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ABSTRACT 

 

A High CMRR Instrumentation Amplifier for Biopotential  

Signal Acquisition. (May 2011)  

Reza Muhammad Abdullah, B.Sc., Kwame Nkrumah University of Science & Tech 

Chair of Advisory Committee: Dr. Edgar Sanchez-Sinencio 

 
Biopotential signals are important to physicians for diagnosing medical conditions in 

patients. Traditionally, biopotentials are acquired using contact electrodes together with 

instrumentation amplifiers (INAs). The biopotentials are generally weak and in the 

presence of stronger common mode signals. The INA thus needs to have very good 

Common Mode Rejection Ratio (CMRR) to amplify the weak biopotential while 

rejecting the stronger common mode interferers. Opamp based INAs with a resistor-

capacitor feedback are suitable for acquiring biopotentials with low power and low noise 

performance. However, CMRR of such INA topologies is typically very poor. 

In the presented research, a technique is proposed for improving the CMRR of opamp 

based INAs in RC feedback configurations by dynamically matching input and feedback 

capacitor pairs. Two instrumentation amplifiers (one fully differential and the other fully 

balanced fully symmetric) are designed with the proposed dynamic element matching 

scheme. 

Post layout simulation results show that with 1% mismatch between the limiting 

capacitor pairs, CMRR is improved to above 150dB when the proposed dynamic 

element matching scheme is used. The INAs draw about 10uA of quiescent current from 

a 1.5 dual power supply source. The input referred noise of the INAs is less than 

3uV/ 𝐻𝑧. 
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1. INTRODUCTION 

 

The importance of bio-potential signals to physicians for diagnosing medical conditions 

and also general in-patient/ out patient monitoring cannot be overestimated. 

Electrocardiogram (EKG) signals - that is the bio-potential signal that results from 

internal electrochemical processes within the heart – can be used to monitor a patients’ 

health condition.  Electroencephalogram (EEG) and EMG (Electromyogram) 

respectively are electrical signals resulting from the human brain activity and from 

contraction/ relaxation of body muscles.  

 
Traditionally, these signals are acquired using electrodes and amplified using 

instrumentation amplifiers. Acquisition of these signals is done differentially while any 

common mode component of the bio-potential is rejected. This is very essential because 

the required bio-potentials are typically weak signals with low voltage levels where as 

the likely common mode signals that are coupled with the bio-potentials are much larger 

in amplitude. For instance, in EKG acquisition, signal amplitudes are typically in micro-

volt range with maximum values about 0.5mV. A 60Hz interference signal from the 

supply mains is typically coupled to the differential electrodes and thus appears as a 

common signal which is much larger in voltage compared to the desired EKG signal. 

This signal is referred to as a common mode signal and has to be rejected where as the 

differential EKG signals is acquired. 

 The ability of an instrumentation amplifier to amplify required differential signals while 

rejecting unwanted common mode signals is quantified by its Common Mode Rejection 

Ratio (CMRR). Instrumentation amplifier properties vary depending on its topology and 

application.  

 

This thesis follows the style of the IEEE Journal of Solid-State Circuits. 
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The most common instrumentation amplifier is the 3 - Opamp instrumentation amplifier. 

This topology though is not suitable for portable bio-potential signal monitoring since it 

demands high power consumption and has very poor CMRR. The poor CMRR of the 3-

Opamp IA is due to the use of passive components in its feedback network. The CMRR 

depends on the mismatch of these passive components and degrades very quickly with 

slight percentage mismatch in these components. 

 
Various Instrumentation amplifiers have been proposed for purposes of bio-potential 

signal acquisition targeting low power, low noise and high CMRR specifications. Single 

Opamp topologies such as [1] have the advantage of lower power consumption however 

the problem of poor CMRR is not addressed. Current feedback topologies as in [2] and 

[3]  have better CMRR however the inaccuracy of the gain of such topologies makes 

design of these amplifiers a little complex. 

 

 

Figure 1-1  Block Diagram of an Amplifier and Operational Amplifier 

 

A. Amplifiers, Operational Amplifiers and Instrumentation Amplifiers 

The operational amplifier (opamp) is one of the most common circuits used in analog 

electronic circuit design. Its uses are very wide and opamps are found in sorts of 

applications from power management systems to RF circuits and data converters. As an 
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ideal black box, the opamps magnifies the voltage difference between its inputs by 

several orders. In more specific terms, the ideal opamp has infinite gain, with infinite 

input impedance and zero output impedance. These properties are desirable in all 

applications where opamps are used.  

An amplifier is somewhat of a loose term implying any system or block that produces an 

output quantity that is a scaled version of its input. The input could be a single ended 

signal or the difference of two signals. More commonly, the output of an amplifier is a 

scaled current or voltage. Current and voltage amplifiers can be built using opamps in 

negative feedback configurations or using entirely different circuit topologies. Figure 1-1 

shows the block diagrams of amplifiers and operational amplifiers. 

  

Table 1-1 Properties of INAs vs. Opamps 

 

Properties  

 

Opamp 

 

INA 

 

Gain  Very Large Finite 

Gain Accuracy  High Very High 

CMRR  High Very High 

`Noise Low Very Low` 

 

 

Instrumentation Amplifiers (INAs) are special amplifiers designed where long term 

accuracy and stability of the amplifier is desired. They are difference amplifiers in that 

they have two inputs, the difference of which is amplified to produce the desired output. 

Most instrumentation amplifiers will have at least one opamp and some negative 

feedback network to produce the desired fixed gain. However, it should be noted that 

there are a few open loop INA topologies as well. INAs typically have very good 
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common mode rejection ratio (CMRR) and high input impedances. Table 1-1 shows the 

general properties of opamps versus instrumentation amplifiers. 

B. Applications of Instrumentation Amplifiers 

The characteristics of instrumentation amplifiers mentioned in the previous section make 

them very suitable for Measurement and Test applications. Besides that they are used in 

a host of sensor applications such as temperature and pressure sensing. INAs are also 

used in biomedical fields. A typical example of such use is in the front end of 

biopotential acquisition systems. Figure 1-2 shows four major application areas of 

instrumentation amplifiers.  

 

 

Figure 1-2 Applications of Instrumentation Amplifiers  

 

For this research effort, we focus on using instrumentation amplifiers for acquiring 

biopotential signals. Such instrumentation amplifiers are also known as biopotential 

signal amplifiers. 
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1. Biopotential Signal Acquisition 

Biopotentials are very important to physicians in modern medical practice. These are 

electrical signals generated as a result of electro-chemical processes that occur within the 

human body. The kind of body cells involved in these electro-chemical processes 

determine what biopotential signal is generated and its possible use to physicians. The 

most common biopotentials are electroencephalogram (EEG), electrocardiogram (EKG) 

and electromyogram (EMG). Electroencephalogram (EEG) is generated as a result of 

neuron activity within the brain, EMG due to electrical activity of skeletal muscles and 

EKG as a result of electrical impulses that are generated due to the pumping activity of 

the heart. 

The above mentioned biopotentials are generated due to combination of action potentials 

from several cells associated with the tissue/ organ [4]. Each action potential is a cycle 

of potential changes across the cell membrane. During a cells inactive state, its exhibits a 

potential referred to as a resting potential.  In this state, the membrane of the cell is more 

permeable to K+ than Na+. As such, K+ has higher concentration within the cell in their 

inactive state. This diffusion gradient across the cell membrane causes K+ ions to slowly 

move across the membrane to the exterior, making the interior more negative with 

respect to the exterior of the cell membrane, and thus building an electric field in the 

process. This continues until equilibrium point when the electric field balances the K+ 

diffusion gradient. The voltage build up at this point is about 70mV. Any electrical 

stimulation of the cell at this point makes it more permeable to Na+ and these Na+ ions 

diffuse into the cell reducing the electric field to about 40mV. The cell membrane 

becomes even more permeable to K+ at this point resulting in sharp diffusion of K+ into 

the cell again until the electric field drops to zero volts thus returning the cell to its 

resting potential. It is this cycle of events that is referred to as the action potential of a 

cell [4].  
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The different biopotentials have unique electrical characteristics which need to be 

considered carefully when acquiring the signal. Most basic are the frequency range and 

amplitude levels of the signal.  

 

 

Figure 1-3 Amplitude and Frequency Characteristics of Some Biopotentials [1] 

 

The spectrum of an EKG signal is mostly concentrated within 0.5 Hz to 150 Hz 

frequency range. The amplitudes of EKG (ECG) signals vary from a low of 0.5mV to a 

high of approximately 10mV. Figure 1-3 shows the amplitude and frequency 

characteristics of some other biopotential signals. Note that the biopotentials in the dark 

shaded boxes are acquired using invasive procedures. This will be mentioned in the next 

section. LFPs (Local Field Potentials) are biopotentials obtained from the dendrons of 

neural cells within the brain. EEG (Electroencephalogram) and EMG (Electromyogram) 

are the result of electrochemical activity within the brain and skeletal muscle tissue 

respectively.  
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1.1. Model for Biopotential Electrodes 

Biopotentials can be acquired invasively or non-invasively using electrodes. The 

electrode is an interface between the body and the input of the instrumentation amplifier 

or readout circuitry. This interface (transducer) is necessary because current conduction 

in the body is a result of ionic movement whereas in the readout front end it is a result of 

electron motion. The electrode is thus a metal – electrolyte interface. In simple terms a 

chemical reaction occurs when the metal comes in contact with a specific electrolyte and 

this reaction results in the generation of free electrons (an oxidation reaction). This 

unsettles the neutrality of the metal – electrolyte interface and creates an electron 

gradient across it resulting in current flow.  

 

Figure 1-4 Electrical Model for Skin - Electrode Interface [4] 

 

Electrodes could be wet, dry or non-contact electrodes. Wet electrodes usually have a gel 

like substance that creates contact between the body and the electrode. These types are 
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the most common and Ag/ AgCl in particular are in wide use. Dry electrodes do away 

with the gel like substance thus the contact resistance at the body – electrode interface is 

quite high. However these are more comfortable to use. Finally, non – contact electrode 

no physical contact with the body and behave capacitively.  In Figure 1-4 is the structure 

and a linear electrical model for the skin – electrode interface. Actually in this model, 

two interfaces are shown. First is the skin – sweat interface which is modeled as a 

resistor in series with a capacitor – resistor parallel combination that includes a dc offset 

voltage. The second is the interface between the sweat and the biopotential electrode. 

Typical values of the R’s and C’s are shown in Tables 1-2 and 1-3. 

 

   Table 1-2 Electrical Characteristics of Commonly Used Electrodes 

 

Electrode 

 

Offset  

 

Resistance  

 

Capacitance  

 

Ag/AgCl  

 

0.1 – 50mV  

 

1 – 10k ohms  

 

100 – 150nF  

 

Stainless Steel  

 

1 – 50mV  

 

3 – 12k ohms  

 

< = 100nF  

 

 

Table 1-3 Typical Skin Impedance Parameters 

 

Impedance  

 

Prepared Skin  

 

Unprepared Skin  

 

Subcutaneous Resistance  

 

< = 120 ohms  

 

< = 120 ohms  

 

Stratum Resistance  

 

Up to 100k ohms  

 

1 – 2 M ohms  

 

Shunt Capacitance  

 

Up to 10nF  

 

Up to 40nF  
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1.2. Biopotential Amplifiers 

The biopotential amplifier [5],[6] is the main block that amplifiers the weak biopotential 

signals to levels that can be analyzed and used by physicians. The biopotential amplifier 

however has to meet certain criteria so as not to corrupt the signal during the acquisition 

process. It has been mentioned earlier in the previous sections that the biopotentials have 

an embedded dc offset due to the difference in the half cell potentials of the electrodes 

used to acquire the signal. The dc offset, also referred to as the Differential Electrode 

Offset (DEO), has to be filtered out before or during the acquisition process to avoid 

saturating the biopotential amplifier. Also, the amplifier should be able to selectively 

amplify only the biopotential signal of interest while attenuating signals of any other 

frequency. In other words, the biopotential amplifier should have frequency 

characteristics suitable for kind of biopotential that is being acquired.   

Also, since the biopotentials themselves are very weak signals, the input referred noise 

of the biopotential amplifier should be very small to make the biopotentials detectable by 

the acquisition system. Low noise of the biopotential amplifier is very critical. One more 

very pertinent issue to be considered when designing instrumentation amplifiers is 

interference from unwanted sources. 

Electromagnetic and electrostatic interference from the mains of buildings are sources of 

unwanted signals for biopotential acquisition systems [4]. Whenever an alternating 

current flows through a conductor, an electromagnetic field (EM field) is generated 

around the conductor, and when this EM field cuts across the loop of conductors and 

electromotive force (EMF) is generated. This is the principle of operation of a generator. 

A similar effect occurs when the mains current of a building generates an EM field and 

this field in turn cuts through the loop formed by the human body, the leads between the 

electrodes and the input of the biopotential amplifier, and the biopotential amplifier 

itself. Thus an unwanted AC signal is generated that is common to both inputs of the 

biopotential amplifier.  
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On the other hand, unwanted interference can be due to electrostatic effects and this is 

explained using the Figure 1-5. Cbp is the capacitance between mains and the human 

body while Cbg is the capacitance between the body and ground. CISO is the capacitance 

between the circuit ground the earth. Re1 and Re2 are the resistances of the circuit leads. 

A displacement current, ID, flows into the body through these capacitances and splits 

about equally between the isolation capacitance and the body to ground capacitance. The 

voltage created as a result of this current and the ground resistance appears as a common 

mode signal at the inputs of the biopotential amplifier.  

 

 

Figure 1-5 Electrostatic Interference to Human Body [4] 

 

Since the unwanted signals due to EMI and ESI are common mode, the biopotential 

amplifier needs to have very good Common Mode Rejection properties. Common Mode 

Rejection Ratio (CMRR) is therefore another very critical parameter for biopotential 

amplifier. 
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Besides these main critical specifications for the biopotential amplifier, power 

consumption has to also be minimized for the acquisition system and this begins with 

designing a low power biopotential amplifier. Also, to make the system more versatile, it 

helps to design a biopotential amplifier that is reconfigurable for varying the gain and 

frequency characteristics of the overall acquisition system.  

In Table 1-4 are the EKG general requirements of a biopotential amplifier. The targeted 

application is EKG acquisition. The specifications in this table are obtained from 

published papers [1-3] in EKG amplifiers. 

 

Table 1-4 General Requirements of an EKG Amplifier 

Parameter  General Specification 

CMRR  70 dB 

Input Referred Noise  2-3μV rms 

Input Impedance  > 5Mohm 

Bandwidth  0.1 – 150 Hz 

Gain  40 dB 
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C. Classes of Instrumentation Amplifiers 

There are many ways to implement instrumentation amplifiers [1-3],[7-10] to achieve 

long term stability and efficiency. In general terms, we can classify most topologies 

under the following 2 types. 

 Opamp based INAs 

 Current Balancing INAs 

  

 

Figure 1-6 Three Opamp Instrumentation Amplifier [11] 
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1. Opamp Based Instrumentation Amplifiers 

Opamp based INAs, as the name implies, utilize opamps and feedback networks for 

amplification and frequency shaping if necessary. The most common INA topology of 

this kind is the 3-opamp instrumentation amplifier. This is shown in Fig 1-6. 

The 3 opamp INA has two stages. The overall gain of the INA is split between the two 

stages. In Figure 1-6, the two gain stages amplify the differential input signal by G1 and 

G2 respectively.  

                                                      G1 = 
v1

vd

 = 1 + 
2RF

RG

 ………………………………(1.1) 

                                                      G2 = 
vo

v1

 = 
R2

R1

 …………………………………… 1.2  

Gtotal = G1G2 = 
R2

R1

  1 +
2Rf

RG

 ……………………..(1.3) 

Typically, the 2
nd

 stage is a unity gain stage and is only used as a difference amplifier. In 

the first stage, common mode signal is transferred unaltered to the inputs of the 2
nd

 stage 

difference amplifier. Ideally, this scenario would mean the INA has very good rejection 

of common mode signals. However, the CMRR of this topology ultimately depends on 

the proper matching of the passive components, resistors in this case. Assuming 40dB 

differential gain, the resistors have to be matched to within 0.1% of each other to achieve 

100dB of CMRR (Common Mode Rejection Ratio). Let ΔR = Rf – RG and Ac = common 

mode gain. Then 

Ac ≈ 
∆R

Rf + RG

…………………………………..…(1.4) 

Laser trimming is required to obtain decent CMRR using this topology. Besides, the use 

of 3 opamps in this topology makes it a high power consuming topology and unsuitable 

for low power application such as portable biopotential signal acquisition systems. 
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2. Current Balancing Instrumentation Amplifiers 

INAs of this topology can best be explained by the simplified diagram in Figure 1-7. The 

input stage is a transconductance stage while the output is a transimpedance. The input 

voltage appears across the input resistance and generates a current through it. By some 

means, (examples of which will be discussed in the following section), this current is 

mirrored into the output stage and flows through the output resistor and in the process 

generating the output voltage signal. Thus under ideal conditions, the gain of this INA is 

defined by the ratio of output to input resistors and the CMRR is independent of the 

matching between these resistors.  

 

 

Figure 1-7 Concept of Current Balancing INA 

 

The CBIA (Current Balancing Instrumentation Amplifier) concept seems very simple 

however the issue is how to copy the current from the input to output stage.  

                                    AvI = Gain (ideal) = 
R2

R1

 ………………………………… 1.5  

The ideal case assumes that the buffers have no output resistance and that the current 

source is ideal. A more accurate representation of the concept is shown in Figure 1-8.  
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In this case the output resistances of the buffers are accounted for as well as the finite 

output resistance of the current source.  

 

 

Figure 1-8 More Accurate Representation of Current Balancing INA 

 

The gain is defined as shown in equation 1.6. 

                                    Ava= Gain  actual = ∆.
R2

R1

 ………………………    1.6  

where        ∆ = 
RcsR1

 R1+ 2Rbuf  R2+ Rcs 
  ……………………..….(1.7) 

 

Design & simulation of some CBIA topologies shows that the gain accuracy is usually 

not good because exact mirrors of the input stage current are difficult to replicate in the 

transimpedance output stage. In equation 1.7, Δ is some fraction less than 1. Δ 

approaches 1 under ideal conditions when Rbuf is zero and Rcs is infinite. The design 

procedure of the CBIA is also more complex than that of the opamp based INA 

topologies.  Examples of CBIAs are reported in [2],[3]. 
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2. CMRR OF INSTRUMENTATION AMPLIFIERS 

 

Common Mode Rejection Ratio (CMRR) is an important specification for all amplifiers 

with differential inputs including both single ended and fully differential output versions. 

For amplifiers with single ended outputs, CMRR is the ratio of the differential gain of 

the amplifier to the common mode gain of the amplifier. The differential gain of the 

amplifier is defined as the gain when differential inputs are applied whereas the common 

mode gain of the amplifier is the gain of the amplifier when a common signal is applied 

to the two inputs.  

 

 

Figure 2-1 Block Diagram of Single Ended and Fully Differential Amplifiers 

 

For fully differential amplifiers, there are two definitions of CMRR and both of them are 

important depending on the application of the amplifier. Figure 2-1 is a generic block 

diagram of a single ended and a fully differential amplifier. The CMRR for these 

amplifiers are defined in the next section. 
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A. Definition of CMRR 

Let the common mode input and output voltages of the amplifiers be defined as below.  

                                                          vc = 
vin1 + vin2

2
…………….………………………(2.1a) 

                                                          vd=
vin1 - vin2

2
………….…………………………...(2.1b) 

                                                          vod = 
vo1 - vo2

2
………….………….………….……(2.1c) 

                                                          voc = 
vo1 + vo2

2
 ………………………………………(2.1d) 

 

Using the definitions in equations 2.1a to 2.1d, the common mode rejection ratio of a 

single ended and fully differential amplifiers are defined as in equations 2.2 and 2.3. 

Single Ended Amplifier 

                                      CMRR = 
Ad

Ac

                  where  Ad = 
vo

vd

 and Ac = 
vo

vc

 ………(2.2) 

Fully Differential Amplifier 

      CMRR = 
Ad

 Acc

         where Ad = 
vod

vd

 and  Acc = 
voc

vc

…………(2.3) 

 

Notice the definition for the common mode gain Acc of a fully differential amplifier. It is 

defined as the ratio of the common mode output voltage of the amplifier, to the applied 

common mode input signal. Acc needs to be high to minimize the transfer of common 

mode input signal to the next stages of the biopotential acquisition system. 
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For EKG acquisition systems, CMRR required is at least 60dBs but state of the art 

biopotential INAs have typical CMRRs between 60dB and 80dB with a few topologies 

(mostly current balancing INA topologies) achieving CMRRs in the 100dB range. The 

last mentioned INAs are more complex to design however. This large CMRR 

specification is necessary to reject unwanted interferer signals which appear as common 

mode signals at the input of the biopotential INA.  

 

B. CMRR Case Study 

Consider the feedback amplifier shown in Figure 2-2. It can be used for biopotential 

acquisition when modified slightly. 

 

 

Figure 2-2 Opamp with General Impedance Feedback Configuration 

 

 

 

 



19 
 

1.  CMRR Analysis of General Feedback Amplifier 

 For this analysis, we assume an ideal opamp therefore 

A0→∞ and vn  = vp  

Performing nodal analysis on the circuit gives 

vp Y2 + Y4  - Y2Vicm = 0 

vn Y1 + Y3 -Y1Vicm-Y3Vo = 0 

Solving the equations gives 

                                                      Acm=
Vo

Vicm

 = 
Y2Y3 - Y1Y4

Y3(Y2 + Y4)
…………………….(2.4) 

 

Under matched impedance conditions, Y1 = Y2 and Y3 = Y4 thus common mode gain is 

zero and CMRR is infinite. 

To account for impedance mismatch in this analysis the following assumptions are 

made. 

𝑌2 = 𝑌1 + ∆𝑌1 

𝑌3 = 𝑌4 + ∆𝑌4 

Substituting the two above equations into (2.4) gives 

                Acm=
Y1∆Y4+Y4∆Y1+ ∆Y1  ∆Y2 

Y1Y4+Y1∆Y4+Y4∆Y1+ ∆Y1  ∆Y2 +Y4
2+Y4∆Y4

………………….(2.5) 
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Assume zero mismatch between Z3 and Z4, then ΔY4 = 0. Simplifying (2.5) further gives 

                                                    Acm ∆Y4=0=
∆Y1

Y1+Y4+∆Y1

…………………………….(2.6) 

It is observed that the common mode gain when Z3 and Z4 are perfectly matched is 

directly proportional to the amount of mismatch between impedances Z1 and Z2. 

For the other scenario we assume zero mismatch between Z1 and Z2, then ΔY1 = 0. Then 

                                                           Acm ∆Y1=0=
Y1∆Y4

 Y1+Y4  Y4+∆Y4 
…………………(2.7) 

Similar to the previous scenario, common mode gain is proportional to the mismatch 

between Z3 and Z4. 

The analysis shows that under perfect impedance matching conditions, the common 

mode gain of the general impedance feedback amplifier is zero. However, any mismatch 

between the impedance worsens the common mode gain of the system in a manner that 

is directly proportional to the amount of mismatch in the impedances.  

Figures 2-3 and 2-4 are graphs of common mode gain versus percentage of mismatch in 

the admittance for the cases shown in equations 2.6 and 2.7. A nominal 1 kohm resistor 

is assumed implying a nominal admittance of 0.001/ohm. Percentage mismatch is 

defined as ΔY/Y.  
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Figure 2-3 Common Mode Gain vs. Percentage Mismatch in Y1 

 

 

Figure 2-4 Common Mode Gain vs. Percentage Mismatch in Y4 
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2. CMRR Analysis of Special Case Amplifier 

The feedback amplifier of Figure 2-2 can be modified and used as a simple low power 

biopotential INA as shown Figure 2-5. This amplifier and feedback configuration can be 

used for biopotential signal acquisition as will be shown at the end of this section. 

 

 

Figure 2-5 RC Feedback Amplifier Used for EKG Signal Acquisition 

 

CMRR analysis is performed for this amplifier in the next. 

As in the previous analysis, we first establish the nodal equations for the circuit in Figure 

2-5. 

𝑣𝑛 𝑠 𝐶1 + 𝐶2 + 𝐺 − 𝑉𝑜 𝐺 + 𝑠𝐶2 = 𝑠𝐶1𝑉𝑖𝑐𝑚  

𝑣𝑝 𝑠 𝐶1 + 𝐶3 + 𝐺2 − 𝑉𝑖𝑐𝑚 𝑠𝐶1 = 0 
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Further simplification of the nodal equations and while accounting for the Δ differences 

in the capacitors and resistors results in common mode gain expression shown in 

equation 2.8.  

 

                            Acm = 
Vo

Vicm

=
s∆C + ∆G

G G + ∆G 
.

sC1

 1+s
C1 + C2 + ∆C

G + ∆G
 

.
1

1 + s
C2

G
 

…………..(2.8) 

‘G’ in the nodal equations refers to the reciprocal of the resistance R2 (conductance of 

R2). For mismatch assume ΔC difference between C2 and C3. Also, ΔG is the difference 

between the conductances of R2 and R3.  

Equation 2.8 shows that the common mode gain of this amplifier is directly proportional 

to the mismatch between resistor pairs and capacitor pairs. Thus we come to the same 

conclusion that the common mode gain worsens with increasing amount of mismatch 

passive element mismatch. 

 

C. Capacitive vs. Resistive Mismatch of RC Feedback Amplifiers 

For biopotential signal acquisition applications, the mismatch between the capacitors 

usually limits the CMRR of the INA. This is easily understood by re-examining equation 

2.8. Consider the typical INA specifications for biopotential amplifiers. A typical 

example is shown in Table 2-1 for EKG applications.  

 

Table 2-1 Typical Requirements of an EKG Signal Amplifier 

 

Bandwidth  

 

0.5 – 150 Hz 

 

Gain  

 

40 dB 
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To design an amplifier using the topology of Figure 2-3 that meets the requirements in 

Table 2-1, we use the capacitor and resistor values shown in Table 2-2. The procedure 

for obtaining these capacitor and resistor values is shown later in this thesis work. 

 

Table 2-2 Typical Resistor and Capacitor Values for an EKG Amplifier 

 

C1 

 

20pF 

 

C2  

 

200fF 

 

R2 

 

1.0Tohm 

 

 

 For Δ = 1% and at in band frequencies, say 50Hz, s∆C=2π x 10
-11

 and ∆G=1 x 10
-14

 

The dominant term in the common mode gain expression (equation 2.8) is  

 s∆C + ∆G

G G + ∆G 
 
f=50Hz

= 2π x 10
3 

We note that sΔC is over 1000 times larger than ΔG and that their sum is approximately 

sΔC. The effect of capacitive mismatch is about 60dB more than that due to resistive 

mismatch for the same percentage of mismatch. For this reason, capacitive mismatch is 

the limiting factor for CMRR in biopotential amplifiers. For small values of G, ΔG is not 

critical to obtain high Acm. 

s∆C + ∆G

G G + ∆G 
 ≈ 

s∆C

G G 
 

Figure 2-6 is a graph showing the common mode gain of the amplifier in Figure 2-3 

under different mismatch scenarios. For this simulation, an ideal opamp was used and 

1% of mismatch was introduced between either passive elements to emphasize the 

importance of capacitive mismatch over resistive mismatch. 
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It is clearly seen in the figure that the effect of capacitor mismatch on common mode 

gain is several orders larger than the effect of resistor mismatch. Also, when mismatch is 

combined in both resistor and capacitor pairs, the overall common mode gain curve 

follows that of capacitor mismatch within the signal bandwidth.  

 

 

 

Figure 2-6 Common Mode Gain vs. Frequency of an RC Feedback Amplifier  

 

Since the capacitor mismatch is the limiting factor for CMRR in opamp based 

biopotential amplifiers, resistor mismatch will be ignored henceforth. To have a better 

feel for the severity of capacitor mismatch, the common mode response of the 

A
cm

 (
d

B
) 1, 10, 20% capacitor  

mismatch 

1, 10, 20% resistor  

mismatch 

1, 10, 20% combined  

RC mismatch 
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biopotential amplifier of Figure 2-3 is shown for varying percentage of mismatch in 

Figure 2-5. 

 

 

Figure 2-7 Common Mode Gain vs. Frequency for Varying Capacitor Mismatch 

 

Common mode gain (hence CMRR) of the biopotential amplifier degrades with 

increasing capacitor mismatch. This model assumes ideal components and blocks for the 

biopotential amplifier. With 1% of capacitor mismatch, common mode gain drops from 

an infinite amount at mid-band frequencies to about 40dB and it gets worse with 

1% mismatch 

5% mismatch 

10% mismatch 

20% mismatch 

A
cm

 (
d

B
) 
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increasing mismatch. This emphasizes how sensitive the CMRR of such biopotential 

amplifiers is to passive component mismatch. 

The other thing to note in Figure 2-5 is the zero at the origin and low frequency pole. 

The pole zero pair can be explained using equation 2.8. This pole occurs at 

approximately 1/(C1R2) and the zero at the origin. However, according to equation 2.8 

there should be 1 more pole zero pair. 

ωz ≅ 
∆G

∆C
     and     ωp ≅ 

G+ ∆G

C1 + C2+ ∆C
 

This pole and zero occur at very low frequency and effectively cancel themselves out 

thus they do not appear in the frequency response of Figure 2-7. The zero occurs at 

around 100μHz where as the pole is at less than 10mHz. 

Table 2-3 shows common mode gain values of the biopotential amplifier for different 

percentage mismatch in capacitor. It should be noted that the capacitor mismatch limits 

the CMRR of the entire biopotential amplifier as has already been explained earlier. 

 

Table 2-3 Common Mode Gain of RC Feedback Biopotential Amplifier at 50Hz 

∆C  Simulated Ac ∆R  Simulated Ac 

0%  -253 dB (infinite) 0%  -253 dB (infinite) 

1%  -40 dB 1%  -76 dB 

10%  -20 dB 10%  -58 dB 

 20%  -14 dB  20%  -52 dB 
 

 

The biopotential INA of Figure 2-5 is very simple and easy to design. It is utilizes a 

single opamp thus making it a low power consuming circuit. The high input impedance 
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of the opamp makes it suitable for biopotential signal acquisition applications. The 

problems with this topology are mainly two. First, a very large feedback resistor is 

required to remove the inherent differential DC offset of biopotential signals that is 

caused by the difference in half cell potentials of the electrodes used for acquiring the 

signal. Thus a means is necessary for integrating extra large resistors on chip without 

consuming excessive silicon area on the die. 

The second issue with this topology is the poor CMRR and very high sensitivity of 

common mode gain to mismatch of capacitors. The first problem of implementing large 

resistors on chip has been overcome in some previous works and in this thesis, a solution 

is proposed to the second problem of poor CMRR. 

 

 

 

Figure 2-8 Biopotential Amplifier with MOS-Bipolar Pseudo Resistor Element 

 

D. Previously Published Works on Biopotential Amplifiers 

1. A Low Power Low Noise CMOS Amplifier for Neural Recording Applications 

The work in [1] is based on the simple RC feedback circuit shown of Figure 2-5. It is 

classified under the opamp based biopotential amplifiers. It has a bandpass filter with the 

lower cutoff frequency in the sub hertz range. To achieve such a small cutoff frequency, 
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a very large RC time constant has to be implemented and this achieved using a bipolar-

MOS pseudo resistor circuit.  

The pseudo resistor is essentially two diode connected PMOS transistors that are 

connected in series shown in Figure 2-8. With negative vgs values, the circuit functions 

as a normal diode connected PMOS transistor. However with positive values of vgs, its 

functions as a diode connect pnp transistor [12].  With small voltage values across the 

diode series connection, a very high incremental resistance (in the gig ohm range) is 

achieved and hence a large time constant. This circuit can be designed to be low noise 

and low power consuming but it still suffers from poor CMRR due to capacitor 

mismatch. The reported CMRR for this work is 86dB but this is an average across the 

signal bandwidth. The good CMRR at very low frequencies improves the average 

CMRR. 

 

2. Versatile Integrated Circuit for Acquisition of Biopotentials [9] 

The instrumentation amplifier shown in Figure 2-9 is an extension of the work done in 

[1]. It has two amplification stages the first being similar to circuit of Figure 1-6 except 

that it is made fully differential. The second stage is equivalent to the input stage of the 

classic three – opamp instrumentation amplifier. This is done to give fully differential 

outputs and to split overall INA gain between the two stages.  

Again with this topology, a MOS-bipolar pseudo resistor element is used to achieve the 

large time constant necessary for removing the differential DC offset of the electrodes. 

As with the topology in [1], this circuit still suffers from poor CMRR due to capacitor 

mismatch. The reported value for CMRR at mid-band frequencies is 70 dB. 
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Figure 2-9 Two Stage INA with Fully Differential Outputs 

 

3. A 60nw, 60nv Readout Front End for Portable Biopotential Signal Acquisition 

The core instrumentation amplifier in this work [3] is of the Current Balancing/ Current 

Feedback type. It includes three choppers that are used to reduce the flicker noise of the 

INA. It is referred to as an AC Coupled Chopped Instrumentation Amplifier (ACCIA) in 

the published work. A block diagram of the ACCIA is shown in Figure 2-10.  
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Figure 2-10 Concept of ACCIA [3] 

 

The mid-band gain of the INA is defined as the ratio of R2 to R1. The biopotential signal 

is first up-converted from its based frequency to some intermediate frequency where the 

actual amplification is performed. Afterwards it is down-converted to obtain the output 

signal. There is a further up-conversion and filtering of the output signal in the feedback 

stage. This is done to extract the DC offset of the output biopotential signal and subtract 

it that of the input and in the process cancel out the offset so it does not appear in the 

final amplified output. The ACCIA is implemented as shown in Figure 2-11. The core 

current balancing amplifier is based on [2] published by Steyaert.  
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Figure 2-11 Implementation of ACCIA 

 

As with all current balancing topologies, this INA has good CMRR performance 

however its complexity is high. The reported CMRR is 110dB. Also, the gain of the INA 

is not well defined. Under ideal circumstances the gain if defined by the resistive ratio of 

R2 to R1. However, simulations of this circuit show that the gain can deviate by over 

50% from the desired value and thus makes the design unpredictable and unreliable as 

well.  

In the next section, an instrumentation amplifier is proposed based on the simple 

topology of [1] with a way of fixing the poor CMRR normally associated with such 

INAs. 
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3. PROPOSED INSTRUMENTATION AMPLIFIERS 

 

In the previous sections, the issue of poor CMRR due to mismatch of passive 

components in opamp based INAs was thoroughly analyzed. Currently, techniques used 

to improve matching are usually done after fabrication and these include laser trimming 

of the passive elements such as resistors and some other calibration techniques. Any 

other technique for improving the matching between the passive elements should also 

lead to significant improvement in CMRR of the INA. 

 

 

Figure 3-1 Simple Voltage Divider Using Resistors 

 

A. Dynamic Element Matching 

Dynamic Element Matching (DEM) is a well known technique used in data converter 

systems to improve DNL (Differential Non-Linearity) and INL (Integrated Non-

Linearity) specifications [13],[14]. It does this by averaging the mismatch of the resistors 

in the DAC/ ADC string. Different algorithms exist for implementing DEM schemes 

ranging from very simple to quite complex in data converters.  
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The effect of DEM can be demonstrated using the resistor divider circuit of Figure 3-1. 

Suppose we want to generate an output voltage Vout, that is exactly half of the input 

voltage Vin, then we need the resistors R1 and R2 to be equal in value with no zero 

mismatch. However, if R1 varies slightly from R2, then the actual output voltage is 

defined as in equation 3.1.   

                                                              Vout =  
R2

R1 + R2

 Vin………………….…….(3.1) 

To ensure that Vout is exactly half of Vin, the resistors R1 and R2 could be interchanged 

several times per period (hypothetically) and instead of seeing the effect of individual 

resistors, the output voltage would be defined by an effective resistance as shown in 

equations 3.2 and 3.3. This is essentially the aim of any dynamic element matching 

scheme; To average the value of different passive elements over a period to reduce the 

effect of mismatch on circuit performance.   

                                                               Reff = 
R1+ R2

2
………………………………… (3.2) 

Vout=  
Reff

2Reff

 Vin…………………………….(3.3) 

 

B. Concept of Proposed INAs 

The idea for the proposed instrumentation amplifier for biopotential signal acquisition is 

to first design a simple low power opamp based INA and implement simple DEM 

scheme to average out the effect of mismatch in the passive elements so as to improve 

CMRR. We start from the basic biopotential acquiring INA in Figure 2-3 and make it  
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Figure 3-2 Fully Differential Version of INA  

 

 

Figure 3-3 Fully Balanced Fully Symmetric Version of INA 
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fully differential. To make it fully differential, we can just use a single fully differential 

opamp or use two single ended opamps in a fully balanced fully symmetric topology. 

These two methods are shown in Figures 3-2 and 3-3.  

It has already been shown in previous sections that mismatch between the resistors is 

less critical than mismatch of capacitors. As such CMRR can be greatly improved if 

mismatch between the corresponding capacitors pairs is eliminated as much as possible.  

The common mode gain can be expressed as a function of capacitor mismatch as shown 

below. This is obtained from equation 2.8 and assuming perfect matching between the 

resistors. 

 

Acm s  = 
Vo

Vicm

 = 
s∆C

G G 
.

sC1

 1 + s
C1 + C2 + ∆C

G
 

.
1

1 + s
C2

G
 

…………… (3.4) 

An inverse Laplace transform can be performed on this expression and this gives the 

time domain response of the biopotential amplifier to common mode signals.  

Acm t =
1

2πj
lim
T→∞

 estAcm s ds

T

-T

…………………… . . (3.5) 

In other words, the time domain equivalent of the common mode gain is obtained by 

integrating the Acm(s) over the period of the biopotential signal being amplified. It is 

important to realize this since it implies that any mismatch in capacitors is also being 

integrated over a period to form the time domain signal.  

The capacitor mismatch is defined as 

∆C = C1 - C2 

-∆C = C2 - C1 
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If the polarity (algebraic sign) of ΔC can be reversed several times in a period, then 

according the equation 3.5, the time domain signal can be rid of any common mode 

output since the integral of Acm(s) would approach zero. 

 

1. Conceptual Block Diagram 

Thus the next step logically is to figure out a way to reverse the polarity of the capacitor 

mismatch several times within the period of the biopotential signal being processed.  

 

 

Figure 3-4 Swapping of Capacitors to Reverse Polarity of Mismatch 

 

One conceptual way to achieve this is to physically swap the capacitors several times per 

period. In phase 1 of Figure 3-4, C1 is connected to the upper feedback path while C2 is 

connected to the bottom feedback path. In the second phase, C1 and C2 are physically 

interchanged such that C2 is now connected to the upper feedback path. The effect of 

doing this several times per period is the same as was seen in equation 3.2 and the 

effective capacitance is the average value of capacitors C1 and C2.  
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This physical swapping of capacitors is not feasible on chip but the same effect can be 

emulated by using switches together with the capacitors pairs that have to be matched. 

This is explained with the diagram in Figure 3-5. 

 

 (a) phase 1 

 

 

(b) phase 2 

Figure 3-5 Emulating the Effect of Swapping Capacitors using ON/ OFF Switches 
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Eight switches are required to emulate the effect of physically swapping two capacitors. 

The capacitors are connected to the switches which are in turn connected to the 

appropriate nodes of the INA. In phase one of Figure 3-5a, C1 is connected to the upper 

feedback network of the INA through switches S1 and S2 whereas C2 is connected to 

the bottom feedback network through switches S3 and S4. Switches S5 to S8 are entirely 

OFF in this phase. In the second phase shown in Figure 3-5b, switches S1 to S4 switch 

OFF while S5 to S8 switch ON. Thus C2 connected to the upper feedback network in 

this phase whereas C1 is connected to the bottom feedback section.  

 This is essentially the same as dynamically matching capacitors C1 and C2 and the 

effective value of the feedback capacitance over a time period is the average of C1 and 

C2.  

This technique is applied to the fully differential and fully balanced fully symmetric 

circuits shown in Figures 3-2 and 3-3. Two sets of capacitors have to be matched in each 

circuit and thus a total of 16 switches are required to emulate the effect of physically 

swapping the capacitors pairs several times within the period of the biopotential signal. 
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C. Dynamically Matched RC Feedback Fully Differential INA 

The first of the proposed instrumentation amplifiers is obtained by applying capacitor 

swapping technique to the fully differential RC feedback amplifier of Figure 3-2. The 

capacitors that have to be matched are the two input capacitors pairs, C1, and the two 

feedback capacitor pairs, C2. Eight switches are used for dynamically matching each pair 

of capacitors resulting in a total of sixteen switches.  

 

 

Figure 3-6 Fully Differential Version of Dynamically Matched INA 

 

A fully differential operational amplifier is used as FD shown in Figure 3-6, thus extra 

circuitry is required for common mode detection and correction.  This is also shown in 

Figure 3-6. 
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D. Dynamically Matched RC Feedback FBFS INA 

The fully balanced fully symmetric (FBFS) version has four sets of capacitors to be 

matched however only two pairs need to be dynamically matched. A different technique 

can be used to compensate for the effect of capacitor mismatch between any pair of 

capacitors that lie on the circuit’s axis of symmetry. This will be explained further in the 

next sections.  

 

Figure 3-7 Dynamically Matched FBFS INA 

 

The dynamically matched fully balanced fully symmetric INA of Figure 3-7 employs 

two single ended opamps to generate differential outputs. Since single ended amplifiers 

are used, the common mode feedback circuit is not always necessary for this topology. 

There are however some benefits to be obtained by using CMFB. 
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1. Test of Balanced Conditions in Fully Balanced Fully Symmetric Systems 

For any fully balanced fully symmetric topology, the property in equation 3.6 below 

holds true. The equation parameters are shown in Figure 3-8. 

Vo1 s  + Vo2 s 

2ViR

 = 1……………………………(3.6) 

That is if a signal is injected into the node at the axis of symmetry of the amplifier, the 

resulting common mode output signal should be exactly equal to the injected voltage. 

This criterion can be used to test for symmetry and balanced conditions for any fully 

balanced fully symmetric topology.   

 

Figure 3-8 Test for FBFS Amplifier 
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A direct consequence of this property is that if the common mode output signal of the 

amplifier is corrected and fed back to this common output node, symmetry and balanced 

conditions can be forced on the amplifier. This is the same as implementing a common 

mode feedback scheme on the fully balanced fully symmetric topology. This is what 

shown in proposed INA of Figure 3-7. There are four pairs of capacitors that have to be 

matched however only two pairs are dynamically matched where as the other two pairs 

that are connected to the axis of symmetry of the circuit have their mismatch corrected 

by correcting the output common mode signal and injecting it into the common mode 

output node using a common mode feedback scheme (CMFB).  

 

E. System Level Design 

In this section, the design of the proposed INAs at the system level is discussed. First we 

decide the targeted specifications of our INAs after which we determine the values of the 

capacitors required to meet those specification. The gain, gain bandwidth product and 

noise requirements of the opamps used for the INA are also determined systematically. 

The system level design of both the fully differential and fully balanced fully symmetric 

dynamically matched INAs is similar.  

For this work, the biopotential amplifier is designed for acquiring EKG signals. EKG 

signals have the amplitude and frequency characteristics shown in Table 3-1. 

 

 

Table 3-1 Amplitude and Frequency Characteristics of EKG 

Amplitude  Frequency Range  

0.1mV – 5mV  0.5Hz – 150Hz  
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To acquire the EKG signal the instrumentation amplifier is designed with the target 

specifications in Table 3-2.  

Table 3-2 Target Specifications of EKG Signal Amplifier 

Parameter  Specification 

CMRR  > 100 dB 

Input Referred Noise  2-3μV rms 

Input Impedance  > 5MHz 

Bandwidth  0.5 – 150 Hz 

Gain  40 dB 
 

 

1. Determining Capacitor and Resistor Values 

To determine the capacitor sizes to meet the target specifications, we first design the 

proposed instrumentation amplifiers assuming there was no dynamic element matching.  

With this assumption, the differential mode transfer function for the INAs is as shown in 

equation 3.7.  

Vout

Vin

 = 
sC1R2

1 + sC2R2

………………….…………….(3.7) 

The mid-band gain and high pass filter corner frequency are defined as below. 

mid-band gain  G  = 
C1

C2

 ………………………..(3.8) 

high pass corner freq  fH  = 
1

2πR2C2

………………………(3.9) 
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Capacitor C1 is selected to be large based on the available area on the die and C2 is 

obtained from equation 3.8. For this design the following values are used. 

Let C1 = 20pF, G =4 0dB = 100  

C2 = 
C1

G
 = 200fF  

Thus C1 = 20pF and C2 = 200fF 

From the specification table and using equation 3.9 

fH = 0.5Hz and R > 
1

2πfHC2

 > 1.6 Tohm 

With the MOS-bipolar pseudo resistor element, very large incremental resistances in the 

tera-ohm range can be realized on chip [12]. Table 3-3 shows final component values. 

 

Table 3-3 Final Component Values for Proposed INAs 

Component Value 

C1 20 pF 

C2 200 fF 

R2 > 1.6 Tohm 
 

 

2. Determining Opamp Specifications 

We seek to determine the following specifications for the opamps used in the INAs. 

 Open Loop Gain 

 Gain Bandwidth Product          

 Input Referred Noise 
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2.1 Gain 

 

Figure 3-9 Inverting Opamp Configuration 

 

The open loop gain of the opamp defines the accuracy of the closed loop gain. For the 

inverting opamp shown in Figure 3-9, the actual closed loop gain is defined as in shown 

below in equation 3.10 if the finite open loop gain of the opamp is taking into account. 

Vo

Vin
=

Zf

Z1

1 +
1
A  1 +

Zf

Z1
 
………………………… . . (3.10) 

This expression applies not only to inverting amplifier configurations but to others as 

well. A more general expression is given in equation 3.11 where Ac is the closed loop 

gain. 

Ac actual =
Ac desired 

1 +
1
A

 1 +
Zf

Z1
 
……………………… . (3.11)  

accuracy =
1

1 +
1
A  1 +

Zf

Z1
 
 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ≅  1 − 
1

𝐴
 1 +  

𝑍𝑓

𝑍1
 ………………… . . …… (3.12) 
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For about 95% closed loop gain accuracy with 40dB gain, equation 3.12 requires the 

open loop gain of the opamp to be greater than 1919 (65 dB).  

 

2.2 Gain Bandwidth Product 

The instrumentation amplifier is designed to have a bandpass filter characteristic with 

the high pass filter cutoff frequency defined by the feedback resistor and capacitor and 

the low pass filter cutoff defined by the gain bandwidth product of the opamp.  

GBW = A0ω3dB = AcBW  

where A0=opamp open loop gain Ac=INA closed loop gain BW=Signal Bandwidth 

For EKG, the signal bandwidth is about 150 to 200 Hz, therefore 

𝐺𝐵𝑊 ≥ 200 × 1000𝐻𝑧 = 200𝐾𝐻𝑧  

Another way to determine GBW of the opamp is to use the accuracy requirement. 

Assuming a non-ideal opamp with a pole at the origin, then the closed loop accuracy of 

the amplifier is defined as 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ≅  1 − 
𝑠

𝐺𝐵𝑊
 1 +  

𝑍𝑓

𝑍1
  

If the opamp has a pole at the origin, then the GB of the opamp has to be greater than 

200kHz for 95% accuracy and greater than 1MHz for 99% accuracy.  

The minimum GBW for the opamp is 200 kHz however the opamp will be designed to 

have a larger GBW as an extra design precaution.  
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2.3 INA Input Referred Noise 

The input referred noise for the instrumentation amplifier shown in Figure 3-10 is 

derived assuming ideal capacitors with no parasitic resistance. Under these constraints, 

the dominant noise contributors are the resistors and the opamp. First we consider the 

effect of opamp noise on the overall INA.  

 

Figure 3-10 INA for Noise Analysis 

 

Let the input referred noise of the opamp be vn in 
2  and vn out 

2  be the output noise.   

vn out INA

2 = vn in 
2  1+

Zf

Z1

 
2

=  vn in 
2  1+

sC1R2

1+sC2R2

 
2

 

vn out _INA
2  = vn in 

2  
1+s (C1+C

2
) R2

1+sC2R2

 

2

 

The input referred noise of the INA is obtained as shown below in equation 3.13. 

gain INA  =  
sC1R2

1 + sC2R2
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vn in INA

2 =
vn out INA 

2

 gain 2
= vn in 

2  
1+sR2 C1+C2 

sC1R2

 

2

……….…(3.13) 

vn in INA

2 ≈ vn in 
2  

1+sC1R2

sC1R2

 
2

≈1  at mid-band frequencies ….…(3.14) 

 

Next we consider the noise due to the grounded and feedback resistors, R2. Let the noise 

voltage of the resistors be e2. 

𝐸2𝑜𝑢𝑡
2 = 𝑒2

2 +  
𝑒2

2

 1 + 𝑠𝑅2 𝐶1 + 𝐶2  2
 1 +

𝑠𝐶1𝑅2

1 + 𝑠𝐶2𝑅2
 

2

 

=  e2
2+ 

e2
2

 1+sR2 C1+C2  2
 
1+s(C

1
+C2)R2

1+sC2R2

 

2

 

 Output noise due to Resistors, R2= E
2out

2
= e2

2+  
e2

1+sC2R2

 
2

 

 Input Referred Noise due to , R2= E
2in

2
 = 

e2 
2 +  

e2

1 + sC2R2
 

2

gainINA

 

At mid-band frequencies, the input referred noise of the INA is entirely equal to the 

noise of the opamp. The noise of both resistors is attenuated by the INA gain. The 

grounded resistor has further attenuation due to the pole in its transfer function. 

Table 3-4 Final Opamp Target Specifications 

Specification Target 

Gain 65 dB 

Gain Bandwidth Product 1.0 MHz 

Input Referred Noise 3 μV rms 
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F. Transistor Level Design 

In this section, the design of the opamp, MOS – Bipolar pseudo resistor, non – 

overlapping clock generator and switches are detailed at the transistor level. We begin 

with the opamp design for the dynamically matched fully differential INA.  The 

specifications are shown in Table 3-4. The INAs are designed using 0.5μm ON Semi 

process parameters. 

 

1. Fully Differential Opamp Design 

The topology used for this design is an adaptation of the work in [15] to make it fully 

differential and used with a dual supply rails. This topology is chosen mainly because it 

is a single stage low power, low noise yet high CMRR opamp. It is basically a telescopic 

amplifier with PMOS input transistors and a cascode current mirror as the tail current. 

The transistor level schematic diagram is shown in Figure 3-11.  

 

Figure 3-11 Transistor Level Schematic Diagram of Fully Differential Opamp 



51 
 

The differential gain and common mode gain for the amplifier are shown below.  

 

Adm = g
m1

Rout, where Rout=ro3//(g
m2

r
02

ro1) 

Acm = 
g

m1
Ys

2g
m1

+Ys

,   where Ys=
1

g
m9

ro9ro5

 

 

1.1 Design Procedure 

1. First  we  establish the design equations for this opamp. The  gain  and  GBW of  the  

opamp are defined as shown below. 

Ao = gm Rout = 65dB      

GBW=
g

m

CL

=1MHz   CL≈10pF,  ∴ g
m

=10μA/V  

2. The load capacitance is assumed to be 10pF since this is the typically value of the 

input capacitance of the probes of an oscilloscope. We design the gm of the input 

transistors, M1 to have 10μS of transconductance.  

gm=  μCox
W

L
IBIAS…………………………………..(3.15) 

3. Using equation 3.15 and typical values of PMOS μCox for the 0.5μm process 

(35μA/V
2
) and using a bias current of 1μA, W/L of M1 is determined to be 5. 

W/L (M1) = 5 
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4. Transistors M4 – M9 are sized to properly bias the opamp and to mirror the correct 

currents. The M5:M4 current mirror is sized 2:1 whereas all other mirrors are sized 1:1.   

5. Transistors M2 and M3 are sized to meet the gain and noise requirements of the 

opamp. An iterative procedure is used which is explained in the next section. 

gain=g
m

Rout=65dB≈2000  

g
m

=
10μA

V
 therefore Rout >200 Mohm  

Rout =ro3// (g
m2

ro2ro1) ≈g
m2

ro2ro1  

(ro3 is very large due to large L used to reduce flicker noise ) 

Let g
m2

=100μ and ro2=ro1  

then ro1 = ro2 =  
Rout

g
m2

= 1.4 Mohm 

L is determined using the lambda of the transistors. Λ = 0.1 to 0.5. 

L=
1

λro

 ≅1.4μm to 7μm 

W is determined from the basic transistor current equation 

W=
2IL

μCox VDSAT 2
 , I=1μ, VDSAT=0.2 and μCox PMOS =40μ 

W ≈ 2μm to 8μm 

The bode magnitude and frequency plots of the opamp are shown in Figure 3-12. 
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Figure 3-12 Differential Frequency Response of Designed Opamp 
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1.2 Noise Consideration 

The dominant noise contributors are the input PMOS transistors, M1 and the NMOS 

load transistors, M3.  

𝐼𝑁
2 = 2𝐼𝑁 𝑀1 

2 + 2𝐼𝑁(𝑀3)
2  

Thermal Noise Contribution 

𝐼𝑁 𝑡𝑕𝑒𝑟𝑚𝑎𝑙  
2 = 8𝐾𝑇 𝑔𝑚1 + 𝑔𝑚3  

Flicker Noise Contribution 

𝐼𝑁(𝑓𝑙𝑖𝑐𝑘𝑒𝑟 )
2 =

𝐾𝑓

𝜇𝐶𝑜𝑥𝑊𝐿𝑓
 

Referring total noise contribution to the opamp inputs gives 

VN input  referred  
2 =

1

gm1
2  8KT gm1 + gm3 +

Kf

μCox WL M1 f
+

Kf

μCox WL M3 f
 …… (3.16) 

Kf is the flicker noise co-efficient of the transistors. There are different ways of reducing 

the noise input referred noise of INAs. Chopping is one technique commonly used and 

typically removes low frequency noise and offset of the amplifier [7],[8],[10]. Another 

technique is to carefully size the transistors to reduce the low frequency flicker noise and 

the white noise as well. As is shown in equation 3.16, flicker noise is inversely 

proportional the area of the transistor’s conducting channel. Moderate to large WL 

products can be used to reduce flicker noise of the INA. This is the noise reduction 

option that is used for this INA design.  

From equation 3.16, gm1 has to be increased while the transistor M1 and M3 sizes have 

to also be made large. To meet the gain specification as well, we increase the length of 

M3 iteratively while checking if the noise specification is met. The effect of increasing 

the size of transistor M3 on noise performance is shown in Figure 3-13.  
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Figure 3-13 Effect of Transistor M3 Sizing on Input Referred Noise 

 

For the plots in Figure 3-13, the width of M3 was kept constant while the length was 

varied. The input referred noise is plotted for each combination of transistor width and 

length. It is clearly seen that to reduce the flicker noise, large transistor sizes must be 

used. Whereas the transistor width could also be increased reduce the flicker noise, it is 

more practical to increase the length for layout purposes. Also increasing the length 

gives the additional benefit of increasing the gain of the opamp at the same time.  

 

 

Input Referred Noise of Opamp 

L =2u 

L =5u 

L =10u 
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Transistor sizes for the fully differential INA are shown in Table 3-5. 

 

Table 3-5 Transistor Sizes for Fully Differential Opamp 

Transistor 
 

Aspect Ratio 

 

Fingers 

M1 5/1 16 

M2 5/2 4 

M3 5/10 1 

M4 5/2 4 

M5 5/2 8 

M6 5/2 4 

M7 5/2 4 

M8 5/2 4 

M9 5/2 4 

Ibias 1 μA  
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2. Common Mode Feedback Circuit 

The common mode feedback circuit used with the fully differential amplifier is shown in 

Figure 3-14. The outputs of the fully differential opamp vary between ± 500mV 

extremes and the CMFB loop is designed to have large enough gain and be stable about 

this common mode range of inputs. Transistor sizes used for the CMFB circuit are 

shown in Table 3-6. 

 

Figure 3-14 Common Mode Feedback Circuit for Opamp 

 

Av=
vout

vo+- vo-

=g
m1

 ro3//ro1    

 

Table 3-6 Transistor Sizes for CMFB Circuit 

Transistor 
 

Aspect Ratio 

 

Fingers 

M1 5/3 4 

M2 5/2 4 

M3 5/10 1 
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3. Single Ended Opamps for Fully Balanced Fully Symmetric INA 

The opamps used in the FBFS INA are of the topology in [15]. Thus, the design is 

exactly the same as with the design of the fully differential version. The transistor level 

schematic is shown in Figure 3-15 with transistor dimensions in Table 3-7.  

 

Figure 3-15 Transistor Level Schematic Diagram of Single Ended Opamp 

 

Table 3-7 Transistor Sizes for Single Ended Opamps in FBFS INA 

Transistor 
 

Aspect Ratio 

 

Fingers Transistor 
 

Aspect Ratio 

 

Fingers 

M1 5/1 16 M6 5/2 4 

M2 5/2 4 M7 5/2 4 

M3 5/10 1 M8 5/2 4 

M4 5/2 4 M9 5/2 4 

M5 5/2 8    
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4. Design of Non-overlapping Clock Generator 

Two opposite phased clocks are required for implementing the proposed INAs. It is 

essential that at any point in time, no two switches connected to the same node be ON at 

the same time. Using two individual but opposite phased clocks does not guarantee that 

this condition can be met. As such, a two-phase non-overlapping clock generator is 

required for this function. A typical digital CMOS implementation is shown in Figure 3-

16. It takes a single clock signal as its input and outputs two opposite phased non-

overlapping clocks. There is a dead zone between the two output clock signals in every 

period where neither clock output is high. Figures 3-17 and 3-18 show the operation. 

 

 

Figure 3-16 Two-phase Non-overlapping Clock Generator 

 

The digital gates were designed using static CMOS to minimize the static power 

consumption of the INAs. Sizing of the gates is shown in Table 3-8.  

 

Table 3-8 Aspect Ratios of Static CMOS Gates 

Gate 
 

NMOS 

 

PMOS 

NOR 4/2 16/2 

NOT 4/2 8/2 
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Figure 3-17 Outputs of Non-overlapping Clock Generator 

 

Figure 3-18 Snapshot of Non-Overlapping Region of Clocks 

clock out A 

clock out B 

clock in 

clock out A 
clock out B 
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5. MOS – Bipolar Pseudo Resistor Element 

The large RC time constant required for the very low cutoff high pass corner frequency 

is generated using the MOS-Bipolar pseudo resistor element as in [1]. Two diode 

connected PMOS transistors are used to implement this eliminating the need for biasing 

the transistors. Figure 3-19 shows the incremental resistance of the element.  

 

Figure 3-19 Incremental Resistance of Pseudo-resistor Element 

 

It is seen from the figure that incremental resistance in the teraohm range can be attained 

using this technique. For the result shown, the transistor dimensions in Table 3-9 were 

used. 

Design Procedure 

1. Start with minimum L and choose a suitable W convenience for the transistor and 

obtain plots of incremental resistance vs. voltage as shown in Figure 3-19. 
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2. Increase L as necessary if incremental resistance is less than desired. 

 

Table 3-9 Aspect Ratios of Pseudo Resistor Element 

 

PMOS Width 

 

PMOS Length 

3μm 2μm 

 

6. Switch Implementation 

There are three main options to consider for switch implementation; NMOS switches, 

PMOS switches or transmission gates. Of these three, NMOS switches were used for this 

design mainly because they have the smallest switch ON resistance while using small 

transistor dimensions to reduce any parasitic capacitances. Large gate to source or gate 

to drain capacitances introduces clock feed-through when a clock is applied to the gate 

of the switch.  

I=
μCoxW

L
[𝑉𝐷𝑆 VGS- VT −

𝑉𝐷𝑆
2

2
 ] 

switch ON conductance=
dI

dVDS

= μCox  
W

L
  VGS- VT  

The VGS is the clock signal and is 1.5 volts. VT for the process used is 0.7 volts. With 

these parameters, the switch width and length below in Table 3-10 are used. 

 

Table 3-10 Sizing of Switches 

 

NMOS Width 

 

NMOS Length 

1.0μm 0.6μm 
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4. LAYOUT STRATEGY AND SIMULATION RESULTS 

 

A. Layout 

A good layout is always necessary to optimize the performance of any integrated circuit. 

This INA includes switches, capacitors, opamps, and non-overlapping clock circuitry. 

As much as possible, the layout is made symmetrical so that variations across the silicon 

die and wafer impact the symmetrical parts of the circuit in the same way. Figures 4-1 to 

4-4 show the layouts of the two proposed INAs.  

1. Layout of Dynamically Matched Fully Differential INA 

 

 

Figure 4-1 Top Level Layout of Fully Differential INA 
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2. Top Level Layout of Dynamically Matched Fully Balanced Fully Symmetric INA 

 

 

Figure 4-2 Top Level Layout of Dynamically Matched Fully Balanced Fully Symmetric INA 
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3. Top Level Layout of Proposed INAs in Silicon Die 

 

 

Figure 4-3 Top Level Floor Plan of Proposed INAs in Die 
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4. Complete Layout of INAs in Silicon Die 

 

 

Figure 4-4 Complete Layout of INAs in Silicon Die 
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B. Results – Dynamically Matched Fully Differential INA 

1. Time Domain Signal 

Figure 4-5 shows a transient simulation of the dynamically matched fully differential 

INA. A 50Hz, 2mV pk-pk input signal is applied and the voltages at the outputs of the 

feedback capacitors and the output of the overall INA are shown. The effect of 

emulating the swapping of capacitors is seen in the switching of the voltage measured at 

the capacitor terminals. It is also seen that the INA output is a perfect reconstruction of 

the feedback capacitor terminal voltages. 

 

 

Figure 4-5 Transient Simulation of Fully Differential INA 
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2. Differential Mode Frequency Response 

Next we check the differential mode frequency response of the INA. The bode 

magnitude and phase plots for the INA are shown in Figure 4-6 when a differential 

signal is applied to it. We observe a high pass corner frequency of 0.4 Hz and a low pass 

corner frequency of 1.0 kHz as was designed for. The mid-band gain is also 40 dB as 

defined by the capacitor ratio.  

 

Figure 4-6 Differential Mode Frequency Response of Dynamically Matched Fully Differential INA 
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3. Common Mode Frequency Response and Common Mode Rejection Ratio 

The common mode gain of the dynamically matched fully differential INA is shown in 

Figure 4-7. Notice that the common mode gain of the INA is better than -150 dB for all 

frequencies of interest (dc to 100 Hz) and this implies a CMRR better than `90 dB within 

the signal bandwidth. The INA was designed targeting EKG acquisition and the typical 

signal bandwidth is about 150 Hz.  

 

Figure 4-7 Common Mode Frequency Response 
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Fig 4-7 is a plot of the common mode gain of the INA with input clock frequencies of 

500Hz and 1 kHz. The common mode gain for both cases is better than 160dB at mid-

band frequencies. The CMRR of the amplifier is obtained by taking the ratio of the 

differential gain to the common mode gain and this is shown in Figure 4-8.   

 

Figure 4-8 CMRR of Dynamically Matched Fully Differential INA 

 

Examining the common mode gain curves shows that the Ac begins rise at 20dB per 

decade at the location of the HPF pole. This pole appears as a zero in the transfer 

function of common mode gain hence the degradation at that frequency. 
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4. Noise Performance 

The noise performance of the INA is characterized using the input and output referred 

noise. Figure 4-9 shows this characteristic vs. frequency of the dynamically matched 

INA. Note that the input referred noise plot of the INA is very similar to the input 

referred noise of the opamp as was explained in previous sections. The integrated noise 

voltage of the INA between 0.5 Hz and 100 Hz is 3.015 μV/ Hz.  

 

 

Figure 4-9 Output and Input Referred Noise of Dynamically Matched Fully Differential INA 

 



72 
 

5. Summary of Results Dynamically Matched Fully Differential INA 

The power consumption, noise and CMRR performance of the fully differential INA are 

shown in Table 4-1. The simulated CMRR of the INA is 200 dB, an improvement of 

over 100dB over regular RC feedback INAs. 

 

Table 4-1 Summary of Results - Dynamically Matched Fully Differential INA 

Parameter Dynamically Matched Fully Differential INA 

CMRR  (50 Hz) 200 dB 

Gain  40 dB 

Input Referred Noise  3.0 μV 

Bandwidth  1 KHz 

Power  19.4μW 
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C. Results – Dynamically Matched FBFS INA 

1. Time Domain Signal 

The time domain signals for the dynamically matched fully balanced fully symmetric 

INA are shown in Figure 4-10. The input signal to the INA is a 50Hz 2mV pk-pk signal. 

The voltages at the terminals of the feedback capacitors show the effect of capacitor 

swapping. 

 

Figure 4-10 Transient Simulation of Dynamically Matched FBFS INA 
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2. Differential Mode Frequency Response 

Figure 4-11 is the gain and phase response of the INA to differential input signals. The 

LPF is 800Hz while the HPF corner frequency is 0.4 Hz. Gain is 40dB at mid-band 

frequencies as is desired. 

 

Figure 4-11 Magnitude and Phase of Dynamically Matched FBFS INA 
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3. Common Mode Frequency Response and Common Mode Rejection Ratio 

Figure 4-12 is a plot of the common mode response of the INA. The common mode gain 

is better than 80 dB throughout the frequencies of interest. This is an improvement of 

over 40dB in common mode gain assuming 1% of capacitor mismatch.  

 

 

Figure 4-12 Common Mode Gain of Dynamically Matched FBFS INA 

 

For the FBFS case, the common mode gain plots when the input clock frequency is 

1kHz is exactly the same as when the clock switches at 500 Hz.  
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The CMRR response of the INA is shown in Figure 4-13. This plot is obtained by taking 

the ratio of the differential gain of the INA to the common mode gain. The improvement 

in CMRR over the conventional RC feedback INA is clear seen here. 130 dB of CMRR 

at mid-band frequencies is achieved here.  

 

 

Figure 4-13 CMRR of Dynamically Matched FBFS INA 
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4. Input Referred Noise 

The output noise and input referred noise of the dynamically matched fully balanced 

fully symmetric INA are shown in Figure 4-14. The response is similar to the fully 

differential INA response. However, the integrated noise between 1Hz and 100Hz 

referred to the input is 6.2 μV/ Hz. 

 

Figure 4-14 Output and Input Referred Noise of Dynamically Matched FBFS INA 
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5. Summary of Results Dynamically Matched FBFS INA 

The power consumption, noise and CMRR performance of the fully balanced fully 

differential INA are shown in Table 4-2. The simulated CMRR of the INA is 130 dB, an 

improvement of over 50 dB over regular RC feedback INAs. 

 

Table 4-2 Summary of Results - Dynamically Matched FBFS INA 

Parameter Dynamically Matched FBFS INA 

CMRR  (50 Hz) 
 

130dB 

Gain  
 

40 dB 

Input Referred Noise  
 

6.0 μV 

Bandwidth  
 

800 Hz 

Power  
 

30 μW 

 

 

 

 

 

 

 

 

 

 

 

 



79 
 

5. SUMMARY AND CONCLUSION 

 

Two instrumentation amplifiers have been proposed that utilize a dynamic element 

matching scheme to improve the CMRR (Common Mode Rejection Ratio) of INAs. The 

first INA is a fully differential INA based on a single fully differential opamp. The 

second is a fully balanced fully symmetric INA based on two individual single ended 

opamps. The proposed dynamic element matching technique greatly improves the 

CMRR of both INAs.  

Table 5-1 is a summary of the results of this work in comparison to some other 

published works. It is clearly seen that the CMRR of the proposed amplifiers far exceeds 

the typical value for RC feedback INAs as in [1] and [7].  

 

Table 5-1 Comparison of Results with Other Published Works 

  

[1] 

 

[9] 

 

[3] 

 

FD 

 

FBFS 

 

Process 

 

CMOS 1.5 

 

CMOS 0.6 

 

CMOS 0.6 

 

CMOS 0.6 

 

CMOS 0.6 

 

INA Type 

RC  

feedback 

RC  

Feedback 

Current 

Balancing 

RC  

feedback 

RC  

Feedback 

 

CMRR  

 

86 dB (mean) 

 

71 dB 

 

110 dB 

 

200dB 

 

130dB 

 

Gain  

 

40 dB 

 

46 dB 

 

68 dB 

 

40 dB 

 

40 dB 

Referred 

Noise  

 

2.4 μV 

 

2.0 μV 

 

60nV/Hz 

 

3.0 μV 

 

6.0 μV 

 

Bandwidth  

 

30 Hz 

 

1 kHz 

 

Variable 

 

770 Hz 

 

800 Hz 

 

Power  

 

0.64μW 

 

1.75 mW 

 

36μW 

 

19.4μW 

 

30μW 
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