
HARDWARE ARCHITECTURE FOR SEMANTIC COMPARISON

A Dissertation

by

SUNEIL MOHAN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2012

Major Subject: Computer Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/9069415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

HARDWARE ARCHITECTURE FOR SEMANTIC COMPARISON

A Dissertation

by

SUNEIL MOHAN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Rabi N. Mahapatra
Committee Members, Riccardo Bettati

Deepa Kundur
Duncan M. Walker

Head of Department, Duncan M. Walker

May 2012

Major Subject: Computer Engineering

iii

ABSTRACT

Hardware Architecture for Semantic Comparison. (May 2012)

Suneil Mohan, B.E, Anna University, Chennai, India

Chair of Advisory Committee: Dr. Rabi N. Mahapatra

Semantic Routed Networks provide a superior infrastructure for complex search

engines. In a Semantic Routed Network (SRN), the routers are the critical component

and they perform semantic comparison as their key computation. As the amount

of information available on the Internet grows, the speed and efficiency with which

information can be retrieved to the user becomes important. Most current search

engines scale to meet the growing demand by deploying large data centers with

general purpose computers that consume many megawatts of power. Reducing the

power consumption of these data centers while providing better performance, will

help reduce the costs of operation significantly.

Performing operations in parallel is a key optimization step for better perfor-

mance on general purpose CPUs. Current techniques for parallelization include

architectures that are multi-core and have multiple thread handling capabilities.

These coarse grained approaches have considerable resource management overhead

and provide only sub-linear speedup.

This dissertation proposes techniques towards a highly parallel, power efficient ar-

chitecture that performs semantic comparisons as its core activity. Hardware-centric

parallel algorithms have been developed to populate the required data structures

followed by computation of semantic similarity. The performance of the proposed

design is further enhanced using a pipelined architecture. The proposed algorithms

were also implemented on two contemporary platforms such as the Nvidia CUDA

and an FPGA for performance comparison. In order to validate the designs, a seman-

iv

tic benchmark was also been created. It has been shown that a dedicated semantic

comparator delivers significantly better performance compared to other platforms.

Results show that the proposed hardware semantic comparison architecture de-

livers a speedup performance of up to 105 while reducing power consumption by 80%

compared to traditional computing platforms. Future research directions including

better power optimization, architecting the complete semantic router and using the

semantic benchmark for SRN research are also discussed.

v

DEDICATION

To my parents

vi

ACKNOWLEDGMENTS

Completing my PhD and writing this dissertation would not have been possible

without the guidance, help and support of many individuals who in their unique

ways helped me through my time in graduate school. It is a pleasure to be able

to convey my gratitude to you all. Forgive me, if due to an extremely unfortunate

oversight, I miss someone.

First and foremost, my utmost gratitude and thanks are due to my advisor Dr.

Rabi Mahapatra. Without his valuable guidance, support and advice, none of this

would have been possible. He has been my advisor, mentor and role model through-

out my time here at Texas A & M.

I gratefully acknowledge the contributions of my advisory committee members

Dr. Hank Walker, Dr. Riccardo Bettati and Dr. Deepa Kundur for their valuable

feedback and guidance at critical points that enabled the successful completion of

my research and my PhD.

I would not have been here if it had not been for my family. Thank to my parents

for their support, prayers and advice in immeasurable quantities. To my extended

family who believed that I could ‘do it’ even when I had serious doubts about the

whole grad school endeavor, thank you for believing in me. I appreciate you listening

to me rant and supporting me in so many ways over the years.

Many thanks go to my present and former colleagues at the Embedded Systems

and Codesign Group including Aalap, Nikhil, Suman, Ron, Jason & Jagannath. You

have helped me in everything from debugging code to proof reading papers to sharing

in my joys and sorrows through graduate school.

I’ve been fortunate to have a close group of friends who have been there for me in

more ways than I can individually list: Thank you Parikshith, Swetha, Kymberleigh,

Swati, Vinodh, Lilian, Emily, Amy, Ram, Siva, Ayan, Nur, Suresh & Arun . You’ve

been there for me when I needed someone to talk to and given me much needed

vii

support and encouragement. I cannot thank you all enough. A special thank you to

Parikshith for being an amazing house-mate who was always there to support me,

listen to me rant, be a role model and not drive me up the wall. As I heard horror

stories about other people’s weird house-mates, I was always grateful that we had a

calm setup. To the members of the Phorum, I thank you for your everlasting support

and encouragement through some of the toughest times.

The staff of the Department of Computer Science and Engineering deserve a spe-

cial thank you. Thank you Dave, Jeremy, Tony and the rest of CSG for helping me

with computers and related technical support. Thank you Adrienne and Lindsay

for answering patiently the many questions that I’ve posed to you over the years.

Thank you Tina, Marilyn, Sybil, Lisa and the rest of the Advising, Accounting and

Administrative staff of the department for helping me with various issues. Thank

you Bruce for handling the logistics including packages, keys and other facility man-

agement issues that I’ve approached you with. Thank you all for answering the many

hundreds of questions that I must have asked each of you personally over time.

Thank you Dr. Mahapatra, Dr. Hurley, Dr. Walker, Dr. Bettati and Dr.

Sarin for having me as your Teaching Assistant over the many semesters. It was

an incredible experience that I would not trade for another. Thank you also to my

students from the various classes. You guys taught me a whole lot and introduced me

to the American undergraduate culture in a way that would not have been possible

otherwise.

Finally, I would like to thank the many more people who have contributed towards

my ability to reach this stage in my education. I would like to thank you and

apologize for not being able to name you individually as I would have liked to; you

did play an important role in my ability to complete my PhD.

viii

NOMENCLATURE

API Application Programming Interface

BF Bloom Filter

CAM Content Addressable Memory

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DFF D Flip Flop

FPGA Field Programmable Gate Array

NIH National Institute of Health

Pfalse+ve Probability of False Positive

RAM Random Access Memory

SoC System On Chip

SIMD Single Instruction Multiple Data

SRN Semantic Routed Network

TF-IDF Term Frequency - Inverse Document Frequency

UMLS Unified Medical Language System

ix

TABLE OF CONTENTS

Page

ABSTRACT . iii

DEDICATION . v

ACKNOWLEDGMENTS . vi

NOMENCLATURE . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xii

LIST OF FIGURES . xiii

1. INTRODUCTION . 1

2. BACKGROUND AND RELATED WORK 7

2.1 Semantic Routing . 7
2.2 Semantic Routed Networks . 7

2.2.1 Overview . 7
2.2.2 Methods and Techniques Involved in SRN 9
2.2.3 Application of SRN to Search Engines 11

2.3 Vector Based Semantic Comparison 15
2.4 Challenge in Dot Product Computation 16
2.5 Bloom Filter Basics . 17

2.5.1 Element Insertion . 17
2.5.2 Membership Testing . 18

2.6 FNV Algorithm . 20
2.6.1 Overview . 20
2.6.2 Algorithm & Relevant Parameters 20
2.6.3 Standard Values of Key Parameters 21

3. OVERVIEW OF SEMANTIC COMPARISON 22

3.1 Semantic Descriptor . 22
3.2 Semantic Comparison . 24
3.3 Architectural Overview of Semantic Comparator 26

3.3.1 Working . 26

x

Page

4. CREATION OF REQUIRED DATA STRUCTURES 29

4.1 Description of the Data Structures 29
4.2 Algorithm to Populate the Data Structures 31

4.2.1 Consolidation of Bloom Filters 32
4.3 Results . 32

4.3.1 Analysis of Hash functions Used for BF Index Generation . . . 32
4.3.2 Power Draw by Stages-A & B 34
4.3.3 Timing Calculations . 35

5. COMPUTATION OF COSINE SIMILARITY 37

5.1 Introduction . 37
5.2 Overview of the Parallel Algorithm 38
5.3 Overview of Hardware Implementation 38
5.4 Common Vector Identification . 39
5.5 Extraction of Coefficients . 40
5.6 Multiplication and Summation . 41
5.7 Scheduling Logic . 42

5.7.1 Design of the Scheduler . 44
5.7.2 Overview of Scheduler operation 45
5.7.3 Design & Operation of Global Allocator 46
5.7.4 Design & Operation of Address Selector 47

5.8 Timing Analysis . 48
5.8.1 Overall Timing Analysis . 49

5.9 Power Figures . 50
5.10 Overall Results . 50

5.10.1 Comparison with Server Class Processor 50
5.10.2 Power Consumption per Functional Block 53
5.10.3 Comparison with Other Hardware Designs 54
5.10.4 Overall Execution Time . 55
5.10.5 Variation of Number of Basis Vectors 56
5.10.6 Variation in Speedup with Similarity 56
5.10.7 Variation in Timing due to Number of CAM Units 57
5.10.8 Variation in Timing due to Number of Multiplier Units 57

6. PERFORMANCE ENHANCEMENTS AND ALTERNATIVE IMPLE-
MENTATIONS . 59

6.1 Pipelining . 59
6.1.1 Implementation . 59
6.1.2 Operation . 61
6.1.3 Results . 62

xi

Page

6.2 CUDA Implementation . 63
6.2.1 Introduction to CUDA . 63
6.2.2 Overview of CUDA Architecture 64
6.2.3 Phases Involved in Semantic Comparison on CUDA 65
6.2.4 Phase A: Host-PC to CUDA Global Memory Copy 67
6.2.5 Phase B: Encode Table-1 in BF 68
6.2.6 Phase C: Encode Table-2 and Test in BF 69
6.2.7 Phase-D: Extract Coefficients and Parallel Reduction 70
6.2.8 Experimental Setup . 72
6.2.9 Results . 75

6.3 FPGA Implementation . 78
6.3.1 Implementation Details . 78
6.3.2 Results . 79

7. CREATION OF A SEMANTIC BENCHMARK 81

7.1 Need for a Semantic Benchmark . 81
7.2 Comparison with Other Benchmarks 82
7.3 Description of Corpus . 82
7.4 Components of the Semantic Benchmark 83

8. CONCLUSIONS AND FUTURE WORK 85

8.1 Future Work . 85
8.2 Conclusion . 87

REFERENCES . 88

VITA . 95

xii

LIST OF TABLES

TABLE Page

2.1 Values of FNVprime for Different Sizes of n 21

2.2 Values of offset basis for Different Sizes of n 21

4.1 Some Possible Variations of Hash Functions 33

4.2 Power Draw by One Instance of the FNV module 34

4.3 Overall Power Draw by Stages A & B . 35

5.1 Power Figures for Computation of Cosine Similarity 50

5.2 Superior Performance of Hardware Design 53

5.3 Power Consumed by Each Functional Block 54

5.4 Speedup Comparison with Other Hardware Designs 55

6.1 Comparative Results between Pipelined and Non-Pipelined Designs . . . 62

6.2 Baseline Power Figures . 74

6.3 Execution Times of GPU and CPU . 76

6.4 Energy Consumption for Different Table Sizes 77

6.5 FPGA Resource Utilization . 80

6.6 FPGA Power Consumption . 80

7.1 Datasets in Semantic Benchmark Suite 84

xiii

LIST OF FIGURES

FIGURE Page

2.1 Abstract Model of a Semantic Routed Network 8

2.2 Semantic Routing Table . 10

2.3 Routing Table Optimization . 12

2.4 Architecture of a Typical Search Engine 13

2.5 Search Engine with SRN Integrated . 14

2.6 Tensor Model of Semantic Comparison 16

2.7 Bloom Filter : Insertion . 18

2.8 Bloom Filter : Membership Testing . 18

3.1 Concept Trees of Two Sentences . 23

3.2 Conversion of Concept Tree into Tensor Representation 23

3.3 Tabular Form of Semantic Descriptor . 24

3.4 Sequence of Steps for Semantic Comparison 25

3.5 Overall Stages of Processing . 27

4.1 Stages Involved in Generating Data Structures 29

4.2 Components of Data Structure . 30

4.3 Populating the Data Structure . 30

4.4 Bloom Filter Index Generation . 31

4.5 Bloom Filter Consolidation . 32

5.1 Stages Involved in Cosine Similarity Computation 37

xiv

FIGURE Page

5.2 Steps of Computing Cosine Similarity . 39

5.3 Identification of Common Basis Vectors 40

5.4 Extraction of Coefficients . 41

5.5 Multiplication and Summation. 42

5.6 Location of Scheduler-1 between Stages C & D 43

5.7 Internal Structure of the Scheduler . 44

5.8 Timing Diagram of the Scheduler . 45

5.9 Details of Global Allocator . 46

5.10 Details of Address Selector . 47

5.11 State Diagram of BitMask Cell . 48

5.12 Comparison of Speedup Against Other Hardware Designs 54

5.13 Variation in Number of Clock Cycles between Proposed Hardware and
Traditional Processor . 56

5.14 Variation in Execution Time due to Number of Basis Vectors 56

5.15 Variation of Speedup with Variation in Similarity 57

5.16 Variation in Execution Time due to Number of CAM Units 57

5.17 Variation in Execution Time due to Number of Multiplier Units 58

6.1 Overall Architecture with Pipeline Enabled 60

6.2 Block Diagram of Pipeline Controller . 61

6.3 CUDA Logical Layout . 65

6.4 CUDA Memory Model . 66

xv

FIGURE Page

6.5 Copying Tables into CUDA Memory . 68

6.6 Encoding Elements of Table-1 using Concurrent Kernels 69

6.7 Encoding Elements of Table-2 using Concurrent Kernels 70

6.8 Extracting Coefficients and Performing Parallel Reduction 71

6.9 Alternative Methods of Performing Extraction of Common Coefficients . 72

6.10 Setup for Power Profiling . 73

6.11 Dynamic Power Consumption . 77

6.12 Architecture of FPGA Implementation 78

6.13 Schematic of Fixed Priority Arbiter . 79

6.14 Area Usage on the FPGA for Varying Number of Rows 80

7.1 Sample of Corpus from UMLS Semantic Network 83

7.2 Sample of Tensors after Processing UMLS Corpus 83

1

1. INTRODUCTION

Searching for information has become an important activity on the Internet and

other information systems. At present the world wide consumption of the web search

as a service is estimated to be 13 billion search queries per month and growing at

38% annually [1].

Users increasingly expect that search engines provide intelligent and relevant

matches. For example, when they enter a search term such as healthy lifestyle;

they expect that articles and web-links that cover a broad range of topics related

to a healthy lifestyle such as balanced diet, exercise and time management be made

available to them.

As the amount of information available on the web grows, there is increased

demand for relevant and meaningful search results. The first search engines on

the web used to perform simple keyword comparisons. This is no longer sufficient.

Users are no longer satisfied with search engines returning simple keyword match

documents. Indeed, returning simple keyword search results these days would result

in millions and millions of search results, most of which would have no relevance to

the query.

With the increase in the pervasiveness of the web, massively increasing usage

and demands placed on search engines, it is not surprising that implementing a fast

meaningful search service is challenging. Current search engines require a lot of

processing power because of the volume of data involved. Hence, search engines such

as Google and Yahoo are forced to deploy a large number of servers in data centers

to service the enormous web traffic [2].

This dissertation follows the style of IEEE Transactions on Parallel and Distributed Systems .

2

These data centers consume a significant amount of power (Megawatts) which has

become a key factor in data center planning and management [3] [4] [5]. Therefore

there is a pressing need to deliver a technique that can provide high performance

while balancing power usage.

Traditional search engines use common information retrieval techniques such as

TF-IDF [6] to rate documents and objects on the web. These techniques rely on

keyword comparisons to create a ranking on the relative importance of the object.

Unfortunately, the reliance on keywords means that if the document does not contain

the keyword, it would not be ranked at all. This leads to situations where the search

for healthy lifestyle would probably not return a single result (object/document) that

did not have the words healthy lifestyle as part of its description or in the text. In

order to deliver better search results, search engines are increasingly turning to the

area of semantics to understand both input queries as well as search results, so that

they can match and return relevant results [7].

Semantic search techniques on the other hand, decomposes concepts and ideas

into their basic concepts and compares these concepts against the known data store

[8] [9]. This allows the locating and identification of related articles that may not

have the same keywords in the document. Hence semantic search while performing a

similar service does not rely on the same search techniques as existing search engines.

A Semantic Routed Network (SRN) proposed initially in [10] provides a superior

infrastructure enabling semantic information retrival. A SRN allows search engines

to operate with smaller number of servers by enabling automatic reorganization of

their search indices based on content. This content reorganization and subsequent

query routing requires the use of semantic routers [11]. The critical component of

the SRN which determines its performance is a semantic router.

Semantic routers perform semantic comparison using a cosine similarity (dot

product) computation scheme that can be elegantly parallelized [12]. By creating

a power efficient hardware co-processor that performs dot product we can enable

3

realization of a semantic router. Cosine similarity is also the key-computation in tra-

ditional search paradigms such as TF-IDF, hence creating a power efficient hardware

co-processor can help in both areas. In this dissertation we will use the terms cosine

similarity and dot product interchangeably.

Performing operations in parallel is a key optimization step for better performance

on general purpose CPUs. Current techniques for parallelization include architec-

tures that are multi-core [13] and have multiple thread handling capabilities [14] [15].

These coarse grained approaches have considerable resource management overhead

and provide only sub-linear speedup. In addition, these approached require new pro-

gramming models with parallel compilers & libraries as supporting infrastructure.

For implementing the dot product required for semantic comparison, a fine-grained

approach to parallelization is more suitable. This involves a hardware/software co-

design strategy involving hardware centric algorithms and mapping of the algorithm

to architecture.

In this dissertation we propose techniques towards a highly parallel, power effi-

cient architecture that performs semantic comparisons as its core activity. Hardware-

centric parallel algorithms have been developed to populate the required data struc-

tures followed by computation of semantic similarity. The performance of the pro-

posed design is further enhanced using a pipelined architecture. The proposed algo-

rithms were also implemented on two contemporary platforms - the Nvidia CUDA

[16] and an FPGA [17] for performance comparison. In order to validate the designs,

a semantic benchmark was also been created. It has been shown that a dedicated

semantic comparator delivers significantly better performance compared to other

platforms.

Results show that the proposed low power architecture presented consumes 82%

less power and demonstrates a speed-up in the order of 105 compared to a contempo-

rary hardware design, and in the order of 103 compared to software approach for large

number of basis vectors. Future research directions including better power optimiza-

4

tion, architecting the complete semantic router and using the semantic benchmark

for SRN research are also discussed.

The key contributions of this dissertation can be summarized as follows:

1. Design of algorithms and data structures that are suitable for semantic com-

parison in a semantic router.

2. Design of power efficient parallel hardware architecture to perform semantic

comparison.

3. Design of pipelined architecture for the enhancement of throughput.

4. Implementation on reference platforms such as the Nvidia CUDA and an FPGA

for performance comparison.

5. Development of a semantic benchmark to create semantic traffic for validation.

The rest of this dissertation is laid out as follows. In Section- 2 we present back-

ground material and related work. We begin with a discussion on what is semantic

routing and how it works. This is followed by a description of Semantic Routed

Networks and the application of Semantic Routed Networks to Search. Once we

have established how an SRN works and how it can be applied to Search, we discuss

the methods of Vector based semantic comparison and the challenges involved. One

of the key computation steps in semantic comparison is the computation of cosine

similarity. This contains a challenge because of the size of the data-structure used.

We present the challenge and our approach to solving this. We then proceed to

explanation of a space-efficient data structure known as a Bloom Filter which we

use extensively in the architecture and close out this section with an overview of the

Fowler / Noll / Vo (FNV) hash algorithm which is also used.

Section 3 introduces our architecture at a high level. We present details on what

semantic comparison involves, the descriptors that are used as semantic metadata

and an architectural overview of the computation and the requirements and stages of

5

computation. This section also talks about the basic steps involved in the processing

and our fine-grained parallelization scheme. The semantic comparison process con-

sists of two major steps and several sub-steps. The next two sections presents each

of the major steps in detail.

Section 4 presents the first part of the computation - the architecture required

to create and populate the data structures that we use in our later computational

stage. We present an analysis of our approach and provide timing and power figures

for the design. We explore design alternatives in creating a set of hash-values in a

power and time efficient manner.

Section 5 presents the second part of the computation. In this chapter, we present

the details of the architecture and highlight key optimizations and design decisions

that allows us impressive speedup while remaining power efficient. We also present

overall results comparing, our design and that of doing the same computation on a

traditional server class processor, timing analysis and overall power figures.

In Section 6 we present performance improvements and alternative implemen-

tations. Pipelining the architecture gives us noticeable speedup without excessive

power overheads. Hence we present the design of the pipelined version of the archi-

tecture and power and timing figures. We then present two alternative implementa-

tions of our basic architecture - first on an Nvidia CUDA platform and then on an

FPGA. We provide performance comparisons between these platforms and the base

ASIC design proposed in the earlier sections.

It is not possible to evaluate our design without a benchmark. Since, to the

best of our knowledge, we are the first to explore semantic comparison, there does

not exist any datasets that we can use to create the appropriate kinds of traffic. In

Section 7 we present the details of a Semantic Benchmark that we created. The

details of its composition and features is discussed.

6

Conclusions and a discussion on potential directions of future research are pro-

vided in Section 8. A overview of the various areas that were discussed in the

dissertation are provided.

7

2. BACKGROUND AND RELATED WORK

2.1 Semantic Routing

Semantic routing, the routing of information based on the semantics, is done by

humans everyday. It is just not called Semantic Routing in daily usage. The concept

of semantic routing can be illustrated using the following scenario: Alice, a first year

graduate student of Microbiology wants certain details about the latest Influenza

outbreak. She asks her friend Bob who is a post-doctoral researcher if he has specific

information. Bob feels that his supervisor Mark is more knowledgeable on the topic,

so Bob forwards Alice’s request to Mark. Mark responds to Alice’s questions and

offers to help her. In this scenario, each person is a “semantic router”, who determines

the next hop based on whom they know to be the best (knowledgeable) person to

handle this query. The query here is the ’request for information on the Influenza

outbreak’ and the best identified resource was Mark who responds to Alice with the

offer to help.

2.2 Semantic Routed Networks

A Semantic Routed Network (SRN) routes information on the network using

the concept of semantic routing. In this section we provide a brief overview of the

working and organization of the SRN, the methods used in the organization of the

SRN and Search as an application.

2.2.1 Overview

The abstract model of the SRN consists of two types of nodes: router nodes and

resource object nodes as shown in Fig. 2.1. Resource nodes are the objects or re-

sources of a network, whereas the router nodes are semantic routers [11]. Semantic

8

routers attach themselves (with an entry in their routing tables) to both other se-

mantic routers as well as resources. Each router maintains a listing (routing table)

of all the resources and other routers attached to itself.

When a query (request for a resource) is injected into the network, the semantic

routers compare semantically the query to the entries in their routing table and

route the message to the appropriate (or best match) location. The final destination

(most likely the resource) would then respond to the originator of the query with the

required data. An SRN would be implemented as an overlay network built on top

of existing IP networks or a web-service infrastructure. Therefore the response to a

query is likely to be a URI containing information about access mechanisms of the

resource or relevant web-service response, depending on the type of semantic object/

resource. If SOAP [18] messaging is used then semantic routers may implement a

SOAP processor as well.

R 2

R 1

R 4

R 5

R 7R 6

R 3

N1
N

2

N3

N4

N5

N6

N7

N8

N9

N10 N11

N12

N13

N14 N15

N16

N17

N18

N19

Query

Inserted

Forwarded

Forwarded

Response from

Object

Fig. 2.1. Abstract Model of a Semantic Routed Network

The semantic objects may be data or services having various granularities, for-

mats, structures, service access/delivery mechanisms. These semantic objects are

annotated using metadata that describes the resource. This metadata can be based

9

on generic or upper ontologies, like Wordnet [19], Gene Ontology [20] or more spe-

cialized ontologies / standards like the Unified Medical Language System (ULMS)

[21]. By “description” we mean a flat unstructured set of topics which describes a

resource. The elementary metadata items that from the description are referred to

as a Tags. Compound topics may be formed by collecting multiple Tags. These Tags

can be harvested from the structured metadata that describes the resource. Further

details of the semantic objects and the comparison scheme are given in Section . 3.1

2.2.2 Methods and Techniques Involved in SRN

The SRN is implemented as a Small World Network. The Small World Network

topology offers better congestion behavior and requires less number of routers to in-

terconnect a given number of resources compared to over hierarchical topology [11].

A small world network topology is characterized by two factors: (a) Small expected

path length (hop distances) and (b) Large clustering coefficient. A clustering coef-

ficient is the probability that two nodes are connected if they have a common peer

[22].

The SRN has several built-in mechanisms to ensure that the network topology

is maintained as well as the routing tables of the routers contain the most updated

information. Keeping the routing table updates is modeled on current network-

ing technology i.e. BGP (Border Gateway Protocol) [23] where routers periodically

exchange messages with each other giving information about resources and other

routers connected to them. Once these messages are received, routing table opti-

mization algorithms are run to update the routing table. Fig. 2.2 shows a sample of

the semantic routing table layout. Each Key corresponds to a semantic interest of

the router, and each Destination (per key) shows the nodes that the router knows is

semantically similar to that key.

Mapping this back to our example in Section 2.1 , the keys correspond to the

various interests of a person, and the destinations the people/resources connected

10

Keys Destinations

K1

K2

K3

K4

K5

D1 D2 D3 D4 D5

D6 D2 D7 D8

D10 D12 D13 D14

D16
D20 D21 D23 D24 D25

Fig. 2.2. Semantic Routing Table

with that interest. Bob’s interests include Influenza (key) and one of the resources

he knew with experience in this area was Mark (destination).

We will now briefly describe the major algorithms that help maintain the semantic

routing table.

Node Clustering Algorithm

In order to locate nodes that contain descriptions that are semantically similar to

the entries in the routing tables, a semantic router, periodically sends out messages

(queries) with a similarity threshold value into the network. Nodes (both resource

nodes and other semantic routers) whose descriptions are semantically similar to the

query (with a similarity metric greater than the threshold value) respond back to the

originating router, which keeps a log of the responses. In order to keep its routing

table populated, a router may periodically send out queries with lower threshold

values in order to expand the range of resources that is it aware of. Resource nodes

that join a network , send out similar messages advertising themselves for routers to

become aware of them.

11

Routing Table Optimization

There are three primary methods involved in maintaining the semantic routing

table of a router. Fig. 2.3 shows the three methods.

1. Routing table entry eviction: Since the routing tables are of limited size,

the routers strive to keep the quality of the entries high by evicting entries that

are less similar and replacing them with entries that are semantically closer to

the appropriate interest group. Fig. 2.3(a) shows D16 being considered for

eviction.

2. Reallocation of destinations: A single key of a routing table can contain

more than one destination for the key. If an entry is to be evicted (see previous

method), an attempt is made to re-allocate it. This involves looking at the

other keys in the table to see if it can be used for another key based on the

relevance of the entry. In Fig. 2.3(b) the destination D16 is being re-allocated

from key K4 to a location that is alongside K2.

3. Reallocation of keys: Occasionally, a router may find that an entire row

of the table needs to be re-allocated or changed. This could be due to either an

entire set of resources going off-line or identification of a new more appropriate

interest. If the change is due to the destinations going offline, the entries are

dropped and the table is purged of that Key. In Fig. 2.3 the key K4 is now

dropped since there are no new destinations and the table is compacted. If the

change is due to a new key, re-allocation of the destination entries is attempted

using the previous step before dropping the entry.

2.2.3 Application of SRN to Search Engines

Semantic Routed Networks (SRN) can be used to enable the automatic reorga-

nization of the search-index of a distributed search engine [10]. This would allow for

12

Keys Destinations

K1

K2

K3

K5

D1 D2 D3 D4 D5

D6 D2 D7 D8 D16

D10 D12 D13 D14

D20 D21 D23 D24 D25

Keys Destinations

K1

K2

K3

K4

K5

D1 D2 D3 D4 D5

D6 D2 D7 D8 D16

D10 D12 D13 D14

D20 D21 D23 D24 D25

Keys Destinations

K1

K2

K3

K4

K5

D1 D2 D3 D4 D5

D6 D2 D7 D8

D10 D12 D13 D14

D16
D20 D21 D23 D24 D25

(a) (b) (c)

Fig. 2.3. Routing Table Optimization

the reduction in the number of servers deployed by the search engine. Search engines

such as Google and Bing are scrambling to provide more meaningful and relevant

results without an increase in the response time (real-time search). This leads to an

increased computational load per query.

Fig. 2.4 illustrates the architecture of a typical internet search engine core [3].

It is assumed that every document indexed by a search engine is assigned a unique

Document ID. A search engine consists of two core components (A) Index Servers

and (B) Doc Servers. Users send raw queries q (at rate Q) to the front-end server.

A query processor multicasts these queries to Ns Index shards (rate reduced to

Q/Ns) which constitute the index server. For a given query q, index shards return a

sorted list results to the document server (a list of ID and the corresponding rank).

Index shards are replicated for capacity (often across geographical locations for fault-

tolerance). For example, multiple instances of the index servers form a pool as shown

in Fig. 2.4. Given a set of Document IDs for a given query, a document processor

returns the relevant (URL,snippet) which is returned to the user as a result by the

front-end service.

The index is typically generated (using statistical measures like TF-IDF [6] or

latent semantic dimensions [24]) with rows representing words/dimensions and sev-

eral columns representing related Document IDs and their corresponding weights

(Wi,j). The cosine similarity score is computed across the n-dimensions of every

13

index shard. The resulting similarity scores are sorted and further processed by the

document servers to return to the user.

Index

Server

1

Index

Server

2

Index

Server

Ns

Traffic Distributor

Index Server

Pool -1
Index

Server

Pool-2

Index

Server

Pool- Np

Document

Server

Query

Processor

Broadcasting

Queries

Distributed

Index System

User Queries

Q queries /

second List of

URLs

List of Document IDs with

matching keywords

Fig. 2.4. Architecture of a Typical Search Engine

An energy efficient alternative to query broadcasting is to systematically dis-

tribute objects to the pools/shards based on the meaning of the objects, so that

documents having similar content (or belonging to a similar topic) are in the same

shard as shown in Fig. 2.5. Such index distribution would need a specialized net-

work to deliver the queries to a specific pool(s)/shard(s). This arrangement will

avoid unnecessary query traffic (query rate reduced to Q/Np as in Fig. 2.5) to all

pools thereby allowing smaller number of servers (ns ≈ Ns/Np = Ns/1000 < Ns) in

each pool and lower power consumption. This specialized network can be elegantly

implemented using a Semantic Routed Network.

This semantic routed network (SRN) consisting of multiple semantic routers [10]

can be used for:

1. To selectively forward/route a (query) message to an index shard based on the

meaning of the query; and

14

2. To automatically re-distribute index entries based on meaning of the docu-

ments/objects.

Achieving true semantic search requires a way to “represent meaning in comput-

ers” as compared to naive term-by-term comparison [6] which exists today. This

question was addressed in [12] and uses Vectors to perform the semantic comparison.

New methods to represent “composite” meaning in computers have been designed

and proven to be superior to TF-IDF in [12]. This enables conjunction, disambigua-

tion & representation of “complex concepts” their synonyms and hyponyms using a

Tensor-based transformation model [24]. The use of this model enables the creation

of a Semantic Routed Network [10] (SRN) in the index shards of a search engine.

Traditional Approach SRN Based Approach

Index

Server

Pool-2

Index

Server

Pool- Np

Index

Server

Pool-1

Query Processor

SRN performing selective forwarding

Q queries/second

Q queries/second

Q/ Np

queries/second

Index

Server

Pool-2

Index

Server

Pool- Np

Index

Server

Pool-1

Query Processor

Broadcasting

Queries

Q queries/second

Q queries/second

Fig. 2.5. Search Engine with SRN Integrated

A SRN has been proven to enable the automatic reorganization of the search-

index of a distributed search engine based on the principles of a Small World Net-

work [8]. Using this model, an incoming query q can be injected into the SRN. The

SRM network then routes the query until resolved by reaching the appropriate Index

Server. This implements selective unicast instead of the inefficient multicast mech-

anism discussed previously. Fig. 2.5 shows the reorganization of the Index shards

using the principles of SRN. Results in [11] [8] show through simulation that con-

15

vergence to a Small World Network is possible, with bounded overhead. It is proven

that query resolution is guaranteed within a maximum of 3 hops from injection on

average (for a fully re-organized index).

These techniques address users need for “semantically” meaningful and relevant

results without an increase in the response time (real-time search). Although an

SRN has been proven to theoretically converge (in simulation), our experiments in

the next Section emphasize the need for hardware in the index shards to meet the

cost of a significantly larger computational load per query resolution using a Tensor

model and SRN-based index server pool.

2.3 Vector Based Semantic Comparison

Contemporary search engines use vector models for automatic text retrieval [6].

Each of the comparisons being performed by the computers in Fig. 2.4 performs this

computation. Techniques that we described in [12] extend these vector models for

more efficient semantic comparisons using tensors. Algebraically, a tensor is rep-

resented as a sum of scalar (wi) weighted basis vectors (vi) as shown in Fig. 2.6.

The figure shows text fragments from two documents and their corresponding tensor

representation (Tensors D1 & D2). Each basis vector denotes elementary meaning

which typically is a term or a phrase (character strings) from a controlled vocabu-

lary/dictionary or selectively picked from a text object (e.g. a sentence in Fig. 2.6)

and assigned weights (scalar coefficients) depending on the model used [6].

The similarity between the meanings represented by the two vectors is given by

their cosine (dot) product. The dot product of two vectors/tensors is given by the

sum of products of weights of the basis vectors (having non-zero weights) that are

common in both vectors. In a computer, these tensors can be represented by a

table of character strings and their corresponding coefficient weights. Computing

dot-product of large vectors is challenging. In the next section, we shall explain the

challenge.

16

Text doc D1: “The soccer player looked
at the ball. Then he kicked it.”

TensorD1 = wA
soccerplayer

−→v soccerplayer

+wA
ball
−→v ball + wA

look
−→v look

+wA
kick
−→v kick

Text doc D2: “The soccer player kicked
the ball.”

TensorD2 = wB
soccerplayer

−→v soccerplayer

+wB
kick
−→v kick

+wB
ball
−→v ball

Semantic Similarity < D1, D2 >= D1 ·D2 = wA
soccerplayerw

B
soccerplayer

+wA
ballw

B
ball + wA

kickw
B
kick

Fig. 2.6. Tensor Model of Semantic Comparison

2.4 Challenge in Dot Product Computation

Dot product is the sum of product of corresponding non-zero coefficients of two

vectors. The key challenge is to pair-up the corresponding vectors to enable the

appropriate multiplications. This pairing up requires that each component (basis)

vector (from one of the vectors being processed) is checked for a corresponding en-

try in the other vector. If a corresponding entry is found, then the coefficients of

the two are multiplied. If a corresponding entry is not found, this is the same as

multiplying that particular coefficient by zero - a superfluous operation. This is a

relatively simple task when dealing with small finite vector models (such as in La-

tent Semantic Indexing [24]) since few superfluous multiplication operations does

not increase the computational cost extensively. However, for vector models that

deal with infinite dimensional vector space - the superfluous multiplications quickly

become computationally expensive and hence need to be eliminated.

If the number of basis vectors in each vector being compared are denoted as n1

and n2, then using the traditional computing approach, the search operation involved

in dot-product takes n1 · log(n2) or n1 ·n2 computations depending on whether or not

a binary search tree is created. Note that creating a binary search tree also involves

sort operation on one of the vectors - which is also of the order of n · log(n) where

17

n is the size of the vector being sorted. Hence in the case of a binary search tree

based approach, the order of complexity of the total computation is n1 · log(n2) +

n1 · log(n1) (assuming that n1 is the number of rows in the table getting sorted)

In order to perform this search elegantly (with less complexity) Bloom Filters are

used. Bloom filters allow one to perform this search (with a small possibility of false

positives) with much less computational complexity O(1). An effective representation

of composite meanings is necessary to ensure ”meaningful” semantic comparison. To

enable this, semantic comparison operates on an infinite dimensional vector space

leading to large tensor sizes (≈ 103).

We briefly describe the basic properties of the Bloom Filter that we used in the

next section.

2.5 Bloom Filter Basics

A Bloom filter (BF) is a compact representation of a set [25]. The BF consists of

a large single dimensional array of m bits and a set of k hash functions and is a good

candidate for performing membership tests on a set. A Bloom filter has the property

that while it may present a false positive (indicate that the element is present, while

it is actually not present), the BF will never have a false negative (i.e. indicate that

the element is not present, when it is actually present). There are two operations

that can be performed on a BF - Insertion and Membership testing. We will now

briefly describe each of these operations.

2.5.1 Element Insertion

To insert an element (such as a number or a text string) in this set, we hash this

element to generate k different values using the k different hash functions. We use

these values as bit-indices to decide which bits in the array should be set to 1 as

shown in Fig. 2.7.

18

1

0

1

0

1

1

0

0

1

2

3

4

m-2

m-1

Bit ArrayElement “X”

F1(X) = 0

F2(X)=2

Fk(X)=m-2

Hash Functions

Fig. 2.7. Bloom Filter : Insertion

2.5.2 Membership Testing

To test whether an arbitrary element is in the BF, we similarly generate k bit

indices and check whether all of those bits are 1 or not. All bits being 1 indicates

that the element is in the set (Fig. 2.8).

1

0

1

0

1

1

0

0

1

2

3

4

m-2

m-1

Existing

Bit ArrayElement “X”

F1(X) = 0

F2(X)=2

Fk(X)=m-2

Hash Functions

1

Fig. 2.8. Bloom Filter : Membership Testing

Because testing for presence is performed by looking at the bit-position values, it

is possible that a bit that was set due to the insertion of one element, may be used

in the testing process for testing for the presence of another element. This gives rise

to the false positive rate of the Bloom Filter. However, since there is no possibility

19

that an element that was inserted would not have set the appropriate bit-positions,

Bloom Filters will not present a false negative.

The probability of a false positive Pfalse+veis given by:

Pfalse+ve =

(

1−

[

1−
1

n

]km)k

(2.1)

which can be simplified as

Pfalse+ve =
(

1− e−
kn

m

)

(2.2)

The probability of false positives, can be minimized by choosing large m, and

optimum k(≈ 0.7 ∗m/n), where m is the number of bits in the BF, k is the number

of independent hash functions and n is number of elements in the BF (Fig. 2.8). For

example, a basic BF with m = 10240 bits, k = 7 can keep 103 elements with a small

Pfalse+ve ≈ 8× 10−3, which will have a negligible effect on similarity comparison.

The basic bloom filter does not provide for deletion of an element or for the

insertion of duplicate elements. However, there exists, other variations of bloom

filters such as Counting Bloom Filters [26] proposed by Li et al. In [27], Bonomi

et al. proposed a d-left hash based design that allows for a more compact (space

efficient) design of counting filters.

In [28] the Chazelle et al. implemented Bloomier Filters, an extension to Bloom

filters that allows the implementation of an associative array. The basic bloom filter

approach cannot adapt to varying number of elements stored without re-creating

the entire filter. This problem was addressed by [29] who proposed Scalable Bloom

filters. Scalable Bloom filters are an adaptation of the classic bloom filter design, but

in this case can dynamically adapt to the number of elements being stored without

affecting the false positive probability.

20

2.6 FNV Algorithm

2.6.1 Overview

The Fowler / Noll / Vo (FNV) hash algorithm [30] is used as the basic Hash Func-

tion in our architecture. It was chosen because of its ease of parallelization compared

to more popular algorithms such as MD5 [31] or SHA2 [32] . The algorithm for the

computation of the FNV hash is presented in Algorithm 1. The implementation

details of this algorithm will be presented in the next chapter.

2.6.2 Algorithm & Relevant Parameters

Algorithm 1
FNV Hash Algorithm (Type 1a)

procedure FNV-1a(data)
hash← offset basis
for all octets of data do

hash← hash⊗ octet of data
hash← hash× FNVprime

end for

end procedure

The parameters of the FNV Hash of size n are:

• hash is an n-bit unsigned integer.

• The multiplication operation (denoted by ×) is performed modulo 2n.

• The XOR operation (denoted by ⊗) is performed on the lower octet (8 bits) of

hash.

• FNVprime is dependent on n.

• offset basis is dependent on n.

21

2.6.3 Standard Values of Key Parameters

Values for FNVprime and offset basis for different sizes of n are available at [30].

In this dissertation, the value of FNVprime and offset basis for a size of n = 64

bits is taken. Some representative values for FNVprime are shown in Table- 2.1 and

representative values for offset basis are shown in Table- 2.2

Table 2.1

Values of FNVprime for Different Sizes of n

Size of n (bits) Value of FNVprime

32 224 + 28 + 0x93
64 240 + 28 + 0xb3

128 288 + 28 + 0x3b
256 2168 + 28 + 0x63

Table 2.2

Values of offset basis for Different Sizes of n

Size of n (bits) Value of offset basis
32 2166136261
64 14695981039346656037

128 144066263297769815596495629667062367629

The value of offset basis is the FNV-0 hash of the following string (shown in C

style notation).

‘‘chongo <Landon Curt Noll> /\\../\\’’

This text segment is the original email signature line of one of the creators of the

FNV algorithm [30]

22

3. OVERVIEW OF SEMANTIC COMPARISON

Semantic comparison as performed by a semantic router compares two objects. As

explained previously in Section 2.2.1, These objects may be data or services having

various granularities, formats, structures, service access/delivery mechanisms. These

semantic objects are annotated using metadata that describes the resource. This

metadata can be based on generic or upper ontologies, like Wordnet, Gene Ontology

or more specialized ontologies / standards like the Unified Medical Language System

(ULMS).

The metadata describing these objects, is used to create a semantic descriptor - a

data structure that contains the semantic description of the object, by applying tech-

niques such as TF-IDF onto the metadata. By comparing the semantic descriptors

of two objects, we can compute the semantic similarity between the two.

3.1 Semantic Descriptor

A semantic descriptor can be generated in several ways. The most commonly

used technique TF-IDF [6] stores a statistical product term (frequency × inverse

document frequency) for all terms in a document. In contrast [33] proposes and

evaluates a weighted Concept (ontology) Tree based descriptor taking compositions

into account. A concept tree is a hierarchical acyclic directed n− ary tree where the

leaf nodes represent terms whereas the tree itself describes their inter-relationships

within a document [34] [35]. Each term is assigned a weight which describes its

relative importance. Fig. 3.1 shows two sample trees which represent two distinct

“concepts” but use the same keywords (shown as leaf nodes). The intermediate

notations (ex. American, man) are notional and are shown for convenience.

Associated weights for each term (coefficient values describe their relative im-

portance) are not shown for simplicity. Concept tree building has been discussed

in detail in [8] [12] and applied to test cases in [36]. It is important to note that

23

The american man ate indian food

{{american, man} {ate} {indian, food}}

{american, man} {indian, food}

man american food indian

ate

The indian man ate american food

{{indian, man} {ate} {american, food}}

{indian, man} {american, food}

man indian food american

ate

Fig. 3.1. Concept Trees of Two Sentences

conventional term based weighting cannot differentiate between the two statements

(or their trees). A Tensor model, on the other hand, is used to decompose such con-

cept trees into a flat data structure consisting of polyadic concept terms and their

normalized coefficients without loss of the semantics contained in the original tree

structure.

{{a,b},c}

{a,b}

a b

c Level 1

Level 2

Level 0

bsasbas
baab

++

csbsascbscas

bascbas

cbabcac

ababc

++++

++
→

◁▷▷ ◁ ◁

◁◁

▷

▷▷

→→→→→ → →→ →→

→ →→→ → →→→ → → →

▷ ◁

→ →→→ → →

Fig. 3.2. Conversion of Concept Tree into Tensor Representation

Fig. 3.2 shows the bottom up expansion of a 3-level, 2 child concept tree. Level 0

shows leaf nodes “a” and “b”. Their composition at Level 1a,b is defined by BabC ,

a and b (B&C are delimiters; sab, sa, sb are normalized weights). The final tensor rep-

resentation of this concept tree is obtained at Level 2 consisting of weighted polyadic

combinations of terms Bab C c,BabC,BacC,BbcC, a, b, c (called basis vectors) and

their normalized weights. The nuances of this conversion including the process of

determination of weights is detailed in [37].

24

The semantic descriptor created by the tensor conversion process comprises of

the tensor representation as well as the associated scalar coefficient value as shown

in Fig. 3.3.

Vector ID1 Coeff1

Vector ID2 Coeff2

Vector ID3 Coeff3

Vector IDn Coeffn

Vector ID S calar Coefficient

Fig. 3.3. Tabular Form of Semantic Descriptor

3.2 Semantic Comparison

The basic comparison occurs between two descriptors D1 and D2 as follows. The

task is to compute the dot-product between these two descriptors to get a numerical

value for the semantic similarity. Fig. 3.4 shows the sequence of steps performed to

obtain the similarity value.

The semantic comparison process begins by converting the semantic descriptors

discussed above into appropriate data-structures that can be used in the computation

stage. Once the conversion is complete, the computation of semantic similarity is

performed using the method of cosine similarity (dot-product). For the rest of the

dissertation, we will use the terms tensors and vectors interchangeably.

The major steps of computing semantic similarity are as follows

1. Population of Data Structure.

(a) Computation of FNV Hash.

(b) Population of Bloom filters.

2. Computation of Cosine Similarity.

25

Hardware Comparator

A cat sat in the green hat

{cat} {sat} {green, hat}}

{green, hat}
cat

hat green

sat

Semantic

Comparison

Data Structure

Vector ID1 Coeff1

Vector ID2 Coeff2

Vector IDn1 Coeffn1

Vector ID Coefficients

A green hat was put on the cat

{{green, hat} {put} {cat}}

{green, hat}

hat green

cat
put

Semantic

Comparison

Data Structure

Vector ID1 Coeff1

Vector ID2 Coeff2

Vector IDn1 Coeffn1

Vector ID Coefficients

Semantic Similarity Value

(i) Text to Concept Tree

(ii) Concept Tree to Tensor

(iii) Tensor to Semantic

Descriptors

(iv) Semantic Descriptor to

Comparison Data Structure

(v) Semantic Comparison

H
a
r
d
w
a
r
e

bsasbas
baab

++▷ ◁

→ → →→ → →

csascas
caac

++▷ ◁

→ → →→ → →

Fig. 3.4. Sequence of Steps for Semantic Comparison

26

(a) Identification of Common basis vectors.

(b) Extraction of Coefficients.

(c) Multiplication and Summation of Coefficients.

In the following sections we will discuss each of these steps in detail.

In this dissertation, we focus on Steps (iv) & Step (v) from Fig. 3.4. We presume

that Step (i) (conversion of query/object to a concept tree) through Step (iii) (con-

version from concept tree to descriptor) has been completed. The SRN will routes

packets of data, each packet containing a semantic descriptor.

3.3 Architectural Overview of Semantic Comparator

The proposed semantic processor core, has five basic stages as shown in Fig. 3.5.

Stage (A) generates vector IDs and k hash values for each basis vector; Stage (B)

populates the Bloom filter of descriptor D2 using the k hash values; Stage (C) iden-

tifies the common basis vectors using BF membership testing; Stage (D) extracts

the matching pairs of scalar coefficients using Content Addressable Memory (CAM)

modules; and Stage (E) multiplies the corresponding pairs of scalar coefficients and

calculates the sum to obtain the dot product.

Each of these parallel processing instances, which can be considered as a hardware

thread, is executed by each horizontal slice of each circuit stage (A to E), as shown

in Fig. 3.5. There are n slices in stage A to C, and b slices in stage-D and p slices in

stage-E. Stage-E also consolidates all the processing.

3.3.1 Working

The five stages of the semantic comparator execute the steps listed in Section

3.2. The input descriptors to be compared (D1,D2) are first converted into the

respective semantic comparison data structures. This is done by hashing the input

27

Populate

Bloom

Filters

Stage-B

p slices

Multiply Coefficients and

Calculate Sum

Stage-E

n slices

Identify Common

Basis Vectors

Stage-C

b slices

Extract Coefficients

Stage-D

n slices

Generate Vector ID and

BF Indices

Stage-A

In
te
rc
o
n
n
e
c
t

S
c
h
e
d
u
le
r-
2

Scheduler-1

Semantic

Descriptor

(D1)

Semantic

Descriptor

(D2)

S
im
il
a
ri
ty
 V
a
lu
e

Fig. 3.5. Overall Stages of Processing

vector IDs through a common hash function (FNV hash), and then obtaining the

Bloom Filter Indices and storing them. Once both of the descriptors have been

converted into the semantic comparison data structure, the actual processing of the

semantic comparison begins. To begin this step, the bloom filters are consolidated

into a single bloom filter and distributed to the n slices of Stage-A. Each slice of

Stage-A gets one of the appropriate rows from the second data-structure. Once

the Bloom filter has been consolidated, Stage-C locates the common basis vectors.

This identifies which of the basis vectors in the two descriptors being compared are

the same. The order of computation for Stage-C because we use n parallel stages

and k indices for the bloom filter is O(k). Once the common vectors have been

identified, these vectors are passed to Stage-D where the CAM blocks retrieve the

28

corresponding scalar coefficient values. The pairs of scalar coefficient values that

need to be multiplied are then sent to Stage-E where a bank of multipliers multiply

the values and feed it to an accumulator. This stage (Stage-E) is where the actual

computation of dot-product (Cosine similarity) occurs. The output of Stage-E is the

similarity value between the two stages. The working of each of the stages A-E is

discussed in detail in the next two sections.

29

4. CREATION OF REQUIRED DATA STRUCTURES

In this section, we present the first of the two major steps (Generation of Data

structures, Stages A,B in Fig. 4.1). In the next section (Section. 5) we will describe

the architectural details of steps C-E.

Populate

Bloom

Filters

Stage-B

p slices

Multiply Coefficients and

Calculate Sum

Stage-E

n slices

Identify Common

Basis Vectors

Stage-C

b slices

Extract Coefficients

Stage-D

n slices

Generate Vector ID and

BF Indices

Stage-A

In
te
rc
o
n
n
e
c
t

S
c
h
e
d
u
le
r-
2

Scheduler-1

Semantic

Descriptor

(D1)

Semantic

Descriptor

(D2)

S
im
il
a
ri
ty
 V
a
lu
e

Generation of Data Structures

Fig. 4.1. Stages Involved in Generating Data Structures

4.1 Description of the Data Structures

The abstract data structure required for semantic comparison has two compo-

nents: (1) a Co-efficient table and (2) a large m (≈ 128K) bit long Bloom Filter

(BF) using k(= 7) hash functions [25]. The layout of the data structure is shown in

Fig. 4.2 Each row of the coefficient table consists of three columns: (1) Vector ID

30

(e.g. “ID1” in Fig. 4.2); (2) 16 bit fixed point scalar coefficient of the corresponding

basis vector (e.g. wi); and (3) Set of BF indices (x1 : 0 ≤ xi ≤ m). The combination

of the coefficient table and the bloom filter represents the vector/tensor representing

the meaning of an object (text/non text document).

Fig. 4.2. Components of Data Structure

A 64 or 128 bit hash of a basis vector term is generated and inserted as the

Vector ID in the coefficient table as shown in Fig. 4.3. To generate a set of k BF

indices, each Vector ID (or the basis vector character string) is further hashed by

k hash functions and the resultant indices are stored in the third column while the

corresponding bit locations are set in the BF.

Input Tensor

Basis Vector Coefficient

“american man” W
1
a american man

“indian food” W
2
a indian food

... ...

Basis Vector Coefficient

ID1 W
1
a

ID2 W
2
a

... ...

IDn

Coefficient

{ xi : 0 < x < m }

{ 0, 2, … , j }

...

{ … }

1

0

1

...

0

F0(ID1) = 1

F1(ID1) = 0

F2(ID1) = 1

...

Fk-1(ID1) = 0

Hash Function

BF Hash functions

ID1

Fig. 4.3. Populating the Data Structure

31

4.2 Algorithm to Populate the Data Structures

In Fig. 4.4, we present the block schematic of the architecture where the BF

indices are generated. We use the FNV hash algorithm as the primary hash for

the BF index generation operation. The 64 bit output of the FNV hash module is

duplicated. The first copy (f1) is directly truncated to 17 bits using XOR folding

[30]. The second copy (f2) is rotated by 33 bits and then truncated to 17 bits using

XOR folding. For each BF index BFi (where 0 ≤ i ≤ k); a copy of f1 is rotated

by i bits and then XOR’d with f2. (For example, the second BF index (index-1 in

Fig. 4.4) is obtained by first rotating f1 by one-bit position and then XOR-ing this

with f2.) This enables the creation of k different index values in parallel.

Fig. 4.4. Bloom Filter Index Generation

These bloom indices allow parallel setting of the corresponding bit position in a

memory element, hence creating a Bloom Filter for each row. The n individual BFs

(one per row) are then consolidated into a single BF using cascaded OR-Gates and

distributed to multiple rows.

32

4.2.1 Consolidation of Bloom Filters

Since we are going to be using n copies of the circuit for Stage-C, we need to

consolidate the bloom filters created in Stage-B and then distribute them to the n

copies of Stage-C. The distribution is done using the Interconnect shown in Fig. 4.1.

The interconnect is a simple tree network similar to the commonly accepted clock-

tree implementations.

The n individual BFs (one per row) are consolidated into a single BF using cas-

caded OR-Gates. Fig. 4.5 shows the completely parallel architecture of doing this. It

is also possible to do this in multiple-cycles by using flip-flops at intermediate stages.

The use of multi-cycle allows for decreased chances of hold/setup time violations due

to the longest path length.

Fig. 4.5. Bloom Filter Consolidation

4.3 Results

4.3.1 Analysis of Hash functions Used for BF Index Generation

A Bloom Filter requires the use of k hash functions to generate k index values.

The standard method of doing this is to deploy k separate hash functions for the

purpose. However, deploying k hash functions in hardware is not efficient. A more

efficient manner to obtain a number of hash values is to combine two hash functions

33

h1(x) and h2(x) in the form gi(x) = h1(x) + ih2(x). In [38], the authors show that

applying this technique to Bloom Filters allows you to efficiently implement a BF

without any loss in the false positive probability. In order to locate the most power

efficient manner generating hash functions, we looked at several different ways of

combining h1(x) and h2(x) In Table 4.1 we present some of the different ways we

could combine the hash functions to get the values. In the table, ⊗ represents bitwise

XOR operation, ∗ represents a multiplication operation and + represents addition.

Table 4.1

Some Possible Variations of Hash Functions

Method Combination Power
1 A+ rot(B, i) 557.103 µ W
2 A+ i ∗B 88.136 µ W
3 A+ 2i ∗B 637.910 µ W
4 A⊗ i ∗B 58.269 µ W
5 A⊗ rot(B, i) 61.258 µ W
6 A⊗ 2i ∗B 92. 796 µ W

The multiplication operation (denoted by ∗) can be implemented using a shift

operation in Verilog. However, shifting bits, introduces Zeros into the bit positions

vacated during the shift operation. Since performing an XOR operation with 0

retains its value (1⊗0 = 1 and 0⊗0 = 0), this would lead to those bit positions being

deterministic (The location of the zeros are known). This leads to a sub-optimal value

for the Hash function. Hence we did not choose any of the multiplication options.

Thus, the most optimal choice of the options was Method-5 from the table above i.e.

A ⊗ rot(B, i). This gave us the lowest power draw while retaining the randomness

due to the rotation.

During the population of the data structure, the computation of the FNV hash

can be done either completely in parallel or in multiple cycles. In table 4.2 we

present the power and timing differences between completely parallel computation

34

and sequential computation. The module that generates the k hash indices is made

of purely combinational logic - hence it is always a single cycle module.

4.3.2 Power Draw by Stages-A & B

The proposed design implemented in Verilog and simulated using ModelSim from

Mentor Graphics. To obtain power results, synthesis was performed on the verified

design using Design Compiler from Synopsys using components from the Design-

Ware IP Library and the TSMC 90nm technology library. The memory power data

was obtained using the CACTI power model [39]. The feasibility of the design is

established by the synthesized power estimate, i.e. if power is within physical limits

and the circuit is synthesizable, then it is feasible.

Table 4.2

Power Draw by One Instance of the FNV module

Module Power Num Clock Cycles
FNV - Parallel Implementation 25.3 mW 1
FNV - Sequential Implementation 5.97 mW 6

As can be seen from the data. A trade-off must be made between power and

timing, depending on the performance goals. We took the sequential approach in

order to keep the power draw low. However, if the power budget allows, the single-

cycle approach can give a performance improvement.

Table 4.3 shows the power draw for the two stages (A,B). Stage-A power draw

comprises of the FNV module and Address-generation modules. (See Fig. 4.4) and

Stage-B comprises of the Bloom Filter Consolidation and distribution network (See

Fig. 4.5).

35

Table 4.3

Overall Power Draw by Stages A & B

Module Total Power draw
Stage-A 6.22 W
Stage-B 1.66 W

Total 7.88 W

4.3.3 Timing Calculations

To generate the FNV hash and the k BF indices for a single basis-vector, takes

a time of O(1) = (tFNV) +O(k). For total n (< 103) basis vectors in each table, the

order of the entire data structure generation computation isO(n1·k). As computation

of each basis vector is independent, each of these can be computed in parallel using

r(≈ n1) circuits within O(n1 · k/r) time. For r << n, this is O(k) with k generally

< 20 [25]. Consolidation of the BFs into a single BF is a constant time operation

because it is not dependent on n. The analysis of timing across all the stages will be

discussed in detail at the end of the next chapter.

Since the two input tables have different processing requirements, the time taken

for this stage (t1) can be denoted as a sum of computation time for Table-1 (t1a) and

computation time for Table-2 (t1b)

t1 = t1a + t1b (4.1)

t1a = tFNV +W +O +D (4.2)

t1b = tFNV +W (4.3)

Here, tFNV is the number of cycles taken to process each input string into its

corresponding hash value (using the FNV hash algorithm), W is the time taken to

36

write the BF indices. (common to both tables) As explained previously, n individual

copies of the BFs need to be consolidated into a single BF prior to distribution,

hence O is the time taken to OR together the individual bloom filters. (It should be

obvious that only Table-1 needs to undergo this step). D is the time taken to load

the multiple copies of the BFs to the corresponding slices in Stage-C (common to

both tables). In our design W = k, and O = D = 1. Assuming a 40 character input

string for each basis vector being processed, this stage would take 96 clock cycles to

process the data in parallel. The limiting factor is the number of octets that need

to be processed by the FNV algorithm block to get the initial hash value in order to

generate f1 and f2. Once these are generated, generating the k index values and the

population and distribution can be carried out quickly. While we have attempted

to parallelize the FNV computation, the requirement to feedback the current value

of the hash for ever octet of the input data is a part of sequential computation that

cannot be completely parallelized..

37

5. COMPUTATION OF COSINE SIMILARITY

5.1 Introduction

Computation of cosine similarity, requires performing the dot-product operation

between the two data structures being compared. As mentioned previously in sec-

tion 2.4, identifying the common basis vectors is computationally expensive. If we

can reduce the computational complexity, we can obtain power and energy savings.

In this section, we present an overview of the parallel algorithm and the details of its

implementation. We will look at stages C to E of Fig. 5.1 as well as the schedulers.

Populate

Bloom

Filters

Stage-B

p slices

Multiply Coefficients and

Calculate Sum

Stage-E

n slices

Identify Common

Basis Vectors

Stage-C

b slices

Extract Coefficients

Stage-D

n slices

Generate Vector ID and

BF Indices

Stage-A

In
te
rc
o
n
n
e
c
t

S
c
h
e
d
u
le
r-
2

Scheduler-1

Semantic

Descriptor

(D1)

Semantic

Descriptor

(D2)

S
im
il
a
ri
ty
 V
a
lu
e

Compute Cosine Similarity

Fig. 5.1. Stages Involved in Cosine Similarity Computation

38

5.2 Overview of the Parallel Algorithm

The process to perform the computation of cosine similarity can be broken down

into the following steps:

1. Identification of Common Basis Vectors.

2. Extraction of Coefficients.

3. Multiplication and Summation of Coefficients.

In Fig. 5.2 we present the graphical version of the steps involved. Two data

structures (D1 and D2) are taken as input to generate the cosine similarity value

(D1 ·D2) as follows:

(a) Identify the common basis vectors from the first coefficient table (Component

1,Fig 5.2) by verifying which vector IDs are in the second BF (BF2) by using

the set of BF bit indices in the first table.

(b) If a vector is present in the BF2 then we use that common vector ID as the key,

and extract the coefficient value from the coefficient lookup table of the second

data structure (Coefficient Table of D2). This is carried by a content addressable

memory (CAM) lookup mechanism with vector ID as the key.

(c) Multiply the pair of coefficients for each identified common basis vectors (from

both tables), and

(d) Add all the products to get the similarity metric.

5.3 Overview of Hardware Implementation

In [12] we showed that in a semantic routed network, c (the number of common

vectors) is 1

1000
× n = 0.01% of n. (n is the number of rows in a coefficient table

39

Coefficient table of DP

2

Coefficient table of DP

1

Coeff w1
i Set of BF bit indicesVec ID

0.2 { 0, 2,… j }IDi

Coeff w2
i Set of BF bit indicesVec ID

0.3 { 0, 2,… j }IDi

Membership test

0
1

2
3

m-1
m

1
0

1

0
0

0

BFB

2
PB

Step (a)

Step (b)

Step (c) & (d)

D1 · D2= ... + (0.2 x 0.3)+...

Fig. 5.2. Steps of Computing Cosine Similarity

i.e. number of basis vectors). The expected number of CAM lookups that will take

place is given by (c+(n−c) ·Pfalse+ve), where Pfalse+ve (≈ 10−9) is the probability of

false positive for the Bloom filter being used (m ≈ 105, k ≈ 7) [25]. Therefore only a

small number of lookups (in CAM) (0.01% of n) will occur. Hence we use a small

number of slices in stage D (b << n). This reduces the design requirement from

n-CAM blocks to b-CAM blocks and saves power. Further, as multiplier units are

expensive in terms of power and area requirements, we use an even smaller number

(p < b, p << n) of slices in the multiplication stage E.

5.4 Common Vector Identification

Fig. 5.3 shows the design of the block that identifies the common basis vectors

amongst the two data structures. BF Indices (e1j) for rows r1 and r2 are shown in

the figure. There are n such rows present to enable parallel comparisons. Each row

has a copy of BF2 (shown by b1 , b2) allowing for parallel testing. Each entry eij in

a row ri of the table is fed to a common address bus by means of a tri-state buffer.

A decoder connected to a modulo-k counter enables the tri-state buffers. By

clocking the counter for k cycles, the k bloom filter index values can be sequentially

40

Row (ri) of Bloom

Filter Indices from

Table-1

Async.

RAM

Index (0, 1 … k-1)

15

Sequence

Detector (Si)

RAM (bi) (Copy of

BF of Table-2)

1

RowSelect

ADDR
DATA

Common Selector bus

mod-k counter

Decoder

log2k

Common Address bus

Fig. 5.3. Identification of Common Basis Vectors

fed to the bank bi of RAM containing BF2. The DATA port of the RAM bank bi

feeds into a sequence detector si. The sequence detector sets the RowSelect line to

high when a sequence of k 1s has been observed (indicating that all BF indices eij

of row ri are present). This is done as part of the Bloom filter (BF) membership

testing operation, where we check to see if all selected k bit positions are 1 or not.

Use of asynchronous RAM along with tri-state buffers ensures a fewer number of

lines to route. This results in a lower power and area solution. The use of Bloom

filters, allows us to identify the common rows in the k cycles. This is much quicker

than the O(n1 · logn2) or O(n1 · n2) computation required for the corresponding

software approach.

5.5 Extraction of Coefficients

Once the common basis vector rows are identified, the next step is to extract

the scalar coefficients. The architecture of the block that performs the extraction

of scalar coefficients from one row is shown in 5.4. The RowSelect signal from the

previous stage is used to drive the SearchEnable input to the CAM. When the match

41

is found by the CAM, the CAM asserts the MatchFound signal and sends the address

of the match to the RAM block.

Vector ID Coefficient

CAM RAM

SEARCH_ENABLE

SEARCH_VALUE

MATCH_FOUND

MATCH_ADDR RD_ADDR

DATA_OUTRowSelect

Coeff_a

DataReady

Coeff_b

16

16

1

1

64

Fig. 5.4. Extraction of Coefficients

The RAM block outputs the corresponding coefficient value (Coeff b). The match

found signal and the RowSelect signal are used to gate the values of the first coeffi-

cient (Coeff a) to the next stage of the process. The MatchFound signal is also used

as the DataReady signal for the next stage of the computation process. A set of

Coeff a, Coeff b and DataReady signals are obtained for every row that is part of

the common basis vector set.

5.6 Multiplication and Summation

Once the corresponding pairs of coefficients are obtained, the final step is to

multiply each pair of scalar coefficients with each other and calculate the sum of all

the product terms.

In an ideal case, with n rows of data, n multipliers and an n−input adder would

guarantee minimum latency. However, since multipliers are expensive both in terms

of power and area, we chose to make a trade-off and use a lower number of multipliers.

Fixed point representation allows us to use pipelined multipliers, which are also more

power and area efficient than floating point units. The primary challenge in using a

smaller number of pipelined multipliers is in scheduling the processing so that a new

42

multiply operation can be started on every multiplier in each cycle. Fig. 5.5 shows

the block diagram of the multiplication and summation stage. Fig 5.5 also shows the

location of Scheduler-2. We discuss the scheduling logic in the next section.

Coeff_a
Coeff_b

DataReady

∑

1
Multiplier-0

Multiplier-p

Accumulator

Scheduler-2

Mux-0

Mux-p

32

Similarity

Value

32

32
16

32

32

S1 S2 Sp

Coeff_a
Coeff_b

DataReady

Coeff_a
Coeff_b

DataReady

Row-1

Row-n

Fig. 5.5. Multiplication and Summation.

If c pairs of coefficients need to be multiplied, p is the total number of multipliers

available, L is the latency of the pipelined multipliers, and A is the latency of the

adder, then the overall latency of this stage is (c/p) + L+ A cycles.

The outputs of the multipliers are fed to a single cycle accumulator that can

handle p inputs. Thus at the end of (c/p) +L+1 cycles, the value that is output by

the accumulator is the similarity value.

5.7 Scheduling Logic

To facilitate smooth flow of data between the unequal number of slices in different

stages and enable maximum utilization of slices, special interconnects are used be-

tween the stages. The Interconnect between stage B and C (see Fig. 5.1) distributes

the consolidated Bloom filter to n slices in stage C. This is a simple distribution

network similar to a Clock-Tree.

43

Scheduler-1

RAM

Unit-0

RAM

Unit-(b-1)

CAM

Unit-0

CAM

Unit-1

CAM Unit-

(b-1)

RowSelect

0

n-1
1

log2b

S0 S1 S(b-1)

16

64

RAM

Unit-1

16

1

Coeff_a

Coeff_b

DataReady

Coeff_a

Coeff_b

DataReady

Row-0

Row b-1

Fig. 5.6. Location of Scheduler-1 between Stages C & D

Scheduler-1 between stages C and D schedules the parallel extraction of coefficient

values. This interconnect operates on n one-bit signals from Stage-C (RowSelect)

that indicates that the corresponding row is a potential candidate match. RAM units

shown in 5.4 contain the coefficient values of Table 1 (b-RAM copies are present in

total). The b-CAM units on the other hand store copies of the coefficient values of

Table 2. Using b -CAM units instead of n allows us to economize on both power

and area both of which are consumed in large quantities by CAM units [40]. Since

RowSelect bus consists of n one-bit signals from Stage-C that indicates which rows

of Table 1 had a BF Membership test match. The interconnect logic schedules

data reads from the RAM units (corresponding coefficients of Table1) in a staggered

manner because Stage D has b slices whereas Stage C has n slices (b << n).

In a similar manner, Scheduler-2 (shown in Fig. 5.5) between stages D and E

schedules the multiplication of the scalar coefficients. Since both interconnects-2 &3

share the same working principle, hence in this section we will explain the working

of one of them.

44

5.7.1 Design of the Scheduler

We designed a scheduler that enabled the dispatch of p rows of scalar coefficient

pairs (Coeff a, Coeff b) every cycle. Fig. 5.6 & Fig. 5.5 shows the position of the

schedulers within the data path. The n DataReady lines from the previous stage are

inputs to the scheduler. Every cycle, the scheduler routes p rows to p multipliers

via p multiplexers (Mux0 to Muxp in Fig. 5.5) until all the valid rows have been

processed.

Address Selector 0

Address Selector 1

Address Selector p

G
lo
b
a
l
A
llo
c
a
to
r

DataReady

0

n-1

1

1
log2n

S1

S2

Sp

AddSelBus 1

AddSelBus p

Fig. 5.7. Internal Structure of the Scheduler

The outputs of the multipliers are fed to a single cycle accumulator that can

handle p inputs. Thus at the end of (c/p) + L + 1 cycles, the value that is output

by the accumulator is the similarity value.

Internally, the scheduler consists of two main components: a “Global Allocator”

and a set of p “Address Selector” blocks (shown in Fig 5.7). The global allocator

allocates a multiplier to every scalar coefficient pair that needs to be multiplied as

determined from their DataReady lines. Each Address Selector then schedules the

allocated lines sequentially by setting the appropriate selection line (S1-Sp) of the

multiplexer (shown in Fig 5.6) with the address of the line being scheduled. The

global allocator is connected to the Address Selectors through the AddSelBus buses.

45

5.7.2 Overview of Scheduler operation

The operation of the scheduler logic circuit is best explained using the timing

diagram as shown in Fig. 5.8. For this subsection, we’ll consider Scheduler-1 that sits

between Stages C & D. Suppose X0, X1, · · · , Xb−1, Xb, · · ·Xq are the index numbers

of rows (high RowSelect signals) that have possible common basis vectors, then the

interconnect logic schedules data reading from the RAM units in a staggered manner.

Signal Names

AS[1, 0]

AS[1, X1]

AS[1, X2b-1]

AS[1, n-1]

AS[0, 0]

AS[0, X0]

AS[0, Xb-1]

AS[0, n-1]

1 2 3 4 h

S0

S1

Sb-1

Clock Cycles

X2b-1Xb-1

Xb+1

Xb

X1

X0

Xhb+1

Xhb

Fig. 5.8. Timing Diagram of the Scheduler

The address locations: X0, X1, · · ·Xb−1 are read in the first cycle; locations:

Xb, Xb+1, · · ·X2b−1, are read in the next cycle and so on.

All signals are 1-bit unless indicated otherwise. The allocator circuit groups

and allocates the RowSelect signals to all b address selectors in a single cycle

(Cycle-1, in Fig. 5.8). The allocator outputs b bundles of AS signals, with each

bundle containing n signal lines. The ith bundle of the jth signal is denoted as

AS[i, j]. In the first bundle, the signals AS[0, X0], · · ·AS[0, Xb], · · ·AS[0, Xh.b] are

46

driven high by the allocator circuit, where h = q

b
(q = number of rows having

high RowSelect signals, b = number of CAM units). In the second bundle, the

signal lines AS[1, X1], · · ·AS[1, Xb+1], · · ·AS[1, Xh.b+1] are driven high, and so on.

The ith Address Selector schedules its output address lines (Si bus) depending on

AS[i,Xi] · · ·AS[i,Xh.b+i] signals in its incoming bundle. This address bus Si drives

the ith RAM unit in stage D.

5.7.3 Design & Operation of Global Allocator

Fig 5.9 shows the internal details of the global allocator. It consists of a one-

hot priority coding circuit [41], a 2nd level detector, a static allocator and n de-

multiplexers. The output of the one-hot priority coder discloses the position of the

first valid (1) line from the n DataReady lines.

DataReady

O
n
e
 h
o
t

p
ri
o
ri
ty
 C
o
d
e
r

2
n
d
L
e
v
e
l

D
e
te
c
to
r

S
ta
ti
c

A
llo
c
a
to
r

n-1

0

0,0 0,p-1

0 n-1

n

1

1

1

log2p

1

Fig. 5.9. Details of Global Allocator

The 2nd level detector uses the output of the One-hot priority coder and the

n DataReady lines to identify the position of all valid DataReady lines starting

from the second valid position. The outputs of the priority coder and the 2nd level

detector are used by the static-allocator to allocate the lines that need to be serviced

amongst the p address selectors. The 2nd level detect signal is generated using the

combinational logic L2i = L̄1i · L0i where L1i is the output of the one-hot priority

47

coder and L0i is the DataReady bit of line i. The multiplier allocation is determined

as ai = (ai−1 + L2)mod p) where ai is the allocated multiplier for line i.

5.7.4 Design & Operation of Address Selector

The Address Selector needs to pick one allocated line (DataReadyi=1) from

AddSelBus i in every cycle so that it can pass the corresponding coefficient pairs

to its multiplier using the corresponding line address. The challenge is to identify

the next available line without requiring an O(n) lookup. This requires a logic block

that can identify the first un-serviced pair in every cycle from its input AddSelBus.

This task is addressed by the Address Selector block. (Fig 5.10).

The Address Selector circuit consists of a set of BitMask cells that are connected

to a one-hot priority coder. The AddSelBus is connected to the priority coder through

the BitMask cells. The output of the priority coder circuit is fed to an encoder as

well as the Mask input of the respective BitMask cell. The encoder generates the

address of the line to be serviced. (Si)(as shown in Fig. 5.6)

O
n
e
 h
o
t
P
ri
o
ri
ty
 C
o
d
e
r

E
n
c
o
d
e
rAddSelBus i

BitMask

Cell

MASK

BitMask

Cell

MASK

1

n

1

1

log2n

BitMask

Cell

MASK

Fig. 5.10. Details of Address Selector

The one-hot priority coder of the Address Selector indicates the position of the

first high input from among its input lines (AddSelBus i) on its n output lines. This

48

represents the first pair of coefficients to be fed to the multiplier. Blocking of this

bit from being passed back to the priority coder in future cycles will ensure that the

scheduled rows are no longer in consideration for future scheduling. The BitMask

cell provides this blocking feature when the Mask signal is asserted. The one-hot

priority coder along with the BitMask cell addresses the challenge of finding the next

valid line to be serviced in a single cycle without requiring an O(n) lookup.

The BitMask Cell as shown in Fig. 5.10 consists of a D flip-flop (DFF) with a

AND gate in a feedback loop. The cell has two states-Pass and Block as shown in

Fig. 5.11 . When Reset is asserted, the DFF output is preset to 1 placing the cell in

the Pass state. In Pass state, the cell transmits the input to the output every cycle.

The clear input of the DFF is connected to the Mask line. When this is asserted,

the output of the DFF goes low from the next clock cycle and hence blocking the

transmission of the input for future cycles (Block state).

Pass Block

Reset

Output=1

Mask

Output=0

Power ON

Fig. 5.11. State Diagram of BitMask Cell

5.8 Timing Analysis

The computation time t2 for the computation of the dot product can be denoted

as:

t2 =
(⌈n

r

⌉

∗ k
)

+ E +

⌈

G

b

⌉

+ S +

⌈

|n ∗ c|

p

⌉

+ L+ A (5.1)

where

49

G = (c+ (n− c) · Pfalse+ve) (5.2)

Here, n = number of basis vectors in the smallest vector/tensor, r = number of

parallel bloom filter test circuits, k =Number of Bloom Filter Indices, E =Number of

cycles needed to extract the coefficients (using CAM), b = Number of CAM blocks, S

=Number of cycles to schedule the multiplications, c= percentage similarity between

the two tables being compared, p = Number of multipliers available, L = Latency

of each multiplier, A= Latency of the adder and de denotes the ceiling function. In

our design, E = S = A = 1 and L = 5. Here the bottleneck is the multiplier stage

as only a few multipliers can be used because they are expensive in terms of power

and silicon area. The BF will help us identify the c + (n − c) · Pfalse+ve suspected

matching basis vectors (where Pfalse+ve is the probability of BF false positives). In

the CAM lookup stage, the c suspects are confirmed and (n − c) · Pfalse+ve false

positive suspects are rejected. Hence, there are only n · c multiplications that need

to be carried out by the p multipliers in the last stage.

5.8.1 Overall Timing Analysis

The computation time T for both major stages is the sum of times t1 (Equation

4.1) and t2 (Equation 5.1.)

T = t1 + t2 (5.3)

hence:

50

T = 2 ∗ (tFNV +W) +O +D

+
(⌈n

r

⌉

∗ k
)

+ E +

⌈

(c+ (n− c) · Pfalse+ve

b

⌉

+ S +

⌈

|n ∗ c|

p

⌉

+ L+ A

(5.4)

5.9 Power Figures

As mentioned previously in Section 4.3, the proposed design was implemented

in Verilog and simulated using ModelSim from Mentor Graphics. To obtain power

results, synthesis was performed on the verified design using Design Compiler from

Synopsys using components from the DesignWare IP Library and the TSMC 90nm

technology library. The memory power data was obtained using the CACTI power

model [39]. The CAM power data was obtained from the work on low power CAM

designs done by Ng et al. in [42].

Table 5.1

Power Figures for Computation of Cosine Similarity

Module Num instances Power
Identification of Common Vectors n (1024) 0.11 W
Extraction of Coefficients b (16) 1.976 W
Multiplication & Summation of Coeffs p (8) 7.77 mW
Interconnects 2 0.55 W

5.10 Overall Results

5.10.1 Comparison with Server Class Processor

To obtain timing on a representative server class processor, an Intel Xeon pro-

cessor was used to executed code that performed dot product computation. The dot

51

product code identifies common basis vectors using a Binary Search Tree. Once the

common basis vectors are identified, the corresponding coefficients are multiplied to

obtain the similarity value. Thus this search is of the order of O(n1log(n2)). In Algo-

rithm. 2 we present the pseudocode for the software implementation of dot-product

(cosine similarity) computation.

Algorithm 2
Pseudocode for optimum software based comparison

function ComputeDotProduct

. Timing Measurement begins here

. Build the tree

for i← 0, NumberofBasisV ectorsinTable− 1 do

rbtree.insert(table1 coefficient[i])
end for

. Search the tree

for i← 0, NumberofBasisV ectorsinTable− 2 do

rb treeptr ← rb tree.search(table2 coefficient[i])
if rb treeptr! = NULL then

dot product← dot product+ (table2 coefficient[i] + prt.value)
end if

end for

return dot product
. Timing Measurement ends here

end function

The order of speedup (Xeon vs. our design) is the same when fixed point or

floating point representation is used. The speedup is ≈ 4K in case of floating point

compared to ≈ 3.5K if fixed point representation is used for n = 1024, c = 100%

on Xeon. However fixed point representation will require pre- and post-processing

of every 16 bit coefficient value, which is between 0 and 1. This will add significant

overheads when implemented at the user programming level, hence to obtain best

results it is left to the discretion of the compiler by choosing float representation.

52

The balanced binary tree was implemented using the STL Map container as

provided by the GCC Compiler. The GCC STL-Map implements the binary search

tree using a highly optimized red-black tree implementation.

We did not consider the alternative software approach for comparison, which is

software implementation of the Bloom Filter. This is because this approach would

involve multiple hash computations for each basis vector and would be computation-

ally more expensive and hence suboptimal. Hence this approach is not suitable for

comparison.

In all cases, the program memory was locked into RAM using the Linux mlock

command for the duration of the process. This ensure that the memory allocated to

the program is not swapped out during the course of execution. We further ensured

that our code ran at the highest priority possible (for a userspace program) and

did not get swapped between processors (using the taskset command). Hence our

execution time does not get influenced by other tasks on the system.

We use clock cycles in lieu of execution time to compare designs in a clock speed

neutral manner. We did this to ensure fair comparison with reference hardware

designs [43] [44] [45] which have been implemented and evaluated at different clock

speeds. Details of this comparison is presented in Section 5.10.3.

For all simulation experiments below, number of basis vectors n = r = 1024,

expected number of common basis vectors c = 102 (10% of n, a very conservative

value), number of multipliers p = 16, BF length m = 10240, number of BF hash

functions k = 7 (optimum), BF false positive probability Pfalse+ve ≈ 8.3×10−3 (for n

= 1024), and E = S = A = 1 unless different values are implied. The expected values

of execution/processing times are the simulation results. The performance evaluation

results of our design and the comparison against available hardware designs are

presented in Table- 5.2.

In Table 5.2 we present the superior performance of our design in terms of speed

(clock cycles to perform semantic comparison for a pair of vectors) and circuit power

53

draw (for 90nm technology, 3Ghz) compared to an Intel Xeon processor (a represen-

tative server class processor). The Intel Xeon (3Ghz version), used in this example,

has a maximum instruction per cycle (IPC) figure of 4. All other high performance

sequential processors have IPC of very similar order. Hence the performance cannot

be significantly improved any further on a traditional server class processor. We

discuss the limitations of multi-core/GPU based systems in the next section.

Table 5.2

Superior Performance of Hardware Design

Comparison
Execution time (in cycles)

Power Draw
c=10% c=100%

Proposed Hardware 131 303 10.52 Watts

Intel Xeon 390,986 557,592 40-80 Watts/core

Comments
Speedup of

2984
Speedup of

1840
82% less Power

The addition of Interconnect-2 to the design presented in [46] allowed a signifi-

cant reduction the number of CAM blocks required. This along with a lower number

of multipliers, contributed towards a reduction in power consumption from the then

reported figure of 109W [46] to 10.528 Watts in this design, though additional com-

putational stages were added.

5.10.2 Power Consumption per Functional Block

In table 5.3 we present the break up of the power consumed by the major func-

tional blocks

As can be seen from the above table, the major power draw is from the Bloom

Filter Generation and consolidation stages (Stages A&B). This is primarily because

of the large number of OR-gates involved in the consolidation of the n independent

Bloom Filters into a single BF and then distributing them to the n different rows of

Stage-C (Identification of Common Basis Vectors).

54

Table 5.3

Power Consumed by Each Functional Block

Stage Functional Block Power Draw

A Generate BF indicies 6.230 W
B Bloom Filter Consolidation 1.66 W
C Identification of Common Vectors 0.11 W
D Extraction of Coefficients 1.976 W
E Multiplication & Summation of Coeffs 7.77 mW
- Schedulers 0.55 W

Total 10.528 W

5.10.3 Comparison with Other Hardware Designs

From our literature search, we were believe we are the first to investigate the con-

cept of hardware based semantic comparison. Hence direct comparison against other

semantic comparators is not possible since they do not exist. However, hardware to

compute cosine similarity (which is a part of our computation) has been investigated

by [43] [44] [45]. Fig 5.12 shows the comparison of speedup of our design against

that of the other available designs (compared to the execution time of an equivalent

efficient software code). We show comparison with both c=100% and c=10% by

converting their reported execution times to clock cycles.

784

2672

0.143

562

11101

19928

545

16409

41652

0 10000 20000 30000 40000 50000

8,Ref [7]

400,Ref [8]

1024,Ref [6]

Speedup

Proposed (c=10%)

Proposed (c=100%)

Available Hardware Designs

N
u
m
b
e
r
o
f
B
a
s
is

V
e
c
to
rs

[A]

[B]

[C]

Fig. 5.12. Comparison of Speedup Against Other Hardware Designs.
[A]=Ref. [45], [B]=Ref. [43], [C]=Ref. [44]

55

Table 5.4

Speedup Comparison with Other Hardware Designs

Number of Basis Vectors Compared Against
Improvement in Speedup (times)
c=10% c=100%

8 Ref. [43] 0.696 0.717

400 Ref. [44] 6.14 4.15

1024 Ref. [45] 291,275 139,357

The other hardware designs do not take into consideration the number of common

basis vectors. The proposed design performs consistently better due to fine grained

parallelism in the hardware for large meaning vectors (number of basis vectors =

400, 1024). Such parallelism has not been exploited by other hardware based designs

[43] [44] which carry out the computations sequentially. [45] uses a parallel execution

scheme, however, their design leads to an execution time which scales exponentially

with the number of vectors being processed. In comparison, our design takes a much

lower number of cycles and scales linearly with a very small slope within the given

range. In addition, none of these approaches perform true semantic comparison.

In Table- 5.4 we present a comparison of our hardware with those presented in [43]

[44] [45] and show the factors of speedup by which our design performs better. For

large meaning vectors (number of basis vectors = 1024) our design gives a speedup

increase of 291,275 times for c=10% and 139,357 times for c=100% compared to the

hardware in [45]. The other hardware designs do not address power issues and hence

it is difficult to compare power consumption.

5.10.4 Overall Execution Time

Our design can handle a larger number of input rows (n > 1024) by splitting

the rows into multiple partitions of 1024 rows each. For example if the input row

size were 2048, it would be split into two partitions of 1024 rows each and then

processed. Fig. 5.13 shows the comparison of number of cycles required by the

56

proposed hardware and Xeon for different values of n (number of basis vectors) to

show their relative scaling behavior with n.

0

2

4

6

8

0 250 500 750 1000

lo
g
 (
N
u
m
b
e
r
o
f

C
y
c
le
s
)

Number of Basis Vectors

Proposed Hardware

Traditional Processor

Fig. 5.13. Variation in Number of Clock Cycles between Proposed
Hardware and Traditional Processor

5.10.5 Variation of Number of Basis Vectors

Fig. 5.14 shows that the execution clock cycles varies linearly (with a small slope)

with number of basis vectors n (scaling behavior) as there are limited number of mul-

tiplier units. This and all following experiments are carried out with the parameters

of n = 1024, k = 7, b = 16&p = 8 unless specified otherwise.

100

120

140

0 500 1000

N
u
m
b
e
r
o
f

C
lo
ck
 C
y
c
le
s

Number of Basis Vectors

Fig. 5.14. Variation in Execution Time due to Number of Basis Vectors

5.10.6 Variation in Speedup with Similarity

Fig. 5.15 shows the variation in Speedup with change in percentage similarity

among the two Tables. Smaller value of c leads to lesser number of multiplications.

57

The variation is bounded and gives a speedup of at-least 19,969 for c=100% (worst-

case).

0

15000

30000

45000

0255075100

S
p
e
e
d
u
p

Similarity (%)

Fig. 5.15. Variation of Speedup with Variation in Similarity

5.10.7 Variation in Timing due to Number of CAM Units

Fig. 5.16 shows variation number of Clock cycles needed by the proposed hardware

with varying number of CAM’s but fixed number of rows n = 1024, multipliers

p = 8. The three starred points indicate the reach of a steady state in number of

cycles. Increasing the number of CAM units beyond this point does not yield any

improvement in performance.

100

200

300

400

0 250 500 750 1000

N
u
m
b
e
r
o
f
C
lo
c
k
 C
y
c
le
s

Number of CAM Units

10% Similarity

50% Similarity

100% Similarity

Fig. 5.16. Variation in Execution Time due to Number of CAM Units

5.10.8 Variation in Timing due to Number of Multiplier Units

Fig. 5.17 shows variation number of Clock cycles needed by the proposed hardware

by varying the number of multiplier units with fixed number of rows n = 1024,

58

number of CAM units b = 16. As in the previous case, a steady state (indicated by

the star) is reached beyond which there is no reduction in the number of clock cycles

required to compute the similarity value.

50

150

250

350

450

550

650

2 4 6 8 10 12 14 16

N
u
m
b
e
r
o
f
C
lo
c
k
 C
y
c
le
s

Number of Multipliers

10% Similarity

50% Similarity

100% Similarity

Fig. 5.17. Variation in Execution Time due to Number of Multiplier Units

The steady state value of CAM and Multiplier Units (16 CAM and 8 multipliers)

for 10% similarity and n = 1024 rows can be seen in Fig. 5.16 & Fig. 5.17. This

justifies our choice for choosing these values in our synthesized design.

As can be seen from Fig. 5.16 & Fig. 5.17, there is a mininum number of clock

cycles required for the computation of the semantic similarity. The figures appear

to saturate at a certain number of cycles because of the number of parallel units

in either stage-C or Stage-D. If the value of number of CAM units (in Stage-C)(b)

and number of multipliers (in Stage-D) (p) were set to the maximum of 1024 (full

parallelism), then number of clock cycles required to compute the similarity value

would be 132 (for 10% common basis vectors). This number is because there are

(atleast) 100 rows that need to extracted and matched. Stages C-E would consume

17 cycles for this and Stage-A,B would consume 96 cycles. This can be verified by

using equation 5.4. The mimium number of cycles is dependent on those steps which

cannot be parallized efficiently.

59

6. PERFORMANCE ENHANCEMENTS AND ALTERNATIVE

IMPLEMENTATIONS

In this section, we will look at performance enhancements and two alternative

implementations of the proposed architecture. The parallel algorithms are hardware

agnostic and hence by implementing these in different hardware platforms we can

study the relative merits and demerits of the respective platform for the proposed

application. In section 6.1, we present the pipelined implementation and results.

In section 6.2 we present the implementation details on an Nvidia CUDA enabled

graphics card. The algorithm was also implemented on a Xilinx Virtex-5 FPGA, in

section 6.3 we present the details and power figures from this.

6.1 Pipelining

By implementing pipelining into the design, performance enhancements can be

obtained. Pipelining in our case allows the processing of multiple comparisons, al-

lowing a new one to start before the previous comparison completes. This reduces

the latency between successive semantic comparisons.

6.1.1 Implementation

In Fig. 6.1 we present the overall architecture of the pipelined version of our

design. We extended the design of the basic architecture (presented in Section 3.3)

by adding pipeline registers and associated control logic. In the original design,

the steps of computation were already demarcated by the presence of schedulers

and the interconnect logic between the various processing steps. Hence for ease of

implementation, the pipeline registers were primarily inserted into the data-path

by modifying the two schedulers (Scheduler 1 and Scheduler 2). This allows each

60

processing block to complete processing, hand over the intermediate results to the

next stage and immediately begin processing the next set of input values.

Populate

Bloom

Filters

Stage-B

p slices

Multiply Coefficients and

Calculate Sum

Stage-E

n slices

Identify Common

Basis Vectors

Stage-C

b slices

Extract Coefficients

Stage-D

n slices

Generate Vector ID and

BF Indices

Stage-A

In
te
rc
o
n
n
e
c
t

Semantic

Descriptor � � � �
Semantic

Descriptor � � � �
S
im
il
a
ri
ty
 V
a
lu
e

P
ip
e
lin
e
 R
e
g
is
te
rs

Scheduler-1

Pipeline Registers
S
c
h
e
d
u
le
r-
2

Pipeline

Controller

P
ip
e
lin
e
 R
e
g
is
te
rs

Fig. 6.1. Overall Architecture with Pipeline Enabled

A block diagram of the pipeline control logic is given in Fig. 6.2. The logic control

block keeps track of how many inputs were given to the specific processing block and

computes the number of cycles required to generate the outputs. It then waits for the

required number of cycles before releasing the next set of inputs to that processing

block.

To enable pipelining, registers to hold the intermediate values were inserted into

the datapath (Shown in Fig. 6.1 as Pipeline Registers.) There are three optimal

locations for these. Before the inputs to the schedulers (for stages B,C) and right

after Stage-A. By inserting the registers into the data path at these locations, they

61

Count Number of

reported Active lines

Compute

Number of

Delay Cycles

Number of Rows (n)

Number of CAM

Units (b)

Number of

Multipliers (b)

Input Signal Lines from Pipeline registers 1,2 & 3

Control Signals to Pipeline

registers 1,2 & 3

Generate

Hold

Signals

For

Delay

Cycles

Fig. 6.2. Block Diagram of Pipeline Controller

buffer the results of the previous stage, while the previous stage begins computation

of the next set of data. The control logic controls the flow of data by turning ON/OFF

the appropriate gates that lead to these registers.

6.1.2 Operation

The pipelined version of the semantic comparator works in the same manner

(algorithm wise) to the non-pipelined version. It begins by taking in the two ta-

bles to be compared, generates the BF indices and stores the data into the tables.

The common basis vectors for the tables being compared are then identified. Once

the common basis vectors are identified, the corresponding scalar coefficients are ex-

tracted and the sum of products (cosine product) of these scalars is computed. This

final computed value is the semantic similarity between the tables being compared.

Pipelining is enabled by the registers and control logic that have been inserted

into the existing datapath. The output of each stage, is tapped by the control logic

block to count the number of outputs generated and being given to the next stage as

input. For example, if Stage-C (Identification of common basis vectors) identifies 20

62

common basis vectors, then there will be 20 values heading to Stage-D (extraction

of coefficient values). Since the logic block knows that there are 16 CAM block

available, it can compute, that to test all 20 values, Stage-D will take 2 cycles. (16

in the first cycle, and 4 in the next cycle). Hence the logic block, delays the entry of

the next set of values into Stage-C and therefore into Stage-D accordingly so that in

three cycles from now, Stage-D will have another set of values to test for.

6.1.3 Results

We present the power and timing results from the pipelined implementation in

this section. Pipelining does have an power overhead due to the added pipeline

registers plus the associated control logic. The trade-off of the increased power is the

reduced latency between successive outputs of data, leading to speedup.

Table 6.1

Comparative Results between Pipelined and Non-Pipelined Designs

Design Execution Time (cycles) Latency Power Draw

Non-pipeline design 131 131 10.52 Watts

Pipelined design 139 8 13.563 Watts

Comments - 16x Speedup ∼ 30% power overhead

The pipelined version takes an extra 8 cycles to process the data. The eight cycles

is introduced due to the pipeline registers involved. The pipeline registers at each of

the interconnects takes 2 cycles of delay, and the remaining two cycles are used for

synchronization at the input and output of the pipeline. Other performance figures

such as scaling for varied number of rows remains the same as the non-pipelined

version.

63

6.2 CUDA Implementation

An implementation of the developed algorithms for semantic comparison was per-

formed on an NVIDIA-CUDA compatible GPGPU [47]. In this section, we present

the details of the implementation and results from some experiments to study the

performance in comparison to the ASIC design presented in the previous sections.

6.2.1 Introduction to CUDA

Modern GPUs released by hardware manufacturers NVIDIA and ATI (acquired

by AMD in 2006) have numerous (> 100) SIMD (Single Instruction Multiple Data)

processing cores. These cores have the ability to process several parallel streams of

data at any given point in time. The parallel processing capability of these cores has

attracted the interest from many diverse fields that benefit from parallel processing

such as Information Retrieval [48], Video/Audio Encoding [49] [50], Astronomy [51],

Medical Sciences [52] & Bio-Informatics [53].

In response to the interest from research community and industry, these manufac-

tures have released APIs’ and programing models that allow these cards to perform

non-graphical computation as well. NVIDIA’s implementation of this approach is

termed Compute Unified Device Architecture (CUDA) [16] [49]. (ATI/AMD’s simi-

lar implementation for its range of multi-core graphics cards is marketed under the

name AMD Firestream [54])

The CUDA SDK consists of a collection of APIs (high and low level), compiler &

device drivers that allow for custom code to be written, compiled and executed on

the graphics card. The software that runs on the CUDA cards, is written in a version

of the C programming language called “C for CUDA” comprising of restrictions and

extensions defined by NVIDA to ensure compatibility with the CUDA architecture.

The CUDA architecture has become popular in the community, with wrappers for

64

several other languages being developed including Perl [55], Python [56], Fortran

[57], Java [58] and also platforms such as Mathematica and MATLAB [59].

6.2.2 Overview of CUDA Architecture

A CUDA enabled GPU consists of multiple light-weight SIMD processing cores.

The number of cores ranges from as low as 8 on the QuadroFX 370 LP [60] all

the way to 512 on the M2090 GPU Computing Module [61]. PCI-E is used as the

interface between the GPGPU and the Host PC’s motherboard.

The Host PC initially loads a self contained code segment (called a kernel) into

the GPGPU memory. Each SIMD processor then executes this kernel, generally over

different data-elements in parallel. The GPGPU can process thousands of threads

simultaneously. Using scheduling mechanisms, the number of logical threads and

thread blocks (groups of logical threads) surpasses the number of physical execution

units.

Fig. 6.3 shows the logical subdivision of CUDA functionality into Grids, Kernels

and Threads [16]. The kernel, launches a Grid of Thread blocks. The hardware

scheduler on the GPU schedules thread blocks onto the individual cores. CUDA

Threads are extremely light-weight with very little creation overhead and can perform

very fast context-switching.

Fig. 6.4 shows the memory model of the CUDA architecture [49]. There are three

major groups of memory accessing. Threads - which can access registers (per thread)

and local memory (off-chip); Blocks - which share memory between threads and De-

vice. The Device contains three forms of memory: Global Memory (shared between

kernels), Constant memory (read only, stores invariants) and Texture memory (which

is limited and distributed, but can cache parts of the Global Memory).

Processing of data/executing a program (Programming Model) on the CUDA

architecture, consists of the following steps:

65

Block

(0,0)

Block

(1,0)

Block

(2,0)

Block

(0,1)

Block

(1,1)

Block

(2,1)

Grid-1

Grid-2

DeviceHost

Kernel-0

Kernel-1

Block (1,1)

Thread

(0,0)

Thread

(1,0)

Thread

(2,0)

Thread

(3,0)

Thread

(0,1)

Thread

(1,1)

Thread

(1,2)

Thread

(1,3)

Fig. 6.3. CUDA Logical Layout

1. Split a task into subtasks

2. Divide input data into chunks that fit global memory

3. Load a data chunk from global memory into shared memory

4. Each data chunk is processed by a thread block

5. Copy results from shared memory back to global memory

We map the hardware algorithm to perform the semantic comparison into the

same series of steps. In the next section, we discuss the phases involved in semantic

comparison and how they have been mapped to the programming model of CUDA.

6.2.3 Phases Involved in Semantic Comparison on CUDA

The implementation of our semantic comparator algorithm in the CUDA archi-

tecture consists of four phases. The four phases map the parallel algorithm into a

66

Global Memory

Constant Memory

Texture Memory

Shared Memory

Local Memory

Thread (1,0)

Registers

Local Memory

Thread (0,0)

Registers

Block (0,0)

Shared Memory

Local Memory

Thread (1,0)

Registers

Local Memory

Thread (0,0)

Registers

Block (1,0)

Grid

Fig. 6.4. CUDA Memory Model

form suitable for execution on the CUDA enabled graphics card. The four phases

involve:

(A) copying the data structures (tables) into the CUDA memory from the Host-PC

(B) performing the computation to generate the vector IDs

(C) using Bloom Filters to identify the common basis vectors and

(D) extracting the common-coefficients to perform the dot-product computation.

Several optimizations were performed to enable efficient use of the CUDA re-

sources. These include:

67

1. Maximize independent parallelism - We minimized the inter-core communica-

tion as much as possible.

2. Data structure is flattened to increase coalesced memory accesses - The layout

of the data-structures (written in C) were modified slightly to obtain a flatter

structure. This allowed us to maximize the available PCIe bandwidth (76.8

Gb/s for the NVIDIA C870 [62])

3. Limit the number of blocks and increase the number of threads. This allows

us to increase the reuse of shared memory.

4. Since shared memory is inaccessible after the end of kernel execution, we trans-

fer the data from the kernel to the Global memory as the last step of the kernel.

5. Partitioning the computation to keep all stream cores busy. Using multiple

threads we were able to keep multiple thread blocks in constant use.

6. Monitoring per-processor resource utilization. By ensuring low utilization per

thread block allows us to have multiple active blocks per multi-processor.

In the next section, we discuss each of the processing stages of the computation

in detail.

6.2.4 Phase A: Host-PC to CUDA Global Memory Copy

In the first phase of the computation, Coefficient Table-1 & 2 are copied to

CUDA Global Memory. The data structure is internally flattened to ensure coalesced

memory accesses. The flattening of the data structure is performed basically as a

serialization of the data structure. By ensuring that the data can be read into

the CUDA processor in a continuous stream, we accelerate the copy. This process

is shown in Fig. 6.5. The transformation into a coalesced memory layout ensures

maximum usage of available of PCIe bandwidth.

68

CUDA

Global Memory

Query_Basis 1 Coeff1

Query_Basis 2 Coeff2

Query_Basis 3 Coeff3

Query_Basis n1 Coeffn1

Table-1

Query_Basis 1 Coeff1

Query_Basis 2 Coeff2

Query_Basis 3 Coeff3

Query_Basis n2 Coeffn2

Table-2

Fig. 6.5. Copying Tables into CUDA Memory

6.2.5 Phase B: Encode Table-1 in BF

In phase-B of the processing, we encode the contents of Table-1 into the Bloom

Filters. This is performed using a number of concurrent kernels that run on the

CUDA processors. In each kernel, a given Query Basisi is encoded into the Bloom

Filter as originally discussed in Section 6.2.3. As shown in Fig. 6.6, we make n1

concurrent kernel calls (independent threads) so that each row of Table-1 is served

by at least one CUDA thread. The CUDA occupancy calculator provided by NVIDIA

as part of its CUDA toolkit allowed us to calculate the appropriate device parameters

to ensure that each multiprocessor has a sufficient number of free registers (prevents

blocking).

In the CUDA implementation, we implemented the Bloom Filter Index generation

using two hash functions Hash1 = FNV [30] & Hash2 = JS Hashes [63] (is based

on the Hash function methodology mentioned in [64]). These are implemented as

device functions because of their computational simplicity. They produce two 64-

bit hash values for each Query Basisi term that they operate upon. These hash

values are then used to compute k different bloom filter index values as described in

69

Bloom Filter

(Located in Texture Memory)

FNV Hash JS Hash

Query_Basis1

Set every position indicated

by Compute BFI to a ‘1'

Query_Basis 1 Coeff1
Query_Basis 2 Coeff2
Query_Basis 3 Coeff3

Query_Basis n1 Coeffn1
Table-1

Table in Global

Memory
Compute BF

Indices

“n1”

kernels

Fig. 6.6. Encoding Elements of Table-1 using Concurrent Kernels

Equation 6.1. In the equation, intr in a random integer value. By placing the Bloom

filter (bit-array of size n) in texture memory we avoid the latency in memory access

amongst the concurrently running kernels.

BFIk = Hash1(Element) + intr ×Hash2(Element) (6.1)

6.2.6 Phase C: Encode Table-2 and Test in BF

Fig. 6.7 shows the implementation of Phase-C. This phase is similar to Phase B

with two major differences;

1. Instead of setting a bit position in the Bloom Filter to 1, it tests for the

presence (or absence) of the Query Basisi term that the kernel is operating

on. (Membership testing phase)

2. If all the bits indicated by the BF Index for the given Query Basisi are “1” in

the Bloom Filter, then the corresponding index i is stored in shared memory

to be used in the next phase of computation.

70

We launch n2 (or more) concurrent kernels in this phase. Every kernel instance

performs three steps (a) encodes a row of Table-2, (b) tests with the previously

encoded BF (Phase B) and (c) stores the index values of “matches found”.

Query_Basis 1 Coeff1
Query_Basis 2 Coeff2
Query_Basis 3 Coeff3

Query_Basis n2 Coeffn2

Table-2

Bloom Filter

(Located in Texture Memory)

Compute BF

Indices

FNV Hash JS Hash

Query_Basis1

Table in Global

Memory

Test if every position

indicated by BFI2 is a ‘1'

Index(i)

in

Shared

Memory
If Yes, SET

Test

“n2”

kernels

Fig. 6.7. Encoding Elements of Table-2 using Concurrent Kernels

6.2.7 Phase-D: Extract Coefficients and Parallel Reduction

In phase-D, the final stage of the Semantic comparison algorithm is performed.

The CUDA implementation of this algorithm is shown in Fig. 6.8. Phases A-C

enabled the “filtering” (Identification) of the common basis vectors with O(1) com-

plexity. These “filtered” common basis vector terms are then loaded from shared

memory (Step-1) and the corresponding Coeff2 value is fetched from Global Mem-

ory (Step 2). In step 2, the corresponding Query Basisi(from Table2) is located in

Table 1 (Extraction of Common Basis Vectors). This is a computationally intensive

process but occurs only for a small subset of the identified elements. This stage also

performs the elimination of false positives due to the Bloom Filter. Once the cor-

responding coefficients (Coeff1 and Coeff2) have been obtained, a partial product is

calculated (Step 4). In Step 5 we perform parallel reduction of the interim products

71

from each kernel to obtain a final sum. This final reduction is optimized using the

guidelines published in [65].

“n1”

kernels

Index(i) in

Shared

Memory

Fetch Coeff

(Table2)

Fetch Coeff

(Table1)

Coeff1 * Coeff2

Perform Parallel

Reduction

Return Similarity Value

Step-1
Step-2

Step-3

Step-4

Step-5

Query_Basis 1 Coeff1
Query_Basis 2 Coeff2
Query_Basis 3 Coeff3

Query_Basis n2 Coeffn2
Table-2

Table in Global

Memory

Query_Basis 1 Coeff1
Query_Basis 2 Coeff2
Query_Basis 3 Coeff3

Query_Basis n1 Coeffn1
Table-1

Table in Global

Memory

Fig. 6.8. Extracting Coefficients and Performing Parallel Reduction

Extracting the coefficients (step2 in Fig. 6.8) can be done in one of two methods.

Test filtered Table-1 against copies of Table-2 or test Test table-2 against filtered

copies of table-1. While at a high level, both methods involve the same process, the

ability to parallelize on CUDA is greatly exploited in the second case. Fig. 6.9 shows

the variation in the processes. It can be seen that be testing table-2 against copies

of the filtered table-1, we can utilize the processors more effectively be exploiting the

parallel cores of the processor.

In comparison, if we do the first method, we are artificially restricting the number

of parallel cores to that of the number of filtered rows of table-1, and hence not fully

utilizing the processor. Hence, using method-2 (shown in Fig. 6.9(b)) gives better

performance than the method of Fig. 6.9 (a).

72

Copies of

Table-2

Copies of Filtered

rows of Table-1

Filtered rows

of Table-1

Rows of

Table-2

Test in parallel using

kernels
Test in parallel using

kernels

Filtered set of rows

from Table-1

Filtering using Bloom Filters

Table-1 Table-2

(a) Test (filtered) Table-1

against copies of Table-2

(b) Test Table-2 against

copies of (filtered) Table-1

Fig. 6.9. Alternative Methods of Performing Extraction of Common Coefficients

6.2.8 Experimental Setup

The GPGPU card that we used is a NVIDA Tesla C870 (Compute Capability

1). The GPU contains 16 stream processors with a total of 128 cores each running

at 600 MHz. The card has 1.56 GiB of RAM running at 1.6 GHz [62]. We achieved

the rated memory bandwidth of 76.8 GB/s for all experiments. The interface to the

host PC is over a 16x PCI-Express bus. CUDA Toolkit version 3.1 was used for

compilation.

73

Power Profiling

The power monitoring was done using “Watts’ Up? Pro” power analyzer from

Electronic Educational devices [66]. This device measures overall (bulk) system

power consumption. This device is connected in line with the power supply to the

host computer as shown in Fig. 6.10. It would be useful to measure more accurate

power values, but this would require significant resources such as monitoring probes

that are inserted in-line with the PCI-E bus lanes. In our current set of experiments

this wasn’t considered, but it could provide better insights for future work in this

area.

Device Under Test (DUT)
Workstation with GPU

Monitoring PC

Power Meter

(Watts Up? Pro)

Mains power supply to
workstation (DUT)

Networked for synchronization

USB
Interface

Power
Cable

Power
Cable

Fig. 6.10. Setup for Power Profiling

Each experiment was run so that the overall program executes for at least 10 sec-

onds (multiple iterations used when necessary). This ensures that the readings from

our power monitoring device to be stable so that we are not affected by the transient

surges that could be present due to the startup and shutdown spikes in power con-

sumption from both the Host PC as well as the GPGPU itself. In table 6.2 system

base power is the static power consumed by the host computer without the GPU

present in it. System Idle power is the power consumed with the GPU present but

74

in cold shutdown state (We define cold shutdown state as the state where GPU has

not been activated by software since the booting of the host PC). GPU idle power

is the power consumed with the GPU awake but not running any specific compu-

tation. This is computed by subtracting System Idle Power from power consumed

by the system after the GPU is awake but in idle state. The CUDA cards have a

documented effect whereby, if the card is in cold shutdown state, the card consumes

less power than after being activated once. Once the card has been activated for the

first time, it transitions to the idle-state when not being used and not to the cold

shutdown state. Currently, the only way to return the C870 Tesla card to the cold

shutdown state (of power consumption) is to reboot the host PC.

Table 6.2

Baseline Power Figures

System base Power 115W
System Idle Power (GPU Cold shutdown) 150W
System Idle Power (GPU Awake, idle) 186W
GPU Idle Power 36W

Execution Time Profiling

The time-accurate simulator which implements the algorithms described in Sec-

tion 3.2 was used in the computations. This is the same code that was used to

estimate the cycle time for the pure hardware design. We use the CUDA API timers

and CPU system time to measure the run-time execution time of the core compu-

tational kernels and equivalent CPU code respectively. In order to ensure complete

utilization of all the CPU cores, we set the block size (number of threads per block)

to 384. (Max supported by the C870 card for concurrent execution when number

of blocks is greater than 1). According to the CUDA programmers guide for the

C870 card [62], the processor contains 16 multi-processors each with 8 SIMD cores.

75

Each of the 16 streaming processors can handle up to 32 threads at a time, however,

the internal scheduler will first schedule the first 24 threads and then run the next

8 threads. Hence, by extrapolating this figure, we can see that by scheduling 384

threads at a time, we can fully utilize all 128 processor cores each running at their

max capacity of 3 threads each.

6.2.9 Results

In this section, we present and analyze overall execution time, power and through-

put for the semantic comparator core on a CPU and a GPU respectively. We have

conducted all our experiments with n1 = n2 = N . In a real-life semantic router

the coefficient tables will have sizes n1 << n2. Our results represent the worst case

situation. We experiment for :

1. N varying from 100 to 150000 rows and

2. Similarity c varying between 0.1 and 1(All Match) in the two coefficient tables.

Overall Execution Time

Table 6.3 shows the overall execution time of Phases B-D as outlined in Sec-

tion 6.2.3 with varying input size of the coefficient tables under experimentation

(N). These results are shown for the situation c = 0.1 (similarity between simulated

tables=10%) and n1 = n2. The execution time of the CPU increases exponentially

as the number of entries increases whereas the same operation on the GPU is an

order of magnitude faster and does not rise exponentially. The numbers represented

are the result of running the simulation multiple times and averaging the time across

the individual runs.

As can be seen from Table 6.3, there is a minimum execution time for the GPU

even at a low number of rows, higher than the CPU time. This is a combination of the

76

Table 6.3

Execution Times of GPU and CPU

Number of Rows CPU Time (ms) GPU Time (ms)
8 0.002 1.842
64 0.056 1.832
128 0.124 1.919
256 0.525 1.907
512 1.908 1.937
1024 7.820 2.144
2048 31.492 2.651
3000 75.949 4.286
4096 124.330 4.010
5000 185.189 5.077
10240 779.319 13.857
150000 184818.945 1885.930

time required to transfer the kernel code to the GPU from the host PC as well as the

overheads of the hardware scheduler. As the number of rows of execution increases,

the inherent parallelism of the GPU and the parallel algorithm allows for faster

processing compared to the O(n2) computation required by sequential processor of

the host CPU which leads to an exponential growth in execution time.

Overall Power Consumption

Fig. 6.11 shows the variation of power consumed by the CPU and GPU respec-

tively with varying table size. This experiment was conducted for c = 0.5 (50%

similarity between table entries). The dynamic power for the GPU is lower than

that consumed by the CPU. GPU Power approaches that of the CPU for extremely

large datasets (above 50,000 entries). This is a known problem for GPUs [67] - they

are energy efficient and not necessarily power efficient.

77

0

50

100

150

200

250

300

1000 5000 10000 50000 100000 150000

D
y
n
a
m
ic
 P
o
w
e
r
(W
)

Number of Entries

GPU Dynamic Power(W)

CPU Dynamic Power(W)

Fig. 6.11. Dynamic Power Consumption

Energy Consumption

Energy consumption for 5000 < N < 150000 and c = 0.75 is shown in table 6.4.

We present the average power consumption for the CPU and GPU respectively when

running Phases A-D for varying sizes of N and c = 0.75 (for a single comparison).

The average energy saved across varying table sizes is ≈ 78%.

Table 6.4

Energy Consumption for Different Table Sizes

Table Size CPU Avg. Power (W) GPU Avg. Power (W) Energy Saved (%)
5k 232 159 67.59
10k 239 156 79.65
50k 241 188 77.64
100k 246 227 77.27
150k 251 233 77.96

These results show that in the long-term a semantic comparator using a CPU-

GPU hybrid in its compute nodes can (a) Reduce its energy footprint and/or (b)

Increase its throughput while maintaining the same energy footprint. Hence, the

parallel architecture that we propose can contribute to energy savings both when

implemeted on an ASIC design or on the NVIDIA CUDA platform.

78

6.3 FPGA Implementation

6.3.1 Implementation Details

The proposed hardware architecture was implemented onto a Xilinx Virtex-5

FPGA board [17]. The architectural layout is shown in Fig. 6.12. The layout is

similar, with the different stages implemented as slices and the number of slices being

varied depending on the corresponding stage. Due to a difference in the number of

slices between stages, a scheduler was implemented in between the various sections.

InterconnectStage B

Populate

Bloom Filters

Identify Common Basis Vectors
Stage C

Slice 1

Slice n

Extract Coefficients

Stage D

Slice 1

Slice b

Slice 2D
1

D
2

Generate Vec ID & BF Indices

Stage A

Slice 1

Slice n

Slice 2

Stage E

Slice 1

Slice p

Slice 2

Similarity

value

Multiply Coefficients and calculate sum

Scheduler-1 Scheduler-2
Input

Data Tables

Fig. 6.12. Architecture of FPGA Implementation

A difference in the implementation, was in the design of the allocators (sched-

ulers). In the FPGA version, a simpler allocator was used. The allocator was im-

plemented using a Fixed Priority Arbiter (FPA) as shown in Fig. 6.13. To explain

the working of the FPA, consider scheduler-2 which is situated in between the CAM

blocks and the multipliers. If there are p multipliers in use, p FPA instances are

instantiated. To allocate two of the multipliers to the corresponding data-path, the

first FPA grants (g0) a request (r0) and sets the corresponding request input of the

next arbiter to 0. Thus, the second FPA will not grant the request which was granted

by first FPA, and will grant another request at the same clock cycle as the first one.

Thus, the cascaded FPAs act as an allocator. Once a request is granted, it is reset

to 0 in the next clock cycle. The allocator allocates in a cyclic manner until all the

requests are reset to 0.

79

r0

r1

r2

r3

g0

g1

g2

g3

Fig. 6.13. Schematic of Fixed Priority Arbiter

A state machine was implemented to sequence the loading and processing of data

across the stages. The state machine has two main control steps: (1) Load Table

A & (2) Process Table B. In step-1, Table A is selected in Stage-Init (loading the

data) and sent to stage-A. Stage-B processes the output of stage-A and loads BF

and Table A in to the memory elements of the design. In step 2, Table B is selected

in Stage-Init and sent to stage-A. The output of stage-A is bypassed to stage-C and

the computation follows the process outlined in Section 3.3.

6.3.2 Results

A small-scale version of the proposed hardware was implemented onto an Xilinx

Virtex-5 board. The design with n = 8, b = 4 and p = 2 was created and synthesized

using Xilinx ISE 10.1. The area usage figures are presented in Table- 6.5.

Power numbers obtained using Xpower Analyzer with 25% FF activity is pre-

sented in Table- 6.6 for parameters of n = 8, b = 4 and p = 2. Synthesis of a few

different sizes showed us that that logic power scales linearly with area, and as the

number of rows gets larger, logic power becomes dominant. Thus, overall power also

scales linearly with area.

80

Table 6.5

FPGA Resource Utilization

Parameter Utilization Number Percentage Utilization
Number of Slice Registers 5116 out of 69120 7%
Number of Slice LUTs 14587 out of 69120 21%
Number used as Logic 10477 out of 69120 15%

Number used as Memory 4110 out of 17920 22%
Number of Block RAM/FIFO 44 out of 148 29%

Table 6.6

FPGA Power Consumption

Power summary Current (mA) Power(mW)
Total power consumption - 1109

Clocks 74 74
Logic 16 16

Area usage of three implementations for various values of n are shown in Fig. 6.14.

In all three cases, there are 4 CAM blocks and 2 multipliers. Area usage scales less

than linearly, and the FPGA can hold a design with maximum size of n=12, b=4 &

p=2. This behavior is expected since the CAM, RAM and multiplier blocks are the

largest consumers of area on the FPGA fabric. Increasing the number of CAM units

or multipliers takes up more fabric than increasing the number of rows in the initial

stages.

0

10

20

30

40

50

�
0

�
0

�
32

�
4

� 	
��
��� ��
� �����
� � � � � � � � � � � ! " #

Fig. 6.14. Area Usage on the FPGA for Varying Number of Rows

81

7. CREATION OF A SEMANTIC BENCHMARK

7.1 Need for a Semantic Benchmark

In previous chapters, we have explained how a Semantic Routed Network (SRN)

comprising of multiple semantic routers can be used for two purposes: (1) to selec-

tively forward/route a (query) message to an index shard based on the meaning of the

query; and (2) to automatically re-distribute index entries based on meaning of the

documents/objects. Semantic routers use a data structure called a semantic key to

represent meaning of a message and use semantic comparison (comparison of seman-

tic keys) as a primitive computation to decide the next hop message destination(s).

In addition to index re-organization and query delivery, meaning comparison can be

also used to carry out index lookup necessary for meaning based search operations

[8].

When attempting to evaluate a semantic comparator, there is a notable absence

of a valid benchmark. The primary requirement of a semantic benchmark is to test

the ability to compare the query against a known corpus and see how similar the

corpus and the query are to each other. This is unlike traditional search where

the aim is to see if the term/document exists in the corpus. In order to evaluate

the performance of efficient semantic comparator designs, a benchmark a required

that allows for semantic comparison to take place. Semantic comparison is not a

traditional computing primitive, hence traditional performance benchmarks such as

SPEC [68] or MediaBench [69] are not adequate.

The goals of the Semantic Benchmark are:

(a) To provide a valid set of semantic data that can be compared using semantic

comparison.

(b) Focus on keeping the benchmark data portable so that it can be customized for

other applications.

82

(c) Develop a dataset that can be extended by the research community as research

on semantic comparison and semantic routed networks progresses.

7.2 Comparison with Other Benchmarks

there are several well-known and accepted benchmarks. The most commonly used

benchmarks include, Dhrystone [70] for embedded systems, TPC-D benchmark [71]

for databases, NetBench [72] for Network processors, 3dMark [73] for 3d applications,

MediaBench [69] that allows for benchmarking multi-media and related operations

and the SPEC benchmark [68] which has been in use since its introduction in the

late 80s. Traditional benchmarks like the ones previously mentioned, do not allow

you to perform semantic comparison. They look at traditional metrics such as ILP,

MIPS and throughput.

The search community has its share of benchmarks including the Billion Triple

Challenge from the Semantic Web Challenge [74], LETOR (Learning to Rank) [75]

from Microsoft Research and TREC [76]. The traditional search benchmarks do not

suit our requirements, since they look at traditional information retrieval paradigms

(such as recall rate). In contrast, we are looking for the ability to perform semantic

comparison between multiple data-units.

7.3 Description of Corpus

The corpus of data for the benchmark was derived from the Semantic Network

published by the NIH [77]. The semantic networks consists of “a set of broad subject

categories, or Semantic Types, that provide a consistent categorization of all concepts

represented in the UMLS Metathesaurus, and (2) a set of useful and important

relationships, or Semantic Relations, that exist between Semantic Types.” [21] A

sample of a few lines of the corpus data is shown in Fig. 7.1.

83

Anatomi al t t a t o Am an

Anatomi al t t a t o ant

Anatomi al t t a t o tile

Anatomi al t t a t o te ate

Anatomi al t t a t o

Fig. 7.1. Sample of Corpus from UMLS Semantic Network

7.4 Components of the Semantic Benchmark

The two primary parameters that we define for the semantic benchmark are

percentage similarity c and the number of rows of data being compared. The first of

these parameters (percentage similarity) is the true measure of how close two objects

being compared are. The number of rows determines the size of the corpus. The

number of lines that can be handled at a time determines the throughput of the

comparator.

...

>PlantVirus<: 0.109544516

>VertebrateAmphibianVirusReptile<: 0.020701967

>PlantVirusReptile<: 0.1796053

>VirusReptile<: 0.035856858

>VertebrateAmphibian<: 0.14342743

>VertebratePlantAmphibianVirusReptile<: 0.0621059

>AmphibianReptile<: 0.1796053

>Vertebrate: 0.06324555

...

Fig. 7.2. Sample of Tensors after Processing UMLS Corpus

In order to create the benchmark, we first extracted portions of the UMLS data

set. These portions where then converted into tensors using the techniques of [37]

whereby the UMLS data is first cast into a concept-tree form and then the tensors

of that concept tree are then derived. Creation of tensors allows for semantic com-

parison. In Fig. 7.2 we present a sample of the tensors created from the data. The

84

various levels of the concept tree are delimited by the vectors denoted by C and B.

Details of the concept trees and its mapping to tensors is presented in [8].

Table 7.1

Datasets in Semantic Benchmark Suite

Dataset ID Number of Rows Similarity
A 1024 100%
B 1024 50%
C 1024 25%
D 1024 10%
E 1024 5%
F 1024 1%
G 1024 0.1%
H 1024 10%
J 512 10%
K 256 10%
L 64 10%
M 32 10%
N 16 10%

By varying the major parameters of the benchmark, we have generated thirteen

datasets with the parameters as shown in table 7.1. We also provide the entire

dataset corpus of 7000 lines along with the individual TF-IDF values. These can be

used to extend the benchmark as required for other research.

85

8. CONCLUSIONS AND FUTURE WORK

8.1 Future Work

This dissertation explored several design and research questions ranging from the

design of an application specific hardware co-processor that can perform dot-product

(cosine similarity) computation in a power and time efficient manner to the design of

a benchmark that provides for semantic comparison. However, there are several areas

of research that have not been explored. Some of these potential areas of research

are listed here:

1. The semantic comparator architecture is the core of the semantic router. The

rest of the semantic router still remains to be designed. While most of the router

can be based on traditional network router design principles, there will be

architectural designs required to store and process the semantic routing tables.

In addition,dealing with the the large amount of data required to process the

objects being compared is a challenge to be solved.

2. I/O remains a bottleneck in this design. Loading the tables into memory

for the first step of the computation is still the slowest point of the design.

Therefore, research into a design that can bring together memory and logic in

a single unified design will pay dividends. Examples include approaches like

the Computing Cache architecture [78] or perhaps integrating processing cores

into DRAM chips.

3. As can be seen from the CUDA implementation, by implementing parallelism

at the fine grained level (circuit level, Stage B,C,D in Section 3.3) as well as

coarse-grained (multiple processing cores in CUDA, Section 6.2), we can obtain

the ability to handle large data sets. Hence hybrid parallelism, involving next

generation processors such as the Intel SCC [13] should be investigated for

performance.

86

4. Implementation of the proposed architecture on other parallel platforms such

as a Systolic Array [79] or a Coarse Grained Reconfigurable Array (CGRA)

[80] [81] could give further insights into the parallelism of the algorithm and

could boost performance further.

5. The semantic benchmark can be extended for use in other domains. It can

be converted into network packet formats which could allow it to be used in

typical network simulators.

6. The proposed pipeline architecture is lock-step in design per comparison pair.

Unlocking the pipeline to enable use of the resources between pairs will enhance

throughput further.

7. Existing popular network simulators such as GloMoSim [82] or NS-2 [83] can be

extended to simulate and evaluate the performance of overlay semantic routed

networks on traditional networks.

8. In this dissertation, we discussed one application of SRN - in a Search Engine.

The SRN is good at information location as well as retrieval, its application to

other fields should be studied. Some examples of areas where the SRN could be

deployed include Emergency Response, Disease tracking, Autonomous Robots

and Big Data Curation.

9. The ability to perform semantic comparison - comparing based on the mean-

ing/content has wide applications from Machine Learning [84] to Intelligent

Agents [85] to Human Computer Interaction [86].

10. One of the key requirements for successful semantic comparison, is the cre-

ation of tensors from existing data sources. This is currently a manual process

requiring human curation. Automation of this area using research from the

fields of Natural Language Processing [87] and Artificial Intelligence [85] has

the potential to improve and enhance the entire experience.

87

8.2 Conclusion

In applications where threads are short and need limited memory, fine grained

circuit level parallelization can be a viable alternative to multi-core processor enabled

parallelization. The proposed parallelization scheme avoids the expensive hardware-

software design effort and high overheads associated with multi-core processor based

designs.

In this dissertation we showed how a hardware circuit algorithm can enable cir-

cuit level parallelization, deliver superior performance as compared to contemporary

hardware designs or purely software implementations. We presented the applica-

tion context and design specifications, which involved: design of a hardware centric

algorithm & mapping of the algorithm to hardware. The low power architecture

presented consumes 82% less power and demonstrates a speed-up in the order of 105

compared to a contemporary hardware design, and in the order of 103 compared to

software approach for large number of basis vectors.

We also presented a pipelined architecture for performance improvement and

comparison with implementations on two contemporary platforms - an NVidia CUDA

and an FPGA. We also presented the creation of a semantic benchmark for validation

purposes.

The semantic comparator presented here is the core processing unit for a Semantic

router, which is the key networking component for a Semantic Routed Network.

SRN has the potential to improve performance on networks dealing with information

retrieval. To that extent we presented Search as a potential application and explained

how the SRN can help improve search performance. The high performance low power

architecture can be used to elegantly implement energy efficient distributed search

engines.

88

REFERENCES

[1] A. Patriquin, “March search market share: Record query
growth and the yahoo/microsoft search deal by the numbers,”
Compete, Inc, Apr. 2008, http://blog.compete.com/2009/04/
13/search-market-share-march-google-yahoo-msn-live-ask-aol-2/; Accessed
Apr. 15th, 2009.

[2] A. Agarwal, “Single google query uses 1000 machines in 0.2 sec-
onds,” Digital Inspiration, Feb. 2009, http://www.labnol.org/internet/search/
google-query-uses-1000-machines/7433/; Accessed Apr. 15th, 2009.

[3] L. Barroso, J. Dean, and U. Holzle, “Web search for a planet: The google cluster
architecture,” Micro, IEEE, vol. 23, no. 2, pp. 22 – 28, Mar-Apr. 2003.

[4] U.S. Environmental Protection Agency, “Report to congress on server and data
center energy efficiency public law,” U.S. EPA ENERGY STAR Program, Wash-
ington, DC, Tech. Rep., Aug. 2007, http://www.energystar.gov/index.cfm?c=
prod development.server efficiency study; Accessed Oct. 28th,2010.

[5] N. E. C. A. (NECA), “Data centers - meeting today’s demand,” Electrical De-
sign Library, Tech. Rep., Aug. 2007, http://www.necanet.org/files/ACF41A4.
pdf; Accessed Mar. 15th, 2009.

[6] G. Salton and C. Buckley, “Term-weighting approaches in automatic text re-
trieval,” Inf. Process. Manage., vol. 24, no. 5, pp. 513–523, Jan. 1988.

[7] J. C. Perez, “Google joins crowd, adds semantic search capabilities,” Comput-
erWorld, Mar. 2009, http://www.computerworld.com/s/article/9130318/; Ac-
cessed Apr. 15th,2009.

[8] A. Biswas, S. Mohan, J. Panigrahy, A. Tripathy, and R. Mahapatra, “Represen-
tation of complex concepts for semantic routed network,” in Proc. IEEE 10th
Int’l Conf. Distributed Computing and Networking (ICDCN), Jan. 2009, pp.
127–138.

[9] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. Harlow,
England: Addison-Wesley, 1999.

[10] A. Biswas, S. Mohan, and R. Mahapatra, “Search co-ordination by semantic
routed network,” in Proc. IEEE 18th Int’l Conf. Computer Communications
and Networks (ICCCN09). IEEE, Aug. 2009, pp. 1–7.

[11] A. Biswas, S. Mohan, and R. Mahapatra, “Optimization of semantic routing
table,” in Proc. IEEE 17th Int’l Conf. Computer Communications and Networks
(ICCCN08). IEEE, Aug. 2008, pp. 298–303.

[12] A. Biswas, S. Mohan, A. Tripathy, J. Panigrahy, and R. Mahapatra, “Seman-
tic key for meaning based searching,” in Proc. IEEE 3rd Int’l Conf. Semantic
Computing (ICSC09). IEEE, Sep. 2009, pp. 209–214.

89

[13] Intel Corporation, “Intel single-chip cloud computer,” Intel Labs, Febru-
ary 2010, http://techresearch.intel.com/ProjectDetails.aspx?Id=1;Accessed
Mar. 21st,2011.

[14] Intel Corporation, “Intel thread building blocks, Version 3.0,” Intel Press, 2010,
http://www.threadingbuildingblocks.org; Accessed Jul. 15th,2010.

[15] J. Hoberock and N. Bell, Thrust: A Parallel Template Library Version 1.3.0,
2010, http://www.meganewtons.com/.

[16] NVIDIA Corporation, NVIDIA CUDA Programming Guide 3.0, February 2010,
http://developer.nvidia.com/cuda-toolkit.

[17] Xilinx Inc, Xilinx DS100 Virtex-5 Family Overview, Feb. 2009, http://www.
xilinx.com/support/documentation/data sheets/ds100.pdf; Accessed Sep. 21st,
2010.

[18] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen, A. Kar-
markar, and Y. Lafon, “SOAP version 1.2,” World Wide Web Consortium
(W3C), Tech. Rep., Apr. 2007.

[19] G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller, “WordNet:
An on-line lexical database,” International Journal of Lexicography, vol. 3, pp.
235–244, Dec. 1990.

[20] The Gene Ontology Consortium, “The gene ontology project in 2008,” Nucleic
Acids Research, vol. 36, no. S-1, pp. D440–D444, Jan. 2008.

[21] O. Bodenreider, “The unified medical language system (UMLS): Integrating
biomedical terminology,” Nucleic Acids Research, vol. 32, no. suppl 1, pp. D267–
D270, Jan. 2004.

[22] D. J. Watts, “Networks, dynamics, and the Small-World phenomenon,” The
American Journal of Sociology., vol. 105, no. 2, pp. 493+, Sep. 1999.

[23] S. Hares, Y. Rekhter, T. Li, and E. Addresses, “A border gateway protocol
4 (BGP-4),” Internet Requests for Comment (RFC 4271), RFC Editor, Tech.
Rep. 4271, Jan. 2006, http://www.ietf.org/rfc/rfc4271.txt.

[24] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and L. Beck,
“Improving information retrieval using latent semantic indexing,” Proc. 1988
Annual Meeting of the American Society for Information Science, pp. 36–40,
1988.

[25] A. Broder and M. Mitzenmacher, “Network applications of bloom filters: A
survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509, 2004.

[26] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A scalable
wide-area web cache sharing protocol,” IEEE/ACM Trans. Netw., vol. 8, no. 3,
pp. 281–293, Jun. 2000.

90

[27] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese, “An
improved construction for counting bloom filters,” in Proc. 14th Annual Euro-
pean Symposium on Algorithms (ESA 2006), no. 4168. LNCS, Sep. 2006, pp.
684–695.

[28] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The bloomier filter: an efficient
data structure for static support lookup tables,” in Proc. 15th Annual ACM-
SIAM Symposium on Discrete algorithms (SODA04). Society for Industrial
and Applied Mathematics, 2004, pp. 30–39.

[29] P. Almeida, C. Baquero, N. Preguica, and D. Hutchison, “Scalable bloom fil-
ters,” Information Processing Letters, vol. 101, no. 6, pp. 255–261, Mar. 2007.

[30] G. Fowler, L. C. Noll, and P. Vo, Fowler / Noll / Vo (FNV) Hash, Sep. 1991,
http://isthe.com/chongo/tech/comp/fnv/; Accessed October 24th, 2009.

[31] R. Rivest, “The MD5 Message-Digest algorithm,” Internet Request for Com-
ment (RFC 1321), RFC Editor, Tech. Rep. 1321, Apr. 1992, http://www.ietf.
org/rfc/rfc1321.txt.

[32] P. Gallagher, “FIPS PUB 180-3 secure hash standard (shs),” National Institute
of Standards and Technology, Information Technology Laboratory, Tech. Rep.
Oct., 2008, http://csrc.nist.gov/publications/fips/fips180-3/fips180-3 final.pdf.

[33] A. Augello, G. Vassallo, S. Gaglio, and G. Pilato, “Sentence induced transforma-
tions in ”conceptual” spaces,” in Proc. IEEE Int’l Conf. Semantic Computing,
(ICSC08). IEEE, 2008, pp. 34–41.

[34] D. Widdows, “A mathematical model for context and word-meaning,” in
Proc. 4th Int’l and interdisciplinary conference on Modeling and using context.
Springer-Verlag, 2003, pp. 369–382.

[35] D. Widdows, “Semantic Vector Products: Some Initial Investigations,” in Proc.
Second Conference on Quantum Interaction. University of Oxford, College
Publications, Mar. 2008, pp. 1–8.

[36] J. Mitchell and M. Lapata, “Vector-based models of semantic composition,” in
Proc. Association for Computational Linguistics (ACL08: HLT). ACL, Jun.
2008, pp. 236–244.

[37] J. Panigrahy, “Generating tensor representation from concept tree in meaning
based search,” Master’s thesis, Texas A&M University, College Station, TX,
May 2011.

[38] A. Kirsch and M. Mitzenmacher, “Less hashing, same performance: building
a better bloom filter,” in Proc. 14th Annual European Symposium, vol. 14.
Springer-Verlag, 2006, pp. 456–467.

[39] S. Thoziyoor, N. Muralimanohar, J. Ahn, and N. Jouppi, “CACTI,” HP Labo-
ratories, Palo Alto, Tech. Rep., 2008, http://www.hpl.hp.com/research/cacti/.

91

[40] S. Mohan, A. Tripathy, A. Biswas, and R. N. Mahapatra, “Parallel processor
core for semantic search engines,” in Proc. IEEE 25th Int’l Parallel and Dis-
tributed Processing Symposium (IPDPS 2011) - IPDPS Workshops, May 2011,
pp. 1767–1775.

[41] Synopsys Inc, “1-Hot priority coder,” DesignWare Component Reference, Aug.
2008.

[42] K. F. Ng, “Novel low power CAM architecture,” Master’s thesis, Rochester
Institute of Technology. Computer Engineering, New York, 2008.

[43] M. Freeman, M. Weeks, and J. Austin, “Hardware implementation of similarity
functions,” in Proc. IADIS Int’l Conf. Applied Computing. IADIS, Feb. 2005,
pp. 329–332.

[44] D. G. Perera and K. F. Li, “On-chip hardware support for similarity measures,”
in Proc. IEEE Pacific Rim Conf. Communications, Computers and Signal Pro-
cessing (PACRIM). IEEE, Aug. 2007, pp. 354–358.

[45] D. G. Perera and K. F. Li, “Parallel computation of similarity measures using
an fpga-based processor array,” in Proc. IEEE Int’l Conf. Advanced Information
Networking and Applications (AINA). IEEE, Mar. 2008, pp. 955–962.

[46] S. Mohan, A. Biswas, A. Tripathy, J. Pannigrahy, and R. Mahapatra, “A parallel
architecture for meaning comparison,” in Proc. IEEE 17th Int’l Parallel and
Distributed Processing Symposium (IPDPS 2010). IEEE, Apr. 2010, pp. 1–10.

[47] A. Tripathy, S. Mohan, and R. N. Mahapatra, “Optimizing a semantic com-
parator using CUDA-enabled graphics hardware,” in Proc. IEEE 5th Int’l Conf.
Semantic Computing (ICSC), Sep. 2011, pp. 125–132.

[48] C. S. Kouzinopoulos and K. G. Margaritis, “String matching on a multicore
GPU using CUDA,” in 13th Panhellenic Conf. on Informatics, Sep. 2009, pp.
14–18.

[49] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel program-
ming with CUDA,” ACM Queue, vol. 6, no. 2, pp. 40–53, March 2008.

[50] J. Huang, S. P. Ponce, S. I. Park, Y. Cao, and F. Quek, “Gpu-accelerated
computation for robust motion tracking using the CUDA framework,” in Proc.
IET 5th Int’l Conf. Visual Information Engineering (VIE 2008), vol. 1. IET,
Aug. 2008, pp. 437 –442.

[51] R. G. Belleman, J. Bedorf, and S. F. P. Zwart, “High performance direct gravi-
tational n-body simulations on graphics processing units ii: An implementation
in CUDA,” New Astronomy, vol. 13, no. 2, pp. 103 – 112, 2008.

[52] T. Reichl, J. Passenger, O. Acosta, and O. Salvado, “Ultrasound goes GPU:
Real-time simulation using CUDA,” in Proc. Medical Imaging 2009: Visualiza-
tion, Image-Guided Procedures, and Modeling, vol. 7261, no. 1. SPIE, 2009,
pp. 726 116–20.

92

[53] L. Ligowski and W. Rudnicki, “An efficient implementation of smith waterman
algorithm on GPU using CUDA, for massively parallel scanning of sequence
databases,” in Proc IEEE Int’l Parallel and Distributed Processing Symposium
(IPDPS). IEEE, May 2009, pp. 1–8.

[54] F. P. Miller, A. F. Vandome, and J. McBrewster, AMD FireStream. Mauritius:
Alphascript Publishing, 2009.

[55] D. Mertens, “Perl’s first real CUDA bindings released,” Jun. 2011, http://blogs.
perl.org/users/david mertens/2011/06/perls-first-real-cuda-bindings-released.
html, Accessed Oct. 1st, 2011.

[56] A. Klockner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih, “PyCUDA
and PyOpenCL: a scripting-based approach to gpu run-time code generation,”
Parallel Computing, vol. 38, no. 3, pp. 157 – 174, 2012.

[57] M. Wolfe, “CUDA fortran: The next level,” PGI Insider, Sep. 2010, http://
www.pgroup.com/lit/articles/insider/v2n3a1.htm, Accessed Oct. 5th, 2011.

[58] G. Dotzler, R. Veldema, and M. Klemm, “JCudaMP: OpenMP/java on CUDA,”
in Proc. 3rd Int’l Workshop on Multicore Software Engineering (IWMSE 2010),
May 2010, pp. 10–17.

[59] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-
Purpose GPU Programming, 1st ed. Boston,MA: Addison-Wesley Professional,
Jul. 2010.

[60] NVIDIA Corporation, NVIDIA Quadro FX 370M, 2011, http://www.nvidia.
com/object/product quadro fx 370 m us.html; Accessed May 10th, 2011.

[61] NVIDIA Corporation, TESLA M-CLASS GPU Computing Mod-
ules: Product Brief, 2011, http://www.nvidia.com/docs/IO/105880/
DS-Tesla-M-Class-Aug11.pdf; Accessed Oct. 10th, 2011.

[62] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla: A unified
graphics and computing architecture,” Micro, IEEE, vol. 28, no. 2, pp. 39 –55,
Mar.-Apr. 2008.

[63] Arash Partow, General Purpose Hash Function Algorithms, http://www.partow.
net/programming/hashfunctions/; Accessed Dec. 15th, 2008.

[64] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and
Tools. Boston,MA: Addison Wesley, Jan. 1986.

[65] M. Harris, G. Blelloch, B. Maggs, N. Govindaraju, B. Lloyd, W. Wang, M. Lin,
D. Manocha, P. Smolarkiewicz, L. Margolin et al., “Optimizing parallel reduc-
tion in cuda,” Proc. ACM SIGMOD, vol. 13, no. 21, pp. 104–110, 2007.

[66] Electronic Educational Devices, Watts up? Pro, Denver, CO, 2009, http://
www.wattsupmeters.com/; Accessed Jun. 15th, 2010.

93

[67] Y. Jiao, H. Lin, P. Balaji, and W. Feng, “Power and performance characteriza-
tion of computational kernels on the GPU,” in Proc. Int’l Conf. Green Comput-
ing and Communications & Int’l Conf. Cyber, Physical and Social Computing
(GREENCOM-CPSCOM 2010), 2010, pp. 221–228.

[68] J. J. Dujmovic and I. Dujmovic, “Evolution and evaluation of SPEC bench-
marks,” ACM SIGMETRICS Perform. Eval. Rev., vol. 26, pp. 2–9, Dec. 1998.

[69] C. Lee, M. Potkonjak, and W. H. Mangione Smith, “MediaBench: A tool for
evaluating and synthesizing multimedia and communications systems,” in Proc.
30th Annual ACM/IEEE Int’l symposium on Microarchitecture (MICRO 30),
1997, pp. 330–335.

[70] R. P. Weicker, “Dhrystone: A synthetic systems programming benchmark,”
Commun. ACM, vol. 27, pp. 1013–1030, Oct. 1984.

[71] M. Thiyagarajah and B. J. Oommen, “On benchmarking attribute cardinality
maps for database systems using the TPC-d specification,” in Proc. 10th Int’l
Conf. Database and Expert Systems Applications (DEXA99), 1999, pp. 292–301.

[72] G. Memik and W. H. Mangione Smith, “Evaluating network processors using
NetBench,” ACM Trans. Embed. Comput. Syst., vol. 5, pp. 453–471, May 2006.

[73] F. N. Sibai, “Performance analysis and workload characterization of the
3DMark05 benchmark on modern parallel computer platforms,” SIGARCH
Comput. Archit. News, vol. 35, pp. 44–52, Jun. 2007.

[74] C. Bizer and D. Maynard, “The semantic web challenge, 2010,” Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 9, no. 3, pp. 315+,
Sep. 2011.

[75] T. Qin, T.-Y. Liu, J. Xu, and H. Li, “LETOR: A benchmark collection for
research on learning to rank for information retrieval,” Information Retrieval,
vol. 13, no. 4, pp. 346–374, Aug. 2010.

[76] J. L. Vicedo and J. Gómez, “TREC: Experiment and evaluation in information
retrieval: Book reviews,” J. Am. Soc. Inf. Sci. Technol., vol. 58, pp. 910–911,
Apr. 2007.

[77] A. Ruttenberg, T. Clark, W. J. Bug, M. Samwald, O. Bodenreider, H. Chen,
D. Doherty, K. Forsberg, Y. Gao et al., “Advancing translational research with
the semantic web,” BMC Bioinformatics, vol. 8, no. S-3, pp. S2+, 2007.

[78] R. Sangireddy, H. Kim, and A. K. Somani, “Low-power high-performance re-
configurable computing cache architectures,” IEEE Trans. Computers, vol. 53,
no. 10, pp. 1274–1290, Oct. 2004.

[79] N. Petkov, Systolic Parallel Processing. New York, NY: Elsevier Science Inc.,
1992.

[80] S. Vassiliadis and D. Soudris, Fine- and Coarse-Grain Reconfigurable Comput-
ing. New York, NY: Springer Publishing Company, Inc, 2007.

94

[81] Y. Kim and R. N. Mahapatra, Design of Low-Power Coarse-Grained Reconfig-
urable Architectures, 1st ed. Boca Raton, FL: CRC Press, Dec. 2010.

[82] X. Zeng, R. Bagrodia, and M. Gerla, “GloMoSim: A library for parallel simula-
tion of Large-Scale wireless networks,” in Workshop on Parallel and Distributed
Simulation, 1998, pp. 154–161.

[83] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P. Huang,
S. Mccanne, K. Varadhan, Y. Xu, and H. Yu, “Advances in network simulation,”
Computer, vol. 33, no. 5, pp. 59–67, 2000.

[84] T. M. Mitchell,Machine Learning, 1st ed. New York, NY: McGraw-Hill Science,
Engineering, Math, Mar. 1997.

[85] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd ed.,
ser. Prentice Hall series in Artificial Intelligence. Upper Saddle River, NJ:
Prentice Hall, Dec. 2002.

[86] S. K. Card, T. P. Moran, and A. Newell, The Psychology of Human-Computer
Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates, Feb. 1986.

[87] D. Jurafsky and J. H. Martin, Speech and Language Processing, 2nd ed. Upper
Saddle River, NJ: Pearson Prentice Hall, May 2008.

95

VITA

Name: Suneil Mohan

Address: Department of Computer Science and Engineering
301, H.R. Bright Building
Texas A&M University
TAMU-3112
College Station, TX 77843-3112

Email: suneilmohan@tamu.edu

Education: B.E. Electronics and Communication Engineering
Anna University, Chennai, India. 2006

Ph.D Computer Engineering
Texas A&M University, TX, USA. 2012

