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ABSTRACT 

 

Biophysically Accurate Brain Modeling and Simulation Using Hybrid MPI/OpenMP 

Parallel Processing. (May 2012) 

Jingzhen Hu, B.S., Beijing University of Posts and Telecommunications 

Chair of Advisory Committee: Dr. Peng Li 

 

In order to better understand the behavior of the human brain, it is very important 

to perform large scale neural network simulation which may reveal the relationship 

between the whole network activity and the biophysical dynamics of individual neurons. 

However, considering the complexity of the network and the large amount of variables, 

researchers choose to either simulate smaller neural networks or use simple spiking 

neuron models. Recently, supercomputing platforms have been employed to greatly 

speedup the simulation of large brain models. However, there are still limitations of 

these works such as the simplicity of the modeled network structures and lack of 

biophysical details in the neuron models. In this work, we propose a parallel simulator 

using biophysically realistic neural models for the simulation of large scale neural 

networks. In order to improve the performance of the simulator, we adopt several 

techniques such as merging linear synaptic receptors mathematically and using two level 

time steps, which significantly accelerate the simulation. In addition, we exploit the 

efficiency of parallel simulation through three parallel implementation strategies: MPI 

parallelization, MPI parallelization with dynamic load balancing schemes and Hybrid 
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MPI/OpenMP parallelization. Through experimental studies, we illustrate the limitation 

of MPI implementation due to the imbalanced workload among processors. It is shown 

that the two developed MPI load balancing schemes are not able to improve the 

simulation efficiency on the targeted parallel platform. Using 32 processors, the 

proposed hybrid approach, on the other hand, is more efficient than the MPI 

implementation and is about 31X faster than a serial implementation of the simulator for 

a network consisting of more than 100,000 neurons.  Finally, it is shown that for large 

neural networks, the presented approach is able to simulate the transition from the 3Hz 

delta oscillation to epileptic behaviors due to the alterations of underlying cellular 

mechanisms.  
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1. INTRODUCTION 

 

1.1 Background and Motivation 

In past several years, neural network simulation based on different models has 

drawn great attention. By conducting computer simulations, researchers have examined 

the close relationship between certain brain disorders (such as epilepsy and Parkinson) 

and the brain dynamics.  For example, in the study of epilepsy, the work from (Van 

Drongelen et al, 2005) shows that by weakening excitatory synapses, seizure like 

activity may happen. To better understand and explore how our brain works, it is pivotal 

to use more complex and biophysical neuron and network models. With the increasing 

advancements on anatomy and neuroscience, a large number of works reveal more in-

depth understanding on the brain organization including the cerebral cortex and 

thalamus. Also a large number of neuron models have been studied. By taking 

biophysical mechanisms of neurons into consideration, the Hodgkin-Huxley (HH) model 

(Hodgkin & Huxley, 1952) explicitly includes models of synaptic receptors and ion 

channels.  However, considering the large number of parameters in the HH model, most 

existing works are limited by the size and complexity of the neuron network. Later, 

some phenomenological models such like spiking model (Izhikevich, Gally, & Edelman, 

2004) and integrate and fire model (Odabasioglu, 2004) were proposed. Though those 

simpler models may consume less computation power, they cannot directly connect with 

the biological dynamic behavior of ion channels (Abbott & Van Vreeswijk, 1993).  

____________ 
This thesis follows the style of Neural Computation. 
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Moreover, with the emergence of supercomputing platforms, large scale neural 

network simulations have been conducted which can be completed within a reasonable 

time. For instance, recently researchers at IBM implemented a Brain-scale simulation of 

the neocortex on an IBM supercomputer (Blue Gene), comprising up to 11 billion 

synapses and 22 million neurons (Djurfeldt & Lundqvist, 2008). But those works are 

based on either spiking neural models or a simple network without considering the 

realistic cerebral structure. In addition, graphics processing units or GPUs are used in 

neural network simulations (Nageswaran et al, 2009) (Wang, Yan, Hu, & Li, 2011). 

Considering the limitation of the GPU architecture, the neuron and synapse models they 

used are not biologically realistic. Therefore, in order to get meaningful results from the 

neural network simulation, both biophysically realistic models and a large scale neural 

network are needed. 

 

1.2 Contributions 

In this work, parallel neural network simulations are proposed based on 

biophysically realistic models and more detailed structure of cerebral cortex and 

thalamus. The network is divided into multiple regions in both brain hemispheres and 

consists of six layers. Also both local connections inside a region and long range global 

connection between different regions are constructed according to the data from (Peters 

& Payne, 1993) (Binzegger, Douglas, & Martin, 2004) and (Izhikevich & Edelman, 

2008).  There are 22 types of neurons in the network and each type of neuron which is 

composed by different numbers of compartments is modeled by the multi-compartment 
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HH model. Various ion channels are explicitly included to reflect the roles played by 

biophysical mechanisms.  There are four kinds of synapse receptors in the modeled 

including AMPA, NMDA,        and      . Once a presynaptic neuron fires, the 

dynamics of corresponding synaptic receptors will gradually change according to 

different differential equations (Izhikevich & Edelman, 2008) (Rubchinsky, Kopell, & 

Sigvardt, 2003). 

To speed up the simulation, we adopt several techniques in the simulation. Since 

most synaptic receptor models are linear, we merge all these linear models 

mathematically which effectively reduces the number of differential equations and 

improves the simulation efficiency. Also by using two level time steps, we can 

continuously simulate one neuron for multiple small steps inside one outer macro step. 

As a result the cache hit rate is significantly increased. 

Finally, several parallel strategies have been proposed to improve the efficiency 

of the neural network simulator.  First, a MPI parallelization is implemented. As the 

result of different firing frequencies of neurons in different processors, our results 

indicate the workload among processors is imbalanced. Two dynamic load balancing 

schemes are developed which effectively make the workload on different processors 

evenly but the simulation efficiency is not improved. By taking the advantage of 

dynamic scheduling schemes of OpenMP, a Hybrid MPI/OpenMP Parallel simulator is 

developed. The results show that the new strategy not only leads to noticeable efficiency 

improvement (10 % faster than MPI implementation), but also show an excellent load 
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balancing. Using 32 processors, the simulator achieves 31X faster than the basic serial 

implementation for a network consisting more than 100,000 neurons. 
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2. FUNDAMENTALS OF BRAIN MODELS AND COMPUTATIONAL 

TECHNIQUES 

 

2.1 Introduction 

 The human brain, located in the center of nervous system, is a highly complex 

organ. Figure 1 shows the functional part of the brain including: Cerebral cortex, 

thalamus, hippocampus, corpus callosum, cerebellum and spinal cord. The cerebral 

cortex, which is often referred to as the gray matter, plays an important role in listening, 

thinking, memory, understanding of languages and movement; while the thalamus acts  

 

 

Figure 1 Organization of human brain. 
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as a relay and projects signals to the corresponding areas of the cerebral cortex 

(Kailasanath & Fu, 2003). In this work, cerebral cortex and thalamus are constructed in 

the targeted neural network. 

 There are around 20 billion neurons in our cerebral cortex and thousands of 

connections for each neuron. A neuron consists of a soma, an axon and dendrites (Figure 

2). The soma is the body of the neuron for processing received signals and generates 

signals to be sent. The axon is a long filament attached to the soma; its functionality is to 

transmit signals sent from the soma to all postsynaptic neurons. There are a number of 

dendrites attached to each soma; dendrites have tree-like structures. The soma and these 

dendrites attached to it can receive signals from the axons of other neurons. 

 

 
Figure 2 Structure of a neuron. 
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 In neural networks, a signal is transmitted from one neuron to another through a 

junction called synapse. Correspondingly, the two neurons are called presynaptic neuron 

and postsynaptic neuron. Signals can only be transmitted from the former to the latter 

through a synapse. Depending on the presynaptic neuron, signals are classified into two 

types: excitatory and inhibitory. The former tends to enlarge the membrane voltage of 

postsynaptic neurons, while the latter may have the opposite effect and tends to decrease 

the membrane potential. In reality, each neuron has typically thousands of synapses. 

Since we track the dynamics of each synapse in our model, to reduce the computational 

effort without sacrificing much accuracy of the model, we scale down the amount of 

synapses of a neuron by a factor of 0.05. This way, the typical number of synapses on 

each neuron model is several hundreds. 

  To keep the structural information in the multi-compartment model of neurons, 

each compartment is confined to a specific layer. This way, for a neuron that spans 

several layers, the dendrite and soma part in certain layer is modeled by different number 

of interconnected compartments. The number of compartments is chosen such that the 

number of synapses per compartment is closest to 40 (Izhikevich & Edelman, 2008). 

Since the functionality of axons is to transmit signals, we only consider the delay in the 

model. Based on the morphology and the functionality, neurons are classified into 22 

basic types, as shown in Table 1 from Appendix of (Izhikevich & Edelman, 2008). 

 In the following three sections, the models for the neuron, synapse and the network 

structure will be illustrated in detail. Then the basic numerical integration methods are 

covered. 
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Table 1 22 types of neurons. 

Neuron Type Excitability description 

p2/3 Excitatory 
 

Pyramidal in L2/3 

ss4(L2/3) Excitatory Spiny stellate in L4 (project to 
L2/3) 

ss4(L4) Excitatory 
 

Spiny stellate in L4 

p4 p4 Excitatory Pyramidal in L4 (project to L4) 

p5(L2/3) Excitatory Pyramidal in L5 (project to L2/3) 

p5(L5/6) Excitatory Pyramidal in L5 (project to L5/6) 

p6(L4) Excitatory Pyramidal in L6 (project to L4) 

p6(L5/6) Excitatory p6(L5/6) Excitatory Pyramidal in 
L6 (project to L5/6) 

b2/3,b4,b5,b6 Inhibitory Inhibitory Basket interneurons in 
L2/3/4/5 

nb1,nb2/3,nb4,nb5,nb6 Inhibitory Non-basket interneurons in all 
layers 

TCs/TCn Excitatory Thalamocortical interneurons in 
specific/nonspecific nucleus 

TIs/TIn Inhibitory Thalamocortical interneurons in 
specific/nonspecific nucleus 

RE Inhibitory Thalamic reticular cells 
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2.2 Models of Neurons 

2.2.1 Spiking models 

  In neural network simulation, what we need to do is to track the action potential 

(spike) of a neuron. So Izhikevich (Izhikevich, Gally, & Edelman, 2004) proposed a 

spiking model to describe the spiking dynamics of a neuron and dendrites. By using only 

two differential equations and four variables, it successfully reproduces the spiking 

activity.  

  ̇    (    )  (     )       

  ̇    {  (    )   }                                                  (   ) 

 ( )                                                                  (   ) 

In the equation, C denotes the membrane capacitance of the neuron, v denotes the 

membrane voltage,     is the threshold voltage,    is the resting voltage, u is the 

recovery voltage and I is the summation of the synaptic input currents and dendritic 

currents. a and b are variables. When a neuron fires, the membrane voltage will be larger 

than the peak voltage. So if          and a spike will be generated, and we will do a 

reset operation: reset v to c, u to u+d. Here we need to notice that unlike the threshold 

voltage ,        denotes the peak voltage of a spike, and the value is a constant (50 mV); 

while the firing threshold voltage in the spiking model depends on the activities of a 

neuron. As we know, there are many types of neurons with different sizes and firing 

patterns. In the spiking model, different neuron will have different values of parameters. 

Then the spiking model will reproduce the neural dynamics in the cortex and thalamus.  
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2.2.2 HH models 

 

 

Figure 3 HH model compartment with ion channels and synaptic receptors. 

 

  Hodgekin and Huxley (1952) first presented the HH model to generate the action 

potential of the squid axon. Originally, only three types of channels were contained in 

the model: leakage channel, sodium channel and potassium channel. Later, more 

channels were studied to describe different firing patterns of neurons.  

  As shown in Figure 3, a neuron compartment is modeled by an equivalent circuit 

with several components. The behavior of the circuit can be illustrated by the following 

differential equation                                                                                        

   
  

  
        (       )                                    (   ) 
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   denotes the membrane capacitance of the compartment, V denotes the intercellular 

potential,       denotes the resting membrane conductance,       denotes the reversal 

potential,      is the current caused by all ion channels,      is the synaptic input current, 

     is caused by the conductance between this compartment and all neighboring. The 

current between two compartments is proportional to the difference between two 

membrane potentials.  

  There are five kinds of ion channels in our model such as               and   .  

    and    are the currents  of sodium and potassium channels respectively and they are 

used for generating  normal action potentials,    is the current of the  slow voltage 

dependent potassium channel which is used for spike frequency adaptation,    is the 

current of low threshold calcium channel and     is high threshold calcium channel  

current. The following equations and data are from (Destexhe, Bal, McCormick, & 

Sejnowski, 1996a) (Huguenard & Prince, 1992) and (Pospischil et al, 2008).  

 

a) Sodium and potassium currents 

        (     )     
   

 ̇       ( )  (   )    ( )  

 ̇       ( )  (   )    ( )  

   
     (        )

      [
        

 
]
  

   
     (       )

      [
       

 ]
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     [
       

 
]
  

            [
       

  
]                                       (   ) 

where     denotes the reversal voltage,     denotes the maximum conductance and p 

denotes the probability of this ion channel to be open at the current time. The value of  

    is determined by the density of Na channels. Also, when we calculating the 

probability p, we need to know that there are two independent processes in each channel: 

the activation and the inactivation state. In order to get the current of a sodium channel 

we assume that there are one inactivation gate and three activation gates for each 

channel.  We use m and h to describe the probabilities of the “activation” and 

“inactivation” gates to be open, respectively.  

      (    )   
   

 ̇  (   )    ( )      ( )  

          [
       

  
]  

   
       (       )

   [
       

 
]   

                                             (   ) 

where    is the reversal potential and normally it is -90mV, m is the activation variable 

and its dynamic is formulated by a one order differential equation and similarly as the 

sodium channel,    is the maximal conductance.  
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b) Slow potassium current  

       (    )     

 ̇  
  ( )   

  ( )
  

  ( )  
 

     [
     
  ]

  

  ( )  
    

    [
     
  ]          [

    
  ]

                       (   ) 

where    is the maximum conductance,    is the reversal potential and n is the 

activation variable. 

 

c) Calcium currents to generate bursting 

  Generally, the firing pattern of most neurons in thalamus is bursting which was 

modeled by the low threshold calcium current. As illustrated in (Huguenard & Prince, 

1992), it is formulated as follows: 

      (     )      
   

 ̇  
  ( )   

  ( )
  

  ( )  
 

     [
        

   ]
  

  ( )  
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 ]
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  ( )  
(         [

(          )
 

])      

     (     [
(       )

   ])
               (   ) 

where     is the maximal conductance of the T type current and    is a uniform shift of 

the voltage dependence. 

  There is another type of bursting which is modeled by high threshold calcium 

current. 

      (     )     
   

 ̇  
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 ̇  
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     [
        

   
]
  

  ( )  
 

     [
       

 
]
  

  ( )    
 

    [ 
        

  
]      [
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   [ 
        

  
]       [

       
 ]

              (   ) 

where,      denotes the reverse voltage and     denotes maximum conductance of this 

channel. 
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2.3 Models of Synapses 

  We first discuss the modeling of various synaptic receptors. Through these 

receptors, the postsynaptic part of a synapse receives signals and carries out its 

functionality. Each synapse transmitting excitatory signals has two types of receptors in 

the postsynaptic part: AMPA and NMDA. Similarly, each synapse transmitting 

inhibitory signals also has two types of receptors:        and      . In the model 

used in this work, each synapse transmitting excitatory signals has one AMPA and one 

NMDA receptors. Similarly, each synapse transmitting inhibitory signals has one 

       and one       receptors.  For each compartment, the total synaptic current is 

simulated as (Izhikevich & Edelman, 2008) 

                 (   )              
(    ) 

   (    ) 
 (   ) 

                 (    )                 (    )                 (   ) 
 

where                    and         are the number of AMPA, NMDA,        

and        receptors, respectively. We describe the dynamic of              

       and        as α function when receiving an input signal at time    .  

  
 

 
   

 
                                                                     (    ) 

where the values of T for AMPA, NMDA and      receptors are 5 ms, 150 ms and 6 

ms, respectively. The model of the dynamics of conductance        is different from 

that of the other three. The response of        to a signal at time t = 0 is described by 

the following equations (Rubchinsky, Kopell, & Sigvardt, 2003): 
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 ( )  {
                                                     
                                                        

  

  

  
     ( )  (   )         

  

  
             

       
  

     
                                                  (    )  

where            ,               ,             ,               and 

         
   . 

  

2.4   Model of the Network 

 In most existing neural network simulation projects, researchers only choose the 

number of each kind of neurons and connect them randomly no matter what their 

locations are (Nageswaran et al, 2009). However, in this work, we use a more detailed 

model to describe the structure of the cortex and thalamus. As illustrated by Figure 4, the 

brain is divided into as many as 70 regions in two hemispheres. Each region has a cortex 

part and a thalamus part. There are two kinds of connections in this network: local 

connections and global connections. 

 The local connections are the connections inside each region. When the dendrite 

of a neuron locates inside the axon of another soma, there is a possibility of a local 

connection between them.  The local cortical circuitry is adopted from the cat area 17 

(Binzegger, Douglas, & Martin, 2004). The axon structure of each kinds of neuron is 

based on the research in (Izhikevich & Edelman, 2008). 
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 On the other hand, the global connections are the cortico-cortical connections 

between different regions. Biologists have published the data based on diffusion-

magnetic resonance imaging (MRI). An adjacency matrix is generated to describe the 

global connectivity (Zalesky & Fornito, 2009). 

 As illustrated in (Izhikevich & Edelman, 2008), the signal speed for myelinated 

fibers in whiter matter is about 1m/s.  Then based on the coordinate of each neuron, 

distance between connected neurons and the delays of transmitted signals are calculated. 

 

 

Figure 4 Structure of cerebral cortex and thalamus. 

  

 In this work, different sizes of networks are constructed for simulation. When 

scaling down the number of neurons, the number of synapse inputs to each compartment 

and the density of neurons are kept constant. That means only scaling down the area of 
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the cerebral cortex and the total number of synaptic connections for the entire network 

with the total number of neurons. 

 

2.5 Numerical Integration Methods 

 

 

Figure 5 Forward Euler. 

 

 Most of the computation in our work is concentrated on differential equations 

solving. There are many different numerical integration methods to solve this problem. 

Forward Euler, Backward Euler and Trapezoidal are very popular ones and these 

methods can be classified into several categories: explicit or implicate integration 

methods (Pillage, Rohrer, & Visweswariah, 1995).  In our simulator, explicit integration 

methods are used for integration for the following reasons. Compared with implicit 
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integration, explicit methods not only decrease iterations for each time step, but also 

avoid solving matrix equations (the runtime usually grows super-linearly with the size of 

the problem or linearly with a large coefficient). These advantages may potentially 

accelerate the simulation. 

 First, Forward Euler method will be illustrated (Figure 5). Given an differential 

equation 

 ( )̇   ( ( )  )               (  )    .                             (2.12) 

 Assuming step size is h, the Forward Euler method defines      as  

           (     ) , 

         .                                                   (2.13) 

 

 

Figure 6 Backward Euler. 
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So, this method is a first order technique. Also we may easily find that Forward Euler 

method is an explicit method. From the known value of     and   (     ) , we can 

explicitly get   . However, the disadvantage is the stability problem caused by large 

time steps. If we expand Taylor series at   , we get 

           (     )   ( 
 ).                              (2.14) 

Local truncation error (LTE) at each time step will scale with     . 

  Backward Euler method computes       as 

           (         ).                                 (2.15) 

 

 

Figure 7 Trapezoidal rule. 
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  It is an implicit method, because (         )  is not known when 

computing     . So we have to solve a non-linear equation to find     , most of time, 

Newton-Raphson method is used. Evidently, the above procedure consumes more 

computation than Forward Euler method. Similarly, the LTE is also scaled with   . But 

the stability of this method is better, because it always undershoot the original curve as 

describe in Figure 6. 

  Similarly, the trapezoidal method is an average of the Forward Euler and 

Backward Euler and is also an implicit method.      is computed as: 

          
( (         )   (     )

 
                        (    )  

And the LTE scales with   .  

  In this work, we choose standard forward Euler as our method with a sufficient 

small step size to guarantee the stability and accuracy. Based on some experiments, the 

step size need to be as small as 0.01 ms in our basic implementation. In addition, since 

we adopt multi-compartment HH type models for each neuron and employ large network 

models consists of up to 1 million neurons, considerable computational effort is needed 

for each step of simulation. Under this circumstance, the computing power becomes a 

bottleneck for carrying out the simulation. For a large neural network as large as millions 

of neurons, solving nonlinear equations using Newton method will cost tremendous 

computing power. So it is a good choice to use explicit method, Forward Euler. In case 

of stability problem, we use a small enough time step size in the simulation.  
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2.6 Parallel Computing 

  With the increasing complexity of practical problems, parallel computing 

platforms are playing an increasingly significant role in many areas of research. In recent 

years, many multicore platforms with different architectures have been proposed by 

processor manufactures (Grama, Gupta, Karypis, & Kumar, 2003). 

 

 

Figure 8 Comparison between serial processing and parallel processing. 
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 As described in Figure 8. In serial computing, instructions will be executed one 

after another on a single processor. While for parallel computing, the problem is 

partitioned into discrete smaller tasks which will be executed simultaneously on multiple 

processors. Generally, there is a certain speed up using parallel computing considering 

the less workload for a single processor. 

 Currently, there are three kinds of parallel platforms according to their different 

memory models: shared-memory platform, distributed-memory platform and hybrid 

platform. For shared-memory platforms, all processors share the same memory. For 

distributed-memory platforms, different memories are separated to each processor. 

Unlike above two platforms, in Hybrid platforms, there are both districted-memory 

model among nodes and shared-memory model among processors in each node (Barney, 

2012b).   

 Correspondingly, there are three types of parallel programming models for these 

three platforms.  For instance, Message Passing Interface (MPI) is a library based 

programming model on distributed memory platforms (Barney, 2012b). Each processor 

has its own memory and they communicate by sending or receiving messages. There are 

two types of communication routines: point to point and collective routines; While 

OpenMP and Pthreads are commonly used in shared memory platforms (Grama, Gupta, 

Karypis, & Kumar, 2003). 

 Pthreads is a low-level API for working with threads. Thus, programmers have 

fine-grained controls in thread management (create/join/etc.), mutexes, and so on. On the 

other hand, OpenMP is at a much higher level and more easily to be used than Pthreads 
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(Barney, 2012b). One specific example is OpenMP's work-sharing constructs, which 

makes dividing work across multiple threads straightforward.  

 

Table 2 Comparison between MPI and OpenMP. 

 MPI  OpenMP 

Cons 1. Requires more programming         

changes to go from serial to parallel 

version 

2. Harder to debug 

3. Performance is limited by the 

communication network between the 

nodes 

1. Can only be run in shared memory 

computers. 

2. Requires a compiler that supports 

OpenMP 

3. Mostly used for loop parallelization 

 

Pros 1. Runs on either shared or 

distributed memory architectures 

2. Used on a wider range of 

problems than OpenMP 

3. Each process has its own local 

variables 

 

 

1. Easier to program and debug than 

MPI 

2. Directives can be added 

incrementally - gradual parallelization 

3. Serial code statements usually don't 

need modification 

4. Code is easier to understand and 

maybe more easily maintained 
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 Also, there is another Hybrid Model which combines more than one of the 

previous models. Currently, the combination of Message passing model and the threads 

model (OpenMP) are widely used. By taking the hybrid model, multiple threads are 

generated inside each MPI node while MPI controls the communication between 

different nodes.  

 Considering the practical problem of our work, we choose MPI and Hybrid 

MPI/OpenMP models to simulate the neural network.  Because the work is similar in 

each MPI node, there are many “for” loops which may be parallelized efficiently by 

OpenMP. The following two sections will introduce some important fundamentals of 

MPI and OpenMP which will be used in our simulation. 

 

2.6.1 MPI communication routines 

 When using MPI, programmers concentrate on how to manage communications 

between different processors. There are totally two types of communication routines: 

point to point routines and collective communication routines (Barney, 2012b).   

 MPI point to point routines usually involve communicates between only two 

processors (Figure 9). While one processor sends the data, the other processor perform 

the receive operation. Also in each processor, there is a system buffer. When the current 

processor receives multiple inputs, the data will be stored in the buffer. There are two 

kinds of point to point routines: Blocking and Non-blocking. For blocking mode, the 

program will not return until send or receive is completed; while for non-blocking mode, 
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no matter whether send and receive routines have been completed, program will be 

executed normally without waiting.  

 However, collective communication routines are used to conduct a global 

operation among processors in the network. For example, the Figure 10 illustrates that 

the local data in one processor can be scatted to the other processors through the MPI 

Scatter routine. In this work, connections between neurons are complex and there are 

thousands of connections for each neuron. Most of time, one neuron’s postsynaptic 

neurons are located in almost all the other processors. If point to point routines are 

adopted, communications are hard to manage and cost more time. So, collective 

communication routines are chosen in the neural network simulation. 

 

  

Figure 9 Point to point routine. 
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Figure 10 Collective scatter routine. 

 

2.6.2 OpenMP scheduling schemes and “CRITIAL” directive 

  In OpenMP directives, there are mainly three scheduling schemes to conduct 

load balancing: STATIC, DYNAMIC and GUIDED scheduling (Barney, 2012a).  

  For STATIC Scheduling, fixed numbers of loop iterations (block) are assigned to 

each OpenMP thread statically. The size of the block is equals to   

(                    ) (                  ). For DYNAMIC Scheduling, loop 

iterations are assigned one after another dynamically to each thread. When a thread 

finishes the current iteration, another iteration is assigned to this thread. For GUIDED 

Scheduling, several Iterations in a block are dynamically assigned to threads when 

threads request them. Block size is not constant but decreases each time when iterations 
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are distributed to a thread. The way to calculate the size of the block is described as 

follows: 

                          (                     ) (                   ) 

                          (                              ) (  

                 ) 

   For a loop with 1000 iterations and 10 OpenMP threads, the initial block size is 

50. When a thread finishes current work, 25 iterations are assigned to it. In this way, 

blocks of iterations will continuously be assigned until no more iteration unprocessed. 

  In shared memory platforms, race condition is an important problem when 

designing programs.  In OpenMP, a “CRITICAL” directive is used to specify a block of 

code which can be accessed by one thread at a time. When the “CRITICAL” block is 

executed by one thread and another thread comes, the later thread is block until the first 

one finishes its execution. 
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3. PROPOSED NETWORK SIMULATION TECHNIQUES 

 

3.1 Introduction 

  Recent years, event-driven simulation method is applied to the simulation of 

neural networks to improve the computational efficiency. In the work of (D’Haene, 

Schrauwen, Campenhout, & Stroobandt, 2009), since the integrate and fire neurons with 

linear models of postsynaptic potential are used, the time evolution of the leaky integrate 

and fire model of neurons without synaptic inputs is derived analytically. Through exact 

prediction of the firing time and state update upon arrival of synaptic inputs, the 

simulation avoids the conventional way of integration over small steps. The event-driven 

simulation significantly improves the computational efficiency with appropriate 

computational models. However, the Hodgkin-Huxley type models used in our 

simulation are more sophisticated. These models integrate complicated nonlinear 

dynamics of ion channels. Under this circumstance, it is difficult to analytically solve the 

time evolution of neuron models, thereby hard to predict the exact firing time. Therefore, 

simulation by integrating over small steps is still necessary.  

 Moreover, considering that synaptic receptors may exert influence on the 

postsynaptic neurons as long as 150ms and the firing frequency of a neuron is at least 

several Hertz, the dynamics of synaptic receptors need to be tracked all the time. 

Therefore, for biologically realistic network models we target, we cannot adopt event-

driven simulation but turn to improve the computational efficiency for continuous 
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simulation by adopting two techniques: merging linear synaptic receptors and using two 

level time steps. 

 

3.2 Merging of Linear Synaptic Receptors  

 

 

Figure 11 Merging of linear synaptic receptors. 

 

  In the synapse model, for each pair of connections, there are corresponding 

excitatory or inhibitory receptors. On average, more than 30 receptors are located in each 

compartment. That means we need to solve at least 30 differential equations for each 

compartment and there are tens of compartments in each neuron. 

  To reduce the computation of solving differential equations, we may merge the 

same linear synaptic receptors including AMPA, NMDA,      . So, for each 

compartment, the conductance of each type of linear receptors can be added together 

          
 ... ... ... 

Linear synaptic receptors Merged receptors 
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(Figure 11).  Then there are three linear receptors and several nonlinear       

receptors for each compartment. By exploring the linearity of synaptic receptors, the 

responses of all the inputs applied to the synaptic receptors of the same type on a given 

compartment are merged mathematically in our implementation, which significantly 

reduce the cost of computation without sacrificing accuracy. 

 

3.3 Simulation Speedup Considering the Data Locality  

  In a large scale neuron network simulation, the size of the data is far more than 

the capacity of the cache. Processors need to load the data to the cache once for every 

step of integration. Considering the accuracy and stability problem of Forward Euler, the 

minimum time step is as small as 0.01 ms. Therefore, a large amount of time is 

consumed on accessing memories.  

  However, in this work, when the presynaptic neuron fires, it will send the firing 

message (time delay value) to its postsynaptic neurons. As described in the work of 

(Izhikevich & Edelman, 2008), the minimum axon delay is 1 ms. The firing message 

received in a macro-step is at least generated in the previous macro-step. So a two level 

time steps approach is adopted. Under this approach, a neuron is simulated continuously 

one hundred time steps (1 ms) without affecting the accuracy of the simulation. In the 

simulation, there are two kinds of time steps: macro-step and micro-step (Figure 12) and 

they are 1ms and 0.01 ms respectively.  

  If neurons are simulated one by one during the macro-step, the cache loads 

different data every time and may not be utilized efficiently. By taking this approach, the 
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cache hit rate is increased. Subsequently, the number of times for loading data is 

reduced. Thus, this technique improves the simulation efficiency. 

 

 

Figure 12 Two level time steps. 
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4.  PARALLEL NEURAL NETWORK SIMULATION METHODS 

 

4.1 MPI Parallelization  

 In this section, a MPI based approach is presented. There are two features of MPI 

programming: separated memory space and communication routines. As the result of the 

distributed memory, a task needs to be partitioned to different places.  While works in 

several processors are dependent, MPI communication routines are used to transmit 

messages. Generally, by using MPI, different programs can be executed simultaneously 

on each of the processors.  In neural network simulations, similar programs are executed 

among processors with little differences.  

 In neural network simulations, first, to make each processor own a similar 

amount of work, all neurons are partitioned into several small groups with the same size. 

As describe in chapter 2, different regions share the same local circuitry. For each 

region, there are same numbers of neurons and connections. The compartment of a 

neuron is labeled by region ID, neuron type, neuron ID and compartment ID. The whole 

neurons are partitioned according to the neuron ID which stands for multiple neurons in 

different regions. For example, in a network of 70 regions, there are 1000 neurons in one 

region and 10 processors. After the network is partitioned, each processor owns 700 

neurons, in which there are 100 neuron IDs and each ID stands for 70 neurons. 

 Then all processors will simulate the local neural network and solving 

differential equations by integrate method.  After the membrane voltage is calculated, if 

the value is larger than the thresh hold voltage, a spike is generated. All postsynaptic 
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neurons need to be informed. However, considering some of the postsynaptic neurons 

are stored in other processors, there will be several communications between processors. 

  

 

Figure 13 Message vector stored in each processor 

 

 A data structure referred as “Message” is designed to store the neuron firing 

information. As shown in Figure 13, the “Message” consists of Region ID, Neuron Type, 

Neuron ID and Firing Time of the presynaptic neuron. Once a presynaptic neuron fires, a 

new “Message” is added into the Message Vector. Normally, many neurons fire at each 

time step, so the Message Vector will contains lots of “Messages” in each processor. 

Then, the Message Vector needs to be transmitted to other processors to inform the 

postsynaptic neurons. 

   Considering the large complexity of connections between neurons, all 

postsynaptic neurons are stored in almost all the other processors. If MPI point to point 
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Figure 14 Gathering the entire firing message. 

 
 
communication routines are used, tremendous rounds of send and receive will be 

involved, which greatly increase the runtime. So, in this work, we adopt MPI collective 

communication routines to make the communication process easier and faster. First, use 

“MPI_AllGather” function to gather the size of each Message Vector and appropriate 
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size of memory will be allocated to store all the message vectors by using 

“MPI_AllGatherv” as described in Figure 14. 

 After each processor gets a copy of the entire firing messages, the local 

postsynaptic neurons will receive the synaptic input. The whole processor for the 

parallelization is described in Figure 15. 

 

 

Figure 15 MPI parallel algorithm. 
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4.2 MPI Parallelization with Dynamic Load Balancing 

 

 

Figure 16 Load balancing problem. 

 

        Considering the imbalanced workload in each processor, the efficiency of the 

neuron network simulator is reduced. As illustrated in Figure 16, while Task 2 is still 

being executed, the other three tasks have already been completed. However, the slowest 

task determined the overall runtime. If each processor owns a similar workload, the 

overall runtime will be shortened. In this approach, two dynamic load balancing schemes 

are adopted with different work redistributing schemes.  

  Generally, load balancing is a technique to make workloads in different 

processors balanced by redistributing the workload. The ideal scheme is to perform load 

balancing to all the other processors. However, since there are lots of dependencies 

among different processors, it is not a practical method in neuron network simulation. In 

this work, a 2D-Torus topology is adopted and each processor communicates with its 

four neighbors to balance the workload.  
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Figure 17 2D Torus. 

   

  For the first load balancing scheme (Figure 18), when the central processor     

completes the local work, it will ask the neighbors to stop and calculate the average 

number of neurons which have not been simulated. If the neighbor has more than the 

average number of neurons unprocessed, it will send the excess work to the   ; while if 

the neighbor has less work than the average,    will send appropriate number of neurons 

to it. Finally, these five processors will have balanced workload. 
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Figure 18 Dynamic load balancing scheme 1. 
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Figure 19 Dynamic load balancing scheme 2. 
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  Moreover, considering that the central processor not only receives but also sends 

workloads, which greatly limits the efficiency of the simulation, the second load 

balancing scheme is proposed as shown in Figure 19. Under this scheme, the central 

processor     only distributes work to part of its neighbors and balances the workload 

among processors only once.  First, after calculating the average unprocessed numbers 

of neurons,      only does load balancing with those neighbors which contain more than 

the average number of neurons. So the central processor only needs to receive work from 

other processors and the communication between processor becomes easier. 

 

4.3 Hybrid MPI/OpenMP Parallelization 

 

 

Figure 20 Structure of hybrid MPI/OpenMP parallelization. 
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  By conducting simulations using above two MPI approaches, experimental 

results indicate that communications between different processors and the redistribution 

of workload consume most of the computational power. Therefore, a hybrid 

MPI/OpenMP parallelization approach is proposed with good load balancing schemes 

and reduced memory traffics.  

  In the hybrid MPI/OpenMP simulation, multiple OpenMP threads are generated 

inside each MPI process. Compared with the MPI implementation, it is much easier to 

change the serial code to parallel one using OpenMP: just add OpenMP “parallel” 

directives before the “for” loop.  

  As mentioned in chapter 2, there are three scheduling algorithms: Static, 

Dynamic and Guided. Experimental results show that based on the 105K neural network 

with 2 MPI processes and 8, 16 and 32 OpenMP threads; Dynamic scheduling scheme is 

more suitable for the large neural network simulation (Figure 27). In the following 

experiments, Dynamic scheduling scheme is chosen as the default one.  

  The main procedure of the hybrid MPI/OpenMP is similar as MPI approach. 

After the network is partitioned, a number of neurons are ready to be simulated in each 

MPI process. At each time step, the Dynamic scheduling scheme is adopted to process 

these neurons. The only special part is when the postsynaptic receives the synaptic input. 

If one compartment receives multiple synaptic inputs simultaneously, the race condition 

problem happens.  It is a common problem in shared memory programs. In our program, 

A “CRITIAL” Directive is used to protect the simulation from race condition problems.   
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5.  EXPERIMENTAL RESULTS AND ANALYSIS 

 

5.1 Experiments Setup 

 In this work, we use a 52-node, 832-processor IBM Cluster-1600 system to 

simulate different size of neural networks (Texas A&M Supercomputing Facility, 2012). 

There are 16 IBM’s 1.9GHz RISC Power5+’s in a node and these 16 Power5+ 

processors have a shared memory of 32 gigabytes. The message passings between 

processors are implemented by IBM high performance communication switch.  

 

 
Figure 21 Architecture of one node in the supercomputer. 
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  Three neural networks simulations are presented with different sizes of the 

network: 30K, 60K and 105K neurons. In the following experiments, first, Figure 22 

shows the transition from delta oscillation to epilepsy, which validates our simulator. 

Later, the efficiency of the proposed three parallel simulation approaches including MPI 

parallelization, MPI parallelization with dynamic load balancing and hybrid 

MPI/OpenMP parallelization are demonstrated.  

 

5.2 Simulation of Delta Oscillation and Epileptic Activities 

  From recent studies in vitro and vivo (Dossi, Nufiez, & Steriade, 1992) (Leresche 

et al, 1991), researchers get in-depth understanding about the delta oscillation of 

thalamocortical neurons within the frequency range of 1-4 Hz. Normally, this wave is 

caused by thalamic relay neurons as the result of  low-threshold Ca2+ current    and 

hyperpolarization activated current   . The mechanism of the delta activity is described 

as follows. The rebound burst is caused by the slow activation of     after a long lasting 

hyperpolarization of thalamic cells. Gradually, the burst is deinactivated by the 

hyperpolarization mediated by   . As a result of the inactivation of    and    during the 

burst, the membrane voltage turns hyperpolarized after burst termination. (Bazhenov & 

Timofeev, 2006).  

  In this experiment, we simulate the 105K neurons network. In the first second, it 

shows the 3 Hz delta wave. At the end of the first second, the firing pattern changes to a 

slower oscillation at about 4 Hz with large amplitude negative spikes as the synaptic 
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      receptors are suppressed. Two second later, delta oscillation is resumed 

gradually when the      -mediated inhibition comes back to normal condition. 

 

 

Figure 22 Delta wave and epilepsy. 

 

5.3 MPI Parallelization  

 In this part of the experiment, we set the total simulation time as 1 minute and 

use 1, 2, 4, 8, 16 and 32 MPI processes with different sizes of the neural network. 

 When analyzing a parallel program, it is important to study the speedup and 

efficiency (Grama, Gupta, Karypis, & Kumar, 2003). They are described as  
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Figure 23 Speedup of the MPI implementation. 
 

 In parallel computing, we also call this efficiency as Strong Scaling (Barney, 

2012b). A program is considered to scale linearly if the speedup is equal to the number 

of processing elements used. In general, it is difficult to achieve good strong scaling 

when the number of the processors is very large since the communication overhead plays 

an important role. As illustrated in Figure 23 and Figure 24, the speedup and efficiency 

are very good. However, we find that the workload for each process is unbalanced as the 

result of the complex network connection. When analyzing the parallel load balancing 
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problem, imbalance ratio is generally used (Lan, Taylor, & Bryan, 2002), generally, the 

imbalance ratio is described as: 

                                                       

  
       

   
                                                          (   ) 

                                                  

 
Figure 24 Efficiency of the MPI implementation. 

 

where     is the maximum running time of all processes and     is the average 

running time. From Figure 25, we observe that for 32 MPI processes implementation, 

the imbalance ratio is more than 10%. The imbalanced workload became a critical 

problem especially when using more than 8 MPI processes.   
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Figure 25 Imbalance ratio of the MPI implementation. 

 

5.4 MPI Load Balancing Schemes 

             In this experiment, the performance of two proposed load balancing schemes are 

compared. Experimental result shows that the second scheme is much better than the 

first one (Figure 26). Because when using the second scheme, the central processor only 

receives work from other processors; while for the first scheme, the central processor not 

only receives work but also sends excess work to other processors which cause more 

running time.  
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  Moreover, when using the second load balancing scheme, the imbalance ratio is 

reduced and each processor has balanced workload. However, the speed up is still lower 

than the MPI implementation and the simulation consumes more computation time as 

the result of the large number of communications between processors.   

 

 

Figure 26 Comparison of speed up using different load balancing schemes. 

 

5.5 Hybrid MPI/OpenMP Parallelization 

  Finally, an experiment to compare all the three methods: MPI parallelization, 

MPI parallelization with load balancing and Hybrid MPI/OpenMP parallelization is 

demonstrated on a network consisting 105K neurons. In the hybrid MPI/OpenMP 

parallelization approach, a “Dynamic” scheduling scheme is adopted due to the higher 

efficiency (Figure 27). Figure 28 and Figure 29 show the runtime and speedup of the 

simulator, and Table 3 shows the runtime of different approaches on the 105k network. 
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Results show that the hybrid MPI/OpenMP parallelization costs 10% less runtime than 

the MPI parallelization and proven to be a good method to solve the parallel problem of  

 

Figure 27 Comparison between different scheduling schemes. 

 

neural network simulation. Moreover, experimental result shows that the runtime of MPI 

parallelization with load balancing is larger than the MPI implementation. Though the 

dynamic load balancing scheme makes each processor have balanced workload, the 

overhead of communication between processors caused by load balancing exceeds the 

runtime saved by the load balancing scheme. In most of some practical problem, the 

imbalance ratio is far more than 100% and our imbalance ratio is not so high. So if the 

workload of the local neural network among processors is extremely uneven, our load 

balancing scheme may perform better. When using the hybrid MPI/OpenMP, only two 

MPI processes are generated. Inside each MPI process, multiple OpenMP threads 
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processes the simulation in parallel and dynamically schedule the workload without any 

communications between processors. Only when the entire firing messages are gathered, 

MPI collective routines are used. There is a drawback of the hybrid MPI/OpenMP 

approach: in case of race condition problem, a “CRITICAL” directive is used which 

slows the simulation. However, result shows that hybrid MPI/OpenMP approach is still 

better than the other in the large scale neuron network simulation. 

 

Table 3 Comparison of runtime between different methods on 105k network. 

Number of processors           MPI MPI with load 

balancing scheme 

Hybrid 

MPI/OpenMP 

8 8909 ms 9089 ms 8894 ms 

16 4538 ms 4764 ms 4513 ms 

32 2394 ms 2624 ms 2288 ms 
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Figure 28 Comparison of simulation time based on different methods. 

 

 

Figure 29 Comparison of speed up based on different methods. 
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6. SUMMARY AND CONCLUSIONS 

 

 In this work, the parallel algorithms for large scale neural networks with 

biophysically accurate models are studied. The limitations of the existing works have 

been addressed including the simplicity of the modeled network structures and lack of 

biophysical details in the neuron models. By taking advantage of emerging multicore-

based distributed computing platform, the proposed hybrid MPI/OpenMP parallelization 

techniques can significantly improve the performance of neural network simulation. 

 The contributions in this research work can be classified as the following three 

categories.  

 Firstly, the biophysically detailed Hodgkin-Huxley type models have been used 

for all neurons. Models of various ion channels and synaptic receptors are explicitly 

included to reflect the roles played by these biophysical mechanisms. Using these neuron 

models as building blocks, a thalamocortical network model is constructed based on data 

from existing works.  

 Secondly, to get an accurate and good speedup transient simulator, an explicit 

forward Euler integration based two-level transient simulation technique has been 

suggested. The two time steps are 1ms and 0.01 ms respectively. Inside the outer level, 

one neuron is continuously simulated one hundred small time steps, which increases 

cache hit rate. Meantime, to speed up the simulation, another technique of merging lineal 

synaptic receptors is adopted.  
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 In addition, we compare the performance of MPI, MPI with load balancing 

scheme and hybrid MPI/OpenMP parallelization on different sizes of network. 

Experiment results show that when the number of processors is small, the MPI 

implementation achieves good performance without load balancing problems. However, 

with the increasing size of the neural network and the number of processors, the 

imbalance ratio is more than 10%. By exploiting dynamic load balancing techniques on 

a 2D Torus topology, we successfully balance the workload among processors. 

However, more computation time is consumed as the result of large numbers of message 

passings between MPI processes. Finally, a hybrid MPI/OpenMP parallelization 

simulation method is proposed and it perfectly achieves our goal and it shows better 

speedup than the MPI implementation. 

 With further development, more interesting techniques may be studied. For 

dynamic load balancing problems, firing frequencies need to be taken into consideration 

when the whole neural network is partitioned. Because both the number of neurons and 

the number of fired neurons in each processor contribute to the workload. Moreover, in 

this work, we successfully simulate the transition from delta wave in 3 Hz to epilepsy. In 

the future, by simulating the biologically realistic neural networks, we may provide 

guidance to clinicians when testing new drugs. 
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