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ABSTRACT 

 

Demand Effects in Productivity and Efficiency Analysis. (May 2012) 

Chia-Yen Lee, B.S.; B.B.A., National Chengchi University; 

M.S., National Tsing Hua University 

Chair of Advisory Committee: Dr. Andrew Johnson 

 

 Demand fluctuations will bias the measurement of productivity and efficiency. 

This dissertation described three ways to characterize the effect of demand fluctuations.  

 First, a two-dimensional efficiency decomposition (2DED) of profitability is 

proposed for manufacturing, service, or hybrid production systems to account for the 

demand effect. The first dimension identifies four components of efficiency: capacity 

design, demand generation, operations, and demand consumption, using Network Data 

Envelopment Analysis (Network DEA). The second dimension decomposes the 

efficiency measures and integrates them into a profitability efficiency framework. Thus, 

each component’s profitability change can be analyzed based on technical efficiency 

change, scale efficiency change and allocative efficiency change. 

 Second, this study proposes a proactive DEA model to account for demand 

fluctuations and proposes input or output adjustments to maximize effective production. 

Demand fluctuations lead to variations in the output levels affecting measures of 

technical efficiency. In the short-run, firms can adjust their variable resources to address 

the demand fluctuates and perform more efficiently. Proactive DEA is a short-run 
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capacity planning method, proposed to provide decision support to a firm interested in 

improving the effectiveness of a production system under demand uncertainty using a 

stochastic programming DEA (SPDEA) approach. This method improves the decision 

making related to short-run capacity expansion and estimates the expected value of 

effectiveness given demand.  

 In the third part of the dissertation, a Nash-Cournot equilibrium is identified for 

an oligopolistic market. The standard assumption in the efficiency literature that firms 

desire to produce on the production frontier may not hold in an oligopolistic market 

where the production decisions of all firms will determine the market price, i.e. an 

increase in a firm’s output level leads to a lower market clearing price and potentially-

lower profits. Models for both the production possibility set and the inverse demand 

function are used to identify a Nash-Cournot equilibrium and improvement targets which 

may not be on the strongly efficient production frontier. This behavior is referred to as 

rational inefficiency because the firm reduces its productivity levels in order to increase 

profits.  
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CHAPTER I 

INTRODUCTION 

 

1.1 Background and Motivation 

Productivity and efficiency analysis measures the performance of firms, which transform 

input resources into output products or services (Coelli et al., 2005). The efficient 

frontier (or production function) can be constructed to characterize a benchmark to 

measure how efficiently production processes use inputs to generate outputs; given the 

same level input resources, inefficiency is indicated by lower levels of system output. In 

a competitive market, if the firm is far from the production function and operates 

inefficiently, either productivity should increase to make the firm competitive or the 

firms would likely go out of business. In practice, a true production function is not 

observed and must be estimated. Production theory provides a useful framework to 

estimate the production function and efficiency levels using the parametric functional 

forms (e.g. Stochastic Frontier Analysis, SFA) (Aigner et al., 1977; Meeusen and van 

den Broeck, 1977) or nonparametric benchmarking technique (e.g. Data Envelopment 

Analysis, DEA) (Charnes et al., 1978; Banker et al., 1984). Using productivity and 

efficiency analysis the firm can identifies inefficient performance, then develop 

productivity improvement strategy and reallocate resources. 

 

 

   
This dissertation follows the style of European Journal of Operational Research. 
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 Due to rapid development in information technology, global logistics, and 

electronic commerce, business environments change swiftly and are increasingly 

uncertain. Environment uncertainty challenges business operations. In particular, 

demand uncertainty creates critical shocks to business environments. Short product life 

cycle, product customization, and price competition contribute to variability in demand 

and lead to changes in service requirements. Demand uncertainty will affect capacity 

installation, product pricing, product-mix, on-time delivery, vendor selection, and order 

allocation. Demand uncertainty pushes the firm to build a more flexible business model 

focusing on core competence using concepts such as flexible manufacturing system 

(Vokurka and O'Leary-Kelly, 2000), lean manufacturing (Shah and Ward, 2003), Just-

In-Time (JIT) and Kanban production system (Ohno, 1988a; 1988b), build-to-order 

(Holweg and Pil, 2001), assemble-to-order, etc. Other firms address demand uncertainty 

by developing common platforms of information transparency and sharing information 

across the supply chain using information technology (Simchi-Levi et al., 2007). 

Electronic Data Interchange (EDI) and Point-of-Sale (PoS) systems significantly shorten 

the lead time of data collection and improve vertical integration (Monteverde and Teece, 

1982; Premkumar et al., 1994). In addition, firms develop strategic alliances and build 

relationships that alternate between competition and cooperation such as Vendor-

Managed Inventory (VMI) (Waller et al., 1999) and risk pooling which aggregates 

demand to reduce demand variation (Simchi-Levi et al., 2007). There is not doubt that 

demand fluctuations also change the rules of thumb for typical measures in productivity 

analysis.  
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 This study addresses three issues related to demand fluctuations when 

performing productivity and efficiency analysis. The first issue is that demand 

fluctuation bias the estimates of efficiency. The second issue is demand fluctuation 

create a gap between demand and output level as a surplus or shortage of capacity. The 

third issue is firms that increase output to become technically efficient may actually 

reduce overall profits because increasing the overall quantity in the market will lead to 

lower prices. 

 First, demand fluctuations lead to biased estimates of efficiency. A decrease in 

actual output can be the result of insufficient demand. If actual output is reduced by 

changes in demand, then the efficiency is underestimated relative to what the firm could 

have produced. Demand fluctuations can create bias in two ways: 1) if forecasted 

demand is underestimated, capital resources might be under used to avoid creating 

excess inventories.  In this case higher output could have been achieved, but due to 

forecasting error and production lead times, the firm achieves lower productivity. 2) if 

units sold is used as the output measure, insufficient realized demand will cause 

measured output to be lower. Similarly, in a panel data analyses, technical regress is 

often attributed to production issues, when in reality it may be a result of a reduction in 

demand. Thus, productivity analysis attributes changes in demand to production (Lee 

and Johnson, 2011; 2012). In chapter II, a network DEA model to decompose the 

efficiency of production system is described. This method separates the demand and 

production process in efficiency analysis. 
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 Second, demand fluctuations cause a surplus or shortage of capacity. Capacity 

surplus occurs when the demand realized is less than the supply that can be produced by 

the facility; or alternatively, capacity shortage occurs where the demand for a product 

exceeds the capacity of the facility. In this study, "effective" output is defined as the 

output products or services produced and consumed. Over or under production causes 

profit loss. Even though demand fluctuations make demand forecasting and capacity 

installation decisions challenging, in the short run, firms can change variable input 

resources to adjust output levels and partly address demand uncertainty. This sort of 

capacity flexibility is critical to achieving cost savings in demand downturns or to 

increase profits when demand is unexpectedly high (Alp and Tan, 2008). In chapter III 

the proactive DEA model is described to recommend adjustments in variable input levels 

to match demand and maximize the effectiveness ( i.e., the difference between demand 

and production output level). 

 Third, typically productivity analysts do not consider demand and assume all 

firms want to be as productive as possible. However, microeconomic theory tells us 

firms in less than perfectly competitive markets can reduce production levels and 

increase the market price for a product, in some cases increasing the firm’s profits.  In 

oligopoly markets a particular firm's output level along with the output level of all other 

firms jointly determine the price, whereas in a monopoly market a firm has absolute 

control over price by selecting its output level. In these situations, a firm that changes the 

quantity supplied will affect the clearing price. From a revenue efficiency perspective, 

an inefficient firm that increases output to become technically efficient may actually 
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reduce overall profits by increasing the market quantity and causing the market price to 

fall (Johnson and Ruggiero, 2011). Thus in this case a firm is said to be rationally 

inefficient in the sense that a firm is maximizing its profit by intentionally operating at 

lower productivity levels. In chapter IV this study, an inverse demand function is used to 

identify a Nash-Cournot equilibrium and the profit maximizing output level. 

 

1.2 Research Aims and Methodologies 

This dissertation describes the integration demand effects into a productivity analysis 

framework. Figure 1.1 proposes the functional position of productivity and efficiency 

analysis (PEA) within the production planning framework. Currently there is not a link 

between PEA and the demand management function, thus this dissertation develops this 

link shown with the dashed arrow. PEA is a tactical-level decision and part of mid-term 

production planning. There are two services which PEA provides - performance 

benchmarking and production guidance. The former, PEA can provide an ex-post 

analysis estimating efficiency from the dataset of multiple inputs and multiple outputs; 

alternatively, PEA can be used in an ex ante analysis to suggest guidelines of resource 

allocation. However, currently PEA is used on production data and ignores demand 

information which may bias efficiency measures intended to characterize operational 

performance. 
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Figure 1.1 Research position in production planning and control (revised from Lin, 

2006) 
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1.3 Significance and Objectives 

The objectives of the research is to develop mathematical models to account for demand 

effects and the related uncertainty in productivity and efficiency analysis. The current 

productivity and efficiency analysis literature introduces a series of methodologies to 

assess production performance. However, in practice demand fluctuations will affect the 

production output level and bias the efficiency estimates. Output levels are partially 

decided based on expected demand. Thus, efficiency measures may capture not only 

production performance but also demand effects and customer relationships. If the 

production function is strictly defined as the relationship between input resource and 

output level and will be used to measure production performance, demand must be 

modeled. Insufficient demand levels cause overproduction and excess inventory; a 

higher demand level leads to underproduction and limited profits. The typical efficiency 

analysis does not model demand. Characterizing the effects of demand is critical to 

improving benchmarking techniques in a variety of applications. 

 Three tasks are executed to accomplishing the objective 

1. Develop a Network DEA model to decompose the production system and decompose 

profitability efficiency change. The results of this model are used to identify 

improvement strategies. This model separates the production process from the 

demand process to allow efficiency estimates of both processes. 

2. Develop a Proactive DEA model to identify ex ante operational strategies and 

maximize effectiveness. The firm adjusts variable inputs to change the output level and 

match demand levels. 



 

 

8 

3. Develop a Nash equilibrium model to identify the firms' profit maximizing production 

strategy. This is important in an oligopolistic market in which price is a function of 

the output level of all firms. 

 

1.4 Overview of This Study 

This dissertation is organized as follows. Chapter I provides a background, significance 

and motivation of the demand effect in productivity and efficiency analysis, and 

describes the research aims. Chapter II describes a Network DEA model characterizing a 

manufacturing system or service system or hybrid of the two. This model addresses the 

issue of biased efficiency estimates caused by ignoring the effects of demand. An 

empirical study of the U.S. airlines industry is presented to demonstrate the proposed 

model. To deal with demand fluctuations in the short run, chapter III proposes a 

Proactive DEA model to measure "effectiveness". An application to Japanese 

Convenience Stores (CVS) is presented. Chapter IV demonstrates a Mix Complementary 

Problem (MCP) to find the Nash-Cournot equilibrium in an oligopoly market. Chapter V 

concludes with remarks and further research directions for considering demand issues in 

productivity analysis. 
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Figure 1.2 Overview of this study 
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*Reprinted with permission from “Two-dimensional efficiency decomposition to 
measure the demand effect in productivity analysis” by Chia-Yen Lee and Andrew L. 
Johnson, 2012. European Journal of Operational Research, 216, 584-593. Copyright 
[2011] by Elsevier B.V. 
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CHAPTER II 

EFFICIENCY DECOMPOSITION BY NETWORK DEA* 

 

2.1 Introduction 

Analysts of production systems use a variety of techniques to assess performance and 

search for improvement alternatives. Singh et al. (2000) claim three main categories of 

performance measurement techniques: index measurement, linear programming, and 

econometric models. The first includes the concept of total factor productivity or 

financial ratio, while the latter two categories are based on production function. The 

production economics approach, Hackman (2008), can be used to estimate the frontier 

production function and characterize how efficient production processes use inputs to 

generate outputs. Consequently, given the same input resource, a system is termed 

inefficient when its outputs levels are lower than other potential production processes. 

However, the reduced actual output can be caused by insufficient demand, i.e. demand 

fluctuations can bias productivity measures and lead to a decrease in measured 

efficiency. Similarly, in panel data analysis, the Malmquist productivity index quantifies 

efficiency change and technology change over time. Technical regress is often attributed 

to production issues when in actuality it may result from lack of demand. This study 

incorporates demand into the analysis and attributes some changes in production to 

demand. 
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The literature on the demand effect in productivity analysis divides into two 

streams. One stream uses parametric equilibrium models to measure total factor 

productivity (TFP) change. Nakiri and Schankerman (1981) discuss the reasons for 

productivity slowdown observed between 1965 and 1978. The authors propose a model 

for decomposing changes in TFP that identifies the contributions of factor-price effect, 

demand effect, R&D effect, and technical change. They conclude the productivity 

slowdown of American manufacturing was mainly due to the deceleration in demand 

growth. Appelbaum and Berechman (1991) provide a market equilibrium model that 

considers supply (cost), demand, and government regulatory conditions. The model 

builds an output demand function to represent the relationship between the supply-side 

provision of firms and the demand-side consumption of customers, calculates the cost 

growth rate, and decomposes it into changes in outputs scale, factor prices and technical 

efficiency. It also calculates the growth rate of cost efficiency to clarify the effects on 

demand and regulatory conditions. Good et al. (1999) further describe static and 

dynamic factor demand models to measure TFP growth and its decomposition. 

 The second literature stream models demand generation or consumption as a 

component of a production system. In other words, a firm uses its marketing or sales 

departments to change its demand level. Studying the performance evaluation of a 

transportation system, Fielding et al. (1985) distinguish between the production process 

and the consumption process, arguing that output consumption is substantially different 

from output production since transportation services cannot be stored. They propose 

three performance indicators for a transit system: cost efficiency, service effectiveness, 
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and cost effectiveness. More specifically, they define service effectiveness as service 

consumption normalized by the service output. However, their study only considers a 

single factor productivity ratio which assumes that other resources are unlimited and 

other outputs are unrelated. Chen and McGinnis (2007) discuss the limitations of 

focusing on a single productivity indicator rather than attempting to model all important 

factors in a production system. Lan and Lin (2005) and Yu and Lin (2008) study similar 

transportation systems and use Data Envelopment Analysis (DEA) and Network DEA 

models to characterize a consumption process. Ertay and Ruan (2005) present a 

methodology with one efficiency measure to identify the most efficient number of 

operators and the efficient assignment of labor in a cellular manufacturing system. DEA 

is used to measure efficiency and a simulation model is used to model capacity design 

and demand generation. Ertay et al. (2006) present a DEA approach to evaluate a facility 

layout with both quantitative and qualitative metrics. They apply an analytic hierarchy 

process (AHP) to aggregate the qualitative data such as flexibility in volume and variety 

and quality, and quantitative criteria such as material handling cost, adjacency score, 

shape ratio, and material handling vehicle utilization. Although these and similar studies 

integrate demand factors and the variable levels of demand, they do not considered the 

network structure of production or a dynamic productivity analysis. 

 Noting that the demand and the production system characterized in service 

production systems typically differ from those in manufacturing due to the types of 

demand described below, this study models the demand generation process (i.e. a 

marketing department) explicitly as a component of the production system. Figure 2.1 
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describes a manufacturing production system in terms of a serial model where the input 

resource is transformed into actual output product (Lee and Johnson, 2011). The first 

component, capacity design process, identifies the maximal output level as the peak 

output or the historical best performance. The demand generation process attempts to 

generate sufficient demand to support maximal output without idle capacity. The 

operations process transforms raw material into final product. Finally, the demand 

consumption process measures realized demand – the amount of final product consumed 

by customers. Manufacturers tend to receive demand based on the contractual 

agreements made between a manufacturer and a customer with defined sales quantities 

and prices prior to production. Thus, the manufacturer commonly develops an internal 

demand-generating process due to long production lead times (unlike service production 

systems which tend to rely mainly on non-contract demand requested informally by 

customers after production). The result is an external demand consumption process. 

Since services are typically non-storable commodities which must be immediately 

consumed by customers once transformed from inputs, i.e. demand consumption can be 

inefficient in that many service opportunities go unused. 

 
Figure 2.1 Manufacturing vs. service production systems 
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In addition, changes in demand can also have an effect on the measurement of 

productivity or profitability changes over time as estimated through frontier shifts 

indicating either technical progress or regress. Nishimizu and Page (1982) decompose 

total factor productivity into technology progress and change in efficiency. Färe et al. 

(1992, 1994) develop the explicit measurement of productivity change based on the 

Malmquist productivity index (MPI) proposed by Cave et al. (1982), which uses 

Shephard’s input distance function (Shephard, 1953) to estimate inefficiency 

nonparametrically. The productivity change estimated via MPI can also be decomposed 

into two components: change in technology and change in efficiency. Färe et al. (1994) 

develop an additional component, change in scale. Alternatively, Ray and Mukherjee 

(1996) use the Fisher productivity index and propose a decomposition into efficiency 

change, technical change described by the cost function index, change in scale efficiency 

captured by the average cost index, change in allocative efficiency, and an adjustment 

index which captures the pure effect of a change in the attributes on the measured 

productivity index. However, their decomposition is restricted to the single-output 

technology and mixed-period measures, making interpretation difficult. Zofio and Prieto 

(2006) present a decomposition of the Fisher index into the MPI and an economic 

component consisting of allocative efficiency and a residual allocative term based on a 

generalized distance function which employs a relative weight of the input- and output-

oriented projection paths to the frontier. Their decomposition also has some limitations, 

because the residual terms with mixed-period measures are difficult to interpret and 

weighting the projections is debatable. Recently, Kuosmanen and Sipiläinen (2009) 
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propose an exact decomposition of the Fisher productivity index into five components: 

change in efficiency, technical change, change in scale efficiency, change in allocative 

efficiency, and price effect. Their decomposition reveals that the change in profitability 

efficiency is the product of only three components (change in efficiency, change in scale 

efficiency, and change in allocative efficiency) and is invariant to both technical change 

and price effect. Note that the price effect begins to integrate demand-side effects into 

the productivity analysis. This study extends Kuosmanen and Sipiläinen work to make 

the effects of demand more explicit. 

 

2.2 Literature Review of Productivity in the Airline Industry 

An airline’s production system is a hybrid of the manufacturing and service systems 

described above. Any individual airline’s production process is characterized by 

transforming capital, labor, energy, and materials into passenger and cargo services. The 

sources of uncertainty are capital utilization rates, changing technology, labor-intensive 

services, and demand diversity. Obviously, an airline operates under enormous pressure 

to maintain the high service rates that give it a competitive edge. The existing academic 

literature discusses the productivity change in the global airline industry in light of price 

changes in crude oil and jet fuel, the introduction of ecommerce, rising interest rates, 

deregulation, etc. 

 Sickles et al. (1986) consider the passage of the US federal Air Deregulation Act 

of 1978 (ADA) in improving the ability of price adjustment and competition capability 

and identify the effect of a rapid increase in the price of jet fuel. The result of analyzing 
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allocative inefficiency from 1970 to 1981 supports the common perception that 

deregulation reduces inefficiency and the total cost of distortions from cost-minimizing 

allocation. However, Sickles et al. attribute the largest benefits to administrative reforms 

in the early 1970s, including multiple route authorizations and show-cause proceedings 

to reduce cost and time in obtaining certificates, rather than ADA itself. Good et al. 

(1993a) investigate differences in productivity growth between European and US 

carriers during the period 1976–1986. Using a Cobb-Douglas stochastic frontier 

production model, potential efficiency gains of European liberalization are identified; 

however, while Great Britain favors liberalization, France and Italy oppose it since their 

airlines benefit from high levels of subsidies to cover operating losses. Ray and 

Mukherjee (1996) employ an efficiency decomposition of the Fisher productivity index 

in the US airline industry in 1983–1984 and quantify the productivity growth in each 

component. The comprehensive decomposition provides more detailed benchmarking 

information for productivity improvement. 

 Semenick Alam and Sickles (2000) use DEA and MPI to estimate the 

productivity growth of US airlines between 1970 and 1990 and employ second-stage 

regression with contextual variables to capture the efficiency difference caused by firm-

specific characteristics. They use cointegration analysis to examine the existence of a 

stationary relationship between non-stationary variables over time and indicate that 

efficiency estimates of firms within the industry should be co-integrated since one firm’s 

efficiency-enhancing technology should be adopted by other firms, else all will be driven 

out of the industry. Semenick Alam and Sickles identify a narrowing of the differences 
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in efficiency over time between the top performers and the other firms. Färe et al. (2007) 

employ MPI to estimate productivity growth after deregulation from 1979 to 1992 and 

show that service quality, such as direct routings and arriving on time indeed affects 

industry productivity. Nevertheless, slow productivity growth indicates a decline in the 

quality of service post-deregulation. The additional research regarding dynamic 

efficiency or deregulation issue in airline industry, see Good et al. (1993b, 1995), 

Sickles (1985), Sickles et al. (2002). 

 The method proposed in this study provides an integrated decomposition of a 

production system and decomposes profitability change. The decomposition of a 

production system can characterize a typical manufacturing system where demand is 

realized and products are built-to-order, a typical service production system with spot 

demand, or a hybrid of the two. 

 Some previous studies neglect demand fluctuations which can have a significant 

impact on productivity. To address this omission, we apply 2DED to an empirical study 

of the US airline industry from 2006 to 2008. We decompose the production system into 

capacity design, demand generation, operations, and demand consumption, while 

characterizing potential frontier shifts over time by decomposing profitability efficiency 

change into technical efficiency change, scale efficiency change, and allocative 

efficiency change. 

 This section is organized as follows. Section 2.3 describes the modeling 

framework, illustrates the decomposition of the production system, and explicitly 

quantifies the role of demand in efficiency analysis. The 2DED model is presented for 
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the purpose of productivity diagnosis and improvement. Section 2.4 describes a method 

to estimate production capacity via a sequential model, and then introduces a Network 

DEA model for efficiency decomposition of the production system. Section 2.5 focuses 

on profitability change and reviews both Shephard’s distance function and the 

Malmquist productivity index, while integrating demand into a decomposition of change 

in profitability efficiency. Section 2.6 discusses the results of the case study and Section 

2.7 concludes. 

 

2.3 Model Description 

2.3.1 Production System Decomposition 

Our goal is to help a firm allocate its resources and efforts more effectively to improve 

system performance. Figure 2.2 illustrates an integrated production model of a hybrid of 

a manufacturing and a service production system. In order to identify the sources of 

inefficiency, we decompose the system efficiency into four components: capacity 

design, demand generation, operations, and demand consumption. In general, we note 

that a typical firm’s industrial engineering division is responsible for capacity design 

(capacity planning). The marketing division is responsible for pricing and demand 

generation. The manufacturing and general maintenance divisions are responsible for 

operations. The sales, marketing and public relation divisions are responsible for demand 

consumption. Thus, depending on the source of inefficiency management is likely to 

have to work with different departments. To describe the decomposition 
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comprehensively, we develop a Network DEA model and define the linking variables 

below. 

 

 

Figure 2.2 Process decomposition of a hybrid production system 

 

2.3.1.1 Capacity Design 

The first component is the capacity design process which defines the physical capacity 

of the production system and represents a limitation on long-term system performance. 

Poor capacity design would include purchasing capital that is incompatible with existing 

or other purchased capital, selecting outdated technologies, etc. The inputs to this phase, 

Fixed input, are the resources used to generate the infrastructure of the production 

system and support the operations of the production process. Peak output is the maximal 

output level the firm can achieve; it characterizes the production system’s physical 

capability. Section 2.4.1 explains how to estimate peak output. 

 The efficiency of the capacity design component is defined as the ratio of the 

fixed input resources used to the production capacity. A critical assumption at this stage 
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is sufficient demand exists to use the firm’s current inputs completely. The design phase 

has a long-term impact on production performance. 

 

2.3.1.2 Demand Generation 

The second component is the demand generation process in which the sales group 

attempts to generate enough demand to completely utilize the built-in production 

capacity. The output of this stage is Expected demand, which is the sum of contracted 

demand and expected spot demand. The firm might generate more actual output as a 

buffer to capitalize on potential spot demand. For the purposes of simplification the 

expected spot demand is characterized as a proportional expansion of the contract 

demand or an expected value calculated from a historical distribution. Section 2.6.1 

explains expected demand and Scheduled demand as they apply to the US airline 

industry. Typically contract demand is tractable and fulfilled more easily than spot 

demand. It is based on an agreement between the firm and a customer and has a specific 

sales quantity and price associated with it. However, in some situation such as the airline 

industry, the number of passengers flown is highly stochastic. Passengers might change 

their flight routes or cancel the itineraries just before the flight takes off. This uncertainty 

leads to differences between the contracted demand and the realized demand. This issue 

will be discussed in Section 2.6.3 in terms of contextual variables. 

 The efficiency of the demand generation component is defined as the ratio of 

expected demand to peak output. Typical productivity analysis assumes all deviations 
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from the efficient frontier are attributed to inefficiency in the production system. Under 

these standard assumptions, insufficient demand may bias productivity measures. 

 

2.3.1.3. Operations 

The third component is the operational process in which raw materials are transformed 

into final goods or services. Thus, Actual output is the number of final products 

generated from the production process. In the airline industry it is characterized by 

Available output, the number of passenger-miles and freight-ton-miles generated. 

 The efficiency of this component is defined as the ratio of actual output to a 

weighted aggregation of expected output and variable input. In general, observed output 

may be reduced by scheduling inefficiencies, machine breakdown, inconsistent 

operational performance, etc. 

 

2.3.1.4. Demand Consumption 

The fourth component is the demand consumption process in which the sales group tries 

to sell any production beyond the contracted demand to maximize profit. Realized 

demand is the realized quantity of product or output customers actually consume at the 

market price after production. It is the sum of contract demand and realized spot 

demand. Our empirical study of the airline industry considers contract demand and spot 

demand as scheduled demand and non-scheduled demand, respectively. 

 The efficiency of this component is defined as the ratio of realized demand to 

actual output. This study focuses on the scenario in which realized demand (contract 
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demand plus spot demand) is less than actual output. If the realized demand exceeds 

actual output, some customer requests will be off-loaded to other providers, substituted 

with a similar but different product, filled from inventories, produced using overtime, 

renegotiated for delivery to a subset of customers, etc. For the empirical study the 

linkage between the four components of efficiency and airlines service context is shown 

in Appendix A, where table A1 indicates the subcomponent and its corresponding 

factors mapping to flight factors in application. 

 

2.3.2 Two-dimensional Efficiency Decomposition (2DED) 

As mentioned, our 2DED model is a tool for productivity diagnosis and improvement. 

The two-dimensions for decomposition are the network structure of the firm in each 

cross-section of time (described in detail in Section 2.4) and profit efficiency change 

between periods over time (described in detail in Section 2.5). In the empirical study we 

collect panel data with the necessary variables to analyze the four components of the 

hybrid production systems defined above (see Section 2.6.1 and Appendix A for an 

explicit definition). The panel data will be analyzed as a series of cross-sectional 

analyses and then an index number approach will be used to investigate the change in 

profitability efficiency and its components. An index number is a metric to quantify 

productivity growth. If the index number is larger than 1, there is productivity growth, 

otherwise, productivity is constant or regresses; the details are described in Section 

2.5.1. Decomposing an index number identifies the components of profitability change 

and can aid in identifying strategies a firm may use to improve. 
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 Detail components of profitability allow us to scrutinize each airline firm’s 

technical innovation, scale of production, and resource allocation. Figure 2.3 shows that 

we initially collect the crosssectional data in period    and add the new data collected in 

period    to the data set. In this way we use Diewert’s sequential reference set method 

(Diewert, 1992) to estimate efficiency. Using Fisher’s index (Kuosmanen and Sipiläinen, 

2009) allows us to estimate the profitability change between the two periods. In other 

words, for one dimension, the components of the production system are identified in a 

cross-section; in the second dimension, panel data provides a dynamic efficiency 

analysis of profitability change. Table 2.1 illustrates that efficiency change can be 

decomposed into 12 components to help managers further identify improvement 

strategies. 

 

 
Figure 2.3 Two-dimensional efficiency decomposition (2DED) 
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Table 2.1 2DED illustration 

 Hybrid production system 
Capacity 
design 

Demand 
generation 

Operations Demand 
consumption 

Profitability 
Technical 

Efficiency change estimates Scale 
Allocative 

 
 

2.4 Efficiency Decomposition of Production Process 

2.4.1 Capacity Estimation 

To construct our Network DEA model, we first need to estimate the capacity level if no 

capacity data can be collected directly. For the purposes of this study we use Johansen’s 

(1968) definition of physical capacity, which is the maximum amount that can be 

produced with existing plant and equipment (fixed inputs) given an unlimited 

availability of variable factors. Eilon and Soesan (1976) extend the concept from a single 

output to a multiple output case and propose a measure involving the radial expansion of 

the output vector given current technology and a fixed input vector. Based on Eilon and 

Soesan’s definition, Färe et al. (1989) employ a nonparametric approach to obtain the 

capacity measure with a cross-sectional dataset. 

 The capacity is not directly observable, thus we will estimate the peak observed 

output as a proxy for capacity. In order to estimate the peak observed output, we need to 

identify a reference set to which we compare each observation in each period of time. 

Diewert (1980, 1992) describes a sequential method which constructs the production 

reference set by adding new observations to augment each previous period’s reference 

set. The method assumes that a production process can be compared to any previously 
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observed production process. Therefore, our empirical study uses Diewert’s sequential 

method to estimate the firm specific capacity via output-oriented variable returns to scale 

(VRS) data envelopment analysis (DEA) and the reference set constructed from all 

previous period’s observations of the firm’s production.     
  is the  th fixed input 

resource of  th firm in tth period,     
  is the amount of actual output for the  th product 

of  th firm in  th period, and     is the DEA envelopment multiplier variable of the  th 

firm in  th period.     is the efficiency estimate of firm   in the current period  . For 

firm  , the linear programming formulation is: 

 

 

 

 

tk

qYY

iXXts

Max

kt

stk

kt

a

qrsrs

stk

a

qktkt

stk

f

irs

f

iktkt

rs





















,  ,0         

1        

  ,        

  ,    ..

    

,...,0,

,...,0,

,...,0,











                                     (2.1) 

 

If the efficiency is equal to 1, the physical capacity is equal to the number of actual 

outputs in period s , otherwise, the physical capacity is equal to the actual output 

multiplied by the efficiency estimate rs , that is, rs

a

qrs

c

qrs YY  . Then, the time shifts to 

the next period and the new observation is added into the reference set, and the process 

repeats. 
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2.4.2 Efficiency Measurement by Network DEA 

We use Kao’s (2009) Network DEA model1 for efficiency decomposition because it 

accounts for the interrelationship of the components of the production system rather than 

estimating efficiencies independently. Kao’s model was developed under the constant 

return to scale (CRS) assumption. However, we relax this assumption and estimate the 

model assuming VRS. Let f

iktX  and v

jktX  be the thi  fixed and thj  variable input 

resource, and c

qktY , e

qktD , a

qktY , and r

qktD  be the capacity, expected demand, actual output, 

and realized demand of the thq  product of the thk  firm in tht  period respectively. f

iv , v

jv

, c

qz , e

qu , a

qz and r

qu  are the associated multiplier variables respectively. cz 0 , eu 0 , az 0 and 

ru 0  are the intercept variables. We estimate the input-oriented efficiency P

rsE  of the 

production system of firm r  in period s  with a sequential reference set using the 

following formulation. 

The proposed VRS model estimates technical efficiency and provides scale 

efficiency estimation by means of Kao’s CRS model. The formulation (2.2) adds the 

variables cz 0 , eu 0 , az 0 and ru 0 . These variables characterize the intercept and relax the 

condition that the production function must pass through the origin. 

 

 

 

                                                 
1 An important property of Kao’s network DEA model is that the whole system is efficient only 

when all components are efficient in contrast to the traditional network DEA (Färe and Grosskopf, 2000). 
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 By solving this optimization model, the optimal multipliers, *f

iv , *v

jv , *c

qz , *e

qu , 

*a

qz and *r

qu  are obtained and efficiency can be decomposed. Recall that estimating the 

efficiency of each component allows the firm to identify which component will give the 

largest system productivity gain if improved. Let D

rsE , S

rsE , O

rsE  and C

rsE  denote 

efficiency of production design, efficiency of demand generation, efficiency of 

operations and efficiency of demand consumption respectively: 
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2.5 Efficiency Decomposition of Profitability Change 

As mentioned, Kuosmanen and Sipiläinen (2009) propose to decompose the change in 

profitability efficiency into change in technical efficiency, change in scale efficiency, 

and change in allocative efficiency. More interestingly, change in profitability efficiency 

is invariant to technical change and change in price effect, i.e. competition and price 

fluctuation would not affect the change in profitability efficiency in their decomposition. 

Kuosmanen and Sipiläinen also assume that demand is beyond a firm’s influence, 

however this assumption may not hold in many industries. 

 

2.5.1 Decomposition of Profitability Efficiency Change 

Now, we describe how the network decomposition of the production process can 

provide additional information for a decomposition of profitability efficiency 

characterizing a broader set of production processes and including firms that influence 

their demand levels through sales, advertising, etc. Let jit Rx 

  denote an input factor 

of the production system in period t , and qt Ry   denote an output factor of the 

production system in period t .     (   )                              is the 

technology defining the production possibility set at period t  by a piece-wise linear 

convex function enveloping all observations. Model (2.7) has a dual formulation with 

dual multipliers, kt , kt , kt  and kt , and illustrates the feasible region of production 

possibility set tT  and the multipliers associated with the four components of the 

production system decomposition: 



 

 

29 

:),{(
~

yxT t  0
},...,1{},...,1{

  
   Kk st

c

qktkt

Kk st

c

qktkt YY  , q  

           0
},...,1{},...,1{

  
   Kk st

e

qktkt

Kk st

e

qktkt DD  , q  

                                 
0

},...,1{},...,1{

  
   Kk st

a

qktkt

Kk st

a

qktkt YY  , q            (2.7) 

                                 

r

qt

Kk st

r

qktkt DD  
  },...,1{

 , q  

                                 

f

it

Kk st

f

iktkt XX  
  },...,1{

 , i  

                                 

v

jt

Kk st

v

jktkt XX  
  },...,1{

 , j  

                                 
1

},...,1{

 
 Kk st

kt , 1
},...,1{

 
 Kk st

kt , 

                                 
1

},...,1{

 
 Kk st

kt , 1
},...,1{

 
 Kk st

kt , 

                          0,,, ktktktkt  , k , },...,1{ st  }.  
 

Note that VRS is allowed through this characterization of the production possibility set. 

Defining ),( yxD t

x  generated directly from the above model as the inverse of Shephard’s 

input-oriented distance function allows us to measure the production efficiency of an 

observation at period t  relative to the production possibility set at period t . In other 

words, the input-oriented technical efficiency (ITE) is defined as 

}
~

),(|inf{),( tt

x TyxyxD   . 2  Similarly, the output-oriented technical efficiency 

(OTE) is defined as }
~

)/,(|inf{),( tt

y TyxyxD   .  

                                                 
2 We set ),( yxD t

x  as the inverse of Shephard’s input-oriented distance function allowing ),( yxD t

x  to 
be obtained directly from the proposed model. This change allows a more natural intuition regarding 
productivity change, i.e. 1),(/),(1  yxDyxD t

x

t

x  represents technical progress between periods t  and 

1t , vice versa 1),(/),(1  yxDyxD t

x

t

x  shows technical regress. 
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 Now, we obtain the cost function and revenue function as 

}
~

),(|{min),( t

x

t TyxxwywC   and }
~

),(|{max),( t

y

t TyxyppxR   , given input 

price w  and output price p  respectively. Then, the profitability function 
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  presents the maximal return to Dollars achievable 

with the given input and output price. We define the profitability efficiency (ρE) as the 

ratio of the profitability of an observation and the maximum profitability given the 

specific input and output price 
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 While such envelopment models allow us to easily calculate the efficiency of the 

component, the use of dual multiplier models facilitates the analysis of the cost, revenue, 

and profitability functions. For example given a firm r  in period s , we can calculate the 

profitability function of production system by the following formulation, where r

qrsp , 

f

irsw  and v

jrsw  are the unit prices for the thq  product with realized demand r

qrsD , the thi  

fixed input f

irsX , and the thj  variable input v

jrsX  respectively. The formulation below is 

similar for the cost and revenue function except that we replace the objective function by 

minimizing  
i j

v

jrs

v

jrs

f

irs

f

irs XwXw  and maximizing 
q

r

qrs

r

qrsDp  respectively: 
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Note that we can augment or replace the constraints in the dual model (2.8.1)-(2.8.12) 

with different equations and can adjust the objective function to estimate the profitability 

function of each component. Equations (2.8.13)-(2.8.18) for the profitability function of 

capacity design, (2.8.19)-(2.8.27) for the demand generation, (2.8.28)-(2.8.35) for 

operations, and (2.8.36)-(2.8.40) for the demand consumption appear in Appendix A.  

 As mentioned, Kuosmanen and Sipiläinen (2009) also propose an exact 

decomposition of the Fisher ideal TFP index. The Fisher ideal TFP is the product of the 

change in the components of technical efficiency ( TE ), technical change ( Tech ), 

change in scale efficiency ( SE ), change in allocative efficiency ( AE ), and change in 

price effect ( PE ). Interestingly, Kuosmanen and Sipiläinen show that the change in 

profitability efficiency ( E ) is invariant to Tech  and PE , i.e. E  has three parts: 

TE , SE , and AE . E  already captures technical change and price change 
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through the target point and the price change is characterized through the identification 

of the allocatively efficient benchmark. The formulation of change in profitability 

efficiency is shown in appendix A.  

 

2.5.2 Profitability Efficiency and Financial Performance Index 

This section identifies a connection between profitability efficiency and financial 

performance indices in order to motivate the relevance of the less widely used metric 

profitability efficiency. Return on investment (ROI) is considered a crucial indicator of a 

firm’s financial performance. The Dupont ROI formula (Brown, 1927) decomposes this 

index into two ratios. The first is the ratio of return on sales (ROS) which measures a 

firm’s ability to generate profit related to its sales revenue. The second is the ratio of 

investment turnover which measures how effectively a firm can generate revenue using 

investments. The Dupont ROI formula is: 

Turnover Investment  ROS        

investment

revenue

revenue

profits
  investment / profits  ROI



                          (2.9) 

The ROS component reveals the profitability ratio which measures the revenue to cost 

(Banker et al., 1993; 1996):  

ityprofitabil

1
1

revenue

cost  revenue
  

revenue

profits
  ROS 


                (2.10) 

Under a fixed investment turnover rate the higher the profitability the higher the ROI. 

This illustrates a strong relationship between profitability and ROI. 
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 There are three reasons for employing a profitability efficiency index to assess a 

firm’s productivity performance. First, profitability is a more reasonable index to assess 

productivity than a profit index, because the profitability function is homogenous of 

degree zero in prices. Namely, while the price doubles, the profit doubles, but the 

profitability does not change. This unscaled nature of profitability is similar to 

productivity and represents the input-to-output performance. Second, profitability 

efficiency is a benchmarking technique that builds on the concept of the production 

possibility set and clearly identifies the frontier and facilitates for comparisons, in 

contrast to profitability or profit indices. Third, simple output-input ratios do not reflect 

all of the critical factors in performance evaluation (Chen and McGinnis, 2007), because 

partial productivity ratios relating a single output to a single input postulate that all other 

resources are always adequate and the production of any other outputs are irrelevant. 

Therefore, we select profitability efficiency and change in profitability efficiency as our 

indices. 

 

2.6 Empirical Study 

Our empirical case study analyzes the US airline industry from 2006 to 2008 using a 

data set of 15 firms. The data was gathered from Air Carrier Financial Statistics and Air 

Carrier Traffic Statistics published by the Bureau of Transportation Statistics within the 

Research and Innovative Technology Administration (RITA, 2009). Each observation is 

one airline firm in a given year. The data definitions of input and output factors for the 

productivity analysis are described in Section 2.6.1. Section 2.6.2 gives a detailed 
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analysis of each firm’s production process employing a Network DEA model for process 

decomposition. Further profitability efficiency change is quantified for each component 

and the production system as a whole. Section 2.6.3 summarizes the efficiency 

differences between civil airlines and cargo airlines using a contextual variable 

approach. 

 

2.6.1 Data Description 

We characterize the resources used in the production system as: aircraft fleet size as a 

fixed input, fuel and employees as variable inputs, and capacity, scheduled demand, and 

available output as intermediate factors with the two dimensions, passenger and freight; 

realized demand is the final output (see Appendix A for the raw data). We estimate 

capacity peak output by fixed input and scheduled demand data via the sequential 

method in Section 2.4.1. The following describes the resources. 

 

2.6.1.1 Inputs 

Aircraft fleet size (FS) is the average number of aircraft employed in a firm over a 

particular year. However, a firm may own different models of airplanes purchased in 

different years, giving rise to a vintage issue, Johansen (1968). To address the 

heterogeneity of capital issue, we transform the data based on number of seats per model 

type so that each fleet is measured in Boeing-737 equivalent units. In general, since a 

firm’s fleet is the most significant component of capital and is difficult to change in the 

short-term, we model the capital as a fixed input. We obtain firm-specific prices by 
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dividing the flight equipment capital reported in the firms’ balance sheets by the average 

number of equivalent Boeing- 737 aircraft. 

 Fuel (FU) is the number of gallons consumed annually, estimated by fuel 

expenses over the average jet fuel cost per gallon. Note that FU is a variable input 

because its usage can be controlled on a day-to-day basis. 

 Employee (EP) is defined as the number of employees during the year, which 

includes flight shipping staff, pilots, flight attendants, and managers but not ground 

shipping drivers. Average prices are calculated by salaries and benefits expenses over 

number of employees. EP is modeled as a variable input since firms can partially adjust 

this variable in the short-term. 

 

2.6.1.2 Demand and Output Levels 

Scheduled passenger demand (SPD) is the scheduled revenue passenger-miles for a 

particular year. We measure passenger service using revenue passenger-miles, the 

number of revenue-paying passengers aboard the airplane multiplied by the distance 

traveled measured in miles. The average price per passenger mile for SPD is calculated 

as the scheduled passenger revenue divided by passenger-miles. 

 Scheduled freight demand (SFD) is defined as the demand of scheduled revenue 

freight-ton-miles for a particular year. We measure freight service using revenue freight-

ton-miles, the weight of freight and mail measured in tons multiplied by the distance 

flown measured in miles. The average price for SFD is calculated as the scheduled 

freight and mail revenue divided by ton-miles.  
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 Available passenger output (APO) is the actual output of available seat-miles 

during the year. Available seat-miles is calculated as the number of seats including first 

class and economy on an airplane multiplied by the distance traveled measured in miles. 

The average price for APO is equivalent to the price used in scheduled passenger 

demand. 

 Available freight output (AFO) is the actual output of available freight-ton-miles 

during the year. Available freight-ton-miles is calculated as the number of available tons 

of freight and mail multiplied by the distance flown measured in miles. Note that it is 

calculated by subtracting revenue passenger-ton-miles from total available ton-miles. 

The average price for AFO is equivalent to the price employed in scheduled freight 

demand. 

 Realized passenger demand (RPD) is the realized demand of scheduled and 

nonscheduled revenue passenger-miles during the year. The realized demand is 

calculated as the sum of scheduled and nonscheduled revenue passenger-miles. The 

average price for RPD is calculated by total passenger revenue over scheduled and 

nonscheduled passenger-miles. 

 Realized freight demand (RFD) is the realized demand of scheduled and 

nonscheduled revenue freight-ton-miles during the year. The realized demand is 

calculated as the sum of scheduled and nonscheduled revenue freight-ton-miles. The 

average price for RFD is calculated by total freight and mail revenue over scheduled and 

nonscheduled ton-miles. 
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2.6.1.3 Capacity Estimation 

Peak passenger output (PPO) is the maximal output level of revenue passenger-miles 

during the year. We estimate it using the sequential frontier method described in Section 

2.4.1 with aircraft fleet size as fixed input and available passengers as the output. The 

average price for PPO is equivalent to the price in scheduled passenger demand. 

 Peak freight output (FPO) is defined as the maximal output level of revenue 

freight-ton-miles during the year. We estimate it using the sequential frontier method 

with aircraft fleet size as fixed input and available freight as the output. The average 

price for FPO is equivalent to the price employed in scheduled freight demand. 

 The flight data is ordered according to capacity design, demand generation, 

operations, and demand consumption. Table 2.2 shows the factor mapping table of the 

production process and the data set. 

 

Table 2.2 Factor mapping table of production process and airline data set 

Components Factor (ref. Figure 2) Flight Factor 

Capacity Design Fixed Input FS 

Peak Output PPO, PFO 

Demand Generation Peak Output PPO, PFO 

Expected Demand SPD, SFD 

Operations Variable Input FU, EP 

Expected Demand SPD, SFD 

Actual Output APO, AFO 

Demand 

Consumption 

Actual Output APO, AFO 

Realized Demand RPD, RFD 
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2.6.2 Productivity Change Analysis 

Table 2.3 presents the results of our efficiency decomposition analysis based on network 

structure for a partial set of the firms in 2006 (the entire table appears in Table A2 of 

Appendix A). Note that the efficiency estimates and thus the decomposition are based on 

the production possibility set of all previous periods because Diewert’s sequential 

method is used.  

 Consider Alaska Airlines with an input-oriented technical efficiency (ITEff) of 

0.89. Further investigation of the components of efficiency reveals that it is not an issue 

of poor capacity design or operational inefficiency, but rather that the system 

inefficiency is mainly caused by insufficient demand generation and consumption (both 

efficiencies are 0.94). We conclude that management should focus on raising demand 

rather than making operational changes, perhaps by asking sales and marketing to 

address the productivity concerns. In contrast, Continental Airlines’ system efficiency of 

0.81 is largely due to poor capacity design and unfavorable operation process (both 

efficiencies are 0.90). We conclude that management should engage in capacity redesign 

and investigate operation behavior to improve overall productivity. 

 Table 2.4 and table 2.5 show how 2DED provides process and dynamic 

efficiency analysis. Recall that we separate the efficiency decomposition of profitability 

change into changes in technical efficiency, change in scale efficiency, and change in 

allocative efficiency and decompose them into our four components. Note that TE , 

SE , and AE  are not mutually independent, but have different strategic 

interpretations. TE  characterizes the firm’s change in efficiency and productivity, 
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which is largely driven by process improvement. SE  measures a firm’s ability to adjust 

scale size in the long-term. AE  indicates a firm’s ability to allocate input and output 

resource to achieve maximal profitability with respect to a specific price. 

 Table 2.4 shows the weighted average profitability efficiency change for the 

production system and for each component. Within each component performance is 

decomposed into technical, scale, and allocative effect for the 15 airlines. The average is 

weighted by the dollar measure of peak output. Observe the overall progress in the 

average profitability change from 2006 to 2008, where the average profitability change 

of production system is 1.015. The capacity design component is 1.02, demand 

generation is 0.99, operational component is 1.00, and demand consumption is 0.99. 

Considering each component individually, the 2% improvement on average of capacity 

design efficiency over the time horizon indicates that the airlines have been proactive in 

improving their capacity installation. Note also that the profitability efficiency changes 

in demand generation and consumption components (around 0.99) indicate that some 

airlines are failing to generate sufficient demand and to stimulate product consumption.3 

The operations component represents no significant average change in profitability. 

Further investigating the yearly effect, profitability regresses in 2007–2008 and nine 

firms experience profitability decline (67% regress in the design component, 89% in 

demand generation, 33% in operation, and 78% in demand consumption). These results 

indicate that most firms could improve productivity through stimulating demand and 

improved marketing. Table 2.4 also shows that the variation of capacity design is larger 

                                                 
3 The demand-related components have statistically significant differences from the design component by 
t-test with α value equal to 0.1. 
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than the other three components in 2006–2008. We conclude that the design process is a 

significant component and will influence profitability. 

 

Table 2.3 Technical, scale, allocative, and profitability efficiency decomposition 

Firm Production System Design Generation Operations Consumption 
ITE ISE IAE ρE ITE ISE IAE ρE ITE ISE IAE ρE ITE ISE IAE ρE ITE ISE IAE ρE 

AirTran 
Airways 0.97 0.71 0.79 0.55 0.94 0.73 1.00 0.68 0.90 0.91 1.00 0.82 1.00 0.91 0.95 0.86 0.90 0.91 1.00 0.82 

Alaska 
Airlines 0.89 0.65 0.96 0.55 1.00 0.74 1.00 0.74 0.94 0.86 0.92 0.74 1.00 0.90 0.94 0.84 0.94 0.86 0.92 0.74 

American 
Airlines 1.00 0.71 1.00 0.71 1.00 0.87 1.00 0.87 1.00 0.89 1.00 0.89 1.00 0.86 1.00 0.86 1.00 0.89 1.00 0.89 

American 
Eagle  0.92 0.42 0.84 0.32 0.92 0.51 1.00 0.46 1.00 0.80 1.00 0.80 1.00 0.74 0.86 0.64 1.00 0.80 1.00 0.80 

Continental 0.81 0.96 0.94 0.73 0.90 0.89 1.00 0.79 1.00 1.00 1.00 1.00 0.90 0.92 0.93 0.77 1.00 1.00 1.00 1.00 

 

 

Table 2.4 2DED of US airline industry 

Overall 
Components 

2006-2007 2007-2008 2006-2008 (GeoMean) 
E  TE  SE  AE  E  TE  SE  AE  E  TE  SE  AE  

Production 1.035 0.999 1.024 1.012 0.996 1.015 0.994 0.987 1.015 1.007 1.009 0.999 
Design 1.052 1.039 1.014 0.998 0.989 0.990 0.999 1.001 1.020 1.014 1.007 0.999 
Generation 0.995 0.998 1.003 0.994 0.985 0.992 0.998 0.994 0.990 0.995 1.000 0.994 
Operations 0.990 0.993 0.999 0.999 1.009 0.998 1.014 0.997 1.000 0.995 1.007 0.998 
Consumption 0.996 0.999 1.003 0.994 0.988 0.993 0.998 0.997 0.992 0.996 1.001 0.995 

 

 Table 2.5 shows the detailed 2DED for a partial set of the airlines in 2006-2008; 

the full table which includes the average (Geometric Mean, GM) change of production 

system is summarized in appendix A. The figure shown in appendix A maps the average 

TE  and AE  of the production system by each airline on a two-dimensional 

coordinate (Figure A1), and figure A2 uses SE  and AE  to construct a similar figure. 

Thus, the four quadrants reveal the strategy of productivity improvement. Using 
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SkyWest Airlines (point K) as an example, observe a high performance in profitability 

change E  of 1.091, an above-average TE  of 1.023 and an SE  of 1.071, and a 

relatively poor AE  of 0.996. Further drilling down into AE  via efficiency 

decomposition reveals an AE  value of capacity design of 1.00, demand generation of 

0.98, operations of 1.00, and demand consumption of 0.98. Thus, SkyWest Airlines 

should strive to improve its resource allocation in demand generation and consumption 

process to catch up with its competitors.  

 

Table 2.5 2DED of US airline firms 
      Production Design Generation Operations Consumption 
Firm # Year                                                             
AirTran 
Airways A 

06->07 1.12 0.97 1.10 1.04 1.08 1.00 1.07 1.01 1.06 1.05 1.01 1.00 0.96 1.00 0.97 0.99 1.06 1.05 1.01 1.00 
07->08 1.07 1.07 1.03 0.97 1.03 1.02 1.01 1.00 1.05 1.05 0.99 1.01 0.96 1.00 0.99 0.97 1.05 1.05 0.99 1.01 

GM 1.09 1.02 1.06 1.00 1.05 1.01 1.04 1.00 1.05 1.05 1.00 1.00 0.96 1.00 0.98 0.98 1.05 1.05 1.00 1.00 

Alaska 
Airlines B 

06->07 0.99 1.00 1.01 0.99 1.01 1.00 1.01 1.00 0.97 0.99 1.00 0.98 1.02 1.00 1.00 1.02 0.97 0.99 1.00 0.98 
07->08 0.92 0.98 0.96 0.97 0.97 0.97 1.00 1.00 0.98 1.01 0.99 0.98 0.95 1.00 1.00 0.95 0.98 1.01 0.99 0.98 

GM 0.95 0.99 0.99 0.98 0.99 0.99 1.00 1.00 0.97 1.00 0.99 0.98 0.99 1.00 1.00 0.99 0.97 1.00 0.99 0.98 

American 
Airlines C 

06->07 0.98 1.00 1.00 0.98 0.97 0.97 1.01 1.00 1.01 1.00 1.01 1.00 0.97 1.00 0.98 0.99 1.01 1.00 1.01 1.00 
07->08 0.99 0.98 1.02 0.99 1.00 0.98 1.02 1.00 0.98 0.99 1.00 1.00 1.01 1.00 1.00 1.00 0.98 0.99 1.00 1.00 

GM 0.99 0.99 1.01 0.98 0.99 0.98 1.01 1.00 1.00 0.99 1.01 1.00 0.99 1.00 0.99 1.00 1.00 0.99 1.01 1.00 

  

Appendix A includes airlines that are largely cargo service carriers as indicated 

by triangle points N and H. Observation H is below the average of productivity growth. 

However, this result may seem counter-intuitive because it performs well in terms of the 

profitability efficiency levels shown in Table A2. Note that firms with high levels of 

efficiency initial tend to have small productivity changes in the future. In general, this 

phenomenon is the result of the public good nature of technology that leads to spillover 

effects from leaders to followers as the laggards learn from the innovators and play 

catch-up (Semenick Alam and Sickles, 2000). Here, the distinct nature of civil and cargo 
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service may weaken the catch-up effect between these two types of providers. We 

discuss the efficiency differences below. 

 

2.6.3 Contextual Variables 

Service type plays an important role and significantly affects the earning structure of 

airline firms. As previously mentioned, there are two business strategies, one of which 

focuses primarily on civil and the other on cargo services. A hypothesis test (Banker, 

1993) is commonly used to assess which group is more efficient. 

 We use three hypothesis tests: two F-tests assume inefficiency follows 

exponential distribution and half-normal distribution respectively; the Kolmogorov–

Smirnov test imposes no assumption on the distribution of inefficiency. All three tests 

have p-values less than 0.05, indicating that the distribution of profitability inefficiency 

differs significantly between civil and cargo carriers. 

 We also use the two-stage approach proposed by Ray (1988, 1991) to evaluate 

how the business models affect the profitability efficiency of the production systems. 

This model has received considerable attention in the recent literature (Banker and 

Natarajan, 2008; Simar and Wilson, 2012). See Johnson and Kuosmanen (2009, 2012) 

for alternative models and an insightful discussion to this debate. In the two-stage 

approach, a dummy variable equal to 1 represents a cargo airline service, while 0 

represents a civil airline service. Table 2.6 shows the results of a second stage least 

square regression model, in which efficiency is regressed against the dummy variable. 

Note that the profitability efficiency of the overall production system in cargo service is 
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21% more efficient than civil service, and that efficiency is significantly affected by the 

capacity design component. Two main reasons support these results: the distinct nature 

of the passenger shipping network structure, and the more consistent demand of the 

cargo shipping structure. 

 Most passengers prefer direct flights and are generally unwilling to endure long 

travel times. In contrast packages may use a variety of routes to arrive at their final 

destination. Thus, fewer routing constraints and the possibility of consolidation at hub 

locations benefit cargo-shipping airlines. Often, passengers are flexible, choosing which 

airline to fly with, and even substituting driving or postponing travel by air. Thus, 

traveler’s uncertainty can significantly reduce civil carriers’ profitability. In contrast, the 

package delivery industry has fewer firms and substitutes for their services. 

Nevertheless, the slopes of the other three components show a less significant difference 

between civil and cargo services because both airline types rely on the performance of 

marketing forecasts, operations control, and sales effort rather than capacity design with 

respect to earning structure. 

 

Table 2.6 Profitability efficiency difference shown by second stage regression 

Regression Production Design Generation Operations Consumption 
Intercept 0.59 0.68 0.85 0.81 0.85 

Slope 0.21 0.31 0.10 0.02 0.10 

 

2.7 Concluding Remarks 

This study has proposed a two-dimensional efficiency decomposition (2DED) model as 

a diagnostic tool for identifying the sources of production system and profitability 
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efficiency change. A typical production system consists of four components: capacity 

design, demand generation, operations, and demand consumption. Efficiency was 

decomposed via a rational Network DEA model, and the profitability efficiency change 

was decomposed into technical efficiency change, scale efficiency change, and 

allocative efficiency change. An empirical study of profitability change in the US airline 

industry from 2006 to 2008 illustrated and validated the proposed method. 

 We found that the regress of productivity was mainly caused by demand 

fluctuation in 2007–2008 rather than technical regression in production capabilities. 

Furthermore, our contextual variable analysis suggests that the profitability efficiency of 

the overall production system in cargo service was 21% more efficient than civil service 

and that the capacity design component significantly affected efficiency. 

 We believe that the proposed model can be generalized and applied to other 

production systems for which a network structure can be identified and decomposed. For 

example, a supply chain system is usually defined by its materials suppliers, 

manufacturers, distribution centers, and retailers, hence, Network DEA efficiencies 

could properly estimate these entities. We suggest that the use of such decomposition 

enhances the rapid identification of sources of inefficiency as well as providing support 

for managerial troubleshooting. 
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CHAPTER III 

EFFECTIVE PRODUCTION BY PROACTIVE DEA 

 

3.1 Introduction 

Data envelopment analysis (DEA) is a deterministic mathematical programming 

approach to productive efficiency analysis. Given the same input resources, a production 

unit is called efficient if its outputs levels are higher than other production processes. 

However, in practice, efficiency measure may be affected by demand fluctuations rather 

than the capability of production system. Reduced actual output can be caused by 

insufficient demand. In other words, demand fluctuations can bias productivity 

measures. A typical DEA study cannot model these demand effects. Thus, this research 

develops a productivity and “effectiveness” analysis to distinguish demand effects from 

productive efficiency using stochastic programming techniques in the short-run capacity 

expansion problem. The literature regarding the demand effect in productivity and 

efficiency analysis is limited. Recently, Lee and Johnson (2011) decompose a production 

process into capacity design, demand generation and operations components, and 

measure the productivity change of each component. They distinguish the production 

process from the demand generation/consumption process. The results indicate technical 

regress can be caused by demand fluctuations rather than production capabilities. Further 

the capacity design component generally has a significant effect on long-term 

productivity. To measure the demand effect in the short-run capacity planning problem, 

this study proposes the “truncated production function” and estimates “effectiveness” so 
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as to distinguish from efficient production where the output levels are not limited by the 

customers’ demands. 

 Lots of studies investigate the capacity expansion problem but limited literature 

on the short-run capacity expansion problem. Short-run capacity expansion addresses 

different issues from typical capacity expansion problem. The typical capacity expansion 

is a well-known economic and optimization problem (Manne, 1961; Luss, 1982). To 

define it rigorously, let decision variable t
x  be number of working hour of machine 

needed at period t , t
y  be the number of products generated, t

D  be the demand quantity, 

A  be the required machine hour per unit, C  be the cost per machine hour and P  be the 

selling price of product. The firm would like to maximize profit and finally solution 

shows the requirement of working hour. The optimization model can be formulated as 

equation (3.1). 
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The primary issues in the capacity expansion problem are determining the expansion 

sizes, expansion times, and expansion locations (or capacity types) and the objective 

function is to minimize the discounted costs with respect to expansion process (Luss, 

1982). In general, all the factors of production can be adjusted without limits of time 

period. The capacity expansion problem is a component of long-run production analyses. 

However, in the short-run, the stocks of appliances capital of production are practically 
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fixed, but employment varies with demand (Marshall, 1920). In other words, the plant 

size and location might be fixed but variable factors such as material could be adjusted 

to control the production output level and satisfy the demand. Moreover, since the 

quantities of fixed factors are held constant in the short run, Stigler (1939) argues that 

the quantitative variations of output can be described in terms of the law of diminishing 

returns and marginal productivity theory while all but one of productive factors keep 

constant in quantity, remaining one adjusting in quantity. Wilson and Eckstein (1964) 

claim long run and short run economic analysis represents different productivity 

behaviors. They focus on the long-run tend and short-run cyclical behavior of 

productivity, and provide an interpretation of cyclical changes to an analysis of unit 

labor costs and price movements. They conclude the long-run cost curve forms an 

envelope of short-run cost curve when plant capital is fixed in short run but variable in 

long run. Thus, after distinguishing the characteristics of long run and short run, this 

study measures the marginal product of variables inputs through a DEA frontier and 

allows the adjustment of resource to influence output levels to handle demand 

fluctuations in short-run. 

 The capacity expansion problem with demand fluctuation is popularly discussed 

in the late 1990s. The internet shock and commodity customization caused the 

manufacturing industry to transition from a traditional manufacturing model to a service-

oriented business model, emphasizing customer satisfaction, decreasing lead-times and 

characterized by a more uncertain environment. New issues such as product diversity, 

larger demand fluctuations, and shorter product life cycles came to the forefront. 
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Considering the stochastic nature of demand, the typical capacity expansion problem can 

be extended to uncertain demand and formulated as (3.2) (Birge and Louveaux, 1997). 

Let t
D
~  be a random variable of demand and the firm would like to maximize expected 

profit. 
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Robust optimization (RO) is proposed in Mulvey et al. (1995) to handle noisy and 

uncertain demand with respect to large number of scenarios in the capacity expansion 

problem. RO is a general stochastic programming (SP) formulation which identifies a 

solution as robust if the solution remains “close” to optimal for any realization of 

scenarios and identifies a model as robust if solution is “almost” feasible for all 

scenarios by introducing error variables to measure infeasibility. Thus, the objective 

function can represent a tradeoff between solution and model robustness. Zhang et al. 

(2004) considers a capacity expansion problem involving multi-product, multi-machine 

and nonstationary stochastic demand, and solves efficiently an equivalent minimum-cut 

problem via a network structure. In addition, flexible manufacturing systems (FMS) 

have become well-known and popular to allow manufacturers to quickly respond to 

variability in both the items and the quantity demanded (Fine and Freund, 1990). Fine 
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and Freund (1990) propose a cost-flexibility model formulated as two-stage stochastic 

programming with recourse to support product-flexible manufacturing capacity 

investment. The first stage determines the investment level in either dedicated capacity 

or the more costly flexible capacity, and then after demand is realized, a second stage 

analysis specifies the production levels given the first-stage investments. 

This chapter discusses the convenience stores. The high uncertainty of customer 

demand and logistics environment is like the nature in semiconductor manufacturing. In 

additions, high-tech industries are characterized by capital intensity, high costs related to 

capital expansion, complicated processes and long production lead times. In these 

industries, short-run capacity adjustments are critical to profit margins and long-run 

financial well-being. Benavides et al. (1999) discussed the long-run optimal scale and 

timing of wafer fab construction using a Brownian motion model of demand and 

suggests a conservative deployment policy. Namely better late than early deployment of 

capacity, rather than a sequential deployment of capacity, is suggested to avoid idle 

resources and to maximize profit. Hood et al. (2003) considers the network flow 

associated with multiple products, operations, and tool groups, and develops a multi-

period stochastic programming model with discrete demand scenarios to determine the 

allocation of tool sets that is robust to demand uncertainty and change in product mix. 

Karabuk and Wu (2003) introduce strategic capacity planning under demand and 

capacity uncertainty, while considering the distinct perspectives of marketing and 

manufacturing where product managers in marketing would like to pursue order 

fulfillment but manufacturing managers prefer to pursue minimizing operating costs. 
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The authors formulate a multi-stage stochastic program and compare centralized and 

decentralized planning strategies. 

  This chapter’s contribution is distinguished from previous capacity expansion 

studies. First, we employ DEA to estimate production performance allowing for short-

run capacity expansion decisions developing a proactive DEA model. The objective of 

the traditional capacity expansion problem attempts to minimize operational costs, 

maximize revenues or fulfill orders focusing on a specific firm. Thus, these models are 

normative and highly dependent on the abstraction of the production process. Applying 

traditional capacity expansion models, the decisions are completely dependent on the 

accuracy of the normative model. However, using a production function estimated from 

observed production processes assures the feasibility of the recommended short-run 

capacity adjustment. Second, effective production, defined as the product generated from 

production system to be consumed by realized demand, complements the typical 

efficiency analysis. The demand effect biasing productivity analyses can be identified 

via efficiency and effectiveness estimates to clarify the source of poor performance. 

Third, this study considers diminishing marginal benefits of inputs and estimates the 

marginal product which is typical ignored in the short-run capacity expansion problem. 

By ignoring the diminishing marginal rate of return when estimating responses to 

growing demand, typical capacity expansion methods assume a constant marginal 

product and expand resource to meet demand. However, by considering diminishing 

marginal return, capacity expansion decisions to increase resources may severally 

underestimate the resources necessary to be able to produce the demand required and 
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result in cost ineffective outcomes. In other words, in some cases, it may not be cost 

effective to fill demand, thus reducing resources to decrease output levels and obtain 

better effectiveness may be preferred. 

Mulvey et al. (1995) validates the benefits of the proactive approach and the 

benefits of SP which allows for resource adjustments after forecasting demand. For this 

reason, the present study introduces a proactive DEA model using stochastic 

programming (SP) techniques to estimate effectiveness under demand uncertainty. The 

definition and properties of the truncated production function are discussed from 

viewpoint of production economics. Then, we illustrate the relationship between 

efficiency and effectiveness. The marginal product estimation and SP model are 

developed to support short-run capacity expansion decision in a stochastic environment 

focusing on the quantity analysis without price information. Finally the numerical 

example and application to Japanese convenience store (CVS) data illustrates the 

interesting interpretation and insights regarding the proposed model.  

 This study is organized as follows. Section 3.2 defines a truncated production 

function and illustrates the relationship between efficiency and effectiveness. Section 3.3 

describes capacity adjustment in terms of the marginal product of inputs, and shows 

single-output marginal products can be estimated via differential characteristics of DEA 

frontier. Stochastic programming models introduced in section 3.4 involve scenario-

based approach and two-stage recourse approach. Criteria for assessing quality of 

solution in light of expected value of perfect information (EVPI) and value of stochastic 

solution (VSS) are described and developed. The model is formulated as geometric 
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programming problem; section 3.5 introduces a technique to convexify the problem 

providing a solvable formulation which approximates global optimum solution. Then, 

section 3.6 gives a numerical example without capacity adjustment and section 3.7 

illustrates the method with an empirical study of Japanese convenience store to validate 

the SPDEA model. Finally, section 3.8 concludes the section. 

 

3.2 Effective Production 

3.2.1 Truncated Production Function 

The production function defines the maximum output that can be produced given the 

quantities of input resources. Let FX  be the fixed input resources, VX  be the variable 

input resources, and Y  be the single-output level generated from production system. A 

standard production function with a single output can be shown as equation (3.3) and 

satisfies the properties of nonegativity, weak essentiality, monotonicity, and concavity 

(Coelli et al., 2005). 

),( VF XXfY   (3.3) 

In this study, effective output is defined as the output product or service generated by the 

production system to be consumed via customer demand. Furthermore, we can define 

the truncated production function as the maximum demand for a product or service that 

can be fulfilled given the quantities of the input resources. A firm is achieving effective 

production if the effective output level is generated by the truncated production function. 

 The truncated production functions are defined based on the demand level. To 

maintain generality, the demand is firm-specific, each firm can have the different 
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demand levels, and the truncated production function is defined as production function 

truncated by the demand of the specific firm. Let D  be the potential realized demand 

and EY  be the effective output which is the smaller of the two variables: actual output Y  

and realized demand D . The truncated production function with output level EY  is 

formulated as equation (3.4). 

)),,(min(),min( DXXfDYY VFE   (3.4) 

In a short-run analysis, the fixed input levels cannot be adjusted, so the production 

function is a function of variable input. Figure 3.1 illustrates the short-run truncated 

production function and its properties. The point A presents a supply-demand 

equilibrium where ),( V

A

F

AA

E

A XXfYYD  . That is, a firm can produce the optimal 

output level without unfulfilled demand or excessive inventory. In addition, it is straight-

forward to validate the properties- nonegativity, weak essentiality, monotonicity, and 

concavity of truncated production function since the minimum function of a production 

function and constant, demand, is a convex polyhedral.  

 
Figure 3.1 Truncated production function with firm-fixed demand 
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Proposition 3.1: The truncated production function with firm-specific demand defined 

as )),,(min( DXXfY VFE  satisfies the underlying properties of nonegativity, weak 

essentiality, monotonicity, and concavity. 

 

 The definition of truncated production function implies some notable issues. 

Given this definition, if actual output exceeds demand, then inventories are built and the 

inventory created characterize an ineffective gap; vice versa, if demand exceeds 

production capacity, the shortage products become an ineffective gap with respect to the 

demand level. Thus, the truncated production function is suitable for characterizing push 

production system with perishable goods, make-to-order production systems (pull 

systems), or service systems where services or inventories cannot be stored. The 

proposed model is applied to Japanese convenience store, in section 3.7. The 

convenience store industry is a business with high turn-over commodities and high 

product substitution. Each shop typically has a limited space for storing inventory. The 

portion of daily-supplied foods is over 30% (Japan Franchise Association, 2010). The 

high ratio of perishable goods and inability to hold significant inventories justify the use 

of the truncated production function. The detail will be discussed in section 3.7. 

 

3.2.2 Efficiency vs. Effectiveness 

Let JIRx 

  denote the inputs and QRy   denote outputs of the production system. The 

production possibility set is defined as  } producecan  :),{( yxyxT   and is estimated 
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by a piece-wise linear convex function enveloping all observations shown in (3.5). F

ikX  

is the thi  fixed input resource, V

jkX  is the thj  variable input resource, qkY  is the amount 

of the thq  production output, and k  is the multiplier of thk  firm. The equations defines 

the feasible region of the production possibility set T
~ . Then, the efficiency   can be 

measured using the DEA estimator. The input-oriented technical efficiency (ITE) can be 

defined as distance function }
~

),(|inf{),( TyxyxDx    and the output-oriented 

technical efficiency (OTE) is defined as }
~

),(|sup{),( 1 TyxyxDy    respectively. 

:),{(
~

yxT    q

k

qkk YY  , q  

F

i

k

F

ikk XX  , i  

V

j

k

V

jkk XX  , j  (3.5) 

1
k

k  

                   0k , k }.  
 

Similarly, let QE Ry   denote an output vector produced and consumed. The 

    (    )                                                              is 

called effective production possibility set which can be estimated by piece-wise linear 

convex function envelopment truncated by demand level shown as model (3.6). E

qkY  is 

the amount of the thq  output produced and consumed with respect to demand qD . The 

model illustrates the feasible region of the effective production possibility set ET . Then, 

we can measure effectiveness E  using DEA estimator. If qq DY  , then set q

E

q YY  ; 
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otherwise ),min( qqqq

E

q DDYDY   while qq DY   and capacity surplus qq DY   

represents a penalty. The output-oriented production effectiveness (OPE), E , is defined 

as }
~

),(|sup{),( EEEEE

y TyxyxD    and EE  /1 . 

:),{(
~ EE yxT    E

q

k

E

qkk YY  , q  

F

i

k

F

ikk XX  , i  

V

j

k

V

jkk XX  , j  (3.6) 

1
k

k  

                0k , k }.  
 

Since the number of discrete observations of k  firms is finite, model (3.6) causes a bias 

of effectiveness measure due to a lack of firms in the shaded area in figure 3.2. 

 
Figure 3.2 Bias of effectiveness measure 

 
 
To correct this issue, model (3.7) and theorem 3.1 is proposed. 
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:),{(
~ EE yxT    E

q

k

qkk YY  , q  

E

qq YD  , q  
F

i

k

F

ikk XX  , i  

V

j

k

V

jkk XX  , j  (3.7) 

1
k

k  

              0k , k }.  
 
 

Theorem 3.1: The truncated production possibility set described in model (3.7) is 

consistent to model (3.6) constructed with infinite observations. That is, 
EE

k
k

 


][lim , 

where E

k ][  is effectiveness measure with k -observations truncated production function. 

 

 Efficiency and effectiveness complement each other and are not mutually 

independent, but have different strategic interpretations. Efficiency measures the relative 

return on inputs used while effectiveness indicates the ability to match demand given an 

existing production technology. High effectiveness generates revenues by providing 

products and services to customers; low effectiveness implies insufficient or shortage 

demand generation and consumption. Figure 3.3 illustrates a two-dimensional strategic 

position between efficiency and effectiveness. If both efficiency and effectiveness are 

low, the firm is labeled a “Follower” who adopts other’s superior strategy and attempts 

to catch-up before they will be driven out of the industry. If a firm performs well in 

terms of efficiency and bad in terms of effectiveness, the firm is labeled “Superior 

Technology”, indicating the firm is leading the industry in terms of making the best use 
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of their input resources and technology. If a firm is performs poorly in terms of 

efficiency and well in terms of effectiveness, the firm is labeled “Superior Market” 

indicating a market-oriented strategy focuses on generating demand and maintaining or 

expanding market share. Finally, if the firm is both efficient and effective, the firm is 

labeled “Leader” indicating it is developing new markets while also innovating to keep a 

competitive advantage.  

 

 
Figure 3.3 Strategic position 

 
 

As technologies and markets evolve over time, new paradigms of competition can 

emerge. Product design, machinery development and demand diversity can shock an 

industry and push firms to enhance core competence. “Paradigm shift” is a term to 

describe a hybrid of progress in marketing and in technology leading to a new 

competitive setting as shown in figure 3.4. The Malmquist productivity index is a 

popular tool to measure the productivity change (Cave et al., 1982; Färe et al., 1992; 
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1994). Similarly, it can be used to measure market evolution, technical change, and 

identify paradigm shifts. 

 

 
Figure 3.4 Paradigm Shift 

 

3.3 Capacity Expansion 

3.3.1 Variable Input Adjustment and Marginal Product 

Capacity can be defined as the maximal output level of a production process. The output 

is a result of the total productive capability of all the resources including workforce, 

machinery, and utilities; while capacity adjustment is the ability to adjust output levels to 

deal with uncertainty by controlling variable resources in the short run (Alp and Tan, 

2008). Note that production resources can be separated into fixed and variable inputs. 

The fixed inputs such as building and facilities are not easily changed in a short period 

of time due to high costs and long lead-times of installation; while variable inputs such 
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as labor and material can be adjusted and released into production. In particular, 

Johansen’s (1968) defines the capacity as maximum amount that can be produced with 

existing plant and equipment given an unlimited availability of variable factors. Eilon 

and Soesan (1976) extend the concept from single output to multiple output case and 

Färe et al. (1989) employ a nonparametric approach to obtain a capacity measure. In 

addition, in the short run, capacity expansion is a way to adjust variable inputs to control 

output levels while pursuing maximal profit and efficient production in an uncertain 

environment. In production theory, capacity adjustment can be interpreted as the 

marginal product (MP) of production function. That is, the extra output generated by one 

more unit of an input. Figure 3.5 shows the marginal product and production frontier. Y , 

FX  and VX  denotes output, fixed input and variable input respectively. The production 

function can be formulated as ),Xf(XY VF  and marginal product of point B is 

V
BX

V

VF

X

),Xf(X




BMP .  

 
Figure 3.5 Marginal product of production function 
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 Changing the input level is a natural way to cope with demand fluctuations. 

Maximal capacity is defined by the fixed resource level and is thus unchanged in the 

short-run; demand requirements can be met by adjusting variable inputs. For example 

temporary workers can be hired to raise outputs when demand increases or workers can 

be laid off when demand decreases. However, the adjusted range of variable input is 

restricted due to the difficulty in hiring qualified workers and training them for the job or 

firing too many workers in a short period of time may hurt morale or put the company at 

risk of not being able to meet future demand. In this situation, firm-specific marginal 

rates of output expansion and of output contraction are assumed to be limited to a small 

adjusted range. Note that in general overtime production might be feasible to create 

additional capacity rather than temporary workers because of skill requirements. In fact 

in some cases overtime may be preferred to hiring temporary workers because of the 

learning curve associated with new workers. Nevertheless, in the empirical study of 

convenience store, the service-oriented and high-turnover nature leads to a higher ratio 

of part-time employees. In order to reduce employee cost, stores prefer to hire part-time 

employees because of lower skill requirement and interchangeability. For these reasons, 

adjusting employees to increase capacity in convenience store industry is feasible and 

encouraged. 

 

3.3.2 Marginal Product Estimation 

The marginal effect on output of an increase or decrease in variable input can play an 

important role in operations. In practice, these effects can be estimated via the marginal 



 

 

62 

product in a set of data. There are two typical ways to estimate marginal product. One is 

to use stochastic frontier analysis (SFA) to estimate the production function with a given 

functional form. Take a simple case of a linear function estimated by ordinary least 

squares (OLS), the coefficients associated with the independent factors provide estimates 

of the marginal product. When employing DEA to construct piece-wise linear 

production function approximate to a true production function, the shadow prices of 

input and output characterize the relationship between inputs and outputs, i.e., marginal 

product. However, there are drawbacks to estimating marginal products using these 

methods. SFA requires defining a functional form and risks potential misspecification. 

While observations on the production frontier in DEA do not have unique shadow prices 

and shadow price values of zero are common. 

 Podinovski and Førsund (2010) proposed using directional derivative technique 

to assess the marginal rate of a nondifferential efficient frontier constructed by DEA 

estimator. Their approach can characterize without additional simplifying conditions the 

polyhedral production sets such as measures of the scale elasticity and marginal rates of 

substitution between factors. The concept of directional derivative is described in 

Shapiro (1979). Let F

ikX  be the thi  fixed input resource, V

jkX  be the thj  variable input 

resource, qkY  be the thq  output level of thk  firm. Let F

iv , V

jv  and qu  be the multipliers 

of factors respectively. Since marginal rate is a characteristic of the frontier, for one 

specific efficient firm r , the following revised formulation is proposed to calculate the 
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marginal rate V

rqj **  approaching from the right side with respect to one particular 

variable input *j  to one output *q .  

free is    ,0,,       

1        

0        
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 (3.8) 

 

For measuring the marginal rate approaching from the left side, the objective function is 

replaced by following equations. 

V

j

V

rjqV

rj

rq
v

X

Y
***

*

*
Max  








  (3.9) 

 

That is,   V

kqj

V

k **  and   V

kqj

V

k **  denote the simplified notations of marginal 

products of short-run capacity expansion and contraction due to single variable input and 

single output discussed in this study. Figure 3.6 illustrates the marginal product V

k  or 

V

k  in terms of expansion or contraction in the short run. Note for inefficient firms 

operating inside of the production frontier, the marginal product is not defined. 

However, to estimate how the consumed output expands with an increase of variable 

input, we assume the marginal increase in output is the same as the marginal products of 

the reference firm on frontier via output-oriented expansion.  
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Figure 3.6 Marginal product regarding to short-run capacity expansion or contraction 

 

3.4 Stochastic Programming Model 

The fundamental stochastic programming (SP) models are described in Birge and 

Louveaux (1997). This section proposes a stochastic programming DEA (SPDEA) 

model which characterizes flexibility in the capacity level through changes to single 

variable input levels to adjust for uncertain demand. A specific firm can adjust variable 

input to change output levels when facing demand fluctuations. In section 3.4.1 a 

scenario-based approach provides solutions to individual scenario and expected scenario. 

A two-stage recourse stochastic programming model described in section 3.4.2 provides 

robust solutions to a variety of scenarios using a probabilistic characterization. Finally, 

section 3.4.3 describes how the solution varies based on the criteria (i.e. expected value 

of perfect information (EVPI) and value of the stochastic solution (VSS)). 
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3.4.1 Scenario-based Approach 

 A scenario-based approach (SB) is a deterministic programming model solved 

once for each scenario. A scenario is defined by a realization of the demand level. Given 

different scenarios, the model suggests the suitable decision regarding short-run capacity 

expansion or contraction via adjustments in variable input to maximize efficiency under 

demand fluctuations. Specifically, additional output produced and sold is estimated as 

the marginal product multiplied by the increment of variable input, or vice versa reduced 

output produced and sold via reducing the input level. By limiting the range of 

adjustment, a constant marginal rate of change in the output level is a reasonable 

approximation. Accounting for the effects of demand, the effective output level is 

determined considering the current production level, short-run capacity adjustments, and 

realized demand. Thus, for perishable goods, effective output is the minimum of actual 

output and realized demand. The production possibility set is estimate using the 

observed production data and is unchanged regardless of the assumptions made about 

short-run capacity expansion. 

Assuming fixed inputs cannot be adjusted in the short-run, the output-oriented 

variable returns to scale (VRS) DEA formulation with single output is developed as a 

revised dual form of model (3.7). Let E

ksY  be the effective output and ksD  be the realized 

demand of thk  firm in ths  scenario, V

jrβ  be the marginal product characterized by V

jrβ  

and V

jrβ  with respect to thj  variable input of firm r , and jrR  be the parameter of 

adjustable range of thj  variable input of firm r . Then the decision variables su , sw , 
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F

isv , V

jsv , sv0  are the associated multipliers, jrsd  is the additional adjustment of variable 

input characterized by 

jrsd  and 

jrsd . rsy  and E

rsy  are actual and effective output 

respectively, and E

rs

E

rs  /1  measures production effectiveness. Note that in order to 

fix an identical production possibility set after capacity expansion or contraction of firm 

r , index k  include the dummy firm 'r  which is firm r  before capacity expansion. 

  
j

jrsjrs

E

rs ddM )(Min      (3.10.1) 
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jddd jrsjrsjrs     ,         (3.10.13) 

jXRdXR V

jrjrjrs

V

jrjr    ,         (3.10.14) 

  jzz jrsrs    ,1,02,1         (3.10.15) 

jivvwuddyy V

js

F

isssjrsjrsrs

E

rs  ,  ,0,,,,,,,         (3.10.16) 
 

The objective function equation (3.10.1) maximizes the product of the estimated 

effectiveness E

rs

E

rs  /1  and a large number M  with a secondary objective of 
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minimizing the variation in input adjustment. Equations (3.10.2)-(3.10.5) are the 

envelope constraints to build the production possibility set.   is a small number to 

maintain feasibility when 0E

rsy . Constraints (3.10.6)-(3.10.8) calculate the effective 

output level for two cases rsr DY   or rsr DY  . Equation (3.10.9) determines the actual 

output level of firm r through capacity expansion. Constraints (3.10.10)-(3.10.12) 

calculates the marginal output for short-run capacity expansion, i.e., 0jrsd , then 

 V

jr

V

jr  ; otherwise  V

jr

V

jr  . Constraint (3.10.13) shows adjustment of variable 

input via goal programming, 0jrsd  if and only if capacity expansion with 0

jrsd ; 

otherwise capacity contracts with 0jrsd  if and only if 0

jrsd . The adjustment range 

is restricted in equation (3.10.14). Then equation (3.10.15) defines rsz1  and jrsz2  as 

binary variables and nonnegative constraints are including with equation (3.10.16). Note 

that for the case with multiple variable inputs, when two or more variable inputs are 

expanded simultaneously, the estimation of the increase in output is conservative.  The 

marginal production of each variable input is estimated separately and then the dot 

product of the marginal product vector and the vector of change in variable input is 

taken. If there is a synergistic effect between the different variable inputs, this is not 

captured. However, because the production frontier limits the output level, the benefits 

of increasing multiple variables inputs leads to a resulting production vector within the 

production possibility set. 
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 In order to maintain feasibility which means a firm remains in original 

production possibility set after taking action, the effectiveness and resource adjustments 

are calculated using proposed algorithm shown as follows. 

Proposed Algorithm 

1. Start from specific firm 1r  

2. For 1r  to number of DMU 

 2.1 Set step 0t , V

jr

V

jrt XX   and rrt YY   

 2.2 Calculate marginal product V

jrt  and V

jrt  

 2.3 Run scenario-based approach to calculate jdXX jrt

V

jrt

VT

jrt    ,  and  

  
j

jrt

V

jrtrt

T

rt dYY   

 2.4 Run output-oriented DEA estimator to calculate efficiency DEA

rt  

 2.5 If 1DEA

rt , then get E

rt , jdd
t

jrtjr    ,  and T

rtr Yy  . Go to step 3 

Else if 1DEA

rt  and 0
t

jrtjr dd , then run (3.11) to find anchor point 
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Else run the model (3.12) 
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End 

 2.6 Set jdXX jrt

V

jrt

V

jrt    ,  and 
j

jrt

V

jrtrtrt dYY   

 2.7 Set 1 tt , then go to Step 2.1 

3. Set 1 rr  and go to step 2 

 

Proposition 3.2: A firm that expands or contracts short-run capacity via proposed 

algorithm with marginal products V

jk  or V

jk  remain feasible in the original 

production possibility set. 

 

 In addition, if demand is low, a significant gap between efficiency and 

effectiveness exists; however, if demand is high, efficiency and effectiveness are 

identical measures. This result shows the measure of effectiveness is particularly 

important during economic down-turns. 
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Proposition 3.3: The effectiveness estimate converges to an efficiency estimate as 

demand increases. 

 

The advantage of this approach is simple and leads itself to scenario analysis. It is 

useful to suggest a solution to “If…Then…” situation, that is, what’s the best capacity 

adjustment if some demand scenario is realized. There are two kinds of solutions 

suggested: scenario analysis and an expected value (EV) solution. Given a demand level 

defines an event, scenario analysis provides solutions, an adjustment to variable input, to 

each event respectively; however, the expected value solution is obtained by solving 

model with the expected value of variables representing uncertain events. In this study 

demand is the uncertain variables, thus 
s

rssr DpD  where sp  represents the 

probability of ths scenario occurring. However, the scenario-based approach does not 

consider a robust solution for all of scenarios; this is introduced in section 3.4.2. 

 

3.4.2 Two-stage Recourse Approach 

The two-stage recourse approach is a typical stochastic programming model and 

provides robust solution to all scenarios. The two-stage recourse model shows a two-

stage decision process including “here-and-now” and “wait-and-see” decisions by 

considering the expected recourse function. The two-stage decision process is shown as 

figure 3.7. The first-stage decision is referred to as the here-and-now decision, and we 

make an ex-ante decision based on forecasts of the uncertain event. After the event 

occurs, the ex-post decision made in second stage adjusts to account for the new 
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information. If the event does not occur, no decision is made and we just wait and see 

what happens. That second-stage decision is referred to as the wait-and-see decision. For 

example, in a make-to-order production model, the firm needs to make a decision to 

determine the amount of material to order, but demand is realized in the future due to 

lead times. The material order is the here-and-now decision. Then, a firm realizes 

demand, and accordingly decides how many products to produce to maximize profit. 

However, until the customer order is realized, the second-stage decision is pending. 

Similarly, for maximizing effectiveness, firm r  needs to decide the short-run capacity 

expansion or contraction strategy before realizing demand. Then, the firm measures the 

technical effectiveness after demand is observed. Figure 3.7 illustrates this two-stage 

decision process. 

 

 
Figure 3.7 Two-stage decision process 

 
 

The two-stage recourse approach introduces an expected recourse function using a 

divide-and-conquer strategy. The expected recourse function characterizes the 

performance of second-stage decision, namely the expected utility is estimated based on 

the individual decision for each specific scenario respectively. This divide-and-conquer 

strategy generates robust solutions for the first-stage decision in all scenarios. The two-
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stage recourse model of DEA with capacity adjustment and uncertain demand is shown 

in the following formulation. 
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The term objective function (3.13.1) indicates the expected recourse function of 

effectiveness estimate E

rs  of firm r  with probability measures sp  for the ths  scenario. 

The two-stage recourse problem (RP) provides an adjustment to the variable input level 

jrd  in first-stage and attempts to maximize expected effectiveness by adjusting the 

variables su , F

isv , V

jsv , and sv0  in second-stage after the demand is realized. A recourse 
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function is defined as  )17.13.3()16.13.3(),8.13.3()2.13.3(|max),(
0,




E

rs
vu

ksjr Ddg   

substituting first-stage decision jrd  and realized outcome ksD  of random variable
ksD

~  

into the formulation. The expected recourse function can be formulated as 

  
s

rssksjr pDdgE )
~

,(  under discrete scenarios. However, an excess of scenarios will 

result in a large number of decision variables and constraints and increase the 

computational burden. Thus, confidence interval for the effectiveness estimate by means 

of simulation approach described in Birge and Louveaux (1997) provides insight into the 

level of certainty of the estimates. 

 

3.4.3 Value of Information and Stochastic Solution 

Given the solutions generated from SP models, it is interesting to investigate the quality 

of the solutions. There are two approaches commonly adopted: the expected value of 

perfect information (EVPI) and the value of the stochastic solution (VSS) (Birge and 

Louveaux, 1997). The expected value of perfect information (EVPI) measures the 

maximum amount a decision maker is willing to pay in return for complete information 

about the future. Define the effectiveness measures from the wait-and-see (WS) problem 

and the recourse problem (RP) as  )~
,(Max WS ~ DdgE

D
  and  )~

,(Max RP ~ DdgE
D

 , 

then EVPI is the difference between WS and RP described in equation (3.14). 

   )~
,(Max -)

~
,(Max RP-WSEVPI ~~ DdgEDdgE

DD
  (3.14) 
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The value of the stochastic solution (VSS) is a measure of the quality of the 

expected value (EV) decision in terms of the recourse problem. Namely, it gives the cost 

of ignoring uncertainty. Let )(Dd  be a EV solution and define the expected result of 

using the EV solution (EEV) as  )~
),((EEV ~ DDdgE

D
 . The VSS is defined as the 

difference between EEV and RP described in equation (3.15). 

   )~
),(()

~
,(Max EEVVSS ~~ DDdgEDdgERP

DD
  (3.15) 

 

3.5 Model Convexification 

The above model, in particular, equations (3.10.1)-(3.10.17) is a nonlinear programming 

with a concave feasible region. A global optimum cannot be guaranteed. This section 

provides an equivalent geometric programming formulated with difference of two 

exponential-based convex functions through variable alteration and additional variables 

and constraints (Maranas and Floudas, 1997). For a minimization problem, this 

decomposition identifies a lower bound by solving a convex relaxation programming 

problem. To linearize some geometric terms, the equivalent formulation requires 

additional binary variables and continuous variables. Using this model an approximate 

solution can be obtained through a branch-and-bound algorithm (Li and Tsai, 2005). 

 First, constraint (3.10.15) can be replaced by constraint (3.16.1) and (3.16.2). 

jXRtXRd V

jrjrjrs

V

jrjrjrs    ,2  (3.16.1) 

jt jrs    ,10  (3.16.2) 
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The minimum function ),min( rsrsrs

c

rs DDyy   in constraint (3.10.6) can be 

transformed into (3.16.3)-(3.16.6). 

)31(3)( rsrsrsrsrs

c

rs zDzDyy   (3.16.3) 

rsrsrsrs MzDyD 3)(   (3.16.4) 

)31()( rsrsrsrs zMDyD   (3.16.5) 

}1,0{3 rsz  (3.16.6) 
 

Finally, the model (3.10.1)-(3.10.16) can be reformulated as an equivalent geometric 

programming with exponential-based convex functions in appendix B. A convex 

relaxation of this equivalent model can be solved to approximate optimal solution 

(Maranas and Floudas, 1997). Similar adjustments can be made to the two-stage 

recourse approach with a fractional objective function released by Charnes and Cooper 

(1962). 

 

3.6 Example Illustration 

This section gives a numerical example without capacity expansion to illustrate the 

proposed model. Table 3.1 shows the data for 12 decision-making units (DMUs). The 

data includes a fixed input, variable input, actual output, and three demand forecasts- 

pessimistic (PE), most-likely (ML), and optimistic (OP) situations. This numerical study 

postulates the probability of realizing each of the demand scenarios as 1/6 for the PE, 4/6 

for the ML and 1/6 for the OP case. Then the efficiency and effectiveness measures are 

shown in table 3.2. Note that PE, ML, OP, and EV are deterministic (and use the 
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scenario-based approach) while SP is stochastic. Specifically, the difference between the 

expected value (EV) solution and the stochastic programming (SP) solution is that 

former calculates effectiveness using expected demand kD , while the latter estimates 

the expected value of effectiveness of the three demand scenarios.  

 

Table 3.1 Data of numerical example 
DMU Fix Input Var. Input Actual 

Output 
Pessimistic 

Demand 
Most-likely 

Demand 
Optimistic 
Demand 

A 9 5 10 6 9 12 
B 4 7 8 5 6 9 
C 4 9 11 6 8 13 
D 5 9 9 7 8 10 
E 7 7 10 7 9 13 
F 6 7 7 4 6 9 
G 10 8 10 7 8 11 
H 8 6 7 7 8 9 
I 5 6 11 6 7 12 
J 4.5 10 10 8 10 12 
K 4 8 12 7 8 12 
L 10 7 5 3 5 8 

 

Table 3.2 Efficiency, effectiveness and EVPI 
DMU Efficiency Effectiveness 

PE ML OP EV SP (RP) WS EVPI 
A 1.000  0.333  0.889  1.000  0.889  0.815  0.815  0.000  
B 1.000  0.400  0.667  1.000  0.737  0.678  0.678  0.000  
C 0.917  0.167  0.625  0.917  0.706  0.597  0.597  0.000  
D 0.750  0.714  0.875  0.900  0.898  0.852  0.852  0.000  
E 0.870  0.571  0.889  0.870  0.929  0.833  0.833  0.000  
F 0.609  0.250  0.833  0.778  0.865  0.727  0.727  0.000  
G 0.833  0.571  0.750  0.909  0.800  0.747  0.747  0.000  
H 0.636  1.000  0.875  0.778  0.875  0.880  0.880  0.000  
I 1.000  0.167  0.429  1.000  0.565  0.480  0.480  0.000  
J 0.833  0.750  1.000  0.833  1.000  0.931  0.931  0.000  
K 1.000  0.286  0.500  1.000  0.588  0.548  0.548  0.000  
L 0.435  0.333  1.000  0.625  0.968  0.826  0.826  0.000  

Avg. 0.855  0.449  0.755  0.903  0.802  0.729  0.729    
 

Figure 3.8 maps the efficiency and the effectiveness level with different demand 

scenarios on a two-dimensional coordinate graph, and the four quadrants indicate the 
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strategic position. The intersection of two axes describes the performance of industry 

level which is the average of 12 DMUs weighted by actual output. For the PE-demand 

case, DMU F and L are the followers (using the terminology introduced in figure 3.3), 

DMU D, G, H and J belong to superior market, DMU A, B, C, I and K are attributed to 

superior technology, and DMU E is the leader. This strategic position provides 

guidelines of productivity improvement. Second, when demand is high, effectiveness is 

closely correlated with efficiency and they tend to a diagonal line. This is because 

demand does not limit the production possibility set. This result is consistent with 

proposition 3.3. Figure 3.8 shows a convergence process from pessimistic to optimistic 

demand situation. That is, effectiveness provides additional information beyond an 

efficiency measure during economic down-turns. Third, the result shows firms will 

prefer to underproduce rather than overproduce since inventory implies ineffective 

product. For example DMU C indicates totally ineffective in PE and ML cases but 

production function forms a demand-supporting limitation in OP case. It concludes 

DMU C would like to reduce output level to achieve the goal of effective production. 

Finally, the results using EV and SP are very similar as shown in figure 3.9, however the 

interpretation is different. The expected demand situation (EV) can not be realized in the 

future, but expected effectiveness (SP) can be estimated to justify the decision making. 

Table 3.2 demonstrates that SP identifies the infeasible DMU with effectiveness score 

0.929, that is DMU E, since in three scenarios DMU E never shows scores higher than 

0.929. In additions, all EVPI equal to zero point out no need to pay for perfect 

information. This is because capacity adjustment is not considered in this example and 
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effectiveness identical under a WS (wait-and-see) model and a SP excluding short-run 

capacity expansion decision. 

 

 
Figure 3.8 Efficiency vs. effectiveness 

 

  

Figure 3.9 Expected value solution vs. stochastic programming 
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3.7 Empirical Study 

An empirical study of Japanese convenience stores (CVS) over the first half of 2003 is 

presented. The first convenience store in Japan opened in 1969. These stores have 

become very popular over the past three decades. Now there are around 42,889 

convenience stores (CVS) in Japan with 1.1 billions customers per year (Japan Franchise 

Association, 2010). Most CVSs are built with a floor area of 100 square meters and 

about 3000 types of product. Even though prices in a convenience store are typically 

higher than at a supermarket, they remain popular because of new service such as 24hr 

operating, courier and postal service, touch screen monitor for finding job and ordering 

ticket, telephone and utility bills payment, automated teller machine (ATM), online 

shopping, etc and of course convenience (Nipponia, 2001). Thus, CVS plays an 

important role and affects the lives of many Japanese people. This study evaluates the 

performance of 25 convenience store chains under demand uncertainty in the short run. 

Section 3.7.1 provides a description of the data. The effectiveness is estimated using 

scenario-based approach and the two-stage recourse approach in section 3.7.2. 

 

3.7.1 Data Description 

In the convenience store industry, the production process can be characterized by three 

input resources- capital, branch size (fixed inputs), and employee (variable input); 

forecasted demand and actual output are measured as goods. Efficiency is estimated 

using actual output. While effectiveness is estimated using truncated production 

function. The data primarily comes from Sueyoshi (2003) and this study adds additional 
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data regarding to capacity adjustment shown in descriptive statistics of table 3.3. The 

following describes the details of data set. 

 Capital is defined as the net worth of equipment used to create goods or service 

in a production system. Branch size and employee are defined as the number of branches 

and manpower headcount the convenience store chain had during the first half year of 

2003. Actual output is estimated by realized revenue divided by the average price per 

item4. Demand is firm-specific and defined as the estimated number of goods sold and 

characterized by a pessimistic, most-likely, and optimistic estimate which were provided 

by managers and chief executive officers, see Sueyoshi (2003) for more details. 

Similarly, demand is calculated by estimating revenue divided by average price per item. 

The marginal product is defined in section 3.3 and estimated by Podinovski and Førsund 

model (2010). Note that, in the short run, the variable input (employee) can be adjusted 

to change the capacity level while the fix inputs (capital and branch) remain unchanged. 

In other words, convenience store can adjust the stores capacity over some limited range 

by hiring or laying off employees. This study limits the positive and negative adjustment 

in manpower resources to 15%. This parameter is arbitrary and other recommended 

values were tested however then lead to similar results. 

 
 
 
 
 
 
 
 

                                                 
4 Data from the Japan Franchise Association (2010). 
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Table 3.3 Descriptive statistics of raw data 

Stat. 

Fixed Input Var. Input Output Demand 

Capital Branch Employee Goods Pessimistic Most-likely Optimistic 

Yen (106) Unit Headcount Unit (106) 

Average 3452.5 1421.4  683.5  794.4  795.5  857.9  920.4  

Std. Dev. 7465.8  2291.5  1068.3  1330.2  1492.9  1558.6  1625.9  

Max 30876.0  7780.0  4126.0  6191.3  6358.8  6586.6  6814.4  

Min 3.0 22.0  8.0  12.1  11.7  13.1  14.7  

 

3.7.2 Efficiency and Effectiveness Analysis 

 This section illustrates efficiency and effectiveness estimation in a demand-

dependent context. A demand-dependent context means all firms consistently realize the 

same single demand state (such as pessimistic (PE), most-likely (ML), or optimistic 

(OP)). This empirical study postulates demand 
kD

~  follows beta distribution. The 

expected value can be estimated as 6/)4( kkkk OPMLPED  . The mean of beta 

distribution is widely used in project management with PERT (Program Evaluation and 

Review Technique) and CPM (Critical Path Method) to plan activity times and 

scheduling (Hillier and Lieberman, 2002). Table 3.4 presents the efficiency, 

effectiveness, EVPI and VSS estimations. “N” means estimation without short-run 

capacity expansion are allowed. Similarly, “Y” indicates results where capacity 

adjustment and manpower expansion decision. “Exp.” column indicates the change in 

variable input where positive values indicate short-run capacity expansion and negative 

values indicate contraction. 

 The empirical study is consistent with the numerical study, in that higher demand 

increases the correlation between effectiveness and efficiency. The correlation 
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coefficients are 0.26 and 0.76 in the pessimistic and the optimistic demand cases without 

capacity expansion, respectively. In addition, EVPI and VSS in most of CVS chains are 

close to or equal to zero. This leads to an inconspicuous performance difference between 

the two-stage recourse approach (RP) and expected value of demand solution (EV). This 

result is driven by the limited demand fluctuations in the CVS industry during the first-

half of 2003. However, we suggest RP solution to DMUs which represent VSS value 

larger than 0.  

 Considering ex-ante and ex-post analysis of short-run capacity expansion, figure 

3.10 and 3.11 map the efficiency and effectiveness under pessimistic demand on a two-

dimensional coordinate, and the four quadrants map to the strategies for productivity 

improvement (similar to figure 3.3). The intersection of two coordinate axes indicates 

the industry performance weighted average. Nevertheless, in an ex-post analysis, the 

efficiency is calculated after applying the expansion of variable input recommended by 

the effectiveness maximization problem (3.10). This might leads an efficiency loss to 

achieve higher effectiveness. Thus, there exists a tradeoff between efficiency and 

effectiveness in the capacity expansion decision. 

 



 

 

 
Table 3.4 Efficiency, effectiveness, EVPI and VSS 

CVS DMU 
Efficiency 

Effectiveness 

PE ML OP EV RP 
WS EVPI EEV VSS 

N Y Exp. N Y Exp. N Y Exp. N Y Exp. N Y Exp. N Y Exp. 
am/pm A 0.905  0.905  0.0  0.968  0.968  0.0  0.905  0.905  0.0  0.905  0.905  0.0  0.905  0.905  0.0  0.916  0.916  0.0  0.916  0.000  0.916  0.000  
Heart in B 0.821  0.821  0.0  0.970  0.970  0.0  0.951  0.951  0.0  0.883  0.883  0.0  0.951  0.951  0.0  0.943  0.943  0.0  0.943  0.000  0.943  0.000  
HOTSPAR C 0.541  0.552  -48.3  0.805  0.805  0.0  0.958  0.958  0.0  0.800  0.800  0.0  0.958  0.958  0.0  0.906  0.906  0.0  0.906  0.000  0.906  0.000  
Apple Mart D 1.000  1.000  0.0  0.891  0.891  0.0  1.000  1.000  0.0  1.000  1.000  0.0  1.000  1.000  0.0  0.982  0.982  0.0  0.982  0.000  0.982  0.000  
Everyone E 0.851  0.851  0.0  0.816  0.816  0.0  0.851  0.851  0.0  0.851  0.851  0.0  0.851  0.851  0.0  0.845  0.845  0.0  0.845  0.000  0.845  0.000  
Caramel Mart F 0.718  0.718  0.0  0.707  0.707  0.0  0.893  0.893  0.0  0.718  0.718  0.0  0.893  0.893  0.0  0.833  0.833  0.0  0.833  0.000  0.833  0.000  
Coco Store G 1.000  1.000  0.0  0.950  1.000  -12.8  1.000  1.000  0.0  1.000  1.000  0.0  1.000  1.000  0.0  0.992  1.000  -12.8  1.000  0.000  0.992  0.008  
Community Store H 1.000  1.000  0.0  0.866  0.920  -23.3  1.000  1.000  0.0  1.000  1.000  0.0  1.000  1.000  0.0  0.978  0.987  -23.3  0.987  0.000  0.978  0.009  
Circle K I 0.774  0.832  133.7  0.959  1.000  32.7  0.900  1.000  84.0  0.848  0.998  133.7  0.900  1.000  84.0  0.901  0.980  84.0  1.000  0.020  0.899  0.081  
Sunkus J 0.759  0.777  -141.3  0.956  1.000  66.9  0.924  1.000  120.6  0.893  0.980  141.3  0.924  1.000  120.5  0.924  0.989  120.6  0.997  0.008  0.923  0.065  
Shop and Life K 0.613  0.645  4.9  0.858  0.858  0.0  0.975  1.000  -1.5  0.938  1.000  4.0  0.973  1.000  -1.6  0.949  0.967  -1.5  0.976  0.009  0.949  0.018  
Spar L 0.905  0.905  0.0  0.868  0.868  0.0  0.923  0.923  0.0  0.905  0.905  0.0  0.921  0.921  0.0  0.911  0.911  0.0  0.911  0.000  0.911  0.000  
Three F M 0.760  0.760  0.0  0.954  0.954  0.0  0.914  0.914  0.0  0.878  0.878  0.0  0.914  0.914  0.0  0.915  0.915  0.0  0.915  0.000  0.915  0.000  
Seikatsu Train N 0.938  0.942  0.0  0.984  0.984  0.0  0.938  0.938  0.0  0.938  0.938  0.0  0.938  0.938  0.0  0.946  0.946  0.0  0.946  0.000  0.946  0.000  
Seicomart O 1.000  1.000  0.0  0.849  0.922  -40.4  1.000  1.000  0.0  1.000  1.000  0.0  1.000  1.000  0.0  0.975  0.987  -40.4  0.987  0.000  0.975  0.012  
Seven Eleven P 1.000  1.000  0.0  1.000  1.000  0.0  1.000  1.000  0.0  1.000  1.000  0.0  1.000  1.000  0.0  1.000  1.000  0.0  1.000  0.000  1.000  0.000  
Daily Yamazaki Q 1.000  1.000  0.0  0.863  0.997  -152.4  1.000  1.000  0.0  1.000  1.000  0.0  1.000  1.000  0.0  0.977  1.000  -152.4  1.000  0.000  0.977  0.022  
Hiromaru Chain R 0.470  0.470  0.0  0.787  0.787  0.0  0.996  0.996  0.0  0.844  0.844  0.0  0.996  0.996  0.0  0.936  0.936  0.0  0.936  0.000  0.936  0.000  
Family Mart S 0.757  0.757  0.0  0.970  1.000  43.5  0.903  1.000  151.5  0.845  1.000  259.5  0.903  1.000  151.5  0.904  0.977  151.5  1.000  0.023  0.901  0.076  
My Shop Chain T 1.000  1.000  0.0  0.696  0.696  0.0  1.000  1.000  0.0  1.000  1.000  0.0  1.000  1.000  0.0  0.949  0.949  0.0  0.949  0.000  0.949  0.000  
Monpellie U 1.000  1.000  0.0  1.000  1.000  0.0  1.000  1.000  0.0  1.000  1.000  0.0  1.000  1.000  0.0  1.000  1.000  0.0  1.000  0.000  1.000  0.000  
Mon Mart V 1.000  1.000  0.0  0.912  0.912  0.0  0.984  0.984  0.0  1.000  1.000  0.0  0.984  0.984  0.0  0.974  0.974  0.0  0.974  0.000  0.974  0.000  
Lics W 1.000  1.000  0.0  0.971  0.971  0.0  1.000  1.000  0.0  1.000  1.000  0.0  1.000  1.000  0.0  0.995  0.995  0.0  0.995  0.000  0.995  0.000  
Little Star X 0.743  0.743  0.0  0.825  0.825  0.0  0.893  0.893  0.0  0.743  0.743  0.0  0.893  0.893  0.0  0.857  0.857  0.0  0.857  0.000  0.857  0.000  
Lawson Y 0.694  0.694  0.0  0.980  0.980  0.0  0.924  0.924  0.0  0.874  0.874  0.0  0.924  0.924  0.0  0.925  0.925  0.0  0.925  0.000  0.925  0.000  

Avg. 0.857  0.863    0.960  0.983    0.955  0.980    0.927  0.965    0.955  0.980    0.951  0.972            
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Figure 3.10 Efficiency vs. effectiveness with pessimistic demand before expansion 

 

 
Figure 3.11 Efficiency vs. effectiveness with pessimistic demand after expansion 
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3.8 Concluding Remarks 

This study proposes an original model for the short-run capacity expansion decision with 

uncertain demand. Proactive DEA embedded with stochastic programming enhances the 

decision making tools to consider performance benchmarking in short-run capacity 

planning. This study improves previous studies by considering varying marginal product 

rates for expansion and contraction and includes limitations due to diminishing returns. 

In addition, efficiency and effectiveness estimates identify the influence of demand on 

productivity analysis. An empirical study of Japanese convenience store illustrates the 

SPDEA model. In future studies, the development of multi-output model with price 

information would be a valuable contribution. Moreover, the panel data and a dynamic 

analysis will be valuable to support a sequential control of resource. 
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CHAPTER IV 

RATIONAL INEFFICIENCY BY NASH EQUILIBRIUM 

 

4.1 Introduction 

Standard productivity and efficiency analysis assumes perfectly competitive markets and 

exogenous prices (Cherchye et al., 2002). Basic microeconomic theory states that firms 

operating in less than perfectly competitive markets can reduce production levels and 

increase a product’s market price when they face a downward sloping demand curve. 

Considering an oligopolistic market, Hicks (1935) proposes "the quiet life hypothesis 

(QLH)" and argues that, due to management's subjective cost of reaching optimal profits, 

firms use their market power to allow inefficient allocation of resources. Johnson and 

Ruggiero (2011) demonstrate from a revenue efficiency perspective that a firm that 

increases output to become technically efficient may actually reduce its overall profits 

by increasing the market quantity, which in turn reduces the market price. Figures 4.1 

and 4.2 illustrate the endogenous prices of an oligopolistic market for a single product 

produced using a single input. The production frontier in figure 4.1 represents 

technically efficient production. Firms A and B would like to expand their output levels5 

to increase their productivity, yet increasing the output levels will lead to a change in the 

market output quantity from Y to Y' (shown in figure 4.2) and the market price will fall 

from P to P'. This change in price may reduce the profits of both firms. Thus, the 
                                                 
5Firms will either expand their outputs, contract their inputs, or both, depending on the cost/price structure 
of inputs/outputs and adjustment costs associated with changing input levels. For now we will assume 
input adjustment costs are very large and consider only output adjustment consistent with an output 
oriented efficiency analysis in the efficiency literature, (Fare and Primont, 1995). This assumption is 
relaxed in section 4.4. 
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standard assumption in the efficiency literature that all firms desire to produce on the 

production frontier may not hold in an oligopolistic market (Cherchye et al., 2002; 

Johnson and Ruggiero, 2011). A firm is said to be rationally inefficient when it tries to 

maximize revenues or profits, or alternatively, minimize costs by intentionally operating 

at lower productivity levels. This study considers an oligopolistic market to estimate a 

firm’s target production plans that may not be on the production frontier, but that 

maximize revenues or profits, or alternatively, minimize costs. The set of all firms’ 

benchmark production plans is a Nash-Cournot oligopolistic market equilibrium. 

Most of the efficiency and productivity literature adapts the work developed by 

Farrell (1957) and articulated by Leibenstein (1966) as concepts X-efficiency which 

assumes that deviations from a production frontier are due to managerial inefficiency, 

lack of motivation, and lack of knowledge (Leibenstein and Maital, 1994). However, 

Stigler (1976) argues that firms and individuals are rational, meaning that what is 

observed as inefficiency is actually the difference between individual employees of the 

firm maximizing their individual value functions and the firm’s value function. 

Following Stigler, Bogetoft and Hougaard (2003) suggest that if the inefficiency is due 

to lack of motivation, performance may be improved by redesigning the incentive 

structure to stimulate employees to save inputs and expand outputs.  
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Figure 4.1 Economic efficiency and production frontier 

 

 
Figure 4.2 Change in supply and equilibrium price 

 

 In the case that these incentives or enforcement cost are higher than the cost of 

the inefficiency, it is rational for the firm to allow inefficient operations. Modeling the 

firm’s intention as maximizing profits and the employees’ intention as maximizing 

slack, the authors show the trade-offs between the consumption of different types of 
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slack. Alternatively, Wibe (2008) considers a firm that does not scrap older equipment as 

new models become available. His dynamic production model demonstrates that a 

considerable proportion of cross-sectional technical inefficiency can be rational 

economic behavior in terms of capital acquisition, i.e. he shows the role of capital (fixed 

inputs) in rational inefficiency. 

In this chapter we propose that rational inefficiency may in fact be a result of 

endogenous prices and the effect of output production on price – and profits. Cournot 

(1838), the first to consider endogenous prices, assumes a homogeneous product with an 

inverse demand function known to all firms which then independently select output 

levels; in this market characterized by imperfect competition, price is treated as an 

endogenous parameter. Nash (1950a, 1950b, 1951, 1953) considers more general non-

cooperative games and defines a self-countering n-tuple as an equilibrium point in n-

person games, i.e. for an equilibrium point, no firm can increase its objective function by 

unilaterally changing the quantity or price to any other feasible point. These games are 

consistent with the oligopolies described by Cournot where each firm maximizes its own 

profits and the output decisions affect the price faced by all of the firms. Rosen (1965) 

proves that a finite non-cooperative game always has at least one equilibrium point when 

the strategy space of each player is restricted to a simplex and the payoff functions are a 

bilinear function of the strategies. Further, for a constrained n-person game, he proves 

the existence and uniqueness of an equilibrium point with a strictly concave payoff 

function. A systematic discussion applying equilibrium concepts to economic systems is 

developed in Arrow and Debreu (1954). Discussing different classes of non-cooperative 
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games, Milgrom and Roberts (1990) argue that all have identical bounds on the 

rationalizable strategies. In this study we consider production strategies bounded by the 

production possibility set. 

 Murphy et al. (1982) introduce a mathematical programming approach for 

finding Nash equilibria in oligopolistic markets. They show that if the revenue function 

is concave and the cost function is convex and continuously differentiable, and the 

inverse demand function is strictly decreasing and continuously differentiable, then a 

Nash equilibrium solution exists if and only if a solution to the Karush–Kuhn–Tucker 

(KKT) conditions exist. Based on their study, Harker (1984) presents a variational 

inequality (VI) approach to find a Nash equilibrium using an iterative procedure called 

the diagonalization algorithm. Bonanno (1990) gives a comprehensive survey on 

equilibrium theory with imperfect competition.  

We use a variational inequality approach to identify Nash equilibria when 

production is limited by a production frontier. We focus on an oligopolistic market with 

endogenous prices and firms maximizing profits. We identify a Nash equilibrium in 

which each firm cannot improve its profit by changing production levels within the 

production possibility set. We find that, contrary to previous productivity and efficiency 

studies, under certain conditions some firms choose not to produce on the production 

frontier, and we interpret the behavior as rational inefficiency (choosing to be less 

productive in order to increase profits).  

The remainder of this study is organized as follows. Section 4.2 shows the 

equivalence between a Nash equilibrium and the two approaches, variational inequalities 
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and the complementarity problem, when production is restricted to the production 

possibility set. Section 4.3 examines revenue maximization with fixed input levels.  Both 

a single output case and a multiple output case are presented. Section 4.4 introduces a 

generalized profit model in which a firm maximizes profits by adjusting both input and 

output levels. The existence and uniqueness of a Nash equilibrium identified through the 

complementarity problem is proven, and the relationship between the benchmark frontier 

and scale properties is discussed. Based on moving towards allocative efficient 

production, the direction for improvement used in the directional distance function is 

identified using the results of the Nash equilibrium analysis. Section 4.5 presents our 

conclusions.   

 

4.2 Identify a Nash Equilibrium  in Production Possibility Set 

This section considers a general profit function and a production function with multiple 

inputs and multiple outputs, describes the conditions under which a Nash equilibrium 

solution exists, and how to identify it. We discuss the equivalence between the general 

concept of a Nash equilibrium and a set of variational inequalities and the 

complementary problem (CP) when production is limited to the production possibility 

set.  

Let     
  denote the inputs and     

  denote the outputs of a production 

system.     in the single output case. The production possibility set defined as  

   (   )                  is estimated by a piece-wise linear convex function 

enveloping all observations (Farrell, 1957; Boles, 1967; Afriat, 1972; Charnes et al., 
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1978). For firm  ,      is the     input resource,     is the amount of the     production 

output, and    is the multiplier for the convex combination. Equation (4.1) uses a dataset 

characterizing firms to estimate the smallest set that imposes monotonicity and 

convexity on the production function, the boundary of the production possibility set  ̃.  

 ̃  

{
 

 

(   )||

∑                 

∑                 
∑       

           }
 

 

 (4.1) 

 To identify a Nash equilibrium, the generalized profit function should be 

concave, the inverse demand function should be nonincreasing and continuously 

differentiable, and the inverse supply function should be nondecreasing and continuously 

differentiable. The variational inequality approach and mixed complementary problem 

(MCP) are proven to be alternative methods to calculating a Nash equilibrium in 

production possibility set in section 4.4. 

To discuss the equilibria in oligopolistic markets characterized by imperfect 

competition, we define a Nash equilibrium problem (NEP) with respect to production 

possibility set as:  

 

Definition 4.1: Let   be a finite number of players,    a utility (profit) function,    a 

strategy set (production possibility set) for player        , and (     )  

(                   )     an observed production vector; then a vector (     )  

((  
    

 ) (  
    

 )   (  
    

 ))               is called a Nash equilibrium 

and is a solution to the NEP if 
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 (     )   (    (  )
      (  )

 ),  (     )    , 

where  (  )
  (  

        
      

      
 )  and  (  )

  (  
        

      
      

 )  holds 

for all        . 

 Considering an NEP, Facchinei and Pang (2003) build a rigorous relationship 

among Nash equilibria, a set of variational inequalities (VI), and the complementarity 

problem (CP). We restate their results for the scenario in which a production function 

bounds the production possibility set, and consider a profit function as a specific utility 

function. 

  

Lemma 4.1: Let output levels be decision variables denoted by     as output   of firm   

and      ; further, let input levels be decision variables denoted by     as input   of 

firm         , and (       )   ̃. Then define    (   )    as a concave function of     

and assume that either the inverse demand function    (   ) is a non-increasing or a 

convex function of    . Thus, for each  (  )   , where   (  )  ∑       ,     (    

 (  ) )    is a concave function of     for      . Similarly, let   
 (     (  ) )    be 

a convex function of     for      , where   (  )  ∑        and   
 (   ) is an inverse 

supply function. Further, if either    (   ) is strictly decreasing or is strictly convex, 

then    (     (  ) )    is a strictly concave function on the nonnegative       and 

∑   
 (     (  ) )     ∑   

 (     (  ) )     is a concave function on (       )  

 ̃. 
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 Lemma 4.1 is important because it attests that a global Nash equilibrium solution 

exists when the profit function ∑   
 (     (  ) )     ∑   

 (     (  ) )     is 

concave and production is limited to a convex production possibility set. Generally, 

input markets are assumed to be competitive, in which case   
 (     (  ) )  is a 

constant, but in this case the lemma and the related results shown in theorems 4.1 and 

4.2 and proven in section 4.4 still hold.  

 Gabay and Moulin (1980) propose that a Nash equilibrium will satisfy a set of 

VI. We reformulate the VI set with respect to the production possibility set: 

 

Theorem 4.1: If the profit function of firm  ,   (       )  ∑   
 (  )     

∑   
 (  )     is concave with respect to (       ) and continuously differentiable, where 

   ∑      and    ∑     , then (     )   ̃ is a Nash-Cournot oligopolistic market 

equilibrium if and only if it satisfies the set of VI 〈 ((     )) (   )  (     )〉    

 (   )   ̃ . That is, 

∑   (( 
    ))((     )  (  

    
 ))        (     )   ̃, 

where  

  ((   ))  (    
  (   )     

  (   )),     
  (   )  (

   (   )

    
   

   (   )

    
) and 

   
  (   )  (

   (   )

    
   

   (   )

    
). 

 

 Karamardian (1971) proves that each generalized complementary problem, i.e. 

KKT condition, corresponds to a set of VI. We extend this result and give the 
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relationship between the complementary problem and the set of VI for the case when 

production is limited by the production possibility set as: 

 

Theorem 4.2: Consider an oligopoly with   firms, an inverse demand function   ( )  

that is strictly decreasing and continuously differentiable in  , and an inverse supply 

function   ( )  that is strictly increasing and continuously differentiable in  . Since 

lemma 1 shows that the profit function   (     )  is concave and        , then 

(     )  ((  
    

 ) (  
    

 )   (  
    

 )) is a Nash equilibrium solution if and only if 

   
  ( 

    )    and    
  ( 

    )         ; 

  
 [   

  ( 
    )]    and   

 [   
  ( 

    )]         , 

where (  
    

 )   ̃. 

 

Note that theorem 4.2 develops a relationship between a Nash equilibrium solution and 

the KKT conditions. Having established the relationship, we use the results to estimate 

revenue or profit maximizing benchmark frontiers as described below. 

 

4.3 Revenue Maximization Model 

Consider a firm with fixed input levels wanting to maximize revenues by adjusting its 

output level.6 We employ a production process with a vector of inputs to generate a 

single output and then generalize it to the multiple-output production process. We 

illustrate both cases with an example from the productivity literature. 

                                                 
6 This is consistent with an output-oriented efficiency analysis in the productivity literature. 
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4.3.1 Single-output Model  

We estimate a production function with a single output and identify a Nash equilibrium 

solution using the MCP. Each firm adjusts its output level    to maximize the revenue 

function   . 7  Formulation (4.2) represents the revenue maximization model. To 

endogenously determine the price level, we define the inverse demand function as  ( ). 

In general this demand function need only be strictly decreasing in  . Since the market 

price in our model is affected by the total supply quantity   ∑         , we obtain 

the optimal output level as    
       

  
 . The model is feasible while  ( )    and 

     (Farahat and Perakis, 2010) and can be estimated as follows: 

        

{
 

 
∑  ( )   ||

∑                 
∑                     

∑              
              }

 

 
  (4.2) 

Defining    as a random variable of quantity supplied in the market, we need a 

generalized form for the price function,  (  ), to estimate the inverse demand function. 

If the inverse demand function is strictly decreasing and continuously differentiable, 

then the revenue function is concave and continuously differentiable, and a Nash 

equilibrium solution exists (Murphy et al., 1982). For illustrative purposes, we assume a 

linear inverse demand function which satisfies these properties, i.e.   ( )       , 

where    is a positive intercept and   indicates the nonnegative price sensitivity with 

respect to  . (See appendix C for a detailed discussion of the inverse demand function 

and the use of instrumental variables.) If    , then the price is constant regardless of 

                                                 
7 This is consistent with a profit maximization model, given fixed input prices and levels. 
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the output level consistent with the standard analysis of allocative efficiency in the 

productivity and efficiency literature (Fried et al., 2008), i.e. the price is exogenous as in 

the case of perfect competition. 

 In the single-output revenue model (4.2) with a linear inverse demand function, 

we use the CP to find the Nash equilibrium solution. We define the Lagrangian function 

as: 

  (                   )  

∑  ( )    ∑    (   ∑       )  ∑ ∑      (∑             )  

∑    (∑       ) .  

The MCP is:  

  
   

   
 ( ( )         )             

  
   

    
 (      ∑             )                  

  (   ∑       )              (4.3) 

  (∑            )                  

  (∑       )        

 

If the MCP gives the solutions  ( )     or      , i.e. the inverse demand function 

returns a negative value, or the production output level is less than zero, this Nash 

equilibrium solution is inconsistent with production theory. Clearly, the sales price of a 

product cannot be negative. Similarly, if production will cause a profit loss, a firm’s best 
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strategy is to shut down, i.e. the output level will be zero. Thus, we show that a Nash 

solutions satisfy these two properties. 

 

Lemma 4.2: A Nash solution to MCP problem (4.3) will satisfy      and  ( )   .  

 

 Given      and      a small   means that a change in quantity of output 

will not affect the price significantly, but a large α will greatly affect the price. If the 

industry output level changes, the price will drop significantly and the revenues for all 

firms will likely decrease. Therefore, the firms have an incentive to restrict production to 

keep the price – and revenues – high. The same output level chosen by all firms is 

characterized by a common output level  ̅ . The revenue maximizing benchmarks 

constitute a Nash equilibrium. Figure 4.3 illustrates the relationship between a Nash 

equilibrium and single-input-single-output production function, given parameter α. 

 

Theorem 4.3: If  ( )          and α is a small enough positive parameter, the 

Nash equilibrium solution is for all firms to produce on the production frontier. 

 

Theorem 4.4: If  ( )          and α is a large enough positive parameter, the 

MCP will lead to a benchmark output level with      ̅ close to zero, where   ̅ defines 

a truncated output level. 
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Figure 4.3 Nash equilibrium and α parameter adjustment 

 

 We select a dataset from Dyson et al. (1990) describing a set of distribution 

centers for a large supermarket organization to illustrate the single-output NEP. The two 

inputs are stocks and wages. The outputs correspond to the activities of the distribution 

center (DC). The three output variables available are: 1) number of issues representing 

deliveries to supermarkets, 2) number of receipts in bulk from suppliers, and 3) number 

of requisitions to suppliers. In this illustrative example, we only use the number of issues 

as a single output variable and assume a simple inverse demand function  ( )      

  . Table 4.1 shows the best strategy for output expansion or contraction, given 

different price sensitivity values,  . As discussed, a firm’s best strategy is to produce on 

the production frontier if the   value is small; alternatively, as   increases the 

benchmark function becomes truncated. Note that regardless of the value of  , the price 

and output quantity are always larger than zero as stated in lemma 4.2. 



 

 

100 

Table 4.1 Nash equilibrium in single-output production 

Firms 
Price sensitivity parameter   

0 0.05 0.1 0.3 0.5 1 10 100 

DC 1 53.33 53.33 50.89 15.87 9.52 4.76 0.48 0.048 
DC 2 49.17 49.17 49.17 15.87 9.52 4.76 0.48 0.048 
DC 3 61.67 61.67 50.89 15.87 9.52 4.76 0.48 0.048 
DC 4 70.00 70.00 50.89 15.87 9.52 4.76 0.48 0.048 
DC 5 32.50 32.50 32.50 15.87 9.52 4.76 0.48 0.048 
DC 6 61.67 61.67 50.89 15.87 9.52 4.76 0.48 0.048 
DC 7 80.00 80.00 50.89 15.87 9.52 4.76 0.48 0.048 

DC 8 65.00 65.00 50.89 15.87 9.52 4.76 0.48 0.048 
DC 9 53.33 53.33 50.89 15.87 9.52 4.76 0.48 0.048 

DC 10 70.00 70.00 50.89 15.87 9.52 4.76 0.48 0.048 
DC 11 70.00 70.00 50.89 15.87 9.52 4.76 0.48 0.048 
DC 12 45.00 45.00 45.00 15.87 9.52 4.76 0.48 0.048 
DC 13 70.00 70.00 50.89 15.87 9.52 4.76 0.48 0.048 
DC 14 45.00 45.00 45.00 15.87 9.52 4.76 0.48 0.048 
DC 15 20.00 20.00 20.00 15.87 9.52 4.76 0.48 0.048 
DC 16 53.33 53.33 50.89 15.87 9.52 4.76 0.48 0.048 
DC 17 80.00 80.00 50.89 15.87 9.52 4.76 0.48 0.048 
DC 18 61.67 61.67 50.89 15.87 9.52 4.76 0.48 0.048 

DC 19 45.00 45.00 45.00 15.87 9.52 4.76 0.48 0.048 
DC 20 61.67 61.67 50.89 15.87 9.52 4.76 0.48 0.048 

SUM 1148.33 1148.33 949.11 317.46 190.48 95.24 9.52 0.96 
PRICE 100.00 42.58 5.09 4.76 4.76 4.76 4.80 4.00 

 

4.3.2 Multiple-output Model 

To build a demand function for multiple differentiated substitutable products, we use the 

affine demand function proposed by Farahat and Perakis (2010) and define it as 

  (    (  ))    
        ∑          for all  , where      and  (  )  

(                   ) . For our purposes we define an inverse affine demand 

function,   ( )  , which exists if the condition of diagonal dominance of   matrix is 

satisfied (Bernstein and Federgruen, 2004), i.e.     ∑       . Specifically, we 
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consider a linear inverse (indirect) affine demand function as   (    (  ))    
  

      ∑          for all  , where     ,    ∑     , 

 (  )  (                   ), and     is the diagonal element of output   in the 

price sensitivity matrix  . In particular,       is not a prerequisite constraint in the 

revenue maximization problem and can be relaxed. Below we define a set of properties 

and the conditions for relaxing       . 

Four important properties of the price sensitivity matrix   are:8  

1) Weak diagonal dominance (WDD): if matrix   satisfies diagonal dominance then 

the revenue function is strictly concave as discussed above.   

2) Moderate diagonal dominance (MDD): if matrix   satisfies     ∑        for 

all   . This property holds for product   if the main effect     caused by the 

same product is more intense than the minor effect     created by another 

substitute product.  

3) Symmetric matrix: a symmetric matrix   implies an equivalent bidirectional effect 

between any two substitute products.  

4) Strong diagonal dominance (SDD):        ( )    ( )  for all   , where 

   ( ) denotes the sum of all elements in matrix   and   ( ) denotes the trace 

which represents the sum of the elements on the diagonal of matrix   . SDD 

means that each product’s quantity level generates a powerful main effect on the 

product’s price.
9 

                                                 
8 Note that all output variables need to be normalized in data pre-processing to eliminate unit dependence. 
9  For a discussion of the relationship among these properties see the weak, moderate, and strong 
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 The WDD property is likely to be true because, in general, the price of product A 

is more likely to be affected by the quantity produced of A than by the quantity produced 

of the substitute product B. We use the following formulation (4.4) to identify the 

optimal output levels: 

         

{
 

 
∑ ∑   (    (  ))     ||

∑                     

∑                     
∑              
              }

 

 

.  (4.4) 

Note that to identify a Nash equilibrium, the objective function has to be a 

strictly concave function in all arguments. Let   ∑ ∑   (    (  ))     , giving 

  

    
   (    (  ))         ∑             , and    

        
              . 

A negative definite Hessian matrix will imply a strictly concave revenue function. Thus, 

the necessary and sufficient conditions are       and the price sensitivity matrix   

satisfies the WDD property, namely,     ∑        for all   .  

 

 To solve the Nash equilibrium of formulation (4.4), we construct the 

complementary problem and define the Lagrangian function as: 

  (                     )  ∑ ∑   (    (  ))      ∑ ∑      (     

∑        )  ∑ ∑      (∑             )  ∑    (∑       ) .  

The MCP is:  

 

                                                                                                                                                
dominance section in the appendix. 
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 (  (    (  ))         ∑               )               

  
   

    
 (∑          ∑             )                 

  (    ∑        )                  (4.5)10 

  (∑            )                  

  (∑       )        

Similar results can now be developed for the multiple output case in theorem 4.5. 

 

Theorem 4.5: If the price sensitivity matrix   satisfies WDD but is not necessarily 

symmetric, then the MCP (4.6) generates (       )   ̃  where     will approach the 

efficient frontier for small enough values of    ;      ̅   is the truncated benchmark 

output level that approaches zero as     approaches infinity. 

 

Corollary 4.1: If the price sensitivity matrix   satisfies the MDD property and     

       , then the solution to the MCP (4.6) will satisfy              . 

 

                                                 
10 If matrix   does not satisfy the SDD property, the resulting Nash equilibrium solution may include 

     . In this case MCP (4.5) is changed in the first inequality to state   
   

    
 , and       :  

  
   

    
 (  (    (  ))         ∑               )                 

  
   

    
 (∑          ∑             )                 

  (    ∑        )                       (4.6) 
  (∑            )                  
  (∑       )        
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Theorem 4.5 is important because the relationship between price sensitivity matrix   and 

the Nash equilibrium solution that can be identified from the characteristic of matrix   

gives insights into the Nash equilibrium regarding the elements in matrix  . The more 

price sensitive the product the more likely a firm will hold back production in order to 

increase its revenue. 

 Even if a large     results in a truncated benchmark production level, it does not 

necessarily result in a common output value for all firms, because some firms may be 

limited by the production frontier. Referring to figure 4.3,    is the smallest input value 

to generate the truncated benchmark output level. Note that the production processes 

using an input quantity between 0 and    will identify a benchmark on the production 

frontier. Without loss of generality and        from MCP (4.6), we have 

  (    (  ))         ∑            ; therefore: 

       
  

     ∑        ∑          ∑          

    
 (4.7) 

If for product   of firm   the efficient output level     is lower than the truncated level 

 ̅ , that is, the production frontier limits output level    , then     can exceed the 

truncated benchmark level  ̅  for some product  , because     is smaller than the 

truncation level  ̅ , and     

   
 and     

   
 do not go to zero in the inequality show in equation 

(4.7).11 Simply stated, firms will adjust their mix in output space to maximize revenues 

                                                 
11 Note the exchange of   and  . 
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and generally some variation from the truncated benchmark production level may 

exist.12 

 Again, we use our two-output illustrative example from the dataset described in 

section 4.3.1. The two output variables are the number of issues and the number of 

receipts, and the two inputs are stocks and wages. The inverse demand functions for 

issues and receipts are    
(   

  (   ))           
   

      
   

 and 

   
(   

  (   ))          
   

      
   

 respectively. Table 4.2 reports the Nash 

equilibrium solution to the MCP (4.6) for different price sensitivity matrix  , all of 

which satisfy the WDD property. Once more a firm’s best strategy is to produce as close 

to the efficient frontier as possible for products with an insensitive inverse demand 

function implied by smaller values in the diagonal components of the   matrix shown in 

case 1. As     becomes larger the benchmark output level is truncated and approaches 

zero with respect to product  . In cases 2 the parameter      
 is larger than case 1, the 

output    decreases and output     increases to maximize revenue. Similar in case 3, 

     
 is increased relative to case 1 and the output    decreases. In case 4 the parameter 

     
 increases with respect to case 2, the solution shows output    decreases to the 

truncated benchmark level. Increasing      
 in cases 5 and 6, output    approaches zero 

even though the   matrices do not satisfy the symmetric condition. In cases 7 and 8 let 

     
       

 and the results indicate that the ratio of output levels    and    are 

influence not only by the ratio of      
 to      

, but also by their absolute levels. 

                                                 
12 This result is illustrated in table 4.2, case 2, DC 5. 
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Table 4.2 Nash equilibrium in two-output production 

Case 1 2 3 4 5 6 7 8 
Output                                                 

  
0.05 0.02 1 0.02 0.05 0.02 1 0.02 1.2 0.08 10 5 20 0.02 0.1 0.02 

0.02 0.04 0.02 0.04 0.02 1 0.02 0.1 0.02 0.04 0.02 0.04 0.02 10 0.02 0.05 

DC1 53.3 32.9 3.6 58.7 53.3 1.3 4.3 22.9 0.1 60.9 0.0 61.0 0.2 0.2 43.0 30.4 
DC2 49.2 34.9 3.6 58.5 49.2 1.4 4.3 22.9 0.2 58.5 0.0 58.5 0.2 0.2 43.0 30.4 
DC3 61.7 28.7 3.6 58.7 61.7 1.1 4.3 22.9 0.1 60.9 0.0 61.0 0.2 0.2 43.0 30.4 
DC4 70.0 24.5 3.6 58.7 70.0 1.0 4.3 22.9 0.1 60.9 0.0 61.0 0.2 0.2 43.0 30.4 
DC5 32.5 43.3 3.7 55.1 32.5 1.7 4.3 22.9 0.2 55.1 0.0 55.1 0.2 0.2 32.5 34.6 

DC6 61.7 28.7 3.6 58.7 61.7 1.1 4.3 22.9 0.1 60.9 0.0 61.0 0.2 0.2 43.0 30.4 
DC7 80.0 19.5 3.6 58.7 80.0 0.8 4.3 22.9 0.1 60.9 0.0 61.0 0.2 0.2 43.0 30.4 
DC8 65.0 27.0 3.6 58.7 65.0 1.1 4.3 22.9 0.1 60.9 0.0 61.0 0.2 0.2 43.0 30.4 
DC9 53.3 32.9 3.6 58.7 53.3 1.3 4.3 22.9 0.1 60.9 0.0 61.0 0.2 0.2 43.0 30.4 
DC10 70.0 24.5 3.6 58.7 70.0 1.0 4.3 22.9 0.1 60.9 0.0 61.0 0.2 0.2 43.0 30.4 
DC11 70.0 24.5 3.6 58.7 70.0 1.0 4.3 22.9 0.1 60.9 0.0 61.0 0.2 0.2 43.0 30.4 
DC12 45.0 37.0 3.8 50.0 45.0 1.5 4.3 22.9 0.3 50.0 0.0 50.0 0.2 0.2 43.0 30.4 
DC13 70.0 24.5 3.6 58.7 70.0 1.0 4.3 22.9 0.1 60.9 0.0 61.0 0.2 0.2 43.0 30.4 
DC14 45.0 37.0 3.6 58.7 45.0 1.5 4.3 22.9 0.1 60.9 0.0 61.0 0.2 0.2 43.0 30.4 
DC15 20.0 49.5 3.8 50.0 20.0 2.0 4.3 22.9 0.3 50.0 0.0 50.0 0.2 0.2 20.0 39.6 
DC16 53.3 32.9 3.6 58.7 53.3 1.3 4.3 22.9 0.1 60.9 0.0 61.0 0.2 0.2 43.0 30.4 

DC17 80.0 19.5 3.6 58.7 80.0 0.8 4.3 22.9 0.1 60.9 0.0 61.0 0.2 0.2 43.0 30.4 
DC18 61.7 28.7 3.6 58.7 61.7 1.1 4.3 22.9 0.1 60.9 0.0 61.0 0.2 0.2 43.0 30.4 
DC19 45.0 37.0 3.6 58.7 45.0 1.5 4.3 22.9 0.1 60.9 0.0 61.0 0.2 0.2 43.0 30.4 
DC20 61.7 28.7 3.6 58.7 61.7 1.1 4.3 22.9 0.1 60.9 0.0 61.0 0.2 0.2 43.0 30.4 

SUM 1148 616 72.2 1153 1148 24.7 86.1 459 3.0 1187 0.0 1189 4.8 4.8 826 621 
Price 30.3 2.4 4.8 2.4 42.1 2.4 4.8 2.4 1.4 2.4 <0.0 2.4 4.7 2.3 4.9 2.4 

 

 Note that case 6 in Table 4.2, the price of product    (issues) is less than 0, an 

unreasonable negative price, yet the revenue function is still equal to zero because 

   
  . Adding another constraint to restrict the price to be larger than zero will cause 

the quantity of product    selected to drop, which gives a worse outcome.13 

                                                 
13 The intuition for case 6 can be built using the single-output case considering only product  

 
. The 

related problem of  negative demand in demand function is modified using the price mappings (described 
in Shubik and Levitan (1980), Soon, et al. (2009), and Farahat and Perakis (2010)). 



 

 

107 

4.4 Generalized Profit Maximization Model  

In our short-run profit models of oligopolistic output markets and a limited capacity 

input market, we only change the variable inputs, e.g., capital stock for production is 

fixed and employment or materials vary with demand (Marshall, 1920). Stigler (1939) 

argues that the quantitative variations of output can be described via the law of 

diminishing returns and marginal productivity theory when holding constant all but one 

of the productive factors and adjusting the quantity of the remaining factor. Thus, our 

generalized model treats fixed inputs and variable inputs separately.  

This section also looks at the case of variable input markets with limited capacity 

and oligopolistic output markets, assuming that the inverse supply function of inputs and 

the inverse demand function of output are linear (see section 4.3 and the appendix C). 

We formulate our generalized profit maximization model as equation (4.8): 
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where    
  is the data for fixed input   and    

  is the variable for variable input   of firm 

 .    ∑                  and   
 (    (  ))    

         ∑                

indicate the overall quantity and price of the inverse demand function of output product 

  in the market. Similarly, for variable input    the overall quantity   
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∑      
 

         . Note that the objective function ignores the fixed input cost 

∑   
  

(  
   (  )

 )   
 

  since it is a constant sunk cost. 

To verify the existence and uniqueness of a solution, the profit function should 

be strictly concave. Let    ∑ ∑   
 (    (  ))      ∑ ∑   

  
(  

   (  )
 )   

 
   be the 

profit function. That is, the revenue function ∑ ∑   
 (    (  ))      should be strictly 

concave and the variable cost function ∑ ∑   
  

(  
   (  )

 )   
 

   strictly convex. We 

have     

    
   

 (    (  ))         ∑             , and      

        
          

    . A negative definite Hessian matrix will imply a strictly concave revenue function. 

Thus, the necessary and sufficient conditions are       and the price sensitivity 

matrix   satisfies the WDD property, namely,     ∑        for all   . Also, we have 

    

    
     

  
(  

   (  )
 )        

  ∑       
 

      , and      

    
     

               . 

A negative definite Hessian matrix will imply a strictly concave negative cost function. 

Similarly, the necessary and sufficient conditions are       and the price sensitivity 

matrix   satisfies the WDD property.14  

 

To solve for a Nash equilibrium associated with equation (4.8), the CP is built 

and the Lagrangian function defined as: 

  (       
                        ) 

                                                 
14 In a special case in which input markets are perfectly competitive      , the inverse supply function 
will be constant and the cost function becomes a linear function. This does not affect the optimality 
condition, i.e. the profit function is still a strictly concave function if the revenue function is strictly 
concave. 
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The Nash equilibrium solution generated from MCP (4.9) exists and is unique when the 

price sensitivity matrices   and   satisfy the WDD property. See section 4.4.1 for a 

similar proof. 

In a perfectly competitive market, the profit efficient firms, i.e. achieving 

maximum profits (Farrell, 1957), must be allocatively efficient by using the least cost 

mix of inputs to produce the maximum revenue mix of outputs, and technically efficient 

by generating the most outputs with their level of inputs, (Färe, et al., 1994). In 

oligopolistic markets, however, profit maximization can be achieved without technical 

efficiency, i.e. rational inefficiency. We will continue to refer to the profit maximizing 
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production possibility as allocatively efficient because it is not possible to change either 

the input mix or the output mix to increase profits. MCP (4.9) generates an allocatively 

efficient Nash solution. 

 

Theorem 4.6: Given arbitrary price sensitivity matrices   and   that satisfy WDD, 

MCP (4.9) generates all allocatively efficient Nash solutions (   
     

      
 )   ̃. These 

solutions are on the frontier including the weakly efficient frontier15, but excluding the 

portion of the frontier associated with positive slacks and dual variables equal to zero on 

the input constraints. 

 

 Theorem 4.6 implies that the Nash equilibrium benchmark generated from MCP 

(4.9) exists on the production frontier using the same or fewer inputs than at least one 

anchor point, (Bougnol and Dulá, 2009).16 Based on theorem 4.5, if     becomes large, 

the production level will approach zero with respect to   and the Nash solution will be 

located on the weakly efficient portion of the production frontier which uses minimal 

input levels. In other words, if the price sensitivity to output is large enough, the Nash 

equilibrium benchmark suggests that a firm should operate on the weakly efficient 

portion of the frontier where more output can be generated using the same level of 

                                                 
15 Weakly efficient frontier is defined as the portion of the input (output) isoquant along which one of the 
inputs (outputs) can be reduced (expanded) while holding all other netputs constant and remaining on the 
isoquant; see Färe and Lovell (1978) for more details. 
16 Bougnol and Dulá (2009) propose a procedure to identify anchor points and show that if a point is an 
anchor point, then increasing an input or decreasing an output generates a new point on the free-
disposability portion of the production possibility set.  



 

 

111 

inputs. In this case, note that the profits are maximized by operating inefficiently, 

motivating the connection to rational inefficiency. 

The illustrative example of the generalized profit model also uses the dataset in 

section 4.3. The two output variables are the number of issues and the number of 

receipts, and the two variable inputs are stocks and wages. One fixed input is randomly 

generated from a Uniform [3,10] distribution. The inverse demand functions for issues 

and receipts are    
 (   

  (   ))           
   

      
   

 and    
 (   

  (   ))  

        
   

      
   

 respectively. The inverse supply functions for stocks and 

wages are    
  

(   
   (   )

 )             
          

  and    
  

(   
   (   )

 )     

        
          

  respectively. Table 4.3 reports the Nash equilibrium solution to MCP 

(4.9) for the price sensitivity matrices   and  , all of which satisfy the WDD property. 

Again, for outputs with insensitive inverse demand functions implied by smaller values 

in the diagonal components of the   matrix, a firm’s best strategy is to produce near the 

efficient frontier; as     becomes large, the production approaches zero with respect to   

as shown in case 4. Similarly on the input side, for inputs with sensitive inverse supply 

functions implied by larger values in the diagonal components of the   matrix, the best 

strategy is to use smaller input levels to produce on the weakly efficient frontier; as     

becomes smaller, the input level of the Nash equilibrium solution grows larger. 

However, the input level of the solution is always limited to the range of lower and 

upper bounds identified in theorem 6. Furthermore, the price sensitivity value   will 

affect the price of Nash solution significantly, cost will increase quickly and profits will 
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drop. Cases 1, 2 and 3 show that as       increases, costs also increase and producers 

have less incentive to produce. Cases 4 and 5 decrease the output level due to changes in 

the   matrix; in particular, case 5 illustrates rational inefficiency because firms hold 

back producing additional output in order to maximize profits. 

 

4.4.1 Existence and Uniqueness 

If a Nash equilibrium does not exist, there is no purpose in talking about its properties, 

identification, etc. Further, if multiple equilibria exist, it is not clear which might result 

in any particular case. In this section we prove the existence and uniqueness of the Nash 

equilibrium solution identified by the MCP. 

 

Theorem 4.7: MCP (4.9) generates a Nash equilibrium solution (         )   ̃.  

 

To get a unique Nash equilibrium, a strictly concave profit function is assumed. Given a 

convex production possibility set, theorem 4.8 states the uniqueness of the Nash 

equilibrium.  
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Table 4.3 Nash equilibrium in two-output two-variable-input production 
Case 1 2 3 4 5 

Variable                                                             

  or   
0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 1 0.02 0.05 0.02 1 0.02 0.05 0.02 

0.02 0.04 0.02 0.04 0.02 0.04 0.02 1 0.02 0.04 0.02 10 0.02 0.04 0.02 0.04 0.02 1 0.02 0.04 

DC1 70.0 24.5 5.0 7.0 70.0 24.5 5.0 7.0 45.0 37.0 3.0 4.0 3.4 67.0 3.0 4.0 4.7 2.3 3.0 4.0 

DC2 70.0 24.5 5.0 7.0 55.0 32.0 3.2 5.2 45.0 37.0 2.4 4.0 3.8 50.0 2.2 3.3 4.7 2.3 2.2 3.3 

DC3 55.0 32.0 4.0 6.0 55.0 32.0 4.0 6.0 55.0 32.0 4.0 6.0 3.9 45.0 4.0 6.0 4.7 2.3 4.0 6.0 

DC4 70.0 24.5 5.0 7.0 65.0 27.0 4.4 6.4 45.0 37.0 2.8 4.0 3.6 58.5 2.7 3.8 4.7 2.3 2.7 3.8 

DC5 70.0 24.5 5.0 7.0 60.0 29.5 3.8 5.8 45.0 37.0 2.6 4.0 3.8 50.0 2.3 3.5 4.7 2.3 2.3 3.5 

DC6 70.0 24.5 5.0 7.0 70.0 24.5 5.0 7.0 45.0 37.0 3.0 4.0 3.4 67.0 3.0 4.0 4.7 2.3 3.0 4.0 

DC7 70.0 24.5 5.0 7.0 48.8 35.1 2.5 4.5 45.0 37.0 2.0 4.0 3.8 50.0 2.0 3.0 4.7 2.3 2.0 3.0 

DC8 70.0 24.5 5.0 7.0 65.0 27.0 4.4 6.4 45.0 37.0 2.8 4.0 3.6 58.5 2.7 3.8 4.7 2.3 2.7 3.8 

DC9 70.0 24.5 5.0 7.0 65.0 27.0 4.4 6.4 45.0 37.0 2.8 4.0 3.6 58.5 2.7 3.8 4.7 2.3 2.7 3.8 

DC10 70.0 24.5 5.0 7.0 70.0 24.5 5.0 7.0 45.0 37.0 3.0 4.0 3.4 67.0 3.0 4.0 4.7 2.3 3.0 4.0 

DC11 70.0 24.5 5.0 7.0 60.0 29.5 3.8 5.8 45.0 37.0 2.6 4.0 3.8 50.0 2.3 3.5 4.7 2.3 2.3 3.5 

DC12 70.0 24.5 5.0 7.0 48.8 35.1 2.5 4.5 45.0 37.0 2.0 4.0 3.8 50.0 2.0 3.0 4.7 2.3 2.0 3.0 

DC13 70.0 24.5 5.0 7.0 55.0 32.0 3.2 5.2 45.0 37.0 2.4 4.0 3.8 50.0 2.2 3.3 4.7 2.3 2.2 3.3 

DC14 70.0 24.5 5.0 7.0 70.0 24.5 5.0 7.0 45.0 37.0 3.0 4.0 3.4 67.0 3.0 4.0 4.7 2.3 3.0 4.0 

DC15 70.0 24.5 5.0 7.0 48.8 35.1 2.5 4.5 45.0 37.0 2.0 4.0 3.8 50.0 2.0 3.0 4.7 2.3 2.0 3.0 

DC16 70.0 24.5 5.0 7.0 65.0 27.0 4.4 6.4 45.0 37.0 2.8 4.0 3.6 58.5 2.7 3.8 4.7 2.3 2.7 3.8 

DC17 70.0 24.5 5.0 7.0 60.0 29.5 3.8 5.8 45.0 37.0 2.6 4.0 3.8 50.0 2.3 3.5 4.7 2.3 2.3 3.5 

DC18 70.0 24.5 5.0 7.0 48.8 35.1 2.5 4.5 45.0 37.0 2.0 4.0 3.8 50.0 2.0 3.0 4.7 2.3 2.0 3.0 

DC19 70.0 24.5 5.0 7.0 70.0 24.5 5.0 7.0 45.0 37.0 3.0 4.0 3.4 67.0 3.0 4.0 4.7 2.3 3.0 4.0 

DC20 70.0 24.5 5.0 7.0 48.8 35.1 2.5 4.5 45.0 37.0 2.0 4.0 3.8 50.0 2.0 3.0 4.7 2.3 2.0 3.0 

SUM 1385 498 99 139 1199 591 77 117 910 735 53 82 73 1114 51 73 94 46 51 73 

Price 20.8 2.4 57.7 37.5 28.2 2.4 56.2 148.2 39.8 2.4 54.3 851.1 4.8 4.0 54.0 33.9 4.8 2.4 54.0 33.9 

Revenue 29980 35257 37960 4782 558 

Cost 10933 21599 72653 5233 5233 

Profit 19047 13658 -34692 -451 -4675 

 

Theorem 4.8: If the profit function is a strictly concave function on (       )   ̃ that 

is continuous and differentiable and the price sensitivity matrices   and   satisfy the 

WDD property, then the Nash equilibrium solution found using MCP (4.9) is unique if a 

solution exists for the maximization problem. 
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4.4.2 Price Sensitivity and Returns to Scale 

It is necessary to understand the relationship between the price sensitivity matrices   and 

  and the returns to scale (RTS) properties of the Nash equilibrium benchmarks. To 

address RTS properties, we must first identify the “Most Productive Scale Size 

(MPSS)”. The production frontier is characterized by three regions: constant returns to 

scale (CRS), increasing returns to scale (IRS), and decreasing returns to scale (DRS). 

The MPSS can be identified for firm  ’s input and output mix using the input-oriented 

CRS DEA technique formulated in (4.10). If the sum of ∑    
   

     in the input-

oriented CRS DEA17 , we can identify such observations as operating at the MPSS 

(Banker, 1984):  
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Let       denote the set of observations having the MPSS property, one for each firm   

in the dataset, and let    
  and    

   be the Nash equilibrium solutions obtained from MCP 

(4.9). Using these additional observations as the reference set, optimization problem 

(4.11) can be used to identify the returns to scale property for each production plan in the 

Nash solution. 
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17 Note there are potential multiple optimal solutions. See Zhu (2000) for additional details. 
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For each Nash solution of firm  , if ∑  
      
    

       , firm   operates under 

increasing returns to scale; if ∑  
      
    

       , firm   operates under decreasing 

returns to scale; or if  ∑  
      
    

       , firm   operates under constant returns to 

scale.18The equation ∑  
      
    

      is termed the RTS index (RTSI).  

 For a one-input one-output production process, figure 4.4 depicts the true 

production function as a solid curve, the CRS estimated frontier as a straight dashed line, 

the VRS estimated frontier as a piece-wise linear bold dashed line, and the MPSS as 

Point B. In particular, based on theorem 4.6 the Nash equilibrium generated from MCP 

(4.9) should be located on the bold dashed lines.    and    are the upper and lower 

bounds for the variable input level as discussed below theorem 4.6.  

 

Corollary 4.2: Assume all input and output variables are normalized to eliminate unit 

dependence, and the price of outputs dominates the price of inputs to ensure a positive 

marginal profit. Given a production frontier including three portions: IRS, CRS, and 

DRS, the MCP (4.9) generates a Nash equilibrium solution that is characterized by DRS 

when the inverse demand and supply functions are less sensitive, or the Nash 

equilibrium is characterized by IRS when the inverse demand and supply functions are 

more sensitive.  

 
                                                 
18 In (4.9) note that both inputs and outputs are defined as adjustable; thus, all Nash equilibria are located 
on the production frontier. If this is not the case, for example if there are adjustment costs when changing 
input levels (Choi et al., 2006), then some equilibria may not be on the frontier as shown in figure 4.3. For 
these equilibria RTS are not defined because RTS is a frontier property.  In (4.11) if    is not equal to 1, 
then RTS may not defined for that production possibility; see for example Seiford and Zhu (1999) or Ray 
(2010). 
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Figure 4.4 Nash equilibrium on bold dashed lines 

 

 Extending the illustrative example in section 4.2, we use formulation (4.11) to 

identify the RTS property of the Nash equilibrium solution shown in table 4.3; DCs 3, 

10, 12, 15, and 19 are identified as operating at MPSS. Table 4.4 shows the RTS 

associated with the Nash solutions for cases 1 through 5 in table 4.3. Based on corollary 

4.2, the sensitivity of output and sensitivity of input are the two oppositional forces in 

terms of scale. Case 1 represents a baseline and the Nash solutions present CRS or DRS 

properties. The sensitivity parameter of the supply function in case 2 increases relative to 

case 1, which encourages firms to hold back on the consumption of inputs, i.e. more DCs 

operate at MPSS in case 2. If we further increase the sensitivity parameter of the supply 

function, all DCs operate at MPSS in case 3. Case 4 results in all firms operating at 

MPSS or IRS, by increasing the sensitivity parameter of the demand function and 

leaving the sensitivity parameter of the supply function parameter the same as in case 1. 
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Case 5 shows that all firms operate at IRS and on the weakly efficient portion of the 

frontier. This demonstrates the concept of rational inefficiency. 

 

Table 4.4 Returns to scale of Nash equilibrium 
Case 1 2 3 4 5 

 
                                                            

  or   
0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 1 0.02 0.05 0.02 1 0.02 0.05 0.02 

0.02 0.04 0.02 0.04 0.02 0.04 0.02 1 0.02 0.04 0.02 10 0.02 0.04 0.02 0.04 0.02 1 0.02 0.04 

Returns to scale RTSI RTS RTSI RTS RTSI RTS RTSI RTS RTSI RTS 

DC1 1 C 1 C 1 C 1 C 0.104 I 

DC2 1.5 D 1 C 1 C 0.916 I 0.104 I 

DC3 1 C 1 C 1 C 0.685 I 0.104 I 

DC4 1.167 D 1 C 1 C 0.937 I 0.104 I 

DC5 1.333 D 1 C 1 C 0.873 I 0.104 I 

DC6 1 C 1 C 1 C 1 C 0.104 I 

DC7 1.556 D 1.084 D 1 C 1 C 0.104 I 

DC8 1.167 D 1 C 1 C 0.937 I 0.104 I 

DC9 1.167 D 1 C 1 C 0.937 I 0.104 I 

DC10 1 C 1 C 1 C 1 C 0.104 I 

DC11 1.333 D 1 C 1 C 0.873 I 0.104 I 

DC12 1.556 D 1.084 D 1 C 1 C 0.104 I 

DC13 1.5 D 1 C 1 C 0.916 I 0.104 I 

DC14 1 C 1 C 1 C 1 C 0.104 I 

DC15 1.556 D 1.084 D 1 C 1 C 0.104 I 

DC16 1.167 D 1 C 1 C 0.937 I 0.104 I 

DC17 1.333 D 1 C 1 C 0.873 I 0.104 I 

DC18 1.556 D 1.084 D 1 C 1 C 0.104 I 

DC19 1 C 1 C 1 C 1 C 0.104 I 

DC20 1.556 D 1.084 D 1 C 1 C 0.104 I 

Returns to Scale CRS or DRS CRS or DRS CRS CRS or IRS IRS 

* C, D and I indicate constant, decreasing, and increasing returns to scale respectively. 
 

4.4.3 Allocative Efficiency and Directional Distance Function 

The Nash equilibrium identified by using (4.9) is an allocatively efficient solution as 

shown in theorem 4.6. Zofio and Prieto (2006) suggest choosing the direction in the 
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direction distance function (DDF) to move towards the allocatively efficient point. We 

extend their suggestion to the case of oligopolistic markets and suggest that each firm 

should select the direction for improvement in the DDF to move towards its Nash 

equilibrium benchmark. 

The DDF as defined by Chambers et al. (1996; 1998) is the simultaneous 

contraction of inputs and expansion of outputs: 

 ⃗⃗  ( 
          

   )           (          
      )      (4.12) 

where   is the distance measure and    
    are the direction vectors for variable inputs 

and outputs respectively. Recall that since we do not change the fixed inputs in the short 

run, no direction is associated with them. We estimate the DDF for firm   as: 
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Because the method for selecting a direction (   
   ) is an open issue, the direction 

(    ) is usually chosen for simplicity. Alternatively, Frei and Harker (1999) determine 

the least-norm projection from an inefficient firm to the frontier, but this direction is 

non-proportional and is not unit-invariant. Färe et al. (2011) estimate an endogenous 

direction, but it is void of economic meaning. Therefore, we propose that firms’ 

direction for improvement move towards the allocatively efficient benchmark identified 

by the Nash equilibrium. Thus, the direction is firm-specific and can be calculated by 

following the equation for firm  : 
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(  
  

   
 
)  

(  
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‖(  
     

    
    )‖

 (4.14) 

where   
   and   

  are the benchmarks determined by the Nash equilibrium,   
  and    

are the vectors of the current variable input and output production, and ‖ ‖  is the 

Euclidean norm. This ratio imposes (   
   ) is a unit vector.19 

Extending the example in table 4.3, case 1, we calculate the direction of 

improvement associated with this example as shown in table 4.5. The results indicate 

that when trying to maximize overall economic efficiency20 using formulation (4.8) it is 

not necessary to contract the variable inputs and expand the outputs. To maintain higher 

price and profit maximization, firm   may achieve economic efficiency by changing its 

mix to become allocatively efficient. However, no firm takes a direction which increases 

all variable inputs and decreases all output levels as this would lead to a loss in profit. 

 

 

 

 

 

 

 

 

                                                 
19 The length of the directional vector influences the efficiency estimates in the DDF; the use of a unit 
vector has also been used in Fare et al. (2011). 
20 Economic efficiency is the product of allocative efficiency and technical efficiency, see for example 
Fried et al. (2008).  
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Table 4.5 Direction determination 

Case 1 
Direction (   

   ) 

            

DC1 0.0467 0.0467 0.7000 -0.7111 
DC2 0.0697 0.0697 0.6970 -0.7103 
DC3 0.0000 0.0000 0.0000 -1.0000 
DC4 -0.0445 0.0000 0.9785 0.2012 
DC5 0.0547 0.0710 0.8516 -0.5165 
DC6 0.0445 0.0222 0.9783 0.2012 

DC7 -0.0478 -0.0717 -0.2390 -0.9672 
DC8 0.0118 0.0118 0.8865 -0.4625 

DC9 0.0427 0.0427 0.5341 -0.8433 
DC10 0.0000 0.0000 0.0000 -1.0000 
DC11 0.0000 0.0000 0.5255 -0.8508 
DC12 0.1010 0.1010 0.8416 -0.5210 
DC13 0.0000 0.0000 0.9955 -0.0948 
DC14 0.0305 0.0914 0.9753 0.1988 
DC15 0.0532 0.0710 0.8875 -0.4522 
DC16 0.0617 0.0309 0.9878 0.1396 
DC17 -0.0503 -0.1006 0.0503 -0.9924 

DC18 0.0213 0.0213 0.9575 -0.2867 
DC19 0.0405 0.0607 0.5059 -0.8595 
DC20 0.0000 0.0265 0.3440 -0.9386 

 

4.5 Concluding Remarks 

This study analyzes endogenous prices in productivity analysis. Given inverse demand 

and supply functions, a Nash equilibrium solution corresponding to profit maximization 

production plan within the production possibility set is identified using a mixed 

complementary problem (MCP). When the inverse demand and supply functions are 

constant functions, the standard analysis of efficiency assuming perfect competition and 

exogenous prices follows. For markets in which demand is heavily influence by the total 

supply quantity, firms seek to decrease their output levels and maintain higher product 
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prices to maximize profits. The proposed MCP model integrates oligopolistic market 

equilibrium and productivity analysis. We find that the resulting Nash equilibrium is an 

example of rational inefficiency.  

Deviating from standard economic analysis, we consider the production 

limitations estimated from observed data and interpret the Nash equilibrium as the 

benchmark, or the production plans each of the firms should work towards for more 

profitable production. Our work extends the efficiency literature on demand functions by 

considering multiple output production and allowing both outputs and variable inputs to 

be adjusted by the firm. Prior work primarily focused on individual firms decisions 

without consideration for the other firms in the market. 

The identification of a unique Nash equilibrium allows further insights to 

operational improvement strategies. We show the relationship between price sensitivity 

and returns to scale in the Nash equilibrium. Based on the concept of allocative 

efficiency, we conclude that the Nash equilibrium is a useful guide for determining 

direction in the directional distance function. 
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CHAPTER V 

CONCLUSIONS 

 

5.1 Summary 

The strategic position of productivity analysis in production planning is identified and a 

set of the new models to assess the effect of demand on productivity and efficiency 

measurement is investigated. 

 In chapter I, the functional position of productivity and efficiency analysis (PEA) 

within the production planning framework is defined. Performance benchmarking and 

production guidance are two services which PEA can provide. Furthermore, this study 

builds a bridge between PEA and demand management. 

 In chapter II, a two-dimensional efficiency decomposition (2DED) of 

profitability for a production system to account for the demand effect observed in 

productivity analysis is described. The first dimension identifies four components of 

efficiency: capacity design, demand generation, operations, and demand consumption, 

using Network Data Envelopment Analysis (Network DEA). The second dimension 

decomposes the efficiency measures and integrates them into a profitability efficiency 

framework. Thus, each component’s profitability change is analyzed based on technical 

efficiency change, scale efficiency change and allocative efficiency change. An 

empirical study based on data from 2006 to 2008 for the US airline industry finds that 

the regress of productivity is mainly caused by a demand fluctuation in 2007–2008 

rather than technical regression in production capabilities. 
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 In chapter III, a proactive DEA model to account for demand fluctuations while 

maximizing effective production is described. Demand fluctuations lead to variations in 

the output levels affecting technical efficiency measures. In the short-run, firms can 

adjust their variable resources to either increase production if demand increases or to 

reduce costs if demand decreases. The present study proposes a short-run capacity 

planning method, proactive DEA, that quantifies the effectiveness of the production 

system under demand uncertainty using a stochastic programming DEA (SPDEA) 

approach. This method estimates the expected value of effectiveness given the demand 

distribution. An empirical study of Japanese convenience stores is discussed to 

demonstrate the proposed model. The result shows that proactive SPDEA provides 

actionable advice regarding the level of variable inputs in uncertain demand 

environments. 

 In chapter IV, a Nash equilibrium in oligopolistic market is identified using an 

estimate of the production possibility set and an inverse demand function. The standard 

assumption in the efficiency literature that firms desire to produce on the production 

frontier may not hold in an oligopolistic market where the production decisions of all 

firms will determine the market price, i.e. an increase in a firm’s output level leads to a 

lower market clearing price and potentially-lower profits. This study identifies a Nash-

Cournot equilibrium and improvement targets which may not be on the production 

frontier. This behavior is referred to as rational inefficiency because the firm reduces its 

productivity levels in order to increase profits. For a general multiple input/output 

production process and allowing a firm to adjust its output levels and variable input 
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levels, the existence and the uniqueness of the Nash-Cournot equilibrium is proven. The 

relationship between the benchmark frontier, scale properties and allocative efficiency is 

discussed. When changes in quantity have a significant influence on price, more 

benchmark production plans are on the increasing returns to scale portion of the frontier. 

Additionally, a direction for improvement towards the allocatively efficient production 

plan is estimated, thus providing a solution to the direction selection issue in a 

directional distance analysis. 

 

5.2 Main Contributions 

This dissertation provides following contributions. 

1. Identifies the PEA function in production planning 

2. Develops a connection between PEA and demand management 

3. Proposes a hybrid system generalizing manufacturing and service systems 

4. Defines a two-dimensional efficiency decomposition of productivity 

5. Proposes a proactive DEA approach for addressing demand fluctuations 

6. Defines the truncated benchmark production function for effectiveness measure 

7. Identifies the source of rational inefficiency  

8. Develops the relationship between the price sensitivity of demand and an  

    allocatively efficient benchmarking production plan  

9. Determine the direction in the directional distance function analysis 

10. Conduct empirical studies in US airline, Japanese convenience store, and a set of  

      distribution center 
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5.3 Recommendations and Further Research 

In this research, a framework was constructed for productivity improvement and strategy 

identification. Some issues are recommended to improve this study. 

 In the network DEA study, in practice, the airline fleet is usually leased and thus 

a variable input, and employees are unionized are perhaps a fixed input. The truly fixed 

factors are the routes and the network structure. In addition, the airline study uses 

system-wide data and the demand effects in specific areas are not easy to interpreted. A 

study focusing on a specific route and city-pair would allow a detailed analysis of  the 

area/market level inefficiency. This focus could clarify the sources of inefficiency. 

 In the proactive DEA study, a single-variable-input and a single-output could be 

generalized to the multiple-input and multiple-output setting. This requires estimating a 

"directional" marginal product and extends the work of Podinovski and Førsund (2010). 

The demand for the various outputs could each be truncated and thus effectiveness 

would be defined in term of an aggregation. 

 In the rational inefficiency study, already addresses scale; however extend the 

concept to include scope issues is potentially interesting. Multiple products in different 

market structures may lead to a hybrid effect. In addition, classical production theory 

hypothesizes an S-shaped production function. Developing methods to estimate the Nash 

equilibria is a potentially challenging and interesting problem. The nonconvex 

production function may lead to multiple profit maximizing points. The additional 

information and economic criteria will need to be applied to select among the equilibria. 
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Further research should address the following issue. 

Noise consideration in PEA 

DEA is a nonparametric technique to estimate a production frontier without 

consideration noise. To improve the robustness of the analysis, Convex Nonparametric 

Least Squares (CNLS) and Stochastic non-smooth envelopment of data (StoNED) are 

two approaches to estimate a production function imposing only monotonicity and 

convexity on the function. For detail, see Hildreth (1954), Kuosmanen (2008), 

Kuosmanen and Johnson (2010), Kuosmanen and Kortelainen (2011), Johnson and 

Kuosmanen (2012), Lee et al. (2012).   
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APPENDIX A 

SUPPORTING MATERIAL FOR CHAPTER II 

 

Component profitability estimation by dual model 

The profitability represents the ratio equal to revenue by cost. First, the output and input 

factors are identified in each component respectively. Thus, their monetary value can be 

calculated for revenue gain and cost expenditure. Second, based on profitability, the 

profitability efficiency can be estimated and decomposed. The detail of profitability in 

each component is described below.  

 

Capacity Design Component 

 The revenue and cost are the monetary value of peak output and fixed input 

respectively. 
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qrsp  means the unit price of thq  capacity c

qrsY . 
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Demand Generation Component 

The revenue and cost are the monetary value of expected demand and peak output 

respectively. 
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where e

qrsp  means the unit price of thq  expected demand e

qrsD . 

 

Operations Component 

 The revenue is the monetary value of actual output and the cost is the summation 

of the monetary value of variable input and expected demand respectively. 
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where a

qrsp  means the unit price of thq  actual output a

qrsY . 

 

Demand Consumption Component 

 The revenue and cost are the monetary value of realized demand and actual 

output respectively. 
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Formulation of decomposition of profitability efficiency 

Profitability efficiency can be estimated by equation (A1). In particular, equation (A2) 

represents technical efficiency change, equation (A3) indicates scale efficiency change, 
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and (A4) represents allocative efficiency change. Each component takes the geometric 

mean of the input-oriented and output-oriented measures. 
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Here, the TE  and AE  follow the traditional definition of Fare et al. (1994) and Ray 

and Mukherjee (1996); however, the scale efficiency defined in Kuosmanen and 

Sipiläinen (2009) employs the dual perspective and characterizes the optimal scale size 

in terms of the profitability function. We use the dual approach because the traditional 

distance function will estimate different values under different assumptions regarding 

strong and weak disposability and congestion (McDonald, 1996). 
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Definition and raw data in US airline industry 

The data set of 15 US airline firms from 2006 to 2008 was primarily gathered from Air 

Carrier Financial Statistics and Air Carrier Traffic Statistics published by the Bureau of 

Transportation Statistics at the Research and Innovative Technology Administration 

(RITA, 2009).  

Sources for inputs, demand, and output levels 

Aircraft fleet size (FS) is the average number of aircraft employed in a firm during 

a particular year. The make-up of the fleet for each firm is shown in AirSafe.com (2008).  

Fuel (FU) is the number of gallons consumed annually, estimated by fuel expenses 

over the average jet fuel cost per gallon. The fuel expenses and average jet fuel cost per 

gallon are found in the Transportation Statistics Annual Report 2008 published by the 

Bureau of Transportation Statistics (BTS).  

Employee (EP) is the number of employees during the year, which includes flight 

shipping staff, pilots, flight attendants, and managers but not ground shipping drivers. 

The data of number of employees and salaries and benefits expenses are collected from 

individual annual financial reports, BTS and the Securities and Exchange Commission 

(SEC), and the related summary report shown in AirlineFinancials.com (2009).21 

Note that all demand and output measures come from Air Carrier Financial 

Statistics and Air Carrier Traffic Statistics. 

                                                 
21 The data of personnel structure of flight and ground shipping with respect to FedEx (Federal Express) 
and UPS (United Parcel Service) is estimated in FedEx official website (2010) and UPS official website 
(2010). 



 

 

Table A1 Raw data of US airline industry 2006-2008 
      Fixed input Variable input Peak Output Scheduled Demand Available Output Realized Demand 
      Aircraft Fuel Employee Passenger Freight Passenger Freight Passenger Freight Passenger Freight 

Firm No. Year Fleet 
Size 

price 
(106) 

Gals 
(106) price Units Wages 

Pasgr 
-miles 
(106) 

price 
Ton 

-miles 
(106) 

price 
Pasgr 
-miles 
(106) 

price 
Ton 

-miles 
(106) 

price 
Pasgr 
-miles 
(106) 

price 
Ton 

-miles 
 (106) 

price 
Pasgr 
-miles 
(106) 

price 
Ton 

-miles 
 (106) 

price 

AirTran A 2006 100 9.0  346  1.95 7415 52650 21363  0.13  959  0.54  13798  0.13  7  0.54  18984  0.13  852  0.54  13814  0.13  7  0.54  
Alaska B 2006 109 18.7  388  1.95 9307 82841 23263  0.13  1268  1.39  17814  0.13  64  1.39  23263  0.13  1268  1.39  17826  0.13  64  1.38  
American C 2006 800 24.2  2966  1.95 72757 85243 173940  0.13  13489  0.37  139392  0.13  2231  0.37  173940  0.13  13489  0.37  139451  0.13  2231  0.37  
American Eagle D 2006 85 40.8  317  1.95 13000 85243 15590  0.23  713  1.31  8420  0.23  0  1.31  11298  0.23  517  1.31  8420  0.23  0  1.31  
Continental E 2006 418 16.8  1556  1.95 39363 71895 104546  0.12  3568  0.39  76251  0.12  1006  0.39  93512  0.12  3191  0.39  76319  0.12  1006  0.39  
Delta Air Lines F 2006 1072 15.3  2215  1.95 45562 90602 173940  0.12  12984  0.39  98769  0.12  1239  0.39  125100  0.12  9338  0.39  98909  0.12  1239  0.39  
ExpressJet G 2006 78 2.9  116  1.95 6800 56864 13199  0.16  567  0.94  10296  0.16  1  0.94  13199  0.16  567  0.94  10298  0.16  1  0.94  
Federal Express H 2006 717 12.9  1670  1.95 122116 56709 0  N/A 16476  1.23  0  N/A 10426  1.23  0  N/A 16476  1.23  0  N/A 10543  1.22  
JetBlue Airways I 2006 116 26.4  403  1.95 9272 59642 28581  0.10  1112  0.49  23310  0.10  14  0.49  28581  0.10  1112  0.49  23310  0.10  14  0.49  
Northwest J 2006 523 19.9  1736  1.95 30729 86628 118763  0.12  10190  0.42  72588  0.12  2268  0.42  85582  0.12  7343  0.42  72690  0.12  2269  0.42  
SkyWest K 2006 132 10.3  518  1.95 8792 76656 31681  0.19  1539  1.11  9497  0.19  0  1.11  11954  0.19  581  1.11  9497  0.19  0  1.11  
Southwest L 2006 506 23.2  1096  1.95 32167 94880 126682  0.13  7870  0.78  67691  0.13  171  0.78  92662  0.13  5756  0.78  67782  0.13  171  0.78  
United M 2006 570 16.0  2474  1.95 55027 77507 142780  0.12  10969  0.37  117247  0.12  2048  0.37  142780  0.12  10969  0.37  117471  0.12  2048  0.37  
UPS N 2006 468 23.9  1362  1.95 176150 58683 0  N/A 10772  0.70  0  N/A 6262  0.70  0  N/A 10545  0.70  0  N/A 6270  0.70  
US Airways O 2006 386 4.2  1291  1.95 34462 60647 96497  0.14  6690  0.44  37357  0.14  279  0.44  47754  0.14  3311  0.44  37366  0.14  279  0.44  
AirTran A 2007 108 11.8  384  2.09 8304 54408 25343  0.13  992  0.55  17233  0.13  6  0.55  22680  0.13  888  0.55  17252  0.13  6  0.55  
Alaska B 2007 112 22.2  353  2.09 9680 79277 24197  0.13  1349  1.53  18446  0.13  58  1.53  24197  0.13  1349  1.53  18456  0.13  58  1.52  
American C 2007 798 23.9  2876  2.09 71818 85382 173669  0.13  13138  0.39  138417  0.13  2129  0.39  169856  0.13  12850  0.39  138448  0.13  2129  0.39  
American Eagle D 2007 86 40.5  315  2.09 13000 85382 15972  0.24  732  1.53  8340  0.24  0  1.53  11211  0.24  514  1.53  8340  0.24  0  1.53  
Continental E 2007 424 17.1  1605  2.09 40948 75046 106055  0.13  3650  0.43  81380  0.13  971  0.43  99061  0.13  3409  0.43  81428  0.13  972  0.43  
Delta Air Lines F 2007 912 9.8  2241  2.09 47286 88589 173940  0.12  12773  0.42  103279  0.12  1128  0.42  127323  0.12  9350  0.42  103450  0.12  1128  0.42  
ExpressJet G 2007 86 2.9  155  2.09 7500 58342 15885  0.16  741  1.02  10182  0.16  1  1.02  13729  0.16  640  1.02  10206  0.16  1  1.02  
Federal Express H 2007 715 14.6  1690  2.09 133258 56800 0  N/A 17189  1.23  0  N/A 10809  1.23  0  N/A 17189  1.23  0  N/A 10965  1.23  
JetBlue Airways I 2007 139 24.9  463  2.09 9713 66715 34367  0.10  1507  0.66  25722  0.10  16  0.66  32148  0.10  1410  0.66  25722  0.10  16  0.66  
Northwest J 2007 410 18.1  1616  2.09 29619 86701 94203  0.13  7747  0.41  72907  0.13  2059  0.41  86123  0.13  7082  0.41  73023  0.13  2067  0.41  
SkyWest K 2007 135 11.7  508  2.09 10249 70929 31507  0.18  1702  1.11  11564  0.18  0  1.11  14923  0.18  806  1.11  11564  0.18  0  1.11  
Southwest L 2007 523 24.8  1287  2.09 33680 95398 130958  0.12  7901  0.95  73493  0.12  136  0.95  103274  0.12  6231  0.95  73640  0.12  136  0.95  
United M 2007 581 16.4  2394  2.09 55160 77175 143368  0.13  11116  0.38  117376  0.13  2012  0.38  141838  0.13  10998  0.38  117399  0.13  2012  0.38  
UPS N 2007 489 24.4  1423  2.09 185300 74641 0  N/A 11539  0.70  0  N/A 6792  0.70  0  N/A 11539  0.70  0  N/A 6802  0.70  
US Airways O 2007 409 5.8  1141  2.09 34256 67200 102282  0.14  6368  0.44  43547  0.14  282  0.44  54427  0.14  3388  0.44  43567  0.14  282  0.44  
AirTran A 2008 109 11.7  390  3.06 8259 57501 25748  0.13  943  0.56  18745  0.13  6  0.56  23756  0.13  870  0.56  18789  0.13  6  0.56  
Alaska B 2008 115 25.0  380  3.06 9628 78781 25032  0.14  1407  1.76  18698  0.14  56  1.76  24183  0.14  1359  1.76  18715  0.14  57  1.76  
American C 2008 767 21.4  2665  3.06 70923 85219 169470  0.14  12905  0.43  131724  0.14  2014  0.43  163483  0.14  12449  0.43  131755  0.14  2014  0.43  
American Eagle D 2008 78 39.9  281  3.06 12000 85219 11564  0.30  567  1.98  7383  0.30  0  1.98  10370  0.30  509  1.98  7383  0.30  0  1.98  
Continental E 2008 461 18.6  1603  3.06 40630 70145 115362  0.14  4339  0.47  80428  0.14  950  0.47  99047  0.14  3726  0.47  80495  0.14  951  0.47  
Delta Air Lines F 2008 979 9.8  2068  3.06 47420 101265 173940  0.13  12460  0.48  105568  0.13  1217  0.48  128635  0.13  9214  0.48  105698  0.13  1217  0.48  
ExpressJet G 2008 77 2.9  75  3.06 6700 59335 11962  0.14  536  0.90  9088  0.14  1  0.90  11962  0.14  536  0.90  9144  0.14  1  0.90  
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Table A1 Raw data of US airline industry 2006-2008 (Cont.) 
      Fixed input Variable input Peak Output Scheduled Demand Available Output Realized Demand 
      Aircraft Fuel Employee Passenger Freight Passenger Freight Passenger Freight Passenger Freight 

Firm No. Year Fleet 
Size 

price 
(106) 

Gals 
(106) price Units Wages 

Pasgr 
-miles 
(106) 

price 
Ton 

-miles 
(106) 

price 
Pasgr 
-miles 
(106) 

price 
Ton 

-miles 
(106) 

price 
Pasgr 
-miles 
(106) 

price 
Ton 

-miles 
 (106) 

price 
Pasgr 
-miles 
(106) 

price 
Ton 

-miles 
 (106) 

price 

Federal Express H 2008 723 15.0  1502  3.06 140000 55882 0  N/A 17189  1.37  0  N/A 10423  1.37  0  N/A 17152  1.37  0  N/A 10591  1.37  
JetBlue Airways I 2008 153 24.2  457  3.06 10177 68193 37888  0.12  1708  0.60  26069  0.12  26  0.60  32436  0.12  1462  0.60  26069  0.12  26  0.60  
Northwest J 2008 455 17.4  1716  3.06 29124 92776 113091  0.13  8545  0.46  71199  0.13  1636  0.46  83862  0.13  6337  0.46  71646  0.13  1643  0.46  
SkyWest K 2008 137 12.1  399  3.06 8987 80571 32196  0.18  1728  1.21  11156  0.18  0  1.21  14618  0.18  785  1.21  11156  0.18  0  1.21  
Southwest L 2008 547 25.2  1213  3.06 34680 96309 136995  0.14  9070  1.05  72320  0.14  138  1.05  99636  0.14  6597  1.05  72410  0.14  138  1.05  
United M 2008 560 15.5  2524  3.06 51536 83670 135480  0.13  10928  0.44  109804  0.13  1921  0.44  135480  0.13  10928  0.44  110062  0.13  1921  0.44  
UPS N 2008 500 25.3  1351  3.06 186000 61181 0  N/A 11966  0.82  0  N/A 6863  0.82  0  N/A 11966  0.82  0  N/A 6866  0.82  
US Airways O 2008 423 6.8  1299  3.06 32683 68262 105804  0.13  6080  0.48  60532  0.13  300  0.48  74106  0.13  4258  0.48  60567  0.13  300  0.48  
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Table A2 Technical, scale, allocative, profitability efficiency decomposition 
   Production System Design Generation Operations Consumption 

Firm Index Year ITE OTE ISE OSE IAE OAE ρE ITE OTE ISE OSE IAE OAE ρE ITE OTE ISE OSE IAE OAE ρE ITE OTE ISE OSE IAE OAE ρE ITE OTE ISE OSE IAE OAE ρE 

AirTran Airways A 2006 0.97 0.90 0.71 0.63 0.79 0.98 0.55 0.94 0.89 0.73 0.78 1.00 0.98 0.68 0.90 0.90 0.91 0.93 1.00 0.98 0.82 1.00 1.00 0.91 0.86 0.95 1.00 0.86 0.90 0.90 0.91 0.93 1.00 0.98 0.82 

Alaska Airlines B 2006 0.89 0.82 0.65 0.72 0.96 0.94 0.55 1.00 1.00 0.74 0.74 1.00 1.00 0.74 0.94 0.94 0.86 0.90 0.92 0.88 0.74 1.00 1.00 0.90 0.85 0.94 0.99 0.84 0.94 0.94 0.86 0.90 0.92 0.88 0.74 

American Airlines C 2006 1.00 1.00 0.71 0.71 1.00 1.00 0.71 1.00 1.00 0.87 0.87 1.00 1.00 0.87 1.00 1.00 0.89 0.89 1.00 1.00 0.89 1.00 1.00 0.86 0.86 1.00 1.00 0.86 1.00 1.00 0.89 0.89 1.00 1.00 0.89 

American Eagle  D 2006 0.92 0.60 0.42 0.56 0.84 0.96 0.32 0.92 0.72 0.51 0.65 1.00 0.99 0.46 1.00 1.00 0.80 0.80 1.00 1.00 0.80 1.00 1.00 0.74 0.64 0.86 1.00 0.64 1.00 1.00 0.80 0.80 1.00 1.00 0.80 

Continental E 2006 0.81 0.85 0.96 0.88 0.94 0.98 0.73 0.90 0.89 0.89 0.99 1.00 0.90 0.79 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.91 0.92 0.92 0.93 0.91 0.77 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Delta Air Lines F 2006 0.95 0.96 0.86 0.53 0.60 0.98 0.49 0.47 0.72 0.99 0.65 1.00 0.99 0.46 0.96 0.96 0.93 0.92 0.97 0.98 0.86 1.00 1.00 0.90 0.89 0.99 1.00 0.89 0.96 0.96 0.93 0.92 0.97 0.98 0.86 

ExpressJet airlines G 2006 1.00 1.00 0.66 0.66 1.00 1.00 0.66 1.00 1.00 0.58 0.58 1.00 1.00 0.58 1.00 1.00 0.85 0.85 1.00 1.00 0.85 1.00 1.00 0.87 0.87 1.00 1.00 0.87 1.00 1.00 0.85 0.85 1.00 1.00 0.85 

Federal Express H 2006 1.00 1.00 0.97 0.97 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

JetBlue Airways I 2006 1.00 1.00 0.79 0.78 0.95 0.97 0.75 1.00 1.00 0.85 0.85 1.00 1.00 0.85 1.00 1.00 0.92 0.95 1.00 0.97 0.92 1.00 1.00 0.89 0.83 0.94 1.00 0.83 1.00 1.00 0.92 0.95 1.00 0.97 0.92 

Northwest Airlines J 2006 1.00 1.00 0.98 0.66 0.68 1.00 0.66 0.75 0.72 0.90 1.00 1.00 0.93 0.67 1.00 1.00 0.97 0.95 0.98 1.00 0.95 1.00 1.00 0.90 0.82 0.92 1.00 0.82 1.00 1.00 0.97 0.95 0.98 1.00 0.95 

SkyWest Airlines K 2006 0.77 0.45 0.54 0.64 0.66 0.96 0.27 0.59 0.38 0.54 0.86 1.00 0.99 0.32 1.00 1.00 0.85 0.85 1.00 1.00 0.85 1.00 1.00 0.79 0.62 0.78 1.00 0.62 1.00 1.00 0.85 0.85 1.00 1.00 0.85 

Southwest Airline L 2006 0.88 0.88 0.85 0.73 0.75 0.88 0.56 0.73 0.73 0.94 0.99 1.00 0.94 0.69 0.88 0.88 0.94 0.95 0.89 0.88 0.74 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 0.88 0.94 0.95 0.89 0.88 0.74 

United Airlines M 2006 1.00 1.00 0.82 0.80 0.98 1.00 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.91 1.00 1.00 0.91 1.00 1.00 0.88 0.86 0.97 1.00 0.86 1.00 1.00 0.91 0.91 1.00 1.00 0.91 

United Parcel Service N 2006 0.88 0.86 0.99 0.73 0.72 1.00 0.63 1.00 1.00 0.98 0.98 1.00 1.00 0.98 1.00 1.00 0.94 0.94 1.00 1.00 0.94 1.00 1.00 0.65 0.65 1.00 1.00 0.65 1.00 1.00 0.93 0.93 1.00 1.00 0.93 

US Airways O 2006 0.45 0.46 0.92 0.91 0.97 0.96 0.40 0.53 0.49 0.91 0.99 1.00 0.99 0.48 0.94 0.94 0.98 0.97 0.94 0.94 0.86 0.97 0.97 0.95 0.76 0.78 0.97 0.72 0.94 0.93 0.98 0.97 0.94 0.94 0.85 

AirTran Airways A 2007 0.94 0.88 0.75 0.72 0.87 0.97 0.62 0.94 0.89 0.78 0.82 1.00 1.00 0.74 0.95 0.95 0.92 0.94 0.99 0.98 0.87 1.00 1.00 0.89 0.82 0.92 1.00 0.82 0.95 0.95 0.92 0.94 0.99 0.98 0.87 

Alaska Airlines B 2007 0.88 0.82 0.64 0.74 0.97 0.90 0.55 1.00 1.00 0.75 0.75 1.00 1.00 0.75 0.93 0.93 0.85 0.90 0.90 0.85 0.72 1.00 1.00 0.89 0.86 0.96 1.00 0.86 0.93 0.93 0.85 0.90 0.90 0.85 0.72 

American Airlines C 2007 1.00 1.00 0.73 0.70 0.96 1.00 0.70 0.96 0.98 0.88 0.87 1.00 1.00 0.85 1.00 1.00 0.90 0.90 1.00 1.00 0.90 1.00 1.00 0.85 0.84 0.99 1.00 0.84 1.00 1.00 0.90 0.90 1.00 1.00 0.90 

American Eagle  D 2007 0.91 0.58 0.41 0.58 0.84 0.93 0.31 0.91 0.71 0.50 0.65 1.00 0.99 0.45 1.00 1.00 0.79 0.79 1.00 1.00 0.79 1.00 1.00 0.72 0.63 0.88 1.00 0.63 1.00 1.00 0.79 0.79 1.00 1.00 0.79 

Continental E 2007 0.78 0.84 0.96 0.90 0.99 0.98 0.74 0.93 0.93 0.89 0.99 1.00 0.89 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.87 0.89 0.93 0.93 0.94 0.91 0.76 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Delta Air Lines F 2007 0.96 0.97 0.85 0.62 0.72 0.98 0.59 0.56 0.73 0.99 0.76 1.00 0.99 0.55 0.98 0.98 0.93 0.92 0.97 0.98 0.88 1.00 1.00 0.90 0.86 0.95 1.00 0.86 0.98 0.98 0.93 0.92 0.97 0.98 0.88 

ExpressJet airlines G 2007 0.91 0.80 0.65 0.72 0.95 0.98 0.56 0.94 0.86 0.59 0.65 1.00 0.99 0.56 0.93 0.93 0.84 0.86 1.00 0.99 0.79 1.00 1.00 0.86 0.86 1.00 1.00 0.86 0.94 0.93 0.84 0.86 1.00 0.99 0.79 

Federal Express H 2007 1.00 1.00 0.97 0.97 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 0.99 1.00 1.00 0.99 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

JetBlue Airways I 2007 0.99 0.98 0.79 0.75 0.88 0.93 0.68 0.94 0.94 0.85 0.86 1.00 0.98 0.79 0.98 0.98 0.91 0.95 0.98 0.93 0.86 1.00 1.00 0.90 0.85 0.94 1.00 0.85 0.98 0.98 0.91 0.95 0.98 0.93 0.86 

Northwest Airlines J 2007 0.97 0.97 1.00 0.79 0.79 1.00 0.77 0.92 0.91 0.92 0.99 1.00 0.94 0.85 1.00 1.00 0.99 0.96 0.96 0.99 0.95 1.00 1.00 0.91 0.83 0.91 1.00 0.83 1.00 1.00 0.99 0.96 0.96 0.99 0.95 

SkyWest Airlines K 2007 0.68 0.42 0.60 0.81 0.76 0.92 0.31 0.65 0.47 0.61 0.86 1.00 0.98 0.40 0.96 0.96 0.85 0.87 0.96 0.95 0.79 1.00 1.00 0.85 0.67 0.78 1.00 0.67 0.96 0.96 0.85 0.87 0.97 0.95 0.79 

Southwest Airline L 2007 0.86 0.86 0.83 0.74 0.77 0.87 0.55 0.79 0.79 0.92 1.00 1.00 0.92 0.73 0.85 0.86 0.93 0.93 0.88 0.87 0.69 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.85 0.86 0.92 0.93 0.88 0.87 0.69 

United Airlines M 2007 1.00 1.00 0.83 0.79 0.95 1.00 0.78 0.98 0.99 0.99 0.99 1.00 1.00 0.98 1.00 1.00 0.92 0.91 1.00 1.00 0.91 1.00 1.00 0.87 0.84 0.97 1.00 0.84 1.00 1.00 0.92 0.91 1.00 1.00 0.91 

United Parcel Service N 2007 0.88 0.86 0.98 0.72 0.72 1.00 0.62 1.00 1.00 0.98 0.98 1.00 1.00 0.98 0.98 0.98 0.95 0.95 1.00 1.00 0.93 1.00 1.00 0.70 0.65 0.92 1.00 0.65 0.98 0.97 0.94 0.95 1.00 1.00 0.92 

US Airways O 2007 0.54 0.55 0.92 0.90 0.94 0.95 0.47 0.54 0.53 0.95 0.99 1.00 0.97 0.51 0.96 0.96 0.98 0.98 0.95 0.94 0.89 0.89 0.89 0.97 0.84 0.86 0.99 0.74 0.96 0.96 0.98 0.98 0.95 0.94 0.89 

AirTran Airways A 2008 0.98 0.97 0.81 0.70 0.82 0.97 0.66 0.95 0.92 0.79 0.83 1.00 0.99 0.76 1.00 1.00 0.92 0.91 0.99 1.00 0.91 1.00 1.00 0.91 0.79 0.87 1.00 0.79 1.00 1.00 0.92 0.91 0.99 1.00 0.91 

Alaska Airlines B 2008 0.87 0.79 0.62 0.71 0.93 0.89 0.50 0.98 0.97 0.74 0.75 1.00 1.00 0.73 0.94 0.94 0.84 0.90 0.89 0.83 0.70 1.00 1.00 0.93 0.83 0.88 0.99 0.82 0.94 0.94 0.84 0.90 0.89 0.84 0.70 

American Airlines C 2008 0.98 0.99 0.76 0.70 0.93 1.00 0.69 0.94 0.96 0.90 0.88 1.00 1.00 0.85 0.98 0.99 0.90 0.90 1.00 1.00 0.89 1.00 1.00 0.86 0.84 0.99 1.00 0.84 0.98 0.99 0.90 0.90 1.00 1.00 0.89 

American Eagle  D 2008 0.99 0.65 0.38 0.48 0.79 0.96 0.30 0.99 0.90 0.47 0.58 1.00 0.90 0.47 1.00 1.00 0.74 0.74 1.00 1.00 0.74 1.00 1.00 0.78 0.67 0.86 1.00 0.67 1.00 1.00 0.74 0.74 1.00 1.00 0.74 

Continental E 2008 0.77 0.84 0.96 0.85 0.95 0.98 0.70 0.86 0.86 0.89 0.99 1.00 0.90 0.77 0.99 0.99 1.00 1.00 0.99 1.00 0.98 0.88 0.89 0.94 0.93 0.94 0.92 0.77 0.99 0.99 1.00 1.00 0.99 1.00 0.98 
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Table A2 Technical, scale, allocative, profitability efficiency decomposition (Cont.) 
   Production System Design Generation Operations Consumption 

Firm Index Year ITE OTE ISE OSE IAE OAE ρE ITE OTE ISE OSE IAE OAE ρE ITE OTE ISE OSE IAE OAE ρE ITE OTE ISE OSE IAE OAE ρE ITE OTE ISE OSE IAE OAE ρE 

Delta Air Lines F 2008 0.99 0.99 0.84 0.63 0.74 0.98 0.61 0.52 0.74 0.98 0.71 1.00 0.98 0.52 0.99 0.99 0.92 0.92 0.97 0.98 0.89 1.00 1.00 0.91 0.86 0.94 1.00 0.86 0.99 0.99 0.92 0.92 0.97 0.98 0.89 

ExpressJet airlines G 2008 1.00 1.00 0.72 0.72 1.00 1.00 0.72 1.00 1.00 0.53 0.53 1.00 1.00 0.53 1.00 1.00 0.82 0.81 0.99 1.00 0.81 1.00 1.00 0.91 0.91 1.00 1.00 0.91 1.00 1.00 0.82 0.82 1.00 1.00 0.82 

Federal Express H 2008 0.97 0.97 0.99 0.96 0.97 1.00 0.93 0.99 1.00 1.00 0.99 1.00 1.00 0.99 0.96 0.96 1.00 0.99 1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.97 1.00 1.00 1.00 1.00 0.96 

JetBlue Airways I 2008 0.97 0.97 0.84 0.73 0.82 0.94 0.67 0.86 0.86 0.87 0.89 1.00 0.98 0.75 0.98 0.98 0.93 0.96 0.98 0.94 0.88 0.99 0.99 0.93 0.85 0.92 1.00 0.85 0.98 0.98 0.93 0.96 0.98 0.95 0.88 

Northwest Airlines J 2008 0.96 0.96 0.99 0.72 0.72 0.99 0.68 0.78 0.76 0.96 0.99 1.00 1.00 0.75 0.98 0.98 0.99 0.97 0.95 0.97 0.92 0.97 0.97 0.95 0.81 0.85 1.00 0.79 1.00 1.00 0.99 0.97 0.96 0.98 0.95 

SkyWest Airlines K 2008 0.77 0.49 0.64 0.71 0.67 0.93 0.33 0.64 0.46 0.61 0.85 1.00 0.99 0.39 0.93 0.93 0.85 0.87 0.97 0.95 0.76 1.00 1.00 0.90 0.69 0.77 1.00 0.69 0.95 0.95 0.85 0.87 0.97 0.95 0.78 

Southwest Airline L 2008 0.85 0.87 0.83 0.72 0.76 0.86 0.54 0.73 0.73 0.95 1.00 1.00 0.95 0.69 0.87 0.87 0.93 0.93 0.86 0.85 0.69 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.86 0.87 0.93 0.93 0.87 0.86 0.69 

United Airlines M 2008 0.96 0.98 0.84 0.75 0.90 1.00 0.73 1.00 1.00 0.98 1.00 1.00 0.98 0.98 0.98 0.98 0.92 0.91 0.98 0.99 0.88 1.00 1.00 0.86 0.84 0.97 1.00 0.84 0.98 0.98 0.92 0.91 0.98 0.99 0.88 

United Parcel Service N 2008 0.83 0.81 0.99 0.79 0.78 1.00 0.64 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95 0.95 0.96 1.00 1.00 0.91 1.00 1.00 0.75 0.72 0.96 1.00 0.72 0.95 0.94 0.94 0.95 1.00 1.00 0.90 

US Airways O 2008 0.71 0.72 0.93 0.90 0.93 0.95 0.62 0.70 0.70 0.94 0.99 1.00 0.95 0.66 0.98 0.98 0.97 0.99 0.95 0.93 0.90 0.87 0.87 0.99 0.93 0.92 0.98 0.79 0.97 0.97 0.97 0.99 0.95 0.94 0.90 
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Profitability efficiency change in airline firms 

Table A3 2DED of airline firms 
      Production Design Generation Operations Consumption 

Firm # Year 

 

T
 

S
 

A
 


 

T
 

S
 

A
 


 

T
 

S
 

A
 


 

T
 

S
 

A
 


 

T
 

S
 

A
 

AirTran 

Airways 
A 

06-07 1.12 0.97 1.10 1.04 1.08 1.00 1.07 1.01 1.06 1.05 1.01 1.00 0.96 1.00 0.97 0.99 1.06 1.05 1.01 1.00 

07-08 1.07 1.07 1.03 0.97 1.03 1.02 1.01 1.00 1.05 1.05 0.99 1.01 0.96 1.00 0.99 0.97 1.05 1.05 0.99 1.01 

GM 1.09 1.02 1.06 1.00 1.05 1.01 1.04 1.00 1.05 1.05 1.00 1.00 0.96 1.00 0.98 0.98 1.05 1.05 1.00 1.00 

Alaska 

Airlines 
B 

06-07 0.99 1.00 1.01 0.99 1.01 1.00 1.01 1.00 0.97 0.99 1.00 0.98 1.02 1.00 1.00 1.02 0.97 0.99 1.00 0.98 

07-08 0.92 0.98 0.96 0.97 0.97 0.97 1.00 1.00 0.98 1.01 0.99 0.98 0.95 1.00 1.00 0.95 0.98 1.01 0.99 0.98 

GM 0.95 0.99 0.99 0.98 0.99 0.99 1.00 1.00 0.97 1.00 0.99 0.98 0.99 1.00 1.00 0.99 0.97 1.00 0.99 0.98 

American 

Airlines 
C 

06-07 0.98 1.00 1.00 0.98 0.97 0.97 1.01 1.00 1.01 1.00 1.01 1.00 0.97 1.00 0.98 0.99 1.01 1.00 1.01 1.00 

07-08 0.99 0.98 1.02 0.99 1.00 0.98 1.02 1.00 0.98 0.99 1.00 1.00 1.01 1.00 1.00 1.00 0.98 0.99 1.00 1.00 

GM 0.99 0.99 1.01 0.98 0.99 0.98 1.01 1.00 1.00 0.99 1.01 1.00 0.99 1.00 0.99 1.00 1.00 0.99 1.01 1.00 

American 

Eagle 

Airlines 

D 

06-07 0.95 0.97 1.00 0.98 0.98 0.98 1.00 1.00 0.98 1.00 0.98 1.00 0.99 1.00 0.98 1.01 0.99 1.00 0.99 1.00 

07-08 0.96 1.11 0.88 0.99 1.03 1.18 0.91 0.95 0.94 1.00 0.94 1.00 1.06 1.00 1.07 0.99 0.94 1.00 0.94 1.00 

GM 0.96 1.04 0.94 0.99 1.00 1.07 0.95 0.98 0.96 1.00 0.96 1.00 1.02 1.00 1.03 1.00 0.96 1.00 0.96 1.00 

Continental E 

06-07 1.02 0.98 1.01 1.03 1.04 1.04 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 1.01 1.01 1.00 1.00 1.00 1.00 

07-08 0.94 0.99 0.98 0.98 0.93 0.92 1.01 1.00 0.98 0.99 1.00 0.99 1.01 1.01 1.00 1.00 0.98 0.99 1.00 0.99 

GM 0.98 0.98 0.99 1.00 0.98 0.98 1.00 1.00 0.99 0.99 1.00 1.00 1.00 0.99 1.01 1.01 0.99 0.99 1.00 1.00 

Delta 

Air Lines 
F 

06-07 1.19 1.01 1.08 1.09 1.19 1.10 1.08 1.00 1.02 1.02 1.00 1.00 0.96 1.00 0.98 0.98 1.02 1.02 1.00 0.99 

07-08 1.03 1.02 0.99 1.02 0.94 0.98 0.96 1.00 1.01 1.01 0.99 1.00 1.00 1.00 1.01 1.00 1.01 1.01 0.99 1.00 

GM 1.11 1.02 1.04 1.05 1.06 1.04 1.02 1.00 1.02 1.02 1.00 1.00 0.98 1.00 0.99 0.99 1.02 1.02 1.00 1.00 

ExpressJet 

Airlines 
G 

06-07 0.84 0.85 1.03 0.96 0.95 0.90 1.06 1.00 0.92 0.93 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.93 1.00 1.00 

07-08 1.28 1.17 1.05 1.04 0.96 1.11 0.86 1.00 1.03 1.07 0.96 1.00 1.06 1.00 1.06 1.00 1.03 1.07 0.96 1.00 

GM 1.04 1.00 1.04 1.00 0.96 1.00 0.96 1.00 0.97 1.00 0.98 1.00 1.03 1.00 1.03 1.00 0.98 1.00 0.98 1.00 

Federal 

Express 
H 

06-07 1.01 1.00 1.01 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 

07-08 0.96 0.97 1.00 0.99 0.99 0.99 0.99 1.00 0.96 0.96 1.00 1.00 1.01 1.00 1.01 1.00 0.97 0.97 1.00 1.00 

GM 0.98 0.98 1.01 0.99 0.99 1.00 1.00 1.00 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.98 1.00 1.00 

JetBlue 

Airways 
I 

06-07 0.90 0.98 0.98 0.94 0.94 0.94 1.01 0.99 0.94 0.98 0.99 0.97 1.02 1.00 1.01 1.00 0.94 0.98 0.99 0.97 

07-08 0.99 0.99 1.02 0.97 0.94 0.92 1.03 1.00 1.03 1.00 1.01 1.01 1.00 0.99 1.02 0.98 1.03 1.00 1.01 1.01 

GM 0.94 0.99 1.00 0.96 0.94 0.93 1.02 0.99 0.98 0.99 1.00 0.99 1.01 1.00 1.02 0.99 0.98 0.99 1.00 0.99 

Northwest 

Airlines 
J 

06-07 1.16 0.97 1.10 1.08 1.27 1.25 1.01 1.01 1.00 1.00 1.02 0.98 1.00 1.00 1.01 1.00 1.00 1.00 1.01 0.98 

07-08 0.89 0.98 0.95 0.95 0.89 0.84 1.02 1.03 0.97 0.98 1.00 0.99 0.95 0.97 1.02 0.97 1.00 1.00 1.01 1.00 

GM 1.02 0.98 1.02 1.02 1.06 1.02 1.02 1.02 0.99 0.99 1.01 0.99 0.98 0.99 1.01 0.98 1.00 1.00 1.01 0.99 

SkyWest 

Airlines 
K 

06-07 1.13 0.91 1.19 1.05 1.24 1.17 1.06 1.00 0.94 0.96 1.02 0.96 1.08 1.00 1.08 1.00 0.94 0.96 1.02 0.96 

07-08 1.05 1.16 0.96 0.95 0.98 0.98 1.00 1.00 0.96 0.97 0.99 1.00 1.04 1.00 1.04 0.99 0.98 0.98 0.99 1.00 

GM 1.09 1.02 1.07 1.00 1.10 1.07 1.03 1.00 0.95 0.96 1.01 0.98 1.06 1.00 1.06 1.00 0.96 0.97 1.01 0.98 

Southwest 

Airline 
L 

06-07 0.98 0.97 0.99 1.01 1.06 1.08 0.99 0.99 0.94 0.97 0.98 0.98 1.00 1.00 1.00 1.00 0.94 0.97 0.98 0.98 

07-08 0.97 1.00 0.99 0.98 0.95 0.92 1.02 1.01 0.99 1.02 1.00 0.98 1.00 1.00 1.00 1.00 0.99 1.01 1.00 0.99 

GM 0.97 0.99 0.99 0.99 1.00 1.00 1.00 1.00 0.97 0.99 0.99 0.98 1.00 1.00 1.00 1.00 0.97 0.99 0.99 0.99 

United 

Airlines 
M 

06-07 0.98 1.00 1.00 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.01 1.00 0.98 1.00 0.99 1.00 1.00 1.00 1.00 1.00 

07-08 0.93 0.97 0.99 0.98 1.00 1.01 0.99 0.99 0.97 0.98 1.00 0.99 0.99 1.00 0.99 1.00 0.97 0.98 1.00 0.99 

GM 0.96 0.98 0.99 0.98 0.99 1.00 0.99 0.99 0.98 0.99 1.00 0.99 0.99 1.00 0.99 1.00 0.98 0.99 1.00 0.99 

United 

Parcel 

Service  

N 

06-07 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 1.01 1.00 0.99 1.00 1.03 0.96 0.99 0.98 1.02 1.00 

07-08 1.04 0.95 1.05 1.04 1.01 1.00 1.01 1.00 0.97 0.97 1.00 1.00 1.11 1.00 1.09 1.02 0.97 0.97 1.00 1.00 

GM 1.02 0.97 1.02 1.02 1.01 1.00 1.01 1.00 0.98 0.97 1.01 1.00 1.05 1.00 1.06 0.99 0.98 0.97 1.01 1.00 

US 

Airways 
O 

06-07 1.18 1.21 1.00 0.98 1.06 1.04 1.02 0.99 1.04 1.03 1.00 1.01 1.04 0.92 1.06 1.06 1.04 1.03 1.00 1.01 

07-08 1.30 1.31 1.00 0.99 1.29 1.31 0.99 0.99 1.02 1.02 1.00 0.99 1.07 0.98 1.07 1.03 1.02 1.02 1.00 1.00 

GM 1.24 1.26 1.00 0.99 1.17 1.17 1.01 0.99 1.03 1.02 1.00 1.00 1.05 0.95 1.06 1.05 1.03 1.02 1.00 1.01 

Airline 

Industry 

 

 

 

06-07 1.035 0.999 1.024 1.012 1.052 1.039 1.014 0.998 0.995 0.998 1.003 0.994 0.990 0.993 0.999 0.999 0.996 0.999 1.003 0.994 

07-08 0.996 1.015 0.994 0.987 0.989 0.990 0.999 1.001 0.985 0.992 0.998 0.994 1.009 0.998 1.014 0.997 0.988 0.993 0.998 0.997 

GM 1.015 1.007 1.009 0.999 1.020 1.014 1.007 0.999 0.990 0.995 1.000 0.994 1.000 0.995 1.007 0.998 0.992 0.996 1.001 0.995 
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Table A4 2006-2008 change of production system in airline firms 

Firm Firm E  TE  SE  AE  

AirTran Airways A 1.091 1.021 1.063 1.005 

Alaska Airlines B 0.953 0.986 0.986 0.980 

American Airlines C 0.985 0.991 1.013 0.982 

American Eagle Airlines D 0.959 1.037 0.938 0.985 

Continental E 0.980 0.985 0.992 1.003 

Delta Air Lines F 1.109 1.018 1.037 1.051 

ExpressJet Airlines G 1.041 1.000 1.041 1.000 

Federal Express H 0.982 0.983 1.005 0.993 

JetBlue Airways I 0.945 0.986 0.999 0.959 

Northwest Airlines J 1.017 0.978 1.024 1.016 

SkyWest Airlines K 1.091 1.023 1.071 0.996 

Southwest Airline L 0.974 0.987 0.992 0.995 

United Airlines M 0.957 0.984 0.992 0.980 

United Parcel Service N 1.015 0.973 1.022 1.021 

US Airways O 1.243 1.260 0.999 0.987 

Industry (Avg) 1.015 1.007 1.009 0.999 

Max 1.243 1.260 1.071 1.051 

Min 0.945 0.973 0.938 0.959 
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Firm distribution of efficiency change 

 
Figure A1 Firm distribution of TE  and AE  

 

 
Figure A2 Firm distribution of SE  and AE  
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APPENDIX B 

MODEL CONVEXIFICATION FOR CHAPTER III 

 

The terms 
qsu , V

jsv , jrst  and qsw  will be replaced by qsu
e

 , 
V
jsv

e


, jrst
e

  and qsw
e

 respectively; 

specifically, 
qsqs uu ln , V

js

V

js vv ln
 , 

jrsjrs tt ln and 
qsqs ww ln , and constraints 

qsuln , V

jsv


ln , 0ln  jrst  and 
qswln  are added to restrict the variables, 

where   is a smaller positive value. Note in this study 1q  for single output case. 

Then, let the nonlinear term qrsqrs

u
bze qs 11 

 , it  can be convexified using the following 

constraints. 

qzMebzMe qrs

u

qrsqrs

u qsqs 


  ,)11(1)11(  (3.18.1) 

qMzbMz qrsqrsqrs    ,111  (3.18.2) 

Similarly, other nonlinear terms can be transformed, qjrsjrsqrs azz 1221  , 

qrsqrsqrs azz 1331  , 
qjrsqrsjrsqrs azzz 123321  , qjrsjrs

u
bze qs 22 

 , qjrsjrsqrs

u
bzze qs 1221 

 , 

qrsqrsqrs

u
bzze qs 1331 

  , qjrsqrsjrsqrs

u
bzzze qs 123321 

 , qjrsqrs

tu
gze jrsqs 11 

 , 

qjrsjrs

tu
gze jrsqs 22 

 , qjrsjrsqrs

tu
gzze jrsqs 1221 

 , qjrsqrsqrs

tu
gzze jrsqs 1331 

 , 

qjrsqrsjrsqrs

tu
gzzze jrsqs 123321 

 . 

 

Finally, the model (3.9.1)-(3.9.17) can be reformulated as an solvable equivalent 

geometric programming with exponential-based convex functions (3.19.1)-(3.19.43). 
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Miscellaneous 

The minimum function ),min( qrsqrsqrs

c

qrs DDyy   in constraint (3.9.6) can be 

transformed into (3.17.3)-(3.17.8). 
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Then, constraint (3.9.6) can be linearized further as follows. 
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APPENDIX C 

SUPPORTING DISCUSSIONS FOR CHAPTER IV 

 

Instrumental Variables 

The inverse demand function in an oligopolistic market depends on the output levels of 

all firms.  However, in some cases other factors influence the price. Three cases are 

discussed below. In the body of the paper we assume the simplest case, (1) estimating 

the inverse demand function with no omitted variables,             , and 

 (    )   ,     (    
 ) i.i.d. and a regression model using Ordinary Least Squares 

(OLS) and  (        )        . However, if there exist omitted variables    

which affect price   , such that                   where     (    
 )  

alternative cases need to be considered.22 In case (2), OLS can still provide consistent 

estimates when  (    )   ,  (    )    and the quantity variable    is uncorrelated 

with the omitted variable, i.e.  (    )   . Thus, the regression generates  (      

  )    
     , where   

       (  ) . In case (3), if    is correlated with the 

omitted variable  (    )   , let          , which results in  (    )   .  

Case 3 is termed endogeneity in econometrics; OLS provides inconsistent, 

biased, and inefficient estimates for the   parameters of interest (Greene, 2011). To 

address this issue, we use an instrumental variable    that is highly correlated with    

but independent of    and   , specifically   (    )   ,  (    )   . The regression 

                                                 
22 The omitted variable could be the price or quantity of substitute products or other contextual factors that 
could affect the price of output q. 
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model can be rewritten as                 , and OLS can provide consistent 

estimates and  (        )    
     . As described in section 3.1, our paper focuses 

on an inverse demand function expressed and estimated by a linear function  ( )  

     , where    is the intercept corresponding to case 1. However, if endogeneity 

exists in the inverse demand model, we can identify instrumental variables using the 

methods described in Goldberger (1972), Morgan (1990), and Angrist and Krueger 

(2001). Note that when output quantity changes, we assume a change in supply curve 

rather than a change in quantity supplied.  

 

Weak, Moderate, and Strong Dominance Properties 

Lemma 4.3: In the two-output product case, if matrix   satisfies MDD and symmetric 

properties, then matrix   satisfies SDD. 

 

Proof: If matrix   satisfies MDD and symmetric properties, it will spontaneously lead to 

the transitivity property, which implies that the main effect of each product dominates 

the minor effect of the other products, i.e. the SDD property. 

 

Lemma 4.4: If price sensitivity matrix   satisfies the SDD property, then solving MCP 

(4.5) generates a solution such that       and   (    (  ))    where  (       )  

 ̃. 
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Proof:   (    (  ))         ∑                 , that is   (    (  ))  

       ∑          . If              , then   (    (  ))    and the revenue 

function is nonnegative. The case                 will not happen because, 

given   (    (  ))    
        ∑          the increase of revenue through the 

increase of price   (    (  ))    cannot exceed the decrease of revenue through the 

increase of price   (    (  ))    when     becomes smaller and smaller and       

since price   (    (  ))  is not sensitive with respect to     by symmetric   and 

        for all  . Thus, the preferred solution for revenue maximization problem is 

     . Similar to the impossible case                , by the SDD property 

we have   (    (  ))    which will cause       to maximize revenue. If     

           , then we have   (    (  ))   . Similar to lemma 4.2, we have 

solution           to maximize the revenue function ∑   (    (  ))      . 

Therefore, the case             will not happen. Moreover, if price sensitivity 

matrix   is symmetric and satisfies the WDD property, and         for all q, then, as 

lemma 4.3, solving MCP (4.5) will automatically generate       and   (   (  ))    

where  (       )   ̃. 

 Lemma 4.4 shows a case of SDD of sensitivity matrix  . The WDD or MDD 

properties are not enough to ensure       in MCP (4.5). That is, if   is not symmetric 

or violates MDD, then for some      a Nash equilibrium solution may set       . We 

illustrate this in two cases below.  
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Case 1: If price sensitivity matrix   satisfies MDD but not symmetry and we know that 

if        , then  (    (  ))         ∑                 . We have     

  (    (  )) ∑               

   
 

  
        ∑          ∑               

   
. Finally,     

  
 

    
 

∑       

 
 ∑

   

    
      ∑

   

    
    

    

    
   . Thus,     might be less than zero 

and   (    (  ))    for the revenue maximization problem as         and     

 . 

 

Case 2: If price sensitivity matrix   satisfies WDD and symmetric properties, in an 

extreme case, if for one product  , we  have    

   
    , this notation means the ratio 

approaches 1 from the left-hand side. We know     
  (    (  )) ∑               

   
 

  
        ∑          ∑               

   
. Then,     

  
 

    
 

∑       

 
 

∑      

 
 

∑       

 
 

    

    
. Thus,     might be less than zero and   (    (  ))    for the revenue 

maximization problem since     and     are large, and         and      .  

 

Therefore, to ensure       from formulation (4.5), the SDD property provides 

a sufficient condition based on lemma 4. If matrix   satisfies SDD and given an extreme 

case, for all  ,    ( )   ( ) 

   
    this notation means the ratio approaches 0 from the 

right-hand side. If we know     
  (    (  )) ∑               

   
, then we can obtain an 
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estimate of     
  

     ∑        ∑          ∑               

    
 

  
     ∑            

    
   

for the revenue maximization problem. 

 

Cost minimization case 

In the case of a single fixed input and a single variable input and a given output level, 

figure C1 illustrates the Nash equilibrium solution obtained by minimizing costs. Each 

firm attempts to adjust its variable input to reach the isoquant, holding a fixed input 

constant in the short run.  

 

Figure C1 Adjusted variable input in Nash equilibrium 

 

We construct a multi-input cost model to identify a Nash equilibrium solution using 

MCP. The result shows that the Nash equilibrium solution is on the production frontier 

regardless of the   matrix selected. In particular, to formulate the MCP with multiple 

variable inputs, first we define the Lagrangian function as: 
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  (   
                       )   ∑ ∑   

  
(  

   (  )
 )   

 
   ∑ ∑     (      

∑        )  ∑ ∑      (∑        
     

  )  ∑ ∑      (∑        
     

  )  

∑    (∑       ) .  

Then the resulting MCP problem is:  

  
   

    
  (   

  
(  

   (  )
 )        

  ∑       
 

        )     
             

  
   

    
 (∑          ∑        

 
  ∑        

 
     )                 

  (    ∑        )                      (4.15) 

  (∑        
     

 )                  

  (∑        
     

 )                  

  (∑       )        

 

Theorem 4.9: In the cost minimization case a Nash equilibrium generated from MCP 

(4.15) exists on the production frontier, given an arbitrary   matrix with all nonnegative 

components satisfying WDD. 

 

Proof: Proving the existence of a Nash equilibrium is similar to theorem 4.7. The Nash 

equilibrium generated from MCP will stay on the production frontier, given an arbitrary 

  matrix satisfying WDD. If an equilibrium output vector exists and    
    , then it 

must satisfy the first order condition of MCP. From the complementary condition, we 

have the following first order condition: 



 

 

162 

   
  

(  
   (  )

 )        
  ∑      

 

   

                

which can be expressed in matrix notation as: 

    
 
          

              

where   is a matrix with (  
      

 ) and each vector   
  (   

       
 ) .   is a vector 

(     )  with K elements.    
 
 is a price vector with elements   

  
 

.     is a vector of 

the Lagrangian multiplier with elements     . If     is the solution obtained from the 

first order condition, we need to show that   
  

(  
    (  )

  )    
  

 

      
   

∑      
  

      for all  . We express this equation in the matrix notation    
 
      . 

Obviously, the first order condition gives    
 
           

         if    
 
 

  and   have nonnegative elements. This implies that it is necessary to set (∑        
  

   
 )    in terms of MCP; the upper bound of input level is characterized by the least 

value at the free disposability hull of inputs and the lower bound is the input level 

described by the free disposability hull of outputs shown in theorem 6. Because 

(∑        
     

 )   , that is, for cost minimization, the whole quantity of supply 

market would be minimized to reach a lower price at the inverse supply function, a 

firm’s best strategy is to reduce its input level and to produce on the production frontier. 

 

Generalized profit model as revenue maximization case 

In a special case of the revenue model, we assume that the output level directly follows 

the variable input, namely, the level of variable input determines and controls the level 
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of output. For example, in the semiconductor manufacturing industry raw silicon wafers 

are released into the production line to generate the actual die output. If the yield is 

100%, the output level is a linear function of the variable input level. Assuming a 

constant unit cost of the variable input, we formulate the profit maximization model as:  

          

{
 

 ∑ ∑   
 (    (  ))     

 ∑ ∑   
  

(    (  ))     

||

∑                     

∑        
     

          

∑              
              }

 

 

   (4.16) 

where    
 
(    (  )) becomes a constant and presents a unit cost of variable input 

   
      , and   is a coefficient to change the units to a linear function. Intuitively, 

model (4.16) is quite similar to formulation (4.4), the revenue maximization model. The 

profit function ∑ ∑ [  
 (    (  ))    

  
(    (  ))]      is a concave function because 

  
  

(    (  )) is a constant and    
 
(    (  ))    is a linear function. Thus, a Nash 

equilibrium exists and is unique. See sections 4.3 and 4.4 in the body of the paper. 
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APPENDIX D 

PROOFS FOR CHAPTER IV 

 

Lemma 4.1: Let output levels be decision variables denoted by     as output   of firm   

and      ; further, let input levels be decision variables denoted by     as input   of 

firm         , and (       )   ̃. Define    (   )    as a concave function of     and 

assume that either the inverse demand function    (   ) is a non-increasing or a convex 

function of    . Thus, for each  (  )   , where   (  )  ∑       ,     (    

 (  ) )    is a concave function of     for      . Similarly, let   
 (     (  ) )    be 

a convex function of     for      , where   (  )  ∑        and   
 (   ) is an inverse 

supply function. Further, if either    (   ) is strictly decreasing or is strictly convex, 

then    (     (  ) )    is a strictly concave function on the nonnegative       and 

∑   
 (     (  ) )     ∑   

 (     (  ) )     is a concave function on (       )  

 ̃. 

 

Proof: Murphy et al. (1982) prove the single output product case that when      and 

 (  )   , the revenue function      (    (  ))   is a concave function of    for 

     on the nonnegative real line since  
   

   
   . In our special case of Murphy et al. 

proven in their lemma 1, the production possibility set (   ) is a convex set and the 

boundary is a piece-wise linear concave function which characterizes a production 

function with diminishing returns. Thus,    (     (  ) )    is a concave function of 
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    for       and (       )   ̃  since, given fixed input levels, firm   can expand 

output only by increasing    . Similarly, we can prove a convex cost function of     

input resource   
 (     (  ) )    and concave profit function ∑   

 (     

 (  ) )    ∑   
 (     (  ) )    . 

 

Theorem 4.1: If the profit function of firm  ,   (       )  ∑   
 (  )     

∑   
 (  )     is concave with respect to (       ) and continuously differentiable, where 

   ∑      and    ∑     , then (     )   ̃ is a Nash-Cournot oligopolistic market 

equilibrium if and only if it satisfies the set of VI 〈 ((     )) (   )  (     )〉    

 (   )   ̃ . That is, 

∑   (( 
    ))((     )  (  

    
 ))        (     )   ̃, 

where  

  ((   ))  (    
  (   )     

  (   )),     
  (   )  (

   (   )

    
   

   (   )

    
) and 

   
  (   )  (

   (   )

    
   

   (   )

    
). 

 

Proof: To simplify the proof, we first focus on revenue function with a single output. If 

the revenue function  ( )   is concave with respect to    and continuously 

differentiable, then (    
 )   ̃ is a Nash-Cournot oligopolistic market equilibrium if 

and only if it satisfies the set of VI 〈 (  )     〉     (      )   ̃  . That is,  

∑   ( 
 )(     

 )        (      )   ̃    ( 
 )    (  )    

   (  ) . Since the 
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revenue function  ( )   is a continuously differentiable function and concave with 

respect to   , for a fixed  , the Nash equilibrium condition  (  
   (  )

 )  
  

 (    (  )
 )    ,  (      )   ̃  is equivalent to the variational inequality problem 

  ( 
 )(     

 )   , that is, 〈  (  )      
 〉     (      )   ̃. Then, summing over 

all firms   generates 〈 (  )     〉     (      )   ̃   . This result can be 

extended to prove the VI of the profit function. 

 

Theorem 4.2: Consider an oligopoly with   firms, with an inverse demand function 

  ( )  that is strictly decreasing and continuously differentiable in  , and an inverse 

supply function   ( )  that is strictly increasing and continuously differentiable in  . 

Since lemma 1 shows that the profit function   (     ) is concave and        , then 

 (     )  ((  
    

 ) (  
    

 )   (  
    

 )) is a Nash equilibrium solution if and only if 

   
  ( 

    )    and    
  ( 

    )           

  
 [   

  ( 
    )]    and   

 [   
  ( 

    )]          

where (  
    

 )   ̃. 

 

Proof: We derive the formulas above based on the KKT conditions. Note that the KKT 

conditions are both necessary and sufficient conditions for a unique global optimum 

since the model maximizes a strictly concave profit function over a convex polyhedral 

set (the production possibility set). The detail of existence and uniqueness of a Nash 

equilibrium is addressed in section 4.4 of the paper. 
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Lemma 4.2 : A Nash solution to MCP problem (4.3)  will satisfy      and  ( )   .  

 

Proof:  ( )           , that is  ( )      since      . If     , then 

 ( )    and the revenue function is nonnegative. If      and  ( )   , a firm’s 

best strategy to maximize the revenue function is to make     .  The case      and 

 ( )    will not happen because if ( )    , then there exists at least one firm 

generating          such that  ( )         . However, to maximize its 

revenue, firm   prefers to produce     . In other words,  ( )          if 

    . In addition, if   is a large positive number,    can be very small but positive to 

ensure a positive revenue function. Thus, any solution to this MCP (3) model enforces 

that    and  ( ) are nonnegative. 

 

Theorem 4.3: If  ( )          and α is a small enough positive parameter, the 

Nash equilibrium solution is for all firms to produce on the production frontier. 

 

Proof: In MCP,    

   
 ( ( )         )      ; where α is small enough, then 

 ( )           . In the extreme case,    , then  ( )          . By 

MCP,   (   ∑       )          , which gives    ∑         . Once 

again, a firm’s best strategy is to produce on the production frontier. 
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Theorem 4.4: If  ( )          and α is a large enough positive parameter, the 

MCP will lead to a benchmark output level with      ̅ close to zero, where   ̅ defines 

a truncated output level. 

 

Proof: Since         from lemma 4.2 and    is a constant, then    

 
 , meaning 

that a larger   will result in a smaller  . In the MCP,   (   ∑       )      

    . If   is small, then (   ∑       )   , i.e.      . In other words, we can 

increase α until no firm would choose to produce on the production frontier in a Nash 

equilibrium solution, and then all         . Proving this results in a truncated 

benchmark output level and requires us to show that if α increases, then    decreases and 

approaches zero. Since       and we know      by lemma 4.2,  ( )        in 

the MCP and    
 ( )

 
. In addition,    

 ( )

 
 

    ∑      

  
. If there are only two firms 

in the market,    
( 

 
 ⁄ )   

 
 and    

( 
 

 ⁄ )   

 
, then       

  

  
. This constant  

 

  
 

identifies the truncation output level for production. If there are   firms in the market, 

   
    ∑      

  
 and    

(
  

 
) (   )(

  

  
) (

   

 
)   (

   

 
)∑      

 
, then ∑       

 

   
(    (

  

 
)  (   ) (

  

  
)  (

   

 
)   )  

 

   
((

   

 
)    (

  

  
) (   )) . We 

replace ∑       in equation   , thus    
    ∑      

  
 

  

 
 

(   )  

(   ) 

  
   

   

 
  

(   ) 
. Therefore, 
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for   firms    
  

(   ) 
   ̅ and this constant   ̅ identifies the benchmark output level. 

As α goes to infinity,    
  

(   ) 
  . 

 

Theorem 4.5: If the price sensitivity matrix   satisfies WDD but is not necessarily 

symmetric, then the MCP (4.6) generates (       )   ̃  where     will approach the 

efficient frontier for small enough values of    ;      ̅   is the truncated benchmark 

output level that approaches zero as     approaches infinity. 

 

Proof: This is similar to theorems 4.3 and 4.4. We know    

   
   (    (  ))         

∑                  . If the     value is small enough and we consider a special 

case      , and the    matrix is diagonally dominant, then     (    (  ))    
  

   . Referring to the MCP,   (    ∑        )                , meaning 

    ∑          , or a firm’s best strategy is to produce on the production frontier 

except for the portion associated with positive slacks and dual variables equal to zero on 

the output constraints since increasing output does not affect the price reduction. On the 

other hand, if the     value is large enough,   (    (  ))    
        

∑            and     is a constant, then    
  

  ∑         

   
. As     becomes larger, 

   approaches zero. Referring to the MCP,   (    ∑        )                . 

If    is small, then (    ∑        )    and        . In other words, we can 

increase     until no firm would choose to produce on the production frontier in a Nash 
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equilibrium solution, and then all            . To show this result, as    increases, 

then    , the truncated output level becomes smaller and approaches zero. Since 

  (    (  ))         ∑                 , and we know        and 

     , thus   (    (  ))         ∑             in MCP (4.6) and       

  
     ∑        ∑          ∑          

    
. For the two-output products example,       

  
 

    
 

∑       

 
 

   

    
   

   

    
    and        

 

    
 

∑       

 
 

   

    
   

   

    
   ; 

replacing     in equation     gives     (  
          

 

       
)
  

[(
  

 

    
 

   

    

  
 

    
)  

(
 

 
 

   
 

       
)∑        

   

    
   

   

    
∑       ] . Also,        ∑        finally 

gives     (  
           

     
 

       
)
  

[(
  

 

    
 

(       )  
 

       
)  (

 

 
 

   
 

       
 

      

       
)∑        (

   

    
 

   

    
 

   

    
)∑       ] . Based on WDD,     (

  
 

    
)  

(
 

 
)∑        (

   

    
)∑       . This result shows that     is a function of     and     , 

not a variable of index  . Thus,     is limited by a truncated level  ̅   for all firms, since 

for all firms   the same equation applies as does     for revenue maximization. Similar 

equation can be derived for    . In addition, as     approaches infinity     
 ∑       

 
. 

That is,      ̅   should be equal to zero. We can extend this result to outputs of more 

than two. Therefore, the truncation point approaches zero as     becomes large. 

 



 

 

171 

Corollary 4.1: If the price sensitivity matrix   satisfies the MDD property and     

       , then the solution to the MCP (4.6) will satisfy              . 

 

Proof:  Theorem 4.5 proves Corollary 4.1. 

 

Theorem 4.6: Given arbitrary price sensitivity matrices   and   that satisfy WDD, 

MCP (4.9) generates all allocatively efficient Nash solutions (   
     

      
 )   ̃. These 

solutions are on the frontier including the weakly efficient frontier, but excluding the 

portion of the frontier associated with positive slacks and dual variables equal to zero on 

the input constraints. 

 

Proof: Based on theorem 4.5, if      , then    
    because there is no free lunch 

axiom in production theory (Färe et al., 1985). According to formulation (4.11) 

   
  

(  
   (  )

 )        
  ∑       

 
          , that is,   

  
(  

   (  )
 )  

      
  ∑       

 
        . Consider that      ,   

  
 

   and the   matrix is 

diagonally dominant; then       . Referring to MCP (4.9),   (∑        
     

 )  

              , which gives ∑        
     

   . Based on theorem 5 we know that 

     might/might not be equal to zero for all     according to the price sensitivity 

matrix  , i.e. equation     ∑          . Thus, a firm’s best strategy is to adjust its 

variable input and output levels approaching the production frontier. The solution 

becomes allocatively efficient. Further, ∑        
     

    implies that the slacks of 
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the input constraints are equal to zero and the feasible region of the Nash solution is the 

production possibility set  ̃ excluding the region for which the input level is larger than 

the least value at the free disposability hull of the inputs. This exception of the free 

disposability hull of inputs implies an upper bound of adjustable input level. Note that 

the points on the free disposability hull of inputs, except the anchor points, have positive 

slacks and dual variables equal to zero on the inputs’ constraints. Therefore, all Nash 

equilibrium solutions (   
     

      
 ) belong to  ̃ excluding the input level larger than the 

anchor point at the free disposability hull of inputs. 

 

Theorem 4.7: MCP (4.9) generates a Nash equilibrium solution (         )   ̃. 

 

Proof: If an equilibrium output vector exists and              , it must satisfy the 

first order condition of MCP (4.9). The complementary condition gives the following 

first order condition on the output side: 

  (    (  ))         ∑       

   

                

This condition can be expressed in matrix notation as: 

                         

where   is a matrix with (       ) and each vector    (         ) .   is a vector 

(     )  with K elements.     is a price vector with elements   
  .     is a vector of 

the Lagrangian multiplier with elements     . If    is the solution obtained from the 

first order condition, we need to show that   
 (  

   (  )
 )    
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∑      
 

      for all  . This equation can be expressed in matrix notation as    

    . Obviously, the first order condition gives             
        if 

  
    for all   by lemma 4.2. 

Similar to the first order condition on the variable input side 

    
 
          

              

where    is a matrix with (  
      

 ) and each vector   
  (   

       
 ) .    

 
 is a 

price vector with elements   
  

 

.     is a vector of the Lagrangian multiplier with 

elements     . If     is the solution obtained from the first order condition, we need to 

show that    
 
(  

    (  )
  )    

  
 

      
   ∑      

  
      for all  . This equation 

can be expressed in matrix notation as    
 
     . Obviously, the first order condition 

gives      
         

 
        if   

     for all   by the estimated 

production possibility set  ̃ describing a positive lower bound of input level. Therefore, 

if an equilibrium vector exists, it must equal (      ). 

To show that (      )  is indeed an equilibrium vector, for any nonnegative vector 

(    ̂   ̂)   ̃ where (    ̂   ̂)  (         ), we consider (    ̂   ̂) in which all 

the elements are equal to (         ) except for some   
     columns. We need to 

show that  

∑∑  
 ( ̂   ̂(  )) ̂  

  

 ∑∑  
  

( ̂ 
   ̂(  )

 ) ̂  
 

  

 ∑∑   
 (  

   (  )
 )   

 

 
 

 ∑∑  
  

(  
    (  )

  )   
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for all  . Since    is a strictly concave function under concavity and differentiability 

assumptions for the maximization problem, and (      )  satisfies the first order 

condition and the KKT condition, then (      ) must be a global optimum, i.e. the 

complementary condition provides a Nash equilibrium 

solution: ∑ ∑   
 ( ̂   ̂(  )) ̂     ∑ ∑   

  
( ̂ 

   ̂(  )
 ) ̂  

 
   

∑ ∑   
 (  

   (  )
 )   

 
   ∑ ∑   

  
(  

    (  )
  )   

  
   for all   and (    ̂   ̂)   ̃. 

 

Theorem 4.8: If the profit function is a strictly concave function on (       )   ̃ that 

is continuous and differentiable and the price sensitivity matrices   and   satisfy the 

WDD property, then the Nash equilibrium solution found using MCP (4.9) is unique if a 

solution exists for the maximization problem. 

 

Proof: To prove the uniqueness, let two vectors (    ̂   ̂) and (         )   ̃  be 

solutions and  (    ̂   ̂)  (         ) satisfy the variational inequality: 

∑   (( 
        ))  ((  

    
     

 )  (  
    

     
 ))        (  

    
     

 )   ̃   (4.17) 

∑   (( 
   ̂   ̂))  ((  

    
     

 )  (  
   ̂ 

   ̂ ))        (  
    

     
 )   ̃  (4.18) 

Substituting  ̂ 
   ̂  for   

     
  in (4.17) and   

     
  for   

     
  in (4.18) and adding the 

resulting inequalities gives 

∑ (  (( 
        ))    (( 

   ̂   ̂)))  ((  
   ̂ 

   ̂ )  (  
    

     
 )  0 

However, this inequality does not satisfy the definition of strict monotonicity. 

Thus,  ̂     ,  ̂     and the solution is unique. 
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Corollary 4.2: Assume all input and output variables are normalized to eliminate unit 

dependence, and the price of outputs dominates the price of inputs to ensure a positive 

marginal profit. Given a production frontier including three portions: IRS, CRS, and 

DRS, the MCP (4.9) generates a Nash equilibrium solution that is characterized by DRS 

when the inverse demand and supply functions are less sensitive, or the Nash 

equilibrium is characterized by IRS when the inverse demand and supply functions are 

more sensitive.  

 

Proof: Intuitively, for one-variable-input one-output production process if the inverse 

demand and supply functions are less sensitive, this is illustrated in a special case where 

both price sensitivity matrix   and   are equal to zero; the profit function    can be 

written as maximizing            
 
  . Let     denote the optimal value of profit 

function. Thus, we can express the function   
        

 
  

   
 , where  

  
 

   
 indicates the 

slope of profit function. Given the price of outputs dominating the price of inputs, in a 

special case the slope  
  

 

   
   , the optimal solution of profit maximization problem 

will show the flat profit line tangent to the production possibility set. Since  
  

 

   
   , a 

firm would like to generate a Nash solution on the DRS frontier for profit maximization 

based on theorems 4.5 and 4.6, i.e., in extreme case, the input level of the Nash solution 

has to be on the upper bound defined by the least value of the free disposability hull of 

inputs (see firm A in figure 4.4). DRS is associated with the insensitive inverse demand 

and supply function. Therefore, the Nash equilibrium solution generated from MCP (4.9) 
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presents the DRS with respect to MPSS and  ∑  
      
    

      ∑    
    

  ∑    
 

   . 

Similarly, we can show that the Nash solutions present the IRS when more sensitive 

inverse demand and supply functions occur, i.e., a profit function with larger slope. The 

result can be extended to the multiple-input multiple-output case. 
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