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ABSTRACT

Pathways, Networks and Therapy: A Boolean Approach to yst#iology. (May 2012)
Ritwik Kumar Layek, B.Tech., Indian Institute of Technolpd¢tharagpur;
M.Tech., Indian Institute of Technology, Kharagpur

Co—Chairs of Advisory Committee: Dr.Aniruddha Datta
Dr. Edward R. Dougherty

The area of systems biology evolved in an attempt to intreduathematical
systems theory principles in biology. Although we beliekattall biological processes
are essentially chemical reactions, describing thoseyysiecise mathematical rules is not
easy, primarily due to the complexity and enormity of biotad systems. Here we intro-
duce a formal approach for modeling biological dynamickdtrenships and diseases such
as cancer. The immediate motivation behind this researtieigrgency to find a practica-
ble cure of cancethe emperor of all maladiedJnlike other deadly endemic diseases such
as plague, dengue and AIDS, cancer is characteristicalgrdgenic and hence requires a
closer look into the genesis of the disease. The actual acdwsacer lies within our phys-
iology. The process of cell division holds the clue to untdiie mysteries surrounding
this disease. In normal scenario, all control mechanisn& wotandem and cell divides
only when the division is required, for instance, to heal aimgplatelet derived growth
factor triggers cell division. The control mechanism is tightlyuéated by several bio-
chemical interactions commonly known as signal transdagbathways. However, from
mathematical point of view, these pathways are marginahtane and unable to cope with
the multi-variability of a heterogenic disease like cancer

The present research is possibly one first attempt towards/elimg the mysteries
surrounding the dynamics of a proliferating cell. A novet gemple methodology is de-

veloped to bring all the marginal knowledge of the signaljaghways together to form



the simplest mathematical abstract known asBbelean NetworkThe malfunctioning in

the cell by genetic mutations is formally modeled as studkalts in the underlying Net-
work. Finally a mathematical methodology is discoveredpbroally find out the possible
best combination drug therapy which can drive the cell frarruadesirable condition of
proliferation to a desirable condition of quiescence orppsis. Although, the complete
biological validation was beyond the scope of the curres¢aech, the process of in-vitro

validation has been already initiated by our collaboratd@sce validated, this research

will lead to a bright future in the field on personalized cartberapy.
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CHAPTER |

INTRODUCTION

Biology is a natural science concerning the study of life lwidg organisms. The tradi-
tional approach to biology advocates that life is also a demmanifestation of physical
interactions. However, even in the 21st century, sciensenbbeen able to decipher the
complete picture of this bottom-up approach towards bipldgdeed, it is fair to say that
we have a long way to go to establish biology on a firm matheradbasis.

As scientific researchers, our main goal is to ferret out tielient truth from differ-
ent natural phenomena to the best of our ability, and fontleemploy standard scientific
technigues such as mathematical modeling, design of erpats, actual experimentation,
data collection, data interpretation and validation. le kst few centuries, mathematics
has grown enormously to accommodate the modeling and exeetal paradigms for the
elucidation of scientific theories.

However, unlike the physical sciences, biology continwegredominantly be an ob-
servational science. For instance, if we examine the workaaolfy stalwarts like Charles
Darwin or Gregor Johann Mendel, we see that their postuéatdsheories are mostly ob-
servational and intuitive in nature. Although several oees have elapsed since then and
technology has evolved a lot, philosophically we are stdhating biology as an observa-
tional science. In addition to technical challenges, lgalal research through the ages has
been impeded by human ethical and morality consideratieosinstance, the anatomical
dissection of dead bodies was prohibited during the metipmr#od, and even today em-
bryonic stem cell research is restricted throughout thédaadthough it has the potential to

yield easier solutions for treating diseases requiringofgansplantation.

The journal model ISEEE Transactions on Automatic Control.



Before going into the actual introduction to the currensdigation, it behooves us to
take a look at the timeline of the major developments in tloéolgical sciences (Table | and
).

Although the discoveries listed in Tables | and Il are by n@ansecomprehensive, they
do provide us with some flavor of the mainstream biologicakegch. We note that there
is no theorem or formula or mathematical model associatéid mvost of these discover-
ies. The recent advancements in genetics, genomics ana@ahedience have introduced
a critical need for mathematically rigorous approachesiaholgical research. However,

unfortunately, we still have a long way to go.

A. Systems biology

For a moment, let us think about the status of physics prigdbleo Galilei(1564 AD-
1642 AD) and Isaac Newton (1642 AD-1727 AD). At that time, piog was not a coherent
science. Medieval physicists were busy doing research @pehpetual motion machine,
the elixir of life and the sorcerer’s stone, to name a few.halitt proper mathematical back-
ground and systematic understanding most research dimah¢jrine was in some sense an
exercise in futility. A similar observation could be madeoabthe biological research
during the last century. Without proper mathematical miogedbf the inherent dynamical
system, research on fundamental biology and medicine ynfugtissed on the good old
methods of trial and error. However, even during this tinegesal scientists such as Erwin
Schrodinger and Norbert Wiener understood that the unificatf mathematics and biol-
ogy could prove to be extremely beneficial. The new diredtiat emerged from this idea
of unification is called ‘Systems Biology’.

There are numerous definitions of systems biology but we wantention the one
given by The National Institute of Health (NIH).

A discipline at the intersection of biology, mathematicgjireering and the physical sci-



Table I. Major Breakthroughs in Biology before 1800 AD [1].

ng

Aani-

icro-

Year Breakthrough

520 BC | Alcmaeon of Croton distinguished veins from arteries and
discovered the optic nerve.

450 BC | Sushruta wrote the Sushruta Samhita, describing oven 120
surgical instruments and 300 surgical procedures, classif
ing human surgery into eight categories, and introdu¢
cosmetic and plastic surgery.

450 BC | Xenophanes examined fossils and speculated on the evolu-
tion of life.

350 BC | Aristotle attempted a comprehensive classification of
mals.

300 BC | Herophilos dissected the human body.

150 AD | Claudius Galen wrote numerous treatises on human
anatomy.

800 AD | Al-Jahiz describes the struggle for existence, introdtices
idea of a food chain, and adheres to environmental deter-
minism.

1628 AD | William Harvey published 'An Anatomical Exercise on the
Motion of the Heart and Blood in Animals’.

1658 AD | Jan Swammerdam observed red blood cells under a m
scope.

1663 AD | Robert Hooke saw cells in cork using a microscope.

1683 AD | Anton van Leeuwenhoek observed bacteria.




Table Il. Major Breakthroughs in Biology after 1800 AD [1].

Year

Breakthrough

1828 AD

Friedrich Woehler synthesized urea; first synthesis of ar

ganic compound from inorganic starting materials.

1856 AD

Louis Pasteur stated that microorganisms produce ferr

tation.

N or

nen-

1858 AD

Charles R. Darwin proposed a theory of biological eva

tion.

1865 AD

Gregor Mendel demonstrated in pea plants that inheritz

follows definite rules.

ince

1869 AD

Friedrich Miescher discovered nucleic acids in the nudiei

cells.

1902 AD

Walter Sutton and Theodor Boveri, independently propa

that the chromosomes carry the hereditary information.

sed

1928 AD

Alexander Fleming discovered the first antibiotic, pe

cillin.

ni-

1953 AD

James D. Watson and Francis Crick published a dou

helix structure for DNA.

ble-

1961 AD

J. Heinrich Matthaei cracked the first codon of the gen

code.

etic

1996 AD

Dolly the sheep was first clone of an adult mammal.

2001 AD

me.

Publication of the first draft of the complete human geno




ences that integrates experimental and computational@gugres to study and understand
biological processes in cells, tissues and organisms.i&at the systems level are distin-
guished not only by their quantitative nature in data cdiles and mathematical modeling,
but also by their focus on interactions among individuahedgts such as genes, proteins
and metabolites. These studies often integrate data frottipheulevels of the biological
information hierarchy in an environmental and evolutioparontext and pay particular
attention to dynamic processes that vary in time and spacecessive iterations of ex-
periment and theory development are characteristic ofesgstbiology. When applied to
human health, systems biology models are intended to pigllysiological behavior in re-
sponse to natural and artificial perturbations and therebwiribute to the understanding
and treatment of human diseaf#is

The current dissertation will provide a preliminary but ebapproach for mathemat-
ical modeling of different cellular phenomena and its plolesapplication in systems biol-
ogy. To put the subsequent chapters in proper context, ingkefew sections we will dis-
cuss several biological processes which require matheatatisight and modeling. This
discussion on cell biology, genetics and genomics is nacgss properly appreciate the

motivation and flow of this dissertation.

1. Biology of the cell

The word ‘cell’ comes from the the Latin word ‘cellula’ meagia small room. Cells are
membrane bounded units containing different organellég®peing different functions. A
cell is the basic unit of life. The simplest forms of life mag bolitary cells that reproduce
by dividing in two, while higher organisms are ensemble disoghere a group of cells is
designated for a particular functionality.

Living cells emerged on earth about 3.5 billion years agasfimy by spontaneous

reactions between molecules in an environment that wagdar €hemical equilibrium.



These reactions formed some simple organic moleculestikeaacids, sugars, etc which,
by polymerization through peptide bonds and phosphodibsteds, then led to the forma-
tion of polypeptides and polynucleotides (RNA), that cotdtialyze their own replications.
With time, one of these families of cooperating RNA catadydgveloped the ability for di-

rect synthesis of polypeptides. Finally, as the accuniadi additional protein catalysts
allowed more efficient and complex cells to evolve, the DNAilole helix replaced RNA

as a more stable molecule for storing the increased amowaratic information required

by such cells[2].

A schematic diagram of a typical eukaryotic cell is shownig. A.

Vacuole

Golgi Bodies

Lisosome

Endoplasmic
Reticulum

Ribosome

Nucleolus

Nucleus

DNA

Mitochondrion

Cell Membrane

Fig. 1. An Eukaryotic Cell.



From this diagram we can see the important components ofukargotic cell. Brief

descriptions are given below[2, 1].

e Cell membrane: The cell membrane is a selectively permeablabrane made up
of a lipid bilayer and embedded proteins. It protects theahakllular environment

and helps the cell in its motility and communication.

¢ Nucleus: The nucleus is a central part of the cell contaimiogt of the cell’'s genetic
material, organized as multiple DNA molecules in combiotivith a large variety
of proteins to form chromosomes. Its function is to mainthmintegrity of the DNA

and to control the activities of the cell by regulating gerpression.

e Nucleolus: Nucleolus is a discrete densely stained stredtiside the nucleus. Its

main role is to transcribe ribosomal RNA (rRNA) and assenmiblesomes.

e Endoplasmic Reticulum(ER): Endoplasmic reticulum is aenconnected network
of tubules and vesicles. Rough endoplasmic reticulum (vilitbsomes) synthesizes
and transports proteins, while smooth endoplasmic retimufwithout ribosome)
synthesizes lipids, steroids and morphine, metabolizdmbagdrates, regulates drug

metabolism and the attachment of receptors on cell memimaneins.

e Ribosome: Ribosome is the protein factory in the cell. TheNARmessenger RNA)
molecule leaves the nucleus and enters the Ribosome. Rilosads the codons
(nucleotide triplets) from the mRNA and puts the correspogdmino acids accord-

ing to the genetic code.

e Mitochondrion: Mitochondrion is the power plant of the cellhis membrane en-
closed organelle supplies the Adenosine triphosphate X Addriired by the cell for

meeting its energy needs.



e Lysosome: Lysosome destroys cellular debris by using itirdigse enzymes. It
helps the cell to rejuvenate by destroying old organelléds &lso known as the

‘suicide bag’ of the cell.

e Golgi apparatus: Golgi apparatus processes and packagfesnpmolecules for de-

livering elsewhere. It helps in intra-cellular communioatand secretion.

e Vacuoles: Vacuoles are membrane bound organelles usedrfgimg toxic elements

out of the cell, maintaining pressure and pH inside the cell.

2. DNA, gene, genetic code and the central dogma of molebidérgy

Deoxyribonucleic acid (DNA) contains most of the genetistinctions inside the cell.
The DNA segments carrying these instructions are callegegemdNA consists of two
long strands of nucleotides with backbones made of sugaphaosphate joined by phos-
phoester bonds. These two strands run in opposite directmeach other. Attached to
each sugar is one of the four types of bases - Adenine(A), iBa@n), Cytosine(C) and
Thymine(T). Adenine and Guanine belong to the double ringass of molecules called
purines, whereas cytosine and thymine are single ringeidhplines. It is the sequence
of these four bases along the backbone that encodes theog@f@tmation. In the dou-
ble helical DNA structure, Adenine always binds with Thymignd Cytosine binds with
Guanine through triple and double bonds respectively. Ribteic acid (RNA) is the tem-
porary carrier of genetic instructions from the DNA to thdo&ome. RNA is a single
stranded polynucleotide containing Uracil(U) in liu of Thine(T).

Amino acids serve as the building blocks of protein. Theeetarenty amino acids
which are naturally incorporated into polypeptides.

The genetic code provides the uniqgue map between the sezjaétiwee consecutive
bases(codon) in the mMRNA and the amino acids (Table IIl) [f}e mRNA molecule is

decoded on ribosomes using the genetic code to synthesizeldvant protein. The steps



Table Ill. The Genetic Code [2].

Amino acid/control | code(s)

Alanine/Ala/A GCU, GCC, GCA, GCG

Arginine/Arg/R CGU, CGC, CGA, CGG, AGA, AGG

Asparagine/Asn/N | AAU, AAC

Aspartic acid/Asp/D| GAU, GAC

Cysteine/Cys/C UGU, UGC

Glutamine/GIn/Q CAA, CAG

Glutamic acid/Glu/E GAA, GAG

Glycine/Gly/G GGU, GGC, GGA, GGG
Histidine/His/H CAU, CAC

Isoleucine/lle/| AUU, AUC, AUA

Leucine/Leu/L UUA, UUG, CUU, CUC, CUA, CUG
Lysine/Lys/K AAA, AAG

Methionine/Met/M | AUG

Phenylalanine/Phe/FUUU, UUC

Proline/Pro/P CCU, CCC, CCA, CCG

Serine/Ser/S UCU, UCC, UCA, UCG, AGU, AGC

Threonine/Thr/T ACU, ACC, ACA, ACG

Tryptophan/Trp/W | UGG

Tyrosine/Tyr/Y UAU, UAC
Valine/Val/V GUU, GUC, GUA, GUG
Start AUG

Stop UAA, UGA, UAG
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for going from DNA to protein are as follows.

DNA sequences are copied into RNA molecules in the procesetelranscription a
gene that is transcribed is said to be actively expresseitk @igene that is not transcribed
is considered as repressed. Normally transcription of a& géeilds an RNA molecule
of length similar to the gene itself. Once synthesized, tasebsequences of the RNA
molecule ardranslatedby the ribosomes into a sequence of amino acids. The regultin
molecule folds up into a unique three-dimensional configomeand becomes a functional
protein [8]. The complete unidirectional information floar forotein biosynthesis from the

gene is referred to as tleentral dogma of molecular biolod¥ig. 2).

DNA

A\VAVAVAY,

Transcription

Nucleus

RNA

Translation

Protein

Fig. 2. Central Dogma of Molecular Biology.



11

3. Genetic regulation

Some proteins in the cell are called housekeeping prot&imsir corresponding genes are
constitutively active to maintain the protein concentratiHowever, there are certain other
proteins which are normally not present inside the cellfaltime. Only when the protein
is required, the corresponding gene is turned ‘ON’. The raeidm by which a particular
gene is turned ‘ON’ or ‘OFF is called genetic regulation.€eTproteins which can bind to
the DNA to start the transcription process are calfadscription factors These transcrip-
tion factors are also regulated by other transcriptionalhmymatic activities. The complex
gene-protein-RNA interactions are instrumental in mamitgy cellular homeostasis.
From a systems viewpoint, the behavior of a living cell islagaus to that of a multi-

input-multi-output (MIMO) feedback system. Understarglthis system is the most im-

portant challenge in systems biology.

4. Signal transduction pathways

In multi-cellular organisms, life is sustained by a systémeoordination between differ-

ent cells and all extra cellular signals. Each cell has ita @anctionality and its future

is determined by various intrinsic and extrinsic biologisgnals. For instance, a cell’s
proliferation, differentiation or induction of apoptosise determined by a number of dif-
ferent signals. From the time of a cell’s birth (by divisidrnits parent cell), the cell’s state
is tightly controlled by different biological regulation€ell signaling is a form of com-

munication between different cells. These signals can kenatal or electrical impulses.
Communication via electrical impulses is typically assbed with nerve cells (neurons)
which are attached to each other and the action potentredrras from neuron to neuron.
For general somatic cells, proteins are usually the siggatiolecules used for communi-
cation. The interactions between the different signalimgrules are multivariate in nature

and hence difficult to study. As a result, historically bgikts have focussed on studying
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the marginal interaction between the signaling molecuézgjing to what is calle@ath-
way information. Although pathway knowledge cannot provide tomplete multivariate
picture of the overall cellular signal transduction, it Ilear that one has to have a mech-
anism for incorporating this prior information into any saj transduction model that one
develops. An approach to do precisely that will be discustaiorately in CHAPTER Il

and is also reported in [9].

5. Systems medicine

The area of systems medicine focusses on the problem ofgesatomplex disease such
as cancer. Any disease is nothing but the lack of order inytsies1. Systems diseases such
as cancer are possibly caused by mutations in the DNA. Metifoms in the interactions
between the genes and proteins cause disruption in the hoethdar dynamics. Systems
medicine seeks to restore the earlier dynamics of the ceérmninate the cell if such
restoration is not possible. This problem is different fribrat in systems biology because
here controlling the dynamics of the system is more impaortasan knowing the system
accurately. In systems theory, there are different ap@méor controlling a system even
if the system is not fully known. CHAPTERSs Il and IV discus®tapeutic intervention

and systems medicine and these results have been alscecepojt0] and [11].

B. Dynamical systems

Before starting the mathematical modeling of biologicateyns, it is appropriate to intro-
duce dynamical systems. dynamical systeroan be thought of as a rule for determining
the time evolution of a system state (vector). Although a®l world dynamical system
is continuous both in time and space, for modeling simpliaie often discretize these
variables. In addition, the mathematical rule determinhgystate transition can be either

deterministic or stochastic. Based on these considesgtiza can get different kinds of



dynamical systems as shown in Fig. 3.

Time Time
State Continuous Discrete State Continuous Discrete
: : Stochasti ;
_ Differential | Difference . tochastic St.ochasnc
Continuous ~ . Continuous | Differential | Difference
Equation Equation . _
Equation Equation
Asynchronous
Di ¢ }I;oolean Boolean D; . Markov Markov
1screte iscrete .
Network
Network ctwor Process Chain
Deterministic Stochastic

Fig. 3. Dynamical Systems.

Although the actual protein concentrations in the cell anetiouous variables, there
are at least three reasons why a discrete type of modelingdvimupreferred. First, al-
though the continuous model may dictate the exact dynammsisg the current technology
it is impossible to reliably measure the concentration ahgarotein inside the cell in real
time. Second, many of the genes/proteins inside the ceibeXbN/OFF switch-like be-
havior which is more readily accommodated using quantratiithin the digital domain
[12], [13]. Third, the discrete-time systems are easierrtalyge, model and control in
real time in comparison to continuous-time systems [14]nd¢e in this dissertation we
talk mostly about the two discrete-time discrete-state eldamely, Boolean Network
(BN) and Markov Chain/Probabilistic Boolean Network (PBEN and PBN are formally
introduced in CHAPTERSs Il and 111
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C. Dissertation outline

The dissertation is organized as follows:

e CHAPTER II: Boolean networks and probabilistic Booleanwaaks are formally
introduced as two simple models of genetic regulatory netsio Adaptive inter-
vention in generic probabilistic Boolean networks(BN isrigial subset of PBN)
is described as a method for arriving at an interventiortesgsathat is practically

implementable.

e CHAPTER III: Cell signaling pathways are considered to be khowledge base
for building Boolean networks. The synthesis algorithmxplained in detail and
illustrative examples are included. Some experimentadatibn results from the

existing literature are also presented.

e CHAPTER IV: Intervention strategies are designed for batimbinatorial and se-
qguential Boolean networks based on some realistic modelirtherapeutic inter-
vention. An example of the growth factor mediated pathwaysrésented, and this
example is relevant to cell cycle control and cancer. Anrirgstion strategy is also
designed for a sequential Boolean network (or a feedbackank}. An example

from DNA damage stress response pathways is presented.

e CHAPTER V: Finally a futuristic research direction for ssists biology is outlined
where the starting point for experimental design is thetexgknowledge from past

biological research.
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CHAPTER I

GENETIC REGULATORY NETWORKS: MODELING AND INTERVENTION*

There are two major objectives for modeling of genetic ratprly networks: (i) to
better understand inter-gene (and protein) interactiods@lationships on a holistic level,
thereby facilitating the diagnosis of disease; and (ii)ésign and analyze therapeutic inter-
vention strategies for shifting the state of a diseased ortivom an undesirable location
to a desirable one. Many different approaches have beerogedpin the literature for
modeling the behaviour of genetic regulatory networks. l@fse, the model which has
received the most attention in the context of therapeutersiention is the probabilistic
Boolean network (PBN). To date, a number of approaches heme froposed for carrying
out interventions in PBNs based on stochastic optimal obtiteory for Markov chains
[15, 16, 17]. These assume perfect knowledge of the unaerlPBN, an assumption
which, when not satisfied in practice, can lead to degradadhacceptable performance.
To remedy the situation, one could design a fixed intervardtoategy that is “robust”, or
somewhat insensitive, to modeling errors, in particutathe effect of uncertainties in the
transition probability matrix of a PBN, Another approaciastune” the intervention strat-
egy to the actual network via on-line adaptation. The ainhf thapter is to demonstrate
the feasibility of such an adaptive approach in the fram&wdPBNs. At the very outset,
it is important to point out that such a scheme is feasiblg drthe uncertainty belongs to
a specific class and prior knowledge about this class candoggarated into the design.

*Part of this chapter is reprinted with permission from “Autige intervention in prob-
abilistic boolean networks” by R. Layek, A. Datta, R. Paldda. R. Dougherty, 2009,

Bioinformatics, vol. 25, no. 16, pp. 2042-2048, Copyrigh009], Oxford University
Press. (http://bioinformatics.oxfordjournals.org/temt/25/16/2042.short)
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A. Systems and methods

1. Probabilistic Boolean networks

A Boolean NetworKBN), T = (V, F'), onn genes is defined by a set of nodes/genes
V=Az,....,z,},x; €{0,1},i =1,...,n,and alistF' = (fi, ..., f.), of Boolean functions,

fi +{0,1}» — {0,1}, ¢ = 1,...,n [18]. Each noder; represents the state/expression of
the ;" gene, wherer; = 0 means that genéis OFF andz; = 1 means that gené

is ON. The functionf; is called thepredictor functionfor genei. Updating the states
of all genes inB is done synchronously at every time step according to theidiptor
functions. At timet, the network state is given by(t) = (z1(t), z2(), ..., x,(t)), called a
gene activity profild GAP). The state (GAP) transition diagram of a typical BN is shown
in Fig. 4(a). AProbabilistic Boolean NetworkPBN) consists of a set of nodes/genes
V = {x1,..,z,}, z; € {0,1,...,d}, i = 1,...,n, and a set of vector valued network
functions, f;, f5, ..., f, governing the state transitions of the genes. Fet 1,2,...,k,

£, = (fi1, fi2s -, fin), Wheref;; : {0,1,....,d}" — {0,1,....d}, i = 1,...,n [19, 20]

In most applications, the discretization is either binaryternary. Here we use binary
guantization,d = 1, which presents no theoretical limitation on the developmeAt
each time point a random decision is made as to whether tatswie network function
for the next transition, with the probability of a switch being a system parameter. If
the decision is to switch, then a new function is chosen fromragf;, fs, ..., fi,, with ¢;
being the probability of choosinfj (network selection is not conditioned by the current
network, which can itself be selected). Each network fuarcfi determines a BN, the
individual BNs being called theontextof the PBN. The PBN behaves as a fixed BN until
a decision is made to switch contexts according to the plibti@bc,, s, ..., ¢, from among

fi, £, ..., fr. If ¢ = 1, the PBN is said to bmstantaneously randonif ¢ < 1[21], the PBN

is said to becontext-sensitivelMe consider PBNs with perturbation, meaning that at each

time point there is a probability of any gene flipping its value uniformly randomly. Since
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there are: genes, the probability of a random perturbation at any tioietps 1 — (1 — p)".
A context-sensitive PBN determines a Markov chain whodeste (context, GAP) pairs.

The transition probability fronfs, y) to (r, x) is given by

PS,y(r> X) = 1[7“:8}((1 —q)+ ch){l[fs(y)ZX](l —p)"
g (1)) (2.1)
+ 1[r¢s}qcr{1[fr(y)zx} (1 - P)n

+ 1[x¢y}pn(x,y)(1 _ p)n—n(x,w},

The state (GAP) transition diagram of a typical PBN (or Markzhain) is shown in Fig.

4(b). wherer, s denote the'th andsth BNp (Boolean Network with perturbation), which

(a) Boolean Network (BN) (b) Probabilistic Boolean Network (PBN)
Fig. 4. State Transition Diagrams for a Boolean Network amiababilistic Boolean Net-

work.

are the BNps at time-+ 1 and¢, wheren(x, y) is the Hamming distance betwerrandy,

and 1=« IS the indicator function that takes valugf f(y) = x according to the rule
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structure and is equal to otherwise. The random perturbation makes the Markov chain
irreducible and ergodic. Thus, it possesses a steadydistédoution. Since there are
contexts an@™ GAPs in each network, the Markov chain posse¢@&sstates and we can
relabel the states with(¢) € {0,1,2,---,2"k — 1} being the state that is occupied by the
network at timef. For an instanteously random PBN, the Markov chain reducéisat its
states are the GAPs of the PBN. The transition probabilipression (2.2) can be used to
track the time evolution of the (context, GAP) state. In ficacit may be impossible to
detect context, only the GAP. We obtain the transition pbdliges between the GAPs by
taking the expectation of the (context, GAP) transitionatailities over the networks, the

transition probability from GAR to GAPx being given by

k
Py(x)=(1- P)"Zl[fi(y):x]ci + Lty P (1 — p)n10ey) (2.2)

=1
Using the above equations we can computethe 2™ transition probability matrix corre-
sponding to the averaged context-sensitive PBN. As sho22ijp the transition probabil-
ity matrix for an averaged context-sensitive PBN is the samthat of an instantaneously
random PBN that makes use of the same constituent Booleamkest It is possible that
some of the transition probabilities computed using (2.2y evaluate out to zero. The cor-
responding transitions are referred tofabidden transitiongnd the adaptive algorithms

to be presented in this chapter require that thé'sattsuch forbidden transitions be known.

Remark 1. The transition probability expressions derived in this sedtion allow for the
possibility of different selection probabilities for thegfdrent constituent Boolean networks
of a PBN. However, in the absence of any prior knowledge, Wehemceforth assume a

uniform distribution of the selection probabilities, i€.= %, 1=1,2,-- k.
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2. Infinite-horizon control: perfect modeling

In this section, we summarize some results on the infinitézbo control of PBNs, assum-
ing perfect modeling. A PBN with control can be modeled asagéicgtary discrete-time
dynamic system

241 = f(Zt, ut,wt), t = 0, 1, cevey (23)

where for allt, the state; is an element of a state spatethe control input;; is an element
of a control spacé€’, the disturbance, is an element of a spadeandf : SxCx D +— S.
1 In the particular case of a PBN with genes composed of. Boolean networks with
perturbation probability and network transition probability, S = {0, 1,2, ...... ,m(2" —
1)} and the control input, is constrained to take values in the spéte: [0, 1, ....., 2" — 1],
wherek is the number of binary control inputs. The disturbangés manifested in terms
of change of network based on the network transition prdityalai or change of state due
to perturbation probability. w; is independent of prior disturbances, w;....w;_;. The
objective is to derive a sequence of control inputepatrol strategy such that some cost
function is minimized over the entire class of allowabletcobstrategies. We define a cost
per stageg(i, u, j), depending on the origin statethe destination statg and the applied
control inputu. > The actual design of a “good” cost function is applicatiopeledent and
is likely to require considerable expert knowledge. In &riorizon control one can sum
the costs over the number of time points constituting thézbarand take the expectation;
however, this cannot safely be done with infinite horizondwse the summation of the
!In the rest of this chapter, we will be denoting the time delesce ofz, v andw by

the subscript. In all other situations, the context will make it clear wiet a subscript
denotes time dependence or reference to the particularaoenp of a vector.

2Note that while finite horizon control problems in the litena allow for costs-per-
stage functions that vary from one stage to another, inflmitézon control problems in
the literature have typically been derived assuming thatsdime cost per stage function
is used for all stages. For PBNs (both context sensitive dinereise), this is not of any
consequence since all of our earlier finite horizon resugis ased the same cost per stage
function for all stages.
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one-stage costs might diverge to infinity (for all contrptereby leading to an ill-posed
optimization problem. One way to avoid the problem of a galgsnfinite total cost is by

considering theverage cost per stagehich is defined by

M-1

Te(e) = Jim 2B 92} @4

t=0
where the expectation is with respect to both origin andinaison states. In this formu-
lation, a control policyr = {ug, 11, - -} is chosen to minimize the above cost and the
problem is referred to as tlaverage cost per stage probleMinimization of the total cost
is feasible ifJ,(z) is finite for at least some admissible policiesind some admissible
statesz,. If there is no zero-cost absorbing state (which is the casmntext-sensitive
PBNs with perturbation), then the total cost will frequgrgb to co. Hence theaverage
cost per stagdormulation is essential when we are interested in the ¢mmdof the pa-
tient in the long run and equal importance is given to thegpa8 condition in all stages. In
general, the cosi(i, u, j) of moving from state to statej under controk: may depend on
the starting staté however, in the case of PBNs, we have no obvious basis figrasg
different costs based on different initial states. Accogllf, we assume that the penalty
g(i,u, j) is independent of the starting statand its value is based on the control effort
and the terminal statg The penalty is high if the end state is a bad state regardfabe
starting state, and vice-versa. Herige v, j) = g(u,j). Moreover, since in Eq. 2.4 the
cost is obtained by taking the expectation with respectéaotiigin and destination states,
it is possible to replacé(z;, us, z;.1) by an equivalent cost per stage that does not depend
on the destination state by taking the expectation withaeisfp the destination state and
leaving only the expectation with respect to the originatest More specifically, we use as

cost per stage the expected cg@t «) given by [23]:

2n—1 2" —1

g(i,u) = Z pij(w)g(i,u, j) = Z pij(w)g(u, §) (2.5)
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wherep;;(u) is the transition probability under control
To solve the average-cost-per-stage optimal control prapletll denote the set of
all admissiblepolicies, i.e., the set of all function sequences= 1, 11, -... With g, () :
S—Ct=0,1,.... The optimal cost functiod*,which is independent of the initial state
[23], is defined by
J* = {rﬂeilgll J-(2),z € S'is arbitrary (2.6)

A stationary policyis an admissible policy of the form =y, p, .... Its corresponding cost
function is denoted by,,. A stationary policyr = p, f.... is optimal if J,(z) = J*(z) for
all states:.

To minimize the cost function of Eq. 2.4, first defiine the mapgp

2" —1

Ji(i) = min |g(i,u) + pr Vi1 (g (2.7)

ueC

which, although we will not go into detail, provides the dgmia programming solution for
the finite-horizon problem [23]. Secondly, for any cost fioic J : S — R, define the
mappingl’J : S — R by

(1)) = minlg(i, 0 + Y py(w)IG), i€ 5 @9

We note in passing thé&t.J is the optimal cost function for the one-stage (finite hamjzo
problem that has stage caséind terminal cost. For the average-cost-per-stage problem,
the value iteration/;; (i) = T'J:(i) cannot be used directly because it may diverge to
infinity. Thus, calculating the average cost by taking,; ...(Jy/M) is not feasible.
Instead, we considerdifferential costh, obtained by subtracting a fixed componentgf

sayJ;(n1), from each element of;, i.e.,
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Lettinge = [1,1,1,---,1]T, the above relationship can be rewritten in vector form as
hy = Jy — Ji(nq)e.
Some algebraic manipulations [17] yield
hiy1 = Thy — (Thy)(ny)e

as thevalue iteration algorithnfor the differential cost. Using some additional arguments

we can arrive at the followingolicy iterationalgorithm for the average cost case [23, 17]:

e 1. (Initialization): An initial policy u. is selected.

e 2. (Policy Evaluation): Given a stationary poligy, we obtain the corresponding

average and differential costs andhy(:) satisfying

2n—1

Ak + (i) = g (i, pe (2 +me (1 (i) hi (), i € S (2.10)

This linear system of equations can be solved utilizing tet thathy(n,) = 0,

wheren, € S is any particular reference state.

e 3.(Policy improvement): An improved stationary poligy, , satisfying

on—1
g b g (2 Z Pij (g1 (0) e (5)
n—1
= mln (1,u) + Zp” . (2.11)

is obtained. The iterations are stoppedjf , = 1., else we return to Step 2 and

repeat the process.
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3. Adaptive infinite-horizon control

We now consider an adaptive intervention strategy that earsbd in the presence of model
uncertainty. We assume that the underlying network is nemtley a member of a known
finite family of PBNs and we have na priori knowledge about which member of that
family models the actual network. In such a situation, a r@@pproach is to estimate the
model number on-line and then use policy iteration to deteenthe corresponding con-
troller. This is the principle of adaptive control and calesiable theoretical research has
been aimed at showing that sucértainty equivalencechemes can provide the required
performance [24, 25]. Our focus will be to demonstrate viawations the feasibility of
adaptive intervention in the context of gene regulatorywoeks. We will use a variation of
an adaptive control algorithm developed in [26] for unkndWarkov chains, to which we
refer for technical proofs of convergence. While the schan[@6] attempts to estimate
all entries of the transition probability matrix, our adaptalgorithm will estimate only the
model number since our underlying assumption is that thesitian probabilities of the
PBN are completely determined, once we know the model number

There are a number of ways in which one can possess a list o6 RBN thereby be
presented with the problem of adaptively determining a rhodmber. Several inference
procedures produce PBNs by way of first producing Booleaworls satisfying some
desired relation to the data. In [27], Boolean networks amestructed whose attractor
structures coincide with data points assumed to be in &g the true biological net-
work, along with the networks satisfying certain constigisuch as the number of predic-
tors. Then one or more PBNs are constructed from these Boakstavorks by comparing
the steady-state distributions of potentially inferred\RBwith the full set of experimental
data. In [28], Boolean networks are inferred by first usingagtdsian approach to generate
regulatory graphs (topologies) most compatible with thedad then inferring the predic-

tors via a nonlinear perceptron model, using a reversiltgjiviarkov chain Monte Carlo
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(MCMC) method. Then one or more PBNs are constructed fronBthmlean networks
by using Bayesian scores. In [29], a single PBN is constdusteh that each constituent
Boolean network is consistent with the data, the estimath@iexpected distribution of
the data generated by the PBN using its steady-steady ssatduation agrees with the
distribution of the data, and the latter condition cannoabeomplished with less than the
number of constituent networks in the inferred PBN. Whiles fleads to a single PBN,
in order that the inferred PBN not overfit the data, and in tree@ss be composed of an
inordinately large number of Boolean networks, the datdiesefiltered. Thus, different
filtering techniques can lead to different PBNs.

In each of the preceding cases, rather than settle on a $tBjlemodel when apply-
ing control, one can take the view that there is a list of piéRBNs and that new data are
to be used to adaptively determine the control policy. Maegoin the cases of [27] and
[28],0ne might not even form a PBN and simply treat the pnobie the framework of a
collection of Boolean networks, in which the adaptationiised at selecting a control pol-
icy for the governing Boolean network, a view compatiblehnour proposed algorithms.
This latter view, that one has a collection of Boolean nekspabsent a PBN structure,
was taken in [30], where a finite-horizon control policy wasetmined that performed op-
timally relative to the family of networks. Here we would peed adaptively.

In addition to inference, there is another way in which ad&sPBNs can naturally
occur. In [31] and [32], a PBN is derived from a mammalian cgtile network proposed
in [33] by assuming a mutation that leads to a cancerous pe®o Specifically, in the
mutation, the gene p27 can never be activated, the resulg) ieat the cell can cycle in
the absence of any growth factor. A different mutation vahd to a different PBN. Thus,
based on a given network, in this case the one proposed inif&8je is unsure of the mu-
tation that has led to a cancerous phenotype, then new ditaditn an adaptive fashion

can be used to design an intervention strategy.
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Suppose the family of controlled PBNs is parametrized by#drametety € A where,
foranya € A, . sp(i,j,u, ) = 1forany(i,u) € SxC. 3 The only constraint ont is
that every element ofl results in a set of bonafide transition probabilities. Thelicality,
|Al, of A determines the total number of possible PBNs. For eachA, we can compute
the uncontrolled transition probability matrix by usingd® In addition, for a given control
gene, the rows of theontrolledtransition probability matrix can be determined as a linear
transformation of the rows of the uncontrolled transitisohability matrix. As shown in
[34], this is a consequence of restricting the class of alae interventions to the flipping
of a chosen control gene. We use the adaptive control afgomriginally derived in [26]
by maximizing a modified likelihood criterion. For eache A, let J*(«) be the optimal
long term average cost obtained for modeising the method of the last sub-section and let
¢(.,a) : S — C be the corresponding control law attaining it. fetR — R, 0: Z — R,
and constanin be defined as followsf is a strictly monotonically increasing continuous
function such thaff (inf,c4 J*(a)) > 0; o is any function such thatm; .., o(t)t~? is a
positive finite number for somg < (0, 1); andm is any integer such that > |S| + 1.For
our implementation purposes we takas the logarithmic function angt) as the function
o(t) = 24/(t), for which® = 0.5. The value ofm can be satisfactorily chosen depend-
ing on the cardinality of the state space. The adaptive obatrconsists of two separate

operations, estimation and control:

e Estimator:At each time step, m, 2m, 3m, ..km, (k + 1)m, ..., estimatex by

a; = argmax,c 4 D;(a), (2.12)
where
Di(a):=K [ piju 0y, (2.13)
(3,5,u)eF°

3In this sectionp(i, j, u, o) denotew;;(u) when the modedk has been selected.
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K= {mrw, (2.14)

and F¢ is the complement of the set of forbidden transitiéhsvhich is assumed to
be knowna priori. These transitions correspond to zero valuegpforj, u, «). In

(2.13),n(3, j, u) is defined as

t—1
m(i,jou) =14 ) 1z, =i, 2041 = j, uy = 1) (2.15)
s=0

and can be interpreted as measuring the number of timessttoanoccurs from
to j under controk.. Here1(.) denotes the indicator function. At tinien, knowing
the parameter estimatg,,,,, we can find the optimal cost functiof («;,,) and the
optimal control lawe(z;, ax,,) which will be used for the next: time steps. The

parameter estimate is kept constantgf between time stepan and(k + 1)m — 1.

e Controller: At each timet, the control applied is

U -— ¢(Zt, dt) (216)

The optimal cost function and optimal control law are deiesd by applying policy iter-

ation to the estimated model.

Remark 2. The adaptive algorithm presented here is based on the tiangprobability
expression (2.2). Since this expression accurately maahalsstantaneously random PBN,
itis only to be expected that performance degradation witio as the value af is reduced

from 1 to 0. This will be borne out by our simulations in the next section

Remark 3. From a practical point of view, the expectation is that thestituent Boolean
networks of a PBN switch very infrequently. In other wortig, ¥alue of; can be reason-
ably assumed to be very small. In such a scenario, one couldider each constituent
Boolean network to be a possible model to be identified by ghmation algorithm. Al-

though this increases the cardinality of the set of possitdelels, it is expected to result
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in improved performance especially since a small valug ofeans that the constituent
networks will change very infrequently so that the estioratilgorithm will have enough
time to identify the current Boolean network. This will alsborne out by the simulation

results in the chapter.

B. Algorithms

The schematic diagram of the adaptive control algorithrhasas in Fig. 5. The controller
and estimator modules are shown separately with the moddlfee the estimator module
explicitly indicated. Two different choices for the modet gl will lead to the two different
algorithms presented in this chapter. The family of PBNshimwn schematically in Fig.
6.Each member of the family consists of a number of constttB&ps. The underlying
PBN is assumed to come from the family. Any switching from amelerlying PBN to
another is assumed to be deterministic and very infrequethiad, for all practical purposes,

the estimator does not need to track a model changing wit tim

1. Algorithm 1

In Algorithm 1, we assume that the family of PBNs constitutesmodel setd. Note that
this formulation encompasses context-sensitive PBN&gmtaneously random PBNs, and
BNs with perturbation (BNps) as they are all special cas&BMs. For each model (PBN),
we can compute the transition probability matrix for theeexted state space using Eqn.
2.2, but it is very difficult to determine the context numbeamh the output state data of
the actual PBN. So, constructing the transition counterisnfdr the extended state space
is practically impossible. For example, suppose each PBisists of4 contexts (4 BNps)
and the actual underlying PBN is the 2nd PBN in the model setdtlition, suppose at time
t there is a transition from stateof BNp2 (i.e, context 2) to state of BNp3 (i.e, context

3). In that case, we will observe tlie— 8 transition; however, in the transition counter
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PBN 1 PBN 2 PBN N
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13 [~ 14 23 |~ 24 N3 " N4

Non-stochastic switching
between PBNs

Fig. 6. Family of Probabilistic Boolean Networks.

matrix there would be 16 elements for that particilar> 8 transition (corresponding to
the different combinations of 4 source contexts and 4 datstin contexts) and there is no
way of figuring out which precise context switching occurréadced with this hurdle, we
compress the transition probability matrix in such a wayrsd e don't need to find the
extended transition counter matrix. This can be done bygusguation 2.2, where the
individual transition probability matrices for the difest contexts have been averaged out.
This averaging out causes no loss of context informationvthe PBN is instantaneously
random since in that case there is no context informatiortad svith; however, even
when the PBN is not instantaneously random, and contextrivdtion is lost, we can still
use the averaged transition probability matrix to estinla¢emodel (PBN) number of the
underlying PBN. Such an algorithm using the averaged ttiansprobability matrix will
henceforth be referred to as Algorithm 1. Clearly, one waaxdect such an algorithm to
perform well forq = 1 (i.e, instantaneously random PBN) with performance degjrad

occurring as the value a@fis reduced (i.e, we are moving further and further away from a
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instantaneously random PBN.)

2. Algorithm 2

The main problem with Algorithm 1 is that for small values bétswitching probability;
(which are typically the more realistic ones), it doesn’tfpem well. The attractor basin
structures of the different constituent BNps of a particl BN vary significantly and so,
averaging of the transition probability matrices of thdefiént constituent BNps is not an
appropriate strategy for context-sensitive PBNs with levitching probabilities. For that
situation, we can consider the other extreme scenario,evhet 0. Then the context-
sensitive PBN reduces to a single BNp. A natural questionahgses in trying to estimate
the underlying PBN from the state transition data is whighnfof the transition probability
matrix should be used. A reasonable answerq¢fee 0 would be to use the individual
transition probability matrix for each BNp. This signifignincreases the cardinality of
the model spacd and leads to Algorithm 2. For instance, if we halveonstituent BNps
for each PBN as in Fig. 6, then the cardinality of the modetspawill be increased by
a factor of4. Algorithm 2 assumes no context switching and uses the sebrdtituent
BNps as the model set. This set is used to estimate the model number and the stagion
control policy is determined using the policy iteration@ighm. Using simulations it will
be shown that Algorithm 2 works better than Algorithm 1 foradhvalues ofq. This is
quite intuitive because we estimate the model number omdy aftime interval ofn, and

if the switching probabilityg is low, then the number of context switchings inside one
estimation time window is expected to be quite low. So, osuagption about the BNp not
changing within an estimation window is reasonable. In tbxtsection we will discuss
the simulation results for two different sets of data and para the performance of the two

algorithms for three different values of
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C. Examples

In this section, we present simulations to demonstrateffloaey of the proposed adaptive
intervention strategies. Such simulation studies areataibeimportant since the theoret-
ical results in [26] guarantee only almost sure convergemck that in a Cesaro sefise
We will consider two different examples of genetic regutgtoetworks. The first will be
an artificial example and the second will be a network derivedh gene expression data
collected in a metastatic melanoma study. In each case, leanwly out simulation studies

using the previously discussed algorithms.

1. Atrtificial example

We consider at-gene network modeled by an unknown member of a known fanfily o
context-sensitive PBNs. We assume that the cardinalityisfamily is7, for each member

in this family we havet constituent BNps, and = 0.01. The value ofy will be chosen
differently for various simulations. Since gene values lairary, the cardinality of the
state space i$6. Without loss of generality, we assume that the first geme the gene
corresponding to the most significant bit (MSB) in the genevig profile, is the gene that
needs to be down-regulated, i.e, sebtoWe assume that the second gene is the control
gene that can be flipped, withh = 1 andu = 0 denoting the flipping and no flipping
actions, respectively. To adaptively intervene in the oekwwe choosen = 32. The cost

of control is assumed to lie5 and the states are assigned penalties as follows:

;

5 if u=0and MSB isl for statej
5.5 if u=1and MSB isl for statej

0.5 if uw=1and MSB is0 for statej

0 if u=0and MSB is0 for statej

\

“Roughly speaking, convergence in the Cesaro sense foeadhz notion of conver-
gence of the time average of a signal. This clearly doesrptyrpointwise convergence.
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Since our objective is to down-regulate the MSB gene, a hmiglkealty is assigned for
destination states having the MSB gene up-regulated. Alsa §iven MSB gene status for
the destination state, a higher penalty is assigned whectotfteol is active versus when it
is not. We want to examine how algorithm 1 performs when the tnodel is deterministi-
cally switched. Accordingly, we set up the simulation witle ictual model being switched
from PBN2 (model number 2) to PBN6 (model number 6) at the #8timation window
(time = 320). The switching probability)is 0.01. This emulates a context-sensitive PBN.
Fig. 7 shows the convergence results. Each of the followogés shows model and cost
comparisons between the non-adaptive regular contrallgh complete model informa-
tion) and the adaptive controller. The top plot shows thereged and actual models as
functions of the estimation time steps. Thewxis is calibrated in terms of the number of
estimation windows with each window bei3g time steps long. Similarly, the bottom
plot in each of the convergence figures shows the comparistirecumulative adaptive
average cost and the cumulative non-adaptive average asmsirqiing perfect knowledge
about the true model).From Fig. 7, it is clear that the esthanodel converges to the true
model and the cumulative adaptive average cost goes towsedsimulative non-adaptive
average cost. Fig. 8 shows the simulation results obtaised)@lgorithm2 on the same
simulation set up as above wijh= 0.01. Clearly, the estimated model converges to the true
model and the cumulative adaptive average cost converghs ttumulative non-adaptive
average cost for the true model. The estimated model coeneegn the case of algorithm
2 is much faster than that obtained using algorithm 1. Thte ise expected since, with
g = 0.01, the underlying assumptions for algorithm 2 are a bettepfihe real scenario.
We next study the effect of the value @fon the performance of the two algorithms. To
compare the two algorithms, we cannot rely on just one sittmulaMoreover, we are more
interested in achieving controlled cost convergence rati@n model convergence as our

sole aim in intervention is to minimize the long term averagst. Accordingly, we run
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Fig. 8. Artificial Example: Algorithm 2.
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the same simulation one hundred times and calculate thereliite between the cumula-
tive adaptive and cumulative non-adaptive average cogiadh case. We then average the
difference sequence over the0 simulations. Fig. 9 shows the results fiir estimation
windows (time =960) for three different values aof.From Fig. 9, we see that the results
match our intuition: algorithmi works well forg = 1 (instantaneously random PBN)

whereas whenq is low or 0, algorithm2 works better.

6 ‘ - ' '
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AT — Algo2

{21 ,
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i 6 | :
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'E |7 =1: Instantaneously Random PBN] —— Algol
o4 — Algo2]]
ot f
= 0 m . ———— 5 5
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Estimation time window ----------- >

Fig. 9. Artificial Example: Cost Difference Comparison oéttwo Algorithms for different
values ofg.

2. Melanoma application

In a study of metastatic melanoma it was found that experiafigrincreasing the levels
of the Wnt5a protein secreted by a melanoma cell line viatyeeagineering methods di-

rectly altered the metastatic competence online as mahbyrhe standarih vitro assays
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for metastasis [35]. Furthermore, it was found that an imetion that blocked the Wnt5a
protein from activating its receptor, the use of an antibttht binds the Wnt5a protein,
could substantially reduce Wnt5a’s ability to induce a ratgtac phenotype. This suggests
a control strategy that reduces the WNT5A gene’s action fieciihg biological regula-
tion, since the data suggest that disruption of this infleermuld reduce the chance of a
melanoma metastasizing, a desirable outcome. PBNs ddrivedthe same expression
data have been used in [15, 16, 17, 34] for demonstratingeeadn-adaptive intervention
strategies. We consider 7-gene PBNs containing the geneE3ANpirin, S100P, RET1,
MART1, HADHB and STC2 obtained via the algorithms describef27]. The states are
ordered as above, with WNT5A as the most significant bit (M8BJ STC2 as the least
significant bit (LSB).

We have constructed 7 PBNs with four constituent BNs in eathe adaptive in-
tervention strategy has been applied to the family of PBNk wirin as the control gene
(u = 1, state of pirin is reversed, and= 0, no intervention);n = 256, andp = 0.01.
The value ofy varies between simulations. The cost of control is assumbd(.5 and the

states are assigned penalties as follows:

¢

5 if u=0and WNT5A isl for statej
5.5 if u=1and WNT5A isl for statej
0.5 if u=1and WNT5A is0 for statej

0 if uw=0and WNT5A is0 for statej

L
Since our objective is to down-regulate the WNT5A gene, adigenalty is assigned for
destination states having WNT5a up-regulated. Also, foivargWNT5A status for the
destination state, a higher penalty is assigned when thieot@s active versus when it is
not. Figs. 10 and 11 show the performance of the adaptivevenéon schemes using
algorithms 1 and 2, respectively. In each case, the geregidatory network is initially

described by PBN4 (model number 4) and at estimation windawirer10 (corresponding
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to time =2560), the underlying model is deterministically switched toNB(model num-
ber 2). The switching probability;] is assumed to be.01. From the model convergence
plots in Figs. 10 and 11, it is clear that the estimated mouatk the actual model quite
well. Furthermore, the model tracking using algorithm 2 é$tér than with algorithm 1.
This is consistent with our expectation since for the smate underlying assumption for
algorithm 2 represents a closer approximation to realitye umulative adaptive average

costs also appear to converge to the non-adaptive ones. €Tib these results are rep-
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Fig. 10. Melanoma Application: Algorithm 1.

resentative, we ran the same simulation one hundred tintesaloulated the differences
between the cumulative adaptive and non-adaptive coseafdr of the two algorithms.We
then averaged the difference sequence over the one hundraethtsons. Fig. 12 shows
the plots of the average difference sequence dv@&stimation windows (time %680) for
three different values of the switching probability From the figure, we see that the re-

sults match our intuition: algorithrhworks well forg = 1 (instantaneously random PBN)
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Fig. 11. Melanoma Application: Algorithm 2.

whereas whenq is low or 0, algorithm2 works better.

D. Concluding remarks

We have demonstrated the feasibility of applying adaptitervention to improve interven-
tion performance in genetic regulatory networks modele®BiNs. Specifically, we have
shown via simulations that when the network is modeled by enb& of a known family
of PBNs, one can use adaptation and carry out a certaintyagace design that leads to
improved performance in terms of the average cost. Thesdaion studies are important
since the theoretical results in the literature guarantég @most sure convergence and,
that too, in the Cesaro sense. We have presented two difidgarithms for model estima-
tion, and argued that while one of the algorithms is welleifor instantaneously random
PBNSs, the other is much better for context-sensitive PBNE leiw switching probability

between the constituent BNs. Our simulation results contirese intuitive expectations.
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Fig. 12. Melanoma Application: Cost difference comparisbthe two algorithms for dif-
ferent values of.

Though mathematically the intervention strategy is claseptimal, there are some seri-
ous problems associated with this approach. Estimatingrémsition probability matrix
(TPM) of a probabilistic Boolean network and practical ibdsy of switching control are
two of the major impediments. This motivates the introdutin CHAPTER Il of a new
approach for constructing networks consistent with priotdgical knowledge. We will
focus mostly on Boolean Networks because the parameterstimchastic model are dif-
ficult to estimate, given the paucity of biological data. IHERPTER 1V, some real world

examples are used to introduce practically feasible iet&ron strategies.
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CHAPTER III

FROM PATHWAYS TO NETWORKS*

This chapter develops a general theoretical frameworkriviag at genetic regula-
tory networks whose state transitions realize a set of gorelogical pathways or minor
variations thereof. Often in biology, the a priori or explenbwledge is presented in the
form of signaling pathways. Although such pathway inforim@atcan be useful, it fails to
capture the multivariate interactions between the gemgsrventions based on univariate
gene interactions captured in pathways often fail to aehtbe intended effects. In addi-
tion, it is quite common to have information on multiple pa#tys that may share some
common nodes. In such a case, each pathway attempts toedptuintergene relation-
ships when restricted to the genes in that pathway, but gesuwno information about the
global interaction between the genes involved in the dfiépathways other than putting
the constraint that the global interactions, when resttidb a particular pathway, must
satisfy the relationships mandated by that pathway.

The problem of piecing together an overall underlying genetgulatory network
structure given (partial) pathway information is, therefovery important in all areas of
biology. However, to our knowledge, thus far the problem haiseven been formulated
properly, let alone be solved. Perhaps, one reason forshieiabsence of a wide enough
realization that pathway knowledge, no matter how appgatimay be, constitutes only
partial knowledge restricted to a particular context. et fierther motivate the work pre-
sented here by using a specific application area and itsredseaeds.

In recent years, there has been considerable interestamghaef Genomic Signal Pro-

*Part of this chapter is reprinted with permission from “Rrdiological pathways to
regulatory networks ” by Ritwik K. Layek , Aniruddha DattachiEdward R. Dougherty,

2011, Mol. BioSyst., vol. 7, pp. 843-851, Copyright [201Rpyal Society of Chemistry.
(http://pubs.rsc.org/en/content/articlelanding/2@1d/cOmb00263a)
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cessing [36, 37] which seeks to mathematically model theivawiate interactions between
the genes and utilize these models to not only differenbateveen normal and abnormal
(diseased) behavior but also to suggest appropriate thatiagnterventions in the case
of the latter. The principal motivation for this is the growgirealization that in the case
of complex diseases such as cancer, therapeutic approaabed on simplistic marginal
modeling, as in the case of biological pathways, can at lobstae modest success. To cap-
ture the holistic behavior of the genes, one can use geregfidatory networks instead of
working with only pathway knowledge. To date, genetic regiy network modeling has
been carried out using various approaches such as difi@regtiations and their discrete-
time counterparts [38, 39, 40, 41], Bayesian networks [82 44, 45], Boolean networks
[46, 47, 18],[48, 49, 50, 51, 52, 45, 53, 54, 55], and theibpiulistic generalizations, the
probabilistic Boolean networks (PBNs) [19, 20, 21]. PBNséhalso found extensive use
in the design of intervention approaches that seek to slawndw halt disease progression
[37, 56, 57, 58, 59, 60, 61, 32, 62, 63, 17, 64].

Most of the intervention approaches developed thus far BM$make use of the fact
that the state transitions in a PBN can be modeled as a Mak@rbcess. Estimating the
transition probabilities for such a process, which is by reans a straight forward task,
is an essential pre-requisite for the successful appticaif most of these intervention ap-
proaches. Although a handful of these schemes [61, 32] ded@bypass the need for es-
timating the transition probability matrix, none of thene aapable of incorporating prior
biological pathway information into the network design. iSTfs a significant drawback
since most of the prior biological knowledge in the literatuesides in the form of bio-
logical pathways, gleaned as empirical observations adifferent experiments. Indeed,
the accuracy of genetic regulatory networks and the datainegents for their inference
could be greatly improved by developing a mechanism to pa@te pathway knowledge

into the network itself. This chapter develops a systenyaticedure for doing precisely
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that for the case of Boolean networks. Here, it is approptiapoint out that earlier work
has focussed on generating Boolean networks satisfyimgipally attractor constraints
[27, 65]. The results presented here are more general apdtesly subsume the earlier
ones.

This chapter is organized as follows. In section A, we iniicg some notation and
present the basics of digital design. In section B, we pitesaimple example to demon-
strate how one can use pathway knowledge and Karnaugh maehé&vate a family of
BNs whose trajectories realize the given pathways. Ineeci the general procedure for
synthesizing Boolean network from a set of pathways is pteske In section D, the simple
example of section B is revisited and solved using the algaordeveloped in section C. In
section E, we impose additional attractor constraints erfamily of BNs to facilitate the
choice of a particular BN. In section F, we apply the resultthis chapter to the widely
studied p53 pathway and demonstrate that the resultingonke®xhibits dynamic behavior
consistent with experimental observations from the ptblisliterature. Finally, section G

contains some concluding remarks.

A. Notation and digital design basics

1. Boolean networks

A Boolean NetworKBN), T = (V, F'), onn genes is defined by a set of nodes/genes
V=Az,....,z,},x; €{0,1},i =1,...,n,and alistF' = (fi, ..., f.), of Boolean functions,

fi :{0,1}» — {0,1},i = 1,...,n [18]. The expression of each gene is quantized to two
levels, and each node represents the state/expression of the gene@herexr; = 0 means
that genei is OFF andx; = 1 means that geneis ON. The functionf; is called the
predictor functionfor gene: . Updating the states of all genesYnhis done synchronously
at every time step according to their predictor functiong.tife ¢, the network state is

given byz(t) = (z1(t), x2(t), ..., z,(t)), called agene activity profildGAP).
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2. Karnaugh map representation of Boolean networks

The subsequent developmentin this chapter relies heavilyaikarnaugh Map (K-magp6]
representation of a Boolean function. Consequently, letowsbriefly introduce Karnaugh
Maps and demonstrate their utility in digital design. Cdesian arbitrary Boolean Net-

work on three gened, B andC with the following three Boolean update rules:

Anezt = B+C
Bhewt = AC (3.2)

Cnext - A + B

Here A, c.t, Bnert andC,,.,; denote the values od, B and(C' at the next time step. Al-
though the above rules represent the Boolean network in @aciform, they do not permit
ready visualization of the state transitions or the attnactSuch ready visualization can be
achieved by equivalently representing Equation (3.1)q#e truth table shown in Table
IV or the state transition diagram shown in Fig. 13.

Note, however, that the information contained in the tratbi¢ or the state transition
diagram would not allow one to directly arrive at the Booleadate rules in Equation (3.1)
which is what would be required if one were trying to realize hetwork using logic gates.
This synthesis of Boolean functions from the truth tabladlitated by Karnaugh maps.

In a Karnaugh Map, each current state is represented by aesqud two neighboring
squares have a Hamming distance of unity. This is cruciaee this Hamming distance
separation enables us to cluster large blocks of Ziza the maps. For each current state
(represented by a square), the value of the particular getieinext state is written inside
the square. As an example, the three Karnaugh Maps for thie&wodletwork correspond-
ing to the three update rules in Equation (3.1) are showngnlBi Since we have three
genes with expressions which can only be binary, there isshabeight states and hence

eight squares in each Karnaugh map. For a moment, let us &keurtion on the K-map for



Table IV. Truth Table of the Boolean Network (Egn. 3.1).

A(n) | B(n) | C(n) | A(n+1) | B(n+1) | C(n+1)
0 0 0 0 0 1
0 0 1 1 0 1
0 1 0 1 0 0
0 1 1 1 0 0
1 0 0 0 1 1
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 0 1

A=B+C
(™) &

B=AC
C=A+B

Fig. 13. State transition diagram of the Boolean Network(E2j1).
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Fig. 14. Karnaugh map representation of Table IV.

geneA, denoted byA,,..; in Fig. 14. The possible gene value combinations for theecuirr
time step are shown to the left (genésind B) and to the top (gen€’) of the K-map. Also
it should be noted that the bottom two rows of the K-map cpoes toA = 1, the middle
two rows correspond t® = 1 and the rightmost column corresponds’tc= 1, all in the
current state.

Define amintermas a Boolean product (‘AND’ function) where each gene orats€
plement occurs exactly once. A three gene network, haviagtixeight states, will have
eight possible minterms, and each square in the Karnaughshp support of a unique
minterm. For instance the square corresponding to the®ltaie the support of the unique
minterm ABC (the Boolean produci BC' = 1 if and only if the state i910).

We next use this three gene example to show how the Karnaughepaesentation
can help us in arriving at the Boolean functions for the updates. Let us focus on the
K-map for geneB, i.e. B,..: in Fig. 14. In this K-map, two of the minterms giving
Brewt = 1 are ABC and ABC. By summing (‘OR’ing) the minterms having functional
valuel (the value inside the squares), we can generate the netwackdns. For example,

Byewt = ABC + ABC = AC. In the K-map, this can be done geometrically. As, the two
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neighboring states (squares) have a hamming distantewé can remove the variable
that differs between the corresponding minterms to morepamtty represent the set of
two squares. In the K-map d#,,..;, the states corresponding ),.., = 1 are110 and
100 and their hamming distance 1s So, the product term representing the two states is
simply AC' (We remove the variabl® as bothB and its complemenB appear in the two
mintermsABC and ABC and, thereforep is a non-essential variable). The idea that we
have just illustrated for clustering two minterms in the Kyncan be extended to cluster
additional minterms and obtain a minimal realization of Baolean function in question.
Indeed, this procedure is used extensively in computeitaathre and digital design [67].
In this chapter we will follow the clustering of minterms appch which will give us
the minimal SoP or Sum of Products (‘OR’ of ‘AND’s) form of tlB®olean functions [67].
The prior knowledge presented in the form of signalling petys will furnish us with par-
tially filled Karnaugh Maps for updating each of the genesatlly, such a partially filled
Karnaugh Map will not yield a unique Boolean function, evethe Sum-of-Products form,
so that instead of arriving at a unique Boolean network, wg eral up with a family of
Boolean networks. On the other hand, different pathways m@agduce conflicts in the
Karnaugh Map describing the update of a particular genehiolwcase it would be impos-
sible to arrive at a Boolean network to simultaneously §atll the pathway constraints.
Fortunately, in such a case, the pathway constraints cagldpeed since (i) pathways only
represent empirical observations across different ewpaaris; and (ii) there is no accurate
timing information to go with the pathways, which means thatinitially assumed timing
information in the pathways can be slightly altered to ftatié a solution. In this chap-
ter, we will formally develop these ideas and present a ayatie solution to the problem
of generating a family of Boolean networks whose trajeetsatisfy given pathways or
minor variations thereof. For clarity of presentation, wetfbegin with a simple example

which can be handled in an intuitive way without having taake the complete machinery
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to be developed for the general case.

B. From pathways to a family of BNs: a simple example

For clarity of presentation, consider a Boolean Network BN 4 genesA,B,C' & D so
that each state (or GAP) is given by a binary vector of the form abcd, wherea, b, ¢, d
are eithei0 or 1. Define the ternmpathway segmend %% B to mean that if genel as-
sumes the value then geneB transitions ta in no more tharn subsequent time steps. A

pathwayis defined to be a sequence of pathway segments of thedok# B 2% ¢ In

the above pathway, there are two pathway segm&rﬁ%@b B andB 2% C. We define a
trajectoryto be a sequence of statgs— 1V, — V5, — V3 — Vj resulting from the network
rules beginning at some initial state . Clearly, a trajecfoovides a more complete picture
of the dynamic evolution of the BN resulting from the multildie interactions between
the genes. Pathway information, on the other hand, is neiggilatory nor state space
knowledge; it is marginal and incomplete.

Given the wide prevelance of apriori biological knowledgethe form of pathway
information, an important problem to consider is how to gateea BN whose trajectories
are consistent with a given set of pathways. This is an ilggbinverse problem that could
have multiple solutions or perhaps none. Therefore, owative will be to investigate and
devise an algorithm to generate the set of all possible Boahetworks and to find out the
minor required timing or functional perturbation of the Ipatys if no Boolean network
can be found to satisfy the set of pathway constraints. Wedaik structural analysis for
the Boolean Network synthesis problem. This is a brute fext®ustive procedure but can
be used to generate the complete set of admissible BNs. th&t®&N set can be shrunk by
imposing various realistic constraints such as (i) an uppend on the number of predic-
tors per gene; (ii) an upper bound on the number of attradiidjsteady state distribution

of the attractors from actual experiments (e.g, MicroaEageriments); (iv) concordance
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with experimentally measured time series dynamics (eagdlobtained using Green Flu-
orescent Protein based techniques), and so on. We next usela our-gene network to
illustrate the key ideas behind the exhaustive search guwee

We have chosen an example with four genes since four is thedanumber for which
the Karnaugh map can be visualized in two dimensions. Fgefaretworks, the underly-
ing philosophy is the same although one would have to resarbtmputer programming.

Now let us assume that we are given three pathwayslﬂ B D, A 9 ¢ and

c 2 p. First, we solve the inverse problem for pathway 1; theezafte add pathways

2 and 3, respectively, and shrink the solution space.

State space Realization of pathways

Pathway 1 (A Ml p B D): There are two segments to this pathway. The first segment
A 5 B mandates that if the current state has= 1, then it will transition to a state
with B = 1 in one time step. So the state transition consistent witlp#teway informa-

tion is 1xxx—x1xx!. Similarly, B LY D translates to the state transitiohxx—xxx1.
These are the only state transition constraints mandatg@atinvay 1. These state transi-

tion constraints can be represented in the Karnaugh Mapéantlividual genes as follows.

C C C C
wl . — wl . — wl . — wl . —
Al;Lext' D Bzemt' D Cgemt' D D?Lext' D
X[ X| X| X X[ X| X| X X| X| X| X X| X| X| X
X| X| X| X X[ X| X| X X| X| X| X 11 1111 1
% X| X| X| X B 11111 B X| X| X| X B 111111
X| X| X| X 111111 1 X| X| X| X X| X| X| X

Here, the 4 Karnaugh Maps correspond to the truth tableseioesd, B, C' and D in the
next time step as a function of the current state. As befbeshottom two rows correspond

to A = 1, the middle two rows correspond & = 1, the right two columns correspond to

'Here 'x’ denotes a gene value that could be either 1.
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C' = 1 and the middle two columns correspondi?o= 1, all in the current state. Also, the
superscrippw1 indicates that these K-maps correspond to pathivay

Clearly we see that the value of geAat the next time step does not depend on what
the current state is. In the case of gdpgif the current state igxxx (meaningA = 1),
then the next state will belxx (meaningB = 1). This is shown in the K-map for gene
B where the bottom two rows are filled witls and the remaining entries are eithey or
1. Similarly the value of gené’ at the next time step does not depend on the current state
while the value of gen® at the next time step depends only on the current valug dthe
above K-maps characterize the entire family of BNs satigfyhe constraints mandated by
pathwayl.
Pathway 2 (A L9 C): If we solve separately for pathway 2, we get another set ofdfsn

for each of the gened, B, C' andD. The K-maps are shown below.

Apu)2 . IL| Bpu)2 . IL| Opr . IL| Dpw2 . IL|
next* D next D next D next D

X| X| X| X X| X| X| X X| X| X| X X| X| X| X

X| X| X| X B X| X| X| X B X| X| X| X B X| X| X| X

X| X| X| X X| X| X| X 0000 X| X| X| X

X| X| X| X X| X| X| X 0/ 0l0O|lO0 X| X| X| X

Next we would like to merge the two sets of K-maps to obtain Eps consistent with

both the pathway$ and2. The solution set is shown below.

Anewt : O Bnemt : C Cnemt : C Dnewt : C
D D D D
X| X| X| X X[ X| X| X X| X| X| X X| X| X| X
X[ X| X| X X| X| X| X X| X| X| X 11 11111
%XXXX Bllll BOOOO Bllll
X| X| X| X 11111 0| 0]0|0O X| X| X| X

Pathway 3 (C L9 D): If we solve separately for pathway 3, we get another set of K-



49

maps for each of the genes B, C' andD. The K-maps are shown below.

Apu)3 . IL Bpu)3 . IL Opw3 . IL Dpw3 . IL
next* D next- D next* D next* D

X| X| X| X X| X| X| X X[ X| X| X X| X| 0|0

X| X| X| X B X| X| X| X B X| X| X| X B X| X0/ 0

X| X| X| X X| X| X| X X| X| X| X X| X0/ 0

X| X| X| X X| X| X| X X| X| X| X X| X0/ 0

Clearly, for genesd, B andC, there is no conflict between the two sets of K-maps and

we can easily merge them to get the K-maps shown below.

C C C
Anewt : D Bnemt : D Cnemt : D
X| X| X| X X[ X| X| X X| X| X| X
X| X| X| X BXXXX BXXXX
X| X| X| X 111/11 0/ 0] 00
X| X| X| X 111/11 0/ 0] 00

On the other hand, the two K-maps for geiare in conflict as evident from the K-maps

given below.

pr. 5 prs 5
X| X| X| X X[ X| 0|0
1| 11 X| X0

%%111 4%xxo
X| X| X| X X| X| 0|0

The conflict occurs when the current state i9x (see the entries inside the two circles).
This conflict is not at all surprising: if the current statexid x then B = 1 will try to force

D = 1 at the next time step as per pathwayhile C' = 1 will try to simultaneously force
D = 0 in accordance with pathwa/ One way to resolve the conflict would be to decide

in favor of one of the two requirements. Let us assume (withaas of generality) that
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has higher priority tha? and B has higher priority thad’, and so on. In that case, gene
B will affect the state transition earlier than gefie Accordingly, we decide that in the
above conflict, x1x will transition to xxxl in the next time step so that the K-map bf

gets modified as according to the K-map below.

C

. —
Dnewt- D
X| XNO

1] 1/ 1] 12

% 1] 1/ 112
X| X0

However, we still need to satisfy pathw&y Although it is not possible to meet both
pathway constraints in the same time step, we can relaxtiagiof the third pathway
asC 2% D, which means that’ = 1 will lead to D = 0 in no more thar? time steps.
Accordingly, X1 1x will transition to xx)0 in no more than two time steps. Thus, the com-
plete transition will be x1x— xxx1 — xxx0. However, we know from the merged K-map
of D (after conflict elimination), that onlyx leads to xxX in one time step (see the
two semicircles in the above K-map where the value)isHence, the second state in the
above state transition becoméHs %, leading to the actual state transitiond x— x011 —
xxx0. This set of two state transitions yields two new pathwayghway 4 : BC' 9 B
and pathway 5BC 5% €. The introduction of these two new pathways will lead to the

iterative update of the K-maps until the K-maps convergestahle set of BNs.

1. |Iterative update of K-maps

Now, pathwayst and5 mandate that whenever the current state becorhes, xhe next
state will be 11 which means that genB = 1 and gene&”’ = 1 will lead to geneB = 0
and gen&’ = 1 in the next time step. This again conflicts with the earliemigps of genes

B andC.



51

Conflict in K-map of gene B: If the current state i$11x, then a conflict arises in the K-
map of geneB. Specifically,A = 1 in the current state mandat&s= 1 in the next state,
whereasBC' = 1 in the current state mandatés = 0 in the next state.The conflicting

Karnaugh Maps for these two cases are shown below along kdtimarked conflict zone.

C . C
Buewt:  § ¢ Bh T
X| X| X| X X| X| X| X
X| X| X| X X! X[ 0|0
Aﬁll@l} Aﬁﬂ@@
11111 X| X| X| X

As before, we once again apply the conflict resolution rulee 88tB = 1 in the next

state whenBC' = 1 in the current state to obtain the modified K-map for géhshown

below.
C
. —
Bne:ct- D
X| X| X| X
X| X 0/0
fﬁ 1] 13D
111]1]1

This mandates the state transition:1x—x1xx. As before, we have to relax the timing
constraint of pathway 4BC 9 Bis changed ta3C' 19 B, Consequently, the state
x1xx has to be followed by the stat@xx. However, we know that a necessary condition
for B = 0 in the next state is that = 0 in the current state. So, we get another new
pathway, pathway 6 ABC B9 A 1tis clear that although the original three pathways
did not yield any update rules for gere the conflict resolution rules that we have applied
have given rise to a new reverse pathway which imposes areipgda on genel.

Conflict in K-map of gene C: If the current state ig11x, then a conflict arises in the
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K-map of gene” as well. SpecificallyA = 1 in the current state mandatés= 0 in the
next state, wherea8C' = 1 in the current state mandatés= 1 in the next state. The con-

flicting K-maps for these two cases are shown below alongtivéimarked zone of conflict.

C C
Onex: pr5-
t D next D
X| X| X| X X| X| X| X
X| X| X| X X| X| 1] 1
0| 0(0] 0 X| (1] D
0/ 0/0|0O X| X| X| X

As before, we once again apply the same conflict resolutite rwe setC' = 0 in the

next state wheml = 1 in the current state to obtain the modified K-map for génghown

below.

C
. p—

Cnemt- D
X[ X| X| X
X Xl 1|1
1o oo
0/ 0/0/0

This mandates the state transitiorn:1x—xx0x. As before, we have to relax the timing
constraint of pathway 58C' s changed to:BC 2. Consequently, the state
xX0x has to be followed by the state bx However, we know that a necessary condition for
C' = 1 inthe next state is that = 0 in the current state. This leads to the same pathway
-ABC 18 A, as before. Fortunately, in this simple example, the cdanfigolutions in the
K-maps of B andC both lead to the same pathwéyThis means that whenevaiBC' = 1,

the next state will b@xxx. Accordingly, the K-map of gend is modified as shown below.
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Anezt: DC
=
X| X| X| X
X| X| X| X
%xxoo
4 X| X| X| X

Finally we have reached a stage where there are no more ¢smiflithe K-maps and the

final K-maps are shown below.

e e e e
Anex: Bnex: One:l?: Dnex:
¢ Db ¢ D ‘D, ¢ D
X| X| X| X X| X| X| X X| X| X| X X| X 0|0
X| X| X| X X| X[ 0|0 X X 1|1 11 1111
%XXOO iRRRE Aol 00/0 A
x| X[ x| x 1111 0] 0] 0/ 0 x| x| 0] 0

Thus, with minor modifications of the third original pathwaye have solved the inverse
problem of finding the class of Boolean Networks. The procedan be extended to find
the complete set of BNs consistent with any number of givénvpays. In this problem, we
can see the shrinkage in the number of possible Boolean netwto start with, the search
space had a cardinality af*. After incorporating the pathway knowledge, the cardiyali
of the search space shrinks28.

As we will see later, the cardinality of the search space eafutiher reduced by im-
posing constraints on the number and relative significahtteeattractors, the connectivity

of the network, etc.
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C. From pathways to a family of BNs: the general procedure

1. Definitions and preliminary observations

In section B we defined a pathway and pathway segments onriamstof single genes.
The solution to the simple example presented there was alsedbon an intuitive proce-
dure. Our objective here is to develop a systematic geneogkedure which can yield a
Boolean network consistent with an arbitrary number of patys. Towards this end, we
next introduce some definitions and make some preliminasgations.

For any Boolean functioifi, define the support of, denoted byupp(f), to be the set
of all argument values that makfeassume the value df Also, for any Boolean function

S, and for a Boolean value < {0, 1}, define

S ifs=1
S, = (3.2)

S ifs=0.

The functionS, defined in Eqn. 3.2 can be thought of as being the indicatatiom of the
set{z: S(x) = s}.

Let us now generalize the pathway segment definitions predesarlier:

1. A Simple Pathway Segmeistdefined ag” e B, whereB is a single geney’
can be an arbitrary Boolean function amd € {0, 1}. Unless otherwise indicated,
the termpathway segmenn this chapter will refer to a simple pathway segment.
A simple pathway segment can be implemented using only tiheald-of the target

gene, i.e. gend in this case.

2. A composite pathway segmestdefined ast’ 2%¢ 7 where bothY and Z are

arbitrary Boolean functions angl = € {0,1}. We next develop the theory for de-
composing a given composite pathway segment into a numbgingfle pathway

segments since only the latter are directly implementasileguK-maps.
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Without any loss of generality, let us assume= 1 in the above composite pathway
definition. Using Equation (3.2), the composite pathwaynsegtY % 7 can be
alternatively written ag” Lyl Z,.

Furthermore/Z. can be expressed in the minimal SOP (Sum of Products) forin [67

Z, =P +P+ -+ P, (3.3)
where eachP;,i = 1,2,--- , k is a Boolean product term of the form
D= AjAL - AL (3.4)

and each4§ is either a gene or its complement.

From the above analysis it is evident that-23 P=Y Lyt 7. (becauseP; =

1 = Z. =1). So, anyP,; can replaceZ, producing the desired pathway effect. For
the sake of simplicity we will choose the product tefty having the least number
of genes. The resulting composite pathway segrﬁerlqﬂ P,, can be decomposed

into /,,, simple pathway segments that have to be simultaneoussfiedti

1:y,1

Y 225 Am
1:y,1

Y 225 AT

y 25 A (3.5)

1:y,1
y 254
m

Thus the K-map implementation of thelsesimultaneous simple pathway segments

will provide a non-unique realization of the original consie pathway segment:

liy,z
—

Y Z.

3. A pseudo pathwais defined to be any pathway that can be inferred from a given



56

Table V. Priority Ordering

D

W
(@]
(@]
O

AlA|B

Boolean network. The update rules for a Boolean network matnthat the state
(or GAP) transitions occur in a particular sequence. By mnaity focusing on the
transitioning of particular components of the GAP, one came up with inherent

pathway relationships, which we refer to as pseudo pathways

2. Priority ordering between Boolean functions

In section B, we loosely introduced the notion of priority@mg genes for deciding which
gene would preferentially act on a target. Since differemegcombinations, and not nec-
essarily individual genes, could be acting on a targetneisessary to generalize the notion
to Boolean functions of genes. Such a generalization isechout in this subsection by the
introduction of what we refer to asmiority index

From biological understanding, we know that all genes doimfiience a particular
target gene to the same extent. As an example, suppose gemekB both influence the
status of target gen€ in some way but with different relative abilities. Defipdority as
the power of each gene to influence others in the pathwayityri® a qualitative term and
cannot be used for conflict resolution unless we quantify #ame sense. Accordingly, we
next introduce griority indexwhich will be employed as the decision making parameter
in times of conflict resolution. Suppose that from our qadive knowledge of genes and
pathways we can make a list of all the genes according to plogvers. This is called the
priority list. As an example, suppose the priority list for the four gede®. C, D and
their complements!, B, C, D are as shown in Table V:

Here A has the highest priority followed byl and so on. Symbolically we write
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A>A>B>B>(C>C>D > D. We assume that the priority ordering is transitive

which means thatifl > B andB > C, thenAd > C.

We next extend the notion of priority ordering between gdndkat between product
terms and ultimately to that between two arbitrary Boolaarctions. To do so, define the

priority indexbetween two gened and B by:

1 fA>B
p(A, B) =
0 if A< B.
Next we define the priority index between a product téfra= Y;Y,Y3Y,..Y; and a gene3
as:
l
p(Y,B) =1/1> p(Y;, B). (3.6)
=1
Finally we define the priority index between two product terth = Y;Y5Y3Y,..Y; and

Z = ZlZQZ3Z4..Zk as.

p.2) = Y. Z)
1ﬁ
= 2.0 V7). (3.7)

i=1 j=1
We next extend the priority index definition to the case ofteaiby Boolean functions

S; and.S,. To do so, we make use of the well known fact from Boolean akyéfiat any

Boolean function can be represented in a minimal Sum of Ritsd$oP) form. Suppose

the two functionsS; andS; are expressed in such a form as:

S, = Pi+P,+Py+---+P,

Sy = Q1+ Q2+ Qs+ -+ Q. (3.8)

Furthermore, suppose th&f is the minimal product term %y, i.e. the term having the
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minimum number of genes or gene’s complements. Conseguéhttorresponds to the
maximum number of minterms (unit squares) in the K-magpof Similarly, assume that

(), is the minimal product term if¥,. The priority index betweef; and.S; is defined by

p(S1,52) = p(P;, Q;)- (3.9)
The priority indices defined above satisfy the followingpedies:

O S p(Sl,SQ) S 1

p(S1,82) =1 = p(Sa, S1). (3.10)

Based on the priority indices just defined, the priority oinlg between two Boolean func-

tions.S; andS, can be made as follows:

> SQ if p(Sl, SQ) > 0.5

< S, otherwise.

Before concluding this section on priority ordering, we iti@m that, as a general rule, if
we come across a composite pathway segment, then the hpgloegy will be given to ac-

commodate that. This is because a composite pathway segivestise to several simple
pathway segments that have to be simultaneously satisfibdfzrefore, it is reasonable

to give it the highest priority.

3. Conflict and its resolution

In this subsection we generalize the conflict resolutiorcedure, introduced in section

B, to the case where we have an arbitrary number of genes aadbdarary number of

pathways. Define aonflictas a situation when for a new pathwh’yl:—y’li B, whereY

is a Boolean function an@® is a gene, there already exists a Boolean functiowith
1:1,b

supp(V) C supp(Y,), supp(¥) # supp(Y,) such thatl — B. We next explain how

such a conflict can arise.
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We have seen in section B that if the truth table mandated atranyay segment does
not contradict the existing truth tables for the network,(bupp(¥) = (), then there is
no problem in incorporating such a pathway. However, if teendnds of a new path-
way segment contradict the already existing truth tableesli.e,supp(¥) # (), then a
conflict arises. An adhoc procedure for resolving such a worifir the simple example
was demonstrated in section B. Here we develop a systenrategure for handling the
general case.

Suppose at a particular stage while determining-@ene Boolean network satisfying
pathway information, we come to a new pathway segm’eﬁiy—’li B wherey, b € {0, 1}.
This pathway segment can be implemented in the K-map for gen&pecifically, we
would try to insert the valué in every minterme supp(Y,) in the K-map of genes.
While doing so we may discover a set of mintermsimp(Y,) whose values are already
in the K-map of gend3. We can combine the entire set of such minterms and sum them up
to obtain a Boolean functiow such thatupp(¥) C supp(Y,). The situation is graphically
illustrated in Fig 15.

Clearly, in the above K-map of gerig, the minterms wher&, ¥ = 1 can be unam-
biguously assigned the valueiofThe conflict will arise in the subsetipp(¥). Resolution
of this conflict will require us to determine the priority @mihg betweert, and¥ which
can be carried out by evaluating the priority norm betwe@&sé¢htwo Boolean functions.

Depending on the priority ordering, we will adopt one of thve following options:

1.Y, > ¥ : In this case)Y % Bis given higher priority and all the minterms
e supp(Y,) will be assigned the value However, to satisfy the inherent pathway
segmenty 218 B, in the next time step, we generate another constraint.ri¢lea
get to the value of in the truth table of gen®, the trajectory would have to traverse
to the states which can lead # = b in one time step. So, the additional pathway

we obtain is a composite pathway segmeht:li% S(b), whereS(b) is a minimal
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(1)

supp(¥)

K—map of B

Fig. 15. Conflict in K-map of gen&.

SoP set in the K-map aB having valueb. That means this set inherits an already
implemented pseudo pathwayb) b B which gets rid of the conflict. If, however,
no suchS(b) can be found in the K-map a8, then the problem is unsolvable and

the algorithm is terminated.

. ¥ > Y, : In this caseV 1 s implemented first. The minterms supp(\V) will

be assigned the value However, to satisfy the other pathway segment in the next
time step, i.eY 2yb B, we generate the other constraint. Clearly, to get to theeval

b in the truth table of gen®, the trajectory has to traverse to the statesipp(Y;) N
supp(¥). So, the additional pathway that we obtain out of this reapis: ¥ ki

Y, V. This being a composite pathway segment, one would havectiujgose it into

simple pathway segments before proceeding further.
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4. Total conflict and cyclic total conflict

In this subsection we wish to demonstrate conflict resaluiiothe extreme case when
supp(V) = supp(Y,). This situation is called #otal conflictand we denote it by the
notation

vy %" B. Since in the case of a total conflietpp(Y,) N supp(¥) = ), only the
first method presented in the previous subsection can be Uibéxlis demonstrated in the
following example.

Example: Consider d gene network with gened, B, C, D so that each state (or

GAP) is given by a binary vector of the forin = abed wherea, b, ¢, d € {0,1}. Suppose

that geneB currently updates according to the Karnaugh map shown below

C
BTL@SC :
¢ D

1/1]0[0
1] 1] x| x
%xxoo
4 1/1/0/0

Let us now introduce the new pathway segment L1 B. In the notation of section
3,Y = AC,b = 1andY; = AC. Clearly the pseudo pathway we get from the Karnaugh
map corresponding to the minterms havitg = 1is AC' 0 B sothatl = AC. Thisis
a good example of a total conflict which cannot be resolveddirect fashion. However,
examining the truth table of gerg, we get some useful information that could facilitate a
solution.

Without any loss of generality let us assume that whenevetah ¢onflict arises, the
new pathway segment always gets the highest priority. USirggpriority ordering, the

truth table of gene3 is modified according to the K-map below.
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C
BTL@I:
¢ D
111/0/0
1] 1] X[ X
X[ X111
111]1]1

The minterms in this new truth table having valuare ABC'D and ABC'D which can
be ‘OR’ed to get the product termd3C. So, the new composite pathway segment which
will resolve the total conflict is given byAC B ABC. Thisis a composite pathway

segment and will lead to three simple pathway segments: = A, AC' “} B and

AC =25 ¢ which are to be implemented simultaneously.

Now it may happen that while trying to remove a total conﬂcﬁc%ﬁéb B, we may ar-
rive at some other total conflicts liké 1f£>d D,FE lilf F, .. so on. These total conflicts and
their derivative total conflicts can be represented in acti graph structure. The total
conflicts arising from the ordinary conflicts are the staytmodes of the graph. Then all the
derivative total conflicts will become the children of theresponding parent nodes. We
can attempt to solve the total conflict problem in an iteetivay by growing the graph.
This iteration will continue until either the graph a&yclic and converges to a solution
when there is no child node left, or the graph becomes cywhen we say that there is a

cyclic total conflictin the problem and the problem cannot be solved. These twatgnhs

are depicted in Fig 16.

D. Simple example revisited

The adhoc solution to the smallgene BN synthesis example presented in section B was
mainly based on our intuition. We now apply the systematacedure of the previous
section to the same example and highlight the differencesst, Rve point out that the

systematic procedure begins to deviate from the earlieo@adime only from section C.
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Node: Total Conflict Edge: Solution of Total Conflict

Cyclic Total Conflict

DAG: Solution exists for the BN Cyclic Graph: No Solution!!

Fig. 16. Solvability of the conflicting pathway problem.

Hence it is appropriate to start our analysis from there.

The adhoc treatment prior to section C tells us that the tweo pathways4 and5
have to be satisfied simultaneously as otherwise the statsitions may not be the same
as desired. To ensure that, we assign the highest prioritiyetancorporation of the two
new pathways.

Iterative update of the truth tables: Recall that the K-maps for this example prior to

section B.1 are given by the K-maps below.

C e e e
Anex: Bnex: A Onex: A Dnex: S
£ D £ D ¢ D ¢ D
X| X| X| X X| X| X| X X| X| X| X X| X| 00
X| X| X| X X| X| X| X X| X| X| X 11 1111
%xxxx Aaaafs Aol 00/ 0 A
x| X[ X[ X 1111 0 0[0/0 x| x[ 0] 0

Also, the two pathways yet to be incorporated paghway4 : BC B andpathway5 :
BC 2 O. These two pathways are to be solved simultaneously andthatthighest
priority.

Conflict in the truth table of gene B: While trying to incorporate the simple pathway
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segmentt, we get the conflict shown below for gee

C C

Bext:  p B p
X| X| X| X X| X| X| X
X| X| X| X X| X| 0|0
1/ 1(1] D x| x((0] 0
111/ 1|1 X| X| X| X

Using the notation introduced in section C.3, we haye= BC and the new pathway
segment isY, Y9 B, The conflicting functionV is given by = ABC. Clearly,
supp(¥) C supp(Yy). SinceYy > ¥, we putl in every minterme supp(Yy) = supp(BC).

The resulting K-map is shown below.

C

. —
Bne:ct- D
X| X| X| X
X| X 0/0

4%1100}
111]1]1

Next, we have to find a minimal sét(1) in the K-map which will suggest a new pathway
segment for resolving the conflict. To do this, tteein the K-map ofB can be clustered as

shown below.

C
. —=
Bnemt- D
X| X| X| X
X| X| 00
Bj{1100
1 Y 1]

From this clustering, we obtain the sgt1) = AB + AC which suggests the compos-
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ite pathway segmenty a S(1).

1:1,1

Now ¥ 225 S(1)

& ABC =% AB + AC

~ ABC 2 AB (choosing one)

& ABC 2 A (3.11)
& ABC 2 B.

Thus, we get two new pathway segments : pathwayl BC' % A and pathway 8
:ABC 28 B,
Conflict in the truth table of gene C: While trying to incorporate the simple pathway

segment, we get the conflict shown below for getke

C C
Cnem: pr5:
t D next D
X| X| X| X X| X| X| X
X| X| X| X X| X| 11
0| 0(0] 0) x| x[(1] 1)
0/ 0]0flO0 X| X| X| X

Following the same procedure as we did for pathwayve see that; = BC and the
new pathway segment i YL 0. The conflicting functionl is given byl = ABC. As
before,supp(¥) C supp(Y7). SinceY; > W, we put al in every minterme supp(Y1) =

supp(BC'). The resulting K-map is shown below.

O|O| X| X

7

Next we have to find a minimal se&t(0) in the K-map which will suggest a new path-
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way segment for resolving the conflict. To do so, tlsen the K-map of” can be clustered

below.
C
. =
One:ct- D
X| x| x| X
X| x| 1|1
4%0 1)1
0]/ 0/ 0] 0

From this clustering, we obtain the sgt0) = AB + AC which suggests the compos-

ite pathway segmentt i S(0).

1:1,1

Now ¥~ S(0)

1:1,1

ABC =5 AB + AC

1:1,1

ABC = AB (choosing one)

1:1,1

ABC 253 A (3.12)

1:1,0

ABC —= B.

B S (|

Thus, we arrive at the same two pathway segments as befoneygpar : ABC 2 A and

pathways8 :ABC 0 B,
Solution of pathways7 and 8: There are no additional conflicts introduced while trying

to incorporate these two pathway segments. The implementitr pathway6 is shown

below.
C
Anex:
t D
X| X| x| x
X| X| x| x
X x|T] 1)
X| X| x| x
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Pathway7 :ABC % Bhas already been implemented in the K-map for gBras shown

below and so no additional conflicts are created.

C
BTL@I :
¢ D

I

| XX
| X[ X
= OO X
= O|O| X

Thus, the final set of K-maps, devoid of all conflicts, is shdvetow.

A ext: ¢ Bieat: ¢ Chext: ¢ Dot ¢
nexr D nex D nex D nexr D
X| X| X| X X| X| X| X X| X| X| X X| X/ 0|0
X| X| X| X X X/ 0|0 X X{ 1|1 111111
%XX11 A 10/0 Aol o1t Aaaafs
ARBE 11[1]1 000/ 0 x| x| 0] 0

E. Network design to satisfy additional constraints

The pathway information constitutes prior biological knedge and in the previous sec-
tions we have shown how to generate a family of Boolean nddsvoonsistent with the
given pathway information. However, the cardinality ostFamily is still quite large and it
is reasonable to incorporate other available knowledgesapdrimental results to further
shrink the size of this family. One relevant piece of infotima that can aid in this is the
number, location and relative significance of the attract&ince the procedure developed
earlier provides us with the final Karnaugh maps for each gene can easily check to
see if the attractor constraints can be satisfied. This i¢ readily demonstrated using our

earlier example.
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1. Imposition of attractor constraints

Consider the same example that we considered in section Bextabn D to construct a
family of BNs from pathways. Now, let us additionally assutinat experimental data have
given us a steady state distribution. For a BN, for the stastalg behaviour, one would ex-
pect zero probability mass in the transient states and romfnass only for the attractors.
However, due to the fact that the system is not an ideal BNsfplysa more general Prob-
abilistic Boolean Network which is equivalent to an ergolliarkov Chain), there could
be some non-zero mass in the transient states too. Also therbe some noise in the
data as well. Therefore, for inferring a BN from experiméni@ta, a threshold should be
established for extracting the attractor states. Suppgwdeekperimental data gives us the

steady state distribution shown in Fig 17 for our four genvoek. Furthermore, suppose

+«—— Steady State Distribution
— — Threshold
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Fig. 17. Steady state distribution and threshold.

that for this example the threshold is chosen td)li. This yields the attractor states:
0010, 0101, 1011 and1101. Next we need to check whether these attractors are camsiste

with the family of BNs that we determined in section D. For #ina&tor to be consistent
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with a family of BNs, the rules of regulatory interaction Wween the genes of each network
should guarantee that an attractor transitions only tdf.it§ais can be easily verified from
the truth table for the update of each gene. We see that thtke attractors, namely010,

0101 and1101 are consistent with the truth tables shown below.

Anewt . D Bnewt . D Cnemt . D Dnemt . D
x| x| x(0) x| x| x|((0) x| x| x|(1) x| x| 0(0)
x|[(0] X| X x(1) 0] O x(0 1] 1 1(D 1)1
x(1 1)1 1(1 0/ 0 0(0 1]1 1(D 1)1
X| X] X| X 11111 0/0/0]0 X/ X{ 0/ 0

However, the attractotO11 is not consistent with these truth tables, thereby sugugsti
that it may not be a valid attractor. To remove the stidtel from the set of attractors
obtained from the data, we can increase the threshdld 19 say. Thus, the family of BNs
that we have constructed based on pathway information ges\a useful way to eliminate
attractors whose steady state mass is near the threshaolel v@n the other hand, if we
get some attractor state whose steady state mass is verysaigh.9) and it still contra-
dicts the truth tables obtained from the pathway knowletiyggn we have every reason to
guestion the validity of the pathway information that hasrberovided to us. So, in that
case, the steady state distribution data can be used tsdhsesccuracy of our pathway

information.

2. Boolean network from predictors

Suppose that in the above example, one imposes the additionstraint that the maxi-
mum number of predictors allowed for each geng.iSuch an upper limit on the number
of predictors per gene could be motivated from the bioldgicasideration that the pro-
moter region for a gene only has enough room for at most ongetifanscription factors

to bind. We currently do not have a systematic procedurenigosing such a predictor
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constraint. However, arbitrarily putting in some 1's and f@r the x’s, it is possible to use
the four truth tables derived in section E.1 to arrive at aoeable Boolean Network by
using a Karnaugh Map. For instance, by considering the talites (K-maps) as shown
below, taking the circledhintermsand filling up all the x’s by, we obtain the the Boolean

rules (Eqn.(3.13)).

C C C C
Anezt- D Bnezt- D One:ct- D Dne:ct D

X| X[ X| 0 A X[ 0 X| X[/ 1] A0/ 0

x| 0] x| x 1/ 1 o]0 x| O[T ¥ A 1] 1]

A 11D 11 o]0 o[ o\ ¥ MERE

X| X| X| X ([ Y 1]7D 0/ 0]00 \11 %/ 00
Anezt = AB
Bnezt = AB+C
Chest = (A+ B)C (3.13)

Dnezt = B+C

This is a Boolean network with at most three predictors paegmd it satisfies the original
pathway constraints, after some minor timing modificatigksdiscussed earlier, such mi-
nor timing modifications are inconsequential since biatagpathway information usually
does not come with strict timing. Next we can determine thmetior and attractor basins
for the generated network. For the network given in Equat®h3), the state transition
diagram and the attractors are shown in Fig 18. From the staisition diagram in Fig
18, it is easy to verify that the state trajectories obey thgimal pathway constraints, of
course with the timing possibly altered. For instance, m®rshe state trajectori010 —

0100 — 0101 marked in purple in Fig. 18. The red numbers in this trajgcstrow that the
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Fig. 18. State transition diagram for the Boolean netwodcdbed by Equation (3.13).

following pathway relationships are realized:= 1 implies B = 1 andC' = 0 after one
time step.B = 1 implies D = 1 after one time step. Similarly, the blue numbers show the

realization of the pathway relationshigs:= 1 implies D = 0 in one time step.

F.  Modeling pathways involving the p53 gene

Some of the most widely studied pathways in molecular bipiagolve the tumor suppres-
sor genep53. In fact, p53 is the “Master Guardian” gene[8] which playsesywimportant

role in cancer. Indeed, it has been observed that p53 is etuiaB0% — 50% of com-

monly occurring human cancers [8] and more importantly sparés of the p53 pathways
are altered in almost all types of human cancer. Thus, thardyeal behavior of p53 and
its tight regulation has become one of the most widely stligi®blems in cancer biology
[68, 69, 70, 71, 72, 73]. Unlike many other important regediagienes, p53 is constitu-
tively expressed in the cell. However, the p53 protein catregion is low under normal
conditions. This constitutive but low expression is maimtd by the Mdm2 protein: p53

being a transcription factor expresses Mdmz2 which in turmdbito p53 and promotes its
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ubiquitination and degradation [5]. Since the proteintirointeractions occur on a much
faster time scale than transcription and translation, teegnce of active p53 is usually not
detected in a normal cell under normal conditions. The lgicll reason for the consti-
tutive expression of p53 is that it facilitates a fast reggom the face of extreme stress:
it is much easier and faster to stop the degradation of p5&ipr¢by blocking the neg-
ative regulators) than turning on the un-expressed p53.g€he primary role of p53 in
mammalian genomes is its function as a transcription fadciohundreds of downstream
genes. The expression of these downstream genes can neockllatycle progression, re-
pair damaged DNA, induce senescence and apoptosis. Aatkthiicussion of the cellular
processes mediated by p53 can be found in [8]. Although therdéundreds of genes that
are downstream of p53, our main goal here is to model the dysawh p53 itself. So, we
focus on the pathways known to be important for p53’s reguiat-rom [3], we get some
major pathways involving p53 which are activated in the eneg of double strand DNA
breaks. These pathways are shown in Fig. 19. In the followirzsections we develop the
Boolean Network from the pathways of Fig. 19 using the metbioithis chapter. There-
after, we simulate the dynamic behavior of the resulting BiNally we validate our model
by matching our model’s time course behavior with the p3ateel experimental results

reported in [74, 5].

1. Boolean network modeling of the p53 pathways

1:1,1 1:1,1

The pathway segments from the pathways in Fig.19atkia_dsb — ATM,2. AT M —-

P53, 3.p53 5 Wipl, 4.p53 25 Mdm2, 5.ATM 8 Mdm2, 6.Mdm2 2 p53,

7 Wipl E24 Mam2, s Wipt B8 AT M.
Here the external signal is dritsb, the DNA damage input. The state space is defined as

[AT M, p53, Wipl, Mdm2]. Using the methodology developed in earlier sections we get
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the following Boolean update functions for the 4 genes:

AT Myery = Wipl(ATM + dna_dsb)
PO3next = Mdm2(ATM + Wipl)
Wiploes = p53 (3.14)

Mdm2,e.e = ATM(p53 + Wipl).

This Boolean network will have two different contexts basedthe value of the external
signaldna_dsb.
If dna_dsb = 0, we get the state transition diagram of Fig. 20.

We can see the state transition diagram of the Boolean nletvas only one attractor
0000. Now our prior biological knowledge [8] indicates that insgimce of any stress, all
four proteins are required to be inactive in the steady stte presence of the singleton
attractor0000 is consistent with the biological information. Next let weesvhat happens
if dna_dsb = 1i.e, the DNA damage input turns on. In this case, we arrivhatransition
diagram shown in Fig. 21 which corresponds to the otherastarg context. Notice that
here there is a single cyclic attractor involving cycliciadion in the expression patterns of

all the four genes.

2. Model validation using the published literature

To further understand the functionality of the context #amesBoolean network of Eqn.
3.14, we carried out the simulation described next. Supfiagenitially the network state

is evolving in the absence of the DNA damage signal and thatcartain time (say, t =
25 time steps), the DNA damage sigmala_dsb is activated. Let us further assume that
the DNA damage signalna_dsb returns to O at time = 75 time steps. The simulated time
course behavior of the expression patterns of the diffegenes is shown in Fig. 22.

From this simulation we can see that the proteins initiadlgah the steady state of
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Fig. 19. ATM-p53-Wip1-Mdm2 pathways (From [3]).
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Fig. 20. State transition diagram for the Boolean Networthefp53 pathways under normal
conditions.
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Fig. 21. State transition diagram for the Boolean Networkhefp53 pathways in the pres-
ence of DNA damage.
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Fig. 22. Oscillation of the proteins in the presence of theAlldmage signal.

deactivation if the cell doesn't receive any stress caubBiNg damage. However, once the
onset of DNA damage occurs, the oscillation starts. Funtioee, the oscillation continues
until the DNA damage is repaired (or the cell dies). The pattd the oscillation is also
unique. AT M leads the oscillation followed by53, Wipl and M dm?2 in that order. This
dynamic behavior of the four proteins is consistent with lghied experimental results
from the p53 literature.

Indeed [74] discusses the experimentally observed osoitlsbetweep53 andM dm?2
in the presence of external stress. In that paper it is alsorted that thel/dm?2 protein
response lags behind th83 response. [4] reports an interesting time series expetimen
of p53 and M dm?2 oscillation and the results are shown in Fig. 23. Simila8jreports
the DNA damage induced oscillation patternsdaf M, p53, Wipl and M dm?2 along with
some other proteins. Fig. 24 demonstrates thaptieresponse lags behind th&l M

response; Fig. 25 demonstrates thatthém?2 response lags behind tp&3 response; and
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Fig. 23. Timelapse fluorescence images of one cell over 28h 2iGy of gamma irradia-
tion. Nuclear p53-CFP and Mdm2-YFP are imaged in green athdrespectively.
Time is indicated in hours. Adapted by permission from MdtamiPublishers Ltd:
[Molecular Systems Biology] [4], copyright (2006)
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tubulin

Fig. 24. Immunoblots of ATM-P(S1981), Chk2-P(T68), and p&3etics in MCF7 cells
irradiated with 10Gy of gamma-irradiation. Reprinted frig Copyright (2008),
with permission from Elsevier.
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Fig. 25. Immunoblots of Chk2-P(T68), p53, and Mdm?2 kineticSICF7 cells treated with
400 ng/ml NCS every hour. Blots are representative of trgté experiments.
Reprinted from [5], Copyright (2008), with permission frdgfsevier.
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Fig. 26. Immunoblots of p53 and Wipl kinetics in MCF7 cellsadiated with 10 Gy of
gamma-irradiation. Reprinted from [5], Copyright (2008)th permission from
Elsevier.

Fig. 26 demonstrates that thiipl response lags behind th83 response. Thus the net-
work that we have generated based on only p53 pathway infamia able to qualitatively
reproduce experimentally observed p53 behavior from phbtl literature. This is a very
positive development which suggests that the full poténfithe approach presented here

remains to be explored.

G. Concluding remarks

In this chapter, we have presented a complete solution t@rhielem of determining a
family of Boolean networks that can generate trajector@ssistent with given pathway
information. The solution makes use of the Karnaugh mapzagadn of a Boolean func-
tion. In the case where the different pathways can be imphk@devithout any conflicts in
the associated Karnaugh maps, the generation of the fafiBlgalean networks is straight-

forward. When a conflict does arise, a systematic procedupeeisented to resolve it by
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slightly perturbing the original pathway information. Tresolution of a particular conflict
may lead to the emergence of additional conflicts furtherrdsiveam, and the resolution of
these conflicts would require repeated use of the same daefliclution procedure. When
the resolution of the progressively downstream conflicasléeback to one of the original
conflicts further upstream, the problem is not solvable. llother cases, the procedure
presented here converges to a family of BNs whose trajest@ie consistent with the
given pathway information or minor variations thereof. Aswbnstrated here, further re-
duction in the cardinality of the family of networks can bé@ved by imposing additional
constraints such as the number and relative significancheottractors, upper bounds
on network connectivity, etc. The approach developed is ¢hapter has been applied to
the well studied p53 pathway and it has been shown that thatiregs network exhibits
dynamic behavior consistent with experimental obsermaticom the published literature.
We believe that the results presented here and their fukbeasions will significantly

impact all areas of biology where prior knowledge is pregetite form of signalling path-
ways and where genetic regulatory networks are used to maalél/ariate gene relation-
ships. In particular, all of the currently available resutt the genomic signal processing
area pertaining to inference and intervention in genetjtlaory networks will have to
be revisited to permit the incorporation of valuable pathwdormation. For cancer ge-
nomics, this would mean that in future, intervention desigruld be carried out with more
accurate and more easily inferred models thereby grealigiresing the likelihood of these

methods succeeding in practice.
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CHAPTER IV

FAULT DETECTION AND INTERVENTION IN BNS*

In this chapter, our goal is to go a few steps further from whee left in CHAPTER
lll. Here, we are not content with just producing a Booleabhwaek model from given
pathway information. Instead our objective is to utilizelsw model to (i) enumerate all
the possible fault scenarios; (ii) use the response of thaehto a test input to determine
which fault or class of faults has occurred; and (iii) finallse this information to prescribe
an appropriate therapeutic action. To keep the discussaadically focussed, we will
consider two biological examples, one for a combinator@blBan network and the other
for a sequential Boolean network. The chapter is organigddlws. In section A, cancer
is modeled as an ensemble of faulty Boolean Networks. In@se&, drug therapies are
modeled as interventions to alter aberrant network behamanating from a fault. Section
C and D gives the first biological example (growth factor nagelil signalling pathways)
showing the power of our methodology. Specifically, faustsslification and intervention
results for our example are presented. Section E gives ttumdeexample (p53 mediated
DNA-damage pathways) showing the effectiveness of ouragmbr for sequential Boolean

networks as well. Finally section F contains some conclyidamarks.

A. Modeling cancer as faults in the signaling network

In molecular biology, the marginal behavior of the normal isedescribed using signaling
pathways. Boolean networks represent a paradigm that casdukto incorporate this in-
formation to model the overall dynamic behavior of the cedinsistent with the pathway
*Part of this chapter is reprinted with permission from “Cantherapy design based
on pathway logic” by R. Layek, A. Datta, M. Bittner, and E. Roi@herty, 2011, Bioin-

formatics, vol. 27, no. 4, pp. 548555, Copyright [2011], @xf University Press.
(http://bioinformatics.oxfordjournals.org/content/2/548.short)
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knowledge. However, the translational motivation behhmd type of dynamical modeling
is to facilitate corrective intervention when the cell bedsmabnormally. Cancer is actually
a disease of several faults in the network. A ‘fault’ is defirfgy any structural error of
the physical system, such that the dynamics become abeF@anéxample, the accumula-
tion of point mutations in the genomic DNA may cause the digggpathways to behave
erratically leading to proliferation. On the other handnstimes the fault may not be in
the genetic code of a particular protein, but rather it i@ protein synthesis factory ribo-
some, or in some control mechanism of alternative splicirige fault could also be in the
chromosomal spindle resulting in unequal splitting of theomosomal DNA between the
two daughter cells during cell division. Any of these di#fat kinds of errors could cause
structural changes in the regulatory network, thereby ghmanits dynamics and steady-
state behavior. In this section, we try to model differeqtety of biological errors within
the Boolean network (digital electronics) framework. In@oBan Network, the faults can

be broadly divided into two types.

e Stuck-at Fault: A stuck-at fault means that a point in thevoek circuitry is stuck to
a particular value. As a result, the incoming informationaslonger communicated
beyond the faulty point; instead, only the stuck-at valygassed on to the outgoing
port. Clearly stuck-at faults can commonly be of two typeduck-at-1’ faults and
‘stuck-at-0’ faults with obvious interpretations. We nexésent an example to show
that modeling via stuck-at faults makes biological sense.

In the Mitogen Activated Protein Kinase (MAPK) pathways,iaportant signaling

protein kinase is the Ras protein. Ras is phosphorylateddnyrapstream proteins
(by Growth factor mediated pathways). Once activated, Régates downstream
proteins which have transcriptional control on cyclin DXdrence cell cycle pro-
gression. However, the inherent enzymatic GTPase actifgas hydrolyzes the

active Ras-GTP complex into the inactive Ras-GDP complexhat Ras activity
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ceases after some time delay. However, if due to some mnsatidhe Ras gene, the
GTPase activity of the Ras protein is lost, the once activRi&s protein will be con-
stitutively active and will signal the downstream tranptian causing proliferation
and cancer [8]. This constitutive activation of Ras can belehed as a ‘stuck-at-1’
fault in the Ras node of the Boolean network model of the d¢gha transduction.
Indeed, the “stuck-at” fault is a very common one in canceldgy. One of the ear-
liest findings of a very prevalent mutation in cancer was tlemtiification of the Ras
oncogene family members, HRAS, KRAS and NRAS. These gerssacritical
role in the signaling that drives proliferation. KRAS germemstitutively activated

by mutations are found at the very high rate of 17-25% in huozancers [75].

Bridging Fault: As the name suggests, a bridging fault seferthe disruption of old
interconnections and incorporation of new interconneédtio the network. Bridging
faults also make biological sense. The molecular signaktiaction relies on the
sequences and 3 dimensional conformations of the molerwelsed. So, any vari-
ation in the sequence and 3 dimensional conformation of @coté (mainly protein)
will alter its functionality. As a result, many pathways atving that molecule will
become inactive while the altered molecule may open up n@s.dithout any loss
of generality, this kind of aberrant behavior could be mededs a bridging fault in
the Boolean network.

Indeed, the “bridging” fault is also a common occurrenceumian cancers. A wide
variety of tumor types carry chromosomal translocationseng parts of different
chromosomes have been joined together. The first such evéetassociated with
a specific cancer is the Philadelphia chromosome, a traatsbocjoining chromo-
somes 9 and 22 [76] and fusing the BCR and ABL genes. The evakésnthe
action of the Abl kinase constitutive in its stimulation abpferation and inhibition

of DNA repair and, if this happens in early blood cell progers in the bone marrow,
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can cause chronic myelogenous leukemia. A variety of drugsimhibit this kinase

activity can produce remission of the disease.

Stuck-at faults and bridging faults are illustrated in FR)Z, where a fault free Boolean

network is shown in Fig. 27while the corresponding faulty network is shown in Figh27

A
X

8 ) >

c Y
[ >— ) 1

D
> (a) Fault Free BN

Stuck-at-1 fault

A 1 Bridging fault
\ X
EB ﬁ ) ) >
D \
_—— 0 Stuck-at-0 fault

(b)Faulty BN

Fig. 27. Stuck-at faults and bridging faults in a digitalciit.

Based on the preceding discussion, it is clear that cancebedroadly modeled as
multiple stuck-at and bridging faults in the Boolean netkgocorresponding to the normal
signaling pathways. In [77], extensive theoretical workdigital system testing and fault
modeling is presented which engineers have been sucdgssdirg for digital circuit test-
ing for quite some time now. One of the goals of this chapt¢o isse a similar approach
for the prediction of fault locations in cancerous netwoaksl the design of intervention
policies to compensate for the effect of these faults. Fersidike of simplicity, we will

focus only on single stuck-at faults. The more general casamcer modeling involving
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multiple stuck-at and bridging faults will be taken up indte research.

1. Testinputs and fault detectability

Consider the BN of Fig. 27which has 4 inputs and 2 outputs as shown. Now suppose that
the only possible fault in this network is the stuck-at-lfahown in Fig. 2. Following

[77], for a combinatorial circuit (i.e, non-feedback BN), let Z(x) denote the output
vector for the input vectar. The presence of a fauft transformsV into N, with output
function Z,(z) for the same input vectar. We say that a test vectodetects the faulf iff

Zs(t) # Z(t). Clearly, for the stuck-at-1 fault in Fig. 2/the test input vectoABC' D =

0000 can detect the fault becausg(0000) = 01 while Z;(0000) = 11. However, the

test input vectori111 cannot detect the fault sincgé(1111) = Z;(1111) = 10. These
ideas about fault detectability will be applied to the bgital examples in section C.3 and

section E.1.

B. Modeling drug intervention

In a cancerous network, identification of the fault locasiamonly a part of the task. The
major challenge lies in finding the best possible drug or drmbinations with which to
intervene. From a theoretical perspective, we can congii@enon-cancerous and cancer-
ous (faulty) networks as two different Boolean networksgémeral, it will be impossible
to make a cancerous network revert to the original non-canseone using any sort of
drug intervention, because the mutations leading to caareansually irreversible. Instead,
what the best drug combination could do is to nullify somehef deadly effects (like con-
stitutive cell division) of the cancerous faulty system andto kill the cell by inducing
apoptosis.

The following modeling of drug intervention is inspired thetbiological effect of the

drug on the pathways. A drug goes into the cell to bind a pagickinase to deactivate
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its phosphorylating capability. This means that the drugaa# the effect of that particular
kinase on molecules further downstream. Hence, the drudpeanodeled as an inverted
input to an ‘AND’ gate at the target point of the Boolean natkv@ his schematic modeling

of drug intervention is shown in Fig. 28.

INPUT INPUT
DRUG
=
DRUG === <:1>
\/
)
OUTPUT OUTPUT

Fig. 28. Drug intervention modeling.

In this chapter, our goal is not to derive the mathematicplession for the optimal
drug intervention policy, since most mathematically dedipolicies may be difficult, or
impossible, to biochemically implement. Instead, our otiye is to model known and
well tested cancer drugs separately and then to find the bbsb@imal combination of
drugs for a particular cancerous network. The method isrdestin detail in section C.4,

where it is applied to a biological example.
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C. Biological example: growth factors and cellular sigmahsduction

In multicellular eucaryotic organisms, the cell numbegs\ary tightly controlled, and cells
divide to form more cells only when they receive signals fratimer cells directing them to
do so. The external signals that stimulate a cell to divigeusually calledyrowth factors
or mitogens Normally these are protein or steroid ligands. The exiegigaal directing a
cell to divide is usually communicated to the cell divisioachinery inside the cell through
a transmembrane protein calledj@wth factor receptar These transmembrane proteins
contain the amino acid tyrosine and activate the cell diwishachinery inside the cell by
phosphorylating some key proteins; hence, they are alsetiomes referred to agceptor
tyrosine kinases Each growth factor binds to its membrane bound receptdn giieat
specificity and when that happens, an intracellular siggatascade occurs that can result
in enhanced cell proliferation, enhanced protein synghesiinhibition of apoptosis. In
this chapter, we will focus on the signaling pathways asgedi with a number of growth
factors. One of the reasons for this choice is that thesaabignpathways have not only
been widely studied in the context of cancer but also diffecancer drugs, known to affect
different parts of the pathways, are currently available.

Before presenting a detailed schematic diagram of the caerds involved in these
pathways and their interactions, it is appropriate to firgtfty review the eucaryotic cell-

cycle and point out how malfunctions in the associated ocbsfrstem can lead to cancer.

1. Cell cycle control, DNA mutation and cancer

In a multicellular organism, cell growth and proliferatiare tightly controlled by the cell
cycle control system. The typical eucaryotic cell-cycls Faur phases called,(Gap 1),
S(Synthesis)(72(Gap 2) andV (Mitosis) as shown in Fig. 29. The resting ph&sgis a
phase where the cell has made a decision (inth@hase) to temporarily withdraw from

the cell cycle. The7, andG; phases are in equilibrium with each other so that a resting
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cell in theG, phase can readily re-enter the cell cycle, if the externatitmns require

additional cells to be produced. In tli§ phase, the cell processes all the extra-cellular

GO
Signal < Growth Factors
? Transduction ~[S—— gfﬁlurl%r Sttrisses
Pathways < et ractors

Cell Cycle
Regulator Proteins

Fig. 29. The eucaryotic Cell Cycle(GO0: Quiscence, G1: Gdp: Restriction point, S: Syn-
thesis, G2: Gap 2 and M: Mitosis) and the signal transdugiathways controlling
the cell cycle.

signals (through different pathways) and decides whethgpotback to, or proceed to-
wards theS or DNA synthesis phase. The checkpoint (see Fig. 29) is very critical in the
cell cycle regulation. Once the cell goes past theheckpoint, the progression of the cell
cycle no longer depends on the mitogens (the growth factaifseanputs of the transduc-
tion pathways). Cyclin-CDK(Cyclin dependent kinase) ctemps play major roles in the
regulation of the cell cycle dynamics. The growth factoinetion of the receptor tyrosine
kinases results in rapid accumulation of Cyclin D1. Siniamn normal cells, removal of
growth factors results in rapid decline in the Cyclin D1 llevehis Cyclin D(1 or 2) and
CDK4/6 complexes carry the cell past the R checkpoint. Bdythis checkpoint, although
there are mechanisms to check for correct DNA replicatiah@oper apportioning of the
chromosomes between the two daughter cells, there are nedeaoisions made between

whether to remain in quiescence or to proceed to prolifenatiThus, after the? check-
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point, the cell cycle is more or less automated and indeperaléhe extracellular inputs.
In normal cells, if there is no mitogen during thg «—— G transition, the cell will not
enter theS phase. However, in cancerous cells, the proto-oncogemnggatanutated to be-
come oncogenes. The translated oncoproteins have 3 diomahsonformations which are
quite different from that of the corresponding normal prot@nd can behave differently.
For instance, if Ras proto-oncogene mutates to Ras oncptfenencoded Ras oncopro-
tein can become constitutively active and start perpstugaginaling to the downstream
proteins. In that case, even if there is no mitogenic sigigaliom the outside, the cell
will be stimulated to divide. Similarly mutation in pro-gptotic genes can stop apoptosis
resulting in tumorigenesis. Since almost all the genes#prs along the important prolif-
eration/apoptosis pathways are prone to mutation, the eunflpossibilities for mutation

leading to cancer is quite large.

D. Growth factor mediated pathways: combinatorial network

The patrticular set of signaling pathways that we will focasiothis first example are the
so called Growth Factor (GF) Pathways. Our goal is to modeddlsignaling pathways as
an input-output Boolean circuit and to use the latter foe(iumerating the different fault
(or malfunction) possibilities, (ii) carrying out faultagsification and (iii) designing the
appropriate corrective action (or therapy). Such modetigt necessarily be preceded by
a biological understanding of the different componentshed pathway and their interac-
tions. Fig. 30 is a schematic diagram showing the differentgonents of this pathway and
their interactions, as currently understood by biologigts example the Kegg collection
of pathways (http://www.genome.jp/kegg/pathway.htmkl ghe NIH BioCarta collection
of pathways (http://cgap.nci.nih.gov/Pathways/Cartapathways). The input nodes in
the diagram are the growth factors (shown in the rhombusEgin30). The external sig-

nals corresponding to the growth factors are transmittealitih the kinase cascades and
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finally activate the appropriate transcription factorse hack and red lines in the diagram

indicate relationships which are known to be activating entibitory, respectively. Fig.

30 also shows six different cancer drugs (red boxes) anddhespin the pathway where

they are believed to intervene.

Fig. 30.

Growth Factors

Legends

Growth Factor

=
C > e
00000

Reporter

Receptors: .
P! Transcription

Factor

Adaptor
Proteins:

»  Activation

—  Deactivation

PIK3CA *
PTEN
LY294002

Kinase Cascade:

Transcription|
Factors:

(PCNA ) CCENPF ) (MK|57 )
Reporters: v » CCDKN]A ) (SNAIZ ) (com )
ETDICCDED) (ros ) (rer1 )

A schematic diagram of the growth factor signaliathgvays (the yellow color is
used for the reporter proteins which will be measured inriexperiments).

These signal transduction pathways in Fig. 30 constitut@dube in a larger tightly

controlled network of cell growth, cell division and metéibm.

Believing these pathways to be true, we can develop anatlel bf abstraction by

modeling using Boolean Networks (BNs). For most of the patysithe modeling is trivial.
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Using the methodology of CHAPTER Ill, the modeling approagtguite intuitive and
logical and can be applied to the pathways in Fig. 30 to aaiveg. 31.

This module can be easily modeled using the Boolean cirboiva in Fig. 31, where
the seven outputs of interest, shown at the bottom of thedjgane transcription factors
(marked in green) and the activation status of some key ipo{@ot colored). As we
will see, such a Boolean circuit model can play an importatg¢ in understanding the

proliferation versus quiescence decision for a cell.

1. Input-output simulation of the BN

Since, there is no feedback path in the BN of Fig. 31, the otistates are independent
of previous states. Also we are not concerned about theeesttite vector, rather we are
primarily interested in the output response of the netwddence, the complete input-
output mapping is essential for understanding the dynaofitisis BN. This mapping is
shown in Table VI.

It is evident from the simulation that only the input @001 provides the ‘all-zero
output response’. This is again intuitive beca08e01 means all the growth factors EGF,
HBEGF, IGF and NRG1 are inactive and the negative regulgtooyein PTEN is high.

This input condition is crucial for investigating the faattenario inside the network.

2. Modeling faults and therapeutic interventions usingBbelean network

Any mutation of any gene or post transcriptional modificatd the corresponding protein
can constitutively turn ‘ON’ or ‘OFF’ that particular prate This fits in precisely within
the stuck-at fault paradigm considered in section A. Fordhlke of simplicity, in our
growth factor pathways case study, we will consider onlglgiaults of the stuck-at type.
In addition, we will only consider the stuck-at faults whican lead to cancer. For the

Boolean circuit shown in Fig. 31 the possible locations for tlifferent stuck-at errors,
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EGF HBEGF IGF NRG1

CCNDI
FOS-JUN BCL2L1

SRF-ELK1 BCL2

SRF-ELK4

Fig. 31. An input output Boolean network model of the signglipathways of Fig. 30.



Table VI. Input-output Mapping of the Boolean Network of Fg&1.

Input

Output

Input

Output

00000

0000111

10000

1111111

00001

0000000

10001

1111111

00010

1111111

10010

1111111

00011

1111111

10011

1111111

00100

1111111

10100

1111111

00101

1111111

10101

1111111

00110

1111111

10110

1111111

00111

1111111

10111

1111111

01000

1111111

11000

1111111

01001

1111111

11001

1111111

01010

1111111

11010

1111111

01011

1111111

11011

1111111

01100

1111111

11100

1111111

01101

1111111

11101

1111111

01110

1111111

11110

1111111

01111

1111111

11111

1111111
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which can induce proliferation and stop apoptosis, are showig. 32:. The numbers are

color coded to distinguish between the ‘stuck-at-1' andcktat-0’ faults. Specifically, the

black numerals refer to the stuck-at-1 faults while the recherals refer to the stuck-at-0
faults.

As discussed in section B, a drug targets particular enzyatwes) the pathways and
cuts off the connectivity of that enzyme to the downstreaotgins. This connection cleav-
age can be achieved via various mechanisms. For instaradiuy may have the capability
to bind a target protein and inhibit it from undergoing phosylation. For our case study,
we consider six potent cancer drugs. Our objective heretitorgiudy their detailed mech-
anisms of action. Instead, we are interested in using the/keaiye from biologists to mark
in their intervention locations and corresponding adtgiton the Boolean circuit of Fig.
31. This leads to the effects shown in Fig.b3&uch pictorial representation of the drug
activity information is useful.

For instance, let us consider the drigpatinib’ which is known to work onEG F'R,
ERBB?2 or ERBB3 by inhibiting the signaling capabilities of these receptoosine ki-
nases. From Fig. 32one can conclude that the drug ‘lapatinib’ will likely bespgnsive
for the treatment of cancers caused by mutations in the teciposine kinases although it
will probably be ineffective against cancers caused by trarta in the Ras protein, which
lies further downstream. Two central objectives of thispteaare: (i) to use the infor-
mation contained in Fig. 32to group the numbered faults into different classes; and (ii
to use the information in Fig. 320 predict which set of drugs/drug combinations would
be most effective against a particular fault. These objestare pursued in the next two

subsections.



EGF HBEGF IGF NRG1

JUN ELK1

Y 20 | 1
21
22
24
Fos. ° gRE 25;4 Bew BCL2L?CND1

PTEN|

EGF HBEGF IGF NRG1 PTEN

AG1024 S
AG825

Lapatinib

[LY294002 |

uU0126

mTOR

Temsirolimus —

] J

SRF- BCL2 CCND1

1 or
FOS- ) ELK4 BCL2L1

JUN ELK1

(a) Fault Locations

(b) Drug Intervention Locations
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Fig. 32. Possible fault locations and drug interventioratamns: (a) proliferative stuck-at

fault locations and (b) intervention locations for the éadalie cancer drugs.
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3. Fault analysis and classification

From Fig. 32, we see that there aga possible fault locations. Alternatively, we could
have arrived at the fault locations based on our biologiodeustanding. As already indi-
cated, in this chapter we will be confining ourselves to tredyasis of single faults only. So,
for our purposes, the fault can be any one of2héults in the figure. Carrying forward the
discussion from section A, we ugg to denote the fault at th&" location. Then the sample
space for the single fault modeling can be defined'as- { /], 13, f4,-- -, fa4}- Here the
superscript 1 refers to the fact that we are considering sinlgle faults. Now iff! € F*
occurs, an input vectar detects the fault iff the output vectdf in the faultless system
differs from the output vectoZ, in the faulty system. Mathematically(t) # Z, (¢). If
we cannot find such an input we say the fault is undetectable. In the circuit shown in
Fig. 32, the only input vector which can detect afiy € F'! for this particular network
is V' = 00001 which is achieved wittEGF = 0, HBEGF = 0, IGF =0, NRG1 =0
and PTTEN = 1. This is due to the fact that for any other binary input V, bk butputs
are equal to 1, regardless of whether a stuck-at fault iseptem not. This result is not at
all surprising. Indeed, when there is no growth factor algshe cellular membrane and
also the tumor suppressor protdfI’'EN is active, we expect to see all the proliferative
transcription factors and anti-apoptotic factors deatgd or turned ‘OFF’. However, if
there are faults (mutations) in the signal transductiohyays, we could see proliferation

even in the absence of active input signals (mitogens).

a. Single fault simulation

In this subsection, computer analysis for the single fautet of the circuit in Fig. 31 is
presented. The single fault model of the Boolean circuihs in Fig. 32. The input

vectorisV = [EGF, HBEGF,IGF, NRG1, PT'EN]. Each input can take binary values.
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For this simulation we tak& = 00001. The output vector iZ = [ FOS — JUN, SP1,
SRF — ELK1, SRF — ELK4, BCL2, BCL2L1, CCND1]. For the fault-free circuit
we get the outpuf (00001) = 0000000. Now for the24 different faults which may induce

cancer in the given circuit, the outputs are tabulated in 83g.

No

Fault Fault Locations
8 [9 |10[ M 17|18 (19|20 [ 21|22 | 23 | 24
Outputs
Fos-Jun | o {1 |1 [1 [1 |1 [1 |0 [o]o |0 o]0 |o|o [o]|o |0 |o |0 o]0 |00 O
SP1 1o (1 |1 |1 [1 |1 [1]o|o]o|o |o]|o|o]o o |1 |1 |1 ][0 o]0 o]0 |0
SRF-ELK1 10 |14 |1 |1 |1 |1 |1 |o |o |o [o o |o |0 [0 [0 |1 |1 |1 ]0]0 |0 ]|O]|O]|O
ERF-ELK4 10 |4 |1 |1 |1 |1 |1 |0o |o |o o |o |o |0 |0 |0 |1 |1 |1 ]0 |0 |0 |O]|O]O
BCL2 o |1 [1 |1 |1 [1 |1 [1 |1 [1 [1 {1 [1]ofo]o |1 [1]1 o |1 [1]1 |11
BCL2LT o (1 |1 (1 [1 [1 |1 |1 [1 |1 [1 |1 [1]o]o |o |1 [1 |1 |0 [1]|1[1]1 |1
CCNDT |0 |1 |1 |1 |1 |1 |1 |1 [1 |1 |1 |1 |1 |o]o |o |0 |o|o |1 ]|0o]|0]|0O]|O]O
(a) Single Fault Simulation
Output Equivalent Fault Groups
1111111 1,2,3,4,5,6
0000111 7,8,9,10,11,12
0000000 O(No Fault),13,14,15
0111110 16,17,18
0000001 19
0000110 20,21,22,23,24

(b) Equivalent Faults for Input = 00001

Fig. 33. Single fault simulation: (a) output simulation irepence of all proliferative single
stuck-at faults for input V 0001 and (b) equivalent faults for input V 60001.

b. Fault classification

From the outputs shown in Fig. 83we can classify the faults into different groups of
equivalent faults. Faults which generate the same outpaibksefor a particular test input
vector are calledequivalent faults'with respect to that input test vector. The information
in Fig. 33 leads us to sets of equivalent faults for the test input vécte= 00001. The
equivalent fault groups along with their correspondingooitsg are shown in Fig. 33

From Fig. 33, it is clear that any fault in the locatioris, 14, 15 cannot be detected

from the output since the corresponding output is the santleaagor the fault-free case.
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Hence, this class of faults is said to be ‘undetectable’s ttue that ‘undetectable faults’
cannot be compensated for based on observations of thetoAgauming that the outputs
are true indicators of the processes being monitored, ieere reason why we should be
concerned with faults that do not manifest themselves irotliputs. Hence, this is not a

major concern especially if we are only interested in thealvar of the outputs.

4. Simulation results for drug intervention

Since we have only the 6 available drugs, we define a drug vettength6 as follows.

If a particular drug is applied it is assigned the valy®therwise it is assigned the value
0. Consequently, the drug vector space has cardin2flity 64. The simulation is carried
out for all of the possible faults, taken one at a time, andeach of the 64 different
drug vectors, and the corresponding outputs are computeel diiug vector is defined by

[lapatinib, AG825, AG1024, U0126, LY 294002, T'emsirolimus)].

a. Continuous real mapping of the output vector

To avoid introducing any possible ambiguity about the origfithe proliferative signaling,
we take the same input vectd@0(01) that we have previously used for the fault analysis.
In the no fault case, with the drug vecta0000 we get the outpud000000 which is cer-
tainly non-proliferative. However, in the presence of fauthe outputs will be different.
The objective of this simulation is to determine the besspae drug sequence which can
nullify the effect of the fault, i.e, produce an output cldse)000000 or away from the
proliferative outputl111111. We note that although all the output vectors are repredente
as binary numbers, assigning the usual binary weights talitiies here does not make
any biological sense. In other wordd,11111 here does not really med7 or 0000111
does not really mean. Consequently, we need to determine some transformatiachwh

will map thesel28 = 27 output vectors to a continuous real number scale in a bichdiyi
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meaningful way. One way to do this is to proceed as follows.

If we examine the components of the output vector, we seeaihiabf the 7 com-
ponents, 4 are transcription factors which express (turn) bl important genes leading
to proliferation. The remaining components capture the activation status of some key
proteins in the cytoplasm. So, these two groups of outpwts Heferent biological signif-
icance and should be encoded separately. A possible mailahteansformation on the
output vectors is described next. The output vectavisl' PUT =[FOS — JUN, SP1,
SRF — ELK1,SRF — ELK4, BCL2, BCL2L1, CCND1].

Now suppose we take the number of active transcription faete the first variable(F)
and the number of active remaining outputs as the secondble(s). The mathematical

transformation makes use of these two variables as deddriliegn. 4.2 below:

Output = [a,b,c,d, e, f, g]

F=a+b+c+d

S=e+f+yg (4.2)
P=FxS
S=F+38

Y(Output) = aP + (1 — )5,

wherea € (0, 1) is a design parameter. The above encoding scheme countsrtiieenof
active transcription factors and the number of active kefgins, and combines these two
counts via a nonlinear many-to-one map, the idea being totiushe degree of abnormal
behavior , e.g. proliferation in the absence of growth feg;tetc. Witha chosen a$.5,
the functiony’s values over the full sweep on the drug vectors and fauéshown in Fig.
34. Here the fault numbers and drug vectors are listed albadorizontal and vertical
directions respectively. The results are color coded ferezavisualization, and the color

codes used are tabulated on the right side in Fig 34 .
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Different Fault Locations
10 1 12 i3S 16 17 18 19 202122 23 24

L5 15
15
L5
15
L5
15
15
15
L5

OQutput Vector
Color Codes

. p(9.5)=1111111
l y'(T)=1111110
. ' (5.5)=0111110
D ' (3.5)=1000111
D v (1.5)=0000111
D v (1)=0000110

L5
L5
15
L5
15
L5
15
15
15
15
L5
L5
L5
15
15
L5
L5
L5
15
L5
L5
L5
15

Drug Vector

™' (0.5)=0000001

™' (0)=0000000

15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15

15

Fig. 34. Drug vector response in the presence of a singlé& fdigft) output responses of
the circuit for all drug vectors in presence of all singlecktat faults and (Right)
the map between the color codes and the output vectors.
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b. Interpretation of the result

From the output tables and the color codes we see that thegr@en corresponds to non-
proliferation while the color red corresponds to a high daaof proliferation even in the
absence of mitogenic signals. So, the best drug vector withe one which can drive the
largest number of faulty circuits towards non-prolifevat(green) outputs. For example,
the drug vectof00110 drives all of the faultsl — 6 to green and most of the remaining
boxes along that row away from red. So, the drug combinatid0d126 and LY294002
will likely be effective in producing a non-proliferativeutput. Another point to note is
that there can be faults (like faulg in Fig. 34) whose output cannot be altered using any
drug sequence. This is not at all surprising and is condistéh the pathway informa-
tion that we have. Indeed, the fault locatibhis at theFRK'1/ERK?2 protein and there
is no available drug in our list downstream of that proteimn€equently, no drug in this

particular case study would be able to block the effect of tated R K1/ E RK 2 protein.

E. p53 mediated DNA damage pathways: sequential network

Since we have already discussed the modeling of p53 medidtéddamage pathways in
CHAPTER III, we will not unnecessarily repeat it here. Fottlier analysis, it sufficeth to

only recall the Boolean Network update equations.

AT Myery = Wipl(ATM + dna_dsb)
PO3nest = Mdm2(ATM + Wipl)
Wiploewt = p53 (4.2)

Mdm2,e.s = ATM(p53 + Wipl).
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There are two contexts for this Boolean Network dependintherxternal signaina_dsb.

The state transition diagrams for both the contexts arengivé-igs. 20 and 21. Clearly,
in the presence of DNA damage the activity of theelevant proteins will oscillate to
normalize the behavior of the cell. However, if mutationkss either of thel genes, the
guestion of interest becomes what the behavior of the toam&fd Boolean network will

be. The relevant fault analysis and possible interventiaiegies are discussed below.

1. Fault analysis

We simulated the network for all the possible single stuckaalt scenarios. The resulting
steady state behavior of the BN is shown in Table VII. The nmugtresting observation
is that the oscillations have ceased to exist. Analyzingstbady state (assuming the state
is observable), it is evident that the steady state singlattvactor corresponding to each
fault is unique. So, complete identification of all the sagtuck-at faults for this network
is possible using just steady-state data. Recall that #ie &ir this network is defined as

[ATM, p53, Wipl, Mdm?2].

2. Intervention design

If the steady state of the BN of Eqn. 4.2 enters a singletoaditr withp53 = 0, the cell
loses the capability to repair DNA damage and this increttsesisk of acquiring genetic
diseases including cancer. So, the objective of intergardesign is to stop the replication
of mutated DNA. One way to do that would be to induce apoptespecially if the DNA
cannot be repaired. Assuming that the therapeutic intéwenutilize the kinase blocking
mechanism (section B), the simulation results of Table ¥Hbw the possible corrective

actions.
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Table VII. Steady State Attractors in the presence of Sigglek-at Faults.

Fault DNA_DSB=0| DNADSB=1
ATM:s-a-0 0000 0000
ATM:s-a-1 1110 1110

p53:s-a-0 1000 1000
p53:s-a-1 0111 0111
Wipl:s-a-0 1100 1100
Wipl:s-a-1 0011 0011
Mdm2:s-a-0 0110 0110
Mdm2:s-a-1 1001 1001

Table VIII. Intervention Design for the Critical Faults inTM-p53-Mdm2-Wip1 Boolean

Network.
Fault steady state(no contro\) control steady state(control)
ATM:s-a-0 0000 No solution -
p53:s-a-0 1000 No Solution -
Wipl:s-a-1 0011 Block Wip1/Mdm2 1100/0110
Mdm2:s-a-1 1001 Block Mdm2 0110
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F. Concluding remarks

In this chapter, we have presented a new approach for dagiginérapeutic intervention
policies based on available pathway information and thermmaaim which drugs target spe-
cific pathway connections. Relevant pathway informatidiirss used to produce Boolean
networks whose state transitions are consistent with trengaathway information, or mi-
nor variations of it. The Boolean network is then used to (Yrerate all the possible
fault scenarios; (ii) classify the faults into differenaskes based on their responses to a
particular test input; and (iii) prescribe an appropriaiarse of therapeutic action, tailored

to the fault or set of faults that has occurred.



107

CHAPTER V

CONCLUSION

In this dissertation, it has been shown that modeling antreofting the cellular dynamical
system is a non-trivial task. The biologist’s idea of celluinteractions in the form of
signalling pathways can be modeled as Boolean Networkshnd@a serve as the starting
point for further systematic research. For instance, if wevk the underlying network
structure of a particular kind of gene-protein interactexperiment, we can predict the
dynamics associated with it. If the experimental resultanes the prediction, the degree
of confidence in the model will be enhanced. Likewise, if tkpegimentation refutes
the prediction, we need to either increase the accuracyeotexperiment or update the
knowledge base of the pathways. As we have already seen dribesfficacy simulation
in CHAPTER 1V, the simulation can enable us to predict thespgmbkty of success of
a certain drug combination for a particular pathway. Expental design based on the
predictive model can save us time and effort and the expetioa be focussed towards a
certain goal. Any mismatch between the drug’s observedrespand the prediction result
will again lead to an update of our understanding of the dengell as the model network.
The resulting iterative paradigm for systems biology istslked in Fig. 35. Intuitively,
this update mechanism is the key for success in systemsglyioModel based design of
experiments will eventually lead to more accurate estiomadif the model.

The idea of personalized medicine for diseases like cararertso be viewed in this
context. Genetic profiling of a new patient will decide thstflevel of diagnosis of the ge-
netic mutations. The systems biologist will then decidertievant pathways in the tumor
from the marginal gene profiling data. Thereafter, the nétwan be constructed and in
vitro experiments can be performed on the tumor cells to lygetight drug combination

from the drug database. This procedure which can be itergied has the potential to
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Fig. 35. Iterative update scheme of pathways and therapugjet point knowledge in sys-
tems biology.



treat a cancer patient in a much better way than any traditi@pproach

diagram for this personalized approach to medicine is givéfig. 36.

New
Patient

h J

Treatment of

Genetic
profiling of a
patient’s tumor

the patient

Effective
drug
combination

Fault locations
in the network

Y

Relevant
pathways from
the mutation

study

Regulatory
Network

K

In vitro
experiment on
the tumor tissue

Fig. 36. Personalized medicine using systems biology.
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. The schematic

The list of future research topics is essentially unendirigere are so many pathways

in so many cell types, that a complete solution of the probilemrobably not possible.

The subject of systems biology will also evolve as more itie@s and discoveries are

made. However, for the sake of completeness of the curresédation we mention a few

immediate future research problems:

¢ Analysis of the multi-fault scenario in Boolean networks.
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Modeling of bridging faults in Boolean networks.

Developing models for higher level cellular events likel cgtle, apoptosis, differ-

entiation etc.
Modeling of metabolic regulation in the cell.

Validating the mathematical models in vitro and in vivo.
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