

i

BIOPHYSICALLY ACCURATE BRAIN MODELING AND SIMULATION USING

HYBRID MPI/OPENMP PARALLEL PROCESSING

A Thesis

by

JINGZHEN HU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2012

Major Subject: Computer Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/9069374?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Biophysically Accurate Brain Modeling and Simulation Using Hybrid MPI/OpenMP

Parallel Processing

Copyright 2012 Jingzhen Hu

iii

BIOPHYSICALLY ACCURATE BRAIN MODELING AND SIMULATION USING

HYBRID MPI/OPENMP PARALLEL PROCESSING

A Thesis

by

JINGZHEN HU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Peng Li
Committee Members, Eun Jung Kim
 Paul V. Gratz
Head of Department, Costas Georghiades

May 2012

Major Subject: Computer Engineering

iii

iii

ABSTRACT

Biophysically Accurate Brain Modeling and Simulation Using Hybrid MPI/OpenMP

Parallel Processing. (May 2012)

Jingzhen Hu, B.S., Beijing University of Posts and Telecommunications

Chair of Advisory Committee: Dr. Peng Li

In order to better understand the behavior of the human brain, it is very important

to perform large scale neural network simulation which may reveal the relationship

between the whole network activity and the biophysical dynamics of individual neurons.

However, considering the complexity of the network and the large amount of variables,

researchers choose to either simulate smaller neural networks or use simple spiking

neuron models. Recently, supercomputing platforms have been employed to greatly

speedup the simulation of large brain models. However, there are still limitations of

these works such as the simplicity of the modeled network structures and lack of

biophysical details in the neuron models. In this work, we propose a parallel simulator

using biophysically realistic neural models for the simulation of large scale neural

networks. In order to improve the performance of the simulator, we adopt several

techniques such as merging linear synaptic receptors mathematically and using two level

time steps, which significantly accelerate the simulation. In addition, we exploit the

efficiency of parallel simulation through three parallel implementation strategies: MPI

parallelization, MPI parallelization with dynamic load balancing schemes and Hybrid

iv

iv

MPI/OpenMP parallelization. Through experimental studies, we illustrate the limitation

of MPI implementation due to the imbalanced workload among processors. It is shown

that the two developed MPI load balancing schemes are not able to improve the

simulation efficiency on the targeted parallel platform. Using 32 processors, the

proposed hybrid approach, on the other hand, is more efficient than the MPI

implementation and is about 31X faster than a serial implementation of the simulator for

a network consisting of more than 100,000 neurons. Finally, it is shown that for large

neural networks, the presented approach is able to simulate the transition from the 3Hz

delta oscillation to epileptic behaviors due to the alterations of underlying cellular

mechanisms.

v

v

DEDICATION

To my parents

vi

vi

ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. Li, and committee members, Dr. Kim and

Dr. Gratz, for their support and guidance on the research.

Thanks to my friends Boyuan Yan, Yong Zhang, Mingchao Wang and the ECE

faculty and staff for helping on my studies at Texas A&M University. Finally, thanks to

my parents and grandparents for their support and love.

vii

vii

TABLE OF CONTENTS

 Page

ABSTRACT .. iii

DEDICATION .. v

ACKNOWLEDGEMENTS .. vi

TABLE OF CONTENTS .. vii

LIST OF FIGURES ... ix

LIST OF TABLES .. xi

1. INTRODUCTION ... 1

 1.1 Background and Motivation ... 1
 1.2 Contributions .. 2

2. FUNDAMENTALS OF BRAIN MODELS AND COMPUTATIONAL

 TECHNIQUES .. 5

 2.1 Introduction .. 5
 2.2 Models of Neurons ... 9
 2.3 Models of Synapses .. 15
 2.4 Model of the Network .. 16
 2.5 Numerical Integration Methods ... 18
 2.6 Parallel Computing ... 22

3. PROPOSED NETWORK SIMULATION TECHNIQUES 29

 3.1 Introduction .. 29
 3.2 Merging of Linear Synaptic Receptors... ... 30
 3.3 Simulation Speedup Considering the Data Locality 31

4. PARALLEL NEURAL NETWORK SIMULATION METHODS 33

 4.1 MPI Parallelization ... 33
 4.2 MPI Parallelization with Dynamic Load Balancing 37

viii

vii
i

 4.3 Hybrid MPI/OpenMP Parallelization ... 41

5. EXPERIMENTAL RESULTS AND ANALYSIS .. 43

 5.1 Experiments Setup .. 43
 5.2 Simulation of Delta Oscillation and Epileptic Activities 44
 5.3 MPI Parallelization ... 45
 5.4 MPI Load Balancing Schemes ... 48
 5.5 Hybrid MPI/OpenMP Parallelization ... 49

6. SUMMARY AND CONCLUSIONS .. 53

REFERENCES .. 55

VITA ... 59

ix

ix

LIST OF FIGURES

FIGURE Page

 1 Organization of human brain .. 5

 2 Structure of a neuron .. 6

 3 HH model compartment with ion channels and synaptic receptors 10

 4 Structure of cerebral cortex and thalamus .. 17

 5 Forward Euler ... 18

 6 Backward Euler .. 19

 7 Trapezoidal rule .. 20

 8 Comparison between serial processing and parallel processing 22

 9 Point to point routine .. 26

 10 Collective scatter routine .. 27

 11 Merging of linear synaptic receptors. ... 30

 12 Two level time steps. .. 32

 13 Message vector stored in each processor ... 34

 14 Gathering the entire firing message. .. 35

 15 MPI parallel algorithm. .. 36

 16 Load balancing problem. .. 37

 17 2D Torus ... 38

 18 Dynamic load balancing scheme 1 ... 39

 19 Dynamic load balancing scheme 2 ... 40

 20 Structure of hybrid MPI/OpenMP parallelization. 41

x

x

FIGURE Page

 21 Architecture of one node in the supercomputer ... 43

 22 Delta wave and epilepsy ... 45

 23 Speedup of the MPI implementation .. 46

 24 Efficiency of the MPI implementation. .. 47

 25 Imbalance ratio of the MPI implementation .. 48

 26 Comparison of speed up using different load balancing schemes. 49

 27 Comparison between different scheduling schemes 50

 28 Comparison of simulation based on different methods 52

 29 Comparison of speed up based on different methods 52

xi

xi

LIST OF TABLES

TABLE Page

 1 22 types of neurons .. 8

 2 Comparison between MPI and OpenMP .. 24

 3 Comparison of runtime between different methods on 105k network 51

1

1

1. INTRODUCTION

1.1 Background and Motivation

In past several years, neural network simulation based on different models has

drawn great attention. By conducting computer simulations, researchers have examined

the close relationship between certain brain disorders (such as epilepsy and Parkinson)

and the brain dynamics. For example, in the study of epilepsy, the work from (Van

Drongelen et al, 2005) shows that by weakening excitatory synapses, seizure like

activity may happen. To better understand and explore how our brain works, it is pivotal

to use more complex and biophysical neuron and network models. With the increasing

advancements on anatomy and neuroscience, a large number of works reveal more in-

depth understanding on the brain organization including the cerebral cortex and

thalamus. Also a large number of neuron models have been studied. By taking

biophysical mechanisms of neurons into consideration, the Hodgkin-Huxley (HH) model

(Hodgkin & Huxley, 1952) explicitly includes models of synaptic receptors and ion

channels. However, considering the large number of parameters in the HH model, most

existing works are limited by the size and complexity of the neuron network. Later,

some phenomenological models such like spiking model (Izhikevich, Gally, & Edelman,

2004) and integrate and fire model (Odabasioglu, 2004) were proposed. Though those

simpler models may consume less computation power, they cannot directly connect with

the biological dynamic behavior of ion channels (Abbott & Van Vreeswijk, 1993).

This thesis follows the style of Neural Computation.

2

2

Moreover, with the emergence of supercomputing platforms, large scale neural

network simulations have been conducted which can be completed within a reasonable

time. For instance, recently researchers at IBM implemented a Brain-scale simulation of

the neocortex on an IBM supercomputer (Blue Gene), comprising up to 11 billion

synapses and 22 million neurons (Djurfeldt & Lundqvist, 2008). But those works are

based on either spiking neural models or a simple network without considering the

realistic cerebral structure. In addition, graphics processing units or GPUs are used in

neural network simulations (Nageswaran et al, 2009) (Wang, Yan, Hu, & Li, 2011).

Considering the limitation of the GPU architecture, the neuron and synapse models they

used are not biologically realistic. Therefore, in order to get meaningful results from the

neural network simulation, both biophysically realistic models and a large scale neural

network are needed.

1.2 Contributions

In this work, parallel neural network simulations are proposed based on

biophysically realistic models and more detailed structure of cerebral cortex and

thalamus. The network is divided into multiple regions in both brain hemispheres and

consists of six layers. Also both local connections inside a region and long range global

connection between different regions are constructed according to the data from (Peters

& Payne, 1993) (Binzegger, Douglas, & Martin, 2004) and (Izhikevich & Edelman,

2008). There are 22 types of neurons in the network and each type of neuron which is

composed by different numbers of compartments is modeled by the multi-compartment

3

3

HH model. Various ion channels are explicitly included to reflect the roles played by

biophysical mechanisms. There are four kinds of synapse receptors in the modeled

including AMPA, NMDA, and . Once a presynaptic neuron fires, the

dynamics of corresponding synaptic receptors will gradually change according to

different differential equations (Izhikevich & Edelman, 2008) (Rubchinsky, Kopell, &

Sigvardt, 2003).

To speed up the simulation, we adopt several techniques in the simulation. Since

most synaptic receptor models are linear, we merge all these linear models

mathematically which effectively reduces the number of differential equations and

improves the simulation efficiency. Also by using two level time steps, we can

continuously simulate one neuron for multiple small steps inside one outer macro step.

As a result the cache hit rate is significantly increased.

Finally, several parallel strategies have been proposed to improve the efficiency

of the neural network simulator. First, a MPI parallelization is implemented. As the

result of different firing frequencies of neurons in different processors, our results

indicate the workload among processors is imbalanced. Two dynamic load balancing

schemes are developed which effectively make the workload on different processors

evenly but the simulation efficiency is not improved. By taking the advantage of

dynamic scheduling schemes of OpenMP, a Hybrid MPI/OpenMP Parallel simulator is

developed. The results show that the new strategy not only leads to noticeable efficiency

improvement (10 % faster than MPI implementation), but also show an excellent load

4

4

balancing. Using 32 processors, the simulator achieves 31X faster than the basic serial

implementation for a network consisting more than 100,000 neurons.

5

5

2. FUNDAMENTALS OF BRAIN MODELS AND COMPUTATIONAL

TECHNIQUES

2.1 Introduction

 The human brain, located in the center of nervous system, is a highly complex

organ. Figure 1 shows the functional part of the brain including: Cerebral cortex,

thalamus, hippocampus, corpus callosum, cerebellum and spinal cord. The cerebral

cortex, which is often referred to as the gray matter, plays an important role in listening,

thinking, memory, understanding of languages and movement; while the thalamus acts

Figure 1 Organization of human brain.

6

6

as a relay and projects signals to the corresponding areas of the cerebral cortex

(Kailasanath & Fu, 2003). In this work, cerebral cortex and thalamus are constructed in

the targeted neural network.

 There are around 20 billion neurons in our cerebral cortex and thousands of

connections for each neuron. A neuron consists of a soma, an axon and dendrites (Figure

2). The soma is the body of the neuron for processing received signals and generates

signals to be sent. The axon is a long filament attached to the soma; its functionality is to

transmit signals sent from the soma to all postsynaptic neurons. There are a number of

dendrites attached to each soma; dendrites have tree-like structures. The soma and these

dendrites attached to it can receive signals from the axons of other neurons.

Figure 2 Structure of a neuron.

7

7

 In neural networks, a signal is transmitted from one neuron to another through a

junction called synapse. Correspondingly, the two neurons are called presynaptic neuron

and postsynaptic neuron. Signals can only be transmitted from the former to the latter

through a synapse. Depending on the presynaptic neuron, signals are classified into two

types: excitatory and inhibitory. The former tends to enlarge the membrane voltage of

postsynaptic neurons, while the latter may have the opposite effect and tends to decrease

the membrane potential. In reality, each neuron has typically thousands of synapses.

Since we track the dynamics of each synapse in our model, to reduce the computational

effort without sacrificing much accuracy of the model, we scale down the amount of

synapses of a neuron by a factor of 0.05. This way, the typical number of synapses on

each neuron model is several hundreds.

 To keep the structural information in the multi-compartment model of neurons,

each compartment is confined to a specific layer. This way, for a neuron that spans

several layers, the dendrite and soma part in certain layer is modeled by different number

of interconnected compartments. The number of compartments is chosen such that the

number of synapses per compartment is closest to 40 (Izhikevich & Edelman, 2008).

Since the functionality of axons is to transmit signals, we only consider the delay in the

model. Based on the morphology and the functionality, neurons are classified into 22

basic types, as shown in Table 1 from Appendix of (Izhikevich & Edelman, 2008).

 In the following three sections, the models for the neuron, synapse and the network

structure will be illustrated in detail. Then the basic numerical integration methods are

covered.

8

8

Table 1 22 types of neurons.

Neuron Type Excitability description

p2/3 Excitatory

Pyramidal in L2/3

ss4(L2/3) Excitatory Spiny stellate in L4 (project to
L2/3)

ss4(L4) Excitatory

Spiny stellate in L4

p4 p4 Excitatory Pyramidal in L4 (project to L4)

p5(L2/3) Excitatory Pyramidal in L5 (project to L2/3)

p5(L5/6) Excitatory Pyramidal in L5 (project to L5/6)

p6(L4) Excitatory Pyramidal in L6 (project to L4)

p6(L5/6) Excitatory p6(L5/6) Excitatory Pyramidal in
L6 (project to L5/6)

b2/3,b4,b5,b6 Inhibitory Inhibitory Basket interneurons in
L2/3/4/5

nb1,nb2/3,nb4,nb5,nb6 Inhibitory Non-basket interneurons in all
layers

TCs/TCn Excitatory Thalamocortical interneurons in
specific/nonspecific nucleus

TIs/TIn Inhibitory Thalamocortical interneurons in
specific/nonspecific nucleus

RE Inhibitory Thalamic reticular cells

9

9

2.2 Models of Neurons

2.2.1 Spiking models

 In neural network simulation, what we need to do is to track the action potential

(spike) of a neuron. So Izhikevich (Izhikevich, Gally, & Edelman, 2004) proposed a

spiking model to describe the spiking dynamics of a neuron and dendrites. By using only

two differential equations and four variables, it successfully reproduces the spiking

activity.

 ̇ () ()

 ̇ { () } ()

 () ()

In the equation, C denotes the membrane capacitance of the neuron, v denotes the

membrane voltage, is the threshold voltage, is the resting voltage, u is the

recovery voltage and I is the summation of the synaptic input currents and dendritic

currents. a and b are variables. When a neuron fires, the membrane voltage will be larger

than the peak voltage. So if and a spike will be generated, and we will do a

reset operation: reset v to c, u to u+d. Here we need to notice that unlike the threshold

voltage , denotes the peak voltage of a spike, and the value is a constant (50 mV);

while the firing threshold voltage in the spiking model depends on the activities of a

neuron. As we know, there are many types of neurons with different sizes and firing

patterns. In the spiking model, different neuron will have different values of parameters.

Then the spiking model will reproduce the neural dynamics in the cortex and thalamus.

10

10

2.2.2 HH models

Figure 3 HH model compartment with ion channels and synaptic receptors.

 Hodgekin and Huxley (1952) first presented the HH model to generate the action

potential of the squid axon. Originally, only three types of channels were contained in

the model: leakage channel, sodium channel and potassium channel. Later, more

channels were studied to describe different firing patterns of neurons.

 As shown in Figure 3, a neuron compartment is modeled by an equivalent circuit

with several components. The behavior of the circuit can be illustrated by the following

differential equation

 () ()

11

11

 denotes the membrane capacitance of the compartment, V denotes the intercellular

potential, denotes the resting membrane conductance, denotes the reversal

potential, is the current caused by all ion channels, is the synaptic input current,

 is caused by the conductance between this compartment and all neighboring. The

current between two compartments is proportional to the difference between two

membrane potentials.

 There are five kinds of ion channels in our model such as and .

 and are the currents of sodium and potassium channels respectively and they are

used for generating normal action potentials, is the current of the slow voltage

dependent potassium channel which is used for spike frequency adaptation, is the

current of low threshold calcium channel and is high threshold calcium channel

current. The following equations and data are from (Destexhe, Bal, McCormick, &

Sejnowski, 1996a) (Huguenard & Prince, 1992) and (Pospischil et al, 2008).

a) Sodium and potassium currents

 ()

 ̇ () () ()

 ̇ () () ()

 ()

 [

]

 ()

 [

]

12

12

 [

]

 [

] ()

where denotes the reversal voltage, denotes the maximum conductance and p

denotes the probability of this ion channel to be open at the current time. The value of

 is determined by the density of Na channels. Also, when we calculating the

probability p, we need to know that there are two independent processes in each channel:

the activation and the inactivation state. In order to get the current of a sodium channel

we assume that there are one inactivation gate and three activation gates for each

channel. We use m and h to describe the probabilities of the “activation” and

“inactivation” gates to be open, respectively.

 ()

 ̇ () () ()

 [

]

 ()

 [

]

 ()

where is the reversal potential and normally it is -90mV, m is the activation variable

and its dynamic is formulated by a one order differential equation and similarly as the

sodium channel, is the maximal conductance.

13

13

b) Slow potassium current

 ()

 ̇
 ()

 ()

 ()

 [

]

 ()

 [

] [

]

 ()

where is the maximum conductance, is the reversal potential and n is the

activation variable.

c) Calcium currents to generate bursting

 Generally, the firing pattern of most neurons in thalamus is bursting which was

modeled by the low threshold calcium current. As illustrated in (Huguenard & Prince,

1992), it is formulated as follows:

 ()

 ̇
 ()

 ()

 ()

 [

]

 ()

 [

]

14

14

 ()
([

()

])

 ([
()

])
 ()

where is the maximal conductance of the T type current and is a uniform shift of

the voltage dependence.

 There is another type of bursting which is modeled by high threshold calcium

current.

 ()

 ̇
 ()

 ()

 ̇
 ()

 ()

 ()

 [

]

 ()

 [

]

 ()

 [

] [

]

 ()

 [

] [

]

 ()

where, denotes the reverse voltage and denotes maximum conductance of this

channel.

15

15

2.3 Models of Synapses

 We first discuss the modeling of various synaptic receptors. Through these

receptors, the postsynaptic part of a synapse receives signals and carries out its

functionality. Each synapse transmitting excitatory signals has two types of receptors in

the postsynaptic part: AMPA and NMDA. Similarly, each synapse transmitting

inhibitory signals also has two types of receptors: and . In the model

used in this work, each synapse transmitting excitatory signals has one AMPA and one

NMDA receptors. Similarly, each synapse transmitting inhibitory signals has one

 and one receptors. For each compartment, the total synaptic current is

simulated as (Izhikevich & Edelman, 2008)

 ()
()

 ()
 ()

 () () ()

where and are the number of AMPA, NMDA,

and receptors, respectively. We describe the dynamic of

 and as α function when receiving an input signal at time .

 ()

where the values of T for AMPA, NMDA and receptors are 5 ms, 150 ms and 6

ms, respectively. The model of the dynamics of conductance is different from

that of the other three. The response of to a signal at time t = 0 is described by

the following equations (Rubchinsky, Kopell, & Sigvardt, 2003):

16

16

 () {

 () ()

 ()

where , , , and

 .

2.4 Model of the Network

 In most existing neural network simulation projects, researchers only choose the

number of each kind of neurons and connect them randomly no matter what their

locations are (Nageswaran et al, 2009). However, in this work, we use a more detailed

model to describe the structure of the cortex and thalamus. As illustrated by Figure 4, the

brain is divided into as many as 70 regions in two hemispheres. Each region has a cortex

part and a thalamus part. There are two kinds of connections in this network: local

connections and global connections.

 The local connections are the connections inside each region. When the dendrite

of a neuron locates inside the axon of another soma, there is a possibility of a local

connection between them. The local cortical circuitry is adopted from the cat area 17

(Binzegger, Douglas, & Martin, 2004). The axon structure of each kinds of neuron is

based on the research in (Izhikevich & Edelman, 2008).

17

17

 On the other hand, the global connections are the cortico-cortical connections

between different regions. Biologists have published the data based on diffusion-

magnetic resonance imaging (MRI). An adjacency matrix is generated to describe the

global connectivity (Zalesky & Fornito, 2009).

 As illustrated in (Izhikevich & Edelman, 2008), the signal speed for myelinated

fibers in whiter matter is about 1m/s. Then based on the coordinate of each neuron,

distance between connected neurons and the delays of transmitted signals are calculated.

Figure 4 Structure of cerebral cortex and thalamus.

 In this work, different sizes of networks are constructed for simulation. When

scaling down the number of neurons, the number of synapse inputs to each compartment

and the density of neurons are kept constant. That means only scaling down the area of

18

18

the cerebral cortex and the total number of synaptic connections for the entire network

with the total number of neurons.

2.5 Numerical Integration Methods

Figure 5 Forward Euler.

 Most of the computation in our work is concentrated on differential equations

solving. There are many different numerical integration methods to solve this problem.

Forward Euler, Backward Euler and Trapezoidal are very popular ones and these

methods can be classified into several categories: explicit or implicate integration

methods (Pillage, Rohrer, & Visweswariah, 1995). In our simulator, explicit integration

methods are used for integration for the following reasons. Compared with implicit

19

19

integration, explicit methods not only decrease iterations for each time step, but also

avoid solving matrix equations (the runtime usually grows super-linearly with the size of

the problem or linearly with a large coefficient). These advantages may potentially

accelerate the simulation.

 First, Forward Euler method will be illustrated (Figure 5). Given an differential

equation

 ()̇ (()) () . (2.12)

 Assuming step size is h, the Forward Euler method defines as

 () ,

 . (2.13)

Figure 6 Backward Euler.

20

20

So, this method is a first order technique. Also we may easily find that Forward Euler

method is an explicit method. From the known value of and () , we can

explicitly get . However, the disadvantage is the stability problem caused by large

time steps. If we expand Taylor series at , we get

 () (
). (2.14)

Local truncation error (LTE) at each time step will scale with .

 Backward Euler method computes as

 (). (2.15)

Figure 7 Trapezoidal rule.

21

21

 It is an implicit method, because () is not known when

computing . So we have to solve a non-linear equation to find , most of time,

Newton-Raphson method is used. Evidently, the above procedure consumes more

computation than Forward Euler method. Similarly, the LTE is also scaled with . But

the stability of this method is better, because it always undershoot the original curve as

describe in Figure 6.

 Similarly, the trapezoidal method is an average of the Forward Euler and

Backward Euler and is also an implicit method. is computed as:

(() ()

 ()

And the LTE scales with .

 In this work, we choose standard forward Euler as our method with a sufficient

small step size to guarantee the stability and accuracy. Based on some experiments, the

step size need to be as small as 0.01 ms in our basic implementation. In addition, since

we adopt multi-compartment HH type models for each neuron and employ large network

models consists of up to 1 million neurons, considerable computational effort is needed

for each step of simulation. Under this circumstance, the computing power becomes a

bottleneck for carrying out the simulation. For a large neural network as large as millions

of neurons, solving nonlinear equations using Newton method will cost tremendous

computing power. So it is a good choice to use explicit method, Forward Euler. In case

of stability problem, we use a small enough time step size in the simulation.

22

22

2.6 Parallel Computing

 With the increasing complexity of practical problems, parallel computing

platforms are playing an increasingly significant role in many areas of research. In recent

years, many multicore platforms with different architectures have been proposed by

processor manufactures (Grama, Gupta, Karypis, & Kumar, 2003).

Figure 8 Comparison between serial processing and parallel processing.

Task

CPU

t3 tN

CPU

CPU

CPU

t3 t2 tN

Serial Processing

Parallel Processing

t1 t2

t1

23

23

 As described in Figure 8. In serial computing, instructions will be executed one

after another on a single processor. While for parallel computing, the problem is

partitioned into discrete smaller tasks which will be executed simultaneously on multiple

processors. Generally, there is a certain speed up using parallel computing considering

the less workload for a single processor.

 Currently, there are three kinds of parallel platforms according to their different

memory models: shared-memory platform, distributed-memory platform and hybrid

platform. For shared-memory platforms, all processors share the same memory. For

distributed-memory platforms, different memories are separated to each processor.

Unlike above two platforms, in Hybrid platforms, there are both districted-memory

model among nodes and shared-memory model among processors in each node (Barney,

2012b).

 Correspondingly, there are three types of parallel programming models for these

three platforms. For instance, Message Passing Interface (MPI) is a library based

programming model on distributed memory platforms (Barney, 2012b). Each processor

has its own memory and they communicate by sending or receiving messages. There are

two types of communication routines: point to point and collective routines; While

OpenMP and Pthreads are commonly used in shared memory platforms (Grama, Gupta,

Karypis, & Kumar, 2003).

 Pthreads is a low-level API for working with threads. Thus, programmers have

fine-grained controls in thread management (create/join/etc.), mutexes, and so on. On the

other hand, OpenMP is at a much higher level and more easily to be used than Pthreads

24

24

(Barney, 2012b). One specific example is OpenMP's work-sharing constructs, which

makes dividing work across multiple threads straightforward.

Table 2 Comparison between MPI and OpenMP.

 MPI OpenMP

Cons 1. Requires more programming

changes to go from serial to parallel

version

2. Harder to debug

3. Performance is limited by the

communication network between the

nodes

1. Can only be run in shared memory

computers.

2. Requires a compiler that supports

OpenMP

3. Mostly used for loop parallelization

Pros 1. Runs on either shared or

distributed memory architectures

2. Used on a wider range of

problems than OpenMP

3. Each process has its own local

variables

1. Easier to program and debug than

MPI

2. Directives can be added

incrementally - gradual parallelization

3. Serial code statements usually don't

need modification

4. Code is easier to understand and

maybe more easily maintained

25

25

 Also, there is another Hybrid Model which combines more than one of the

previous models. Currently, the combination of Message passing model and the threads

model (OpenMP) are widely used. By taking the hybrid model, multiple threads are

generated inside each MPI node while MPI controls the communication between

different nodes.

 Considering the practical problem of our work, we choose MPI and Hybrid

MPI/OpenMP models to simulate the neural network. Because the work is similar in

each MPI node, there are many “for” loops which may be parallelized efficiently by

OpenMP. The following two sections will introduce some important fundamentals of

MPI and OpenMP which will be used in our simulation.

2.6.1 MPI communication routines

 When using MPI, programmers concentrate on how to manage communications

between different processors. There are totally two types of communication routines:

point to point routines and collective communication routines (Barney, 2012b).

 MPI point to point routines usually involve communicates between only two

processors (Figure 9). While one processor sends the data, the other processor perform

the receive operation. Also in each processor, there is a system buffer. When the current

processor receives multiple inputs, the data will be stored in the buffer. There are two

kinds of point to point routines: Blocking and Non-blocking. For blocking mode, the

program will not return until send or receive is completed; while for non-blocking mode,

26

26

no matter whether send and receive routines have been completed, program will be

executed normally without waiting.

 However, collective communication routines are used to conduct a global

operation among processors in the network. For example, the Figure 10 illustrates that

the local data in one processor can be scatted to the other processors through the MPI

Scatter routine. In this work, connections between neurons are complex and there are

thousands of connections for each neuron. Most of time, one neuron’s postsynaptic

neurons are located in almost all the other processors. If point to point routines are

adopted, communications are hard to manage and cost more time. So, collective

communication routines are chosen in the neural network simulation.

Figure 9 Point to point routine.

27

27

Figure 10 Collective scatter routine.

2.6.2 OpenMP scheduling schemes and “CRITIAL” directive

 In OpenMP directives, there are mainly three scheduling schemes to conduct

load balancing: STATIC, DYNAMIC and GUIDED scheduling (Barney, 2012a).

 For STATIC Scheduling, fixed numbers of loop iterations (block) are assigned to

each OpenMP thread statically. The size of the block is equals to

() (). For DYNAMIC Scheduling, loop

iterations are assigned one after another dynamically to each thread. When a thread

finishes the current iteration, another iteration is assigned to this thread. For GUIDED

Scheduling, several Iterations in a block are dynamically assigned to threads when

threads request them. Block size is not constant but decreases each time when iterations

Processor 1

Processor 2

Processor 3

Processor 4

 Data 1 Data 2 Data 3 Data 4

MPI_Scatter

Data 1 Data 2

Data 3

Data 4

Source Vector

28

28

are distributed to a thread. The way to calculate the size of the block is described as

follows:

 () ()

 () (

)

 For a loop with 1000 iterations and 10 OpenMP threads, the initial block size is

50. When a thread finishes current work, 25 iterations are assigned to it. In this way,

blocks of iterations will continuously be assigned until no more iteration unprocessed.

 In shared memory platforms, race condition is an important problem when

designing programs. In OpenMP, a “CRITICAL” directive is used to specify a block of

code which can be accessed by one thread at a time. When the “CRITICAL” block is

executed by one thread and another thread comes, the later thread is block until the first

one finishes its execution.

29

29

3. PROPOSED NETWORK SIMULATION TECHNIQUES

3.1 Introduction

 Recent years, event-driven simulation method is applied to the simulation of

neural networks to improve the computational efficiency. In the work of (D’Haene,

Schrauwen, Campenhout, & Stroobandt, 2009), since the integrate and fire neurons with

linear models of postsynaptic potential are used, the time evolution of the leaky integrate

and fire model of neurons without synaptic inputs is derived analytically. Through exact

prediction of the firing time and state update upon arrival of synaptic inputs, the

simulation avoids the conventional way of integration over small steps. The event-driven

simulation significantly improves the computational efficiency with appropriate

computational models. However, the Hodgkin-Huxley type models used in our

simulation are more sophisticated. These models integrate complicated nonlinear

dynamics of ion channels. Under this circumstance, it is difficult to analytically solve the

time evolution of neuron models, thereby hard to predict the exact firing time. Therefore,

simulation by integrating over small steps is still necessary.

 Moreover, considering that synaptic receptors may exert influence on the

postsynaptic neurons as long as 150ms and the firing frequency of a neuron is at least

several Hertz, the dynamics of synaptic receptors need to be tracked all the time.

Therefore, for biologically realistic network models we target, we cannot adopt event-

driven simulation but turn to improve the computational efficiency for continuous

30

30

simulation by adopting two techniques: merging linear synaptic receptors and using two

level time steps.

3.2 Merging of Linear Synaptic Receptors

Figure 11 Merging of linear synaptic receptors.

 In the synapse model, for each pair of connections, there are corresponding

excitatory or inhibitory receptors. On average, more than 30 receptors are located in each

compartment. That means we need to solve at least 30 differential equations for each

compartment and there are tens of compartments in each neuron.

 To reduce the computation of solving differential equations, we may merge the

same linear synaptic receptors including AMPA, NMDA, . So, for each

compartment, the conductance of each type of linear receptors can be added together

Linear synaptic receptors Merged receptors

31

31

(Figure 11). Then there are three linear receptors and several nonlinear

receptors for each compartment. By exploring the linearity of synaptic receptors, the

responses of all the inputs applied to the synaptic receptors of the same type on a given

compartment are merged mathematically in our implementation, which significantly

reduce the cost of computation without sacrificing accuracy.

3.3 Simulation Speedup Considering the Data Locality

 In a large scale neuron network simulation, the size of the data is far more than

the capacity of the cache. Processors need to load the data to the cache once for every

step of integration. Considering the accuracy and stability problem of Forward Euler, the

minimum time step is as small as 0.01 ms. Therefore, a large amount of time is

consumed on accessing memories.

 However, in this work, when the presynaptic neuron fires, it will send the firing

message (time delay value) to its postsynaptic neurons. As described in the work of

(Izhikevich & Edelman, 2008), the minimum axon delay is 1 ms. The firing message

received in a macro-step is at least generated in the previous macro-step. So a two level

time steps approach is adopted. Under this approach, a neuron is simulated continuously

one hundred time steps (1 ms) without affecting the accuracy of the simulation. In the

simulation, there are two kinds of time steps: macro-step and micro-step (Figure 12) and

they are 1ms and 0.01 ms respectively.

 If neurons are simulated one by one during the macro-step, the cache loads

different data every time and may not be utilized efficiently. By taking this approach, the

32

32

cache hit rate is increased. Subsequently, the number of times for loading data is

reduced. Thus, this technique improves the simulation efficiency.

Figure 12 Two level time steps.

macro-step

.........

micro-step

33

33

4. PARALLEL NEURAL NETWORK SIMULATION METHODS

4.1 MPI Parallelization

 In this section, a MPI based approach is presented. There are two features of MPI

programming: separated memory space and communication routines. As the result of the

distributed memory, a task needs to be partitioned to different places. While works in

several processors are dependent, MPI communication routines are used to transmit

messages. Generally, by using MPI, different programs can be executed simultaneously

on each of the processors. In neural network simulations, similar programs are executed

among processors with little differences.

 In neural network simulations, first, to make each processor own a similar

amount of work, all neurons are partitioned into several small groups with the same size.

As describe in chapter 2, different regions share the same local circuitry. For each

region, there are same numbers of neurons and connections. The compartment of a

neuron is labeled by region ID, neuron type, neuron ID and compartment ID. The whole

neurons are partitioned according to the neuron ID which stands for multiple neurons in

different regions. For example, in a network of 70 regions, there are 1000 neurons in one

region and 10 processors. After the network is partitioned, each processor owns 700

neurons, in which there are 100 neuron IDs and each ID stands for 70 neurons.

 Then all processors will simulate the local neural network and solving

differential equations by integrate method. After the membrane voltage is calculated, if

the value is larger than the thresh hold voltage, a spike is generated. All postsynaptic

34

34

neurons need to be informed. However, considering some of the postsynaptic neurons

are stored in other processors, there will be several communications between processors.

Figure 13 Message vector stored in each processor

 A data structure referred as “Message” is designed to store the neuron firing

information. As shown in Figure 13, the “Message” consists of Region ID, Neuron Type,

Neuron ID and Firing Time of the presynaptic neuron. Once a presynaptic neuron fires, a

new “Message” is added into the Message Vector. Normally, many neurons fire at each

time step, so the Message Vector will contains lots of “Messages” in each processor.

Then, the Message Vector needs to be transmitted to other processors to inform the

postsynaptic neurons.

 Considering the large complexity of connections between neurons, all

postsynaptic neurons are stored in almost all the other processors. If MPI point to point

35

35

Figure 14 Gathering the entire firing message.

communication routines are used, tremendous rounds of send and receive will be

involved, which greatly increase the runtime. So, in this work, we adopt MPI collective

communication routines to make the communication process easier and faster. First, use

“MPI_AllGather” function to gather the size of each Message Vector and appropriate

36

36

size of memory will be allocated to store all the message vectors by using

“MPI_AllGatherv” as described in Figure 14.

 After each processor gets a copy of the entire firing messages, the local

postsynaptic neurons will receive the synaptic input. The whole processor for the

parallelization is described in Figure 15.

Figure 15 MPI parallel algorithm.

37

37

4.2 MPI Parallelization with Dynamic Load Balancing

Figure 16 Load balancing problem.

 Considering the imbalanced workload in each processor, the efficiency of the

neuron network simulator is reduced. As illustrated in Figure 16, while Task 2 is still

being executed, the other three tasks have already been completed. However, the slowest

task determined the overall runtime. If each processor owns a similar workload, the

overall runtime will be shortened. In this approach, two dynamic load balancing schemes

are adopted with different work redistributing schemes.

 Generally, load balancing is a technique to make workloads in different

processors balanced by redistributing the workload. The ideal scheme is to perform load

balancing to all the other processors. However, since there are lots of dependencies

among different processors, it is not a practical method in neuron network simulation. In

this work, a 2D-Torus topology is adopted and each processor communicates with its

four neighbors to balance the workload.

Task 0

Task 1

Task 2

Task 3

Work
Idle Time

38

38

Figure 17 2D Torus.

 For the first load balancing scheme (Figure 18), when the central processor

completes the local work, it will ask the neighbors to stop and calculate the average

number of neurons which have not been simulated. If the neighbor has more than the

average number of neurons unprocessed, it will send the excess work to the ; while if

the neighbor has less work than the average, will send appropriate number of neurons

to it. Finally, these five processors will have balanced workload.

39

39

Figure 18 Dynamic load balancing scheme 1.

40

40

Figure 19 Dynamic load balancing scheme 2.

41

41

 Moreover, considering that the central processor not only receives but also sends

workloads, which greatly limits the efficiency of the simulation, the second load

balancing scheme is proposed as shown in Figure 19. Under this scheme, the central

processor only distributes work to part of its neighbors and balances the workload

among processors only once. First, after calculating the average unprocessed numbers

of neurons, only does load balancing with those neighbors which contain more than

the average number of neurons. So the central processor only needs to receive work from

other processors and the communication between processor becomes easier.

4.3 Hybrid MPI/OpenMP Parallelization

Figure 20 Structure of hybrid MPI/OpenMP parallelization.

Main

MPI
process 1

OpenMP
thread 1

∎∎∎

OpenMP
thread 16

MPI
process 2

OpenMP
thread 1

∎∎∎

OpenMP
thread 16

42

42

 By conducting simulations using above two MPI approaches, experimental

results indicate that communications between different processors and the redistribution

of workload consume most of the computational power. Therefore, a hybrid

MPI/OpenMP parallelization approach is proposed with good load balancing schemes

and reduced memory traffics.

 In the hybrid MPI/OpenMP simulation, multiple OpenMP threads are generated

inside each MPI process. Compared with the MPI implementation, it is much easier to

change the serial code to parallel one using OpenMP: just add OpenMP “parallel”

directives before the “for” loop.

 As mentioned in chapter 2, there are three scheduling algorithms: Static,

Dynamic and Guided. Experimental results show that based on the 105K neural network

with 2 MPI processes and 8, 16 and 32 OpenMP threads; Dynamic scheduling scheme is

more suitable for the large neural network simulation (Figure 27). In the following

experiments, Dynamic scheduling scheme is chosen as the default one.

 The main procedure of the hybrid MPI/OpenMP is similar as MPI approach.

After the network is partitioned, a number of neurons are ready to be simulated in each

MPI process. At each time step, the Dynamic scheduling scheme is adopted to process

these neurons. The only special part is when the postsynaptic receives the synaptic input.

If one compartment receives multiple synaptic inputs simultaneously, the race condition

problem happens. It is a common problem in shared memory programs. In our program,

A “CRITIAL” Directive is used to protect the simulation from race condition problems.

43

43

5. EXPERIMENTAL RESULTS AND ANALYSIS

5.1 Experiments Setup

 In this work, we use a 52-node, 832-processor IBM Cluster-1600 system to

simulate different size of neural networks (Texas A&M Supercomputing Facility, 2012).

There are 16 IBM’s 1.9GHz RISC Power5+’s in a node and these 16 Power5+

processors have a shared memory of 32 gigabytes. The message passings between

processors are implemented by IBM high performance communication switch.

Figure 21 Architecture of one node in the supercomputer.

Processor
 Core 1

Processor
 Core 2

L2

Cache

 L2

Cache

 L2

Cache

Fabric Controller

GX Control L3 Directory L3/Mem Control

DCM
To

DCM

DCM
To

DCM

GX Bus
L3/Me
mBus

44

44

 Three neural networks simulations are presented with different sizes of the

network: 30K, 60K and 105K neurons. In the following experiments, first, Figure 22

shows the transition from delta oscillation to epilepsy, which validates our simulator.

Later, the efficiency of the proposed three parallel simulation approaches including MPI

parallelization, MPI parallelization with dynamic load balancing and hybrid

MPI/OpenMP parallelization are demonstrated.

5.2 Simulation of Delta Oscillation and Epileptic Activities

 From recent studies in vitro and vivo (Dossi, Nufiez, & Steriade, 1992) (Leresche

et al, 1991), researchers get in-depth understanding about the delta oscillation of

thalamocortical neurons within the frequency range of 1-4 Hz. Normally, this wave is

caused by thalamic relay neurons as the result of low-threshold Ca2+ current and

hyperpolarization activated current . The mechanism of the delta activity is described

as follows. The rebound burst is caused by the slow activation of after a long lasting

hyperpolarization of thalamic cells. Gradually, the burst is deinactivated by the

hyperpolarization mediated by . As a result of the inactivation of and during the

burst, the membrane voltage turns hyperpolarized after burst termination. (Bazhenov &

Timofeev, 2006).

 In this experiment, we simulate the 105K neurons network. In the first second, it

shows the 3 Hz delta wave. At the end of the first second, the firing pattern changes to a

slower oscillation at about 4 Hz with large amplitude negative spikes as the synaptic

45

45

 receptors are suppressed. Two second later, delta oscillation is resumed

gradually when the -mediated inhibition comes back to normal condition.

Figure 22 Delta wave and epilepsy.

5.3 MPI Parallelization

 In this part of the experiment, we set the total simulation time as 1 minute and

use 1, 2, 4, 8, 16 and 32 MPI processes with different sizes of the neural network.

 When analyzing a parallel program, it is important to study the speedup and

efficiency (Grama, Gupta, Karypis, & Kumar, 2003). They are described as

46

46

 ()

 ()

 ()

Figure 23 Speedup of the MPI implementation.

 In parallel computing, we also call this efficiency as Strong Scaling (Barney,

2012b). A program is considered to scale linearly if the speedup is equal to the number

of processing elements used. In general, it is difficult to achieve good strong scaling

when the number of the processors is very large since the communication overhead plays

an important role. As illustrated in Figure 23 and Figure 24, the speedup and efficiency

are very good. However, we find that the workload for each process is unbalanced as the

result of the complex network connection. When analyzing the parallel load balancing

0

5

10

15

20

25

30

35

1 2 4 8 16 32

Speedup of 30k

Speedup of 60k

Speedup of 105k

MPI processes

47

47

problem, imbalance ratio is generally used (Lan, Taylor, & Bryan, 2002), generally, the

imbalance ratio is described as:

 ()

Figure 24 Efficiency of the MPI implementation.

where is the maximum running time of all processes and is the average

running time. From Figure 25, we observe that for 32 MPI processes implementation,

the imbalance ratio is more than 10%. The imbalanced workload became a critical

problem especially when using more than 8 MPI processes.

60

65

70

75

80

85

90

95

100

1 2 4 8 16 32

Efficiency of 30K model

Efficiency of 60k model

Efficiency of 105K model

MPI processes

48

48

Figure 25 Imbalance ratio of the MPI implementation.

5.4 MPI Load Balancing Schemes

 In this experiment, the performance of two proposed load balancing schemes are

compared. Experimental result shows that the second scheme is much better than the

first one (Figure 26). Because when using the second scheme, the central processor only

receives work from other processors; while for the first scheme, the central processor not

only receives work but also sends excess work to other processors which cause more

running time.

0

2

4

6

8

10

12

2 4 6 8 16 32 # MPI processes

49

49

 Moreover, when using the second load balancing scheme, the imbalance ratio is

reduced and each processor has balanced workload. However, the speed up is still lower

than the MPI implementation and the simulation consumes more computation time as

the result of the large number of communications between processors.

Figure 26 Comparison of speed up using different load balancing schemes.

5.5 Hybrid MPI/OpenMP Parallelization

 Finally, an experiment to compare all the three methods: MPI parallelization,

MPI parallelization with load balancing and Hybrid MPI/OpenMP parallelization is

demonstrated on a network consisting 105K neurons. In the hybrid MPI/OpenMP

parallelization approach, a “Dynamic” scheduling scheme is adopted due to the higher

efficiency (Figure 27). Figure 28 and Figure 29 show the runtime and speedup of the

simulator, and Table 3 shows the runtime of different approaches on the 105k network.

0

5

10

15

20

25

30

35

8 16 32

Pure MPI

use load balancing
scheme 1

use load balancing
scheme 2

MPI processes

50

50

Results show that the hybrid MPI/OpenMP parallelization costs 10% less runtime than

the MPI parallelization and proven to be a good method to solve the parallel problem of

Figure 27 Comparison between different scheduling schemes.

neural network simulation. Moreover, experimental result shows that the runtime of MPI

parallelization with load balancing is larger than the MPI implementation. Though the

dynamic load balancing scheme makes each processor have balanced workload, the

overhead of communication between processors caused by load balancing exceeds the

runtime saved by the load balancing scheme. In most of some practical problem, the

imbalance ratio is far more than 100% and our imbalance ratio is not so high. So if the

workload of the local neural network among processors is extremely uneven, our load

balancing scheme may perform better. When using the hybrid MPI/OpenMP, only two

MPI processes are generated. Inside each MPI process, multiple OpenMP threads

0

1000

2000

3000

4000

5000

6000

STATIC DYNAMIC GUIDED

105K model

60K model

30K model

(ms)

51

51

processes the simulation in parallel and dynamically schedule the workload without any

communications between processors. Only when the entire firing messages are gathered,

MPI collective routines are used. There is a drawback of the hybrid MPI/OpenMP

approach: in case of race condition problem, a “CRITICAL” directive is used which

slows the simulation. However, result shows that hybrid MPI/OpenMP approach is still

better than the other in the large scale neuron network simulation.

Table 3 Comparison of runtime between different methods on 105k network.

Number of processors MPI MPI with load

balancing scheme

Hybrid

MPI/OpenMP

8 8909 ms 9089 ms 8894 ms

16 4538 ms 4764 ms 4513 ms

32 2394 ms 2624 ms 2288 ms

52

52

Figure 28 Comparison of simulation time based on different methods.

Figure 29 Comparison of speed up based on different methods.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

8 Threads 16 Threads 32 Threads

Pure MPI

MPI with load balancing

Hybrid MPI/OpenMP

(ms)

0

5

10

15

20

25

30

35

Pure MPI MPI with load balancing Hybrid MPI/OpenMP

8 Threads

16 Threads

32 Threads

53

53

6. SUMMARY AND CONCLUSIONS

 In this work, the parallel algorithms for large scale neural networks with

biophysically accurate models are studied. The limitations of the existing works have

been addressed including the simplicity of the modeled network structures and lack of

biophysical details in the neuron models. By taking advantage of emerging multicore-

based distributed computing platform, the proposed hybrid MPI/OpenMP parallelization

techniques can significantly improve the performance of neural network simulation.

 The contributions in this research work can be classified as the following three

categories.

 Firstly, the biophysically detailed Hodgkin-Huxley type models have been used

for all neurons. Models of various ion channels and synaptic receptors are explicitly

included to reflect the roles played by these biophysical mechanisms. Using these neuron

models as building blocks, a thalamocortical network model is constructed based on data

from existing works.

 Secondly, to get an accurate and good speedup transient simulator, an explicit

forward Euler integration based two-level transient simulation technique has been

suggested. The two time steps are 1ms and 0.01 ms respectively. Inside the outer level,

one neuron is continuously simulated one hundred small time steps, which increases

cache hit rate. Meantime, to speed up the simulation, another technique of merging lineal

synaptic receptors is adopted.

54

54

 In addition, we compare the performance of MPI, MPI with load balancing

scheme and hybrid MPI/OpenMP parallelization on different sizes of network.

Experiment results show that when the number of processors is small, the MPI

implementation achieves good performance without load balancing problems. However,

with the increasing size of the neural network and the number of processors, the

imbalance ratio is more than 10%. By exploiting dynamic load balancing techniques on

a 2D Torus topology, we successfully balance the workload among processors.

However, more computation time is consumed as the result of large numbers of message

passings between MPI processes. Finally, a hybrid MPI/OpenMP parallelization

simulation method is proposed and it perfectly achieves our goal and it shows better

speedup than the MPI implementation.

 With further development, more interesting techniques may be studied. For

dynamic load balancing problems, firing frequencies need to be taken into consideration

when the whole neural network is partitioned. Because both the number of neurons and

the number of fired neurons in each processor contribute to the workload. Moreover, in

this work, we successfully simulate the transition from delta wave in 3 Hz to epilepsy. In

the future, by simulating the biologically realistic neural networks, we may provide

guidance to clinicians when testing new drugs.

55

55

REFERENCES

Abbott, L. F., & Van Vreeswijk, C. (1993). Asynchronous states in a network of pulse-

coupled oscillators. Phys. Rev. E, 48, 1483-1490.

Barney, B. (2012a). OpenMP. Lawrence Livermore National Laboratory. Retrieved

from

https://computing.llnl.gov/tutorials/openMP/.

Barney, B. (2012b). Parallel computing. Lawrence Livermore National Laboratory.

Retrieved from

https://computing.llnl.gov/tutorials/openMP/.

Bazhenov, M., Timofeev, I. (2006). Thalamocortical oscillations. Scholarpedia, 1(6),

1319.

Binzegger, T., Douglas, R. J., Martin, K. A. C. (2004). A quantitative map of the circuit

of cat primary visual cortex. Journal of Neuroscience, 24, 8441-8453.

Destexhe, A., Bal, T., McCormick, D.A., & Sejnowski, T.J. (1996a). Ionic mechanisms

underlying synchronized oscillations and propagating waves in a model of ferret

thalamic slices. Journal of Neurophysiology, 76(3), 2049-2070.

D’Haene, M., Schrauwen, B., Campenhout, J.V., & Stroobandt, D. (2009). Accelerating

eventdriven simulation of spiking neurons with multiple synaptic time constants.

Neural Computation, 21(4), 1068-1099.

Djurfeldt, M., & Lundqvist, M. (2008). Brain-scale simulation of the neocortex on the

IBM Blue Gene/L supercomputer. IBM Journal of Research and Development,

52(1/2), 31-42.

https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/openMP/

56

56

Dossi, R., Nufiez, A., & Steriade, M. (1992). Electrophysiology of a slow (0.5-4 Hz)

intrinsic oscillation of cat thalamocortical neurons in vivo. Journal of

Physiology, 447, 215-234.

Grama, A., Gupta, A., Karypis, G., & Kumar, V. (2003). Introduction to Parallel

Computing (2
nd

 edition). New York: Addison-Wesley.

Hodgkin, A., & Huxley A. (1952). A quantitative description of membrane current and

its application to conduction and excitation in nerve. Journal of Physiology, 117,

500-544.

Huguenard, J. R., & Prince, D. A. (1992). A novel t-type current underlies prolonged

 -dependent bursts firing in GABAergic neurons of rat thalamic reticular

nucleus. The Journal of Neuroscience, 12(10), 3804-3817.

Izhikevich, E. M., Gally, J. A., & Edelman, G. M. (2004). Spike-timing dynamics of

neuronal groups. Cerebral Cortex, 14(8), 933-944.

Izhikevich E. M., & Edelman, G. M. (2008). Large-scale model of mammalian

thalamocortical systems. Proceeding of National Academy of Science, 105(9),

3593-3598.

Kailasanath, V., & Fu, S. (2003). The HOPES Brain Tutorial. The Huntington’s

Outreach Program for Education at Stanford. Retrieved from

https://www.stanford.edu/group/hopes/cgi-bin/wordpress/2010/06/the-hopes-

brain-tutorial-text-version/.

https://www.stanford.edu/group/hopes/cgi-bin/wordpress/2010/06/the-hopes-brain-tutorial-text-version/
https://www.stanford.edu/group/hopes/cgi-bin/wordpress/2010/06/the-hopes-brain-tutorial-text-version/

57

57

Lan, Z., Taylor, V.E., & Bryan, G. (2002). A novel dynamic load balancing scheme for

parallel systems. Journal of Parallel and Distributed Computing, 62(12), 1763-

1781.

Leresche N., Lightowler S., Soltesz I., Jassik-Gerschenfeld D., & Crunelti, V. (1991).

Low frequency oscillatory activities intrinsic to rat and cat thalamocortical cells.

Journal of Physiology, 441, 155-174.

Nageswaran, J. M., Dutt, N., Krichmar1, Jeffrey L., Nicolau, A., & Veidenbaum, A.

(2009). Efficient simulation of large-scale spiking neural networks using CUDA

graphics processors. Proceedings of the 2009 International Joint Conference on

Neural Networks (pp. 3201-3208). Piscataway, NJ: IEEE Press.

Odabasioglu, E. M. (2004). Which model to use for cortical spiking neurons. IEEE

Transaction on Neural Networks, 15, 1063-1070.

Peters, A., & Payne, B. R. (1993). Numerical relationship between geniculocortical

afferents and pyramidal cell modules in cat primary visual cortex. Cerebral

Cortex, 3, 69–78.

Pillage, L.T., Rohrer, R. A., & Visweswariah, C. (1995). Electronic circuit and system

simulation methods. New York: McGraw-Hill, Inc.

Pospischil,M., Toledo-Rodriguez, M., Monier, C., Piwkowska, Z., & Bal, T. (2008).

Minimal hodgkinhuxley type models for different classes of cortical and thalamic

neurons. Biological Cybernetics, 99, 427-41.

Rubchinsky, L.L, Kopell, N., & Sigvardt, K.A. (2003). Modeling facilitation and

inhibition of competing motor programs in basal ganglia subthalamic nucleus–

http://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22Lawrence+T.+Pillage%22
http://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22Ronald+A.+Rohrer%22

58

58

pallidal circuits. Proceedings of the National Academy of Science, 100, 14427-

14432.

Texas A&M Supercomputing Facility. (2012). Hydra supercomputer, Retrieved from

http://sc.tamu.edu/help/hydra/.

Van Drongelen, W., Lee, H.C., Hereld, M., Chen, Z., Elson, F.P., & Stevens, R.L.

(2005). Emergent epileptiform activity in neural networks with weak excitatory

synapses. IEEE Transactions on Neural Systems and Rehabilitation Engineering,

13(2), 236-241.

Wang, M., Yan, B., Hu, J., & Li, P. (2011). Large-scale simulation of neural networks

with biophysically accurate models on graphics processors. IEEE International

Joint Conference on Neural Networks, (pp. 3184-3193). Piscataway, NJ: IEEE

Press.

Zalesky, A., & Fornito, A. (2009). A DTI-derived measure of cortico-cortical

connectivity. IEEE Transactions on Medical Imaging, 28(7), 1023-1036.

http://sc.tamu.edu/help/hydra/

59

59

VITA

Name: Jingzhen Hu

Address: WERC Room.102,

 Texas A&M University
 College Station, TX 77843-3128

Email Address: hujingzhen@tamu.edu

Education: B.S., Electrical Engineering, Beijing University of Posts and
 Telecommunications. Beijing, China, 2009
 M.S., Computer Engineering, Texas A&M
 University, 2012

 TAMU 3128

