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ABSTRACT

Pathways, Networks and Therapy: A Boolean Approach to Systems Biology. (May 2012)

Ritwik Kumar Layek, B.Tech., Indian Institute of Technology, Kharagpur;

M.Tech., Indian Institute of Technology, Kharagpur

Co–Chairs of Advisory Committee: Dr.Aniruddha Datta
Dr. Edward R. Dougherty

The area of systems biology evolved in an attempt to introduce mathematical

systems theory principles in biology. Although we believe that all biological processes

are essentially chemical reactions, describing those using precise mathematical rules is not

easy, primarily due to the complexity and enormity of biological systems. Here we intro-

duce a formal approach for modeling biological dynamical relationships and diseases such

as cancer. The immediate motivation behind this research isthe urgency to find a practica-

ble cure of cancer,the emperor of all maladies. Unlike other deadly endemic diseases such

as plague, dengue and AIDS, cancer is characteristically heterogenic and hence requires a

closer look into the genesis of the disease. The actual causeof cancer lies within our phys-

iology. The process of cell division holds the clue to unravel the mysteries surrounding

this disease. In normal scenario, all control mechanisms work in tandem and cell divides

only when the division is required, for instance, to heal a wound platelet derived growth

factor triggers cell division. The control mechanism is tightly regulated by several bio-

chemical interactions commonly known as signal transduction pathways. However, from

mathematical point of view, these pathways are marginal in nature and unable to cope with

the multi-variability of a heterogenic disease like cancer.

The present research is possibly one first attempt towards unraveling the mysteries

surrounding the dynamics of a proliferating cell. A novel yet simple methodology is de-

veloped to bring all the marginal knowledge of the signalingpathways together to form



iv

the simplest mathematical abstract known as theBoolean Network. The malfunctioning in

the cell by genetic mutations is formally modeled as stuck-at faults in the underlying Net-

work. Finally a mathematical methodology is discovered to optimally find out the possible

best combination drug therapy which can drive the cell from an undesirable condition of

proliferation to a desirable condition of quiescence or apoptosis. Although, the complete

biological validation was beyond the scope of the current research, the process of in-vitro

validation has been already initiated by our collaborators. Once validated, this research

will lead to a bright future in the field on personalized cancer therapy.



v

To my family



vi

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisors Dr. Aniruddha Datta and Dr.

Edward R. Dougherty for helping and motivating me throughout my stay at Texas A&M

University. Also I would like to thank Dr. Shankar P. Bhattacharyya, Dr. J. Venkatraj, Dr.

Michael Bittner and Dr. N. Sivakumar for their kind discussions regarding various research

topics. Finally I am thankful to all my friends and colleagues at Texas A&M University for

their supports in various forms.



vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A. Systems biology . . . . . . . . . . . . . . . . . . . . . . . . . 2
1. Biology of the cell . . . . . . . . . . . . . . . . . . . . . . 5
2. DNA, gene, genetic code and the central dogma of

molecular biology . . . . . . . . . . . . . . . . . . . . . . 8
3. Genetic regulation . . . . . . . . . . . . . . . . . . . . . . 11
4. Signal transduction pathways . . . . . . . . . . . . . . . . 11
5. Systems medicine . . . . . . . . . . . . . . . . . . . . . . 12

B. Dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . 12
C. Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . 14

II GENETIC REGULATORY NETWORKS: MODELING AND
INTERVENTION* . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A. Systems and methods . . . . . . . . . . . . . . . . . . . . . . . 16
1. Probabilistic Boolean networks . . . . . . . . . . . . . . . 16
2. Infinite-horizon control: perfect modeling . . . . . . . . . 19
3. Adaptive infinite-horizon control . . . . . . . . . . . . . . 23

B. Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1. Algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . . 27
2. Algorithm 2 . . . . . . . . . . . . . . . . . . . . . . . . . 30

C. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1. Artificial example . . . . . . . . . . . . . . . . . . . . . . 31
2. Melanoma application . . . . . . . . . . . . . . . . . . . . 34

D. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . 37

III FROM PATHWAYS TO NETWORKS* . . . . . . . . . . . . . . . 39

A. Notation and digital design basics . . . . . . . . . . . . . . . . 41
1. Boolean networks . . . . . . . . . . . . . . . . . . . . . . 41
2. Karnaugh map representation of Boolean networks . . . . 42

B. From pathways to a family of BNs: a simple example . . . . . . 46
1. Iterative update of K-maps . . . . . . . . . . . . . . . . . 50

C. From pathways to a family of BNs: the general procedure . . .54
1. Definitions and preliminary observations . . . . . . . . . . 54



viii

CHAPTER Page

2. Priority ordering between Boolean functions . . . . . . . . 56
3. Conflict and its resolution . . . . . . . . . . . . . . . . . . 58
4. Total conflict and cyclic total conflict . . . . . . . . . . . . 61

D. Simple example revisited . . . . . . . . . . . . . . . . . . . . . 62
E. Network design to satisfy additional constraints . . . . . .. . . 67

1. Imposition of attractor constraints . . . . . . . . . . . . . 68
2. Boolean network from predictors . . . . . . . . . . . . . . 69

F. Modeling pathways involving the p53 gene . . . . . . . . . . . 71
1. Boolean network modeling of the p53 pathways . . . . . . 72
2. Model validation using the published literature . . . . . . .73

G. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . 81

IV FAULT DETECTION AND INTERVENTION IN BNS* . . . . . . 83

A. Modeling cancer as faults in the signaling network . . . . . .. 83
1. Test inputs and fault detectability . . . . . . . . . . . . . . 87

B. Modeling drug intervention . . . . . . . . . . . . . . . . . . . 87
C. Biological example: growth factors and cellular signal trans-

duction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
1. Cell cycle control, DNA mutation and cancer . . . . . . . 89

D. Growth factor mediated pathways: combinatorial network. . . 91
1. Input-output simulation of the BN . . . . . . . . . . . . . 93
2. Modeling faults and therapeutic interventions using

the Boolean network . . . . . . . . . . . . . . . . . . . . 93
3. Fault analysis and classification . . . . . . . . . . . . . . . 98

a. Single fault simulation . . . . . . . . . . . . . . . . . 98
b. Fault classification . . . . . . . . . . . . . . . . . . . 99

4. Simulation results for drug intervention . . . . . . . . . . 100
a. Continuous real mapping of the output vector . . . . . 100
b. Interpretation of the result . . . . . . . . . . . . . . . 103

E. p53 mediated DNA damage pathways: sequential network . . .103
1. Fault analysis . . . . . . . . . . . . . . . . . . . . . . . . 104
2. Intervention design . . . . . . . . . . . . . . . . . . . . . 104

F. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . 106

V CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



ix

LIST OF TABLES

TABLE Page

I Major Breakthroughs in Biology before 1800 AD [1].. . . . . . . . . . . 3

II Major Breakthroughs in Biology after 1800 AD [1].. . . . . . . . . . . . 4

III The Genetic Code [2].. . . . . . . . . . . . . . . . . . . . . . . . . . . 9

IV Truth Table of the Boolean Network (Eqn. 3.1).. . . . . . . . . . . . . 43

V Priority Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

VI Input-output Mapping of the Boolean Network of Fig. 31.. . . . . . . . 95

VII Steady State Attractors in the presence of Single Stuck-at Faults. . . . . . 105

VIII Intervention Design for the Critical Faults in ATM-p53-Mdm2-Wip1
Boolean Network.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



x

LIST OF FIGURES

FIGURE Page

1 An Eukaryotic Cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Central Dogma of Molecular Biology.. . . . . . . . . . . . . . . . . . . 10

3 Dynamical Systems.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 State Transition Diagrams for a Boolean Network and a Probabilistic
Boolean Network.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Adaptive Control Algorithm. . . . . . . . . . . . . . . . . . . . . . . . 28

6 Family of Probabilistic Boolean Networks.. . . . . . . . . . . . . . . . 29

7 Artificial Example:Algorithm 1.. . . . . . . . . . . . . . . . . . . . . . 33

8 Artificial Example: Algorithm 2. . . . . . . . . . . . . . . . . . . . . . 33

9 Artificial Example: Cost Difference Comparison of the two Algo-
rithms for different values ofq. . . . . . . . . . . . . . . . . . . . . . . 34

10 Melanoma Application: Algorithm 1.. . . . . . . . . . . . . . . . . . . 36

11 Melanoma Application: Algorithm 2.. . . . . . . . . . . . . . . . . . . 37

12 Melanoma Application: Cost difference comparison of thetwo algo-
rithms for different values ofq. . . . . . . . . . . . . . . . . . . . . . . 38

13 State transition diagram of the Boolean Network (Eqn. 3.1). . . . . . . . 43

14 Karnaugh map representation of Table IV.. . . . . . . . . . . . . . . . . 44

15 Conflict in K-map of geneB. . . . . . . . . . . . . . . . . . . . . . . . 60

16 Solvability of the conflicting pathway problem.. . . . . . . . . . . . . . 63

17 Steady state distribution and threshold.. . . . . . . . . . . . . . . . . . 68



xi

FIGURE Page

18 State transition diagram for the Boolean network described by Equa-
tion (3.13).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

19 ATM-p53-Wip1-Mdm2 pathways (From [3]).. . . . . . . . . . . . . . . 74

20 State transition diagram for the Boolean Network of the p53 pathways
under normal conditions. . . . . . . . . . . . . . . . . . . . . . . . . . 75

21 State transition diagram for the Boolean Network of the p53 pathways
in the presence of DNA damage.. . . . . . . . . . . . . . . . . . . . . 76

22 Oscillation of the proteins in the presence of the DNA damage signal. . . 77

23 Timelapse fluorescence images of one cell over 29 h after 5 Gy of
gamma irradiation. Nuclear p53-CFP and Mdm2-YFP are imaged
in green and red, respectively. Time is indicated in hours. Adapted
by permission from Macmillan Publishers Ltd: [Molecular Systems
Biology] [4], copyright (2006). . . . . . . . . . . . . . . . . . . . . . . 78

24 Immunoblots of ATM-P(S1981), Chk2-P(T68), and p53 kinetics in
MCF7 cells irradiated with 10Gy of gamma-irradiation. Reprinted
from [5], Copyright (2008), with permission from Elsevier.. . . . . . . . 79

25 Immunoblots of Chk2-P(T68), p53, and Mdm2 kinetics in MCF7 cells
treated with 400 ng/ml NCS every hour. Blots are representative of
triplicate experiments. Reprinted from [5], Copyright (2008), with
permission from Elsevier.. . . . . . . . . . . . . . . . . . . . . . . . . 80

26 Immunoblots of p53 and Wip1 kinetics in MCF7 cells irradiated with
10 Gy of gamma-irradiation. Reprinted from [5], Copyright (2008),
with permission from Elsevier. . . . . . . . . . . . . . . . . . . . . . . 81

27 Stuck-at faults and bridging faults in a digital circuit.. . . . . . . . . . . 86

28 Drug intervention modeling.. . . . . . . . . . . . . . . . . . . . . . . . 88

29 The eucaryotic Cell Cycle(G0: Quiscence, G1: Gap 1, R: Restric-
tion point, S: Synthesis, G2: Gap 2 and M: Mitosis) and the signal
transduction pathways controlling the cell cycle.. . . . . . . . . . . . . 90



xii

FIGURE Page

30 A schematic diagram of the growth factor signaling pathways (the
yellow color is used for the reporter proteins which will be measured
in future experiments).. . . . . . . . . . . . . . . . . . . . . . . . . . . 92

31 An input output Boolean network model of the signalling pathways of
Fig. 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

32 Possible fault locations and drug intervention locations: (a) prolif-
erative stuck-at fault locations and (b) intervention locations for the
available cancer drugs.. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

33 Single fault simulation: (a) output simulation in presence of all pro-
liferative single stuck-at faults for input V =00001 and (b) equivalent
faults for input V =00001. . . . . . . . . . . . . . . . . . . . . . . . . . 99

34 Drug vector response in the presence of a single fault: (Left) output
responses of the circuit for all drug vectors in presence of all single
stuck-at faults and (Right) the map between the color codes and the
output vectors.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

35 Iterative update scheme of pathways and therapeutic target point knowl-
edge in systems biology.. . . . . . . . . . . . . . . . . . . . . . . . . . 108

36 Personalized medicine using systems biology.. . . . . . . . . . . . . . . 109



1

CHAPTER I

INTRODUCTION

Biology is a natural science concerning the study of life andliving organisms. The tradi-

tional approach to biology advocates that life is also a complex manifestation of physical

interactions. However, even in the 21st century, science has not been able to decipher the

complete picture of this bottom-up approach towards biology. Indeed, it is fair to say that

we have a long way to go to establish biology on a firm mathematical basis.

As scientific researchers, our main goal is to ferret out the inherent truth from differ-

ent natural phenomena to the best of our ability, and for thiswe employ standard scientific

techniques such as mathematical modeling, design of experiments, actual experimentation,

data collection, data interpretation and validation. In the last few centuries, mathematics

has grown enormously to accommodate the modeling and experimental paradigms for the

elucidation of scientific theories.

However, unlike the physical sciences, biology continues to predominantly be an ob-

servational science. For instance, if we examine the work ofearly stalwarts like Charles

Darwin or Gregor Johann Mendel, we see that their postulatesand theories are mostly ob-

servational and intuitive in nature. Although several centuries have elapsed since then and

technology has evolved a lot, philosophically we are still treating biology as an observa-

tional science. In addition to technical challenges, biological research through the ages has

been impeded by human ethical and morality considerations.For instance, the anatomical

dissection of dead bodies was prohibited during the medieval period, and even today em-

bryonic stem cell research is restricted throughout the world although it has the potential to

yield easier solutions for treating diseases requiring organ transplantation.

The journal model isIEEE Transactions on Automatic Control.
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Before going into the actual introduction to the current dissertation, it behooves us to

take a look at the timeline of the major developments in the biological sciences (Table I and

II).

Although the discoveries listed in Tables I and II are by no means comprehensive, they

do provide us with some flavor of the mainstream biological research. We note that there

is no theorem or formula or mathematical model associated with most of these discover-

ies. The recent advancements in genetics, genomics and medical science have introduced

a critical need for mathematically rigorous approaches in biological research. However,

unfortunately, we still have a long way to go.

A. Systems biology

For a moment, let us think about the status of physics prior toGalileo Galilei(1564 AD-

1642 AD) and Isaac Newton (1642 AD-1727 AD). At that time, physics was not a coherent

science. Medieval physicists were busy doing research on the perpetual motion machine,

the elixir of life and the sorcerer’s stone, to name a few. Without proper mathematical back-

ground and systematic understanding most research during that time was in some sense an

exercise in futility. A similar observation could be made about the biological research

during the last century. Without proper mathematical modeling of the inherent dynamical

system, research on fundamental biology and medicine mostly focussed on the good old

methods of trial and error. However, even during this time, several scientists such as Erwin

Schrodinger and Norbert Wiener understood that the unification of mathematics and biol-

ogy could prove to be extremely beneficial. The new directionthat emerged from this idea

of unification is called ‘Systems Biology’.

There are numerous definitions of systems biology but we wantto mention the one

given by The National Institute of Health (NIH).

A discipline at the intersection of biology, mathematics, engineering and the physical sci-
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Table I. Major Breakthroughs in Biology before 1800 AD [1].

Year Breakthrough

520 BC Alcmaeon of Croton distinguished veins from arteries and

discovered the optic nerve.

450 BC Sushruta wrote the Sushruta Samhita, describing over 120

surgical instruments and 300 surgical procedures, classify-

ing human surgery into eight categories, and introducing

cosmetic and plastic surgery.

450 BC Xenophanes examined fossils and speculated on the evolu-

tion of life.

350 BC Aristotle attempted a comprehensive classification of ani-

mals.

300 BC Herophilos dissected the human body.

150 AD Claudius Galen wrote numerous treatises on human

anatomy.

800 AD Al-Jahiz describes the struggle for existence, introducesthe

idea of a food chain, and adheres to environmental deter-

minism.

1628 AD William Harvey published ’An Anatomical Exercise on the

Motion of the Heart and Blood in Animals’.

1658 AD Jan Swammerdam observed red blood cells under a micro-

scope.

1663 AD Robert Hooke saw cells in cork using a microscope.

1683 AD Anton van Leeuwenhoek observed bacteria.
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Table II. Major Breakthroughs in Biology after 1800 AD [1].

Year Breakthrough

1828 AD Friedrich Woehler synthesized urea; first synthesis of an or-

ganic compound from inorganic starting materials.

1856 AD Louis Pasteur stated that microorganisms produce fermen-

tation.

1858 AD Charles R. Darwin proposed a theory of biological evolu-

tion.

1865 AD Gregor Mendel demonstrated in pea plants that inheritance

follows definite rules.

1869 AD Friedrich Miescher discovered nucleic acids in the nuclei of

cells.

1902 AD Walter Sutton and Theodor Boveri, independently proposed

that the chromosomes carry the hereditary information.

1928 AD Alexander Fleming discovered the first antibiotic, peni-

cillin.

1953 AD James D. Watson and Francis Crick published a double-

helix structure for DNA.

1961 AD J. Heinrich Matthaei cracked the first codon of the genetic

code.

1996 AD Dolly the sheep was first clone of an adult mammal.

2001 AD Publication of the first draft of the complete human genome.
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ences that integrates experimental and computational approaches to study and understand

biological processes in cells, tissues and organisms. Studies at the systems level are distin-

guished not only by their quantitative nature in data collection and mathematical modeling,

but also by their focus on interactions among individual elements such as genes, proteins

and metabolites. These studies often integrate data from multiple levels of the biological

information hierarchy in an environmental and evolutionary context and pay particular

attention to dynamic processes that vary in time and space. Successive iterations of ex-

periment and theory development are characteristic of systems biology. When applied to

human health, systems biology models are intended to predict physiological behavior in re-

sponse to natural and artificial perturbations and thereby contribute to the understanding

and treatment of human diseases[6].

The current dissertation will provide a preliminary but novel approach for mathemat-

ical modeling of different cellular phenomena and its possible application in systems biol-

ogy. To put the subsequent chapters in proper context, in thenext few sections we will dis-

cuss several biological processes which require mathematical insight and modeling. This

discussion on cell biology, genetics and genomics is necessary to properly appreciate the

motivation and flow of this dissertation.

1. Biology of the cell

The word ‘cell’ comes from the the Latin word ‘cellula’ meaning a small room. Cells are

membrane bounded units containing different organelles performing different functions. A

cell is the basic unit of life. The simplest forms of life may be solitary cells that reproduce

by dividing in two, while higher organisms are ensemble of cells where a group of cells is

designated for a particular functionality.

Living cells emerged on earth about 3.5 billion years ago, possibly by spontaneous

reactions between molecules in an environment that was far from chemical equilibrium.
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These reactions formed some simple organic molecules like amino acids, sugars, etc which,

by polymerization through peptide bonds and phosphodiester bonds, then led to the forma-

tion of polypeptides and polynucleotides (RNA), that couldcatalyze their own replications.

With time, one of these families of cooperating RNA catalysts developed the ability for di-

rect synthesis of polypeptides. Finally, as the accumulation of additional protein catalysts

allowed more efficient and complex cells to evolve, the DNA double helix replaced RNA

as a more stable molecule for storing the increased amount ofgenetic information required

by such cells[2].

A schematic diagram of a typical eukaryotic cell is shown in Fig. 1.

N u c l e u sN u c l e o l u sR i b o s o m e
L i s o s o m e

C e l l M e m b r a n eM i t o c h o n d r i o n

G o l g i B o d i e s
E n d o p l a s m i cR e t i c u l u m

D N A

V a c u o l e

Fig. 1. An Eukaryotic Cell.
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From this diagram we can see the important components of the eukaryotic cell. Brief

descriptions are given below[2, 1].

• Cell membrane: The cell membrane is a selectively permeablemembrane made up

of a lipid bilayer and embedded proteins. It protects the intra-cellular environment

and helps the cell in its motility and communication.

• Nucleus: The nucleus is a central part of the cell containingmost of the cell’s genetic

material, organized as multiple DNA molecules in combination with a large variety

of proteins to form chromosomes. Its function is to maintainthe integrity of the DNA

and to control the activities of the cell by regulating gene expression.

• Nucleolus: Nucleolus is a discrete densely stained structure inside the nucleus. Its

main role is to transcribe ribosomal RNA (rRNA) and assembleribosomes.

• Endoplasmic Reticulum(ER): Endoplasmic reticulum is an interconnected network

of tubules and vesicles. Rough endoplasmic reticulum (withribosomes) synthesizes

and transports proteins, while smooth endoplasmic reticulum (without ribosome)

synthesizes lipids, steroids and morphine, metabolizes carbohydrates, regulates drug

metabolism and the attachment of receptors on cell membraneproteins.

• Ribosome: Ribosome is the protein factory in the cell. The mRNA (messenger RNA)

molecule leaves the nucleus and enters the Ribosome. Ribosome reads the codons

(nucleotide triplets) from the mRNA and puts the corresponding amino acids accord-

ing to the genetic code.

• Mitochondrion: Mitochondrion is the power plant of the cell. This membrane en-

closed organelle supplies the Adenosine triphosphate (ATP) required by the cell for

meeting its energy needs.
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• Lysosome: Lysosome destroys cellular debris by using its hydrolase enzymes. It

helps the cell to rejuvenate by destroying old organelles. It is also known as the

‘suicide bag’ of the cell.

• Golgi apparatus: Golgi apparatus processes and packages protein molecules for de-

livering elsewhere. It helps in intra-cellular communication and secretion.

• Vacuoles: Vacuoles are membrane bound organelles used for carrying toxic elements

out of the cell, maintaining pressure and pH inside the cell.

2. DNA, gene, genetic code and the central dogma of molecularbiology

Deoxyribonucleic acid (DNA) contains most of the genetic instructions inside the cell.

The DNA segments carrying these instructions are called genes. DNA consists of two

long strands of nucleotides with backbones made of sugar andphosphate joined by phos-

phoester bonds. These two strands run in opposite directions to each other. Attached to

each sugar is one of the four types of bases - Adenine(A), Guanine(G), Cytosine(C) and

Thymine(T). Adenine and Guanine belong to the double ringedclass of molecules called

purines, whereas cytosine and thymine are single ringed pyrimidines. It is the sequence

of these four bases along the backbone that encodes the genetic information. In the dou-

ble helical DNA structure, Adenine always binds with Thymine and Cytosine binds with

Guanine through triple and double bonds respectively. Ribonucleic acid (RNA) is the tem-

porary carrier of genetic instructions from the DNA to the Ribosome. RNA is a single

stranded polynucleotide containing Uracil(U) in liu of Thymine(T).

Amino acids serve as the building blocks of protein. There are twenty amino acids

which are naturally incorporated into polypeptides.

The genetic code provides the unique map between the sequence of three consecutive

bases(codon) in the mRNA and the amino acids (Table III) [7].The mRNA molecule is

decoded on ribosomes using the genetic code to synthesize the relevant protein. The steps
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Table III. The Genetic Code [2].

Amino acid/control code(s)

Alanine/Ala/A GCU, GCC, GCA, GCG

Arginine/Arg/R CGU, CGC, CGA, CGG, AGA, AGG

Asparagine/Asn/N AAU, AAC

Aspartic acid/Asp/D GAU, GAC

Cysteine/Cys/C UGU, UGC

Glutamine/Gln/Q CAA, CAG

Glutamic acid/Glu/E GAA, GAG

Glycine/Gly/G GGU, GGC, GGA, GGG

Histidine/His/H CAU, CAC

Isoleucine/Ile/I AUU, AUC, AUA

Leucine/Leu/L UUA, UUG, CUU, CUC, CUA, CUG

Lysine/Lys/K AAA, AAG

Methionine/Met/M AUG

Phenylalanine/Phe/FUUU, UUC

Proline/Pro/P CCU, CCC, CCA, CCG

Serine/Ser/S UCU, UCC, UCA, UCG, AGU, AGC

Threonine/Thr/T ACU, ACC, ACA, ACG

Tryptophan/Trp/W UGG

Tyrosine/Tyr/Y UAU, UAC

Valine/Val/V GUU, GUC, GUA, GUG

Start AUG

Stop UAA, UGA, UAG
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for going from DNA to protein are as follows.

DNA sequences are copied into RNA molecules in the process termedTranscription; a

gene that is transcribed is said to be actively expressed, while a gene that is not transcribed

is considered as repressed. Normally transcription of a gene yields an RNA molecule

of length similar to the gene itself. Once synthesized, the base sequences of the RNA

molecule aretranslatedby the ribosomes into a sequence of amino acids. The resulting

molecule folds up into a unique three-dimensional configuration and becomes a functional

protein [8]. The complete unidirectional information flow for protein biosynthesis from the

gene is referred to as thecentral dogma of molecular biology(Fig. 2).

D N A
R N A

P r o t e i n

T r a n s c r i p t i o n
T r a n s l a t i o n

N u c l e u s

Fig. 2. Central Dogma of Molecular Biology.
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3. Genetic regulation

Some proteins in the cell are called housekeeping proteins.Their corresponding genes are

constitutively active to maintain the protein concentration. However, there are certain other

proteins which are normally not present inside the cell all the time. Only when the protein

is required, the corresponding gene is turned ‘ON’. The mechanism by which a particular

gene is turned ‘ON’ or ‘OFF’ is called genetic regulation. The proteins which can bind to

the DNA to start the transcription process are calledtranscription factors. These transcrip-

tion factors are also regulated by other transcriptional orenzymatic activities. The complex

gene-protein-RNA interactions are instrumental in maintaining cellular homeostasis.

From a systems viewpoint, the behavior of a living cell is analogous to that of a multi-

input-multi-output (MIMO) feedback system. Understanding this system is the most im-

portant challenge in systems biology.

4. Signal transduction pathways

In multi-cellular organisms, life is sustained by a systematic coordination between differ-

ent cells and all extra cellular signals. Each cell has its own functionality and its future

is determined by various intrinsic and extrinsic biological signals. For instance, a cell’s

proliferation, differentiation or induction of apoptosisare determined by a number of dif-

ferent signals. From the time of a cell’s birth (by division of its parent cell), the cell’s state

is tightly controlled by different biological regulations. Cell signaling is a form of com-

munication between different cells. These signals can be chemical or electrical impulses.

Communication via electrical impulses is typically associated with nerve cells (neurons)

which are attached to each other and the action potential transmits from neuron to neuron.

For general somatic cells, proteins are usually the signaling molecules used for communi-

cation. The interactions between the different signaling molecules are multivariate in nature

and hence difficult to study. As a result, historically biologists have focussed on studying
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the marginal interaction between the signaling molecules,leading to what is calledpath-

way information. Although pathway knowledge cannot provide the complete multivariate

picture of the overall cellular signal transduction, it is clear that one has to have a mech-

anism for incorporating this prior information into any signal transduction model that one

develops. An approach to do precisely that will be discussedelaborately in CHAPTER III

and is also reported in [9].

5. Systems medicine

The area of systems medicine focusses on the problem of treating a complex disease such

as cancer. Any disease is nothing but the lack of order in the system. Systems diseases such

as cancer are possibly caused by mutations in the DNA. Malfunctions in the interactions

between the genes and proteins cause disruption in the normal cellular dynamics. Systems

medicine seeks to restore the earlier dynamics of the cell orterminate the cell if such

restoration is not possible. This problem is different fromthat in systems biology because

here controlling the dynamics of the system is more important than knowing the system

accurately. In systems theory, there are different approaches for controlling a system even

if the system is not fully known. CHAPTERs II and IV discuss therapeutic intervention

and systems medicine and these results have been also reported in [10] and [11].

B. Dynamical systems

Before starting the mathematical modeling of biological systems, it is appropriate to intro-

duce dynamical systems. Adynamical systemcan be thought of as a rule for determining

the time evolution of a system state (vector). Although any real world dynamical system

is continuous both in time and space, for modeling simplicity we often discretize these

variables. In addition, the mathematical rule determiningthe state transition can be either

deterministic or stochastic. Based on these considerations, we can get different kinds of
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dynamical systems as shown in Fig. 3.

Fig. 3. Dynamical Systems.

Although the actual protein concentrations in the cell are continuous variables, there

are at least three reasons why a discrete type of modeling would be preferred. First, al-

though the continuous model may dictate the exact dynamics,using the current technology

it is impossible to reliably measure the concentration of each protein inside the cell in real

time. Second, many of the genes/proteins inside the cell exhibit ON/OFF switch-like be-

havior which is more readily accommodated using quantization within the digital domain

[12], [13]. Third, the discrete-time systems are easier to analyze, model and control in

real time in comparison to continuous-time systems [14]. Hence, in this dissertation we

talk mostly about the two discrete-time discrete-state models namely, Boolean Network

(BN) and Markov Chain/Probabilistic Boolean Network (PBN). BN and PBN are formally

introduced in CHAPTERs II and III.
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C. Dissertation outline

The dissertation is organized as follows:

• CHAPTER II: Boolean networks and probabilistic Boolean networks are formally

introduced as two simple models of genetic regulatory networks. Adaptive inter-

vention in generic probabilistic Boolean networks(BN is a trivial subset of PBN)

is described as a method for arriving at an intervention strategy that is practically

implementable.

• CHAPTER III: Cell signaling pathways are considered to be the knowledge base

for building Boolean networks. The synthesis algorithm is explained in detail and

illustrative examples are included. Some experimental validation results from the

existing literature are also presented.

• CHAPTER IV: Intervention strategies are designed for both combinatorial and se-

quential Boolean networks based on some realistic modelingof therapeutic inter-

vention. An example of the growth factor mediated pathways is presented, and this

example is relevant to cell cycle control and cancer. An intervention strategy is also

designed for a sequential Boolean network (or a feedback network). An example

from DNA damage stress response pathways is presented.

• CHAPTER V: Finally a futuristic research direction for systems biology is outlined

where the starting point for experimental design is the existing knowledge from past

biological research.
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CHAPTER II

GENETIC REGULATORY NETWORKS: MODELING AND INTERVENTION*

There are two major objectives for modeling of genetic regulatory networks: (i) to

better understand inter-gene (and protein) interactions and relationships on a holistic level,

thereby facilitating the diagnosis of disease; and (ii) to design and analyze therapeutic inter-

vention strategies for shifting the state of a diseased network from an undesirable location

to a desirable one. Many different approaches have been proposed in the literature for

modeling the behaviour of genetic regulatory networks. Of these, the model which has

received the most attention in the context of therapeutic intervention is the probabilistic

Boolean network (PBN). To date, a number of approaches have been proposed for carrying

out interventions in PBNs based on stochastic optimal control theory for Markov chains

[15, 16, 17]. These assume perfect knowledge of the underlying PBN, an assumption

which, when not satisfied in practice, can lead to degraded orunacceptable performance.

To remedy the situation, one could design a fixed intervention strategy that is “robust”, or

somewhat insensitive, to modeling errors, in particular, to the effect of uncertainties in the

transition probability matrix of a PBN, Another approach isto “tune” the intervention strat-

egy to the actual network via on-line adaptation. The aim of this chapter is to demonstrate

the feasibility of such an adaptive approach in the framework of PBNs. At the very outset,

it is important to point out that such a scheme is feasible only if the uncertainty belongs to

a specific class and prior knowledge about this class can be incorporated into the design.

*Part of this chapter is reprinted with permission from “Adaptive intervention in prob-
abilistic boolean networks” by R. Layek, A. Datta, R. Pal, and E. R. Dougherty, 2009,
Bioinformatics, vol. 25, no. 16, pp. 2042-2048, Copyright [2009], Oxford University
Press. (http://bioinformatics.oxfordjournals.org/content/25/16/2042.short)
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A. Systems and methods

1. Probabilistic Boolean networks

A Boolean Network(BN), Υ = (V, F ), on n genes is defined by a set of nodes/genes

V = {x1, ..., xn}, xi ∈ {0, 1}, i = 1, ..., n, and a listF = (f1, ..., fn), of Boolean functions,

fi : {0, 1}n → {0, 1}, i = 1, ..., n [18]. Each nodexi represents the state/expression of

the ith gene, wherexi = 0 means that genei is OFF andxi = 1 means that genei

is ON. The functionfi is called thepredictor functionfor genei. Updating the states

of all genes inB is done synchronously at every time step according to their predictor

functions. At timet, the network state is given byx(t) = (x1(t), x2(t), ..., xn(t)), called a

gene activity profile(GAP). The state (GAP) transition diagram of a typical BN is shown

in Fig. 4(a). A Probabilistic Boolean Network(PBN) consists of a set of nodes/genes

V = {x1, ..., xn}, xi ∈ {0, 1, ..., d}, i = 1, ..., n, and a set of vector valued network

functions,f1, f2, ..., fk, governing the state transitions of the genes. Forj = 1, 2, ..., k,

fj = (fj1, fj2, ..., fjn), wherefji : {0, 1, ..., d}n → {0, 1, ..., d}, i = 1, ..., n [19, 20]

In most applications, the discretization is either binary or ternary. Here we use binary

quantization,d = 1, which presents no theoretical limitation on the development. At

each time point a random decision is made as to whether to switch the network function

for the next transition, with the probabilityq of a switch being a system parameter. If

the decision is to switch, then a new function is chosen from amongf1, f2, ..., fk, with cj

being the probability of choosingfj (network selection is not conditioned by the current

network, which can itself be selected). Each network function fj determines a BN, the

individual BNs being called thecontextsof the PBN. The PBN behaves as a fixed BN until

a decision is made to switch contexts according to the probabilities c1, c2, ..., ck from among

f1, f2, ..., fk. If q = 1, the PBN is said to beinstantaneously random; if q < 1 [21], the PBN

is said to becontext-sensitive.We consider PBNs with perturbation, meaning that at each

time point there is a probabilityp of any gene flipping its value uniformly randomly. Since
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there aren genes, the probability of a random perturbation at any time point is1− (1−p)n.

A context-sensitive PBN determines a Markov chain whose states are (context, GAP) pairs.

The transition probability from(s,y) to (r,x) is given by

Ps,y(r,x) = 1[r=s]((1− q) + qcs){1[fs(y)=x](1− p)
n

+ 1[x 6=y]p
η(x,y)(1− p)n−η(x,y)} (2.1)

+ 1[r 6=s]qcr{1[fr(y)=x](1− p)
n

+ 1[x 6=y]p
η(x,y)(1− p)n−η(x,y)},

The state (GAP) transition diagram of a typical PBN (or Markov Chain) is shown in Fig.

4(b). wherer, s denote therth andsth BNp (Boolean Network with perturbation), which

s 1s 2 s 3
s 4

s 5
s 6

s 7 s 8
s 1s 2 s 3

s 4
s 5

s 6
s 7 s 8

0 . 1 0 . 9 0 . 6 0 . 20 . 2
0 . 7 0 . 3

0 . 9 0 . 1 0 . 90 . 1 0 . 2 0 . 8

( a ) B o o l e a n N e t w o r k ( B N ) ( b ) P r o b a b i l i s t i c B o o l e a n N e t w o r k ( P B N )
Fig. 4. State Transition Diagrams for a Boolean Network and aProbabilistic Boolean Net-

work.

are the BNps at timet+ 1 andt, whereη(x,y) is the Hamming distance betweenx andy,

and1[f(y)=x] is the indicator function that takes value1 if f(y) = x according to the rule
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structure and is equal to0 otherwise. The random perturbation makes the Markov chain

irreducible and ergodic. Thus, it possesses a steady-statedistribution. Since there arek

contexts and2n GAPs in each network, the Markov chain possessesk2n states and we can

relabel the states withz(t) ∈ {0, 1, 2, · · · , 2nk − 1} being the state that is occupied by the

network at timet. For an instanteously random PBN, the Markov chain reduces so that its

states are the GAPs of the PBN. The transition probability expression (2.2) can be used to

track the time evolution of the (context, GAP) state. In practice it may be impossible to

detect context, only the GAP. We obtain the transition probabilities between the GAPs by

taking the expectation of the (context, GAP) transition probabilities over the networks, the

transition probability from GAPy to GAPx being given by

Py(x) = (1− p)n

k
∑

i=1

1[fi(y)=x]ci + 1[x 6=y]p
η(x,y)(1− p)n−η(x,y) (2.2)

Using the above equations we can compute the2n× 2n transition probability matrix corre-

sponding to the averaged context-sensitive PBN. As shown in[22], the transition probabil-

ity matrix for an averaged context-sensitive PBN is the sameas that of an instantaneously

random PBN that makes use of the same constituent Boolean networks. It is possible that

some of the transition probabilities computed using (2.2) may evaluate out to zero. The cor-

responding transitions are referred to asforbidden transitionsand the adaptive algorithms

to be presented in this chapter require that the setF of such forbidden transitions be known.

Remark 1. The transition probability expressions derived in this subsection allow for the

possibility of different selection probabilities for the different constituent Boolean networks

of a PBN. However, in the absence of any prior knowledge, we will henceforth assume a

uniform distribution of the selection probabilities, i.e.ci = 1
k
, i = 1, 2, · · · , k.
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2. Infinite-horizon control: perfect modeling

In this section, we summarize some results on the infinite-horizon control of PBNs, assum-

ing perfect modeling. A PBN with control can be modeled as a stationary discrete-time

dynamic system

zt+1 = f(zt, ut, wt), t = 0, 1, ...., (2.3)

where for allt, the statezt is an element of a state spaceS , the control inputut is an element

of a control spaceC, the disturbancewt is an element of a spaceD andf : S×C×D 7→ S.

1 In the particular case of a PBN withn genes composed ofm Boolean networks with

perturbation probabilityp and network transition probabilityq, S = {0, 1, 2, ......, m(2n −

1)} and the control inputut is constrained to take values in the spaceC = [0, 1, ....., 2k−1],

wherek is the number of binary control inputs. The disturbancewt is manifested in terms

of change of network based on the network transition probability q or change of state due

to perturbation probabilityp. wt is independent of prior disturbancesw0, w1....wt−1. The

objective is to derive a sequence of control inputs, acontrol strategy, such that some cost

function is minimized over the entire class of allowable control strategies. We define a cost

per stage,̃g(i, u, j), depending on the origin statei, the destination statej, and the applied

control inputu. 2 The actual design of a “good” cost function is application dependent and

is likely to require considerable expert knowledge. In finite-horizon control one can sum

the costs over the number of time points constituting the horizon and take the expectation;

however, this cannot safely be done with infinite horizon because the summation of the

1In the rest of this chapter, we will be denoting the time dependence ofz, u andw by
the subscriptt. In all other situations, the context will make it clear whether a subscript
denotes time dependence or reference to the particular component of a vector.

2Note that while finite horizon control problems in the literature allow for costs-per-
stage functions that vary from one stage to another, infinitehorizon control problems in
the literature have typically been derived assuming that the same cost per stage function
is used for all stages. For PBNs (both context sensitive and otherwise), this is not of any
consequence since all of our earlier finite horizon results also used the same cost per stage
function for all stages.
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one-stage costs might diverge to infinity (for all controls), thereby leading to an ill-posed

optimization problem. One way to avoid the problem of a possibly infinite total cost is by

considering theaverage cost per stagewhich is defined by

Jπ(z0) = lim
M→∞

1

M
E{

M−1
∑

t=0

g̃(zt, µt(zt), zt+1)} (2.4)

where the expectation is with respect to both origin and destination states. In this formu-

lation, a control policyπ = {µ0, µ1, · · · } is chosen to minimize the above cost and the

problem is referred to as theaverage cost per stage problem. Minimization of the total cost

is feasible ifJπ(z0) is finite for at least some admissible policiesπ and some admissible

statesz0. If there is no zero-cost absorbing state (which is the case in context-sensitive

PBNs with perturbation), then the total cost will frequently go to∞. Hence theaverage

cost per stageformulation is essential when we are interested in the condition of the pa-

tient in the long run and equal importance is given to the patient’s condition in all stages. In

general, the cost̃g(i, u, j) of moving from statei to statej under controlu may depend on

the starting statei; however, in the case of PBNs, we have no obvious basis for assigning

different costs based on different initial states. Accordingly, we assume that the penalty

g̃(i, u, j) is independent of the starting statei and its value is based on the control effort

and the terminal statej. The penalty is high if the end state is a bad state regardlessof the

starting state, and vice-versa. Henceg̃(i, u, j) = g̃(u, j). Moreover, since in Eq. 2.4 the

cost is obtained by taking the expectation with respect to the origin and destination states,

it is possible to replacẽg(zt, ut, zt+1) by an equivalent cost per stage that does not depend

on the destination state by taking the expectation with respect to the destination state and

leaving only the expectation with respect to the original state. More specifically, we use as

cost per stage the expected costg(i, u) given by [23]:

g(i, u) =
2n−1
∑

j=0

pij(u)g̃(i, u, j) =
2n−1
∑

j=0

pij(u)g̃(u, j) (2.5)
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wherepij(u) is the transition probability under controlu.

To solve the average-cost-per-stage optimal control problem, letΠ denote the set of

all admissiblepoliciesπ, i.e., the set of all function sequencesπ = µ0, µ1, .... with µt(x) :

S → C, t = 0, 1, ...... The optimal cost functionJ∗,which is independent of the initial state

[23], is defined by

J∗ = min
π∈Π

Jπ(z), z ∈ S is arbitrary. (2.6)

A stationary policyis an admissible policy of the formπ = µ, µ, .... Its corresponding cost

function is denoted byJµ. A stationary policyπ = µ, µ.... is optimal ifJµ(z) = J∗(z) for

all statesz.

To minimize the cost function of Eq. 2.4, first defiine the mapping

Jt(i) = min
u∈C

[

g(i, u) +
2n−1
∑

j=0

pij(u)Jt+1(j)

]

(2.7)

which, although we will not go into detail, provides the dynamic programming solution for

the finite-horizon problem [23]. Secondly, for any cost function J : S → ℜ, define the

mappingTJ : S → ℜ by

(TJ)(i) = min
u∈C

[g(i, u) +

2n−1
∑

j=0

pij(u)J(j)], i ∈ S. (2.8)

We note in passing thatTJ is the optimal cost function for the one-stage (finite horizon)

problem that has stage costg and terminal costJ . For the average-cost-per-stage problem,

the value iterationJt+1(i) = TJt(i) cannot be used directly because it may diverge to

infinity. Thus, calculating the average cost by takinglimM→∞(JM/M) is not feasible.

Instead, we consider adifferential costht obtained by subtracting a fixed component ofJt,

sayJt(n1), from each element ofJt, i.e.,

ht(i) = Jt(i)− Jt(n1), ∀i ∈ S. (2.9)
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Lettinge = [1, 1, 1, · · · , 1]T , the above relationship can be rewritten in vector form as

ht = Jt − Jt(n1)e.

Some algebraic manipulations [17] yield

ht+1 = Tht − (Tht)(n1)e

as thevalue iteration algorithmfor the differential cost. Using some additional arguments,

we can arrive at the followingpolicy iterationalgorithm for the average cost case [23, 17]:

• 1. (Initialization): An initial policyµ0 is selected.

• 2. (Policy Evaluation): Given a stationary policyµk, we obtain the corresponding

average and differential costsλk andhk(i) satisfying

λk + hk(i) = g (i, µk(i)) +

2n−1
∑

j=0

pij(µk(i))hk(j), i ∈ S (2.10)

This linear system of equations can be solved utilizing the fact thathk(n1) = 0,

wheren1 ∈ S is any particular reference state.

• 3.(Policy improvement): An improved stationary policyµk+1 satisfying

g
(

i, µk+1(i)
)

+

2n−1
∑

j=0

pij(µk+1(i))hk(j)

= min
u∈C

[

g (i, u) +

2n−1
∑

j=0

pij(u)hk(j)

]

. (2.11)

is obtained. The iterations are stopped ifµk+1 = µk, else we return to Step 2 and

repeat the process.
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3. Adaptive infinite-horizon control

We now consider an adaptive intervention strategy that can be used in the presence of model

uncertainty. We assume that the underlying network is modeled by a member of a known

finite family of PBNs and we have noa priori knowledge about which member of that

family models the actual network. In such a situation, a natural approach is to estimate the

model number on-line and then use policy iteration to determine the corresponding con-

troller. This is the principle of adaptive control and considerable theoretical research has

been aimed at showing that suchcertainty equivalenceschemes can provide the required

performance [24, 25]. Our focus will be to demonstrate via simulations the feasibility of

adaptive intervention in the context of gene regulatory networks. We will use a variation of

an adaptive control algorithm developed in [26] for unknownMarkov chains, to which we

refer for technical proofs of convergence. While the schemein [26] attempts to estimate

all entries of the transition probability matrix, our adaptive algorithm will estimate only the

model number since our underlying assumption is that the transition probabilities of the

PBN are completely determined, once we know the model number.

There are a number of ways in which one can possess a list of PBNs and thereby be

presented with the problem of adaptively determining a model number. Several inference

procedures produce PBNs by way of first producing Boolean networks satisfying some

desired relation to the data. In [27], Boolean networks are constructed whose attractor

structures coincide with data points assumed to be in attractors in the true biological net-

work, along with the networks satisfying certain constraints, such as the number of predic-

tors. Then one or more PBNs are constructed from these Boolean networks by comparing

the steady-state distributions of potentially inferred PBNs with the full set of experimental

data. In [28], Boolean networks are inferred by first using a Bayesian approach to generate

regulatory graphs (topologies) most compatible with the data and then inferring the predic-

tors via a nonlinear perceptron model, using a reversible jump Markov chain Monte Carlo
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(MCMC) method. Then one or more PBNs are constructed from theBoolean networks

by using Bayesian scores. In [29], a single PBN is constructed such that each constituent

Boolean network is consistent with the data, the estimate ofthe expected distribution of

the data generated by the PBN using its steady-steady state distribution agrees with the

distribution of the data, and the latter condition cannot beaccomplished with less than the

number of constituent networks in the inferred PBN. While this leads to a single PBN,

in order that the inferred PBN not overfit the data, and in the process be composed of an

inordinately large number of Boolean networks, the data arefirst filtered. Thus, different

filtering techniques can lead to different PBNs.

In each of the preceding cases, rather than settle on a singlePBN model when apply-

ing control, one can take the view that there is a list of potential PBNs and that new data are

to be used to adaptively determine the control policy. Moreover, in the cases of [27] and

[28],one might not even form a PBN and simply treat the problem in the framework of a

collection of Boolean networks, in which the adaptation is aimed at selecting a control pol-

icy for the governing Boolean network, a view compatible with our proposed algorithms.

This latter view, that one has a collection of Boolean networks, absent a PBN structure,

was taken in [30], where a finite-horizon control policy was determined that performed op-

timally relative to the family of networks. Here we would proceed adaptively.

In addition to inference, there is another way in which a listof PBNs can naturally

occur. In [31] and [32], a PBN is derived from a mammalian cellcycle network proposed

in [33] by assuming a mutation that leads to a cancerous phenotype. Specifically, in the

mutation, the gene p27 can never be activated, the result being that the cell can cycle in

the absence of any growth factor. A different mutation will lead to a different PBN. Thus,

based on a given network, in this case the one proposed in [33], if one is unsure of the mu-

tation that has led to a cancerous phenotype, then new data utilized in an adaptive fashion

can be used to design an intervention strategy.
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Suppose the family of controlled PBNs is parametrized by theparameterα ∈ Awhere,

for anyα ∈ A,
∑

j∈S p(i, j, u, α) = 1 for any(i, u) ∈ S×C. 3 The only constraint onA is

that every element ofA results in a set of bonafide transition probabilities. The cardinality,

|A|, of A determines the total number of possible PBNs. For eachα ∈ A, we can compute

the uncontrolled transition probability matrix by using (2.2). In addition, for a given control

gene, the rows of thecontrolledtransition probability matrix can be determined as a linear

transformation of the rows of the uncontrolled transition probability matrix. As shown in

[34], this is a consequence of restricting the class of allowable interventions to the flipping

of a chosen control gene. We use the adaptive control algorithm originally derived in [26]

by maximizing a modified likelihood criterion. For eachα ∈ A, let J∗(α) be the optimal

long term average cost obtained for modelα using the method of the last sub-section and let

φ(., α) : S → C be the corresponding control law attaining it. Letf : R→ R, o : Z→ R,

and constantm be defined as follows:f is a strictly monotonically increasing continuous

function such thatf(infα∈A J
∗(a)) > 0; o is any function such thatlimt→∞ o(t)t−θ is a

positive finite number for someθ ∈ (0, 1); andm is any integer such thatm > |S|+ 1.For

our implementation purposes we takef as the logarithmic function ando(t) as the function

o(t) = 2
√

(t), for which θ = 0.5. The value ofm can be satisfactorily chosen depend-

ing on the cardinality of the state space. The adaptive controller consists of two separate

operations, estimation and control:

• Estimator:At each time step0, m, 2m, 3m, ..km, (k + 1)m, ..., estimateα by

α̂t := argmaxa∈AD̄t(α), (2.12)

where

D̄t(α) := K
∏

(i,j,u)∈F c

p(i, j, u, α)nt(i,j,u), (2.13)

3In this section,p(i, j, u, α) denotespij(u) when the modelα has been selected.
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K =

[

1

f {J∗(α)}

]o(t)

, (2.14)

andF c is the complement of the set of forbidden transitionsF , which is assumed to

be knowna priori. These transitions correspond to zero values forp(i, j, u, α). In

(2.13),nt(i, j, u) is defined as

nt(i, j, u) = 1 +
t−1
∑

s=0

1(zs = i, zs+1 = j, us = u) (2.15)

and can be interpreted as measuring the number of times a transition occurs fromi

to j under controlu. Here1(.) denotes the indicator function. At timekm, knowing

the parameter estimatêαkm, we can find the optimal cost functionJ∗( ˆαkm) and the

optimal control lawφ(zt, ˆαkm) which will be used for the nextm time steps. The

parameter estimate is kept constant atˆαkm between time stepskm and(k+1)m−1.

• Controller: At each timet, the control applied is

ut := φ(zt, α̂t). (2.16)

The optimal cost function and optimal control law are determined by applying policy iter-

ation to the estimated model.

Remark 2. The adaptive algorithm presented here is based on the transition probability

expression (2.2). Since this expression accurately modelsan instantaneously random PBN,

it is only to be expected that performance degradation will occur as the value ofq is reduced

from1 to 0. This will be borne out by our simulations in the next section.

Remark 3. From a practical point of view, the expectation is that the constituent Boolean

networks of a PBN switch very infrequently. In other words, the value ofq can be reason-

ably assumed to be very small. In such a scenario, one could consider each constituent

Boolean network to be a possible model to be identified by the estimation algorithm. Al-

though this increases the cardinality of the set of possiblemodels, it is expected to result
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in improved performance especially since a small value ofq means that the constituent

networks will change very infrequently so that the estimation algorithm will have enough

time to identify the current Boolean network. This will alsobe borne out by the simulation

results in the chapter.

B. Algorithms

The schematic diagram of the adaptive control algorithm is shown in Fig. 5. The controller

and estimator modules are shown separately with the model set A for the estimator module

explicitly indicated. Two different choices for the model setA will lead to the two different

algorithms presented in this chapter. The family of PBNs is shown schematically in Fig.

6.Each member of the family consists of a number of constituent BNps. The underlying

PBN is assumed to come from the family. Any switching from oneunderlying PBN to

another is assumed to be deterministic and very infrequent so that, for all practical purposes,

the estimator does not need to track a model changing with time.

1. Algorithm 1

In Algorithm 1, we assume that the family of PBNs constitutesthe model setA. Note that

this formulation encompasses context-sensitive PBNs, instantaneously random PBNs, and

BNs with perturbation (BNps) as they are all special cases ofPBNs. For each model (PBN),

we can compute the transition probability matrix for the extended state space using Eqn.

2.2, but it is very difficult to determine the context number from the output state data of

the actual PBN. So, constructing the transition counter matrix for the extended state space

is practically impossible. For example, suppose each PBN consists of4 contexts (4 BNps)

and the actual underlying PBN is the 2nd PBN in the model set. In addition, suppose at time

t there is a transition from state5 of BNp2 (i.e, context 2) to state8 of BNp3 (i.e, context

3). In that case, we will observe the5 → 8 transition; however, in the transition counter
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Fig. 5. Adaptive Control Algorithm.
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N o n � s t o c h a s t i c s w i t c h i n gb e t w e e n P B N s
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C o n t e x t s w i t c h i n gi n s i d e P B N s

Fig. 6. Family of Probabilistic Boolean Networks.

matrix there would be 16 elements for that particular5 → 8 transition (corresponding to

the different combinations of 4 source contexts and 4 destination contexts) and there is no

way of figuring out which precise context switching occurred. Faced with this hurdle, we

compress the transition probability matrix in such a way so that we don’t need to find the

extended transition counter matrix. This can be done by using equation 2.2, where the

individual transition probability matrices for the different contexts have been averaged out.

This averaging out causes no loss of context information when the PBN is instantaneously

random since in that case there is no context information to start with; however, even

when the PBN is not instantaneously random, and context information is lost, we can still

use the averaged transition probability matrix to estimatethe model (PBN) number of the

underlying PBN. Such an algorithm using the averaged transition probability matrix will

henceforth be referred to as Algorithm 1. Clearly, one wouldexpect such an algorithm to

perform well forq = 1 (i.e, instantaneously random PBN) with performance degradation

occurring as the value ofq is reduced (i.e, we are moving further and further away from an
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instantaneously random PBN.)

2. Algorithm 2

The main problem with Algorithm 1 is that for small values of the switching probabilityq

(which are typically the more realistic ones), it doesn’t perform well. The attractor basin

structures of the different constituent BNps of a particular PBN vary significantly and so,

averaging of the transition probability matrices of the different constituent BNps is not an

appropriate strategy for context-sensitive PBNs with low switching probabilities. For that

situation, we can consider the other extreme scenario, where q = 0. Then the context-

sensitive PBN reduces to a single BNp. A natural question that arises in trying to estimate

the underlying PBN from the state transition data is which form of the transition probability

matrix should be used. A reasonable answer forq = 0 would be to use the individual

transition probability matrix for each BNp. This significantly increases the cardinality of

the model spaceA and leads to Algorithm 2. For instance, if we have4 constituent BNps

for each PBN as in Fig. 6, then the cardinality of the model spaceA will be increased by

a factor of4. Algorithm 2 assumes no context switching and uses the set ofconstituent

BNps as the model setA. This set is used to estimate the model number and the stationary

control policy is determined using the policy iteration algorithm. Using simulations it will

be shown that Algorithm 2 works better than Algorithm 1 for small values ofq. This is

quite intuitive because we estimate the model number only after a time interval ofm, and

if the switching probabilityq is low, then the number of context switchings inside one

estimation time window is expected to be quite low. So, our assumption about the BNp not

changing within an estimation window is reasonable. In the next section we will discuss

the simulation results for two different sets of data and compare the performance of the two

algorithms for three different values ofq.
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C. Examples

In this section, we present simulations to demonstrate the efficacy of the proposed adaptive

intervention strategies. Such simulation studies are especially important since the theoret-

ical results in [26] guarantee only almost sure convergenceand, that in a Cesaro sense4.

We will consider two different examples of genetic regulatory networks. The first will be

an artificial example and the second will be a network derivedfrom gene expression data

collected in a metastatic melanoma study. In each case, we will carry out simulation studies

using the previously discussed algorithms.

1. Artificial example

We consider a4-gene network modeled by an unknown member of a known family of

context-sensitive PBNs. We assume that the cardinality of this family is7, for each member

in this family we have4 constituent BNps, andp = 0.01. The value ofq will be chosen

differently for various simulations. Since gene values arebinary, the cardinality of the

state space is16. Without loss of generality, we assume that the first gene, i.e, the gene

corresponding to the most significant bit (MSB) in the gene activity profile, is the gene that

needs to be down-regulated, i.e, set to0. We assume that the second gene is the control

gene that can be flipped, withu = 1 andu = 0 denoting the flipping and no flipping

actions, respectively. To adaptively intervene in the network, we choosem = 32. The cost

of control is assumed to be0.5 and the states are assigned penalties as follows:

g̃(u, j) =



































5 if u = 0 and MSB is1 for statej

5.5 if u = 1 and MSB is1 for statej

0.5 if u = 1 and MSB is0 for statej

0 if u = 0 and MSB is0 for statej

4Roughly speaking, convergence in the Cesaro sense formalizes the notion of conver-
gence of the time average of a signal. This clearly doesn’t imply pointwise convergence.
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Since our objective is to down-regulate the MSB gene, a higher penalty is assigned for

destination states having the MSB gene up-regulated. Also for a given MSB gene status for

the destination state, a higher penalty is assigned when thecontrol is active versus when it

is not. We want to examine how algorithm 1 performs when the true model is deterministi-

cally switched. Accordingly, we set up the simulation with the actual model being switched

from PBN2 (model number 2) to PBN6 (model number 6) at the 10thestimation window

(time = 320). The switching probability (q) is 0.01. This emulates a context-sensitive PBN.

Fig. 7 shows the convergence results. Each of the following figures shows model and cost

comparisons between the non-adaptive regular controller (with complete model informa-

tion) and the adaptive controller. The top plot shows the estimated and actual models as

functions of the estimation time steps. Thex-axis is calibrated in terms of the number of

estimation windows with each window being32 time steps long. Similarly, the bottom

plot in each of the convergence figures shows the comparison of the cumulative adaptive

average cost and the cumulative non-adaptive average cost (assuming perfect knowledge

about the true model).From Fig. 7, it is clear that the estimated model converges to the true

model and the cumulative adaptive average cost goes towardsthe cumulative non-adaptive

average cost. Fig. 8 shows the simulation results obtained using algorithm2 on the same

simulation set up as above withq = 0.01. Clearly, the estimated model converges to the true

model and the cumulative adaptive average cost converges tothe cumulative non-adaptive

average cost for the true model. The estimated model convergence in the case of algorithm

2 is much faster than that obtained using algorithm 1. This isto be expected since, with

q = 0.01, the underlying assumptions for algorithm 2 are a better fit to the real scenario.

We next study the effect of the value ofq on the performance of the two algorithms. To

compare the two algorithms, we cannot rely on just one simulation. Moreover, we are more

interested in achieving controlled cost convergence rather than model convergence as our

sole aim in intervention is to minimize the long term averagecost. Accordingly, we run
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Fig. 7. Artificial Example:Algorithm 1.

Fig. 8. Artificial Example: Algorithm 2.
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the same simulation one hundred times and calculate the difference between the cumula-

tive adaptive and cumulative non-adaptive average costs ineach case. We then average the

difference sequence over the100 simulations. Fig. 9 shows the results for30 estimation

windows (time =960) for three different values ofq.From Fig. 9, we see that the results

match our intuition: algorithm1 works well for q = 1 (instantaneously random PBN)

whereas whenq is low or0, algorithm2 works better.

Fig. 9. Artificial Example: Cost Difference Comparison of the two Algorithms for different

values ofq.

2. Melanoma application

In a study of metastatic melanoma it was found that experimentally increasing the levels

of the Wnt5a protein secreted by a melanoma cell line via genetic engineering methods di-

rectly altered the metastatic competence online as measured by the standardin vitro assays
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for metastasis [35]. Furthermore, it was found that an intervention that blocked the Wnt5a

protein from activating its receptor, the use of an antibodythat binds the Wnt5a protein,

could substantially reduce Wnt5a’s ability to induce a metastatic phenotype. This suggests

a control strategy that reduces the WNT5A gene’s action in affecting biological regula-

tion, since the data suggest that disruption of this influence could reduce the chance of a

melanoma metastasizing, a desirable outcome. PBNs derivedfrom the same expression

data have been used in [15, 16, 17, 34] for demonstrating earlier non-adaptive intervention

strategies. We consider 7-gene PBNs containing the genes WNT5A, pirin, S100P, RET1,

MART1, HADHB and STC2 obtained via the algorithms describedin [27]. The states are

ordered as above, with WNT5A as the most significant bit (MSB)and STC2 as the least

significant bit (LSB).

We have constructed 7 PBNs with four constituent BNs in each.The adaptive in-

tervention strategy has been applied to the family of PBNs with pirin as the control gene

(u = 1, state of pirin is reversed, andu = 0, no intervention),m = 256, andp = 0.01.

The value ofq varies between simulations. The cost of control is assumed to be0.5 and the

states are assigned penalties as follows:

g̃(u, j) =



































5 if u = 0 and WNT5A is1 for statej

5.5 if u = 1 and WNT5A is1 for statej

0.5 if u = 1 and WNT5A is0 for statej

0 if u = 0 and WNT5A is0 for statej

Since our objective is to down-regulate the WNT5A gene, a higher penalty is assigned for

destination states having WNT5a up-regulated. Also, for a given WNT5A status for the

destination state, a higher penalty is assigned when the control is active versus when it is

not. Figs. 10 and 11 show the performance of the adaptive intervention schemes using

algorithms 1 and 2, respectively. In each case, the genetic regulatory network is initially

described by PBN4 (model number 4) and at estimation window number10 (corresponding
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to time =2560), the underlying model is deterministically switched to PBN2 (model num-

ber 2). The switching probability (q) is assumed to be0.01. From the model convergence

plots in Figs. 10 and 11, it is clear that the estimated modelstrack the actual model quite

well. Furthermore, the model tracking using algorithm 2 is better than with algorithm 1.

This is consistent with our expectation since for the smallq, the underlying assumption for

algorithm 2 represents a closer approximation to reality. The cumulative adaptive average

costs also appear to converge to the non-adaptive ones. To see if these results are rep-

Fig. 10. Melanoma Application: Algorithm 1.

resentative, we ran the same simulation one hundred times and calculated the differences

between the cumulative adaptive and non-adaptive costs foreach of the two algorithms.We

then averaged the difference sequence over the one hundred simulations. Fig. 12 shows

the plots of the average difference sequence over30 estimation windows (time =7680) for

three different values of the switching probabilityq. From the figure, we see that the re-

sults match our intuition: algorithm1 works well forq = 1 (instantaneously random PBN)
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Fig. 11. Melanoma Application: Algorithm 2.

whereas whenq is low or0, algorithm2 works better.

D. Concluding remarks

We have demonstrated the feasibility of applying adaptive intervention to improve interven-

tion performance in genetic regulatory networks modeled byPBNs. Specifically, we have

shown via simulations that when the network is modeled by a member of a known family

of PBNs, one can use adaptation and carry out a certainty equivalence design that leads to

improved performance in terms of the average cost. These simulation studies are important

since the theoretical results in the literature guarantee only almost sure convergence and,

that too, in the Cesaro sense. We have presented two different algorithms for model estima-

tion, and argued that while one of the algorithms is well suited for instantaneously random

PBNs, the other is much better for context-sensitive PBNs with low switching probability

between the constituent BNs. Our simulation results confirmthese intuitive expectations.
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Fig. 12. Melanoma Application: Cost difference comparisonof the two algorithms for dif-

ferent values ofq.

Though mathematically the intervention strategy is close to optimal, there are some seri-

ous problems associated with this approach. Estimating thetransition probability matrix

(TPM) of a probabilistic Boolean network and practical feasibility of switching control are

two of the major impediments. This motivates the introduction in CHAPTER III of a new

approach for constructing networks consistent with prior biological knowledge. We will

focus mostly on Boolean Networks because the parameters in astochastic model are dif-

ficult to estimate, given the paucity of biological data. In CHAPTER IV, some real world

examples are used to introduce practically feasible intervention strategies.
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CHAPTER III

FROM PATHWAYS TO NETWORKS*

This chapter develops a general theoretical framework for arriving at genetic regula-

tory networks whose state transitions realize a set of givenbiological pathways or minor

variations thereof. Often in biology, the a priori or expertknowledge is presented in the

form of signaling pathways. Although such pathway information can be useful, it fails to

capture the multivariate interactions between the genes. Interventions based on univariate

gene interactions captured in pathways often fail to achieve the intended effects. In addi-

tion, it is quite common to have information on multiple pathways that may share some

common nodes. In such a case, each pathway attempts to capture the intergene relation-

ships when restricted to the genes in that pathway, but provides no information about the

global interaction between the genes involved in the different pathways other than putting

the constraint that the global interactions, when restricted to a particular pathway, must

satisfy the relationships mandated by that pathway.

The problem of piecing together an overall underlying genetic regulatory network

structure given (partial) pathway information is, therefore, very important in all areas of

biology. However, to our knowledge, thus far the problem hasnot even been formulated

properly, let alone be solved. Perhaps, one reason for this is the absence of a wide enough

realization that pathway knowledge, no matter how appealing it may be, constitutes only

partial knowledge restricted to a particular context. We next further motivate the work pre-

sented here by using a specific application area and its research needs.

In recent years, there has been considerable interest in thearea of Genomic Signal Pro-

*Part of this chapter is reprinted with permission from “From biological pathways to
regulatory networks ” by Ritwik K. Layek , Aniruddha Datta and Edward R. Dougherty,
2011, Mol. BioSyst., vol. 7, pp. 843-851, Copyright [2011],Royal Society of Chemistry.
(http://pubs.rsc.org/en/content/articlelanding/2011/mb/c0mb00263a)
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cessing [36, 37] which seeks to mathematically model the multivariate interactions between

the genes and utilize these models to not only differentiatebetween normal and abnormal

(diseased) behavior but also to suggest appropriate therapeutic interventions in the case

of the latter. The principal motivation for this is the growing realization that in the case

of complex diseases such as cancer, therapeutic approachesbased on simplistic marginal

modeling, as in the case of biological pathways, can at best achieve modest success. To cap-

ture the holistic behavior of the genes, one can use genetic regulatory networks instead of

working with only pathway knowledge. To date, genetic regulatory network modeling has

been carried out using various approaches such as differential equations and their discrete-

time counterparts [38, 39, 40, 41], Bayesian networks [42, 43, 44, 45], Boolean networks

[46, 47, 18],[48, 49, 50, 51, 52, 45, 53, 54, 55], and their probabilistic generalizations, the

probabilistic Boolean networks (PBNs) [19, 20, 21]. PBNs have also found extensive use

in the design of intervention approaches that seek to slow down or halt disease progression

[37, 56, 57, 58, 59, 60, 61, 32, 62, 63, 17, 64].

Most of the intervention approaches developed thus far for PBNs make use of the fact

that the state transitions in a PBN can be modeled as a Markovian process. Estimating the

transition probabilities for such a process, which is by no means a straight forward task,

is an essential pre-requisite for the successful application of most of these intervention ap-

proaches. Although a handful of these schemes [61, 32] are able to bypass the need for es-

timating the transition probability matrix, none of them are capable of incorporating prior

biological pathway information into the network design. This is a significant drawback

since most of the prior biological knowledge in the literature resides in the form of bio-

logical pathways, gleaned as empirical observations across different experiments. Indeed,

the accuracy of genetic regulatory networks and the data requirements for their inference

could be greatly improved by developing a mechanism to incorporate pathway knowledge

into the network itself. This chapter develops a systematicprocedure for doing precisely
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that for the case of Boolean networks. Here, it is appropriate to point out that earlier work

has focussed on generating Boolean networks satisfying principally attractor constraints

[27, 65]. The results presented here are more general and essentially subsume the earlier

ones.

This chapter is organized as follows. In section A, we introduce some notation and

present the basics of digital design. In section B, we present a simple example to demon-

strate how one can use pathway knowledge and Karnaugh maps togenerate a family of

BNs whose trajectories realize the given pathways. In section C, the general procedure for

synthesizing Boolean network from a set of pathways is presented. In section D, the simple

example of section B is revisited and solved using the algorithm developed in section C. In

section E, we impose additional attractor constraints on the family of BNs to facilitate the

choice of a particular BN. In section F, we apply the results of this chapter to the widely

studied p53 pathway and demonstrate that the resulting network exhibits dynamic behavior

consistent with experimental observations from the published literature. Finally, section G

contains some concluding remarks.

A. Notation and digital design basics

1. Boolean networks

A Boolean Network(BN), Υ = (V, F ), on n genes is defined by a set of nodes/genes

V = {x1, ..., xn}, xi ∈ {0, 1}, i = 1, ..., n, and a listF = (f1, ..., fn), of Boolean functions,

fi : {0, 1}n → {0, 1}, i = 1, ..., n [18]. The expression of each gene is quantized to two

levels, and each nodexi represents the state/expression of the genexi, wherexi = 0 means

that genei is OFF andxi = 1 means that genei is ON. The functionfi is called the

predictor functionfor genei . Updating the states of all genes inΥ is done synchronously

at every time step according to their predictor functions. At time t, the network state is

given byx(t) = (x1(t), x2(t), ..., xn(t)), called agene activity profile(GAP).



42

2. Karnaugh map representation of Boolean networks

The subsequent development in this chapter relies heavily on theKarnaugh Map (K-map)[66]

representation of a Boolean function. Consequently, let usnow briefly introduce Karnaugh

Maps and demonstrate their utility in digital design. Consider an arbitrary Boolean Net-

work on three genesA, B andC with the following three Boolean update rules:

Anext = B + C

Bnext = AC̄ (3.1)

Cnext = A+ B̄.

HereAnext, Bnext andCnext denote the values ofA, B andC at the next time step. Al-

though the above rules represent the Boolean network in a compact form, they do not permit

ready visualization of the state transitions or the attractors. Such ready visualization can be

achieved by equivalently representing Equation (3.1) using the truth table shown in Table

IV or the state transition diagram shown in Fig. 13.

Note, however, that the information contained in the truth table or the state transition

diagram would not allow one to directly arrive at the Booleanupdate rules in Equation (3.1)

which is what would be required if one were trying to realize the network using logic gates.

This synthesis of Boolean functions from the truth table is facilitated by Karnaugh maps.

In a Karnaugh Map, each current state is represented by a square and two neighboring

squares have a Hamming distance of unity. This is crucial because this Hamming distance

separation enables us to cluster large blocks of size2m in the maps. For each current state

(represented by a square), the value of the particular gene in the next state is written inside

the square. As an example, the three Karnaugh Maps for the Boolean Network correspond-

ing to the three update rules in Equation (3.1) are shown in Fig 14. Since we have three

genes with expressions which can only be binary, there is a total of eight states and hence

eight squares in each Karnaugh map. For a moment, let us focusattention on the K-map for
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Table IV. Truth Table of the Boolean Network (Eqn. 3.1).

A(n) B(n) C(n) A(n+1) B(n+1) C(n+1)

0 0 0 0 0 1

0 0 1 1 0 1

0 1 0 1 0 0

0 1 1 1 0 0

1 0 0 0 1 1

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 0 1

0 0 0 1 1 0
0 0 1 1 1 1

1 0 1
0 1 0

0 1 11 0 0
= +

=

= +

Fig. 13. State transition diagram of the Boolean Network (Eqn. 3.1).
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A B C0 00 11 11 0
0 1A B C0 11 11 0

0 1A B C0 11 11 0
0 1

n e x t n e x t n e x tC
0
0

00 0000 0 00 00 0 1 1 11 11 11
1 11 11 1

Fig. 14. Karnaugh map representation of Table IV.

geneA, denoted byAnext in Fig. 14. The possible gene value combinations for the current

time step are shown to the left (genesA andB) and to the top (geneC) of the K-map. Also

it should be noted that the bottom two rows of the K-map correspond toA = 1, the middle

two rows correspond toB = 1 and the rightmost column corresponds toC = 1, all in the

current state.

Define amintermas a Boolean product (‘AND’ function) where each gene or its com-

plement occurs exactly once. A three gene network, having exactly eight states, will have

eight possible minterms, and each square in the Karnaugh mapis the support of a unique

minterm. For instance the square corresponding to the state010 is the support of the unique

mintermĀBC̄ (the Boolean product̄ABC̄ = 1 if and only if the state is010).

We next use this three gene example to show how the Karnaugh map representation

can help us in arriving at the Boolean functions for the update rules. Let us focus on the

K-map for geneB, i.e. Bnext in Fig. 14. In this K-map, two of the minterms giving

Bnext = 1 areABC̄ andAB̄C̄. By summing (‘OR’ing) the minterms having functional

value1 (the value inside the squares), we can generate the network functions. For example,

Bnext = ABC̄ + AB̄C̄ = AC̄. In the K-map, this can be done geometrically. As, the two
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neighboring states (squares) have a hamming distance of1, we can remove the variable

that differs between the corresponding minterms to more compactly represent the set of

two squares. In the K-map ofBnext, the states corresponding toBnext = 1 are110 and

100 and their hamming distance is1. So, the product term representing the two states is

simplyAC̄ (We remove the variableB as bothB and its complement̄B appear in the two

mintermsABC̄ andAB̄C̄ and, therefore,B is a non-essential variable). The idea that we

have just illustrated for clustering two minterms in the K-map can be extended to cluster

additional minterms and obtain a minimal realization of theBoolean function in question.

Indeed, this procedure is used extensively in computer architecture and digital design [67].

In this chapter we will follow the clustering of minterms approach which will give us

the minimal SoP or Sum of Products (‘OR’ of ‘AND’s) form of theBoolean functions [67].

The prior knowledge presented in the form of signalling pathways will furnish us with par-

tially filled Karnaugh Maps for updating each of the genes. Clearly, such a partially filled

Karnaugh Map will not yield a unique Boolean function, even in the Sum-of-Products form,

so that instead of arriving at a unique Boolean network, we may end up with a family of

Boolean networks. On the other hand, different pathways mayintroduce conflicts in the

Karnaugh Map describing the update of a particular gene, in which case it would be impos-

sible to arrive at a Boolean network to simultaneously satisfy all the pathway constraints.

Fortunately, in such a case, the pathway constraints can be relaxed since (i) pathways only

represent empirical observations across different experiments; and (ii) there is no accurate

timing information to go with the pathways, which means thatthe initially assumed timing

information in the pathways can be slightly altered to facilitate a solution. In this chap-

ter, we will formally develop these ideas and present a systematic solution to the problem

of generating a family of Boolean networks whose trajectories satisfy given pathways or

minor variations thereof. For clarity of presentation, we first begin with a simple example

which can be handled in an intuitive way without having to invoke the complete machinery
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to be developed for the general case.

B. From pathways to a family of BNs: a simple example

For clarity of presentation, consider a Boolean Network (BN) on 4 genesA,B,C & D so

that each state (or GAP) is given by a binary vector of the formV = abcd, wherea, b, c, d

are either0 or 1. Define the termpathway segmentA
t:a,b
−→ B to mean that if geneA as-

sumes the valuea then geneB transitions tob in no more thant subsequent time steps. A

pathwayis defined to be a sequence of pathway segments of the formA
t1:a,b
−→ B

t2:b,c
−→ C. In

the above pathway, there are two pathway segmentsA
t1:a,b
−→ B andB

t2:b,c
−→ C. We define a

trajectoryto be a sequence of statesV0 → V1 → V2 → V3 → V4 resulting from the network

rules beginning at some initial state . Clearly, a trajectory provides a more complete picture

of the dynamic evolution of the BN resulting from the multivariate interactions between

the genes. Pathway information, on the other hand, is neither regulatory nor state space

knowledge; it is marginal and incomplete.

Given the wide prevelance of apriori biological knowledge in the form of pathway

information, an important problem to consider is how to generate a BN whose trajectories

are consistent with a given set of pathways. This is an ill-posed inverse problem that could

have multiple solutions or perhaps none. Therefore, our objective will be to investigate and

devise an algorithm to generate the set of all possible Boolean networks and to find out the

minor required timing or functional perturbation of the pathways if no Boolean network

can be found to satisfy the set of pathway constraints. We will do a structural analysis for

the Boolean Network synthesis problem. This is a brute forceexhaustive procedure but can

be used to generate the complete set of admissible BNs. Laterthe BN set can be shrunk by

imposing various realistic constraints such as (i) an upperbound on the number of predic-

tors per gene; (ii) an upper bound on the number of attractors; (iii) steady state distribution

of the attractors from actual experiments (e.g, MicroarrayExperiments); (iv) concordance
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with experimentally measured time series dynamics (e.g, those obtained using Green Flu-

orescent Protein based techniques), and so on. We next use a simple four-gene network to

illustrate the key ideas behind the exhaustive search procedure.

We have chosen an example with four genes since four is the largest number for which

the Karnaugh map can be visualized in two dimensions. For larger networks, the underly-

ing philosophy is the same although one would have to resort to computer programming.

Now let us assume that we are given three pathways:A
1:1,1
−→ B

1:1,1
−→ D, A

1:1,0
−→ C and

C
1:1,0
−→ D. First, we solve the inverse problem for pathway 1; thereafter, we add pathways

2 and 3, respectively, and shrink the solution space.

State space Realization of pathways

Pathway 1 (A
1:1,1
−→ B

1:1,1
−→ D): There are two segments to this pathway. The first segment

A
1:1,1
−→ B mandates that if the current state hasA = 1, then it will transition to a state

with B = 1 in one time step. So the state transition consistent with thepathway informa-

tion is 1xxx→x1xx1. Similarly, B
1:1,1
−→ D translates to the state transition x1xx→xxx1.

These are the only state transition constraints mandated bypathway 1. These state transi-

tion constraints can be represented in the Karnaugh Map for the individual genes as follows.

Apw1
next:

x x
x x

xx
xx

x x
x x

xx
xx

A

C

B

D Bpw1
next:

x x
x x

xx
xx

1 1
1 1

11
11

A

C

B

D Cpw1
next:

x x
x x

xx
xx

x x
x x

xx
xx

A

C

B

D Dpw1
next:

x x
1 1

xx
11

x x
1 1

xx
11

A

C

B

D

Here, the 4 Karnaugh Maps correspond to the truth tables for genesA,B,C andD in the

next time step as a function of the current state. As before, the bottom two rows correspond

toA = 1, the middle two rows correspond toB = 1, the right two columns correspond to

1Here ’x’ denotes a gene value that could be either0 or 1.
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C = 1 and the middle two columns correspond toD = 1, all in the current state. Also, the

superscriptpw1 indicates that these K-maps correspond to pathway1.

Clearly we see that the value of geneA at the next time step does not depend on what

the current state is. In the case of geneB, if the current state is1xxx (meaningA = 1),

then the next state will be x1xx (meaningB = 1). This is shown in the K-map for gene

B where the bottom two rows are filled with1s and the remaining8 entries are either0 or

1. Similarly the value of geneC at the next time step does not depend on the current state

while the value of geneD at the next time step depends only on the current value ofB. The

above K-maps characterize the entire family of BNs satisfying the constraints mandated by

pathway1.

Pathway 2 (A
1:1,0
−→ C): If we solve separately for pathway 2, we get another set of K-maps

for each of the genesA, B, C andD. The K-maps are shown below.

Apw2
next:

x x
x x

xx
xx

x x
x x

xx
xx

A

C

B

D Bpw2
next:

x x
x x

xx
xx

x x
x x

xx
xx

A

C

B

D Cpw2
next:

x x
x x

xx
xx

0 0
0 0

00
00

A

C

B

D Dpw2
next:

x x
x x

xx
xx

x x
x x

xx
xx

A

C

B

D

Next we would like to merge the two sets of K-maps to obtain K-maps consistent with

both the pathways1 and2. The solution set is shown below.

Anext:

x x
x x

xx
xx

x x
x x

xx
xx

A

C

B

D Bnext:

x x
x x

xx
xx

1 1
1 1

11
11

A

C

B

D Cnext:

x x
x x

xx
xx

0 0
0 0

00
00

A

C

B

D Dnext:

x x
1 1

xx
11

x x
1 1

xx
11

A

C

B

D

Pathway 3 (C
1:1,0
−→ D): If we solve separately for pathway 3, we get another set of K-
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maps for each of the genesA, B, C andD. The K-maps are shown below.

Apw3
next:

x x
x x

xx
xx

x x
x x

xx
xx

A

C

B

D Bpw3
next:

x x
x x

xx
xx

x x
x x

xx
xx

A

C

B

D Cpw3
next:

x x
x x

xx
xx

x x
x x

xx
xx

A

C

B

D Dpw3
next:

x x
x x

00
00

x x
x x

00
00

A

C

B

D

Clearly, for genesA, B andC, there is no conflict between the two sets of K-maps and

we can easily merge them to get the K-maps shown below.

Anext:

x x
x x

xx
xx

x x
x x

xx
xx

A

C

B

D Bnext:

x x
x x

xx
xx

1 1
1 1

11
11

A

C

B

D Cnext:

x x
x x

xx
xx

0 0
0 0

00
00

A

C

B

D

On the other hand, the two K-maps for geneD are in conflict as evident from the K-maps

given below.

Dpw1
next:

x x
1 1

xx
11

x x
1 1

xx
11

A

C

B

D

�
�

�
�

Dpw3
next:

x x
x x

00
00

x x
x x

00
00

A

C

B

D

�
�

�
�

The conflict occurs when the current state is x11x (see the entries inside the two circles).

This conflict is not at all surprising: if the current state isx11x thenB = 1 will try to force

D = 1 at the next time step as per pathway1 whileC = 1 will try to simultaneously force

D = 0 in accordance with pathway3. One way to resolve the conflict would be to decide

in favor of one of the two requirements. Let us assume (without loss of generality) thatA
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has higher priority thanB andB has higher priority thanC, and so on. In that case, gene

B will affect the state transition earlier than geneC. Accordingly, we decide that in the

above conflict, x11x will transition to xxx1 in the next time step so that the K-map ofD

gets modified as according to the K-map below.

Dnext:

x x
1 1

00
11

x x
1 1

00
11

A

C

B

D

� �
� �

However, we still need to satisfy pathway3. Although it is not possible to meet both

pathway constraints in the same time step, we can relax the timing of the third pathway

asC
2:1,0
−→ D, which means thatC = 1 will lead toD = 0 in no more than2 time steps.

Accordingly, x11x will transition to xxx0 in no more than two time steps. Thus, the com-

plete transition will be x11x→ xxx1→ xxx0. However, we know from the merged K-map

of D (after conflict elimination), that only x01x leads to xxx0 in one time step (see the

two semicircles in the above K-map where the value is0). Hence, the second state in the

above state transition becomes x011, leading to the actual state transitions x11x→ x011→

xxx0. This set of two state transitions yields two new pathways: pathway 4 :BC
1:1,0
−→ B

and pathway 5:BC
1:1,1
−→ C. The introduction of these two new pathways will lead to the

iterative update of the K-maps until the K-maps converge to astable set of BNs.

1. Iterative update of K-maps

Now, pathways4 and5 mandate that whenever the current state becomes x11x, the next

state will be x011 which means that geneB = 1 and geneC = 1 will lead to geneB = 0

and geneC = 1 in the next time step. This again conflicts with the earlier K-maps of genes

B andC.
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Conflict in K-map of geneB: If the current state is111x, then a conflict arises in the K-

map of geneB. Specifically,A = 1 in the current state mandatesB = 1 in the next state,

whereasBC = 1 in the current state mandatesB = 0 in the next state.The conflicting

Karnaugh Maps for these two cases are shown below along with the marked conflict zone.

Bnext:

x x
x x

xx
xx

1 1
1 1

11
11

A

C

B

D

�



�
	

Bpw4
next:

x x
x x

xx
00

x x
x x

xx
00

A

C

B

D

�



�
	

As before, we once again apply the conflict resolution rule. We setB = 1 in the next

state whenBC = 1 in the current state to obtain the modified K-map for geneB shown

below.

Bnext:

x x
x x

xx
00

1 1
1 1

11
11

A

C

B

D

�



�
	

This mandates the state transition:111x→x1xx. As before, we have to relax the timing

constraint of pathway 4:BC
1:1,0
−→ B is changed toBC

2:1,0
−→ B. Consequently, the state

x1xx has to be followed by the state x0xx. However, we know that a necessary condition

for B = 0 in the next state is thatA = 0 in the current state. So, we get another new

pathway, pathway 6:ABC
1:1,0
−→ A. It is clear that although the original three pathways

did not yield any update rules for geneA, the conflict resolution rules that we have applied

have given rise to a new reverse pathway which imposes an update rule on geneA.

Conflict in K-map of gene C: If the current state is111x, then a conflict arises in the
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K-map of geneC as well. Specifically,A = 1 in the current state mandatesC = 0 in the

next state, whereasBC = 1 in the current state mandatesC = 1 in the next state. The con-

flicting K-maps for these two cases are shown below along withthe marked zone of conflict.

Cnext:

x x
x x

xx
xx

0 0
0 0

00
00

A

C

B

D

�



�
	

Cpw5
next:

x x
x x

xx
11

x x
x x

xx
11

A

C

B

D

�



�
	

As before, we once again apply the same conflict resolution rule. We setC = 0 in the

next state whenA = 1 in the current state to obtain the modified K-map for geneC shown

below.

Cnext:

x x
x x

xx
11

0 0
0 0

00
00

A

C

B

D

�



�
	

This mandates the state transition:111x→xx0x. As before, we have to relax the timing

constraint of pathway 5:BC
1:1,1
−→ C is changed to:BC

2:1,1
−→ C. Consequently, the state

xx0x has to be followed by the state xx1x. However, we know that a necessary condition for

C = 1 in the next state is thatA = 0 in the current state. This leads to the same pathway6

:ABC
1:1,0
−→ A, as before. Fortunately, in this simple example, the conflict resolutions in the

K-maps ofB andC both lead to the same pathway6. This means that wheneverABC = 1,

the next state will be0xxx. Accordingly, the K-map of geneA is modified as shown below.
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Anext:

x x
x x

xx
xx

x x
x x

xx
00

A

C

B

D

Finally we have reached a stage where there are no more conflicts in the K-maps and the

final K-maps are shown below.

Anext:

x x
x x

xx
xx

x x
x x

xx
00

A

C

B

D Bnext:

x x
x x

xx
00

1 1
1 1

11
11

A

C

B

D Cnext:

x x
x x

xx
11

0 0
0 0

00
00

A

C

B

D Dnext:

x x
1 1

00
11

x x
1 1

00
11

A

C

B

D

Thus, with minor modifications of the third original pathway, we have solved the inverse

problem of finding the class of Boolean Networks. The procedure can be extended to find

the complete set of BNs consistent with any number of given pathways. In this problem, we

can see the shrinkage in the number of possible Boolean networks. To start with, the search

space had a cardinality of264. After incorporating the pathway knowledge, the cardinality

of the search space shrinks to230.

As we will see later, the cardinality of the search space can be further reduced by im-

posing constraints on the number and relative significance of the attractors, the connectivity

of the network, etc.
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C. From pathways to a family of BNs: the general procedure

1. Definitions and preliminary observations

In section B we defined a pathway and pathway segments only in terms of single genes.

The solution to the simple example presented there was also based on an intuitive proce-

dure. Our objective here is to develop a systematic general procedure which can yield a

Boolean network consistent with an arbitrary number of pathways. Towards this end, we

next introduce some definitions and make some preliminary observations.

For any Boolean functionf , define the support off , denoted bysupp(f), to be the set

of all argument values that makef assume the value of1. Also, for any Boolean function

S, and for a Boolean values ∈ {0, 1}, define

Ss =











S if s = 1

S̄ if s = 0.
(3.2)

The functionSs defined in Eqn. 3.2 can be thought of as being the indicator function of the

set{x : S(x) = s}.

Let us now generalize the pathway segment definitions presented earlier:

1. A Simple Pathway Segmentis defined asY
t1:a,b
−→ B, whereB is a single gene,Y

can be an arbitrary Boolean function anda, b ∈ {0, 1}. Unless otherwise indicated,

the termpathway segmentin this chapter will refer to a simple pathway segment.

A simple pathway segment can be implemented using only the K-map of the target

gene, i.e. geneB in this case.

2. A composite pathway segmentis defined asY
t2:y,z
−→ Z where bothY andZ are

arbitrary Boolean functions andy, z ∈ {0, 1}. We next develop the theory for de-

composing a given composite pathway segment into a number ofsimple pathway

segments since only the latter are directly implementable using K-maps.
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Without any loss of generality, let us assumet2 = 1 in the above composite pathway

definition. Using Equation (3.2), the composite pathway segmentY
1:y,z
−→ Z can be

alternatively written asY
1:y,1
−→ Zz.

Furthermore,Zz can be expressed in the minimal SOP (Sum of Products) form [67]:

Zz = P1 + P2 + · · ·+ Pk (3.3)

where eachPi, i = 1, 2, · · · , k is a Boolean product term of the form

Pi = Ai
1A

i
2 · · ·A

i
li

(3.4)

and eachAi
j is either a gene or its complement.

From the above analysis it is evident thatY
1:y,1
−→ Pi =⇒ Y

1:y,1
−→ Zz (becausePi =

1 =⇒ Zz = 1). So, anyPi can replaceZz producing the desired pathway effect. For

the sake of simplicity we will choose the product termPm having the least number

of genes. The resulting composite pathway segmentY
1:y,1
−→ Pm can be decomposed

into lm simple pathway segments that have to be simultaneously satisfied:

Y
1:y,1
−→ Am

1

Y
1:y,1
−→ Am

2

Y
1:y,1
−→ Am

3 (3.5)

...

Y
1:y,1
−→ Am

lm
.

Thus the K-map implementation of theselm simultaneous simple pathway segments

will provide a non-unique realization of the original composite pathway segment:

Y
1:y,z
−→ Z.

3. A pseudo pathwayis defined to be any pathway that can be inferred from a given
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Table V. Priority Ordering

A Ā B B̄ C C̄ D D̄

Boolean network. The update rules for a Boolean network mandate that the state

(or GAP) transitions occur in a particular sequence. By marginally focusing on the

transitioning of particular components of the GAP, one can come up with inherent

pathway relationships, which we refer to as pseudo pathways.

2. Priority ordering between Boolean functions

In section B, we loosely introduced the notion of priority among genes for deciding which

gene would preferentially act on a target. Since different gene combinations, and not nec-

essarily individual genes, could be acting on a target, it isnecessary to generalize the notion

to Boolean functions of genes. Such a generalization is carried out in this subsection by the

introduction of what we refer to as apriority index.

From biological understanding, we know that all genes do notinfluence a particular

target gene to the same extent. As an example, suppose genesA andB both influence the

status of target geneC in some way but with different relative abilities. Definepriority as

the power of each gene to influence others in the pathway. Priority is a qualitative term and

cannot be used for conflict resolution unless we quantify it in some sense. Accordingly, we

next introduce apriority indexwhich will be employed as the decision making parameter

in times of conflict resolution. Suppose that from our qualitative knowledge of genes and

pathways we can make a list of all the genes according to theirpowers. This is called the

priority list. As an example, suppose the priority list for the four genesA,B,C,D and

their complements̄A, B̄, C̄, D̄ are as shown in Table V:

HereA has the highest priority followed bȳA and so on. Symbolically we write
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A > Ā > B > B̄ > C > C̄ > D > D̄. We assume that the priority ordering is transitive

which means that ifA > B andB > C, thenA > C.

We next extend the notion of priority ordering between genesto that between product

terms and ultimately to that between two arbitrary Boolean functions. To do so, define the

priority indexbetween two genesA andB by:

ρ(A,B) =











1 if A > B

0 if A < B.

Next we define the priority index between a product termY = Y1Y2Y3Y4..Yl and a geneB

as:

ρ(Y,B) = 1/l
l

∑

i=1

ρ(Yi, B). (3.6)

Finally we define the priority index between two product terms Y = Y1Y2Y3Y4..Yl and

Z = Z1Z2Z3Z4..Zk as:

ρ(Y, Z) =
1

k

k
∑

j=1

ρ(Y, Zj)

=
1

kl

l
∑

i=1

k
∑

j=1

ρ(Yi, Zj). (3.7)

We next extend the priority index definition to the case of arbitrary Boolean functions

S1 andS2. To do so, we make use of the well known fact from Boolean algebra that any

Boolean function can be represented in a minimal Sum of Products (SoP) form. Suppose

the two functionsS1 andS2 are expressed in such a form as:

S1 = P1 + P2 + P3 + · · ·+ Pn

S2 = Q1 +Q2 +Q3 + · · ·+Qn. (3.8)

Furthermore, suppose thatPi is the minimal product term inS1, i.e. the term having the
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minimum number of genes or gene’s complements. Consequently, Pi corresponds to the

maximum number of minterms (unit squares) in the K-map ofS1. Similarly, assume that

Qj is the minimal product term inS2. The priority index betweenS1 andS2 is defined by

ρ(S1, S2) = ρ(Pi, Qj). (3.9)

The priority indices defined above satisfy the following properties:

0 ≤ ρ(S1, S2) ≤ 1

ρ(S1, S2) = 1− ρ(S2, S1). (3.10)

Based on the priority indices just defined, the priority ordering between two Boolean func-

tionsS1 andS2 can be made as follows:

S1











> S2 if ρ(S1, S2) > 0.5

< S2 otherwise.

Before concluding this section on priority ordering, we mention that, as a general rule, if

we come across a composite pathway segment, then the highestpriority will be given to ac-

commodate that. This is because a composite pathway segmentgives rise to several simple

pathway segments that have to be simultaneously satisfied and, therefore, it is reasonable

to give it the highest priority.

3. Conflict and its resolution

In this subsection we generalize the conflict resolution procedure, introduced in section

B, to the case where we have an arbitrary number of genes and anarbitrary number of

pathways. Define aconflict as a situation when for a new pathwayY
1:y,b
−→ B, whereY

is a Boolean function andB is a gene, there already exists a Boolean functionΨ with

supp(Ψ) ⊂ supp(Yy), supp(Ψ) 6= supp(Yy) such thatΨ
1:1,b̄
−→ B. We next explain how

such a conflict can arise.
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We have seen in section B that if the truth table mandated by a pathway segment does

not contradict the existing truth tables for the network (i.e, supp(Ψ) = ∅), then there is

no problem in incorporating such a pathway. However, if the demands of a new path-

way segment contradict the already existing truth table values (i.e,supp(Ψ) 6= ∅), then a

conflict arises. An adhoc procedure for resolving such a conflict for the simple example

was demonstrated in section B. Here we develop a systematic procedure for handling the

general case.

Suppose at a particular stage while determining ann-gene Boolean network satisfying

pathway information, we come to a new pathway segmentY
1:y,b
−→ B wherey, b ∈ {0, 1}.

This pathway segment can be implemented in the K-map for geneB. Specifically, we

would try to insert the valueb in every minterm∈ supp(Yy) in the K-map of geneB.

While doing so we may discover a set of minterms insupp(Yy) whose values are alreadyb̄

in the K-map of geneB. We can combine the entire set of such minterms and sum them up

to obtain a Boolean functionΨ such thatsupp(Ψ) ⊂ supp(Yy). The situation is graphically

illustrated in Fig 15.

Clearly, in the above K-map of geneB, the minterms whereYyΨ̄ = 1 can be unam-

biguously assigned the value ofb. The conflict will arise in the subsetsupp(Ψ). Resolution

of this conflict will require us to determine the priority ordering betweenYy andΨ which

can be carried out by evaluating the priority norm between these two Boolean functions.

Depending on the priority ordering, we will adopt one of the two following options:

1. Yy > Ψ : In this case,Y
1:y,b
−→ B is given higher priority and all the minterms

∈ supp(Yy) will be assigned the valueb. However, to satisfy the inherent pathway

segmentΨ
2:1,b̄
−→ B, in the next time step, we generate another constraint. Clearly, to

get to the value of̄b in the truth table of geneB, the trajectory would have to traverse

to the states which can lead toB = b̄ in one time step. So, the additional pathway

we obtain is a composite pathway segment:Ψ
1:1,1
−→ S(b̄), whereS(b̄) is a minimal
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Fig. 15. Conflict in K-map of geneB.

SoP set in the K-map ofB having valuēb. That means this set inherits an already

implemented pseudo pathwayS(b̄)
1:1,b̄
−→ B which gets rid of the conflict. If, however,

no suchS(b̄) can be found in the K-map ofB, then the problem is unsolvable and

the algorithm is terminated.

2. Ψ > Yy : In this case,Ψ
1:1,b̄
−→ B is implemented first. The minterms∈ supp(Ψ) will

be assigned the valuēb. However, to satisfy the other pathway segment in the next

time step, i.e.Y
2:y,b
−→ B, we generate the other constraint. Clearly, to get to the value

b in the truth table of geneB, the trajectory has to traverse to the states insupp(Yy)∩

supp(Ψ̄). So, the additional pathway that we obtain out of this reasoning is: Ψ
1:1,1
−→

YyΨ̄. This being a composite pathway segment, one would have to decompose it into

simple pathway segments before proceeding further.
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4. Total conflict and cyclic total conflict

In this subsection we wish to demonstrate conflict resolution in the extreme case when

supp(Ψ) = supp(Yy). This situation is called atotal conflict and we denote it by the

notation

Y
1:y,b
։ B. Since in the case of a total conflictsupp(Yy) ∩ supp(Ψ̄) = ∅, only the

first method presented in the previous subsection can be used. This is demonstrated in the

following example.

Example: Consider a4 gene network with genesA,B,C,D so that each state (or

GAP) is given by a binary vector of the formV = abcd wherea, b, c, d ∈ {0, 1}. Suppose

that geneB currently updates according to the Karnaugh map shown below.

Bnext:

1 1
1 1

00
xx

1 1
x x

00
00

A

C

B

D

Let us now introduce the new pathway segmentAC
1:1,1
−→ B. In the notation of section

3, Y = AC, b = 1 andY1 = AC. Clearly the pseudo pathway we get from the Karnaugh

map corresponding to the minterms havingAC = 1 isAC
1:1,0
−→ B so thatΨ = AC. This is

a good example of a total conflict which cannot be resolved in adirect fashion. However,

examining the truth table of geneB, we get some useful information that could facilitate a

solution.

Without any loss of generality let us assume that whenever a total conflict arises, the

new pathway segment always gets the highest priority. Usingthis priority ordering, the

truth table of geneB is modified according to the K-map below.
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Bnext:

1 1
1 1

00
xx

1 1
x x

11
11

A

C

B

D

The minterms in this new truth table having value0 are ĀB̄CD andĀB̄CD̄ which can

be ‘OR’ed to get the product term̄AB̄C. So, the new composite pathway segment which

will resolve the total conflict is given byAC
1:1,1
−→ ĀB̄C. This is a composite pathway

segment and will lead to three simple pathway segments:AC
1:1,1
−→ Ā, AC

1:1,1
−→ B̄ and

AC
1:1,1
−→ C which are to be implemented simultaneously.

Now it may happen that while trying to remove a total conflictA
1:a,b
։ B, we may ar-

rive at some other total conflicts likeC
1:c,d
։ D ,E

1:e,f
։ F, .. so on. These total conflicts and

their derivative total conflicts can be represented in a directed graph structure. The total

conflicts arising from the ordinary conflicts are the starting nodes of the graph. Then all the

derivative total conflicts will become the children of the corresponding parent nodes. We

can attempt to solve the total conflict problem in an iterative way by growing the graph.

This iteration will continue until either the graph isacyclic and converges to a solution

when there is no child node left, or the graph becomes cyclic,when we say that there is a

cyclic total conflictin the problem and the problem cannot be solved. These two situations

are depicted in Fig 16.

D. Simple example revisited

The adhoc solution to the small4 gene BN synthesis example presented in section B was

mainly based on our intuition. We now apply the systematic procedure of the previous

section to the same example and highlight the differences. First, we point out that the

systematic procedure begins to deviate from the earlier adhoc one only from section C.
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Fig. 16. Solvability of the conflicting pathway problem.

Hence it is appropriate to start our analysis from there.

The adhoc treatment prior to section C tells us that the two new pathways4 and5

have to be satisfied simultaneously as otherwise the state transitions may not be the same

as desired. To ensure that, we assign the highest priority tothe incorporation of the two

new pathways.

Iterative update of the truth tables: Recall that the K-maps for this example prior to

section B.1 are given by the K-maps below.

Anext:
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x x
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xx

x x
x x
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Also, the two pathways yet to be incorporated arepathway4 : BC
1:1,0
−→ B andpathway5 :

BC
1:1,1
−→ C. These two pathways are to be solved simultaneously and withthe highest

priority.

Conflict in the truth table of gene B: While trying to incorporate the simple pathway
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segment4, we get the conflict shown below for geneB:

Bnext:
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Using the notation introduced in section C.3, we haveY0 = BC and the new pathway

segment isY0
1:1,0
−→ B. The conflicting functionΨ is given byΨ = ABC. Clearly,

supp(Ψ) ⊂ supp(Y0). SinceY0 > Ψ, we put0 in every minterm∈ supp(Y0) = supp(BC).

The resulting K-map is shown below.

Bnext:
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Next, we have to find a minimal setS(1) in the K-map which will suggest a new pathway

segment for resolving the conflict. To do this, the1s in the K-map ofB can be clustered as

shown below.

Bnext:
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From this clustering, we obtain the setS(1) = AB̄ + AC̄ which suggests the compos-
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ite pathway segment:Ψ
1:1,1
−→ S(1).

Now Ψ
1:1,1
−→ S(1) ⇔ ABC

1:1,1
−→ AB̄ + AC̄

⇐ ABC
1:1,1
−→ AB̄ (choosing one)

⇔ ABC
1:1,1
−→ A (3.11)

& ABC
1:1,0
−→ B.

Thus, we get two new pathway segments : pathway 7 :ABC
1:1,1
−→ A and pathway 8

:ABC
1:1,0
−→ B.

Conflict in the truth table of gene C: While trying to incorporate the simple pathway

segment5, we get the conflict shown below for geneC.

Cnext:
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Following the same procedure as we did for pathway4, we see thatY1 = BC and the

new pathway segment isY1
1:1,1
−→ C. The conflicting functionΨ is given byΨ = ABC. As

before,supp(Ψ) ⊂ supp(Y1). SinceY1 > Ψ, we put a1 in every minterm∈ supp(Y1) =

supp(BC). The resulting K-map is shown below.

Cnext:
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Next we have to find a minimal setS(0) in the K-map which will suggest a new path-
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way segment for resolving the conflict. To do so, the0s in the K-map ofC can be clustered

below.

Cnext:
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x x
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11
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From this clustering, we obtain the setS(0) = AB̄ + AC̄ which suggests the compos-

ite pathway segment:Ψ
1:1,1
−→ S(0).

Now Ψ
1:1,1
−→ S(0) ⇔ ABC

1:1,1
−→ AB̄ + AC̄

⇐ ABC
1:1,1
−→ AB̄ (choosing one )

⇔ ABC
1:1,1
−→ A (3.12)

& ABC
1:1,0
−→ B.

Thus, we arrive at the same two pathway segments as before, pathway7 :ABC
1:1,1
−→ A and

pathway8 :ABC
1:1,0
−→ B.

Solution of pathways7 and 8: There are no additional conflicts introduced while trying

to incorporate these two pathway segments. The implementation for pathway6 is shown

below.

Anext:
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Pathway7 :ABC
1:1,0
−→ B has already been implemented in the K-map for geneB as shown

below and so no additional conflicts are created.

Bnext:

x x
x x

xx
00

1 1
1 1

11
00

A

C

B

D

Thus, the final set of K-maps, devoid of all conflicts, is shownbelow.
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E. Network design to satisfy additional constraints

The pathway information constitutes prior biological knowledge and in the previous sec-

tions we have shown how to generate a family of Boolean networks consistent with the

given pathway information. However, the cardinality of this family is still quite large and it

is reasonable to incorporate other available knowledge andexperimental results to further

shrink the size of this family. One relevant piece of information that can aid in this is the

number, location and relative significance of the attractors. Since the procedure developed

earlier provides us with the final Karnaugh maps for each gene, one can easily check to

see if the attractor constraints can be satisfied. This is most readily demonstrated using our

earlier example.



68

1. Imposition of attractor constraints

Consider the same example that we considered in section B andsection D to construct a

family of BNs from pathways. Now, let us additionally assumethat experimental data have

given us a steady state distribution. For a BN, for the steadystate behaviour, one would ex-

pect zero probability mass in the transient states and non-zero mass only for the attractors.

However, due to the fact that the system is not an ideal BN (possibly a more general Prob-

abilistic Boolean Network which is equivalent to an ergodicMarkov Chain), there could

be some non-zero mass in the transient states too. Also therecan be some noise in the

data as well. Therefore, for inferring a BN from experimental data, a threshold should be

established for extracting the attractor states. Suppose that experimental data gives us the

steady state distribution shown in Fig 17 for our four gene network. Furthermore, suppose

0 0 1 0 0 1 0 1 1 0 1 1 1 1 0 1St ead ySt at eDi st rib uti on
0 . 10 . 20 . 30 . 40 . 5

S t a t e

S t e a d y S t a t e D i s t r i b u t i o nT h r e s h o l d

Fig. 17. Steady state distribution and threshold.

that for this example the threshold is chosen to be0.08. This yields the attractor states:

0010, 0101, 1011 and1101. Next we need to check whether these attractors are consistent

with the family of BNs that we determined in section D. For an attractor to be consistent
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with a family of BNs, the rules of regulatory interaction between the genes of each network

should guarantee that an attractor transitions only to itself. This can be easily verified from

the truth table for the update of each gene. We see that three of the attractors, namely0010,

0101 and1101 are consistent with the truth tables shown below.
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However, the attractor1011 is not consistent with these truth tables, thereby suggesting

that it may not be a valid attractor. To remove the state1011 from the set of attractors

obtained from the data, we can increase the threshold to0.11, say. Thus, the family of BNs

that we have constructed based on pathway information provides a useful way to eliminate

attractors whose steady state mass is near the threshold value. On the other hand, if we

get some attractor state whose steady state mass is very high(say0.9) and it still contra-

dicts the truth tables obtained from the pathway knowledge,then we have every reason to

question the validity of the pathway information that has been provided to us. So, in that

case, the steady state distribution data can be used to assess the accuracy of our pathway

information.

2. Boolean network from predictors

Suppose that in the above example, one imposes the additional constraint that the maxi-

mum number of predictors allowed for each gene is3. Such an upper limit on the number

of predictors per gene could be motivated from the biological consideration that the pro-

moter region for a gene only has enough room for at most only a few transcription factors

to bind. We currently do not have a systematic procedure for imposing such a predictor
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constraint. However, arbitrarily putting in some 1’s and 0’s for the x’s, it is possible to use

the four truth tables derived in section E.1 to arrive at a reasonable Boolean Network by

using a Karnaugh Map. For instance, by considering the truthtables (K-maps) as shown

below, taking the circledmintermsand filling up all the x’s by0, we obtain the the Boolean

rules (Eqn.(3.13)).
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Anext = AB

Bnext = AB̄ + C̄

Cnext = (Ā+ B)C (3.13)

Dnext = B + C̄

This is a Boolean network with at most three predictors per gene and it satisfies the original

pathway constraints, after some minor timing modifications. As discussed earlier, such mi-

nor timing modifications are inconsequential since biological pathway information usually

does not come with strict timing. Next we can determine the attractor and attractor basins

for the generated network. For the network given in Equation(3.13), the state transition

diagram and the attractors are shown in Fig 18. From the statetransition diagram in Fig

18, it is easy to verify that the state trajectories obey the original pathway constraints, of

course with the timing possibly altered. For instance, consider the state trajectory1010→

0100→ 0101 marked in purple in Fig. 18. The red numbers in this trajectory show that the
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Fig. 18. State transition diagram for the Boolean network described by Equation (3.13).

following pathway relationships are realized:A = 1 impliesB = 1 andC = 0 after one

time step.B = 1 impliesD = 1 after one time step. Similarly, the blue numbers show the

realization of the pathway relationships:C = 1 impliesD = 0 in one time step.

F. Modeling pathways involving the p53 gene

Some of the most widely studied pathways in molecular biology involve the tumor suppres-

sor genep53. In fact, p53 is the “Master Guardian” gene[8] which plays a very important

role in cancer. Indeed, it has been observed that p53 is mutated in 30% − 50% of com-

monly occurring human cancers [8] and more importantly someparts of the p53 pathways

are altered in almost all types of human cancer. Thus, the dynamical behavior of p53 and

its tight regulation has become one of the most widely studied problems in cancer biology

[68, 69, 70, 71, 72, 73]. Unlike many other important regulated genes, p53 is constitu-

tively expressed in the cell. However, the p53 protein concentration is low under normal

conditions. This constitutive but low expression is maintained by the Mdm2 protein: p53

being a transcription factor expresses Mdm2 which in turn binds to p53 and promotes its
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ubiquitination and degradation [5]. Since the protein-protein interactions occur on a much

faster time scale than transcription and translation, the presence of active p53 is usually not

detected in a normal cell under normal conditions. The biological reason for the consti-

tutive expression of p53 is that it facilitates a fast response in the face of extreme stress:

it is much easier and faster to stop the degradation of p53 protein (by blocking the neg-

ative regulators) than turning on the un-expressed p53 gene. The primary role of p53 in

mammalian genomes is its function as a transcription factorfor hundreds of downstream

genes. The expression of these downstream genes can modulate cell cycle progression, re-

pair damaged DNA, induce senescence and apoptosis. A detailed discussion of the cellular

processes mediated by p53 can be found in [8]. Although thereare hundreds of genes that

are downstream of p53, our main goal here is to model the dynamics of p53 itself. So, we

focus on the pathways known to be important for p53’s regulation. From [3], we get some

major pathways involving p53 which are activated in the presence of double strand DNA

breaks. These pathways are shown in Fig. 19. In the followingsubsections we develop the

Boolean Network from the pathways of Fig. 19 using the methodof this chapter. There-

after, we simulate the dynamic behavior of the resulting BN.Finally we validate our model

by matching our model’s time course behavior with the p53-related experimental results

reported in [74, 5].

1. Boolean network modeling of the p53 pathways

The pathway segments from the pathways in Fig.19 are:1.dna dsb
1:1,1
−→ ATM , 2.ATM

1:1,1
−→

p53, 3.p53
1:1,1
−→ Wip1, 4.p53

1:1,1
−→ Mdm2, 5.ATM

1:1,0
−→ Mdm2, 6.Mdm2

1:1,0
−→ p53,

7.Wip1
1:1,1
−→Mdm2, 8.Wip1

1:1,0
−→ ATM .

Here the external signal is dnadsb, the DNA damage input. The state space is defined as

[ATM, p53,Wip1,Mdm2]. Using the methodology developed in earlier sections we get
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the following Boolean update functions for the 4 genes:

ATMnext = Wip1(ATM + dna dsb)

p53next = Mdm2(ATM +Wip1)

Wip1next = p53 (3.14)

Mdm2next = ATM(p53 +Wip1).

This Boolean network will have two different contexts basedon the value of the external

signaldna dsb.

If dna dsb = 0, we get the state transition diagram of Fig. 20.

We can see the state transition diagram of the Boolean network has only one attractor

0000. Now our prior biological knowledge [8] indicates that in absence of any stress, all

four proteins are required to be inactive in the steady state. The presence of the singleton

attractor0000 is consistent with the biological information. Next let us see what happens

if dna dsb = 1 i.e, the DNA damage input turns on. In this case, we arrive at the transition

diagram shown in Fig. 21 which corresponds to the other interesting context. Notice that

here there is a single cyclic attractor involving cyclic variation in the expression patterns of

all the four genes.

2. Model validation using the published literature

To further understand the functionality of the context sensitive Boolean network of Eqn.

3.14, we carried out the simulation described next. Supposethat initially the network state

is evolving in the absence of the DNA damage signal and that ata certain time (say, t =

25 time steps), the DNA damage signaldna dsb is activated. Let us further assume that

the DNA damage signaldna dsb returns to 0 at time = 75 time steps. The simulated time

course behavior of the expression patterns of the differentgenes is shown in Fig. 22.

From this simulation we can see that the proteins initially reach the steady state of
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Fig. 19. ATM-p53-Wip1-Mdm2 pathways (From [3]).
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Fig. 20. State transition diagram for the Boolean Network ofthe p53 pathways under normal

conditions.
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Fig. 21. State transition diagram for the Boolean Network ofthe p53 pathways in the pres-

ence of DNA damage.
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Fig. 22. Oscillation of the proteins in the presence of the DNA damage signal.

deactivation if the cell doesn’t receive any stress causingDNA damage. However, once the

onset of DNA damage occurs, the oscillation starts. Furthermore, the oscillation continues

until the DNA damage is repaired (or the cell dies). The pattern of the oscillation is also

unique.ATM leads the oscillation followed byp53, Wip1 andMdm2 in that order. This

dynamic behavior of the four proteins is consistent with published experimental results

from the p53 literature.

Indeed [74] discusses the experimentally observed oscillations betweenp53 andMdm2

in the presence of external stress. In that paper it is also reported that theMdm2 protein

response lags behind thep53 response. [4] reports an interesting time series experiment

of p53 andMdm2 oscillation and the results are shown in Fig. 23. Similarly [5] reports

the DNA damage induced oscillation patterns ofATM , p53,Wip1 andMdm2 along with

some other proteins. Fig. 24 demonstrates that thep53 response lags behind theATM

response; Fig. 25 demonstrates that theMdm2 response lags behind thep53 response; and
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Fig. 23. Timelapse fluorescence images of one cell over 29 h after 5 Gy of gamma irradia-

tion. Nuclear p53-CFP and Mdm2-YFP are imaged in green and red, respectively.

Time is indicated in hours. Adapted by permission from Macmillan Publishers Ltd:

[Molecular Systems Biology] [4], copyright (2006)
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Validation..

Fig. 24. Immunoblots of ATM-P(S1981), Chk2-P(T68), and p53kinetics in MCF7 cells

irradiated with 10Gy of gamma-irradiation. Reprinted from[5], Copyright (2008),

with permission from Elsevier.
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Fig. 25. Immunoblots of Chk2-P(T68), p53, and Mdm2 kineticsin MCF7 cells treated with

400 ng/ml NCS every hour. Blots are representative of triplicate experiments.

Reprinted from [5], Copyright (2008), with permission fromElsevier.
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Fig. 26. Immunoblots of p53 and Wip1 kinetics in MCF7 cells irradiated with 10 Gy of

gamma-irradiation. Reprinted from [5], Copyright (2008),with permission from

Elsevier.

Fig. 26 demonstrates that theWip1 response lags behind thep53 response. Thus the net-

work that we have generated based on only p53 pathway information is able to qualitatively

reproduce experimentally observed p53 behavior from published literature. This is a very

positive development which suggests that the full potential of the approach presented here

remains to be explored.

G. Concluding remarks

In this chapter, we have presented a complete solution to theproblem of determining a

family of Boolean networks that can generate trajectories consistent with given pathway

information. The solution makes use of the Karnaugh map realization of a Boolean func-

tion. In the case where the different pathways can be implemented without any conflicts in

the associated Karnaugh maps, the generation of the family of Boolean networks is straight-

forward. When a conflict does arise, a systematic procedure is presented to resolve it by



82

slightly perturbing the original pathway information. Theresolution of a particular conflict

may lead to the emergence of additional conflicts further downstream, and the resolution of

these conflicts would require repeated use of the same conflict resolution procedure. When

the resolution of the progressively downstream conflicts leads back to one of the original

conflicts further upstream, the problem is not solvable. In all other cases, the procedure

presented here converges to a family of BNs whose trajectories are consistent with the

given pathway information or minor variations thereof. As demonstrated here, further re-

duction in the cardinality of the family of networks can be achieved by imposing additional

constraints such as the number and relative significance of the attractors, upper bounds

on network connectivity, etc. The approach developed in this chapter has been applied to

the well studied p53 pathway and it has been shown that the resulting network exhibits

dynamic behavior consistent with experimental observations from the published literature.

We believe that the results presented here and their future extensions will significantly

impact all areas of biology where prior knowledge is presentin the form of signalling path-

ways and where genetic regulatory networks are used to modelmultivariate gene relation-

ships. In particular, all of the currently available results in the genomic signal processing

area pertaining to inference and intervention in genetic regulatory networks will have to

be revisited to permit the incorporation of valuable pathway information. For cancer ge-

nomics, this would mean that in future, intervention designwould be carried out with more

accurate and more easily inferred models thereby greatly enhancing the likelihood of these

methods succeeding in practice.
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CHAPTER IV

FAULT DETECTION AND INTERVENTION IN BNS*

In this chapter, our goal is to go a few steps further from where we left in CHAPTER

III. Here, we are not content with just producing a Boolean network model from given

pathway information. Instead our objective is to utilize such a model to (i) enumerate all

the possible fault scenarios; (ii) use the response of the model to a test input to determine

which fault or class of faults has occurred; and (iii) finallyuse this information to prescribe

an appropriate therapeutic action. To keep the discussion biologically focussed, we will

consider two biological examples, one for a combinatorial Boolean network and the other

for a sequential Boolean network. The chapter is organized as follows. In section A, cancer

is modeled as an ensemble of faulty Boolean Networks. In section B, drug therapies are

modeled as interventions to alter aberrant network behavior emanating from a fault. Section

C and D gives the first biological example (growth factor mediated signalling pathways)

showing the power of our methodology. Specifically, fault classification and intervention

results for our example are presented. Section E gives the second example (p53 mediated

DNA-damage pathways) showing the effectiveness of our approach for sequential Boolean

networks as well. Finally section F contains some concluding remarks.

A. Modeling cancer as faults in the signaling network

In molecular biology, the marginal behavior of the normal cell is described using signaling

pathways. Boolean networks represent a paradigm that can beused to incorporate this in-

formation to model the overall dynamic behavior of the cell,consistent with the pathway

*Part of this chapter is reprinted with permission from “Cancer therapy design based
on pathway logic” by R. Layek, A. Datta, M. Bittner, and E. R. Dougherty, 2011, Bioin-
formatics, vol. 27, no. 4, pp. 548555, Copyright [2011], Oxford University Press.
(http://bioinformatics.oxfordjournals.org/content/27/4/548.short)
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knowledge. However, the translational motivation behind this type of dynamical modeling

is to facilitate corrective intervention when the cell behaves abnormally. Cancer is actually

a disease of several faults in the network. A ‘fault’ is defined by any structural error of

the physical system, such that the dynamics become aberrant. For example, the accumula-

tion of point mutations in the genomic DNA may cause the signaling pathways to behave

erratically leading to proliferation. On the other hand, sometimes the fault may not be in

the genetic code of a particular protein, but rather it is in the protein synthesis factory ribo-

some, or in some control mechanism of alternative splicing.The fault could also be in the

chromosomal spindle resulting in unequal splitting of the chromosomal DNA between the

two daughter cells during cell division. Any of these different kinds of errors could cause

structural changes in the regulatory network, thereby changing its dynamics and steady-

state behavior. In this section, we try to model different types of biological errors within

the Boolean network (digital electronics) framework. In a Boolean Network, the faults can

be broadly divided into two types.

• Stuck-at Fault: A stuck-at fault means that a point in the network circuitry is stuck to

a particular value. As a result, the incoming information isno longer communicated

beyond the faulty point; instead, only the stuck-at value ispassed on to the outgoing

port. Clearly stuck-at faults can commonly be of two types: ‘stuck-at-1’ faults and

‘stuck-at-0’ faults with obvious interpretations. We nextpresent an example to show

that modeling via stuck-at faults makes biological sense.

In the Mitogen Activated Protein Kinase (MAPK) pathways, animportant signaling

protein kinase is the Ras protein. Ras is phosphorylated by many upstream proteins

(by Growth factor mediated pathways). Once activated, Ras activates downstream

proteins which have transcriptional control on cyclin D1 and hence cell cycle pro-

gression. However, the inherent enzymatic GTPase activityof Ras hydrolyzes the

active Ras-GTP complex into the inactive Ras-GDP complex, so that Ras activity
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ceases after some time delay. However, if due to some mutations in the Ras gene, the

GTPase activity of the Ras protein is lost, the once activated Ras protein will be con-

stitutively active and will signal the downstream transcription causing proliferation

and cancer [8]. This constitutive activation of Ras can be modeled as a ‘stuck-at-1’

fault in the Ras node of the Boolean network model of the cell signal transduction.

Indeed, the “stuck-at” fault is a very common one in cancer biology. One of the ear-

liest findings of a very prevalent mutation in cancer was the identification of the Ras

oncogene family members, HRAS, KRAS and NRAS. These genes play a critical

role in the signaling that drives proliferation. KRAS genesconstitutively activated

by mutations are found at the very high rate of 17-25% in humancancers [75].

• Bridging Fault: As the name suggests, a bridging fault refers to the disruption of old

interconnections and incorporation of new interconnections in the network. Bridging

faults also make biological sense. The molecular signal transduction relies on the

sequences and 3 dimensional conformations of the moleculesinvolved. So, any vari-

ation in the sequence and 3 dimensional conformation of a molecule (mainly protein)

will alter its functionality. As a result, many pathways involving that molecule will

become inactive while the altered molecule may open up new ones. Without any loss

of generality, this kind of aberrant behavior could be modeled as a bridging fault in

the Boolean network.

Indeed, the “bridging” fault is also a common occurrence in human cancers. A wide

variety of tumor types carry chromosomal translocations, where parts of different

chromosomes have been joined together. The first such event to be associated with

a specific cancer is the Philadelphia chromosome, a translocation joining chromo-

somes 9 and 22 [76] and fusing the BCR and ABL genes. The event makes the

action of the Abl kinase constitutive in its stimulation of proliferation and inhibition

of DNA repair and, if this happens in early blood cell progenitors in the bone marrow,
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can cause chronic myelogenous leukemia. A variety of drugs that inhibit this kinase

activity can produce remission of the disease.

Stuck-at faults and bridging faults are illustrated in Fig.27, where a fault free Boolean

network is shown in Fig. 27a while the corresponding faulty network is shown in Fig. 27b.

A BCD XY
A BCD XY

Fig. 27. Stuck-at faults and bridging faults in a digital circuit.

Based on the preceding discussion, it is clear that cancer can be broadly modeled as

multiple stuck-at and bridging faults in the Boolean networks corresponding to the normal

signaling pathways. In [77], extensive theoretical work ondigital system testing and fault

modeling is presented which engineers have been successfully using for digital circuit test-

ing for quite some time now. One of the goals of this chapter isto use a similar approach

for the prediction of fault locations in cancerous networksand the design of intervention

policies to compensate for the effect of these faults. For the sake of simplicity, we will

focus only on single stuck-at faults. The more general case of cancer modeling involving
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multiple stuck-at and bridging faults will be taken up in future research.

1. Test inputs and fault detectability

Consider the BN of Fig. 27a which has 4 inputs and 2 outputs as shown. Now suppose that

the only possible fault in this network is the stuck-at-1 fault shown in Fig. 27b. Following

[77], for a combinatorial circuit (i.e, non-feedback BN)N , let Z(x) denote the output

vector for the input vectorx. The presence of a faultf transformsN intoNf with output

functionZf(x) for the same input vectorx. We say that a test vectort detects the faultf iff

Zf(t) 6= Z(t). Clearly, for the stuck-at-1 fault in Fig. 27b, the test input vectorABCD =

0000 can detect the fault because,Z(0000) = 01 while Zf (0000) = 11. However, the

test input vector1111 cannot detect the fault sinceZ(1111) = Zf (1111) = 10. These

ideas about fault detectability will be applied to the biological examples in section C.3 and

section E.1.

B. Modeling drug intervention

In a cancerous network, identification of the fault locations is only a part of the task. The

major challenge lies in finding the best possible drug or drugcombinations with which to

intervene. From a theoretical perspective, we can considerthe non-cancerous and cancer-

ous (faulty) networks as two different Boolean networks. Ingeneral, it will be impossible

to make a cancerous network revert to the original non-cancerous one using any sort of

drug intervention, because the mutations leading to cancerare usually irreversible. Instead,

what the best drug combination could do is to nullify some of the deadly effects (like con-

stitutive cell division) of the cancerous faulty system andtry to kill the cell by inducing

apoptosis.

The following modeling of drug intervention is inspired by the biological effect of the

drug on the pathways. A drug goes into the cell to bind a particular kinase to deactivate



88

its phosphorylating capability. This means that the drug can cut the effect of that particular

kinase on molecules further downstream. Hence, the drug canbe modeled as an inverted

input to an ‘AND’ gate at the target point of the Boolean network. This schematic modeling

of drug intervention is shown in Fig. 28.

Fig. 28. Drug intervention modeling.

In this chapter, our goal is not to derive the mathematical expression for the optimal

drug intervention policy, since most mathematically derived policies may be difficult, or

impossible, to biochemically implement. Instead, our objective is to model known and

well tested cancer drugs separately and then to find the best sub-optimal combination of

drugs for a particular cancerous network. The method is described in detail in section C.4,

where it is applied to a biological example.
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C. Biological example: growth factors and cellular signal transduction

In multicellular eucaryotic organisms, the cell numbers are very tightly controlled, and cells

divide to form more cells only when they receive signals fromother cells directing them to

do so. The external signals that stimulate a cell to divide are usually calledgrowth factors

or mitogens. Normally these are protein or steroid ligands. The external signal directing a

cell to divide is usually communicated to the cell division machinery inside the cell through

a transmembrane protein called agrowth factor receptor. These transmembrane proteins

contain the amino acid tyrosine and activate the cell division machinery inside the cell by

phosphorylating some key proteins; hence, they are also sometimes referred to asreceptor

tyrosine kinases. Each growth factor binds to its membrane bound receptor with great

specificity and when that happens, an intracellular signaling cascade occurs that can result

in enhanced cell proliferation, enhanced protein synthesis or inhibition of apoptosis. In

this chapter, we will focus on the signaling pathways associated with a number of growth

factors. One of the reasons for this choice is that these signaling pathways have not only

been widely studied in the context of cancer but also different cancer drugs, known to affect

different parts of the pathways, are currently available.

Before presenting a detailed schematic diagram of the components involved in these

pathways and their interactions, it is appropriate to first briefly review the eucaryotic cell-

cycle and point out how malfunctions in the associated control system can lead to cancer.

1. Cell cycle control, DNA mutation and cancer

In a multicellular organism, cell growth and proliferationare tightly controlled by the cell

cycle control system. The typical eucaryotic cell-cycle has four phases calledG1(Gap 1),

S(Synthesis),G2(Gap 2) andM(Mitosis) as shown in Fig. 29. The resting phaseG0 is a

phase where the cell has made a decision (in theG1 phase) to temporarily withdraw from

the cell cycle. TheG0 andG1 phases are in equilibrium with each other so that a resting
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cell in theG0 phase can readily re-enter the cell cycle, if the external conditions require

additional cells to be produced. In theG1 phase, the cell processes all the extra-cellular

G 0G 1
S

G 2 M
R S i g n a lT r a n s d u c t i o nP a t h w a y s G r o w t h F a c t o r sC e l l u l a r S t r e s s e sO t h e r F a c t o r sC e l l C y c l eR e g u l a t o r P r o t e i n sC e l l C y c l e

Fig. 29. The eucaryotic Cell Cycle(G0: Quiscence, G1: Gap 1,R: Restriction point, S: Syn-

thesis, G2: Gap 2 and M: Mitosis) and the signal transductionpathways controlling

the cell cycle.

signals (through different pathways) and decides whether to go back toG0 or proceed to-

wards theS or DNA synthesis phase. TheR checkpoint (see Fig. 29) is very critical in the

cell cycle regulation. Once the cell goes past theR checkpoint, the progression of the cell

cycle no longer depends on the mitogens (the growth factors or the inputs of the transduc-

tion pathways). Cyclin-CDK(Cyclin dependent kinase) complexes play major roles in the

regulation of the cell cycle dynamics. The growth factor activation of the receptor tyrosine

kinases results in rapid accumulation of Cyclin D1. Similarly in normal cells, removal of

growth factors results in rapid decline in the Cyclin D1 level. This Cyclin D(1 or 2) and

CDK4/6 complexes carry the cell past the R checkpoint. Beyond this checkpoint, although

there are mechanisms to check for correct DNA replication and proper apportioning of the

chromosomes between the two daughter cells, there are no more decisions made between

whether to remain in quiescence or to proceed to proliferation. Thus, after theR check-
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point, the cell cycle is more or less automated and independent of the extracellular inputs.

In normal cells, if there is no mitogen during theG0 ←→ G1 transition, the cell will not

enter theS phase. However, in cancerous cells, the proto-oncogenes can get mutated to be-

come oncogenes. The translated oncoproteins have 3 dimensional conformations which are

quite different from that of the corresponding normal protein and can behave differently.

For instance, if Ras proto-oncogene mutates to Ras oncogene, the encoded Ras oncopro-

tein can become constitutively active and start perpetually signaling to the downstream

proteins. In that case, even if there is no mitogenic signaling from the outside, the cell

will be stimulated to divide. Similarly mutation in pro-apoptotic genes can stop apoptosis

resulting in tumorigenesis. Since almost all the genes/proteins along the important prolif-

eration/apoptosis pathways are prone to mutation, the number of possibilities for mutation

leading to cancer is quite large.

D. Growth factor mediated pathways: combinatorial network

The particular set of signaling pathways that we will focus on in this first example are the

so called Growth Factor (GF) Pathways. Our goal is to model these signaling pathways as

an input-output Boolean circuit and to use the latter for (i)enumerating the different fault

(or malfunction) possibilities, (ii) carrying out fault classification and (iii) designing the

appropriate corrective action (or therapy). Such modelingmust necessarily be preceded by

a biological understanding of the different components of this pathway and their interac-

tions. Fig. 30 is a schematic diagram showing the different components of this pathway and

their interactions, as currently understood by biologists, (for example the Kegg collection

of pathways (http://www.genome.jp/kegg/pathway.html) and the NIH BioCarta collection

of pathways (http://cgap.nci.nih.gov/Pathways/BioCartaPathways). The input nodes in

the diagram are the growth factors (shown in the rhombuses inFig. 30). The external sig-

nals corresponding to the growth factors are transmitted through the kinase cascades and
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finally activate the appropriate transcription factors. The black and red lines in the diagram

indicate relationships which are known to be activating andinhibitory, respectively. Fig.

30 also shows six different cancer drugs (red boxes) and the points in the pathway where

they are believed to intervene.
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Fig. 30. A schematic diagram of the growth factor signaling pathways (the yellow color is

used for the reporter proteins which will be measured in future experiments).

These signal transduction pathways in Fig. 30 constitute a module in a larger tightly

controlled network of cell growth, cell division and metabolism.

Believing these pathways to be true, we can develop another level of abstraction by

modeling using Boolean Networks (BNs). For most of the pathways the modeling is trivial.
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Using the methodology of CHAPTER III, the modeling approachis quite intuitive and

logical and can be applied to the pathways in Fig. 30 to arriveat Fig. 31.

This module can be easily modeled using the Boolean circuit shown in Fig. 31, where

the seven outputs of interest, shown at the bottom of the figure, are transcription factors

(marked in green) and the activation status of some key proteins (not colored). As we

will see, such a Boolean circuit model can play an important role in understanding the

proliferation versus quiescence decision for a cell.

1. Input-output simulation of the BN

Since, there is no feedback path in the BN of Fig. 31, the current states are independent

of previous states. Also we are not concerned about the entire state vector, rather we are

primarily interested in the output response of the network.Hence, the complete input-

output mapping is essential for understanding the dynamicsof this BN. This mapping is

shown in Table VI.

It is evident from the simulation that only the input of00001 provides the ‘all-zero

output response’. This is again intuitive because00001 means all the growth factors EGF,

HBEGF, IGF and NRG1 are inactive and the negative regulatoryprotein PTEN is high.

This input condition is crucial for investigating the faultscenario inside the network.

2. Modeling faults and therapeutic interventions using theBoolean network

Any mutation of any gene or post transcriptional modification of the corresponding protein

can constitutively turn ‘ON’ or ‘OFF’ that particular protein. This fits in precisely within

the stuck-at fault paradigm considered in section A. For thesake of simplicity, in our

growth factor pathways case study, we will consider only single faults of the stuck-at type.

In addition, we will only consider the stuck-at faults whichcan lead to cancer. For the

Boolean circuit shown in Fig. 31 the possible locations for the different stuck-at errors,
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G S K 3T S C 1 / 2

B A D
R H E Bm T O RR P 6 S K B 1

S P 1S R F � E L K 1S R F � E L K 4F O S � J U N C C N D 1B C L 2B C L 2 L 1
Fig. 31. An input output Boolean network model of the signalling pathways of Fig. 30.
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Table VI. Input-output Mapping of the Boolean Network of Fig. 31.

Input Output Input Output

00000 0000111 10000 1111111

00001 0000000 10001 1111111

00010 1111111 10010 1111111

00011 1111111 10011 1111111

00100 1111111 10100 1111111

00101 1111111 10101 1111111

00110 1111111 10110 1111111

00111 1111111 10111 1111111

01000 1111111 11000 1111111

01001 1111111 11001 1111111

01010 1111111 11010 1111111

01011 1111111 11011 1111111

01100 1111111 11100 1111111

01101 1111111 11101 1111111

01110 1111111 11110 1111111

01111 1111111 11111 1111111
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which can induce proliferation and stop apoptosis, are shown in Fig. 32a. The numbers are

color coded to distinguish between the ‘stuck-at-1’ and ‘stuck-at-0’ faults. Specifically, the

black numerals refer to the stuck-at-1 faults while the red numerals refer to the stuck-at-0

faults.

As discussed in section B, a drug targets particular enzymesalong the pathways and

cuts off the connectivity of that enzyme to the downstream proteins. This connection cleav-

age can be achieved via various mechanisms. For instance, the drug may have the capability

to bind a target protein and inhibit it from undergoing phosphorylation. For our case study,

we consider six potent cancer drugs. Our objective here is not to study their detailed mech-

anisms of action. Instead, we are interested in using the knowledge from biologists to mark

in their intervention locations and corresponding activities on the Boolean circuit of Fig.

31. This leads to the effects shown in Fig. 32b. Such pictorial representation of the drug

activity information is useful.

For instance, let us consider the drug ‘lapatinib’ which is known to work onEGFR,

ERBB2 orERBB3 by inhibiting the signaling capabilities of these receptortyrosine ki-

nases. From Fig. 32b, one can conclude that the drug ‘lapatinib’ will likely be responsive

for the treatment of cancers caused by mutations in the receptor tyrosine kinases although it

will probably be ineffective against cancers caused by mutations in the Ras protein, which

lies further downstream. Two central objectives of this chapter are: (i) to use the infor-

mation contained in Fig. 32a to group the numbered faults into different classes; and (ii)

to use the information in Fig. 32b to predict which set of drugs/drug combinations would

be most effective against a particular fault. These objectives are pursued in the next two

subsections.
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Fig. 32. Possible fault locations and drug intervention locations: (a) proliferative stuck-at

fault locations and (b) intervention locations for the available cancer drugs.
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3. Fault analysis and classification

From Fig. 32a, we see that there are24 possible fault locations. Alternatively, we could

have arrived at the fault locations based on our biological understanding. As already indi-

cated, in this chapter we will be confining ourselves to the analysis of single faults only. So,

for our purposes, the fault can be any one of the24 faults in the figure. Carrying forward the

discussion from section A, we usef 1
i to denote the fault at theith location. Then the sample

space for the single fault modeling can be defined asF 1 = {f 1
1 , f

1
2 , f

1
3 , · · · , f

1
24}. Here the

superscript 1 refers to the fact that we are considering onlysingle faults. Now iff 1
i ∈ F

1

occurs, an input vectort detects the fault iff the output vectorZ in the faultless system

differs from the output vectorZf1
in the faulty system. MathematicallyZ(t) 6= Zf1

(t). If

we cannot find such an inputt, we say the fault is undetectable. In the circuit shown in

Fig. 32a, the only input vector which can detect anyf 1
i ∈ F

1 for this particular network

is V = 00001 which is achieved withEGF = 0, HBEGF = 0, IGF = 0, NRG1 = 0

andPTEN = 1. This is due to the fact that for any other binary input V, all the outputs

are equal to 1, regardless of whether a stuck-at fault is present or not. This result is not at

all surprising. Indeed, when there is no growth factor outside the cellular membrane and

also the tumor suppressor proteinPTEN is active, we expect to see all the proliferative

transcription factors and anti-apoptotic factors deactivated or turned ‘OFF’. However, if

there are faults (mutations) in the signal transduction pathways, we could see proliferation

even in the absence of active input signals (mitogens).

a. Single fault simulation

In this subsection, computer analysis for the single fault model of the circuit in Fig. 31 is

presented. The single fault model of the Boolean circuit is shown in Fig. 32a. The input

vector isV = [EGF,HBEGF, IGF,NRG1, PTEN ]. Each input can take binary values.
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For this simulation we takeV = 00001. The output vector isZ = [FOS − JUN , SP1,

SRF − ELK1, SRF − ELK4, BCL2, BCL2L1, CCND1] . For the fault-free circuit

we get the outputZ(00001) = 0000000. Now for the24 different faults which may induce

cancer in the given circuit, the outputs are tabulated in Fig. 33a.

16,17,18

Fig. 33. Single fault simulation: (a) output simulation in presence of all proliferative single

stuck-at faults for input V =00001 and (b) equivalent faults for input V =00001.

b. Fault classification

From the outputs shown in Fig. 33a, we can classify the faults into different groups of

equivalent faults. Faults which generate the same output vectors for a particular test input

vector are called‘equivalent faults’with respect to that input test vector. The information

in Fig. 33a leads us to sets of equivalent faults for the test input vector V = 00001. The

equivalent fault groups along with their corresponding outputs are shown in Fig. 33b.

From Fig. 33b, it is clear that any fault in the locations13, 14, 15 cannot be detected

from the output since the corresponding output is the same asthat for the fault-free case.



100

Hence, this class of faults is said to be ‘undetectable’. It is true that ‘undetectable faults’

cannot be compensated for based on observations of the output. Assuming that the outputs

are true indicators of the processes being monitored, thereis no reason why we should be

concerned with faults that do not manifest themselves in theoutputs. Hence, this is not a

major concern especially if we are only interested in the behavior of the outputs.

4. Simulation results for drug intervention

Since we have only the 6 available drugs, we define a drug vector of length6 as follows.

If a particular drug is applied it is assigned the value1, otherwise it is assigned the value

0. Consequently, the drug vector space has cardinality26 = 64. The simulation is carried

out for all of the possible faults, taken one at a time, and foreach of the 64 different

drug vectors, and the corresponding outputs are computed. The drug vector is defined by

[lapatinib, AG825, AG1024, U0126, LY 294002, T emsirolimus].

a. Continuous real mapping of the output vector

To avoid introducing any possible ambiguity about the origin of the proliferative signaling,

we take the same input vector (00001) that we have previously used for the fault analysis.

In the no fault case, with the drug vector000000 we get the output0000000 which is cer-

tainly non-proliferative. However, in the presence of faults, the outputs will be different.

The objective of this simulation is to determine the best possible drug sequence which can

nullify the effect of the fault, i.e, produce an output closeto 0000000 or away from the

proliferative output1111111. We note that although all the output vectors are represented

as binary numbers, assigning the usual binary weights to thedigits here does not make

any biological sense. In other words,1111111 here does not really mean127 or 0000111

does not really mean7. Consequently, we need to determine some transformation which

will map these128 = 27 output vectors to a continuous real number scale in a biologically
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meaningful way. One way to do this is to proceed as follows.

If we examine the components of the output vector, we see thatout of the 7 com-

ponents, 4 are transcription factors which express (turn ON) the important genes leading

to proliferation. The remaining3 components capture the activation status of some key

proteins in the cytoplasm. So, these two groups of outputs have different biological signif-

icance and should be encoded separately. A possible mathematical transformation on the

output vectors is described next. The output vector isOUTPUT =[FOS − JUN , SP1,

SRF −ELK1, SRF − ELK4, BCL2, BCL2L1, CCND1].

Now suppose we take the number of active transcription factors as the first variable(F)

and the number of active remaining outputs as the second variable(S). The mathematical

transformation makes use of these two variables as described in Eqn. 4.2 below:

Output = [a, b, c, d, e, f, g]

F = a+ b+ c+ d

S = e+ f + g (4.1)

P = F × S

S = F + S

ψ(Output) = αP + (1− α)S,

whereα ∈ (0, 1) is a design parameter. The above encoding scheme counts the number of

active transcription factors and the number of active key proteins, and combines these two

counts via a nonlinear many-to-one map, the idea being to quantify the degree of abnormal

behavior , e.g. proliferation in the absence of growth factors, etc. Withα chosen as0.5,

the functionψ’s values over the full sweep on the drug vectors and faults are shown in Fig.

34. Here the fault numbers and drug vectors are listed along the horizontal and vertical

directions respectively. The results are color coded for easier visualization, and the color

codes used are tabulated on the right side in Fig 34 .
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Fig. 34. Drug vector response in the presence of a single fault: (Left) output responses of

the circuit for all drug vectors in presence of all single stuck-at faults and (Right)

the map between the color codes and the output vectors.
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b. Interpretation of the result

From the output tables and the color codes we see that the color green corresponds to non-

proliferation while the color red corresponds to a high chance of proliferation even in the

absence of mitogenic signals. So, the best drug vector will be the one which can drive the

largest number of faulty circuits towards non-proliferative (green) outputs. For example,

the drug vector000110 drives all of the faults1 − 6 to green and most of the remaining

boxes along that row away from red. So, the drug combination of U0126 and LY294002

will likely be effective in producing a non-proliferative output. Another point to note is

that there can be faults (like fault18 in Fig. 34) whose output cannot be altered using any

drug sequence. This is not at all surprising and is consistent with the pathway informa-

tion that we have. Indeed, the fault location18 is at theERK1/ERK2 protein and there

is no available drug in our list downstream of that protein. Consequently, no drug in this

particular case study would be able to block the effect of a mutatedERK1/ERK2 protein.

E. p53 mediated DNA damage pathways: sequential network

Since we have already discussed the modeling of p53 mediatedDNA damage pathways in

CHAPTER III, we will not unnecessarily repeat it here. For further analysis, it sufficeth to

only recall the Boolean Network update equations.

ATMnext = Wip1(ATM + dna dsb)

p53next = Mdm2(ATM +Wip1)

Wip1next = p53 (4.2)

Mdm2next = ATM(p53 +Wip1).



104

There are two contexts for this Boolean Network depending onthe external signaldna dsb.

The state transition diagrams for both the contexts are given in Figs. 20 and 21. Clearly,

in the presence of DNA damage the activity of the4 relevant proteins will oscillate to

normalize the behavior of the cell. However, if mutation strikes either of the4 genes, the

question of interest becomes what the behavior of the transformed Boolean network will

be. The relevant fault analysis and possible intervention strategies are discussed below.

1. Fault analysis

We simulated the network for all the possible single stuck-at fault scenarios. The resulting

steady state behavior of the BN is shown in Table VII. The mostinteresting observation

is that the oscillations have ceased to exist. Analyzing thesteady state (assuming the state

is observable), it is evident that the steady state singleton attractor corresponding to each

fault is unique. So, complete identification of all the single stuck-at faults for this network

is possible using just steady-state data. Recall that the state for this network is defined as

[ATM, p53, Wip1, Mdm2].

2. Intervention design

If the steady state of the BN of Eqn. 4.2 enters a singleton attractor withp53 = 0, the cell

loses the capability to repair DNA damage and this increasesthe risk of acquiring genetic

diseases including cancer. So, the objective of intervention design is to stop the replication

of mutated DNA. One way to do that would be to induce apoptosisespecially if the DNA

cannot be repaired. Assuming that the therapeutic interventions utilize the kinase blocking

mechanism (section B), the simulation results of Table VIIIshow the possible corrective

actions.
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Table VII. Steady State Attractors in the presence of SingleStuck-at Faults.

Fault DNA DSB = 0 DNA DSB = 1

ATM:s-a-0 0000 0000

ATM:s-a-1 1110 1110

p53:s-a-0 1000 1000

p53:s-a-1 0111 0111

Wip1:s-a-0 1100 1100

Wip1:s-a-1 0011 0011

Mdm2:s-a-0 0110 0110

Mdm2:s-a-1 1001 1001

Table VIII. Intervention Design for the Critical Faults in ATM-p53-Mdm2-Wip1 Boolean

Network.

Fault steady state(no control) control steady state(control)

ATM:s-a-0 0000 No solution -

p53:s-a-0 1000 No Solution -

Wip1:s-a-1 0011 Block Wip1/Mdm2 1100/0110

Mdm2:s-a-1 1001 Block Mdm2 0110
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F. Concluding remarks

In this chapter, we have presented a new approach for designing therapeutic intervention

policies based on available pathway information and the manner in which drugs target spe-

cific pathway connections. Relevant pathway information isfirst used to produce Boolean

networks whose state transitions are consistent with the given pathway information, or mi-

nor variations of it. The Boolean network is then used to (i) enumerate all the possible

fault scenarios; (ii) classify the faults into different classes based on their responses to a

particular test input; and (iii) prescribe an appropriate course of therapeutic action, tailored

to the fault or set of faults that has occurred.
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CHAPTER V

CONCLUSION

In this dissertation, it has been shown that modeling and controlling the cellular dynamical

system is a non-trivial task. The biologist’s idea of cellular interactions in the form of

signalling pathways can be modeled as Boolean Networks which can serve as the starting

point for further systematic research. For instance, if we know the underlying network

structure of a particular kind of gene-protein interactionexperiment, we can predict the

dynamics associated with it. If the experimental result matches the prediction, the degree

of confidence in the model will be enhanced. Likewise, if the experimentation refutes

the prediction, we need to either increase the accuracy of the experiment or update the

knowledge base of the pathways. As we have already seen in thedrug efficacy simulation

in CHAPTER IV, the simulation can enable us to predict the possibility of success of

a certain drug combination for a particular pathway. Experimental design based on the

predictive model can save us time and effort and the experiment can be focussed towards a

certain goal. Any mismatch between the drug’s observed response and the prediction result

will again lead to an update of our understanding of the drug as well as the model network.

The resulting iterative paradigm for systems biology is sketched in Fig. 35. Intuitively,

this update mechanism is the key for success in systems biology. Model based design of

experiments will eventually lead to more accurate estimation of the model.

The idea of personalized medicine for diseases like cancer can also be viewed in this

context. Genetic profiling of a new patient will decide the first level of diagnosis of the ge-

netic mutations. The systems biologist will then decide therelevant pathways in the tumor

from the marginal gene profiling data. Thereafter, the network can be constructed and in

vitro experiments can be performed on the tumor cells to get the right drug combination

from the drug database. This procedure which can be iteratedupon has the potential to
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K n o w l e d g e o fS i g n a l T r a n s d u c t i o nP a t h w a y s
N e w P a t h w a yD i s c o v e r y N e w D r u gD i s c o v e r y

K n o w l e d g e o fa v a i l a b l e d r u g sS i m u l a t i o n S t u d y :M o d e l i n g , A n a l y s i sa n d P r e d i c t i o n
W e t L a b :E x p e r i m e n t a lV a l i d a t i o n

U p d a t e U p d a t e

Fig. 35. Iterative update scheme of pathways and therapeutic target point knowledge in sys-

tems biology.



109

treat a cancer patient in a much better way than any traditional approach. The schematic

diagram for this personalized approach to medicine is givenin Fig. 36.

G e n e t i cp r o f i l i n g o f ap a t i e n t ’ s t u m o r R e l e v a n tp a t h w a y s f r o mt h e m u t a t i o ns t u d y
R e g u l a t o r yN e t w o r kI n v i t r oe x p e r i m e n t o nt h e t u m o r t i s s u eF a u l t l o c a t i o n si n t h e n e t w o r k

E f f e c t i v ed r u gc o m b i n a t i o n
T r e a t m e n t o ft h e p a t i e n t

N e wP a t i e n t

Fig. 36. Personalized medicine using systems biology.

The list of future research topics is essentially unending.There are so many pathways

in so many cell types, that a complete solution of the problemis probably not possible.

The subject of systems biology will also evolve as more inventions and discoveries are

made. However, for the sake of completeness of the current dissertation we mention a few

immediate future research problems:

• Analysis of the multi-fault scenario in Boolean networks.
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• Modeling of bridging faults in Boolean networks.

• Developing models for higher level cellular events like cell cycle, apoptosis, differ-

entiation etc.

• Modeling of metabolic regulation in the cell.

• Validating the mathematical models in vitro and in vivo.
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