
LARGE-SCALE SIMULATION OF NEURAL NETWORKS WITH BIOPHYSICALLY

ACCURATE MODELS ON GRAPHICS PROCESSORS

A Thesis

by

MINGCHAO WANG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2012

Major Subject: Electrical Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/9069342?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Large-Scale Simulation of Neural Networks with Biophysically

Accurate Models on Graphics Processors

Copyright 2012 Mingchao Wang

LARGE-SCALE SIMULATION OF NEURAL NETWORKS WITH BIOPHYSICALLY

ACCURATE MODELS ON GRAPHICS PROCESSORS

A Thesis

by

MINGCHAO WANG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Peng Li
Committee Members, Gwan S. Choi

Samuel Palermo
Yoonsuck Choe

Head of Department, Costas N. Georghiades

May 2012

Major Subject: Electrical Engineering

iii

ABSTRACT

Large-Scale Simulation of Neural Networks with Biophysically

Accurate Models on Graphics Processors. (May 2012)

Mingchao Wang, B.S., Zhejiang University

Chair of Advisory Committee: Dr. Peng Li

Efficient simulation of large-scale mammalian brain models provides a crucial com-

putational means for understanding complex brain functions and neuronal dynamics. How-

ever, such tasks are hindered by significant computational complexities. In this work, we

attempt to address the significant computational challenge in simulating large-scale neural

networks based on the most biophysically accurate Hodgkin-Huxley (HH) neuron model-

s. Unlike simpler phenomenological spiking models, the use of HH models allows one

to directly associate the observed network dynamics with the underlying biological and

physiological causes, but at a significantly higher computational cost. We exploit recent

commodity massively parallel graphics processors (GPUs) to alleviate the significant com-

putational cost in HH model based neural network simulation. We develop look-up table

based HH model evaluation and efficient parallel implementation strategies geared towards

higher arithmetic intensity and minimum thread divergence. Furthermore, we adopt and

develop advanced multi-level numerical integration techniques well suited for intricate dy-

namical and stability characteristics of HH models. On a commodity CPU card with 240

streaming processors, for a neural network with one million neurons and 200 million synap-

tic connections, the presented GPU neural network simulator is about 600X faster than a

basic serial CPU based simulator, 28X faster than the CPU implementation of the pro-

posed techniques, and only two to three times slower than the GPU based simulation using

simpler spiking models.

iv

ACKNOWLEDGMENTS

I would like to thank my committee chair, Dr. Li, and my committee members, Dr.

Choi, Dr. Palermo and Dr. Choe, for their guidance and support throughout the course of

this research. Thanks also to the other members in our research group, especially Boyuan

Yan, Yong Zhang and Jingzhen Hu, for their help and encouragement. Finally, thanks to

my mother, father and my wife for their patience and love.

v

TABLE OF CONTENTS

CHAPTER

Page

ABSTRACT . iii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . v

LIST OF TABLES . vii

LIST OF FIGURES . viii

I INTRODUCTION . 1

II BACKGROUND . 5

A. Brain Structure . 5
B. Spiking Neural Models . 6

1. Leaky Integrate-and-Fire Model 6
2. Izhikevich Spiking Neural Models 7
3. Hodgkin-Huxley Models 8

C. Synaptic Models . 10
D. Numerical Methods for Ordinary Differential Equations 10

1. The Forward Euler Method 11
2. The Backward Euler Method 12
3. The Exponential Euler Method 13

III GPU ARCHITECTURE . 14

A. GPU Architecture . 15
B. CUDA Programming . 16

IV CORTICAL NETWORK SIMULATION 19

A. The Multi-Scale Behaviors of Cortex Networks 19
1. Different Time Scales for Active and Inactive Neurons . . 20
2. Different Time Scales for Intra-neuron and Inter-neuron

Activities . 20

vi

CHAPTER Page

B. Basic Steps for Dynamical Simulation of Cortex Networks . . . 21

V IMPLEMENTATION . 23

A. Data Structure . 23
1. Network Connection . 23
2. Network Dynamics . 24

B. GPU Mapping . 26

VI SIMULATION PERFORMANCE OPTIMIZATION ON GPU 28

A. Enhancement of Arithmetic Intensity 28
B. Lookup Table Acceleration for HH Model Evaluation 29

VII TELESCOPIC PROJECTIVE NUMERICAL INTEGRATION 33

A. Detection of Active and Inactive States 33
B. Acceleration of Simulation in Inactive States 34
C. Implementation of Telescopic Projective Integration on GPU . . 36

VIII EXPERIMENTAL RESULTS . 40

A. Experiments Setup . 40
B. Performance of the Proposed Simulation Techniques 40

1. Basic CPU vs. GPU Implementations 41
2. Speedups of Arithmetic Intensity Enhancement 43
3. Speedups of GPU Lookup based HH Models 43
4. Speedups of Telescopic Projective Integration 44

C. GPU Implementation Speedup Over CPU Implementation . . . 45
D. Comparison on HH and Spiking Model based GPU Simulations 45

IX CONCLUSIONS . 49

REFERENCES . 50

VITA . 53

vii

LIST OF TABLES

TABLE Page

I Neuron parameter used in this implementation. 40

II Runtimes of the CPU and GPU implementations. Simulation run-
times are in seconds. Each network model is simulated for one sec-
ond (real time). GPU_All denotes the GPU implementation with three
proposed techniques included (GPU_EAI_LUT_TPM). 42

III Speedups of the CPU and GPU implementations. 42

IV Runtimes and speedups of the GPU simulator over its CPU counter-
part. Runtimes are in seconds. The proposed three techniques are
used in both implementations. 47

V Runtimes and speedups of the HH neuron model based simulation
over its Izhikevich counterpart on GPU(M=100). Runtimes are in seconds. 48

viii

LIST OF FIGURES

FIGURE Page

1 Plot of CPU transistor counts against dates of introduction [25]. 2

2 The human brain structures. 6

3 Equivalent circuit of HH model. 9

4 An example of forward Euler method. 12

5 CUDA architecture. 15

6 Grid of thread blocks. 17

7 An illustration of cortex network. 19

8 Flowchart of the basic simulation steps. 22

9 Connectivity graph and data structures for a simple network. 24

10 Example of updating event tables. 25

11 Sample CUDA code in the simulator. 27

12 Macro and micro time steps. 31

13 State variables updating with lookup tables. 32

14 Pseudo code showing that using Lookup Table to avoid exponential
calculation and warp divergence. 32

15 Detecting active and inactive states using a threshold voltage. 34

16 A one-level projective integrator(k=2). 35

17 A two-level telescopic projective integrator. 37

18 Neuron dispatch for telescopic projective integration. 38

ix

FIGURE Page

19 Pseudo code showing that using Telescopic Projective method with
grouping to minimize thread divergence and reduce simulation steps. 39

20 Runtime comparison between GPU and CPU basic simulations with
a time step of 0.02 ms (M=200). 41

21 Runtime performance improvement with EAI (M=200). 43

22 Runtime performance improvement with LUT (M=200). 44

23 Runtime performance improvement with TPM (M=200). 45

24 Runtime performance improvement of CPU implementation with all
three techniques over the CPU implementation (M=200). 46

25 Speedups of the GPU implementation with all three techniques over
its CPU counterpart implementation. 46

26 Runtime comparison between GPU simulations with HH and Izhike-
vich neuron models (M=100). Runtimes are in seconds 47

1

CHAPTER I

INTRODUCTION

Computer simulation is a critical enabler for understanding complex functions and neu-

ronal dynamics of mammalian brains. Brain behaviors are controlled by large networks

of neurons. In a neural network, the information is processed in the form of electrical

signals, which are passed from one neuron to another via synaptic connections. When

coupled with experimental studies, numerical simulation of large scale nervous systems

can provide profound understanding of brain functions, offering insights that are practical-

ly or ethically impossible to acquire purely through experimental means [26]. Due to the

sheer complexities, efficient computational techniques, capable of simulating large neural

networks with biophysically accurate neuron models, are highly desirable. Such capability

will fundamentally enable the test of hypotheses of neurological disorders and development

of therapeutic treatments, as well as stimulate new engineering applications [1, 11, 16].

Recently, brain-scale simulation of the neocortex has been demonstrated on supercom-

puters and/or large computer clusters in several research efforts [1,11,16,24]. The compute

power of thousands of processors or more is utilized to cope with the computational chal-

lenges in simulating large neural networks.

On the other hand, the emergence of passively parallel single-instruction-multiple-data

(SIMD) graphics processors, or GPUs, has drawn a significant interest in the computing

community (see for example [21]). In 1965, Gordon Moore, the co-founder of Intel, fore-

saw that every year in the future, the transistors on an integrated circuit would be twice as

many in number. [19]. Fig. 1 shows plot of CPU transistor counts against dates of intro-

duction. History has proven the trueness of this prediction. However, there’s a limitation

The journal model is IEEE Transactions on Automatic Control.

2

Fig. 1. Plot of CPU transistor counts against dates of introduction [25].

3

with one or more traditional CPUs. The solution to this problem is assigning multiple cores

(Processing unit) to the same processing chip, which gives the field of Graphic Processor

Units (GPU) a huge advantage. During the past twenty years, GPU has shown great im-

provements in performance and capability while developing the large parallelism intrinsic

in graphics processing. Due to the evolution of GPU, the consumption of transistors has

increased dramatically, even exceeded the requirement of Moore’s Law [8,19]. There have

been early attempts to use GPUs for neural network simulation. In particular, in [20] a GPU

based neural simulator using simple neuron models is demonstrated. In [4], the multi-core

and GPU platforms are compared for neural network simulation using simple two-level

network examples.

Most of these works have dealt with the simulation of spiking neuron networks (SNNs)

based upon phenomenological spiking neuron models developed by Izhikevich [16]. A

spiking neuron compartment model consists of only two differential equations. Its simplic-

ity makes it attractive for large-scale neural simulation where computational complexity is

a significant challenge. In comparison, the well established Hodgkin-Huxley (HH) neuron

models [15] are more complex; a compartment model consists of four differential equations

and a larger number of parameters. While being more biophysically plausible, the use of

HH type neuron models can make the network simulation 100X more expensive.

In this work, we attempt to address the significant computational challenge in simulat-

ing large-scale neural networks based on the most biophysically accurate Hodgkin-Huxley

(HH) neuron models. The use of HH models provides crucial benefits. With essential

neuron characteristics such as membrane potentials, ion channel currents and gating of ion

channels modeled on a biophysical basis, one may be able to directly associate the observed

network dynamics with the underlying biological and physiological causes. From a com-

putational perspective, we exploit recent commodity massively parallel graphics processors

(GPUs) to alleviate the significant computational cost in HH model based neural network

4

simulation.

Simulating large networks of HH neuron models on GPUs presents interesting chal-

lenges and opportunities. Special care must be taken in algorithm development and code

implementation in order to fully take the advantages of SIMD GPU compute power. The

evaluation of HH models is significantly more complex than the spiking model counter-

parts and stresses the GPU implementation. We develop look-up table based HH model

characterization and efficient evaluation on GPU to alleviate such cost. Apart from this, the

intricacy of complex nonlinear dynamics captured in HH models introduces further compu-

tational overhead; to maintain time-domain simulation accuracy and stability, it is observed

that on average a 25X smaller times step size must be used in the HH model based simu-

lation compared with its spiking model counterpart. To address this problem, we develop

efficient parallel implementation strategies geared towards higher arithmetic intensity and

minimum thread divergence, critical for the GPU implementation. Furthermore, we adopt

and develop advanced multi-level numerical integration techniques well suited for intricate

dynamical and stability characteristics of HH models, which leads to reduction of effective

step size.

On a commodity NVIDIA Tesla GPU card with 240 streaming processors, for a set of

neural network examples, the presented GPU neural network simulation approach is about

600X faster than a basic serial CPU based simulator, 28X faster than the CPU implementa-

tion of the proposed techniques, and is only two to three times slower than the GPU based

simulation using spiking models.

5

CHAPTER II

BACKGROUND

Brain activities are controlled by large networks of neuron cells which process information

in the form of electrical signals passed from one neuron to another via synaptic connections.

To describe this process, models with different complexities have been proposed in the

past several decades, to simulate different neural spiking patterns and synaptic connections

behaviors.

A. Brain Structure

Human’s central nervous system locates at the most complex organ-the human brain. All

of human’s thoughts, emotions, feelings and experiences come from the brain. The brain

is formed with more than one hundred billion neurons (nerve cells). Each neuron can com-

municate directly with nearly ten thousand others in electrical and chemical ways. Among

different pairs of neurons, there are connection gaps that are called synapses. A human

brain contains more than one quadrillion synaptic connections. The complex structure of a

human brain makes it possible to store huge amount of information. Fig. 2 shows the six

different structures of a human brain: brainstem, cerebellum, frontal lobe, occipital lobe,

parietal lobe and temporal lobe.

Neurons play the most important role in the brain. The uniqueness of neurons is that

they can reach nearby or distant target cells by sending signals via an axon [17]. An axon,

which usually has many branches, is a thin protoplasmic fiber that extends from the cell

body to other areas. Synapses are specialized junctions that work as the media of axons

transmission of signals to other neurons. The synaptic connections between an axon and

other cells can be thousands. When an action potential travels along an axon and arrives at

a synapse, a chemical called a neurotransmitter will be released.

6

Fig. 2. The human brain structures.

Synapses are the essential functional elements of the brain. They provide the points

at which brain’s cell-to-cell communication occurs. There are several synapses functions:

the excitatory action (excite the target cell), the inhibitory action, and the activation of sec-

ond messenger systems that change the internal chemistry of their target cells in complex

ways [23].

B. Spiking Neural Models

In this section, different spiking models are presented, ranging from the straightforward

integrate-and-fire (I&F) model [22] to the most biologically plausible Hodgkin-Huxley (H-

H) models [15].

1. Leaky Integrate-and-Fire Model

Detailed conductance-based neuron models are difficult to analyze because of their intrin-

sic complexity. Therefore, phenomenological spiking neuron models are widely used in

computational science for studies of neural network dynamics. Leaky integrate-and-fire

7

(I&F) neuron model is one of the most popular phenomenological models. The standard

form of Leaky I&F model is shown in the following equation [22]

v̇ = I + a − bv (2.1)

where variable v is the membrane potential, I is the input current, and a, b are parameters.

When the membrane potential v reaches a threshold criterion, the potential is reset to a new

value according to

v = c (2.2)

where c is a model parameter.

The I&F neuron model is one of the simplest models to implement. However, because

the I&F model has only one variable and fixed threshold, it cannot simulate many neuronal

spike properties, such as bursting, rebound response, and latencies. Some advanced I&F

models, such as nonlinear I&F model, I&F with Adaptation, are proposed but they have

their own limitations and are not able to simulate most of the neuron spiking patterns [22].

Those I&F models will not be presented in this article.

2. Izhikevich Spiking Neural Models

Recently, phenomenological spiking neuron models proposed by Izhikevich have been

widely used for large-scale neuron network simulation [16, 22]. In Izhikevich models,

spiking dynamics of each neuron can be described by the following two differential equa-

tions

ν̇ = 0.04ν2 + 5ν + 140 − u + I

u̇ = a(bν − u)
(2.3)

where variable ν represents the membrane potential of the neuron, I represents the synaptic

input current, u represents a membrane recovery variable, and (a, b, c, d) are the four

8

dimensionless model parameters. When the membrane potential ν reaches 30 mV, the

membrane voltage and the recovery variable are reset according to

ν = c

u = u + d
(2.4)

The model can exhibit firing patterns of all known types of cortical neurons with the

suitable choice of parameters (a, b, c, d).

While highly appreciated by the simplicity, Izhikevich models have limitations in ap-

plications. Although they can reproduce typical firing phenomena of cortical neurons, their

parameters are not necessarily biophysically meaningful. In order to directly associate the

observed network dynamics with the underlying biological and physiological causes, the

classical Hodgkin-Huxley type models are needed.

3. Hodgkin-Huxley Models

The equivalent circuit of Hodgkin-Huxley model [15] is shown in Fig. 3. The behavior of

an electrical circuit can be described by a differential equation of the form

cν̇ = −gL(ν − EL) + Iion + Isyn (2.5)

where ν is the intracellular potential (membrane potential), c is the membrane capacitance,

gL is the leakage conductance, EL is the leakage reversal potential, Iion is the ionic current

flowing across the membrane, and Isyn is the input synaptic current.

The total ionic current Iion is the sum of individual contributions from all participating

ion types. For example, for regular-spiking pyramidal cells [9], there are three ion types: a

sodium current INa, a potassium current IK , and a slow voltage-dependent potassium current

9

C

E_Na E_KE_L

g_Na g_Kg_L

E_K

g_M g_syn

E_syn

Ionic channels synaptic channels

Fig. 3. Equivalent circuit of HH model.

IM , which can be described by the following equations

INa = gNam3h(ν − ENa)

IK = gKn4(ν − EK)

IM = gM p(ν − EK)

(2.6)

where gNa, gK , gM are maximum conductance values, ENa, EK are reversal potentials,

and m, h, n, p are gating variables describing the probability that an ion channel is open.

The gating variables evolve as follows

τmṁ = −m + m∞

τhḣ = −h + h∞

τnṅ = −n + n∞

τp ṗ = −p + p∞

(2.7)

where the steady-state values m∞, h∞, n∞, p∞ and the time constants τm, τh, τn, τp are

dependent on the membrane potential ν.

Compared with Izhikevich models, it is easy to see that Hodgkin-Huxley type models

10

are much more computationally expensive. However, as shown in the following section-

s, with suitable parallel computing and advanced numerical integration techniques, such

computational gap can be narrowed dramatically by taking advantage of the properties of

the cortex neuron network.

C. Synaptic Models

The electrical or chemical transmission between neuron cells relies on the structure of a

synapse in the nervous system. When an action potential is generated at synapses near the

cell body, it will propagate down the axon and reach the connected neuron cell. Neuronal

function cannot perform without synapses, because synapses are the means by which neu-

rons can pass signals to individual target cells [3]. In this work, alpha-function synapse

model is used.

The total synaptic current at each compartment is simulated as

Isyn = gAMPA(v−EAMPA)+gNMDA(v−ENMDA)+gGABAA(v−EGABAA)+gGABAB(v−EGABAB) (2.8)

where v is the postsynaptic membrane potential, and the subscript indicates the recep-

tor type. E is reverse potential of each receptor type. Each conductance g has first-order

linear kinetics

g =
t
τ

e−
t
τ (2.9)

where time constant τ specifies the duration of the response and can be used to distin-

guish for instance between fast and slow transmission.

D. Numerical Methods for Ordinary Differential Equations

Numerical ordinary differential equations is the part of numerical analysis which studies the

numerical solution of ordinary differential equations (ODEs) [5,14,18]. Analytical solution

11

of many differential equations are hard to compute. However, in science and engineering,

analytical solution is not necessary to solve a problem since a numerical approximation to

the solution is often accurate enough.

The problem can be described as follow. We want to compute the approximation of

solation of the differential equation

y′(t) = f (t, y(t)), y(t0) = y0 (2.10)

where f is a function and the initial condition y0 is a given vector.

In this section, three elementary methods will be studied which can be used to compute

a numerical approximation of the solution of the differential equation above.

1. The Forward Euler Method

We denote the time at the nth time-step by tn and the computed solution at the nth time-step

by yn. Given (tn,yn), the forward Euler method (FE) computes yn+1 as

yn+1 = yn + h f (tn, yn) (2.11)

where h is the step size which is given by h=tn-tn−1. A simple example of forward Euler

approximation is shown in Fig. 4. The forward Euler method is an explicit method, i.e.,

yn+1 is given explicitly as known quantities such as yn and f (yn, tn). Despite of the easy

implementation of explicit methods, they have limitations on the time step size to ensure

numerical stability.

12

t

h

y

Exact Solution

Forward Euler

Approximation

Fig. 4. An example of forward Euler method.

2. The Backward Euler Method

The implicit analogue of the explicit FE method is the backward Euler (BE) method. The

backward Euler method computes yn+1 as

yn+1 = yn + h f (yn+1, tn+1) (2.12)

Note that f (yn+1, tn+1) is unknown, therefore it shows us an implicit equation to com-

pute yn+1. Fixed point iteration or the Newton-Raphson method is commonly used to ac-

complish this. However, the iteration methods often cost more time to solve this equation.

The implicit methods have a benefit in stability when solving a stiff equation, so a larger

step can be used.

13

3. The Exponential Euler Method

If the differential equation is of the form

y′(t) = A − By(t) (2.13)

then an approximation of solution can be given by

yn+1 = yne−Bh +
A
B

(1 − e−Bh) (2.14)

The exponential Euler method is numerically stable but slower than the forward Euler

method [2].

In our work, the forward Euler method is used, because comparing to the other two

methods, the forward Euler method is much easer to implement and faster to simulate

the neural network. However, the limitation of forward Euler method is obvious, that a

large time step needs to be used in order to ensure numerical stability. In the next several

sections, we will show you how different techniques and approaches are adopted to narrow

this computational gap to take advantage of the forward Euler method.

14

CHAPTER III

GPU ARCHITECTURE

Single-core microprocessor is facing limitations on performance growth due to the semi-

conductor technology scaling limits, power and thermal challenges. Parallel computing

became popular and is developing very quickly. New parallel computing platforms such

as GPUs and multi-core CPUs have become the domination of the market. In the past

decade, the competition in floating-point performance has been led by a group of many-

core processors named Graphics Processing Units (GPUs). The GPU, as a modified stream

processor, is increasingly commonly used, because of its massive parallelism, high memo-

ry bandwidth, and general purpose instruction sets, including support for both single- and

double-precision IEEE floating point arithmetic [7].

Performance growth for single-core microprocessors is becoming more and more lim-

ited because of semiconductor technology scaling limits, power and thermal challenges,

and difficulty of exploiting greater levels of instruction level parallelism. Parallel comput-

ing became popular and is developing very quickly. New parallel computing platforms

such as GPUs and multi-core CPUs have come to dominate the market. In the past decade,

a class of many-core processors called Graphics Processing Units (GPUs), have led the

race for floating-point performance. And because of its massive parallelism, high memo-

ry bandwidth, and general purpose instruction sets, including support for both single- and

double-precision IEEE floating point arithmetic, as a modified form of stream processor, it

is becoming increasingly common to use a general purpose graphics processing unit. This

concept turns the massive floating-point computational power of a modern graphics accel-

erator’s shader pipeline into general-purpose computing power, as opposed to being hard

wired solely to do graphical operations.

15

A. GPU Architecture

The NVIDIA’s Compute Unified Device Architecture (CUDA) is designed to support both

graphics and general purpose computing. The programmable processing elements, which

use a general-purpose instruction set, are built around a scalable array of multi-threaded

Streaming Multiprocessors (SMs) [21]. In our experiments, we use a commodity NVIDIA

Tesla C1060 GPU card, which consists of 240 streaming scalar processor cores grouped

into 30 streaming multiprocessors (SMs), each operating at 1.3 GHz. Each SM consists

of eight scalar processor (SP) cores, two special function units for transcendental and oth-

er special functions, a multi-threaded instruction unit, and on-chip shared memory. This

GPU card has 4 GB global memory, 64 KB constant memory, and 16 KB shared memo-

ry. The system provides a maximum bus bandwidth of over 100 GB/s. A simplified GPU

architecture is shown in Fig. 5.

Shared

Memory
Registers

Texture

Cache

Constant

Cache

Shared

Memory
Registers

Texture

Cache

Constant

Cache

Shared

Memory
Registers

Texture

Cache

Constant

Cache

Thread Execution Manager Host Input Assembler

SP

Device Memory

Multiprocessor 1 Multiprocessor 2 Multiprocessor 30

SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP

Fig. 5. CUDA architecture.

To a CUDA programmer, the computing system consists of a host and one or more

16

devices. Host is a traditional CPU, such an Intel Architecture microprocessor in personal

computers today, and devices are the massively parallel processors on the GPUs. For a

typical CUDA program, when the data is ready in the host memory, they are transferred to

the memory of graphic cards, then processed by the program in the device. After it finishes,

the results will be transferred back to the host.

CUDA programming is done with data-parallel functions, called kernels or grids.

These kernels describe the work of a single thread and typically are invoked on thousands

of threads. A grid consists of many blocks which have the same program and each block

consists of a large number of threads. A figure of a grid of thread blocks is shown in Fig. 6.

Within each block, the threads can share their data and synchronize their actions. Threads

in different blocks cannot access the same memory block at the same time, which means

they cannot communicate and synchronize with each others. The multiprocessor maps each

thread to one scalar processor core, and each scalar thread executes independently with its

own instruction address and register state. Multiprocessors schedule threads on the basis

of 32-thread groups called warps.

B. CUDA Programming

Compute Unified Device Architecture (CUDA) [21] is a parallel computing architecture

developed by Nvidia. CUDA programming language is an extension of standard C lan-

guage with a few additions to the C syntax. For developers, the GPUs could be accessed

for computation like CPUs, even thought GPUs’ architecture is not like CPUs. GPUs’ par-

allel throughput architecture is to execute many threads slowly but concurrently. As the

GPUs has hundreds of cores, with proper implementation, the speedup of CUDA program

could be dramatically high, even each core is much slower than CPU core.

GPU computing has several advantages over traditional CPU parallel computing. First,

17

Block

(0, 0)

Grid

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Fig. 6. Grid of thread blocks.

normally graphic cards have large bandwidth. For example, NVIDIA GeForce 8800GTX

has more than 50GBs memory bandwidth, while recent CPUs mostly have only 10GBs

bandwidth. Second, graphic cards have much more processor cores than CPU. The latest

NVIDIA GPUs can have more than 256 cores. Third, comparing to expensive CPUs, GPUs

is more affordable for personal use.

However, GPUs have limitations. CUDA programming is not suitable for tasks which

cannot be highly parallelized. And recent GPUs have very limit support for double-precision

IEEE floating point arithmetic. Also, GPUs normally have no complex conditional branch

control unit. Therefore, CUDA program is not good at dealing with conditional branch as

warp divergence could occur.

Several basic rules and principles should be followed when developing general-purpose

GPU computing applications [4, 21]:

1. A good way to manage global memory latency is to create sufficient number of ac-

18

tive threads to keep SPs occupied while other threads are waiting on global memory

accesses.

2. In order to achieve peak memory bandwidth, various access strategies should be tak-

en for different memory types. For the global memory, peak memory bandwidth is

achieved when accesses by threads in a half warp are coalesced. For the shared mem-

ory, bank conflicts, caused by multiple threads accessing the same bank, should be

avoided. The texture memory is read only, but cached with a significantly smaller la-

tency than the global (device) memory. Therefore, it can be used for efficient storage

of constant values.

3. Conditional branches should be avoided to minimize warp divergence so as to avoid

serialization. If a warp divergence is unavoidable, tasks within each branch should

be minimized. Some simple programming tricks could help in these cases, such

as regrouping the tasks to balance the work load. Arithmetic intensity (amount of

calculation relative to memory access) should be maximized to effectively reduce

memory latency.

19

CHAPTER IV

CORTICAL NETWORK SIMULATION

A. The Multi-Scale Behaviors of Cortex Networks

A portion of the cortex network is illustrated in Fig. 7. The tree-like structures represent

pyramidal cells and the ball-like structures represent interneurons. In this figure, there are

six pyramidal cells and only one interneuron. The typical firing pattern of both pyramidal

neurons and interneurons are shown in the figure. Generally speaking, interneurons have

larger frequency than pyramidal neurons.

Fig. 7. An illustration of cortex network.

In the network, each neuron receives synaptic inputs from other neurons and integrates

those inputs in the cell body. If those inputs are large enough, a train of spiking will be

initialized in the cell body and propagates through axons. At the end of axons, the train of

spikes will lead to the release of neurotransmitters. By binding the synaptic receptors of

the receiving neurons, the neurotransmitters may increase (excite) or decrease (inhibit) the

20

membrane potential of the receiving neurons.

An important characteristic of the neuron network is that it exhibits a variety of time

scales:

1. Different Time Scales for Active and Inactive Neurons

In practical networks, neurons do not fire all the time. Indeed, a neuron is in a resting state

most of the time. When there is no external stimuli, the thalamus-cortical network typically

oscillates at about 8-10Hz [10], which means a neuron only fires 8-10 times in the period

of one second. As the duration of each firing is on the order of milliseconds, the neuron is

inactive during most of the time.

When a neuron fires action potentials, strong nonlinear dynamics happens in a short

time period. In this case, small time steps (e.g. 0.02 milliseconds) must be taken in transient

simulation to satisfy both accuracy and stability requirements, especially when Hodgkin-

Huxley models are used. However, in the inactive state, the changes of membrane potentials

are small and it is possible to use much larger time steps if advanced numerical integration

techniques are adopted. This fact opens an opportunity to reduce the costs of the simulation

associated with Hodgkin-Huxley type models.

2. Different Time Scales for Intra-neuron and Inter-neuron Activities

During most of the time, a neuron is at the resting state. However, even if the neuron

is about its resting state, a sufficiently small time step is still needed (especially, for HH

models) to accurately track the membrane potentials and avoid numerical instability.

On the other hand, at the network level, neurons could not interact with others until

the membrane potentials are large enough to trigger action potentials. Even if a neuron

fires, it takes some time to reach others due to axon delays, which typically range from a

few milliseconds to hundreds of milliseconds.

21

As a result, compared with the time resolution (simulation step size) required to track

the internal activities of individual neurons (intra-neuron activity), the interactions between

different neurons (inter-neuron activity) occur much less frequently. Typically, a time res-

olution of one millisecond is enough for tracking network activities [16]. This property

makes it possible to apply a smaller time step to simulate individual neuron dynamics and

a much larger time step to update network-level interactions, as we exploit in this work.

As shown in later sections of this article, exploiting the multi-scale nature of the neural

network in a numerically and computationally efficient way can lead to significant runtime

benefits in simulating large-sale neocortex models.

B. Basic Steps for Dynamical Simulation of Cortex Networks

Before presenting proposed techniques, we briefly introduce the basic cortex network sim-

ulation steps. The cortex networks are described by a set of coupled differential equations

using neuron models such as in equations (2.5), (2.6) and (2.7), and additional synaptic and

axon delay models. The state variables are the membrane potentials associated with neu-

rons and the gating variables associated with ion channels. All the neurons in the network

receive synaptic current inputs and some of the neurons also receive inputs from thalamus.

To simulate the network is essential to solve the set of differential equations in a numeri-

cally efficient way. Given the initial values of all the state variables, the simulation can be

divided into the following steps:

1. Set thalamic inputs. Some neurons in the network are chosen to receive current inputs

to initiate the simulation, which mimics the effects of the thalamus.

2. Find firing neurons. Scan through the network to find all firing neurons. Firing or not

is determined by whether their membrane voltages exceed a threshold value. When

these neurons are found, a spike will fire from each of them and propagate through

22

axons, which are modeled as delays, to the receiving neurons.

3. Update synaptic conductances. Go through the network to update the synaptic con-

ductances corresponding to the excitatory and inhibitory inputs they receive at the

current time.

4. Calculate synaptic input currents. Calculate the excitatory and inhibitory input cur-

rents, respectively, for each neuron.

5. Update state variables. Use a numerical integration method, such as Forward Euler,

to update the state variables associated with a neuron model for the current time.

Note that for HH models, the update of state variables is very expensive.

The above five-step simulation loop iterates repeatedly until the simulation time reaches the

end. The increment time step here is determined by the numerical accuracy and stability of

the numerical method in step (5), which is no more than 0.02ms. The overall flow of SNN

simulation is shown in Fig. 8.

Set Thalamic Inputs

Find Firing Neurons

Update Synaptic Conductances

Calculate Synaptic Inputs

Update Voltage and States

 End of

Simulation?

END

START

Yes

No

Fig. 8. Flowchart of the basic simulation steps.

23

CHAPTER V

IMPLEMENTATION

Before discussing the proposed techniques in details, we first briefly discuss the main data

structures and implementation in our GPU simulator, in order to show a clear view of the

key pieces of the simulator.

A. Data Structure

There are two major types of data structures, one for storing network connection, and one

for storing network dynamics.

1. Network Connection

The network connection is created by the CPU code and is then transferred onto the GPU

memory. Once the network information is created, it remains unchanged during simulation.

The network information stored in these data structures are pre-neurons IDs, post-neurons

IDs, and post-synaptic delays. These key data structures are mostly organized as compact

one-dimensional arrays. Such organizations lead to coalesced memory accesses, which

are important for minimizing memory access latency. For each neuron, its neuron id, the

number of post-synaptic connections are unique. Since the numbers of post-synaptic con-

nections of all neurons are different, two data pools are used to store the post-neuron ids

and post-synaptic delays for all neurons. Indexes to these data pools are also stored in an

array for easy access. A schematic of the data structures is shown in Fig. 9. In this network,

there are totally six neurons, represented by the circles. The numbers inside the circles are

their neuron ids. The arrows represent synaptic connections between two neurons and the

axonal delays (in ms) are annotated on the arrows. When a neuron fires action potentials,

24

the spike can not reach the post-synaptic neuron immediately, buy after a certain axonal de-

lay. All the information of the network connection can be obtained from the data structures

shown in the figure. Take neuron 3 as an example. Neuron 3 has two post-synaptic neurons,

and this number is stored in the second array shown in the figure. Its post-synaptic neurons

(neuron 5 and neuron 6) and corresponding delays (4ms and 2ms) are stored in the data

pools. Using these data structures, one can efficiently find all the post-neurons connected

Fig. 9. Connectivity graph and data structures for a simple network.

to a neuron, and also the axon delays to those post-neurons.

2. Network Dynamics

The network dynamics data structures store state variables and event tables. The state

variables, which are updated every time step by the model dynamics, include membrane

potential, gating variables, time constants in the HH model differential equations and states

in the synapse model. The state variables are organized as arrays for each access in GPU.

The event tables, which work in a circular event queue fashion, store the timing in-

formation and the IDs of fired neurons. Each neuron cell has its own event table to store

number of spikes it will receive in the future. For the lookup table technique which will be

25

discussed in the following section, the event table also needs to store previous firing infor-

mation in order to quickly compute its synapse input at the current time point. Whenever a

neuron fires, its neuron id is recorded and the following synaptic events are updated. Let’s

still use the the neuron network in Fig. 9 as an example. If only two neurons (neuron 3 and

neuron 4) fire in the current time step, recalling the flowchart of simulation steps shown in

Fig. 8, their ids are recorded in the "Find Firing Neurons" stage. The next step is to find all

their post-synaptic neurons and when the spikes will reach them. And then, the numbers in

the corresponding slots in the event tables of those post-synaptic neurons are incremented

by one. As neuron 3 has two post-synaptic neurons (neuron 5 and neuron 6), their event

tables will be updated. Fig. 10 shows an example of updating the event tables. (t0 is the

current time point). Since the axonal delays from neuron 3 to neuron 5 and neuron 6 are

4ms and 2ms, respectively, the corresponding slots in the event tables are incremented by

one. With these event tables, we can efficiently find fired neurons and firing times and then

use this information to update the network-level activities.

Fig. 10. Example of updating event tables.

26

B. GPU Mapping

In this thesis work, the neuron network is mapped onto GPU. At different stages, the G-

PU mapping could be different. When updating neuron level information, each neuron is

mapped on a processor. Different neuron cells are updated in parallel by different threads.

Whenever a spike is generated, it will propagate through the post-synaptic connections. In

this stage, each synaptic connection is mapped in parallel. As we store most of the infor-

mation as one-dimension arrays, these different mapping can be easily applied within SMs.

Fig. 11 shows a piece of representative cuda code in the simulator. In this function, each

neuron is mapped on one thread. With such organization, memory bandwidth performance

is improved due to coalesced memory access. Note that the shared memory is also used in

the function to act as a local buffer. Shared memory is a type of memory that can be shared

within a thread block. In this case, shared memory helps to avoid frequent global memory

accesses and reduce warp divergence.

More implementation details of the advanced techniques we use in this thesis work

will be discussed in the following sections.

27

1. __global__ void kernel_get_firing() {

2. __shared__ volatile int cnt;

3. __shared__ int local_buffer[256];

4. if(0==threadIdx.x) cnt=0;

5. for(int i=blockDim.x*blockIdx.x; i<num_neuron;
i+=blockDim.x*gridDim.x) {

6. int id = i+threadIdx.x;

7. if (id<num_neuron && V[id]>Threshold){

8. int index=atomicAdd(&cnt,1); //update local buffer

9. local_buffer[index] = id;

10. }

11. ... // update global buffer when local buffer is full

12. }

13. }

Fig. 11. Sample CUDA code in the simulator.

28

CHAPTER VI

SIMULATION PERFORMANCE OPTIMIZATION ON GPU

Due to the high computational cost of HH models, the update of synaptic currents and

neuron state variables completely dominates the overall simulation runtime. Among these,

(coalesced) access to global memory also contributes to an important overhead. Recall the

simulation flow shown in Fig. 8, in each iteration, the simulator needs to update synaptic

current and HH model state variables. Each of such updates involves one global memory

access and complex calculations. As we have mentioned in previous sections, a very small

time step must be used in order to satisfy both accuracy and stability requirements, meaning

that the numbers of both global memory accesses and expensive calculations are relatively

large. To improve the simulation runtime efficiency, we introduce two optimization strate-

gies. The first approach aims to enhance arithmetic intensity, hence increasing the ratio

between calculation and memory access and effectively reducing the overhead of memory

access. The second approach uses precharacterized lookup table based HH models and

efficient GPU implementation to speed up the evaluation of HH models.

A. Enhancement of Arithmetic Intensity

Due to the complex dynamics associated with the HH models, the step size of an explicit

integration method such as Forward Euler or exponential Euler, commonly used in neural

simulation [1, 4, 16, 20] and public-domain neuron simulators [2, 6], is significantly con-

strained by stability and accuracy requirements. We have observed that a step size beyond

0.02 ms can simply produce erroneous results.

However, from a network level point of view, since a typical firing pattern lasts more

than 20 ms and axon delays range from a few milliseconds to hundreds of milliseconds,

a time resolution of 1 ms is small enough to remain sufficient system level simulation ac-

29

curacy. Therefore, we propose a technique to enhance arithmetic intensity. The proposed

technique applies a larger time resolution, which is 1 ms, at the network level while adopt-

ing a much smaller time resolution (or inner time step size), 0.02 ms, to track individual

neuron dynamics to guarantee numerical accuracy and stability. As shown in Fig. 12, the

system updates its firing information and synaptic conductance of each neuron once per

millisecond (we call it outer time step). At the very beginning of each outer time step, the

synaptic inputs of each neuron are updated only once based upon received action poten-

tials from other neurons. Then, multiple (around 50) smaller inner time steps are taken to

integrate the dynamics of the neuron for one outer time step.

Note that even with proper management of global memory accessing, a coalesced

access takes at least 200 clock cycles. To integrate a neuron in time, six data including

the input current, membrane potential and four state variables, need to be loaded from the

global memory. At the completion of the integration, the results need to be written back

to the global memory. As such, the advantage of this arithmetic intensity enhancement

approach is obvious. By exploiting the multi-scale nature of the network, global memory

accesses are significantly reduced because for each neuron one only needs to load and store

its state variables in the global memory once in 1 ms instead of, say, 50 times. According

to our experiments, the use of this arithmetic intensity enhancement can maintain good

accuracy for the network simulation.

B. Lookup Table Acceleration for HH Model Evaluation

HH models are more complex compared with spiking models. The model formulae con-

tain both exponential expressions and conditional branches. On GPU, an evaluation of an

exponential function is very expensive and can take 32 clock cycles. Conditional branches

are also detrimental as they can easily cause wrap divergence and serialization of diverging

30

threads. The proposed lookup table (LUT) approach addresses both issues.

Using equation (2.5) as an example, voltage-dependent steady-state activations m∞,

h∞, n∞, p∞ and time constants τm, τh, τn, τp of pyramidal cells are given by the following

expressions:

m∞ =
1

1 + exp((32 − V)/8)

τm =

0.0125 + 0.007exp((V − 40)/8) V ≤ 38

0.01 + 0.0725exp((40 − V)/8) V > 38

h∞ =
1

1 + exp((V − 12.6)/7)

τh = 0.75 +
5.75

1 + exp((V − 36.5)/10)

n∞ =
1

1 + exp((40.5 − V)/10)

τn =

0.75 + 13.05exp((V − 60)/10) V ≤ 60

0.75 + 13.05exp((60 − V)/10) V > 60

p∞ =
1

1 + exp((35 − V)/10)

τp =
1000

3.3exp((V − 35)/20) + exp((35 − V)/20)

(6.1)

For each neuron, these eight variables need to be computed in every HH state vari-

ables update step. In order to avoid these exponential calculations and warp divergence,

eight one-dimensional tables are built correspondingly. Each table stores the pre-calculated

values of a variable at a given set of membrane potentials. Proper data stored in the table

are fetched for HH model evaluation during simulation.

Note that, for regular-spiking pyramidal cells [9], there are three ion channel types:

a sodium current INa, a potassium current IK , and a slow voltage-dependent potassium

31

Macro

Step

Micro

Step

0 50 100 150 200 250 300 350 400
-80

-60

-40

-20

0

20

40

60

Time

V
ol
ta
ge

Fig. 12. Macro and micro time steps.

current IM. Fast-spiking interneurons have been modeled to have only the first two ion

channels [9]. Due to the fact that in most network level simulations [10], only a limited

number of neurons and ion channels are included, it is possible to construct the associated

lookup tables using several one-dimensional arrays.

The main data flow in the state variables updating process is shown in Fig. 13. The

lookup tables are stored in the texture memory, which is cached. In the case of cache hit,

a texture fetch is as fast as accessing a register. An important fact is that in 80% of time,

neurons are in the resting mode. In this mode, the membrane potentials fluctuate within a

small range. As a result, the cache hit rates are high because only a very small part of the

lookup tables are frequently accessed, hence a strong locality. In contrast to an exponential

function evaluation, which costs more than 32 cycles on GPU, a texture cache hit only

takes one clock cycle. The proposed technique takes full advantage of the texture memory,

eliminates the expensive exponential calculations, and avoids warp divergence. Fig. 14

shows an example of evaluating time constant τm using the lookup tables.

32

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Texture Cache

Device Memory

t₄₈

t₅₀

t₁

t₂

t₃

t₄₉

Texture

Memory
LUT 1 LUT 2 LUT 8

Load States

Save States

Fetch

from

LUT

Save States Save States

Load States Load States

t₁

t₂

t₃

t₁

t₂

t₃

t₄₈

t₅₀

t₄₉

t₄₈

t₅₀

t₄₉

Fig. 13. State variables updating with lookup tables.

(a) Calculate τm without Lookup Table

1. i=threadIdx.x+blockIdx.x*blockDim.x

2. If(V[i]<=38) //Warp divergence

3. τm=0.0125+0.007*exp((V[i]-40)/8); //Exponential

4. else

5. τm=0.01+0.075*exp((40-V[i])/8)

6. . . .

(b) Calculate τm with Lookup Table

1. BindTextureToArray(Table_tex,Table_array); //bind to
texture at the beginning of simulation

2. i=threadIdx.x+blockIdx.x*blockDim.x

3. index=get_index(V[i]);

4. τm(i)=tex2D(Table_tex,index,1); //Fetch result

Fig. 14. Pseudo code showing that using Lookup Table to avoid exponential calculation and
warp divergence.

33

CHAPTER VII

TELESCOPIC PROJECTIVE NUMERICAL INTEGRATION

Biophysical plausible Hodgkin-Huxley (HH) models capture rich and complex neuronal

dynamics. From a simulation point of view, different modes of neuron operations impose

distinctive requirements on accuracy and stability. Proper use of advanced numerical inte-

gration methods can lead to larger time step sizes and hence further improves the efficiency

of neural simulation.

A. Detection of Active and Inactive States

In the generation of action potentials, the membrane potential and other state variables

evolve very quickly in time so as to produce sharply rising and falling spiking patterns. In

this case, the accuracy requirement is often much more stringent and very small step sizes

need to be used to ensure accuracy. On the other hand, around the resting potential, no

significant activity takes place in a neuron. This may allow one to use larger time sizes to

boost the simulation efficiency. As mentioned in section 6, on average a neuron sits around

the resting potential, or is inactive, around 80% of time under typical network conditions.

Properly, in such low-activity periods, exploiting large time steps is beneficial in terms of

boosting the overall simulation efficiency.

In this work, as shown in Fig. 15, we detect active and inactive states by comparing

the membrane potential of each neuron with a predefined threshold voltage. The thresh-

old voltage is chosen conservatively to capture all potential fire activities. As illustrated

in Fig. 15, since such detection is purposely made conservative, a period of time which

is detected as "active" may not be immediately followed by the generation of an action

potential.

34

Threshold

Inactive

Active

Fig. 15. Detecting active and inactive states using a threshold voltage.

B. Acceleration of Simulation in Inactive States

Since there are no firing activities during identified inactive periods, the simulation accu-

racy requirement becomes relaxed. However, with large time steps, the issue of stability

comes into play. As mentioned in the previous sections, a small time step size not exceed-

ing 0.02 ms is required by the explicit integration method such as Forward Euler used to

evaluate HH model variables.

To boost the step size, we adopt and develop more advanced stable numerical inte-

gration methods based on the recently developed telescopic projective integration frame-

work [12, 13]. Often, the long term transient responses of a system are mainly determined

by slow components (corresponding to large time constants) in the network. Fast compo-

nents only exist for a short period of time and dissipate quickly. Since it is often sufficient

to only track the slow components in the transient responses, it is desirable to use a time

size that is comparable to large time constants. In this regard, the problem with a standard

explicit integration method (e.g. Forward Euler) is that the step size has to be comparable to

35

the smallest time constant to maintain stability, a significant constraint on efficiency. This

problem can be alleviated by adopting the projective integration method shown in Fig. 16

t

Outer Projective Step

t0 t1
t2 t3 t12t11t10t9 t24t23t22t21

Inner Loop Inner Loop Inner Loop

Backward Outer Step

Outer Projective Step

Fig. 16. A one-level projective integrator(k=2).

Intuitively, to ensure stability, k+1 explicit integration (e.g. Forward Euler) steps are

taken at the inner loop to integrate the system from, say from time tnto time tn+k+1. Here, a

small step size is used to sufficiently damp fast transient responses. Then, a large projective

or extrapolation step with a step size commensurate with the slow time constants is taken

to project into the forward direction of time to derive the response at time tn+k+1+M (M is

desired to be large)

xn+k+1+M = (M + 1)xn+k+1 − Mxn+k (7.1)

where xn+k+1 and xn+k are the solutions at the last two time points computed at the inner

loop.

From a stability point of view, the sequence of k+1 integration steps with a small step

size exponentially (in k) damps the numerical integration error, while the potential error

amplification incurred by the large projective step is only linear in step size. This makes

36

it possible to maintain a large M without sacrificing stability. Hence, the combination of

several small integration steps and one large extrapolation step boosts the effective step size

of the overall integration scheme.

It can be shown that with proper choices of k and M the projective integrator maintains

the so-called [0, 1] stability [13]. However, in practice, when the eigenvalues of the system

are widely distributed with no clear clustering or the eigenvalue distribution is not known a

priori, the step size of the outer projective step must be conservatively controlled to ensure

stability. In other words, M needs to be chosen conservatively small to ensure the [0, 1]

stability, leading to reduced step size amplification. To maintain good efficiency in general

practical cases, the concept of projective integration has been generalized to a multi-level

telescopic scheme [13]. Fig. 17 illustrates a two-level telescopic projective integration

scheme. The steps viewed at the top level are similar to those of a projective integrator

except that each basic integration step is expanded into a projective integration step at

the bottom level. As such, while at each individual projective integration level, limited

step size amplification is obtained with a relatively small M, significant overall step size

amplification may be obtained in the multi-level telescopic framework.

C. Implementation of Telescopic Projective Integration on GPU

In our implementation, we choose to adopt a two-level telescopic framework with k=3,

M=6. With such choices, the effective step size boost is 2.5X without incurring instability

and any significant numerical error.

In order to manage work loads and minimize wrap divergence, at the beginning of

each outer time step, all the neurons are divided into two groups according to their current

states. The identified active and inactive groups are subsequently processed by all the

threads. During this process, the neurons in the inactive group are integrated using the

37

t

Top Level

Inner Loop
Bottom Level

Fig. 17. A two-level telescopic projective integrator.

faster telescopic projective integration while ones in the other group are simulated using

the conventional forward Euler with 50 small time steps, as shown in Fig. 18.

More specifically, as shown in the pseudocode in Fig. 19, without grouping of neurons,

significant wrap divergence can be resulted. In this case, the execution path for regular

integration takes more than 200 clock cycles to complete. With grouping, each neuron is

first checked to determine its state and put into the corresponding group table. This process

involves conditional branches, however, with each branch takes only about 5 to 10 clock

cycles to complete. After the two group tables are built, they are processed subsequently

without any wrap divergence.

38

A

B

C

D

E

A B E

C D

Detection

V>threshold?

Active group

Inactive group

Y

N

Regular

50-step

Evaluator

Telescopic

Projective

Evaluator

Fig. 18. Neuron dispatch for telescopic projective integration.

39

(a) Update state variables without grouping

1. i=threadIdx.x+blockIdx.x*blockDim.x

2. If(V[i]>THRESHOLD)

3. regularUpdate(i); //more than 200 cycles

4. else

5. telescopicUpdate(i);

6. . . .

(b) Update state variables with grouping

1. cnt1=0;cnt2=0;

2. i=threadIdx.x+blockIdx.x*blockDim.x

3. If(V[i]>THRESHOLD){

4. p=atomicAdd(&cnt1,1); //5-10 cycles

5. active_table[p]=i;

6. }

7. else{

8. p=atomicAdd(&cnt2,1);

9. inactive_table[p]=i;

10. } // go through the whole network

11. . . . __syncthreads();

12. regularUpdate(active_table, cnt1);

13. telescopicUpdate(inactive_table, cnt2);

Fig. 19. Pseudo code showing that using Telescopic Projective method with grouping to
minimize thread divergence and reduce simulation steps.

40

CHAPTER VIII

EXPERIMENTAL RESULTS

A. Experiments Setup

To demonstrate the efficiency of our neural network simulator, we use a neocortical net-

work as an example, which consists of two types of neurons: excitatory pyramidal neurons

and inhibitory interneurons. In the network, 80% neurons are pyramidal neurons and 20%

neurons are interneurons according to biophysical facts. The neuronal dynamics are mod-

eled using Hodgkin-Huxley (HH) models. The parameters we use for the two types of

neurons are shown in Table I [10], where all conductances are in mS/cm2 and all potentials

are in mV . We vary the number of neurons to get network models with different complexi-

ties. Each model is simulated to track one second of network dynamics and the simulation

runtime of different methods are reported.

Table I. Neuron parameter used in this implementation.

Neuron Type gL gNa gK gM EL ENa EK

Pyramidal 0.1 50 5 0.07 -70 50 -100

Interneuron 0.15 50 10 0 -70 50 -100

B. Performance of the Proposed Simulation Techniques

In the first part of the experimental results, we show the benefits resulted from the three

techniques proposed in the previous sections. We include three techniques into the basic

implementation one after the other and show the corresponding performance improvement.

The results are summarized in Table II. In the following, we use "EAI", "LUT" and "TPM"

41

200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3
x 10

4

N, Number of Neurons (x1000)

R
u
n
t
i
m
e

o
f

C
P
U

a
n
d

G
P
U

s
i
m
u
l
a
t
i
o
n

(
s
e
c
)

CPU

GPU

Fig. 20. Runtime comparison between GPU and CPU basic simulations with a time step of
0.02 ms (M=200).

to denote the proposed arithmetic intensity enhancement, GPU look-up table based HH

models and telescopic projective integration method, respectively. We also use N to denote

the number of neurons of the network and M to denote the maximum number of post-

synapses of each neuron.

1. Basic CPU vs. GPU Implementations

First, we compare runtime between the basic GPU and CPU implementations. In basic

implementations, we did not apply any advanced techniques proposed in this thesis work.

The simulation is performed with a time step of 0.02 ms. The time step is also the timing

resolution of the network activity. The runtime comparison is shown in Fig. 20. The

simulation runtime of the two implementations is also reported in Table II and Table III.

42

Table II. Runtimes of the CPU and GPU implementations. Simulation runtimes are
in seconds. Each network model is simulated for one second (real time).
GPU_All denotes the GPU implementation with three proposed techniques includ-
ed (GPU_EAI_LUT_TPM).

of Basic CPU Basic GPU GPU_EAI GPU_EAI_LUT GPU_All
Neurons Runtime Runtime Runtime Runtime Runtime

200k 5641.46 501.74 203.62 11.73 9.42

400k 11311.92 910.43 406.14 23.44 19.85

600k 17000.33 1329.04 613.26 35.8 29.82

800k 22673.95 1795.68 815.86 47.68 39.8

1M 29285.34 2255.84 1023.11 60.1 48.96

Table III. Speedups of the CPU and GPU implementations.

GPU_EAI GPU_EAI_LUT GPU_All GPU_All
of vs. vs. vs. vs.

Neurons GPU Basic GPU_EAI GPU_EAI_LUT Basic CPU
Speedup Speedup Speedup Speedup

200k 2.46X 17.34X 1.25X 599X

400k 2.24X 17.33X 1.18X 570X

600k 2.17X 17.13X 1.20X 570X

800k 2.20X 17.11X 1.20X 571X

1M 2.20X 17.02X 1.23X 599X

43

200 400 600 800 1000
0

500

1000

1500

2000

2500

N, Number of Neurons (x1000)

R
un

tim
e

of
 G

P
U

 s
im

ul
at

io
n

(s
ec

)

GPU
GPU(EAI)

Fig. 21. Runtime performance improvement with EAI (M=200).

2. Speedups of Arithmetic Intensity Enhancement

Second, the proposed Enhancement of Arithmetic Intensity (EAI) technique is applied to

the basic GPU implementation. Fig. 21 shows the runtime performance improvement of

the GPU simulator with EAI. For GPU simulation with EAI, the timing resolution for the

network activity is 1 ms.

Table III shows that the proposed EAI technique provides an average speedup of 2.2X.

3. Speedups of GPU Lookup based HH Models

Based on the GPU based implementation with EAI, the proposed lookup table (LUT) tech-

nique is further introduced. Fig. 22 shows the runtime performance improvement with LUT

models compared with the GPU simulation with only EAI.

Table III shows that the proposed Lookup Table technique provides an additional

speedup of 17X on average.

44

200 400 600 800 1000
0

200

400

600

800

1000

1200

N, Number of Neurons (x1000)

R
un

tim
e

of
 G

P
U

 s
im

ul
at

io
n

(s
ec

)

GPU(EAI)
GPU(EAI + LUT)

Fig. 22. Runtime performance improvement with LUT (M=200).

4. Speedups of Telescopic Projective Integration

Finally, we introduce the proposed telescopic projective integration method (TPM) into the

GPU implementation. The performance improvement introduced by TPM compared with

the previous implementation with EAI and LUT is shown in Fig. 23.

Table III shows that the proposed TPM method can provide an average speedup of

1.2X. A more careful examination reveals that the use of TPM can introduce a more than

2X boost of effective step size for each neuron simulation, hence cutting down that part of

simulation cost by the same factor. However, after applying the previous two techniques

(EAI and LUT), the percentage of runtime spent on transient simulation of individual neu-

rons over the total runtime of network simulation has been significantly reduced. In this

case, the effectiveness of TPM in reducing the total simulation time is somewhat limited.

However, when used as stand alone, it can produce useful runtime speedups. By exploiting

all the three proposed techniques, the GPU simulator is about 600 times faster than the

basic CPU implementation. This speedup reflects the use of graphics processors and also

the proposed algorithmic/implementation improvements.

45

200 400 600 800 1000
0

10

20

30

40

50

60

70

N, Number of Neurons (x1000)

R
un

tim
e

of
 G

P
U

 s
im

ul
at

io
n

(s
ec

)

GPU(EAI + LUT)
GPU(EAI + LUT + TPM)

Fig. 23. Runtime performance improvement with TPM (M=200).

C. GPU Implementation Speedup Over CPU Implementation

We show the overall runtime performance improvement of the GPU implementation with

all three proposed techniques. The results are compared with the CPU implementation also

with those three techniques applied, as shown in Fig. 24, Fig. 25, and Table IV.

D. Comparison on HH and Spiking Model based GPU Simulations

We compare the GPU-based network simulations with HH and Spiking (Izhikevich) neuron

models. The Izhikevich spiking model simulator comes from another publication [20].

All the experiments for comparison between the two simulators are based on the same

neural network setting and run on the same platform. The results show that the simulation

efficiency gap between the two models can be narrowed dramatically with the proposed

three techniques. For the same set of neural networks, the runtime results are given in

Fig. 26 and Table V.

As shown in Table V, the GPU simulation with HH models is two to three times slower

than that with Izhikevich spiking neuron models. It is important to note that this represents

46

200 400 600 800 1000
0

200

400

600

800

1000

1200

1400

N, Number of Neurons (x1000)

R
un

tim
e

of
 C

P
U

 a
nd

 G
P

U
 s

im
ul

at
io

n
(s

ec
)

CPU(EAI + LUT + TPM)
GPU(EAI + LUT + TPM)

Fig. 24. Runtime performance improvement of CPU implementation with all three tech-
niques over the CPU implementation (M=200).

100 200 300 400 500 600 700 800 900 1000 1100
26

26.5

27

27.5

28

28.5

29

N, Number of Neurons (x1000)

S
pe

ed
up

 o
f G

P
U

 o
ve

r
C

P
U

Speedup(M=200)

Fig. 25. Speedups of the GPU implementation with all three techniques over its CPU coun-
terpart implementation.

47

Table IV. Runtimes and speedups of the GPU simulator over its CPU counterpart. Runtimes
are in seconds. The proposed three techniques are used in both implementations.

N CPU_EAI_LUT_TPM GPU_EAI_LUT_TPM Speedup

200k 251.13 9.42 26.66X

400k 536.53 19.85 27.03X

600k 835.51 29.82 28.02X

800k 1104.66 39.8 27.76X

1M 1377.69 48.96 28.14X

100 120 140 160 180 200 220 240
0

2

4

6

8

10

12

N, Number of Neurons (x1000)

R
un

tim
e

of
 G

P
U

 s
im

ul
at

io
n

(s
ec

)

GPU(IZH)
GPU(HH)

Fig. 26. Runtime comparison between GPU simulations with HH and Izhikevich neuron
models (M=100). Runtimes are in seconds

48

Table V. Runtimes and speedups of the HH neuron model based simulation over its Izhike-
vich counterpart on GPU(M=100). Runtimes are in seconds.

N GPU_IZH GPU_HH Speedup

100k 1.5 4.84 1/3.23X

120k 2.05 5.77 1/2.81X

140k 2.58 6.73 1/2.61X

160k 3.03 7.95 1/2.62X

180k 3.56 8.66 1/2.43X

200k 4.03 9.47 1/2.35X

220k 4.4 10.53 1/2.39X

240k 5.1 11.43 1/2.24X

a significant efficiency improvement from the original efficiency gap of 100X, achieved by

using the proposed techniques. As a result, with the proposed techniques, we expect that

HH models may be used to replace Izhikevich models in large-scale network simulations to

explore the relationship between observed network dynamics and the underlying biological

and physiological causes.

49

CHAPTER IX

CONCLUSIONS

In this thesis work, we have exploited recent commodity massively parallel graphics pro-

cessors to alleviate the significant computational costs in HH model based neural network

simulation. We have developed look-up table based HH model evaluation and efficient par-

allel implementation strategies geared towards higher arithmetic intensity and minimum

thread divergence. Furthermore, we have adopted and developed advanced multi-level nu-

merical integration techniques well suited for intricate dynamical and stability characteris-

tics of HH models. With the above techniques, our experimental results have demonstrated

that the presented GPU neural network simulator is about 600X faster than a basic serial

CPU based simulator, 28X faster than the CPU implementation of the same three tech-

niques, and is only two to three times slower than the GPU based simulation using simpler

spiking models for a neural network with one million neurons and 200 million synaptic

connections.

50

REFERENCES

[1] R. Ananthanarayanan, S. K. Esser, H. D. Simon, and D. S. Modha, “The cat is out of

the bag: cortical simulations with 109 neurons, 1013 synapses,” Proc. of Conference

on High Performance Computing Networking, Storage and Analysis, pp. 143–175,

2009.

[2] B. Arnold, Encountering the Book of Genesis, 1st ed. Grand Rapids: Baker Books,

1998.

[3] C. Bernard, Y. C. Ge, E. Stockley, J. B. Willis, and H. V. Wheal, “Synaptic integration

of nmda and non-nmda receptors in large neuronal network models solved by means

of differential equations,” Biological Cybernetics, vol. 70, pp. 267–273, 1994.

[4] M. A. Bhuiyan, V. K. Pallipuram, and M. C. Smith, “Acceleration of spiking neural

networks in emerging multi-core and gpu architectures,” 2010 IEEE International

Symposium on Parallel & Distributed Processing, Workshops and PhD Forum, pp.

1–8, May 2010.

[5] J. C. Butcher, Numerical methods for ordinary differential equations, 2nd ed. Hobo-

ken, NJ: Wiley, 2008.

[6] N. T. Carnevale and M. L. Hines, The NEURON book, 1st ed. New York, NY:

Cambridge University Press, 2009.

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron, “A performance

study of general-purpose applications on graphics processors using cuda,” Journal of

Parallel and Distributed Computing, vol. 68, pp. 1370–1380, 2008.

[8] J. Y. Chen, “Gpu technology trends and future requirements,” The 2009 IEEE Inter-

national Electron Devices Meeting, pp. 1–6, 2009.

51

[9] B. W. Connors and M. J. Gutnick, “Intrinsic firing patterns of diverse neocortical

neurons,” Trends Neuroscience, vol. 13, pp. 99–104, 1990.

[10] A. Destexhe, D. Contreras, and M. Steriade, “Mechanisms underlying the synchro-

nizing action of corticothalamic feedback through inhibition of thalamic relay cells,”

Journal of Neurophysiology, vol. 79, pp. 999–1016, 1998.

[11] M. Djurfeldt, M. Lundqvist, C. Johansson, and M. Rehn, “Brain-scale simulation of

the neocortex on the ibm blue gene/l supercomputer,” IBM Journal of Research and

Development, vol. 52, pp. 31–41, April 2010.

[12] W. Dong and P. Li, “Parallelizable stable explicit numerical integration for efficient

circuit simulation,” Proc. of IEEE/ACM Design Automation, pp. 382–385, July 2009.

[13] C. Gear and I. Kevrekidis, “Telescopic projective methods for parabolic differential

equations,” Journal of Computational Physics, vol. 13, pp. 99–104, 1990.

[14] E. Hairer and G. Wanner, Solving ordinary differential equations II: Stiff and

differential-algebraic problems, 2nd ed. Berlin: Springer, 2004.

[15] A. Hodgkin and A. Huxley, “A quantitative description of membrane current and its

application to conduction and excitation in nerve,” Journal of Physiology, vol. 117,

pp. 500–544, 1952.

[16] E. M. Izhikevich and G. Edelman, “Large-scale model of mammalian thalamocortical

systems,” Proc. of the National Academy of Sciences of the United States of America,

vol. 105, pp. 3593–3598, 2008.

[17] E. Kandel, J. Schwartz, and T. Jessell, Principles of Neural Science, 4th ed. New

York, NY: McGraw-Hill Medical, 2000.

52

[18] J. D. Lambert, Numerical Methods for Ordinary Differential Systems: The Initial

Value Problem, 1st ed. Chichester, UK: Wiley, 1991.

[19] G. Moore, “Cramming more components onto integrated circuits,” Electronics,

vol. 38, p. 8, 1965.

[20] J. M. Nageswaran, N. Dutt, J. L. Krichmar, A. Nicolau, and A. Veidenbaum, “Efficient

simulation of large-scale spiking neural networks using cuda graphics processors,”

Proc. of International Joint Conference on Neural Networks, pp. 3201–3208, 2009.

[21] Nvidia GPU programming guide, Nvidia Corporation.

[22] E. M. Odabasioglu, “Which model to use for cortical spiking neurons,” IEEE Trans-

action on Neural Networks, vol. 15, pp. 1063–1070, 2004.

[23] G. M. Shepherd, The Synaptic Organization of the Brain, 5th ed. USA: Oxford

University Press, 2003.

[24] M. Wang, B. Yan, J. Hu, and P. Li, “Simulation of large neuronal networks with

biophysically accurate models on graphics processors,” The 2011 International Joint

Conference on Neural Networks, pp. 3184–3193, 2011.

[25] Wgsimon, “File:transistor count and moore’s law,” Wikipedia, retrieved on 10 April

2012, <http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore%27s_Law_-

_2011.svg>.

[26] B. Yan and P. Li, “Reduced order modeling of passive and quasi-active dendrites for

nervours system simulation,” Journal of Computational Neuroscience, 2011.

53

VITA

Name: Mingchao Wang

Address: Department of Electrical and Computer Engineering,

Texas A&M University,

214 Zachry Engineering Center,

TAMU 3128

College Station, TX 77843

Email Address: mingchaowang@gmail.com

Education: B.S., Automation, Zhejiang University, 2007

M.S., Electrical Engineering, Texas A&M University, 2012

