition to the environmental hazards associated 

with the disposal process. Moreover, the battery packs have to be exchanged after 100 

hours of operation which means that the logging job would have to be interrupted, the 

tools be lifted back up to the surface to be disassembled and reassembled and finally 

lowered down the well to the point where the logging operation was interrupted. 

Obviously, the battery replacement process is uneconomic increasing the cost of 

operations by millions of dollars. Hence, in this work, a permanent downhole flywheel is 

proposed as an alternative to serve as an energy storage device, and is to be embedded in 

the bottom-hole-assembly (BHA) of the drillstring. In addition to the harsh downhole 

environment, the active magnetic bearings (AMB) must maintain levitation of the 

flywheel when the drillstring is subjected to violent downhole vibrations. This also 

necessitates the investigation and analysis of the different types of drillstring vibrations 

and finding practical solutions to suppress or mitigate these harmful vibrations  

____________ 
This dissertation follows the style of Journal of Sound & Vibration. 
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1.2   Literature Review 

The problem of drillstring vibrations has been recognized as one of the prime 

causes of deterioration in drilling performance, and these vibrations can be lateral, 

torsional, or axial. Field observations have indicated that drillstrings exhibit severe 

vibrations that become more severe at the bottom-hole assembly (BHA). The BHA 

comprises the drillcollars, stabilizers, and the bit in addition to other logging tools and 

instruments. As the drill-bit is penetrating the formation during drilling, the normal 

reaction force, or weight-on-bit (WOB) can become excessive and fluctuate causing 

axial vibration in the drill-string & this is also known as bit-bounce. Excessive axial 

vibration or bit-bounce can lead deterioration of rate-of-penetration (ROP) as well as 

drill-bit damage, adverse effect on the telemetry tools & the data it conveys to the 

surface and fatigue of the drill-pipes that all leads to decreased efficiency in the drilling 

process and increased costs in operation & replacement of components. Excessive 

torsional vibrations can eventually lead to limit cycles where the BHA rotary speeds are 

bounded between zero and 2 or even 3 times the designated rotary table speed. This is 

known as stick-slip phenomenon where the drill-bit momentarily reaches zero velocity 

and "sticks" and then due to buildup of torque-on-bit (TOB), the drill-bit is released and 

"slips" beyond the prescribed rotary table speed. Stick-slip phenomenon is also 

detrimental to the drill-pipes, drill-bit, logging tools, and to the entire drilling operation 

as a whole.  
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Previous studies of torsional and axial vibrations that affect drillstring dynamics 

have shown the coupled nature of these two modes of vibrations. Yigit and Christoforou 

[1] examined the coupling between the axial and torsional vibrations using a simple 

model that adequately captures the dynamics, and used it to simulate the effects of 

varying operating conditions on stick-slip and bit-bounce interactions. The authors 

demonstrated that the conditions at the bit/formation interface, such as bit speed and 

formation stiffness, are major factors in shaping the dynamic response and due to the 

varying and uncertain nature of these conditions, simple operational guidelines or active 

rotary table control strategies are not sufficient to eliminate both stick-slip and bit-

bounce. A proportional-derivative active controller was implemented to control both the 

axial hook load and the rotary table torque in order to suppress both bit-bounce, and 

stick-slip vibrations, respectively, providing smoother drilling over a wide range of 

conditions. Yigit and Christoforou [2] also investigated a fully coupled model for axial, 

lateral, and torsional vibrations of actively controlled drillstrings. The model included 

the mutual dependence of these vibrations that arises due to bit, formation and 

drillstring/borehole wall interactions as well as other geometric and dynamic non-

linearities. The active control strategy was based on optimal state feedback control 

designed to control the drillstring rotational motion. It was demonstrated by simulation 

results that bit motion causes torsional vibrations, which in turn excite axial and lateral 

vibrations resulting in bit bounce and impacts with the borehole wall which was with 

close qualitative agreement with field observations regarding stick–slip and axial 

vibrations. Moreover, Yigit and Christoforou have also studied the coupled torsional and 
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bending vibrations of drillstrings subject to impact with friction [3] in addition to 

designing a linear quadratic regulator (LQR) controller [4] in order to regulate the torque 

supplied to the rotary table, and demonstrated its effectiveness in suppressing stick-slip 

oscillations once they are initiated. In general, active control approaches require 

response measurements be fed back to a controller to obtain actuator command signals. 

The length of the drillstring may introduce significant time delays in this process which 

are destabilizing for the control, and the cost and reliability of the required 

instrumentation may also be prohibitive. In contrast, the proposed PPMD is a totally 

passive device which does not require response measurements, control decisions, or 

actuation devices. 

 

Khulief et al. [5] formulated a finite-element-model (FEM) for the drill-pipes and 

drill-collars of the drillstring that accounts for gyroscopics and axial-bending coupling 

via the gravitational force field using a Lagrangian approach in order to study the self-

excited nature of stick-slip oscillations and bit-bounce. Explicit expressions of the finite 

element coefficient matrices were derived using a consistent mass formulation and the 

developed model is integrated into a computational scheme to calculate time-response of 

the drillstring system in the presence of stick–slip excitations. Sampaio et al. [6] 

presented a geometrically nonlinear model was presented to study the coupling of axial 

and torsional vibrations on a drillstring and the geometrical stiffening was analyzed 

using a nonlinear finite element approximation, in which large rotations and nonlinear 

strain-displacements are taken into account, in addition to the effect of structural 
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damping was also included in the model. It is to be mentioned that in references [1] to 

[6], the drillbit was of a roller cone type and the modeling of the interaction between the 

cutting action of the cones and the formation is explained in detail in Spanos et al. [7].  

Roukema and Altintas [8] presented a time domain model of the torsional–axial chatter 

vibrations in drilling that considers exact kinematics of rigid body, and coupled torsional 

and axial vibrations of the drill. The tool was modeled as a pre-twisted beam that 

exhibits axial and torsional deflections due to torque and thrust loading, in which a 

mechanistic cutting force model was used to predict the cutting torque and thrust as a 

function of feed-rate, radial depth of cut, and drill geometry. The model considered 

nonlinearities in cutting coefficients, tool jumping out of cut and overlapping of multiple 

regeneration waves. The stability of the drilling process is also evaluated using the time 

domain simulation model, and compared with extensive experiments. Voronov et al. [9] 

analyzed the nonlinear dynamics of a tool commonly employed in deep hole drilling that 

is modeled as a two-degree of freedom system that vibrates in the axial and torsional 

directions as a result of the cutting process. The mechanical model of cutting forces is a 

nonlinear function of cutting tool displacement including state variables with time delay. 

The introduction of an absolute angle of rotation as the new independent variable, 

instead of time, increases the system dimension, but leads to a set of equations with 

constant delay. The Poincaré maps of state variables for various sets of operating 

conditions allow the prediction of conditions for stable continuous cutting and unstable 

regions and time domain simulation allows determination of the chip shape most suitable 

for certain workpiece material and tool geometry. Richard et al. [10] described a new 
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approach to understand the causes of stick-slip vibrations experienced by PDC bits. This 

new model takes into consideration not only the axial & torsional modes of vibrations, 

but also the coupling between these two modes through bit-rock interaction laws that 

account for both frictional contact & cutting processes at the bit-rock interface, and are 

formulated in terms of the depth of cut, a variable that brings into the equations the 

position of the bit at a previous a priori unknown time. The delayed and coupled nature 

of this interaction is ultimately responsible for the occurrence of self-excited vibrations 

that can degenerate under certain conditions. The features of the torsional vibrations that 

are predicted with this model were well in accordance with field observations. Richard, 

Germay, and Detournay [11] studied the self-excited stick–slip oscillations of a rotary 

drilling system with a drag bit, using a discrete model which takes into consideration the 

axial and torsional vibration modes of the bit. Both axial and torsional vibrations of the 

bit, as well as the coupling between the two vibration modes through the bit-rock 

interaction laws are considered as well as the interface laws that account both for cutting 

of the rock and for frictional contact between the cutter wearflats and the rock. The 

evolution of the system is governed by two coupled delay differential equations, with the 

delay being part of the solution, and by discontinuous contact conditions. Germay et al. 

[12] studied the dynamical response of a rotary drilling system with a drag bit, using a 

lumped parameter model that takes into consideration the axial and torsional vibration 

modes of the bit that are coupled through a bit-rock interaction law. At the bit-rock 

interface, the cutting process introduces a state-dependent delay, while the frictional 

process is responsible for discontinuous right-hand sides in the equations governing the 



 7 

motion of the bit. This complex system is characterized by a fast axial dynamics 

compared to the slow torsional dynamics. A dimensionless formulation exhibits a large 

parameter in the axial equation, enabling a two-time-scales analysis that uses a 

combination of averaging methods and a singular perturbation approach. The analytical 

expression of the solution of the axial dynamics is used to derive an approximate 

analytical expression of the velocity weakening friction law related to the physical 

parameters of the system, and can be used to provide recommendations on the operating 

parameters in order to reduce the amplitude of the torsional vibrations.  

 

In common practice, conventional impact shock absorbers are fitted in the BHA 

above the drillbit in an attempt to mitigate or suppress axial vibrations due to bit-bounce 

but sometimes these devices can exacerbate the vibration problems [13-17]. In this case, 

the driller is left with no other choice other than to decrease the WOB and ROP that adds 

cost to the drilling operation. APS Technology has developed an active 

magnetorheological (MR) three-axis damper [18-20] whose hardness can be adjusted 

continuously to accommodate changing operational and downhole environmental 

conditions. The active MR damper has demonstrated reduced levels of axial vibrations 

that lead to more efficient and economical drilling. Elsayed & Aissi [21] also conducted 

a laboratory study using an MR damper manufactured by Lord Corporation [22] in 

which a shock absorber was tuned to mitigate bit-bounce. Baker Hughes Inc developed a 

thruster assembly to be fitted above the drillbit in order to eliminate axial vibrations by 

hydraulically controlling WOB [23]. In this study, Schmalhorst [23] highlights that 
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conventional vibration control devices, such as shock absorbers do potentially offer the 

ability to decouple the bit from the drillstring, thereby removing a prime excitation 

source, they fail to maximize drilling efficiency. In addition, while shock absorbers may 

improve axial vibrations they often aggravate lateral vibrations. Also, analysis of 

downhole and surface-measured data indicates that incorrectly rated shock absorbers 

may cause significant bit and drillstring damage. 

 

Mongkolcheep et al [24] presented a methodology to predict lateral vibrations of 

drilllstrings by of a flexible drill collar utilizing a modal coordinate condensed, finite 

element approach. The nonlinear effects of drillstring / borehole contact, friction and 

quadratic damping were included. Bifurcation diagrams were presented to illustrate the 

effects of speed, friction, stabilizer gap and drill collar length on chaotic vibration 

response. A study that considered the length of time to steady state, the number and 

duration of linearization sub-intervals, the presence of rigid body modes and the number 

of finite elements and modal coordinates, was conducted on factors for improving the 

accuracy of Lyapunov Exponents to predict the presence of chaos. Yigit and 

Christoforou [25] employed an Euler-Bernoulli beam, assumed modes model to study 

the coupling of axial and lateral vibrations. The impact of the drillstring with the 

borehole wall was modeled using Hertzian contact theory. The coupling of the vibrations 

yielded a value of the critical axial load lower than the one obtained from a linear 

analysis and resulted in chaotic response. 
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Flywheel systems with magnetic suspensions for energy storage have found wide 

applications in both military and commercial applications. Active magnetic bearings 

(AMB) provide a novel, efficient and effective means for levitating and stabilizing high-

speed rotordynamic systems in many applications. The capability of reacting to applied 

loads, such as inertia, maneuver or imbalance, as well as the adaptability to changing 

operating conditions in a wide range of environments derives significant benefits as 

compared with rolling element bearings. G. Sun et al [26] conducted numerical 

simulations of a rotor drop on catcher bearings in flywheel energy storage system with a 

detailed CB model which includes a Hertzian load–deflection relationship between 

mechanical contacts, speed-and preload-dependent bearing stiffness due to centrifugal 

force, and a Palmgren’s drag friction torque. Catcher bearings provide backup protection 

for rotating machines with AMBs, and are required in the event of an AMB failure or 

high transient loads. The transient simulation results illustrated the rotor shaft response 

variations with the design parameters: shaft/ bearing friction coefficients, axial preload, 

support damping of damper liner, and side loads from magnetic bearings. The results 

revealed that the friction coefficients, support damping, and side loads are critical 

parameters to satisfy catcher bearing design objectives and prevent backward whirl. Park 

& Palazzolo [27] provided theory and simulations for MIMO active vibration control for 

satellite integrated power transfer and attitude control via four, variable speed flywheels 

that potentially provide the energy storage and attitude control functions of existing 

batteries and control moment gyros on a satellite. The assumption of rigidity in the 

flywheel’s bearings and the satellite structure was eliminated utilizing control algorithms 
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for active vibration control, flywheel shaft levitation, and integrated power transfer and 

attitude control that were effective even with low stiffness AMBs and flexible satellite 

appendages. The flywheel active vibration control and levitation tasks were provided by 

a multiple input–multiple output control law that enhances stability by reducing the 

dependence of the forward and backward gyroscopic poles with changes in flywheel 

speed. The control law was shown to be effective even for large polar to transverse 

inertia ratios, which increased the stored energy density while causing the poles to 

become more speed dependent, and for low bandwidth controllers shaped to suppress 

high frequency noise. Notch, low-pass, and bandpass filters were implemented in the 

AMB system to reduce and cancel high frequency, dynamic bearing forces and motor 

torques due to flywheel mass imbalance. Lei and Palazzolo [28] presented an approach 

for the analysis and design of magnetic suspension systems with large flexible 

rotordynamics models including dynamics, control, and simulation. The objective was to 

formulate and synthesize a large-order, flexible shaft rotordynamics model for a 

flywheel supported with magnetic bearings. A finite element model of the rotor system 

was assembled and then employed to develop a magnetic suspension compensator to 

provide good reliability and disturbance rejection. The large number of flexible modes 

and speed dependent modes made the controller development particularly challenging. 

Stable operation over the complete speed range and optimization of the closed-loop 

rotordynamic properties were obtained via synthesis of eigenvalue analysis, Campbell 

plots, waterfall plots, and mode shapes. A flywheel system was studied as an example 

for realizing a physical controller that provides stable rotor suspension and good 
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disturbance rejection in all operating states. The baseline flywheel system control was 

determined from extensive rotordynamics synthesis and analysis for rotor critical speeds, 

mode shapes, frequency responses, and time responses. The flywheel system supported 

by active magnetic bearings demonstrated the properties of robustness to the standard 

sensor runout patterns, mass imbalances and inertial load impact. The coil peak voltages 

were within the specific limits for the selected power amplifiers with adequate margin 

against clipping, and the peak vibration was suppressed within the catcher bearing gaps 

for the given runout and imbalance disturbances. The reader is referred to references 

[29] to [44] for extended literature on magnetic bearings and their applications. 

 

1.3   Objectives 

Hence in this work, a passive proof mass damper (PPMD) is presented that has 

the ability to mitigate and completely suppresses downhole lateral, axial and torsional 

vibrations, over a wide range of operating conditions, in order to maintain a constant 

ROP.  Viguié and Kerschen [45] have proposed a similar device but it only addresses 

torsional vibrations since it doesn't consider the axial degree of freedom. The advantages 

of this PPMD are that, it is easy to fabricate and integrate into the BHA, inexpensive to 

manufacture and install, doesn't require any supervisory control from the top, and 

suppresses the vibrations at the source and downhole. Moreover, since it is a passive 

device, it doesn't require telemetry of vibration data to the top of the drill-rig in order to 

pursue complete vibration control. 
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Moreover, a novel conceptual downhole flywheel design is presented that serves 

as an alternative solution to existing lithium-ion batteries. The flywheel rotor is levitated 

by AMBs and the objective is to design a stable and robust closed-loop control system 

that maintains levitation despite the violent different types of downhole vibrations. It 

will also be demonstrated that the proposed flywheel module can mitigate downhole 

vibrations, in addition to its original energy storage function. 

 

1.4   Statement of Contributions 
 

The dissertation provides five major contributions: 

1) Development and verification an effective and comprehensive methodology to 

suppress downhole (BHA) bit bounce vibrations by use of a passive mass-proof-

damper using practical and effective methods of modeling, simulation, and design 

guidelines. 

2) Development and verification an effective and comprehensive methodology to 

maintain levitation of a high speed, magnetically levitated, energy storage flywheel 

installed in a BHA, and subjected to its natural vibration environment including 

self-excited and externally forced motion.  

3) Extend the system capabilities in (2) to also suppress BHA natural vibrations by 

use of the flywheel inertia and magnetic suspension designs.  

4) Develop improved mathematical based approaches to reduce the simulation time 

for modeling drillstring bit bounce vibration and its suppression as described in (1)  

-  (3) . 
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5) Enhance the drillstring dynamics model to account for the lateral vibration 

instability driver due to the self-excited stick-slip-bit-bounce phenomenon, and 

hence spotlighting a mutual dynamic coupling between the lateral, axial and 

torsional modes. 
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2. FLYWHEEL DESIGN AND MAGNETIC LEVITATION 

2.1   Design Constraints and Objectives 

Flywheels are kinetic energy storage devices, and store energy in a rotating mass 

(rotor), with the amount of stored energy (capacity) dependent on the mass and form 

(inertia), and rotational speed of the rotor. In order to initiate the proposed design of the 

flywheel that is to be embedded in the BHA, one must consider both the geometric and 

downhole environmental constraints. The BHA is the heaviest portion of the drillstring 

and it consists of several heavy drillcollar sections, in addition to the 

logging/measurement tools and the drillbit. The drillcollar sections are slightly smaller in 

diameter than that of the drillbit whose diameter determines the size of borehole of the 

well. Thus, the outer diameter of the container enclosing the flywheel must not exceed 

the outer diameter of the drillcollars. The drilling process requires a minimum amount of 

mud flowrate in order to lubricate the drillbit and clean the shavings, and hence the inner 

diameter of the drillcollar must permit such flowrate. Therefore, the inner diameter of 

the container enclosing the flywheel must be at least equal to the inner diameter of the 

drillcollar. The harsh environmental constraints require that the flywheel module 

sustains extreme high temperature and pressure. Thus, the thickness of the container 

enclosing the flywheel must sustain pressures as high as 30 kpsi. Inside its enclosure, the 

flywheel shall be suspended on a five-axis magnetic bearing system that continues to 

maintain levitation when the BHA is subjected to the harshest downhole vibrations. The 

flywheel should also provide 1 – 2 kW.hr of energy that existing lithium-ion batteries 

currently provide. Thus, in the following sections, the conceptual schematic design, a 
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step-by-step sizing procedure, and AMB levitation closed-loop control system are 

presented. 

 

2.2   Flywheel Conceptual Design and Sizing 

Given the geometric constraints of the problem, the containment vessel is 

comprised of two parts: an outer container pipe whose outer diameter is exposed to the 

borehole and inner container pipe whose inner diameter is exposed to the mud-flow. In 

between the inner and outer containers, the hollow flywheel rotor is enclosed. Since the 

high performance flywheels operate at very high speeds exceeding 20,000 rpm, the rotor 

shall be supported on active magnetic bearings and placed in a vacuum space to 

eliminate aerodynamic drag and reduce magnetic bearing winding losses. Figure 2.1 

shows an exploded view of the design concept. The rotor is to be levitated by two radial 

and a thrust (axial) AMBs installed on the inner container and hence providing five-axis 

magnetic levitation. A similar inside-out configuration has been previously proposed by 

Lei and Palazzolo [28]. The rotor is spun by a motor/generator assembly also installed 

on the inner container pipe. An accelerating torque (motor mode) causes the flywheel 

rotor to speed up and store energy, while a decelerating torque (generator mode) causes 

the flywheel rotor to slow down and regenerate energy. 
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Figure 2.1: Exploded Schematic View of the Proposed Downhole Flywheel Concept 

 

The maximum downhole pressure determines the thickness of both the inner and 

outer container pipes based on the “pressure-vessel-equation”: 

max

max

.
2

i
pipe

P Dt
σ

=           (2.1) 

where 

Pmax is the maximum downhole pressure 

Di is the inner diameter of the pipe 

σmax is the permissible radial normal stress in the pipe 

  

The maximum speed of the flywheel is determined by the permissible hoop 

normal stress, σθ according to [43]: 

2 2
2 2 2 2

2
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8 3
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r r
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υ υσ ρ ω

υ
 + +

= + − +  + 
     (2.2) 



 17 

where 

υ is Poisson’s ratio 

rfi is the inner flywheel radius 

rfo is the outer flywheel radius 

ρ is the material density 

ωf is the flywheel spin velocity 

 

Taking into consideration the spacing required to install the AMBs, the flywheel 

outer diameter will be smaller than inner diameter of the outer container, and the 

flywheel inner diameter will be greater than the outer diameter of the inner container.  

 

The kinetic energy stored, E, in the flywheel is given as: 

( )2 2
max min

1 .
2 fE J ω ω= −         (2.3) 

where 

Jf is the polar moment of inertia of the flywheel 

ωmax is the maximum spin velocity of the flywheel 

ωmin is the minimum spin velocity of the flywheel 

 

The spin velocity variation of the flywheel implies that by taking into 

consideration Equation 2.2, there will be a cyclic load on the flywheel rotor. Hence the 

spin speed limit must take fatigue into consideration, and according to the ASME 

elliptical equation [43]: 
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22
1

FOS
a m

e y

S S
S S

  
+ =       

        (2.4) 

where 

Sa is the alternating stress 

Se is the endurance strength of the material 

Sm is the mean stress 

Sy is the yield strength of the material 

FOS is the factor of safety 

 

Thus the sizing procedure can be summarized as follows: 

a. Define the geometric constraints. The outer diameter of the BHA is the outer 

diameter of the flywheel enclosure (outer diameter of the outer container) and the 

mud-flow diameter is its inner diameter (inner diameter of the inner container). 

b. Given the downhole pressure, calculate the thicknesses of the inner and outer 

containers, and thus determine the inner diameter of the outer container and the outer 

diameter of the outer container using Equation 2.1. 

c. Determine the inner and outer diameters of the flywheel after accounting for the 

space required for the AMBs. The flywheel inner diameter is slightly greater than the 

outer diameter of the inner container and the flywheel outer diameter is slightly 

smaller than the inner diameter of the outer container. 
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d. Using Equations 2.2 and 2.4, determine the maximum spin speed of the flywheel. It 

is recommended in most common practices that the minimum spin speed to be one 

third of the maximum [41]. 

e. With the knowledge of the energy storage requirement, evaluate the polar inertia of 

the flywheel using Equation 2.3, and hence also determining its mass, and length. 

 

2.3   Active Magnetic Bearings and Magnetic Levitation Control 

Since ball bearings cannot sustain the dynamic load due to the high spinning 

speed of the flywheel rotor, and in addition to the expected associated friction losses, the 

flywheel rotor is to be suspended on magnetic bearings. Figure 2.2 shows the block 

diagram of the closed-loop control system for the proposed magnetic levitation. The 

system comprises a proportional-integral-derivative (PID) controller, power amplifier, 

magnetic bearings, position sensors and additional filters if necessary.  

 

The PD controller consists of 2 transfer function G1 and G2. G1 is the 

proportional path transfer function and is defined as: 

( )1 1
p

c

G
G s

sτ
=

+          
(2.5)
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Figure 2.2: Magnetic Levitation Control System 
 
 

Meanwhile, the derivative path transfer function, G2 is defined as: 

2 2( )
( 1)

d

c

G sG s
sτ

=
+          

(2.6)
 

 
 

The overall transfer function GPD is the summation of G1 and G2 and is given as: 

( )
2 2

2
2

2 1

p pd

c c c
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(2.7) 

 

The state-space representation of the PD controller is: 

A B
C

PD PD PD PD

PD PD PD

x x e
v x

= +
=



         
(2.8) 
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2
2 2

2 1
1

A    ,    B     ,     C
0

1 0

p pd
c cPD PD PD

c c c

G GGτ τ
τ τ τ

 − −     = = = +              

(2.9) 

 

The power amplifier transfer function GPA is defined as: 

( )
( )

PA
PA

PA

kG s
Ls R kγ

=
+ +         

(2.10) 

 

The state-space representation of the power amplifier is given as: 

A B

C
pai PA pai PA nfi

pai PA pai

x x v
i x

•

= +

=
        

(2.11) 

( )A        ,       B 1     ,       CPA PA
PA PA PA

R k k
L L
γ+

= − = =
    

(2.12)
 

 

The voltage and current saturation can be both applied by considering the 

feedback equation with reference to Figure 2.2: 

( ). .PA PA NFv k v iγ= −          (2.13) 

 

The lag/lead Compensator transfer function GLC is defined as: 

( ) ( )
( )LC L
s zG s K
s p

+
=

+          
(2.14) 
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C D

LC LC LC LC PD

LC LC LC LC PD

x x v
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= +
= +



        

(2.15) 
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where 

A      ,     B 1    ,      C ( )     ,      DLC LC LC L LC Lp K z p K= − = = − =
   

(2.16)
 

 

The notch filter transfer function is given as: 

( )
2 2

2 2

f
NF

f
f

s
G s

s s
Q

ω
ω

ω

+
=

+ +
        

(2.17) 

 
The state-space representation is defined as: 

 
A B
C D

NF NF NF NF LC

NF NF NF NF LC

x x v
v x v

= +
= +



        
(2.18) 
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2 1
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0
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NF NF NF NF

-ω
Q

Q
ωω

 
−−    = = = =            

(2.19) 

 

The equation of motion of the rotordynamic system is given as: 

MX CX KX m nmf f+ + = + 

        (2.20) 

Thus, the state-space format representing the rotor is defined as: 

A B B
C

R R R R nm m m

S R R

w w f f
y w

= + +
=



        

(2.21) 

 

It is assumed that the active magnetic bearing actuator and sensor are located at 

the same nodal position. The actuating force of the magnetic bearing is given by: 
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m i pa x sf K i K y= − −

         
(2.22)

 

 
 

The system is connected in series, and so the output of one system is the input to 

the other. Starting at the PD-controller, its output voltage is the input to the lag/lead 

compensator and so by substituting  

A B C
C D C

LC LC LC LC PD PD

LC LC LC LC PD PD

x x x
v x x

= +
= +



        
(2.23) 

 
Feeding the output of the lag/lead compensator to the notch filter yields: 

A B C B D C
C D C D D C

NF NF NF NF LC LC NF LC PD PD

NF NF NF NF LC LC NF LC PD PD

x x x x
v x x x

= + +
= + +



      
(2.24) 

Feeding the output of the notch filter to the power amplifier yields: 

A B C B D C B D D C
C

PA PA PA PA NF NF PA NF LC LC PA NF LC PD PD

PA PA PA

x x x x x
i x

= + + +
=



   
(2.25) 

 
The output current activates the actuator magnetic force, thus: 

( )A B C B K K

C
R R R R PA PA m i pa x s

S R R

w w x i y

y w

= + − +

=



      
(2.26) 

 
The position sensor converts the nodal displacements to voltages, and hence: 

A B C
C

PS PS PS PS R R

PS PS PS

x x w
v x

= +
=



        
(2.27) 

 
The error fed into the controller is given by: 

( ) ( ) ( )R PSe t v t v t= −  
           

(2.28) 
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where ( ) is the reference control voltage (usually set equal to zero)Rv t  
 
But PS PS PSv C x=          (2.29) 
 
Thus: 

( ) ( )R PS PSe t v t C x= −          (2.30) 

 

The overall integrated state-space representation of the system is obtained by 

augmenting all the states of all existing components, and hence by defining the system 

state vector as: 

{ }X T
R PD LC NF PA PSw x x x x x=  

 

The state-space representing the system can be written as: 

X A X B BX AMB R EXT Rv f= + +  
           

(2.31) 

where 
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O B
B O
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     (2.32) 

 

Define the outputs to be the nodal displacements where the sensors are located, 

and hence: 

[ ]C O O O O O XS Ry =
       

(2.33) 
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3. MODELING OF DRILLSTRING DYNAMICS 

3.1 Lumped System Modeling 

Figure 3.1 illustrates the main components of a drilling rig and Figure 3.2 shows 

a simplified schematic. 

 

 

Figure 3.1: Main Components of a Drilling Rig 

 

Figure 3.3 illustrates a schematic of the drillsting and BHA. The system is 

modeled as a lumped system having 2 degrees of freedom (DOF), axial and torsional 

[10-12]. Since the weight of the drillpipes are generally much smaller than that of the 

drillcollars (BHA), the drillpipe is replaced by an equivalent torsional spring and damper 

that connect the BHA to the rotating top drive at the surface of the drilling rig. 
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Figure 3.2: Schematic of Drillstring Components 

 

 

Figure 3.3: Schematic of the BHA/Drillstring with External Forces 
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When a drillbit is penetrating a rock formation, a reaction force and torque are 

generated and known as weight-on-bit (WOB) and torque-on-bit (TOB), respectively. 

The WOB and TOB will be explained in detail in the next section. 

The torsional equation of motion is given as: 

TOBT T dJ C K Tφ φ φ+ + = −          (3.1) 

where   

Td = KT.ωd.t          (3.2) 

The axial equation of motion is given as: 

0 WOBDC dm x W= −          (3.3) 

If the BHA has a mass unbalance, then there will also be a lateral motion, adding 

an extra 2 DOFs to the lumped-mass model, and if the resulting radial motion is greater 

than the wellbore-BHA clearance, then there will be contact with the wellbore. Figure 

3.4 shows a schematic of the lateral motion of the BHA and wellbore contact. 

 

 

Figure 3.4: Lateral Motion Due to Mass Unbalance (a) & Contact Forces (b) [21] 
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The lateral forces due to mass unbalance are given as: 

2
0. . .cos .y DC d dF m e tω ω=         (3.4) 

2
0. . .sin .z DC d dF m e tω ω=         (3.5) 

The radial displacement of the geometric center of the BHA is given as: 

2 2
d dr y z= +           (3.6) 

There is contact between the BHA and the wellbore if the radial displacement is 

greater than or equal to the radial clearance, rc. Assuming a contact stiffness value of Kb, 

the normal reaction between the BHA and the wellbore can be written as: 

.( )r b cF K r r= − −          (3.7) 

Assuming sliding friction between the BHA and the wellbore, the tangential 

friction force can be evaluated as: 

. .sgn( )t w r cF Fµ ω= −          (3.8) 

where ωc is the angular rate of change of the BHA geometric position given as: 

1
2

. .tan d d d d d
c

d

z y z z yd
dt y r

ω −  −
= = 

 



       (3.9) 

 

3.2 Drillbit Dynamics Modeling 

Rock formation cutting and penetration is performed by a drillbit attached to the 

bottom of the BHA. There are two types of drillbits (Figure 3.5): polycrystalline-

diamond-compact (PDC) and roller-cone. PDC drillbits are characterized by blades 
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whilst roller-cone drillbits are characterized by rotating cones that mesh in the center and 

the common type is the three-cone construction or tricone. 

 

 

Figure 3.5: Types of Drillbits 

 

For a PDC drillbit, the depth of cut per revolution per blade is given as: 

)()()( nddn ttxtxtd −−=         (3.10) 

Hence, by assuming an equal depth of cut for all blades, the total depth of cut is 

given as: 

ndnd .=           (3.11) 

where tn is the instantaneous time delay obtained by solving the equation: 

nttt n /2)()( πφφ =−−         (3.12) 

This time delay is an instability driver and resembles adding negative 

destabilizing damping to the system. The WOB and TOB both have cutting and friction 

components: 

fc WW +=WOB          (3.13) 
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fc TT +=TOB          (3.14) 

The expressions for the cutting components are given as [10 – 12]: 

daWc ... εξ=           (3.15) 

daTc ..
2

2

ε=
          (3.16) 

The friction components are given as: 

σ..laW f =           (3.17) 

µσγ ....
2

2

laT f =
         (3.18) 

A Stribeck friction model is utilized and expressed as [1– 4]: 
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(3.19) 

When the drill-bit loses contact with the formation during bit-bounce, the depth 

of cut, d, is negative and the friction components vanish. 

By substituting Equations 3.14 and 3.16 into Equation 3.1: 

2 2

. . . ( ) . . . ( )
2 2T T d d f d n
a aJ C K n x t T T n x t tφ φ φ ε ε+ + + = − + −      (3.20) 

By substituting Equation 3.13 and 3.15 into Equation 3.3 

0. . . . ( ) . . . . ( )d d d f d nm x a n x t W W a n x t tξ ε ξ ε+ = − + −      (3.21) 

With reference to Equation 3.21, the coefficient of xd represents the stiffness of 

the formation that can be expressed as: 

nakc ... εζ=           (3.22) 
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As can be seen from Equations 3.10 through 3.21, there is a complex coupling 

between the axial and torsional modes due to the reaction forces and torques between the 

PDC drillbit and the rock formation. The cutting reaction torque component is dependent 

on the axial depth of cut and the depth of cut per blade is dependent upon the rotation 

angle as described by Equation 3.12. This mutual coupling adds to the instability drivers 

of the system in addition to the time delay due to the cutting action of the blades of the 

PDC drillbit. This is similarly the case with roller-cone bits except that there is no time 

delay instability driver but the self-excitation is of sinusoidal nature. The WOB in the 

case of a roller-cone drillbit is given by [1-4]: 

( )




<
≥−

=
sx
sxsxk

d

ddc

 if                 0
 if     

WOB        (3.23) 

The formation surface elevation, s, is given as: 

φbss sin.0=           (3.24) 

The torque-on-bit (TOB) is given as: 

( ) a
a
d ..WOBTOB 








+= φµ          (3.25) 

The depth of cut, d, in this case is given as: 

d

d
ω

π ROP..2
=           (3.26) 

The rate of penetration (ROP) is defined as: 

1 0 2ROP . . dc W cω= +          (3.27) 
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The coupling between the axial and the torsional modes can be seen from 

Equations 3.23 through 3.25, and as in the case with the PDC drillbit the instability 

driver is self-excited. At steady-state, the axial penetration velocity of the BHA is equal 

to the ROP, and the drillbit spins at the same speed of the top drive at the surface. This 

implies that the WOB and TOB are equal to the applied force at the top of the rig, Wo, 

and the driving torque, Td, respectively. When the TOB value is higher than the driving 

torque, the drillbit decelerates, and the drillbit can come to zero spinning velocity and 

this is known as sticking. As the top drive continues spinning whilst the drillbit is 

sticking, the drillpipe acts as a torsional spring storing potential energy that is suddenly 

released causing the drillbit to accelerate (or known as slipping) to two or even three 

times the top drive speed until it decelerates again and sticks, and the stick-slip cycle is 

repeated. If the normal reaction of the formation or WOB is greater than the applied 

axial force, Wo, the drillbit loses contact with bottom of the wellbore, and the BHA is 

forced upward with negative velocity or conventionally known as bit-bounce. The 

weight of the BHA will bring it down again and drillbit-formation contact is reinstated 

and the cycle repeats itself. Figure 3.26 shows a reproduced example of combined stick-

slip and bit-bounce from Yigit and Christoforou [1]. 

 

Hence, it is very crucial for drilling operators to estimate the stable operating 

region(s) in order to avoid stick-slip and bit-bounce vibrations, as this leads to inefficient 

drilling and detrimental damage to the drillpipes, BHA, and the logging tools. In the 

field, stick-slip is usually observed at low spin rates, especially with PDC drillbits since 
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the time delay value is higher meaning that there is a higher destabilizing equivalent 

negative damping. Bit-bounce occurs when the applied axial load from the top of the rig 

is not high enough to overcome the dynamic peak values of the WOB. Since the axial 

and torsional modes are dynamically coupled, a high fluctuating spin rate variation of 

the drillbit will likely cause a fluctuating ROP also leading to bit-bounce if the axial 

applied load, Wo, is not high enough. 

 

 

Figure 3.6: Illustration of Drillbit Sticking, Slipping, & Bit-Bounce 

 

It is to be noted that Richard et al [10-11] utilized a constant Coulomb friction 

since previous experimental studies indicated that some PDC drillbit designs are rate-

insensitive, i.e. do not possess a velocity-weakening Stribeck friction law. The study by 

Richard et al [10-11] concludes that stick-slip and bit-bounce vibrations are caused by 

the dynamic depth of cut that dominates the system. The following example illustrates 
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and validates the conclusion by Richard et al [10-11]. At first the top drive is spinning at 

50 rpm and the response is evaluated by both a constant Coulomb friction and a Stribeck 

friction law. As can be clearly seen in Figure 3.7, the drillbit spin speed response 

obtained in both cases is almost identical. This scenario is repeated over and over again 

when the speed is raised to 65 rpm as shown in Figure 3.8.  
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Figure 3.7: PDC Drillbit Spin Speed Obtained Utilizing Coulomb & Stribeck Friction 
(Top Drive Speed = 50 rpm) 
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Figure 3.8: PDC Drillbit Spin Speed Obtained Utilizing Coulomb & Stribeck Friction 
(Top Drive Speed = 65 rpm) 

 

 

3.3 Lateral-Axial-Torsional Coupling 

As illustrated in the previous section, the drillbit-formation interaction induces a 

dynamic coupling between the axial and torsional modes of vibration. If the formation 

reaction or WOB is not purely axial but rather tilted with respect to the BHA 

longitudinal axis, there will be a lateral component of the WOB affecting the BHA and 

rotating with the drillbit as shown in Figure 3.9.  
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Figure 3.9: Illustration of Lateral WOB Component Action 

 

This resembles the effect of centrifugal force due to unbalance but this lateral 

WOB component will rotate with the variable spin rate of the drillbit. If the inclination 

of the generated WOB with respect to the BHA is α, then the lateral component can be 

written as: 

WOB WOB.sin . i
Lateral e φα=         (3.28) 

Thus, Equation (3.28) couples the lateral mode to both the axial and torsional 

modes due to this inclination of the WOB with respect to the BHA as a result of a 

misaligned drillbit or a bent housing utilized in deviated well drilling operations as 

shown in Figure 3.10. To the best of knowledge, this particular type of lateral-axial-

torsional coupling identification, description and quantification has not been addressed 

before in the literature. Fu and Shi [47] presented a dynamic model to study the effects 
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of rotary speed, WOB, bent angle, and inclination on the dynamic characteristics of the 

BHA with bent housing using finite element theory. The work identified the effect of 

bent angle on relating the WOB to the lateral vibration but didn’t consider the axial – 

torsional coupling of the drillbit cutting dynamics.  Defourny and Abbassian [48] 

introduced a novel concept of a flexible PDC drillbit that reduced detrimental vibration 

associated with bit-tilt. The work identifies the nature of the axial – lateral coupling due 

to bit-tilt as well as the torsional – axial coupling due to the drillbit cutting dynamics but 

doesn’t quantify the combined lateral-axial-torsional coupling. Other work in the 

literature includes a lateral-axial coupling that is similar to the buckling effect by 

assuming nonlinear coupling terms between the axial and torsional modes of non-

rotating drillstrings as in Yigit and Christoforou [22], and also due to the axial stiffening 

effect as in Khulief et al. [5] based on the formula mentioned in Przemieniecki [49]. 

Buckling can be avoided in vertical and slightly deviated wells by installing stabilizers 

along the length of the drillstring and the axial stiffening effect is associated with very 

high modes of vibration that are unlikely to occur in the low-frequency dominated 

drillstring system. 
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Figure 3.10: Steerable Drillbit in a Bent Housing Sub (National Oilwell Varco) 

 

3.4 Passive Proof Mass Damper & Vibration Suppression 

In order to passively attempt to suppress or mitigate the bit-bounce or stick-slip 

vibration, positive damping must be introduced to the system. In most common practice, 

the BHA is fitted with shock absorbers but sometimes this can exacerbate the vibration 

especially that the damping is not theoretically connected to the ground. An alternative is 

to add additional drill-collars to the BHA, and hence increasing the effective mass that 

adds more stability to the system. But this process will require the drilling operation to 

be halted in order to add the additional sections and thus increasing costs of operation. 

Hence, a passive proof-mass-damper (PPMD) is proposed that consists of a drillpipe 
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suspended on coils of springs and dampers that is embedded and connected to the BHA, 

similar to a dynamic absorber as shown in Figure 3.11. 

 

 

Figure 3.11: Illustration of the PPMD Embedded in the BHA 

 

The addition of the PPMD will continuously suppress or mitigate the bit-bounce 

and torsional vibrations and thus the drilling operation wouldn’t need to be interrupted to 

add additional drill-collar sections, and as will be illustrated in the results section, the 

PPMD mass is much smaller than the added sections in order to produce the same 

damping effect. After adding the PPMD, the equation of motion for the sprung mass is 

given as: 

0).()(. =−+−+ dffDCffff xxkxxcxm          (3.29) 
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Hence the axial equation of motion of the BHA, if a PDC drillbit is utilized, after 

adding the PPMD is given as:  

0. . . . ( ) . . . . ( ) ( ) .( )DC d d f d n f f d f f dm x a n x t W W a n x t t c x x k x xξ ε ξ ε+ = − + − + − + −    (3.30) 

If a torsional spring and damper denoted by kfT and cfT, respectively, is attached 

to the PPMD, and if the PPMD inertia is denoted by Jf, then the torsional equation of the 

PPMD can be written as: 

. ( ) .( ) 0f f fT f fT fJ x c kφ φ φ φ+ − + − = 

        (3.31) 

Hence the torsional equation of motion of the BHA, if a PDC drillbit is utilized, 

after adding the PPMD is given as: 

2 2

. . . ( ) . . . ( ) ( ) .( )
2 2T T d d f d n fT f fT f
a aJ C K n x t T T n x t t c kφ φ φ ε ε φ φ φ φ+ + + = − + − + − + −     

(3.32) 

 

Figures 3.12 – 3.14 illustrates how the PPMD mitigates and suppresses bit-

bounce. Consider a drillstring equipped with a PDC drillbit that is drilling a formation 

stiffness of 100 MN/m. When the top drive is spinning at 60 rpm, the bit bounces and 

there is no penetration as shown in Figure 3.12(a) and (b). By adding the PPMD, bit-

bounce vibrations are reduced and stick-slip is initiated as shown in Figure 3.12(c) and 

(d). When the top drive spin speed increases to 70 rpm, before adding the PPMD there is 

still bit-bounce without penetration as shown in Figure 3.13(a) and 3.13(b), and with the 

PPMD there is stick-slip and bit-bounce with velocity peaks that are double that of the 

original BHA as shown in Figure 3.14(c) and (d). By increasing the top drive speed to 80 
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rpm, the original BHA is forced into severe stick-slip and bit-bounce as shown in Figure 

3.14 (a) and (b), and by adding the PPMD penetration is achieved (Figure 3.14(c)) and 

there is minimal bit-bounce (Figure 3.14(d)) with minimal torsional oscillations. The 

drillbit spin speed before adding the PPMD is shown in Figure 3.15 when the top drive is 

rotating at 60, 70 and 80 rpm, and similarly, Figure 3.16 shows the drillbit spin speed at 

after adding the PPMD. 

 

 

Figure 3.12: Penetration without PPMD (a), Axial Velocity without PPMD (b), 
Penetration with PPMD (c), Axial Velocity with PPMD (d) at 60 rpm 
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Figure 3.13: Penetration without PPMD (a), Axial Velocity without PPMD (b), 
Penetration with PPMD (c), Axial Velocity with PPMD (d) at 70 rpm 
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Figure 3.14: Penetration without PPMD (a), Axial Velocity without PPMD (b), 
Penetration with PPMD (c), Axial Velocity with PPMD (d) at 80 rpm 
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Figure 3.15: Drillbit Spin Velocity without PPMD at Top Drive Spin Speeds of (a) 60 
rpm, (b) 70 rpm, and (c) 80 rpm. 
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Figure 3.16: Drillbit Spin Velocity with PPMD at Top Drive Spin Speeds of (a) 60 rpm, 
(b) 70 rpm, and (c) 80 rpm. 

 

 

3.5 Finite Element Modeling 

The modeling of the system can be enhanced by utilizing a finite element model 

(FEM) for the BHA. Instead of treating the BHA as a single mass and inertia, the BHA 

is meshed into a number of elements, and the external forces are applied at the 

appropriate nodes. For each element, a Timoshenko beam element, with added axial and 

torsional stiffness compliance, is utilized and each node has six degrees of freedom.  
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Gyroscopic effects are also included in the FEM. Since the drillpipes are 

generally much lighter than the BHA, the drillpipes can be substituted by a lumped 

mass, torsional spring and damper attached to the top node of the BHA. Figure 3.17 

shows the FEM of the BHA. Detailed description and numerical evaluation of the FEM 

matrices are listed in [49]. 

 

 

Figure 3.17: FEM of the BHA 
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4. CHEBYSHEV DISCRETIZATION SPECTRAL METHOD FOR  

SOLVING THE DELAY DIFFERENTIAL EQUATIONS 

In general, the state-space model comprising time-delay is expressed as: 

( ) ( ) ( )0 1( ) . . .x t A x t A x t B u tτ= + − +        (4.1) 

The characteristic equation is a quasi-polynomial in the form of: 

0e.. .
10 =−− − sAAIs τ         (4.2) 

The presence of the term e-τ.s leads to a theoretical infinite number of complex 

solutions for a continuous system. A discrete system will have a finite number of roots. 

In this work, the quasi-polynomial is solved using the approach developed by Breda et al 

[50] to discretize the solution operator. The solution operator is the operator 

transforming an initial condition φ onto the solution segment at a later timepoint 

specified by a parameter h, in the following sense: 

 

Definition: The solution operator of the DDE in Equation 4.1 is the operator 

transforming an initial condition φ to the solution segment at timepoint h. This operator 

is denoted by T(h) : C ([−τ, 0], ℜ  n) → C (−τ, 0], ℜ  n). The solution operator applied to 

φ, i.e., (T(h) φ)(θ) =:  ψ (θ), is the solution segment of (4.1) with initial condition ϕ = φ at 

time-point h. More precisely, 

  

ψ (θ) := (T(h) φ)(θ) = x(h +θ), θ ∈ [−τ, 0], where x(t) is the solution of Equation 4.1 with 

initial condition ϕ = φ .  
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Every DDE can be rewritten as a partial differential equation (PDE) by 

introducing an additional memory-dimension. If the original DDE is represented as: 

[ ]
0 1( ) . ( ) . ( )                    0

( ) ( )                                    ,0
x t A x t A x t t
x t t t

τ
ϕ τ

= + − ≥
 = ∈ −



      (4.3) 

Then, the equivalent PDE can be written as a boundary value problem as: 

[ ]

[ ]
1 0

                                         0,  ,0

( ,0) . ( , ) . ( ,0)                         0
(0, ) ( )                                            ,0

u u t
t

u t A u t A u t t
u

θ

θ τ
θ

τ
θ ϕ θ θ τ

∂ ∂ = ≥ ∈ − ∂ ∂
′ = − + ≥

 = ∈ −


    (4.4) 

for the unknown ([0, ] [ ,0], )nu C τ∈ ∞ × − ℜ . Let ([ ,0], )nCϕ τ∈ − ℜ be given. Then if x(t) 

is the solution to Equation 4.3 and if u(t,θ) is a solution to Equation 4.4, then: 

 

( , ) ( ),     [ ,0],  0u t x t tθ θ θ τ= + ∈ − ≥        (4.5) 

Let A correspond to the differentiation operator in θ-direction with the domain of 

functions fulfilling the boundary conditions in Equation 4.4, that is: 

1 0( )( ) : ( ),           (0) ( ) (0)dA A A
d
ϕϕ θ θ ϕ ϕ τ ϕ
θ

′= = − +      (4.6) 

Hence the problem is reduced to an abstract Cauchy-problem in the form: 

t t
d x Ax
dt

=           (4.7) 

 

The differentiation operator, A, of the abstract Cauchy-problem is expressed in 

terms of the solution operator of the DDE, T, as: 
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0

1: lim ( ( ) )
t

A T t
t

ϕ ϕ ϕ
+→

= −         (4.8) 

The eigenvalues of the operator A are the eigenvalues of the DDE. It is now 

required to discretize A and compute the eigenvalues of the corresponding finite-

dimensional linear operator AN 

For a given natural number, N, the Chebyshev nodes over the interval [-τ,0] are 

defined as [51]: 

, . cos . 1        ,  0,  1,  2,   
2N ix i i N

N
τ π  = − = …    

     (4.9) 

The Chebyshev differentiation matrix, DN, is obtained utilizing the Chebyshev 

nodes as [52]: 

( 1)

1 1
2

1 1

N N

τ
× +

− 
−  = ∈ℜ 

 − 
ND         (4.10) 

Thus AN can now be evaluated as [52]: 

0 0
mN mN×⊗ 

= ∈ℜ 
 

N m
N

1 0

D I
A

A A

        (4.11) 

where m is the number of degrees of freedom of the original state space of the 

continuous DDE. 

Thus, given a drillstring system that utilizes a PDC drillbit, the Chebyshev 

Spectral Method can be implemented to determine its stability based on its eigenvalues. 

It is the purpose of this study to determine a range of stabilizing mass, stiffness and 

damping values of the PPMD as well as defining operation-stable regions. Stability 
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implies that there are no axial or torsional vibrations which means that the value of the 

time delay evaluated in Equation 3.12 is constant and equal to 2π/(ωd.n) since at stable 

steady state conditions the drillbit spin speed will be equal to that of the top drive. The 

Chebyshev DDE numerical solver is a linear method, and hence linearity is assumed at 

steady-state stable conditions meaning that there is always contact between the drillbit 

and the formation and that the drillbit reactive friction force and torque, Wf and Tf are 

neglected since they cannot be accounted for in Equation 4.11 as well as the applied 

axial load, Wo and the top drive applied torque, T. The dynamic cutting components Wc 

and Tc are accounted for since they are a function of the drillbit’s dynamic depth of cut 

that is the dominating self-exciting source of vibration as stated by Richard et al [10-11]. 

Richard et al [10-11] also states that the drilling condition is that Wo > Wf. In the event a 

Stribeck friction model is implemented, a linearized damping coefficient can be obtained 

through a Taylor-Series-Expansion of Equation 3.19. Figure 4.1 shows the linearized 

damping coefficients over the spin speed rate. It can be observed that the highest 

negative-damping coefficient is -60 N.m.s/rad, and so as long as the positive torsional 

damping cT is high enough, then the Chebyshev method can overcome the Stribeck 

Friction Effect . 
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Figure 4.1: Linearized Torsional Damping Coefficients (Stribeck Friction Model) 
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5. RESULTS 

5.1 Overview 

The results are presented in four subsections. Subsection 5.2 demonstrates the 

effectiveness of the proof-mass-damper (PPMD) in suppressing bit-bounce and torsional 

vibrations using lumped-mass and finite element models of the BHA that only consider 

the axial and torsional degrees of freedom. Subsection 5.3 extends the degrees of 

freedom to include the lateral mode and illustrate the coupling between the axial, lateral, 

and torsional modes of vibration. Subsection 5.4 presents the results of simulating the 

flywheel performance when embedded in the BHA and subjected to downhole 

vibrations. Finally, subsection 5.5 extends the function of the flywheel to act as an active 

proof-mass-damper (APMD) to mitigate and suppress bit-bounce and torsional 

vibrations of the BHA. 

 

5.2 Effectiveness of PPMD in Bit-Bounce Suppression 

At a certain operating point, there exists a minimum stability speed of the top 

drive of the rotary table, below which the system becomes unstable due to increased 

time-delay due to the cutting action of the blades of the PDC drillbit. It is well known 

that time-delay resembles negative damping that destabilizes a system. Hence, the BHA 

will be more susceptible to bit-bounce when the speed of the top drive is lowered. In 

drilling operations, there are several reasons as to why the top drive speed is decreased. 

Logging-while-drilling (LWD) or measurement-while drilling (MWD) operations 

usually require lower penetration rates in order to obtain accurate data of the well.  
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Another reason is the power limitation on the motor driving the rotary table, 

since as the friction at the drillbit increases, the torque load on the driving motor 

increases and puts a limit on the maximum rotary speed. Even during normal operation, 

with increasing torque on bit (TOB), the rotary speed of the drillbit would be oscillating 

around the mean value of the top drive speed, and when its speed falls significantly, the 

time-delay between the cutting actions of the individual blades will increase. Moreover, 

the addition of new sections of drill-pipe requires that the drilling action be temporarily 

paused, bringing the rotary table to a complete stop, and then restarted passing through 

low rpm ranges which are susceptible to bit bounce. 

 

Table 5.1: Parameter Description & Values (PDC Drillbit) 

Parameter Description Value 

J Drill-Collar Inertia 415 kg.m2 

md Drill-Collar Mass 87000 kg 

KT Equivalent Drill-pipe Torsional Stiffness 600 N.m/rad 

CT Added Drill-Collar Torsional Damping 500 N.s2/rad 

Wo Static Load 100 kN 

a Drill-bit Radius 0.15 m 

l Wearflat length 5 mm 

σ Average Normal Stress 112 MPa 

ε Intrinsic Specific Energy  160 MPa 
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Table 5.1 Continued 

ξ Inclination of Cutting Force on Cutting Face 0.7 

γ Spatial Orientation of wearflats 1.2 

μ0 Coefficient of Friction 0.06 

n Number of Blades 8 

 

 

Table 5.2: Simulation Parameters (Roller-Cone Drillbit) 

Parameter Description Value 

kc Rock Formation Stiffness 67-134 MN/m 

s0 Formation Elevation Amplitude 1 mm 

b Formation Surface Function Constant 1 

c1 Penetration Constant 1.35e-8 

c2 Penetration Constant -1.9e-4 

 

One of the methods to stabilize the system is by adding additional mass to the 

BHA in order to suppress bit-bounce. This can be done by either increasing the BHA 

length, which is referred to as the "unsprung mass" case, or by attaching attenuator units 

consisting of a mass sprung on a series of springs and dampers. Figure 5.1 shows the 

minimum mass ratio needed to suppress bit-bounce over a top drive speed ranging from 

65 to 130 rpm. At speeds of 130 rpm or higher, the time-delay is small enough and the 
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system is stable, and no added mass is needed. It can be clearly seen that the sprung 

added mass needed is much smaller than its unsprung counterpart. 
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Figure 5.1: Minimum Added Mass Required to Suppress Bit-Bounce at Various Spin 
Speeds 

 

 

A rigorous and controlled search, using numerical integration, was carried out to 

arrive at the stiffness and damping values of the spring, and damper, respectively that 

yielded the minimum and optimum sprung mass required to suppress bit-bounce. Figure 

5.2 shows a 3D plot illustrating the corresponding sprung mass values. The optimum 

mass was chosen to be the minimum value at each rotational speed. It is to be noted that 

the entire search elapsed over 20 hours of computational time for a 120,000 possible 

search points. 
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Figure 5.2: PPMD Stable Mass Values (Optimum Values in Red) 

 

Consider a case when the top drive speed drops to 105 rpm, then bit-bounce 

vibrations will be clearly seen as shown in Figure 5.3 and there will be large fluctuations 

of the BHA rotary velocity as shown in Figure 5.4. In this case, bit bounce suppression 

requires that the BHA mass be increased by 49 tons if the mass is fixed to the BHA 

(unsprung mass), and by only 17 tons if the additional mass is attached to the BHA by 

appropriately selected stiffness ( 42.4 MN/m ) and damper (0.72 MN.s/m) values 

(sprung mass). Thus the same result is achieved but the sprung mass is about 3 times less 

than its unsprung counterpart. Figures 5.5 and 5.6 illustrate the axial and torsional 

velocities of the BHA, respectively after adding the PPMD. 
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Figure 5.3: Axial BHA Velocity without PPMD (Rock Stress = 160 MPa & Formation 
Stiffness = 134 MPa) 
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Figure 5.4: BHA Rotational Velocity without PPMD (Rock Stress = 160 MPa & 
Formation Stiffness = 134 MPa) 
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Figure 5.5: BHA Axial Velocity with PPMD (Rock Stress = 160 MPa & Formation 
Stiffness = 134 MPa) 
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Figure 5.6: BHA Rotational Velocity with PPMD (Rock Stress = 160 MPa & Formation 
Stiffness = 134 MPa) 
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Since, numerical integration of the dynamic equations of motion is very time 

consuming, and thus a relatively few number of possible solutions can be scanned 

through trial-and-error, the Chebyshev-Based discretization spectral method was 

implemented in order to find values of the absorber mass, spring stiffness and damping 

that achieve overall system stability. By applying Equation 4.11, one can now obtain a 

characteristic matrix, AN, whose eigenvalues determine the stability. The system is stable 

if and only if all eigenvalues have negative real values. Hence, the computational time is 

greatly reduced thousands of possible solutions can be scanned in just a matter of 

minutes.  

 

 

Figure 5.7: 3D Plot of Stable PPMD Values Using the Chebyshev Method 
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Figure 5.7 shows a 3-dimensional plot of solutions obtained using the 

Chebyshev-Based discretization spectral method. The number of search points was 

approximately 10 million points yet the search time elapsed less than 4 hours. If this 

search was conducted using numerical integration, the search time would be 58 days! If 

the drillstring model was finite-element based, then at least 1000 days would be needed 

to conduct this search! The validity of the Chebyshev method is verified by numerical 

integration at the same condition. Consider a case when the equivalent soil stiffness is 67 

MPa and the top drive speed is 80 rpm. Without the PPMD, the system is unstable as can 

be seen in Figure 5.8 where there exist oscillations of axial velocity. The Chebyshev 

method predicts this instability through the evaluation of eigenvalues and it can be seen 

in Figure 5.9 that there are two conjugate and complex poles on the imaginary axis. Note 

that from Figure 5.9, the right-most conjugate poles have a frequency of 31 rad/s. The 

periodic time form Figure 5.8 is approximately 0.2 seconds which corresponds to an 

oscillation frequency of 31 rad/s, which is consistent with the frequency directly 

evaluated from the eigenvalue plot. Upon installing a PPMD that is 15% in mass of the 

original BHA whose natural frequency and damping ratio are 30 rad/s and 0.3, 

respectively, the system becomes stable and Figure 5.10 shows the eigenvalue plot 

obtained by the Chebyshev method indicating that the previously unstable poles have 

migrated into the left-hand-plane, further validating the spectral method implemented. 
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Figure 5.8: BHA Axial Velocity Oscillations Before Adding PPMD 
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Figure 5.9: Eigenvalue Plot before Adding PPMD 
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Figure 5.10: Eigenvalue Plot after Adding PPMD 

 

Another advantage of Chebyshev method is that it can be implemented to 

obtain/predict operating-point stability chart. The term stability implies that there are 

neither axial nor torsional oscillations, i.e. the drillbit’s axial and spin velocities are both 

constant, meaning that the time delay has a constant value at steady state. Figure 5.11 

shows the stability boundary obtained utilizing the Chebyshev numerical DDE solver 

and rigorous numerical integration of the equations of motion utilizing a lumped model, 

FEM of the BHA, and FEM of the drillstring (BHA + drillpipe). As can be observed, 

there are minor differences in the onset stability spin speed in the 4 cases and the 

percentage deviation from the FEM-Drillstring model is under 9% as can be observed in 

Figure 5.12. It can also be observed from Figures 5.11 and 5.12 that the Chebyshev-

Boundary-Line deviation slightly increases especially in the range of 120 – 160 MN/m 
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because the stability boundary lines where evaluated at Wo = 100 kN and by observing 

Figure 5.13, the friction component of the WOB, Wf becomes equal to 100 kN at a 

formation stiffness value of 160 MN/m. The terms, Wo and Wf are not accounted for in 

the eigenvalue characteristic equation described by Equations 3.12 and 4.11 since they 

are external forces. In order for drilling to take place Wo > Wf. Thus, by increasing the 

value of the applied axial load, Wo, the Chebyshev-Boundary-Line starts to deviate less 

from the FEM. Figure 5.14 shows the stability-boundary-line plot using Wo = 120 kN 

and Figure 5.15 quantifies the percentage deviation from the FEM-Drillstring. It can 

now be clearly observed that there is less deviation of the Chebyshev-Boundary-Line 

when Wo was increased over Wf. A remarkable observation is that there is a minor 

difference between both FEM-BHA and FEM-Drillstring in predicting the onset stability 

spin speed, the lumped model under-predicts this onset spin speed and the Chebyshev 

DDE solver predicts it in-between. 

 

 

Figure 5.11: Operating Stability Boundary Curves (Wo = 100 kN) 
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Figure 5.12: Percentage Deviation of Onset Stability Spin Speed from FEM-Drillstring 
(Wo = 100 kN) 

 
 
 

 

Figure 5.13: Applied Axial Load (Wo) vs. Friction Component of WOB (Wf) 
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Figure 5.14: Operating Stability Boundary Curves (Wo = 120 kN) 

 

 

Figure 5.15: Percentage Deviation of Onset Stability Spin Speed from FEM-Drillstring 
(Wo = 120 kN) 
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Figure 5.16 shows a stability chart (very fine mesh) of top drive speed versus 

rock formation stiffness for different values of PPMD mass. The grid was divided into 

1.2 million search points and the elapsed time to evaluate this chart was only 45 minutes. 

 

 

Figure 5.16: Operating-Point Stability Chart 

 

Figures 5.17 – 5.20 show the system performance when drilling a formation 

stiffness of 100 MN/m with a PDC drillbit at 105 rpm before adding the PPMD by 

utilizing the lumped model and FEM. Figures 5.21 – 5.24 show suppression of bit-

bounce and torsional vibrations after adding a PPMD that is 15% the original mass of the 

BHA and has a natural frequency and a damping ratio of 30 rad/s and 0.3, respectively. 

In Figures 5.17 – 5.24 the response is obtained using the lumped model, the FEM of the 
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BHA only, and the FEM of the entire drillstring (BHA + drillpipe). In all modeling 

cases, adding the PPMD completely suppresses the vibrations all 3 cases (both FEM and 

lumped system) which indicates that the lowest frequencies of vibration are dominant 

which is consistent with the literature and field observations. A field observation ocean-

drilling case-study by Mayers et al. [53] reports that vibration frequencies due to the 

drillbit excitation lies in the range 0 – 5 Hz and that the higher frequencies in the range 

of 25 – 50 Hz are due to noise associated with the rig’s operations and ship’s motors. 

Richard et al [10] list this range within 0 – 3 Hz.  
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Figure 5.17: Axial Velocity near Drillbit before Adding PPMD (PDC) 
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Figure 5.18: Torsional Velocity near Drillbit before Adding PPMD (PDC) 
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Figure 5.19: Drillbit Reaction Force – WOB before Adding PPMD (PDC) 
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Figure 5.20: Drillbit Reaction Torque – TOB before Adding PPMD (PDC) 
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Figure 5.21: Axial Drillbit Velocity near Drillbit after Adding PPMD (PDC) 
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Figure 5.22: Torsional Drillbit Velocity near Drillbit after Adding PPMD (PDC) 
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Figure 5.23: Drillbit Reaction Force – WOB after Adding PPMD (PDC) 
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Figure 5.24: Drillbit Reaction Torque – TOB after Adding PPMD (PDC) 

 
 

Similarly, the comparison simulation was redone but using a roller-cone drillbit 

instead of a PDC. Figures 5.25 – 5.28 show the drillstring’s response before adding the 

PPMD. After the PPMD is added, the all three models indicate a significant reduction in 

axial and drillbit spin velocities, as well as WOB and TOB, as shown in Figures 5.29 – 

5.32. 
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Figure 5.25: Axial Velocity near Drillbit before Adding PPMD (Roller-Cone) 
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Figure 5.26: Torsional Velocity near Drillbit before Adding PPMD (Roller-Cone) 
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Figure 5.27: Drillbit Reaction Force – WOB before Adding PPMD (Roller-Cone) 
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Figure 5.28: Drillbit Reaction Torque – TOB before Adding PPMD (Roller-Cone) 
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Figure 5.29: Axial Velocity near Drillbit after Adding PPMD (Roller-Cone) 
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Figure 5.30: Torsional Velocity near Drillbit after Adding PPMD (Roller-Cone) 



 76 

49 49.1 49.2 49.3 49.4 49.5 49.6 49.7 49.8 49.9 50
100

105

110

115

120

125

130

135

time (s)

W
O

B
 (k

N
)

 

 

LUMP
FEM BHA
FEM Drillstring

 

Figure 5.31: Drillbit Reaction Force – WOB after Adding PPMD (Roller-Cone) 
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Figure 5.32: Drillbit Reaction Torque – TOB before Adding PPMD (Roller-Cone) 
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In order to demonstrate robustness, consider a universal PPMD with a natural 

frequency of 30 rad/s and a damping ratio of 0.3 to be fitted on any BHA that utilizes 

either a PDC or a roller-cone drillbit. Figure 5.33 shows the decrease of axial vibration 

amplitudes with increasing absorber mass for different operating top drive spin velocities 

when a PDC drillbit is used. This is similarly shown when utilizing a roller-cone drillbit 

in Figure 5.34. 

 

 

 

Figure 5.33: Universal PPMD Performance Over Top Drive Spin Speed Range (PDC 
Drillbit & Rock Stress = 80 MPa) 
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Figure 5.34: Universal PPMD Performance Over Top Drive Spin Speed Range (Roller-
Cone Drillbit & Rock Stress = 80 MPa) 

 

 

Figures 5.35 and 5.36 show a comparison between vibration amplitude values for 

added sprung and unsprung mass values at a top drive spin speed of 80 rpm for a PDC 

and roller-cone drillbit, respectively. Figures 5.37 and 5.38 illustrate vibration amplitude 

values versus rock formation stiffness when adding 15% sprung and unsprung mass to 

the original 87 tons BHA when the top drive is spinning at 80 rpm for a PDC and roller-

cone drillbit, respectively. 
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Figure 5.35: Effect of Added Sprung & Unsprung Mass on BHA Vibration (PDC 
Drillbit & Rock Stress = 80 MPa) 
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Figure 5.36: Effect of Added Sprung & Unsprung Mass on BHA Vibration (Roller-Cone 
Drillbit & Rock Stress = 80 MPa) 
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Figure 5.37: Effect of Added Sprung & Unsprung Mass on BHA Vibration (PDC 
Drillbit & Top Drive Spin Speed = 80 rpm) 
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Figure 5.38: Effect of Added Sprung & Unsprung Mass on BHA Vibration (Roller-Cone 
Drillbit & Top Drive Spin Speed = 80 rpm) 
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Finally, the PPMD is compared against a standard shock absorber at different 

values of spin speed and formation stiffness. Elsayed & Aissi [21] provide general 

guidelines for designing a shock absorber whose equation of motion is given as: 

 

( ) ( ). . WOBabs abs abs abs DC abs abs DCm x c x x k x x+ − + − = −       (5.1) 

 

The mass of the shock absorber is utilized in our numerical simulations is 200 kg 

and its performance is analyzed at values of formation stiffness of 80, 120 and 160 

MN/m over a spin speed range of 60 – 140 rpm. For each value of formation stiffness, 

the values of the shock absorber stiffness and damping were rigorously iterated in order 

to obtain the values that yielded optimum mitigation of the axial vibrations, as 

mentioned in Elsayed & Aissi [xx] that this selection should be made very carefully 

according to the operating conditions. The corresponding values of shock absorber 

natural frequency and damping ratio were 27 Hz – 0.29, 75 Hz – 0.42, and 185 Hz – 0.65 

for the values of formation stiffness of 80, 120 and 160 MN/m, respectively. The mass 

ratio, natural frequency, and damping ratio of the PPMD are kept constant at all 

conditions at values of 0.15, 30 rad/s (4.77 Hz) and 0.3, respectively. At each value of 

spin speed the original vibration is recorded and the percentage reduction is observed 

utilizing the PPMD, the shock absorber and both the PPMD and shock absorber 

installed. Tables 5.3, 5.4 and .55 show the observations for values of formation stiffness 

of 80, 120 and 160 MN/m, respectively. It can be clearly observed that this universal 

PPMD yields improved reductions in vibration amplitude than the standard shock 
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absorber and more mitigation is achieved if both the PPMD and shock absorber are 

implemented together. Hence the universal PPMD is very robust and requires no tuning 

for different operating conditions unlike the standard shock absorber that is very 

sensitive to changes in operating conditions. Moreover, installing the PPMD in a BHA 

that is already equipped with a standard shock absorber mitigates and suppresses axial 

and torsional vibrations even further and significantly improves drilling efficiency. 

 

Table 5.3: PPMD vs. Shock Absorber Comparison (Formation Stiffness = 80 MN/m) 

Spin Speed 

(rpm) 

Vibration 

Amplitude 

(mm/s) 

% Reduction 

(Shock 

Absorber) 

% Reduction 

(PPMD) 

% Reduction (Shock 

Absorber + PPMD) 

60 114 18.42 34.21 49.12 

70 93 18.28 29.03 53.76 

80 74 12.16 20.27 50.00 

90 48 22.92 97.92 99.79 

100 0.5 60.00 100.00 100.00 

110 0.2 100.00 100.00 100.00 

120 0.1 100.00 100.00 100.00 

130 0.1 100.00 100.00 100.00 

140 0.1 100.00 100.00 100.00 
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Table 5.4: PPMD vs. Shock Absorber Comparison (Formation Stiffness = 120 MN/m) 

Spin Speed 

(rpm) 

Vibration 

Amplitude 

(mm/s) 

% Reduction 

(Shock 

Absorber) 

% Reduction 

(PPMD) 

% Reduction (Shock 

Absorber + PPMD) 

60 120 6.67 31.67 43.33 

70 100 11.00 25.00 40.00 

80 86 12.79 19.77 37.21 

90 74 10.81 13.51 33.78 

100 41 4.88 26.83 34.15 

110 28 14.29 32.14 53.57 

120 2 75.00 90.00 100.00 

130 0.1 100.00 100.00 100.00 

140 0.1 100.00 100.00 100.00 
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Table 5.5: PPMD vs. Shock Absorber Comparison (Formation Stiffness = 160 MN/m) 

Spin Speed 

(rpm) 

Vibration 

Amplitude 

(mm/s) 

% Reduction 

(Shock 

Absorber) 

% Reduction 

(PPMD) 

% Reduction (Shock 

Absorber + PPMD) 

60 125 3.20 30.40 34.40 

70 116 12.07 28.45 37.07 

80 101 13.86 26.73 37.62 

90 87 14.94 26.44 36.78 

100 83 30.12 28.92 40.96 

110 77 33.77 42.86 46.75 

120 88 48.86 51.14 68.18 

130 57 31.58 98.25 100.00 

140 0.1 100.00 100.00 100.00 

 

 

5.3 Lateral-Axial-Torsional Coupling of Drillstring Dynamics 

As previously illustrated, the PPMD mitigates and can completely suppress bit-

bounce vibrations as well as reducing torsional vibrations of the drillbit. In this section, 

the capabilities of the PPMD are extended to help mitigate lateral vibrations by further 

adding lateral springs and dampers between the PPMD and the BHA. There are two 

main points on the BHA that there is lateral excitation: the center of mass at the 

midpoint of the BHA and at the bottom near the drillbit due to the lateral component of 
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WOB. Since the distance between the midpoint and the bottom endpoint of the BHA is 

100 m, one lateral PPMD installed at either locations is not enough, and hence at least 

two PPMDs are required to be installed; one at the center of mass and the other near the 

drillbit.  

 

The following simulation illustrates the effect of adding combined axial-lateral 

PPMD on the BHA with PDC drillbit penetrating a hard granite formation of rock stress 

170 MPa, when the top drive is spinning at 165 rpm. It is assumed in this simulation that 

the WOB is inclined at an angle of 3 degrees with respect to the BHA that has an 

unbalance of 435 kg.m. There are stabilizers at the top, middle, and bottom of the BHA, 

each with an equivalent damping of 600 N.s/m. Figure 5.39 shows the penetration of the 

drillbit with and without the PPMD, and Figure 5.40 is a zoom-in to illustrate the slight 

improvement achieved by extending the PPMD capabilities laterally. Figure 5.41 shows 

the axial velocity of the drillbit with and without the PPMD, and Figure 5.42 is a zoom-

in to illustrate the slight improvement achieved by extending the PPMD capabilities 

laterally. Figures 5.43 and 5.44 show the lateral orbits at the center of mass and the 

drillbit, respectively, before and after adding the PPMD. 
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Figure 5.39: Axial Penetration with & without PPMD 

 

 

90 92 94 96 98 100
1350

1400

1450

1500

1550

time (s)

x 
(m

m
)

 

 

NO PPMD
PPMD NO LATERAL
FULL PPMD

 

Figure 5.40: Zoom-In on Axial Penetration 
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Figure 5.41: Axial Penetration Velocity with & without PPMD 
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Figure 5.42: Zoom-In on Axial Penetration Velocity 
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Figure 5.43: BHA Orbit at the Center of Mass with & without PPMD 
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Figure 5.44: BHA Orbit near the Drillbit with & without PPMD 
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As for the lateral orbit at the center of mass, extending the PPMD to the lateral 

dimension eliminates the continuous rebounding but the BHA at that point tends to slide 

along the borehole. In this particular situation, the rate of change in lateral position is 

equal to the whirling speed, i.e. forward synchronous whirl. However, in other 

situations, the rate of change of in lateral position maybe in the opposite direction of the 

whirling speed, which would lead to backward whirl. Backward whirl is undesirable 

since it can lead to pure rolling contact that leads to harmful reverse bending vibration 

modes to be induced. Hence, in order to avoid this situation, the stabilizers damping 

coefficients can be increased to 30000 N.s/m, and hence borehole contact is completely 

avoided as shown in Figures 5.45 and 5.46. 
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Figure 5.45: Lateral Vibration Reduction at CG after Increasing Stabilizer Damping 
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Figure 5.46: Lateral Vibration Reduction near Drillbit after Increasing Stabilizer 
Damping 

 

 

The alternative solution would be for the drilling operator to use special 

downhole tools that are designed to promote forward whirl. One such tool is the V-

STAB asymmetric tool manufactured by National Oilwell Varco [54 – 55] that doesn’t 

have any mechanical moving parts, but its V-shaped blades are specially designed to 

produce contact reaction torques that force the BHA into forward whirl as shown in 

Figure 5.47. 
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Figure 5.47: V-STAB Asymmetric Tool by National Oilwell Varco [55] 

 

5.4 Downhole Flywheel Design & Levitation in BHA 

In Section 2.2, a step-by-step sizing procedure was presented in order to 

determine the downhole flywheel dimensions and maximum spin speed, in addition to 

the dimensions of the containment vessels, given the downhole conditions, geometric 

constraints, and desired power to be stored. The desired energy to be stored is one kW.hr 

and the flywheel is to be embedded in a 9 inch BHA assembly that allows for at least a 3 



 92 

inch inner diameter for mudflow, and operating at a downhole pressure of 30 kpsi. 

Output sizing data after applying this procedure is presented in Table 5.6. 

 

Table 5.6: Output Sizing Data for Flywheel & Containment Vessels 

Output Data Value 

Flywheel Inner Diameter 4.9” 

Flywheel Outer Diameter 6.9” 

Flywheel Length 4.4 ft 

Flywheel Maximum Spin Speed 30,000 rpm 

Flywheel Mass 132 kg 

Flywheel Unbalance Eccentricity 5e-6 m 

Outer Container Outer Diameter 9” 

Outer Container Inner Diameter 7.2” 

Inner Container Outer Diameter 3.7” 

Inner Container Inner Diameter 3” 

 

Given the parameters of each component in the magnetic levitation closed-

control-loop, the stabilizing proportional and derivative gains can be evaluated over a 

range of equivalent AMB stiffness and damping. In order to make the flywheel less 

vulnerable to the downhole vibrations, the gains must be increased in order to achieve 

high values of stiffness and damping. On the other hand, saturation and noise reduction 

require lower controller gains. Hence, one must obtain a chart of stable operating points 
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according to the eigenvalues obtained from Equation 2.31. The stabilizing controller 

gains and their corresponding stiffness and damping are illustrated in Figures 5.48 and 

5.49, respectively.  

 

The equivalent AMB stiffness and damping can be obtained from Equations 5.2 

and 5.3, respectively. 

.. .AMB p i PA s XK G K K K K= +         (5.2) 

. . .AMB d i PA sC G K K K=          (5.3) 

 

 

 

 

Figure 5.48: Stabilizing PD Controller Gains 
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Figure 5.49: Stable Equivalent AMB Stiffness & Damping Values 

 

The flywheel must maintain levitation and avoid hitting the catcher bearings due 

to the disturbance caused by the external downhole vibrations, in addition to the mass 

unbalance of the flywheel rotor. Equation 2.31 is numerically integrated to determine the 

time response of all components and sub-systems. The simulation parameters are listed 

in Table 5.7. 
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Table 5.7: Simulation Parameters for Flywheel Embedded in BHA 

Parameter Description Parameter Symbol Numerical Value 

Controller Proportional Gain Gp 0.75 (Radial) 

6 (Axial) 

Controller Derivative Gain Gd 0.0024 (Radial) 

0.00181 (Axial) 

Controller Time Constant τpd 1/13000 

Forward Power Amplifier Gain kPA 942 

Feedback Power Amplifier Gain γ 0.997 

Overall Power Amplifier Gain KPA 1 

Coil Inductance L 0.15 H 

Coil Resistance R 2 Ohms (Radial) 

2.4 Ohms (Axial) 

Coil Voltage Saturation Limit Vsat 150 V 

Coil Current Saturation Limit Isat 20 A 

AMB Current Stiffness Ki 1400 N/A (Radial) 

1450 N/A (Axial) 

AMB Position Stiffness Kx ˗7.609x106 N/m (Radial) 

˗ 10x106 N/m (Axial) 

Feedback Sensor Gain KS 7840 V/m 

Sensor Time Constant τps 1/31000 
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Table 5.7 Continued 

Flywheel Rotation Speed ωFW 30,000 rpm 

BHA Effective Mass md 0.87e5 kg 

Applied Axial Load W0 100 kN 

Top Drive Spin Speed ωd 180 rpm 

BHA Torsional Stiffness-to-Ground kT 600 N.m/rad 

BHA Torsional Damping-to-Ground cT 500 N.s.m/rad 

Rock Formation Stiffness kc 100 MN/m 

Drillbit Radius a 0.15 m 

Mean Friction Coefficient μ0 0.06 

ROP Factor c1 1.35e-8 

ROP Factor c2 -1.9e-4 

 

 

Figures 5.50 and 5.51 show the lateral orbits of the relative displacements at each 

magnetic bearing and it can be noted that the maximum relative displacement is less than 

the 0.35 mm catcher bearing clearance value. 
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Figure 5.50: Relative Lateral Orbit at Magnetic Bearing A 
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Figure 5.51: Relative Lateral Orbit at Magnetic Bearing B 
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The BHA lateral orbits where the magnetic bearings are attached are illustrated 

in Figures 5.52 and 5.53. 
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Figure 5.52: BHA Lateral Orbit at Magnetic Bearing A 
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Figure 5.53: BHA Lateral Orbit at Magnetic Bearing B 
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The tricone drillbit axial velocity is shown in Figure 5.54 and Figure 5.55 shows 

the relative axial displacement at the axial magnetic bearing, demonstrating that the 

flywheel maintains axial levitation due to bit-bounce. 
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Figure 5.54: Drillbit Axial Velocity 
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Figure 5.55: Relative Clearance at Axial Magnetic Bearing 
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Figures 5.56 through 5.57 show the controller voltages, AMB coil currents, 

power amplifier voltages, and AMB actuation forces, respectively, for each of the five 

axes of the magnetic levitation control system. 
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Figure 5.56: Controller Voltages for Each Control Axis 
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Figure 5.57: AMB Coil Current per Axis 
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Figure 5.58: Power Amplifier Voltage per Axis 
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Figure 5.59: AMB Actuation Forces per Axis 
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It is to be mentioned that a notch filter, tuned at a frequency of 500 Hz with a 

quality factor of 20 was utilized in order to mitigate the high frequency component 

especially with respect to the power amplifier current. There are two harmonics in the 

response; a low frequency component of 0.8 Hz due to the external excitation on the 

BHA, and a high frequency component of 500 Hz due to the mass unbalance of the 

flywheel rotating at 30,000 rpm. Adding a low-pass filter will eliminate the high 

frequency component but will destabilize the system, and thus a notch filter tuned at the 

same frequency of the excitation source, i.e. 500 Hz corresponding to the 30,000 rpm 

spin rate of the flywheel would be the alternative. 

 

In order to demonstrate the robustness of the magnetic levitation control system, 

a destabilizing lateral cross-coupling stiffness component is introduced at the BHA 

where the AMBs are fixed in order to induce a chaotic orbit. Figures 5.60 and 5.61 show 

the lateral orbits of the BHA at both bearing locations, and Figures 5.62 and 5.63 show 

the relative lateral orbits and it can be observed that the maximum relative lateral 

displacement doesn’t exceed the proposed clearance of 0.35 mm. By doubling the values 

of the proportional and derivative gains of the controller on the radial axes, the size of 

the relative orbit can be further reduced to approximately 0.1 mm as shown in Figures 

5.64 and 5.65. The controller voltages, AMB coil currents, power amplifier voltages, and 

AMB actuating forces are shown in Figures 5.66 through 5.69, respectively. 
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Figure 5.60: BHA Lateral Orbit at Bearing A (Destabilizing Case) 
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Figure 5.61: BHA Lateral Orbit at Bearing B (Destabilizing Case) 
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Figure 5.62: Relative Lateral Orbit at Bearing A (Destabilizing Case) 
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Figure 5.63: Relative Lateral Orbit at Bearing B (Destabilizing Case) 
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Figure 5.64: Reduced Relative Lateral Orbit at Bearing A (Destabilizing Case) 
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Figure 5.65: Reduced Relative Lateral Orbit at Bearing B (Destabilizing Case) 
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Figure 5.66: Controller Voltages per Axis (Destabilizing Case) 
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Figure 5.67: AMB Coil Currents per Axis (Destabilizing Case) 
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Figure 5.68: Power Amplifier Voltages per Axis (Destabilizing Case) 
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Figure 5.69: AMB Actuation Forces per Axis (Destabilizing Case) 
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By adding a 5 mV random noise signal at the sensor, the power amplifier voltage 

is still below the 150 V saturation limit but the response of the system remains almost 

unchanged. Figures 5.70 – 5.72 show that plots of the controller voltage, power amplifier 

current, and AMB actuating forces respectively. Figures 5.73 and 5.74 show the plot of 

the power amplifier voltage when the values of the controller gains after and before 

being doubled, respectively. 
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Figure 5.70: Controller Voltage after Adding 5 mV Sensor Noise 
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Figure 5.71: AMB Coil Current after Adding 5 mV Sensor Noise 
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Figure 5.72: AMB Actuating Forces after Adding 5 mV Sensor Noise 
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Figure 5.73: Power Amplifier Voltage with Noise after Doubling Controller Gains 
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Figure 5.74: Power Amplifier Voltage with Noise before Doubling Controller Gains 
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5.5 Extension of Flywheel Capabilities to Act as APMD 

Previously it was demonstrated that a passive proof mass damper whose mass 

can be determined according to the mass of the BHA, can mitigate and suppress bit-

bounce vibrations, as well as mitigating torsional vibrations. Moreover, it was also 

demonstrated that an embedded flywheel inside the BHA can successfully maintain 

levitation during bit-bounce and stick-slip vibrations, as well as lateral vibrations. It can 

be noted that the equivalent AMB stiffness and damping values are equal to or greater 

than those utilized in the PPMD. Thus, if a number of flywheel modules are installed 

such that the their total mass is approximately 7 – 15 % of the BHA mass, the flywheels 

can act as active proof-mass-dampers (APMD) via the action of the axial AMB in order 

to mitigate/suppress bit-bounce vibrations. Hence, the idea of conceiving an APMD is 

possible for light BHAs utilized in drilling softer rock formations, since the mass of each 

flywheel is 132 kg. In the following example, a light BHA weighing 8500 kg is utilized 

to drill a soft formation of stiffness 25 MN/m (44 MPa rock cutting stress) using a PDC 

drillbit, and the top drive is spinning at 170 rpm. Figures 5.75 and 5.76 show the axial 

and rotary spin velocities of the drillbit, respectively, before adding proof-mass-

damping. In order to suppress the vibrations, 4 flywheel modules are added, each 

module contributes equivalent stiffness and damping values of 5.8e7 N/m and 2e4 

N.s/m, respectively, in the axial direction by using the controller gains listed in Table 

5.4. A lumped mass model was utilized in the simulation by taking into consideration the 

dynamics of the power amplifier. Figures 5.77 and 5.78 show the axial and rotary 

speeds, respectively of the drillbit after adding the 4 flywheel modules. Figure 5.79 
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shows the relative displacement between each flywheel and the BHA, and it can be seen 

that the maximum displacement is less than 0.3 mm (i.e. less than the 0.35 mm catcher 

bearing clearance). 
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Figure 5.75: Axial Velocity of the Drillbit before Adding the APMD 
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Figure 5.76: Rotary Velocity of the Drillbit before Adding the APMD 
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Figure 5.77: Axial Velocity of Drillbit after Adding APMD 
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Figure 5.78: Rotary Velocity of Drillbit after Adding APMD 
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Figure 5.79: Absolute Relative Displacement after Adding APMD 

 

The axial AMB coil current, actuator force, and power amplifier voltage are 

shown in Figures 5.80 through 5.82, respectively. 
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Figure 5.80: Axial AMB Coil Current after Adding APMD 
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Figure 5.81: Axial Actuating Force after Adding APMD 
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Figure 5.82: Power Amplifier Voltage (Axial Axis) after Adding APMD 
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6. CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

Based upon the study, findings, and results the following can be concluded: 

a) Embedding a downhole flywheel inside a BHA in order to replace existing lithium-

ion battery packs is possible, given the geometric and environmental constraints. In 

this study, a flywheel was sized to be fitted in a 9” OD BHA allowing 3” of 

mudflow, and operating at a downhole pressure of 30 kpsi. The downhole flywheel 

can store 1 kW.hr of kinetic energy that is converted to electric energy by 

decelerating from a maximum speed of 30,000 rpm to a minimum of 10,000 rpm. 

 

b) The magnetic levitation control system can continuously maintain the suspension of 

the flywheel within the 0.35 mm clearance circle of the catcher bearings due to axial 

and lateral excitations. The proportional and derivative gains of the controller can be 

further increased to limit the maximum relative motion of the flywheel with respect 

to the BHA to 0.12 mm or less, allowing for more sustainability under extreme 

downhole vibrations. 

 

c) Increasing the controller gains will increase the equivalent stiffness and damping of 

the AMBs and hence the downhole flywheel is able to withstand severe vibrations 

but at the same time, this may lead to an increase in coil current and voltage across 

the power amplifier that can lead to saturation. Thus, optimum values of proportional 

and derivative gains must be utilized to effectively tolerate the severe downhole 
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vibrations, in addition to avoiding coil current and power amplifier voltage 

saturation. 

 

d) The design of an axial passive proof-mass-damper (PPMD) was developed in order 

to mitigate and suppress bit-bounce vibrations, in addition to reducing the torsional 

BHA vibrations, since the drillbit cutting dynamics couple the axial and torsional 

modes. At lower values of top drive spin speeds, the BHA is susceptible to axial and 

torsional vibrations, especially when utilizing PDC drilbits, where the associated 

time-delay value is high which increases the negative damping in the system leading 

to an instability in the form of limit cycle oscillations. Vice versa, at higher values of 

top drive speeds, these coupled axial and torsional vibrations disappear and a PPMD 

may not be needed. 

 

e) The value of PPMD sprung-mass needed to suppress bit-bounce at lower values of 

top drive speeds is less than that of adding additional drill-collar sections to the 

existing BHA (unsprung-mass case). At very low speeds the ratio of unsprung to 

sprung mass can be as high as 3, and this ratio decrease by increasing top drive 

speeds until neither sprung nor unsprung mass are needed. The values of the PPMD 

sprung mass were selected to be between 10 – 30 % of the original BHA mass. 

Drilling at lower top drive spin speeds is desirable as it requires less power to operate 

especially if the available power is limited and higher top drive speeds may not be 

feasible. 
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f) The values of the mass, stiffness, and damping of the PPMD can be tuned to 

completely suppress bit-bounce and torsional vibrations. Results indicated robustness 

of using a universal type PPMD with constant natural frequency and damping ratio 

to mitigate bit-bounce and torsional vibrations over a wide range of operating top 

drive spin speeds as well as rock formation stiffness values and types. Tables 6.1 – 

6.4 summarize the results obtained and the effectiveness of the PPMD over a wide 

range of values formation stiffness for both PDC and tricone drillbits. 

  

g) The optimization and tuning of the PPMD can either be performed by numerical 

integration of the equations of motion or via utilizing the Cheyshev spectral method 

technique described by evaluating the eigenvalues of the system that incorporates the 

induced time-delay through the PDC drillbit cutting dynamics. The Chebyshev 

spectral method is much faster compared to numerical integration, and extra 

thousands of possible mass, damping, and stiffness can be scanned during the same 

period it takes to iterate through a number of a limited number of operating points by 

numerical integration. 

 

h) The Chebyshev spectral method enables the fast determination of stable operating 

points over a wide range of conditions and thus stability operating charts can be 

obtained efficiently in much reduced computational time. The stability chart 

produced in this study was obtained in less than 45 minutes whilst it would have 
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taken over 100,000 hours to scan 1.2 million possible operating points via numerical 

integration, especially for systems with extended degrees of freedom. 

 

i) The validity of the Chebyshev spectral method was verified by simulating the 

system’s performance through numerical integration of the equations of motion 

under the same operating conditions, and there was an agreement between the cutoff 

stable top drive spin speed, effectiveness of PPMD, as well as the frequency and 

periodic time of the limit cycle oscillations. 

 

j) Adding a torsional degree of freedom to PPMD didn’t affect the stability of the 

system either in a positive or a negative manner. 

 

k) The study addressed a new type of coupling between the lateral, axial and torsional 

modes of vibration of the drillstring due to the inclination of the rock formation 

reaction (or WOB) with respect to the BHA axis, and to the best of knowledge, there 

is no work in the literature that specifically addressed this issue, and the only lateral 

axial coupling mentioned was that due to buckling. Even for small inclination angles, 

a rock formation reaction average value of 100 kN will yield a lateral component of 

1.75 – 8.75 kN for inclinations of 1 – 5 degrees, respectively. 

 

l) Extending the PPMD to the lateral dimension yielded mitigation of lateral vibrations 

either at the center of gravity of the BHA or near the drillbit. Since the distance 
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between the center of gravity and the drillbit is over 300 feet, two lateral PPMD must 

be utilized in order to reduce the size of the lateral orbit at each location since the 

excitation at the center of gravity is due to the mass unbalance, and that at the drillbit 

is due to the lateral component of the WOB. 

 

m) It is strongly recommended to use addition stabilizers that provide addition damping 

to ground if a lateral PPMD is utilized in order to avoid whirling of the BHA. If the 

whirling is of backward type, there will be rolling contact between the BHA and the 

wellbore that will lead to undesirable reverse bending in the drillstring. 

 

n) The concept of the proof-mass-damping was expanded to the flywheel in order to 

achieve an active proof-mass-damper (APMD) whose equivalent stiffness and 

damping values can be tuned by adjusting the proportional and derivative controller 

gains, respectively, especially that these stiffness and damping values are equal to or 

greater than those utilized in the PPMD. Since the flywheel mass is small (less than 

150 kg), multiple modules could be embedded in a light BHA such that the 

combined flywheel modules mass is approximately 7 – 15 % of the original BHA 

mass. 

 

o) Simulations indicated that the proposed APMD successfully suppressed bit-bounce 

and torsional vibrations of a light-weight BHA drilling through a soft formation. 
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Four flywheels modules were utilized and their combined mass was 6.5 % of the 

original weight of the BHA. 

 

p) Utilizing high proportional and derivative controller gains in order to achieve an 

APMD and at the same time avoid axial catcher bearing collision yielded an AMB 

coil current below the saturation limit of 20 A but there some transient voltage 

saturation across the power amplifier. 

 

Table 6.1: Drillstring Original Axial Vibration (PDC Drillbit) 

Spin 
Speed 
(rpm) 

Formation Stiffness 
= 80 MN/m 

Formation Stiffness 
= 120 MN/m 

Formation Stiffness = 
160 MN/m 

Vibration Amplitude 
(mm/s) 

Vibration 
Amplitude (mm/s) 

Vibration Amplitude 
(mm/s) 

60 114 120 125 

70 93 100 116 

80 74 86 101 

90 48 74 87 

100 0.5 41 83 

110 0.2 28 77 

120 0.1 2 88 

130 0.1 0.1 57 

140 0.1 0.1 0.1 
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Table 6.2: Axial Vibration Percentage Reduction Utilizing PPMD (PDC Drillbit) 

Spin 
Speed 
(rpm) 

PPMD
/BHA 
Mass 
Ratio 

Formation Stiffness = 
80 MN/m 

Formation Stiffness =  
120 MN/m 

Formation Stiffness = 
160 MN/m 

0.15 0.2 0.25 0.15 0.2 0.25 0.15 0.2 0.25 

60 34.2 38.60 43.86 31.67 34.17 37.50 30.40 38.40 43.20 

70 29.1 33.33 48.39 25.00 27.00 30.00 28.45 35.34 41.38 

80 20.2 25.68 95.95 19.77 22.09 38.37 26.73 31.68 35.64 

90 97.9 98.96 99.79 13.51 32.43 35.14 26.44 29.89 33.33 

100 100 100 100 26.83 48.78 68.29 28.92 32.53 38.55 

110 100 100 100 32.14 57.14 98.21 42.86 54.55 61.04 

120 100 100 100 90.00 95.00 100 51.14 65.91 71.59 

130 100 100 100 100 100 100 98.25 99.12 100 

140 100 100 100 100 100 100 100 100 100 
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Table 6.3: Drillstring Original Axial Vibration (Roller-Cone Drillbit) 

Spin 
Speed 
(rpm) 

Formation Stiffness 
= 80 MN/m 

Formation Stiffness 
= 120 MN/m 

Formation Stiffness 
= 160 MN/m 

Vibration 
Amplitude (mm/s) 

Vibration 
Amplitude (mm/s) 

Vibration 
Amplitude (mm/s) 

60 65 62 55 

70 66 65 57 

80 68 66 58 

90 70 68 60 

100 73 72 62 

110 76 74 64 

120 79 78 66 

130 82 80 68 

140 85 82 70 
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Table 6.4: Axial Vibration Percentage Reduction Utilizing PPMD (Roller-Cone Drillbit) 

Spin 
Speed 
(rpm) 

PPMD
/BHA 
Mass 
Ratio 

Formation Stiffness  
= 80 MN/m 

Formation Stiffness  
= 120 MN/m 

Formation Stiffness 
 = 160 MN/m 

0.15 0.2 0.25 0.15 0.2 0.25 0.15 0.2 0.25 

60 76.92 81.54 84.62 85.48 90.32 93.55 94.55 96.36 98.18 

70 77.27 80.30 83.33 86.15 90.77 93.85 94.74 96.49 98.25 

80 76.47 77.94 82.35 84.85 89.39 92.42 94.83 96.55 98.28 

90 75.71 77.14 80.00 85.29 89.71 92.65 93.33 95.00 96.67 

100 75.34 78.08 80.82 84.72 88.89 91.67 93.55 95.16 96.77 

110 73.68 76.32 78.95 85.14 89.19 90.54 93.75 95.31 96.88 

120 73.42 75.95 78.48 84.62 88.46 91.03 92.42 93.94 95.45 

130 73.17 75.61 76.83 85.00 88.75 90.00 92.65 94.12 95.59 

140 70.59 72.94 76.47 84.15 87.80 90.24 92.86 94.29 95.71 
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6.2 Future Work 

The work and results obtained from this study can be extended but not limited to: 

a) Building and testing a lab prototype of the proposed downhole flywheel concept and 

comparing the performance of the flywheel in the lab with the simulations based on 

the model stated in this study. 

 

b) Developing an advanced prototype of the proposed downhole flywheel concept for 

field testing in a deep oil well and comparing the performance of the flywheel in the 

field with that in the lab and also with the simulations based on the integrated 

flywheel – BHA model developed in this study. 

 

c) Developing advanced control laws for the magnetic levitation system that include 

nonlinear control and artificial intelligence such as neural networks, fuzzy logic and 

neuro-fuzzy especially with the very recent advancement and development of 

embedded digital systems that can withstand extreme high temperatures and 

pressures. 

 

d) Development and further optimization of the flywheel and magnetic bearing design 

and parameter values using advanced optimization methods or genetic algorithms. 
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e) Development of a lab test rig to measure and quantify reaction forces and torques 

induced on drillbits to further enhance the drillbit cutting dynamics models utilized 

in this study. 

 

f) Building and testing a lab prototype for the proposed passive proof-mass-damper 

(PPMD) and comparing the performance of the flywheel in the lab with the 

simulations based on the model stated in this study. 

 

g) Developing an advanced prototype of the proposed PPMD concept for field testing 

in a deep oil well and comparing the performance of the PPMD in the field with that 

in the lab and also with the simulations based on the model developed in this study. 

 

h) Performing advanced bifurcation and stability analysis of the time-delay differential 

equations that contribute to the bit-bounce and stick-slip dynamics. 

 

i) Extension of this study to directional and horizontal drilling. 

 

j) Extending the concepts and theory developed and applied in this study to other 

applications that operate in extreme environment such as fighter aircraft and 

submarines. 
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