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ABSTRACT 

 

Thermal Bimorph Micro-Cantilever Based Nano-Calorimeter for Sensing of Energetic 

Materials. (May 2012) 

Seokwon Kang, B.S., Hanyang University; 

M.S., Korea Advanced Institute of Science and Technology (KAIST) 

Chair of Advisory Committee: Dr. Debjyoti Banerjee 

 

 The objective of this study is to develop a robust portable nano-calorimeter 

sensor for detection of energetic materials, primarily explosives, combustible materials 

and propellants. A micro-cantilever sensor array is actuated thermally using bi-morph 

structure consisting of gold (Au: 400 nm) and silicon nitride (Si3N4: 600 nm) thin film 

layers of sub-micron thickness. An array of micro-heaters is integrated with the 

microcantilevers at their base. On electrically activating the micro-heaters at different 

actuation currents the microcantilevers undergo thermo-mechanical deformation, due to 

differential coefficient of thermal expansion. This deformation is tracked by monitoring 

the reflected ray from a laser illuminating the individual microcantilevers (i.e., using the 

optical lever principle). In the presence of explosive vapors, the change in bending 

response of microcantilever is affected by the induced thermal stresses arising from 

temperature changes due to adsorption and combustion reactions (catalyzed by the gold 

surface). A parametric study was performed for investigating the optimum values by 

varying the thickness and length in parallel with the heater power since the sensor 
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sensitivity is enhanced by the optimum geometry as well as operating conditions for the 

sensor (e.g., temperature distribution within the microcantilever, power supply, 

concentration of the analyte, etc.). Also, for the geometry present in this study the nano-

coatings of high thermal conductivity materials (e.g., Carbon Nanotubes: CNTs) over the 

microcantilever surface enables maximizing the thermally induced stress, which results 

in the enhancement of sensor sensitivity. For this purpose, CNTs are synthesized by 

post-growth method over the metal (e.g., Palladium Chloride: PdCl2) catalyst arrays pre-

deposited by Dip-Pen Nanolithography (DPN) technique. The threshold current for 

differential actuation of the microcantilevers is correlated with the catalytic activity of a 

particular explosive (combustible vapor) over the metal (Au) catalysts and the 

corresponding vapor pressure. Numerical modeling is also explored to study the 

variation of temperature, species concentration and deflection of individual 

microcantilevers as a function of actuation current. Joule-heating in the resistive heating 

elements was coupled with the gaseous combustion at the heated surface to obtain the 

temperature profile and therefore the deflection of a microcantilever by calculating the 

thermally induced stress and strain relationship. The sensitivity of the threshold current 

of the sensor that is used for the specific detection and identification of individual 

explosives samples - is predicted to depend on the chemical kinetics and the vapor 

pressure. The simulation results showed similar trends with the experimental results for 

monitoring the bending response of the microcantilever sensors to explosive vapors (e.g., 

Acetone and 2-Propanol) as a function of the actuation current. 
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NOMENCLATURE 

 

Greek 

Φv Viscous dissipation [N/m2-s] 

α Thermal diffusivity [m2/s] 

β Temperature exponent 

 Thermal expansion coefficient [K-1] 

γ Surface energy [J/m2] 

δT Thermal boundary layer [m] 

ε Lennard-Jones energy parameter [J/mol] 

ε / kb Lennard-Jones energy [K] 

μ Dynamic viscosity [kg/m-s] 

ν Kinematic viscosity [m2/s] 

 Poisson’s ratio  

ρ Density [kg/m3] 

 Electrical resistivity [Ωm] 

σ Hard-sphere collision diameter [Å] 

σf Residual film stress [Pa] 

σs Surface stress [Pa] 

ω Driving frequency [Hz] 
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Uppercase 

A Area [m2] 

Ar (or As) Pre-exponential factor [s-1] 

C Molar concentration [mol/m3 or mol/m2] 

D Diffusion coefficient [m2/s] 

E Young’s modulus [Pa] 

Er (or Es) Activation energy [J/mol] 

F Driving force [N] 

Fi Initial feed of species i [mol] 

G Shear modulus [Pa] 

Gr Grashof number 

H Enthalpy [J/mol] 

I Applied current [A] 

L Characteristic length [m] 

 Length of microcantilever [m] 

M Molecular weight [g/mol] 

Ns Number of species 

Nu Nusselt number 

P Perimeter of the surface [m] 

Pr Prandtl number 

Q Heat generation by electrical power [W] 

 Quality factor 
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R Ideal gas constant (8.3145 [J/mol-K] or 0.082051 [atm/mol-K]) 

 Rate of reaction [mol/m3-s or mol/m2-s] 

 Resistance [Ω] 

 Tip radius [m] 

Ra Rayleigh number 

S Entropy [J/mol-K] 

 Sensitivity [A-1] 

 Surface area [m2] 

T Absolute temperature [K] 

V Molar volume [m3/mol] 

 Diffusional volumes 

 Volume [m3] 

X Conversion 

Y Mass fraction 

 

Lowercase 

b Damping coefficient [N-s/m] 

cp Specific heat [J/kg-K] 

e Euler-number (2.7183) 

f Tip-sample interaction force [N] 

fn Natural frequency [Hz] 

g Acceleration due to gravity (9.81 [m/s2]) 
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h Convective heat transfer coefficient [W/m2-K] 

 Planck constant (6.6256 × 10-34 [Js]) 

k Rate constant [s-1] for volumetric or surface reaction 

 Stiffness [N/m] 

 Thermal conductivity [W/m-K] 

kb Boltzmann constant (1.38 × 10-23 [J/K]) 

l Length of microcantilever [m] 

m Mass of microcantilever [kg] 

n Number of molecules 

p Pressure [Pa, atm, or mmHg] 

q Volumetric heat generation or heat flux [W/m3] 

r Radius of dot [m] 

t Thickness of microcantilever [m] 

 Time [sec] 

v Writing speed or velocity [m/s] 

w Width of microcantilever or line feature [m] 

x Distance [m] 

y Mole fraction 

 Vertical location or Height [m] 

z Deflections in normal direction [m] 
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Sub- or superscripts 

Au Gold layer 

L Lateral 

N Normal (or flexural) 

SiN Silicon nitride layer 

TS Tip-sample interaction 

c Cantilever 

i ith species or reaction 

s Substrate  

 Surface 

v   Volumetric 

0   Initial 

eff Effective 

eq   Equivalent 

 

Acronyms 

CFD Computational Fluid Dynamics 

CNTs Carbon Nanotubes 

CVD Chemical Vapor Deposition 

EDS Energy Dispersive X-Ray Spectrometer 

FEA Finite Element Analysis 

JPL Jet Propulsion Laboratory 



 xiii

MWNTs Multi-Walled Carbon Nanotubes 

NASA National Air and Space Agency 

PECVD Plasma-Enhanced Chemical Vapor Deposition 

PVD Physical Vapor Deposition 

RH Relative Humidity 

SAM Self-Assembly Molecules 

SEM Scanning Electron Microscopy 

SWNTs Single-Walled Carbon Nanotubes 

VOCs Volatile Organic Compounds 
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CHAPTER I 

INTRODUCTION 

 

A. General Concepts 

 

1. Cantilever-Based Sensors 

  

A sensor (or transducer) can be defined as “the primary element of a measuring 

chain which converts the input variable into a signal suitable for measurement” [1]. 

Generally it is an element which transforms energy from one form to a usable output (i.e. 

electronic signal). Various forms of energy are used in sensing applications, namely: 

mechanical, thermal, electrical, magnetic, radiant, chemical etc. In these sensing 

applications, the signals are mutually related by complex functional relationships. For 

instance, in this study the “thermal” energy generated by a “chemical” reaction is 

converted to the “mechanical” response (as shown in Figure 1). Hence, in these sensing 

platforms the stability and ease of measurement of the signals are of paramount 

importance. 

Micro-cantilever based sensing platforms are considered attractive for their one 

dimensional bending response and their ease of analysis [2]. The development of 

microelectronics fabrication techniques has enabled the fabrication of miniaturized 

devices. These techniques were primarily developed for microfabrication of silicon-

                                                 
This dissertation follows the style of ASME Journal of Heat Transfer. 
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based electronic devices such as transistors, diodes, and other circuit elements. However, 

the materials that are used in microelectronics, such as aluminum, silicon dioxide, silicon 

nitride, polycrystalline and crystalline silicon, also, possess outstanding mechanical 

properties [3]. Apart from these materials, polymers are frequently used for their high 

sensitivity to the temperature variations and low Young’s modulus materials. However, 

polymer cantilevers have a major drawback such as less sensitivity to explosives (e.g., 

~5 sec for TNT at 0.2 ppb concentration) [4]. 

 

 

Fig. 1. Schematic representation of the sensing mechanism proposed in this study [5]*. 

 

Also, many of these sensors require the integration with electrical power or the 

use of electrical signals for read-out. So, the usage as well as the application of 

micrometric mechanical structures (i.e. microcantilevers) has proliferated in the area of 

                                                 
* Reprinted with permission from “Cantilever Transducers as a Platform for Chemical and Biological 

Sensors” by N.V. Lavrik, M.J. Sepaniak, P.G. Datskos, 2004, Rev. Sci. Instrum., 75(7), pp. 2229-2253, 
Copyright 2004 by American Institute of Physics. 
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Micro-Electro-Mechanical Systems (MEMS). Miniaturization of these sensors enables 

reduction in operating power consumption as well as high sensitivity (e.g., ~attogram 

sensitivity) [6]. In addition, the microcantilevers possess fast thermal actuation 

characteristics in contrast to that of macro-scale size devices. 

Microcantilever-based sensors (or calorimeters) are highly sensitive to the 

transduction of physical or chemical or mechanical property based signals (i.e., nano-

meter range), quantities (i.e., Pico-litter range), and have fast responses. Thus 

microcantilevers have been widely studied as chemical and biological sensors [2] in 

which static bending induced by differential surface stress or changes in resonant 

frequency upon mass uptake are monitored (as shown in Figure 2). Various examples of 

this type of sensing platform include: 

 

 Surface stress: temperature changes (exothermic reactions), formation of Self-

Assembled Monolayers (SAMs), DNA hybridization, Prostate Specific Antigen 

(PSA) concentration, etc. [5-27]  

 Force at the apex: properties of biomolecules, DNA strands separation, Van der 

Waals force, etc. [28-30]  

 Mass change: particles flux, PSA detection, etc. [31-36]  

 

In general, the static bending is caused by either surface stresses or external force 

according to the above classifications. On the other hand, the resonance characteristics 

depend upon the mass change as well as viscoelastic properties of the medium 
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surrounding microcantilevers. Figure 2 depicts the transduction mechanisms for static 

and dynamic modes. 

 

                 Dynamic mode                                      Static mode 

Fig. 2. Signal conversion mechanism in microcantilever-based transducers [5]*. 

 

2. Readout Methods 

 

One of the primary applications of micro-fabricated cantilevers is their use as 

scanning probes for Atomic Force Microscopy (AFM) to image the topography and the 

frictional properties of a surface through the measurement of changes in torsional and 

lateral deflections by friction [37]. In an AFM platform, the nano-scale deflections are 

typically monitored using the “optical detection (lever) method”. This technology was 

                                                 
* Reprinted with permission from “Cantilever Transducers as a Platform for Chemical and Biological 

Sensors” by N.V. Lavrik, M.J. Sepaniak, P.G. Datskos, 2004, Rev. Sci. Instrum., 75(7), pp. 2229-2253, 
Copyright 2004 by American Institute of Physics. 
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developed in 1988 [38]. This method is based on the detection of the change in position 

of a laser beam reflected by the free end of the cantilever. However, a drawback of this 

sensing platform is that it is not very robust (due to the requirement for continuous 

alignment of the laser beam). Hence, this requires a bulky optical setup which results in 

lack of portability, difficulties in miniaturization, and high manufacturing costs. 

In an effort to eliminate the need for an optical system to enhance the sensitivity, 

alternative techniques include: piezoresistive [39-41], capacitive [31], piezoelectric [42], 

and polymeric [43-44] detection. These detection methods can be completely integrated 

into a chip, with the consequent advantages associated with size reduction. In addition, 

measurements are more stable with these sensors and using these methods. Also more 

robust devices can be obtained. Moreover, using integrated hardware based signal 

conditioning techniques the sensitivity of these sensor platforms can be enhanced. 

 

3. Sensitivity 

 

A careful choice of the beam dimensions has to be made in order to fabricate 

devices with the required resolution and sensitivity for each individual application. In 

general, the overall sensitivity is determined by the design sensitivity as well as the 

measurement sensitivity [45-46]. The Stoney equation [47] reveals the fundamentals of 

the surface stress-induced deflections in microcantilevers. In Stoney equation, as the 

length-to-width ratio increases, the clamping effects become less influential [48]. In 
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other words, the cantilever undergoes a rigid-body deformation away from the clamp, 

then the deflections (Δz) are strongly dependent on Poisson’s ratio as follows: 

2
4(1 )       

 
s l

z
E t

                                            (1.1) 

where ν is the Poisson’s ratio, E is Young’s modulus [Pa], Δσs is the surface stress [Pa], 

t and l, are the thickness [m] and length [m] of microcantilever, respectively.   

Hence, larger deflections can be achieved by reducing the bending stiffness (i.e., 

lowering the Young’s modulus, increasing the length or decreasing the thickness). Also, 

the measurement sensitivity can be enhanced by improving the signal-to-noise ratio, 

which means the resonant frequency of the microcantilever should be made as high as 

possible. The resonant frequency (fn) for a rectangular profile microcantilever is given by 

[49]: 

2

1

2 
  n

E t
f

l
                                                 (1.2) 

where ρ is the mass density [kg/m3] of the cantilever material. From equation (1.1) and 

equation (1.2), it is observed that any attempt to increase the deflections will decrease 

the resonant frequency. In other words, the mathematical expressions for the deflection 

and the resonant frequency display an inverse relationship [45-46]. Thus, the sensitivity 

is defined as: 

2(1 ) 1 
 
 

   s
nz f

tE
                                            (1.3) 
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B. Explosive Sensing 

 

Explosive detection methods are classified into two groups: bulk explosives 

detection and trace explosives detection [50]. In bulk explosives detection method, 

physical or chemical properties of explosives are monitored remotely using various 

imaging techniques. On the other hand, the residues of explosives or a tiny amount of 

explosives can be detected by tracing the physical transport of vapor or particulates of 

explosives based on microfluidics or MEMS technologies [50-51]. 

  Traditionally, in civilian and military operations, trained dogs are used to detect 

explosive materials. In military operations other trained animals/ insects (such as 

dolphins and bees) have also been used for explosives detection (in exotic environments 

such as in marine environments). To obviate practical issues concerning the usage of 

animals to detect explosives, automated procedures involving multiple types of 

electronic sensors (“electronic-nose” for air borne sensors and “electronic-tongue” for 

water based sensors) have been designed to replace the trained animals. Various 

electronic noses include the usage of fiber optics and beads, polymeric films, gold 

nanoclusters, surface acoustic waves (SAW), and micro-electromechanical systems 

(MEMS). In this study, micro-electromechanical systems were used as an electronic 

nose to detect explosives. Primarily, extensive experimental attention has been given to 

microcantilever-based explosives sensing applications in the past decade [4, 50-57]. This 

idea comes from the endeavor to mimic bomb-sniffing dogs, so we usually refer to the 

technology as electronic or artificial “noses”. Ultimately, this technique provides very 
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fast and robust screening method for direct chemical identification of explosives in real 

time. An electronic nose is typically composed of an electrical power system, a chemical 

sensing system, and a response detection system. 

 

C. Bimorph Micro-Cantilevers 

 

1. Design Consideration 

 

Proper estimate for the temperature profile of the microcantilever is a key factor 

in determining the response of the nano-calorimeter platform for chemo-mechanical 

sensing of explosives. The proposed numerical model is derived from the conservation 

of the energy fluxes. The energy fluxes arise from heat generation due to exothermic 

chemical reactions and heat loss by conduction-convection at the cantilever surface in 

the presence of explosive vapor mixture in air. To initiate the catalytic oxidation, the 

microcantilever surface is heated by joule heating using micro-heater that is integrated 

with the microcantilever at their base. In this study, both the catalytic surface (or 

heterogeneous) reaction on metal (i.e., Au) film as well as species transport by diffusion 

and gaseous (or homogeneous) reaction models are solved simultaneously. In particular, 

the Au catalysis enables ultra-lean oxidation. This means the sensor can be used to detect 

combustible vapor at very low concentrations (i.e. Pico-molar concentration) [58]. The 

reactants diffuse toward the catalyst surface and the highest value for the product 

concentration is at the surface (as shown in Figure 3). Accordingly, the products diffuse 
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away due to the concentration gradient [59]. The thermal response of microcantilevers 

caused by chemical reactions is determined by competing effects of chemical kinetics 

and thermal diffusion. 

The dashed line in Figure 4 represents the heat loss in the absence of explosive 

vapor. Also, the curve of sigmoid shape shows the variation in heat generation due to 

catalytic oxidation, which is also a function of the catalyst temperature. The intersection 

point, TK1, is the temperature change due to reactions on the surface at the steady-state. 

For a given concentration of reactants at this point on the microcantilever, the surface 

temperature is characterized by the kinetic-controlled regime (depending on the 

activation energy of catalytic surface reaction). The temperature of explosives and air 

mixture is initially at ambient temperature. Hence, to activate the volumetric reaction 

higher temperature is required (auto-ignition temperature). In other words, due to the 

fact that the activation energy of catalytic oxidation is lower than that of the 

homogeneous reaction (as shown in Figure 5) the oxidation (or combustion) reactions 

can be initiated at a lower energy (or temperature). 

In Figure 4, an increase in the catalyst temperature due to higher actuation 

current (joule heating) causes a shift in the heat loss curve from TW1 to TW2 without 

causing any change in the slope since the heat transfer coefficient remains constant. 

However, if the cantilever is heated to a temperature exceeding TW2, the heat generation 

curve is shifted above the heat loss curve (or line). In this region, the mixture of air and 

explosives flowing over the surface is heated by the heat generated from the surface 

reaction, and a gas phase reaction is also initiated. Eventually, the system is dominated 
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by the diffusion-controlled regime (via the transition state). The steady-state temperature 

value, TD2, is determined by the catalytic surface as well as the gas-phase volumetric 

reactions. 

 

 

Fig. 3. Schematic of concentration profile over the heated microcantilever surface. 

 

 

 

Heated 
cantilever 
surface 
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Fig. 4. Schematic representation of heat-generation (solid curve) and heat-loss (dashed 

line) for different initial catalyst temperatures [60]*. 

 

                                                 
* Reprinted with permission from “Catalytic Oxidation Studies with Platinum and Palladium” by A. 

Schwartz, L.L. Holbrook, H. Wise, 1971, J. Catal., 21, pp. 199-207, Copyright 1971 by Elsevier. 

Energy Flux 

Temperature TW1 TW2 T* 

TK1 

TK2 

TD1 
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Fig. 5. Potential energy diagram for a catalytic reaction. The homogeneous reaction is 

shown for comparison [61]. 

 

As the first step, a 1D model is developed to provide a guideline for the design of 

the sensor when the vapor concentration is initially held at a constant value. For 

Cartesian coordinates, the molar form of the 1D species diffusion equation is [59] 

2

, 2
0i

i air i

d C
D R

dx
                                                  (1.4) 

where Di,air is the mass diffusion coefficient of species i in air [m2/s], Ci is the molar 

concentration [mol/m3], and Ri is the rate of reaction [mol/m3-s]. For a first-order 

reaction that results in consumption of species i by gas-phase reaction, the rate of 

reaction is given by 

i v iR k C                                                         (1.5) 
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Also, the binary mass diffusion coefficient in equation (1.4) is computed using equation 

(1.6) which is calculated by the relationships given by Fuller et al. [62]. The molecular 

diffusion coefficient for explosives diffusing in a mixture of explosives and air is given 

by: 

0.5

2 1.75

, 21/3 1/3

1.013 10 i air

i air
i air

i air

M M
T

M M
D

p V V

  
  

 
  

                                (1.6) 

where p is the pressure [Pa], T is the temperature [K], M is the molecular weight [g/mol], 

V are the diffusional volumes. The chemical kinetics, kv, of each explosive are modeled 

based on 1st order homogeneous reactive flow proportional to the volumetric 

concentrations [mol/m3] of species. Its mathematical expression is conventionally called 

as Arrhenius form which is of the following form: 

exp    
 

r
r

E
k A T

RT
                                             (1.7) 

where Ar is the pre-exponential factor [s-1], β is the temperature exponent, Er is the 

activation energy [J/mol], and R is the universal gas constant (8.3145 J/mol-K). The 

chemical processes on the surface are treated by a procedure very similar to that for gas-

phase reactions. The boundary conditions applicable to this system are: 

                                     ,0i iC C                     at 0x   (in gas) 

(1.8) 

,
i

i air s i

dC
D k C

dx
        at x L  (in catalyst) 



 14

where Ci,0 is the initial concentration of explosives in the control volume. If the 

evaporation occurs at a state of dynamic equilibrium, the initial concentration can be 

obtained from the vapor pressure of each explosive. 

As opposed to homogenous reactions, catalytic oxidation by surface reaction 

depends on the surface coverage [mol/m2] of explosives. The oxidation reactions of 

explosives are highly exothermic, which means the heat of reaction, ΔH, in Figure 5 has 

a negative value. In the kinetic-controlled region, the concentration of explosives over 

the surface is simply obtained as the general solution to the diffusion equation given in 

equation (1.4) as follows: 

1 2( ) mx mx
iC x C e C e                                               (1.9) 

where 

 1/2

,/v i airm k D ,  
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, and 2 ,0 1iC C C   

In addition, the energy balance at the wall requires that at steady state the heat flux due 

to chemical reaction must be equal to the heat loss by convective and conductive heat 

transfer. Also, the heat flux by Joule heating as well as heterogeneous reaction is 

simultaneously imposed at the wall. Thus, the wall temperature can be calculated as: 

,0wall i wall

H D
T C T

k

 
                                            (1.10) 

Theoretically, a one-step global oxidation model can be considered as follows 

(i.e. A=Acetone, B=Oxygen, C=Carbon Dioxide, D=Water Vapor): 
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aA bB cC dD                                                (1.11) 

In formulating the stoichiometric table, species A as is considered as the basis for the 

calculations (which is then divided through by the stoichiometric coefficient of A), 

b c d
A B C D

a a a
                                              (1.12) 

The volumetric concentration, Ci, of species i is defined as a function of the conversion, 

X. Neglecting pressure drop in the reaction (which is assumed to be isothermal), the 

concentration is obtained to be [63]: 

,0

1

1
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i i

F X
C C

v X
     

                                          (1.13) 

where 

 0 1v v X                                                   (1.14) 

0
,0 ,0

0
i i

p
C y

RT

 
  

 
                                               (1.15) 

where ε is the ratio between change in total number of moles for complete conversion 

and total number of moles in the control volume, which is given by 

 ,0iy                                                        (1.16) 

Also, the definition of δ and F are shown in Table I. The change in molar concentrations 

of species is calculated from stoichiometric relationships between reacting and produced 

molecules for a single oxidation reaction. 
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Table I. Stoichiometric table for complete oxidation. 

Species Initially Change Remaining 

A  0AF  0AF X    0 1A AF F X    

B  0 0B B AF F   0A

b
F X

a
   0A A B

b
F F X

a
    
 

 

C  0  0A

c
F X

a
  0C A

c
F F X

a
   

D  0  0A

d
F X

a
  0D A

d
F F X

a
   

Total 0TF  - 0 0T T AF F C X    

            0

0

B
B

A

F

F
  , 1

d c b

a a a
      

The simple static deformation model is applicable to thermally induced stresses 

and concomitant deformations of (thermal bimorph) microcantilevers made of two 

layered materials with different thermal expansion coefficients. Considerable effort has 

been devoted to analyzing the thermal stress at the surface of thermal bimorph structures 

[47, 64-68]. The first attempt to relate the film stress to the curvature of a bilayer 

film/substrate system was performed by Stoney [47] and this equation has been adopted 

extensively [64]. However, in these studies the film thickness was assumed to be 

infinitesimal (i.e., 
3 4

Au Si Nt t ) compared to the substrate thickness. Recently, the 

accuracy of Stoney’s equation was improved by including higher order terms of film 
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thickness in solutions [65-67]. The curvature and corresponding deflection for the 

bilayer microcantilever due to residual stress from heat treatment in fabrication process 

were also reported as [67]: 

 

2

2

2
2

2

1
3

3 1 1

 

  
               

            
     

s

f

s f
s f f fs s s s

f f f f s s

t

tL
z T

t t t Et t E t

t t E t t E

           (1.17) 

where L is the length of microcantilever [m], E is Young’s modulus [Pa], t is the 

thickness [m], β is the coefficient of thermal expansion [K-1] and the subscripts, s and f, 

denote the substrate and the film, respectively. Lee et al. [68] proposed a deflection 

model due to thermal stress distributions which do not require information about the 

modulus of the materials as: 
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                                    (1.18) 

Although the elastic deformation is only considered in this model, the differences from 

the predictions from this model when compared with the elastic-plastic FEA simulations 

are less than 10 % [68]. Theoretical predictions from equation (1.17) and (1.18) are often 

used for obtaining quantitative analysis in order to determine the optimum geometry of 

the microcantilever and to explore the sensitivity for bending response. 
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2. Active Pen 

 

The microcantilevers used in this study were procured from a commercial source 

(Active PenTM, Manufacturer: NanoInk Inc., Skokie, IL). The sensor array consists of six 

writer probes in the middle and two reader probes in the opposite end of the array. 

Figure 6 shows the schematic of a typical bimorph microcantilever and defines the 

geometrical parameters used in this study. Typically, each pen is 150 µm long (l) and 1 

µm thick (t). The nominal width (w) of the reader probes is 30 µm and of the writer 

probes is 40 µm. Both writer and reader probes consist of two layers of materials – 

silicon nitride (Si3N4) substrate of 600 nm thicknesses with a deposited gold layer of 400 

nm thickness on top. 

 

 

 

 

Fig. 6. Schematic of a bimetallic microcantilever used in this study (NanoinkTM Inc., 

DS001). 
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As shown in Figure 7, this product is fabricated by the thermal compression 

bonding at high temperature (~300˚C). The Au film is deposited on Si wafer by physical 

vapor deposition (PVD) at low pressure (2~7×10-7 torr). The Si3N4 microcantilevers are 

fabricated by patterning, etching and metallization on an oxidized Si wafer. In the 

process of thermal boding between two different metal layers, thermal stresses (i.e., 

residual stress) are induced. This causes the microcantilevers (bi-morph structrues) to 

acquire an irreversible initial deflection at room temperature. This factor should be 

considered in the design of microcantilever-based sensor system using the optical 

deflection method since it can affect the initial position of the reflected light spot. 

 

 

Fig. 7. Fabrication process of microcantilever array. 
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3. Residual Stress 

 

Metal films can be deposited by sputtering, evaporation (PVD), electroplating, 

and chemical vapor deposition (CVD). During deposition processes, both the substrate 

and deposited film undergoes the heating and cooling cycles. Recrystallization and grain 

growth can occur when the temperature exceeds the elastic limit causing an irreversible 

deformation. This leads to the initial deflection [69]. In this case, the differential stress 

(or called as residual stress) is created due to dissimilar coefficients of thermal expansion 

of the Si3N4 substrate and Au film. Residual stress of multilayer systems is an important 

issue, since this sometimes results in cracking or interfacial rupture [69]. When the stress 

distribution through the thickness is not significant, the average residual film stress is 

calculated by [67] 
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             (1.19) 

where f  is defined as the mismatch between elastic stress (E) and thermal stress (βΔT).  

 

4. Bending Characteristics Due to Thermal Actuation 

 

a. Electro-Thermo-Mechanical Modeling 

Various theoretical studies for the strain induced by thermal actuation have been 

reported [70-72]. In most theoretical models, the thickness effect and thermal resistance 

between layers are neglected and the strains at the interface of each the two adjacent 
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layers are assumed to be equal. In this study, to directly compare the results in terms of 

the actuation current, the electro-thermo-mechanical coupling model proposed by Jiang 

et al. [72] is adopted. 
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where I is the applied current [A], R is the resistance of heating element [Ω], Vi is the 

volume of ith layer [m3], ki is the thermal conductivity of ith layer [W/m-K] and S is the 

surface area [m2]. Figure 8 represents the bending response due to electrical actuation 

and also by considering the initial deflection caused by the residual stress (calculated 

using equation (1.19)) for the actuation current value of 20 mA. 
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Fig. 8. Bending characteristics by electrically actuated microcantilever (Numerical 

Simulation by ESI CFD-ACE+®). 

 

b. Numerical Modeling 

The numerical techniques, such as finite differential method (FDM) or finite 

element method (FEM), are typically used for simulating the structural dynamics and for 

determining the response of microcantilevers. In this study, electro-thermo-structural 

coupling simulation is required for calculating the change in surface stresses resulting 

from thermal response that is caused by electrical actuation. For numerical simulations, 

Ansys® Multiphysics and ESI CFD-ACE+® based on FEM were used to calculate the 

deflection. The simulations were performed for three-dimensional FE models of the 

cantilevers under linear and static conditions. The FE models in Ansys® were meshed by 

SOLID226 elements. The deflection due to residual stress conditions can be imposed 

initially using the “INISTATE“ command, before performing the main calculations. 

Initial deflection by 
residual stress 

Bending response from thermal 
actuation by Joule heating 

20 mA 
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Deflection is calculated by static-structural simulations that are based on thermal data 

obtained from the results of electro-thermal coupling simulations. On the other hand, 

ESI CFD-ACE+® offers more straightforward environment to model multi-physics 

systems. Heat transfer, stress, grid deformation, and electric modules were selected for 

this case, while geometrical and material properties were identical to the numerical 

model implemented in Ansys®. 

Basically, the material properties of metallic films are different than the bulk 

property values. The material properties used in this study are summarized in Table II. 

The heat supplied by the resistive heater is treated as a function of temperature due to 

temperature dependent resistivity of a gold heating element. It is difficult to estimate the 

convection heat transfer since Nusselt number correlations for natural convection are not 

available at this scale in the literature. In addition, the device may operate in pure 

conduction regime since the Rayleigh number may be less than the critical value 

required for natural convection. Thus, it is empirically determined that the best fit occurs 

at the effective value of h = 700 W/m2-K [73]. Since the actuation slew rate is less than 

10 μs and actuation latency is less than 5 ms, therefore 4 ms was selected as the total 

simulation time for the steady state simulation. 
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Table II. Material properties used in this study (Data was obtained from reports on thin 

metal film.) [73-79]. 

Property 
Silicon Nitride 

(Si3N4) 
Gold 
(Au) 

Density [kg/m3] 3290 19320 

Thermal Conductivity 
[W/mK] 

1.7 150 

Thermal Expansion Coefficient 
[K-1] 

0.3 × 10-6 14.6 × 10-6 

Elastic Properties 
E: Young’s Modulus [GPa] / 

ν: Poisson’s Ratio 
224.6 / 0.253 74.5 / 0.35 

Electrical Resistivity 
[Ωm] 

1 × 1010 2.214 × 10-8 

Emissivity 0.88 0.02 

Yield Strength [GPa] 1.39 0.2 

 

c. Experimental Measurements 

Generally, the change in deflection of the microcantilevers can be monitored by 

tracking the reflected light spot on the projection screen or position sensitive detectors 

(PSD) [38, 72]. This method requires a high resolution PSD and precise value of 

distance between the end of cantilever and the detector in order to determine the actual 

vertical movement of microcantilever tip for the variations in positions of reflected light 

spot that is recorded by the PSD. So, in this study, a method was adopted to visually 



 25

capture the dynamic motion caused by thermal actuation resulting from the electrical 

current recorded by the optical system. Figure 9 shows a schematic of the experimental 

setup that was used to measure the deflection of the reflected light from the 

microcantilevers. The combination of CCD camera (purchased from IDSTM, Model: uEye 

UI-1645LE) and lenses (purchased from Navitar, Model: 12X UltraZoom and 2X 

adapter) enabled the images to be recorded with a resolution of ~0.7 μm per unit pixel.  

The deflection of microcantilever can also be measured by recording the pixel sizes 

using commercial image processing tool (e.g. PhotoshopTM). 

 

 

Fig. 9. Schematic setup of measurement experiment. 

 

CCD Camera 
(uEye: UI-1645LE) 

2X Adapter 
(Navitar: 1-6030) 

12X Body Tubes  
(Navitar: 1-50503) 

Power Supply  
(Agilent: E3620A) 

Active Pen Array 
(NanoInk Inc.: DS001) 

Light 
source 
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5. Design Optimization 

 

The purpose of design optimization for the microcantilever-based sensor is to 

find the parameters that can result in larger deflections for a given surface stress as 

shown in equation (1.3). However, design parameters to obtain lager deflections can 

cause the degradation of signal-to-noise ratio due to reduction in natural frequency as 

mentioned in Chapter I. Typically, equation (1.1) and equation (1.2) can be applied to 

the case that the film thickness can be assumed to be infinitesimal compared to the 

substrate thickness. In this study, to evaluate the sensitivity of bimetallic microcantilever, 

the deflections are calculated using equation (1.17) and equation (1.21) used for the 

natural frequency calculation. 

2

1

2 
  eff

n
eff

E t
f

l
                                              (1.21) 

In equation (1.21), since the film thickness cannot be neglected, each layer (e.g., 

Si3N4 and Au) is assumed to be combined analytically into an equivalent single 

composite layer. As shown in Figure 10, the thickness of Si3N4 and Au layers are tSiN and 

tAu, and the width remains unchanged as the value of w. 

 

    

Fig. 10. Schematic representation and cross section of Si3N4/ Au composite beam. 

SiNt
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The centroid location, ycomp, of the composite can be determined by: 

  



SiN SiN Au Au

comp
SiN Au

A y A y
y

A A
                                     (1.22) 

where ASiN and AAu are the areas of the rectangular sections and ySiN and yAu are the 

locations of the centroids of the individual area. The composite section moment Icomp is: 

2 2( ) ( )     comp SiN SiN comp SiN Au Au comp AuI I A y y I A y y                    (1.23) 

where ISiN = (1/12)wtSiN
3 and IAu = (1/12)wtAu

3. Also, the effective Young’s modulus of 

the composite, Eeff, based on total actual microcantilever thickness [67] is 

2 4 2 4 2 2( ) ( ) 2 2( ) 2( ) 3
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   (1.24) 

Also, the effective density of the composite is simply calculated by 

    



SiN SiN Au Au

eff
SiN Au

t t

t t
                                        (1.25) 

The natural frequency of the bimetallic microcantilever was calculated by using equation 

(1.21) along with equations (1.24) and (1.25) and using the property values listed in 

Table II, and was estimated to be 25.5 kHz. This result (1st flexural mode as shown in 

Figure 11(a)) differs from the numerical predictions (1st mode value in Table III) from 

Ansys® by ~24 %. This is due to the unrealistic assumptions for the geometrical 

dimensions. Actual design of Au layer (e.g., micro heater and heat spreader) is more 

complex than the shape assumed for performing the theoretical calculation. The 
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simulated values listed in Table III represent in order each mode shape shown in Figure 

11. 

 

           

                      (a)                                           (b)                                           (c)  

         

                      (d)                                           (e) 

Fig. 11. Vibration modes of cantilevers (a, b, and c) 1st, 2nd, and 3rd flexural, (d) lateral, 

and (e) torsional modes. 

 

Table III. Natural frequency for first five modes of vibration obtained from the 

numerical analysis using Ansys® 

Mode 1 2 3 4 5 

Frequency 
[kHz] 

33.6 204.30 359.03 537.6 998.3 
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The deflection and natural frequency contours, based on equation (1.17) and 

equation (1.21) respectively, involving the length and thickness of conventional 

microcantilever are plotted in Figure 12. This figure is plotted using Matlab®. It is 

evident that for any given thickness the deflection increases with the increase in 

cantilever length. Based on the definition of sensitivity given by equation (1.3), the 

optimum design space is given as the shaded area in Figure 12. The design of the 

microcantilever used for experimental testing is consistent with the optimum design 

derived in this study. 

 

 

Fig. 12. Design optimization of the microcantilever for enhancing the sensitivity. The 

shaded area shows the optimum design space.  
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D. Objective and Scope of the Study 

 

The fundamental transport mechanisms driving the chemo-mechanical 

transduction of microcantilever sensing platform for the detection of energetic materials 

(i.e., explosives, propellants and combustible materials) is the subject of this 

investigation. The exothermic reactions on the surface of a microcantilever causes the 

changes in surface stresses (i.e. compressive or tensile stresses), which is detected by the 

differential responses in either static mode of actuation or harmonic mode of actuation. 

The operation of the sensors is experimentally observed using the projection-screen 

method or the optical-detection method. For some volatile organic compounds (VOCs) 

gases (i.e. acetone and 2-propanol), the numerical analysis using commercial 

Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) tools are 

performed to gain insights about the experimental measurements. The numerical 

analyses are conducted based on the following assumptions: 

 

 In a gas-solid reaction, besides the exothermic reaction over the heated surface 

there exist another reaction mechanism (adsorption) by which reactants attach to 

the surface. However, since the forces of attraction between the gas molecules 

and the solid surfaces are weak, and the heat of adsorption is quite small (i.e. 

approximately 5 kcal/g-mol), this process is neglected in this study. 

 The diffusion (internal mass transfer) of reactants (or products) through pores of 

catalysts are neglected. The diffusion (external mass transfer) of reactants (or 
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products) from the ambient to the catalyst surface is the dominant transport 

mechanisms and is considered in this study. 

 The final deflection due to thermal actuation occurs when the heat loss by 

convection from the heated surface is balanced by the heat generation by 

chemical reaction. So, the steady-state simulation results can be used to 

investigate the operation of the proposed sensor. 

 

E. Overview 

 

The scope of this investigation is limited to the development (i.e. design, 

fabrication, and characterization) of microcantilever-based sensors for detection of 

energetic materials. 

The dissertation is divided into six chapters. Chapter I provides a general 

introduction to the basic concepts. This chapter also deals with the design, fabrication 

and characterization of microcantilevers to be used in the detection of explosive vapors. 

The principle of operation is based on the thermo-mechanical deformation of electro-

thermally actuated microcantilevers (so-called bimetallic effects) caused by dissimilar 

coefficient of thermal expansion. 

The methods for enhancing the sensitivity in thermally actuated MEMS devices 

are presented in Chapter II. At first, the theoretical approach using one-dimensional 

modeling is discussed. In addition, three experimental approaches for nano-coatings of 
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high thermal conductivity materials over the microcantilever surface are also 

investigated.  

Results from numerical modeling using commercial CFD/FEA tools (i.e., 

Fluent® and Ansys®) are presented in Chapter III. Various parameters are discussed in 

this chapter – such as the estimation of differential values of deflections in response to 

external stimuli, thermo-chemical properties of explosives in gas-phase, as well as basic 

mechanisms that are used in this study such as conductive as well as convective heat 

transfer, chemical kinetics (i.e. homogeneous and heterogeneous reactions), and elastic 

deformation by thermal actuation. 

Chapter IV deals with the experimental apparatus and procedure. The two 

detection techniques (i.e., manual projection-screen technique and automated 

optoelectronic detection technique) are described. 

In Chapter V all the results obtained in this study (from numerical and 

experimental investigation as well as from analytical models) are presented and 

discussed. Additional results are provided in Appendices. 

Finally, summary and conclusions are presented in the last chapter (Chapter VI). 

In the final chapter the summary of research achievements (the unique contributions 

from this study to the scientific/ technical literature) and the future directions for 

subsequent research topics are also explored. 

The proposed study will contribute to the field of micro/ nano-scale heat and 

mass transfer as well as instrumentation of MEMS sensor in the following ways: 
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 Explore the characteristics of heat and mass transfer at micro/ nanoscale (e.g., 

estimate the equivalent convective heat transfer coefficient due to pure 

conduction during thermal actuation of MEMS devices). 

 Investigate the robust recipe for nano-coatings of high thermal conductivity 

materials (e.g., Carbon Nanotubes) to enhance the sensitivity of thermally 

actuated MEMS-based transducers. 

 Develop the multi-physics numerical model (i.e., electro-thermo-mechanical 

models coupled with thermo-chemical model for transport phenomena at the 

micro/ nano-scale). Implement the numerical models through the development of 

user-defined functions (UDF) in commercial numerical solver tools by coupling 

of computational fluid dynamics (CFD) technique with finite element analyses 

(FEA) techniques. 

 Assess the impact of the experimental parameters on the thermo-mechanical 

actuation/ response of the microcantilever sensor, including: actuation current (or 

device temperature), thermo-chemical properties (such as chemical kinetics and 

enthalpy of reaction), thermo-physical properties (mass diffusivity, specified heat 

capacity, thermal conductivity, viscosity, etc.) and species concentration. 

 Design experimental platforms and instrumentation systems for monitoring the 

micro/ nano-scale response of the sensor device for demonstrating the feasibility 

of the operating principle for a nano-calorimeter sensor based on thermal bi-

morph actuation of a microcantilever array.  
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CHAPTER II 

DIP-PEN NANOLITHOGRAPHY (DPN) 

 

The sensor sensitivity for the fixed geometrical parameters can be maximized by 

enhancing the heat transfer from the microcantilever for enhancing the chemical 

reactions (i.e., by increasing the change in thermal surface stress Δσs in equation 1.3). 

This can be achieved by enhancing the surface area as well as thermal conductivity of 

the substrates used for fabricating the microcantilevers. An efficient way to achieve 

these objectives can be the incorporation of nano-fins on the microcantilever surface. 

This can be achieved by application of nano-coatings with high thermal conductivity 

materials (e.g. Carbon Nanotubes, or " CNT") onto the micro-cantilever surfaces. An 

attractive approach for application of these nano-coatings is by using Dip-Pen 

Nanolithography (or " DPN"). 

 

A. Dip-Pen Nanolithography (DPN) 

 

Dip-Pen Nanolithography (DPN) technique has been widely incorporated to 

deposit nano-scale chemical or biological patterns since it was invented by Chad Mirkin, 

Richard Piner, and Seunghun Hong at North Western University in 1999 (US Patent 

6635311). The nano-scale patterns are constructed via transport of molecules through the 

diffusion limited in small capillary meniscus (“capillary bridge”) when chemically 

coated scanning probe microscopy tips are very slowly moved in close proximity to a 
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substrate (as shown in Figure 13) [80-81]. The transport of ink molecules in DPN occurs 

due to the surface diffusion resulting from concentration gradient that occurs from the 

scanning probe tip to the surface via the capillary bridge. This method provides the 

nano-scale resolution (e.g., ~30-50 nm features with 5 nm spacing) as well as the ability 

to operate under ambient conditions (i.e., room temperature) [82]. Also, the unique 

benefit of DPN is the ability to deposit different molecules in parallel in close proximity 

as well as at different locations – either by single layer deposition or by multiple layers 

(or multiple passes) of deposition at the same location. Such an operation does not 

require any resist, stamp, and/or complicated fabrication processes (that are typically 

required in conventional photo-lithography). In addition, the operating cost is relatively 

cheap compared with E-Beam Lithography (EBL) or Deep UV Lithography (DUVL) 

since this technique can be implemented very simply on a conventional Scanning Probe 

Microscopy (SPM) platform. 

 



 36

      

Fig. 13. Schematic of DPN “Ink” deposition (Ink molecules are transported onto the 

substrate through the meniscus bridge formed around tip) [83]*. 

 

Various environmental conditions and parameters such as the surface diffusivity 

of the species, surface roughness of the substrate, ambient humidity, temperature, and 

the dwell time (or speed of writing) significantly affect the stable assembly of molecules 

during the DPN process [80-82]. The diffusion of molecules from the tip to the substrate 

occurs when the chemical affinity of molecules with the substrate is higher than that 

with the tip. Also, the surface roughness of substrate significantly affects the uniformity 

in self-diffusion of molecules over the substrate, which is related with formation of self-

assembly molecules (SAM) in nano-scale. 

In general, the transport of molecules can occur through the meniscus bridge 

formed at room temperature and under ambient conditions. Nevertheless, the relative 

humidity (RH) is a key factor to ensure the formation of the meniscus with appropriate 

                                                 
* Reprinted with permission from “Nanopatterning of Catalyst by Dip-Pen Nanolithography (DPN) for 

Synthesis of Carbon Nanotubes (CNT)” by S.-W. Kang, D. Banerjee, A.B. Kaul, K.G. Megerian, 2010, 
Scanning, 31(1), pp. 42-48, Copyright 2010 by John Wiley and Sons. 
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size for successful deposition [84-86]. The theoretical expression [85-86] of the 

curvature of a symmetrical meniscus in equilibrium is given by equation (2.1). 
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log /100k

V
r

r r RT RH


    

          
                               (2.1) 

with (γV)/(RT) = 0.54 nm for water at 20 °C; where rk is the Kelvin radius [m], r1 is the 

negative radius of the meniscus waist [m], r2 is the negative half diameter of the 

meniscus at the waist [m], γ is the temperature dependent surface energy of water [J/m2], 

V is the molar volume of water [m3/mol], R is the molar gas constant [J/mol-K], and T is 

the absolute temperature [K]. Equation (2.1) reveals that the meniscus size increases by 

increasing RH [87]. As the meniscus size is augmented from solid line to dotted line in 

Figure 13, the transport of molecules becomes easier. Moreover, for inks containing 

large molecules, the specific value of RH can be a critical value for successful deposition. 

As commonly expected, the longer contact time (t) enables larger feature size (or 

the radius of dot: r) [80-82, 88]. In a similar way, the thinner line (w) can be made by the 

faster writing speed (v). That is, 

1   
 

r t or w
v

                                           (2.2) 

The experimental conditions for successful nano-patterning should be empirically 

determined according to different substrate-inks combinations. 

Recently, the high throughput DPN platform (e.g., multi-pen configuration or 

integration with microfluidics) has been achieved by NanoInk Inc. – which is the 

outcome of the effort to commercialize DPN technology. Also, DPN technology has 
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been adapted and modified for purposes such as the use of different solvents (aqueous 

and non-aqueous) or in combination with different micro-fabrication techniques [80]. 

Typically, Type M (developed by NanoInk, Inc., Skokie, IL) probe enables long-

time duration of patterning and multiple array generation. This probe contains 12 “A-

frame” cantilevers combined with a hydrophilic microchannel in its body as shown in 

Figure 14(a). For the optimization for increasing loading of material and extend printing 

times, the numerical analysis using the VOF (Volume-of-fluids) method for the 

microfluidic ink delivery used to coat pen tips with ink materials was performed in this 

study. 

The meniscus position in ink coating process is simulated by using a commercial 

CFD tool (or Fluent®). In the VOF method, the Navier-Stokes equations are discretized 

using second order schemes with the second order up-winding method. The segregated 

solver is applied with the PISO pressure correction method. The 3D model (as shown in 

Figure 14(b)) involving a square cross section is generated in Gambit®. The time step 

size and maximum iterations per time step in this transient simulation was 10-8 sec and 

200, respectively. Also, the boundary conditions are described in Figure 14(c). In 

boundary conditions for liquid-solid interface, the contact angles for both hydrophilic 

and hydrophobic surfaces are static values measured when using water as the ink 

solution. 
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(a) 

(b) (c) 

Fig. 14. Type M multi-pen array and solid model for numerical analysis (a) Geometry 

(b) Isometric-view of meshed numerical model (total number of grids = 71,929) 

(c) Boundary conditions. 

 

The pen tip is dipped into inkwell filled with ink solution for the inks delivery to 

the microchannel integrated inside the microcantilever. The microcantilever is tilted by 

an angle (α = 7° in Figure 15(a)) with respect to the top surface of inkwell. Figure 15(b) 

shows the phase plot to show the movement of meniscus. At first, the flow goes up along 

to the hydrophilic surface of the pyramid pen tip. And then, the filling occurs by 

spreading toward the open micro-channel. 

 



 40

   

(a) 

           

 (b) 

Fig. 15. Transient simulation results for inks delivery in pen coating process (a) Initial 

dipping (b) Phase plot (Blue: VOF = 1 (Solution) and Red: VOF = 0 (Air)). 

 

From the simulation results shown in Figure 16, the meniscus is not separated 

from the hydrophobic surface. After the end of the hydrophobic area over the inkwell, 

the filling speed slows down considerably. That is, tip coating can be controlled by the 

overlapped area between cantilever and hydrophobic surface area below. So, the 

modification of configuration between pen and inkwell is proposed in this study. As the 

meniscus is approaching to the end of hydrophobic are over the inkwell, the modified 

design shows better filling phenomenon (as shown in Figure 16). 

 

α 

 

1 μsec 1 μsec 

0 μsec 

4 μsec 392 μsec 

Hydrophilic surface 
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Fig. 16. Comparison of meniscus position in inks coating process – (Top) The filling is 

almost stopped (Bottom) The filling is still going on. 

 

Numerical analysis for depositions can be achieved by multiple-steps from the 

initial filling of the microchannel in cantilever to diffusion through the meniscus bridge 

formed between tip and sample. Figure 17 represents the detail steps for the deposition 

simulation. In real physical phenomenon, the pen is extracted by moving upward to 

remove the pen from the inkwell, which can be simulated by moving boundary 

conditions along with automatic mesh adaptation. However, since the shape of the tip is 

pyramid, it is not easy to find the adaption formula to prevent the divergence of the 

simulation. 
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Fig. 17. Deposition of inks over the substrate – The pen extraction from the inkwell is 

simulated by incorporating the outlet boundary condition (gauge pressure is 0) 

for all surfaces except cantilever itself. 

 

Numerical analysis results can be used for parametric investigations for various 

combinations between different inks and substrates. Specially, nano-array patterned by 

DPN exhibits highly uniform and repeatable features within and between nano-arrays. 

So, this enables ultra-sensitive protein detection with even femto-scale quantities. The 

consistency should be ensured for the improvement of sensitivity and reproducibility. 
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Eventually, the changes by different ink solutions or substrates can be obtained by using 

different material properties. Figure 18 and 19 are measured material properties (such as 

viscosity, contact angle, and surface tension) used for the numerical analysis of DPN-

based nano-patterning for biological protein (i.e., Rabbit IgG) detection. 

 

 

Fig. 18. Viscosity measurements of protein inks using rheometer (Model: AR 2000x, TA 

instruments, New Castle, DE).  

 

 

 

 

 

► Room Temperature (25 ̊C) 

► Cone type vs. plate type 
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(a) 

Categories 
Average Values 

[degrees] 
Standard 
Deviation 

Hydrophobic Area 98.63 0.202 

       

Hydrophilic Area 63.10 3.363 

       

                                                      
                                                    (b) 

 Density Ratio with 
Water 

Average Values 
[N/m] 

Standard 
Deviation 

1 0.0573 0.005873 

0.95 0.0544 0.005579 

     
                                                                                                   
                                                                                               (c) 

Fig. 19. Contac angle and surface tension measurements of protein inks using video 

contact angle measurement system (a) Model: VCA Optima (AST Products, Inc., 

Billerica, MA) (b) Averaged values of contact angle and (c) surface tension. 
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B. Analysis of Nonlinear Dynamics during DPN Processes 

 

 For deposition of nano-materials by DPN on the surface of a microcantilever, the 

dynamic behavior of the microcantilever should be analyzed to ensure the repeatability 

of the DPN process. The non-linear response arising from the vibration of a 

microcantilever due to sliding motion of the writing probe therefore needs to be 

ascertained. The numerical analysis for the dynamic response of a microcantilever when 

subjected to a sliding probe was performed by using a point-mass model [37]. The 

following section has been adapted from [37]. 

The physical representation of an oscillating cantilever (Figure 20a) is simplified 

to an equivalent point-mass model (as shown in Figure 20b). 

 

                

                                              (a)                                                             (b) 

Fig. 20. Equivalent point-mass representation of a cantilever oscillating in a single 

eigenmode (a) Schematics of the dynamics between tip and sample; (b) 

Corresponding point-mass model [37]*. 

                                                 
*  Reprinted with permission from “Point-Mass Model for Nano-Patterning Using Dip-Pen 

Nanolithography (DPN)” by S.-W. Kang, D. Banerjee, 2011, Sensors & Transducers, 11, Special Issue, 
pp. 64-73, Copyright 2011 by International Frequency Sensor Association (IFSA). 
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During the deposition step, the probe will oscillate in a direction perpendicular to that of 

the substrate. The governing equation of the simplified model is given by [89-91]  

0( ) cos( ) ( )     eq eq r TSm z bz k z z F t f t                              (2.3) 

where z  is the cantilever position with respect to the surface, F0=keqA1 is the driving 

force (A1 is the driving amplitude) [N], ω is the driving frequency [Hz], fTS(t) is the tip-

sample interaction force [N] and b=meqfn/Q is the damping coefficient, where fn is the 

natural frequency [Hz] and Q is the quality factor. The corresponding masses meq [kg] 

and flexural stiffness kN,eq [N/m] to the equivalent model is determined from the kinetic 

(T) and potential (V) energy balance between a continuous model and a point-mass 

model [90]. 

1

4
eq cm m  and 4

,

1

12
N eq c ik k                                       (2.4) 

where mc=ρcLc is the total mass of the cantilever [kg], kc=3EcIc/Lc
3 and αi is the ith 

solution of the dispersion relation, cos(α)cosh(α)+1=0, such that the resonance frequency 

ωi,n
2=EcIcαi

4/ρcLc
4 (α1=1.875, α2=4.694 and α3=7.855). In scanning mode, the probe 

undergoes both lateral as well as torsional deflection. The effective spring constant in 

lateral mode is defines as [92-93]  

,

1 1 1
 

L eff lat tork k k
                                                (2.5) 

where 
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In DPN process, the tip-sample interaction force (or repulsive force) in contact 

force regime and the adhesion force due to the capillary bridge is balanced to maintain 

constant contact between tip and sample. The tip-sample force based on DMT 

(Derjaguin-Muller-Toporov) model is used in this study as follows [94]: 

* 3/2
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 N TSf t E R d z                                         (2.7) 

with 
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where R is the tip radius [m], d0 is the intermolecular distance between tip and sample 

[m] and E* is the effective elasticity [Pa], where Ec, νc and Es, νs are the elastic module 

and Poisson’s ratios of the tip and sample, respectively. In scanning mode, the tip-

sample interaction force at the lateral direction is given as a function of the normal value 

[95]. 
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In this study, the natural frequencies in flexural and lateral modes are calculated 

by performing numerical simulations using Finite Element Analyses (FEA) tool 

(Ansys®) and theoretical analysis using Maple® (Maplesoft, Waterloo, Canada). The FE 

models for the harmonic simulations in Ansys® were meshed by SOLID45 elements and 

the normal (kn) and lateral (kl) stiffness is simply expressed as [96-98]: 

*2 1/3(6 )
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where the approximate relation kl ≈ 0.9kn applies to an incompressible tip. The 

parameters for theoretical calculation are summarized in Table IV. 

Figure 21 and Figure 22 represent the natural frequency estimated by the 

theoretical and FEA models, respectively. FEA results shown in Figure 22 represent the 

natural frequencies in both air and consideration of the interaction with the Au coated 

substrate. The increase in natural frequency during DPN process as opposed to the 

ambient condition can be explained from the additional contributions to the total 

effective stiffness by that of the tip-sample interaction.  



 49

 

(a) 

 

(b) 

Fig. 21. Natural frequency estimated by the theoretical models (a) normal (b) lateral-

directions [37]*. 

 

                                                 
*  Reprinted with permission from “Point-Mass Model for Nano-Patterning Using Dip-Pen 

Nanolithography (DPN)” by S.-W. Kang, D. Banerjee, 2011, Sensors & Transducers, 11, Special Issue, 
pp. 64-73, Copyright 2011 by International Frequency Sensor Association (IFSA). 

9 
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                                   (a)                                                                   (b) 

Fig. 22. Simulation results of FEA model (a) normal (b) lateral-directions [37]*. 

 

In addition, Figure 23 shows the effect of tip-sample interaction force on the tip 

position. These results are obtained by solving equation (2.3) in flexural mode using 

ODE45 function in Matlab® (Mathworks Inc., Natick, MA). From the results, the 

amplitude values are observed to diverge at the driving frequency of ω = 120 Hz which 

is identical to the natural frequency of the point-mass and FEA models. 

The operation of deposition mode in fluid environment causes the attenuation of 

the vibration due to the increased hydrodynamic damping (or the decrease in the quality 

factor; i.g., from 100 ~ 400 in air to 1 ~ 5 in fluids [91, 99]) as shown in Figure 24. This 

analysis helps to determine the operating parameters for performing the direct deposition 

of nano-fins (CNT) on the microcantilever surface using DPN technique. 

                                                 
*  Reprinted with permission from “Point-Mass Model for Nano-Patterning Using Dip-Pen 

Nanolithography (DPN)” by S.-W. Kang, D. Banerjee, 2011, Sensors & Transducers, 11, Special Issue, 
pp. 64-73, Copyright 2011 by International Frequency Sensor Association (IFSA). 
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Table IV. Constants and properties of the Si3N4 microcantilever and Au sample used in 

numerical computation [37]*. 

Description Value 

Tip radius R = 15 nm 

Cantilever length L = 200 μm 

Cantilever width b = 45 μm 

Cantilever thickness h = 600 nm 

Cantilever material density ρc = 3100 kg/m3  

Cantilever Young’s modulus Ec = 210 GPa 

Cantilever Poisson ratio νc = 0.22 

Sample material density ρs = 19320 kg/m3 

Sample Young’s modulus Es = 80 GPa 

Sample Poisson ratio νs = 0.4 

Effective elastic modulus E* = 66.53 GPa 

Static bending stiffness k = 0.064 N/m 

1st natural frequency f1 = 19.358 

Q factor (in air) Q = 80.0 

Hamaker constant (Si3N4-Au) AH = 32.5×10-20 J 

Intermolecular distance a0 = 2.0 Å 

                                                 
*  Reprinted with permission from “Point-Mass Model for Nano-Patterning Using Dip-Pen 

Nanolithography (DPN)” by S.-W. Kang, D. Banerjee, 2011, Sensors & Transducers, 11, Special Issue, 
pp. 64-73, Copyright 2011 by International Frequency Sensor Association (IFSA). 
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                                   (c)                                                                  (d) 

Fig. 23. Tip position in one oscillation cycle (a) ω = 1 Hz (b) ω = 5 Hz (c) ω = 10 Hz (d) 

ω = 120 Hz [37]*. 

                                                 
*  Reprinted with permission from “Point-Mass Model for Nano-Patterning Using Dip-Pen 

Nanolithography (DPN)” by S.-W. Kang, D. Banerjee, 2011, Sensors & Transducers, 11, Special Issue, 
pp. 64-73, Copyright 2011 by International Frequency Sensor Association (IFSA). 
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Fig. 24. Tip position and force in one oscillation cycle at the driving frequency ω = 1 Hz 

[37]*. 

 

C. Synthesis of Carbon Nanotubes (CNTs) 

 

Carbon Nanotubes (CNTs) are allotropes of carbon with a cylindrical crystal 

structure which can be self-organized to form either single-walled carbon nanotubes 

(SWNTs) or multi-walled carbon nanotubes (MWNTs). CNT have been proposed for 

incorporation into a variety of solid state electronics devices  - due to their outstanding 

material properties (electrical, magnetic, optical, mechanical, thermal, chemical, etc.) 

and also for their unique ability to yield tunable properties by controlling the crystal 

structure (or “chirality”). Properties that can be tuned (or manipulated) based on chirality 

                                                 
*  Reprinted with permission from “Point-Mass Model for Nano-Patterning Using Dip-Pen 

Nanolithography (DPN)” by S.-W. Kang, D. Banerjee, 2011, Sensors & Transducers, 11, Special Issue, 
pp. 64-73, Copyright 2011 by International Frequency Sensor Association (IFSA). 



 54

include - ultra-high thermal conductivity, ballistic electron mobility, and superior 

mechanical strength [100-105]. 

However, the primary impediment to the incorporation of CNTs in these novel 

and proposed applications has been the lack of a suitable synthesis protocol. It was 

argues – that successful incorporation of CNTs in nano-electronics can be achieved only 

if a robust synthesis protocol can be developed that enables precise control over the 

chirality, selectivity in location (location of deposition/ patterning of the required CNT 

nanoparticles), orientation of the patterned CNTs and with sufficient number (or spatial) 

density [100]. 

In this study, various methods are explored such as the direct deposition of 

aqueous suspension of CNT nanoparticles that are chemically functionalized or 

physically dispersed in a solvent. For example, Amine-functionalized and surfactant-

coated (e.g., Gum Arabic) CNTs are attractive options for ink formulations that can be 

used for nano-scale patterning using DPN. In contrast, a radically different approach is 

the in-situ synthesis of CNTs from catalyst nano-particles loaded onto on a scanning 

probe tip (e.g., using DPN technique), and/ or synthesis by plasma-enhanced chemical 

vapor deposition (PECVD) process [83, 106-107] from catalyst precursors (e.g., metal 

salts that form carbide eutectics: Ni, Co, Pd, Fe(II), Fe(III), Pt, and Rh) that are 

patterned on a substrate using DPN. 

CNTs (and other nanoparticle/ nanowires – such as from gold or silicon) are 

typically synthesized from metal catalysts (or their precursors – such as aqueous salt 

solutions of these metal catalysts). The metal catalysts nanoparticles – such as Pd, Pt, Ni, 
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Co, Fe or Au (or nanopatterns of the precursor material – such as PdCl2, PtCl2, FeCl3, 

NiCl2, etc.) are deposited on a substrate or scanning probe tip - by DPN. Subsequently, 

the deposited materials can be exposed to an organic material (e.g., a carbonaceous gas) 

or coated with the liquid suspension of an organic solution or suspension, or coated by 

vapor deposition (e.g., organic gasses or Fullerene). A simpler approach can be to use 

organometalics as the precursor that contains both the catalyst material and the organic 

seed – that are required for the synthesis of CNTs (or inorganic nanowires). The 

substrate that contains both the catalyst (or precursor) and the seed material (organic or 

inorganic material) is exposed to the optimum conditions that can enable the chemical 

reactions to proceed that yields the CNTs (as well as any other type of organic or 

inorganic nanoparticles/ nano-wires) – such as CVD, PECVD, laser ablation, etc. [100, 

106-113]. The role of the metal catalysts is to form a eutectic compound of metal and 

carbon (or inorganic material such as Si) – that leads to synthesis and growth of 

nanotube or nanowire. For CNTs, typically growth of CNTs is envisioned to occur when 

the carbon atoms precipitate from the catalyst after it forms a eutectic melt-pool [114]. 

Prior research results using similar approaches are available in the literature [115-121]. 
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The following section has been adapted from [83]. Figure 25 shows the lateral 

force microscopy (LFM) images of nano-patterns of metal (NiCl2) catalysts deposited on 

silicon substrate by DPN (Nscriptor: NanoInk, Inc., Skokie, IL) at the materials 

characterization facility of Texas A&M University. The NiCl2 powder (10 mg) is 

dissolved in DI water (10 mL) to form aqueous solutions (0.008 M) by mixing using 

ultra-sonicator for 30 min. The scanning probe tip is coated twice with ink materials by 

dipping it in an ink droplet for 1 - 2 min (double dipping procedure [83, 121]) and air-

drying for 30 sec as shown in Figure 26, before the tip is contacted with the substrate for 

the deposition. 

The scanning electron microscopy (SEM) images of CNTs grown on NiCl2 

catalyst nanoparticles (pre-deposited by DPN) by PECVD process is shown in Figure 27. 

This work was performed in collaboration with the research group of Dr. Kaul at NASA 

(National Air and Space Agency) / JPL (Jet Propulsion Laboratory) at Caltech 

(California Institute of Technology) [83]. At the pressure of ~2 × 10-6, high-purity 

acetylene (C2H2) and ammonia (NH3) was used as the carrier gas for carbon source 

(organic seed).  In PECVD method, the inherent electric field in the plasma enables the 

excellent vertical alignment of CNTs during synthesis. 
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(a) 

       

(b) 

Fig. 25. Lateral Force Microscopy (LFM) image of 2NiCl  deposited by DPN on 

Sindex™ chip: (a) writing speed [μm/s]: 0.1, 0.2, 0.4, scan size: 4.80 μm, scan 

speed: 3 Hz (b) writing speed [μm/s]: 0.05, 0.1, 0.15, scan size: 6.30 μm/s, scan 

speed: 3 Hz [83]*. 

                                                 
* Reprinted with permission from “Nanopatterning of Catalyst by Dip-Pen Nanolithography (DPN) for 

Synthesis of Carbon Nanotubes (CNT)” by S.-W. Kang, D. Banerjee, A.B. Kaul, K.G. Megerian, 2010, 
Scanning, 31(1), pp. 42-48, Copyright 2010 by John Wiley and Sons. 
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Fig. 26. Schematic illustration of the process: AFM tip coating, fabrication of NiCl2 NP 

patterns by using DPN (Right – Double dipping procedure/ Left – DPN process) 

[83]*. 

 

 

Fig. 27. (a) Left image is a low magnification image of a single vertically oriented tube 

(b) a high magnification SEM image of the same tube: Tilt angle in the SEM is 

30 degrees [83]*. 

 

DPN requires the coating of scanning probe tip by using a liquid solution of ink 

materials. However, CNTs are basically insoluble in water. Thus, colloidal suspension of 

CNTs is prepared by chemical functionalization or surfactant (e.g., Gum-Arabic) 

                                                 
* Reprinted with permission from “Nanopatterning of Catalyst by Dip-Pen Nanolithography (DPN) for 

Synthesis of Carbon Nanotubes (CNT)” by S.-W. Kang, D. Banerjee, A.B. Kaul, K.G. Megerian, 2010, 
Scanning, 31(1), pp. 42-48, Copyright 2010 by John Wiley and Sons. 
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dispersion. These methods have the following advantages compared with conventional 

CVD method: (a) low temperature operation (b) preserved properties of CNTs after 

synthesis (c) low cost (d) quick and simple characterization by LFM right after 

deposition. Figure 28 represents LFM images of CNTs patterns obtained from direct 

deposition by DPN. The direct deposition of CNT by DPN was performed on SindexTM 

(Base Si substrate: purchased from Bioforce Nanosciences, Ames, IA) chip. The ink was 

formulation was achieved by using ethylene diamine-functionalized single-walled CNTs 

(EDA-SWNTs) and Gum-Arabic (GA) dispersed multi-walled CNTs (GA-MWNTs) 

inks. In the literature [122] GA is known to be an excellent dispersant of CNTs in 

aqueous solutions. 

The experimental conditions for successful deposition of CNTs are sensitive to 

small variations in the individual steps in the experimental protocol. In our experiments 

using EDA-SWCNT solution, the deposition on Si substrate was accomplished only after 

the RH value exceeded ~75 %. On the other hand, the deposition of GA-MWNTs on Si 

substrate was not affected by RH. Figure 29 shows the relationship between contact time 

and radius of dot. The dot size was decreased with decrease in contact time. Also, Figure 

30 shows the plot of the width of line shaped features as a function of writing speed in 

GA-MWNTs deposition on Si substrate. 
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(a) 

     

(b) 

Fig. 28. LFM Images of CNTs deposited by DPN on SidexTM chip (a) EDA-SWNTs 

solution of 10 pH – writing speed: 0.15 μm/s, scan size: 4.44 μm, scan speed: 4 

Hz (b) GA-MWNTs solution – writing speed: 0.05 μm/s, scan size: 4.81 μm, 

scan speed: 3.5 Hz. 
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(a) 

 

(b) 

Fig. 29. Comparison of the dot size between different contact time (100, 50, and 25 sec): 

(a) PdCl2 nanoparticles deposited on SiO substrate by DPN (b) Line analysis to 

estimate the feature size. 
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Fig. 30. Dependence of feature size on writing speed. 
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(a) 

 

(b) 

 

(c) 

Fig. 31. Raman spectra of (a) the Si substrate: (b) EDA-SWNTs solution (c) GA-

MWNTs (The resonant peaks of CNTs are in the range of 1400 ~ 1700 cm-1). 
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Another important factor that affects the DPN process is the combination (or 

compatibility) between ink material composition and the substrate morphology. The 

compatibility is determined by the chemical affinity of the ink to the writing probe as 

well as the substrate surface (which is also affected by the surface roughness). In the 

experiments using EDA-SWNTs, higher solution pH enables bigger feature size, which 

means the adhesion force as well as the affinity for surface adsorption between substrate 

(Si) and Inks (EDA-SWNTs solution) is enhanced at higher pH value. 

Since DPN is based on scanning probe microscopy (SPM) technique, it basically 

provides the scanning mode (i.e., lateral force microscopy: LFM) which is usually 

performed immediately after the deposition step. However, LFM does not provide the 

information about the chemical composition of the deposited features. Hence, Raman 

spectroscopy is typically used for the verification (or materials characterization) of the 

CNTs inks that were deposited in this study. Figure 31 represents the resonant 

vibrational peaks of each sample that was deposited by DPN – thus verifying the 

successful deposition of CNTs by DPN. 

 

D. Synthesis of CNTs on the Microcantilever 

 

In this study, CNTs are synthesized on a microcantilever substrate (Au-coated 

Si3N4) via post-growth from metal catalyst precursors (Palladium Chloride: PdCl2) pre-

deposited by DPN. The synthesis of CNTs from C60 vapor [112-113] or C60-metal 

catalysts layers [123-124] has been investigated in previous studies. Initially, PdCl2 
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(procured from Sigma-Aldrich, St. Louis, MO) is deposited by DPN on the cantilever as 

the catalysts for growing CNTs. Figure 32 shows the setting of DPN for the deposition 

of metal catalysts using NScriptor ™ instruement. In the left hand side of Figure 32, the 

dark-colored microcantilever on the top is the Pen cantilever coated with aqueous PdCl2 

solution and the relatively bright colored microcantilever represents the substrate. 

  

 

Fig. 32. DPN setting for the deposition on the microcantilever (Pen: PdCl2 inks coated 

Type A pen purchased from NanoInk, Inc./ Substrate: Type E passive pen 

purchased from NanoInk, Inc.). 

 

Figure 33 shows the experimental setup for growing CNTs. The desiccators is 

connected with ultra-high purity N2 gas line used to remove H2O vapor and O2 gas inside 

the chamber for preventing the oxidation of carbon source (C60: Fullerene, purchased 

from Nano-C, Westwood, MA) as well as metal catalysts. The process temperature is 

verified by using an infrared camera and a thermocouple (that is embedded on the 

heater) to ensure the uniformity of the surface temperature. 

 

NscriptorTM DPN System 
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Fig. 33. Experimental apparatus for CNTs growth. 
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                               (a)                                                                  (b) 

   

                                                                     (c) 

Fig. 34. (a) LFM image of line features deposited by DPN on Au-coated Si3N4 

microcantilever (Type E passive probe), (b) Raman characterization and (c) 

SEM images of CNTs grown at 600 °C. 

 

 



 68

The materials characterization of the synthesized CNTs performed by using 

Raman spectroscopy and SEM. Figure 34(a) is LFM image of PdCl2 nano-particles 

deposited on the top surface of cantilever by DPN. After deposition of metal catalysts, a 

single droplet of C60 solution (mixture of Toluene and Fullerene) is dropped on the area 

where metal catalysts are deposited in order to form C60-PdCl2 nanoparticle mixture. 

Finally, the sample is heated up to approximately 600 °C for the growth of CNTs. Figure 

34(b) and (c) represent the Raman peaks (R and G band) and SEM images of CNTs 

synthesized through this investigation. 

Finally, the same procedure is applied to the bimorph microcantilever platform to 

verify the enhancement of sensor sensitivity by coating of high-thermal conductivity 

materials (i.e., CNTs). At first, for successful deposition of metal catalysts, the 

cantilevers are cleaned by plasma cleaning method (gas mixture of O2 20 % and Ar 

80 %) using RIE (Reactive-Ion Etching) instrument. Figure 35 shows the square-shaped 

deposited features and experiment setting of pen (Type NP probe with spring constant of 

0.06 N/m, purchased from Veeco, Santa Barbara, CA) and substrate cantilevers (Active 

Pen Model# DS001, purchased from NanoInk, Inc., Skokie, IL). After dropping a single 

droplet of C60 solution on the surface of bimorph microcantilever, the cantilever is 

electrically heated by micro-heater attached at its base (50 mA for a period of 5 min) 

[117] for the growth of CNTs. 
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    (a) (b) 

Fig. 35. Surface cleaning and results of DPN experiments for the deposition of PdCl2 

nanoparticles on the bimorph microcantilever surface (a) LFM image (Square: 1 

μm × 1 μm) (b) Setting of pen (Top) and substrate (Bottom) cantilevers. 

 

However, the solution is not exactly spread over the metal catalysts due to 

surface tension effect and initially deflected shape of bimorph microcantilever. This is 

verified by the experiment of CNTs growth PdCl2-C60 layer formed by dropping a 

droplet for both solutions. Figure 36 shows the SEM image of carbon nano-structures 

formed at the edge and corner of the microcantilever. Since the nano-structures are not 

existed on the top surface of the cantilever, Raman peaks is not successfully obtained but 

the nano-structures is verified as carbon structures by EDS (Energy Dispersive X-Ray 

Spectrometer) analysis. The deflection measurements using this microcantilever are 

presented in Chapter V (Experimental Results). 
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Fig. 36. SEM images obtained from the experiment using PdCl2-C60 layer formed by 

dropping a droplet. 

 

Three different approaches approached for the synthesis of CNTs were 

successfully explored in this study. Hence, the in-situ synthesis method by using DPN 

technique confers several advantages and obviates the restrictions for commercial 

application on CNTs in nano-electronic devices. This method yields stable and 

continuous pre-depositions of metal catalysts – that are crucial for the mass production 

(and large-scale nano-patterning) of CNTs. Most importantly, the surface roughness of 

the substrate for synthesis of CNTs should be low (e.g., 5 nm or less) and uniform. 

However, the required surface roughness in the nano-synthesis process is a challenging 

issue for the synthesis of CNTs on MEMS/NEMS devices – especially for thermally 

actuated devices (such as explosives sensors and nano-calorimeters that are explored in 

this study). 
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CHAPTER III 

MODELING AND SIMULATION 

 

A. Governing Equations 

 

 The flow regime is assumed to be steady, incompressible and laminar. The gas 

mixture is treated as an ideal gas. Basically, the set of governing equations used in this 

study includes continuity equation (or conservation of mass), equation of motion (or 

momentum conservation), energy balance (or thermal energy equation), and material 

balance equation (or species equations). 
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where Ns, ρ, ui, Yi, p, Ri, H, qj, and Φv represent the number of species, density [kg/m3], 

velocity of components [m/s], mass fraction of species, pressure [Pa], rate of reaction of 

species [mol/m3-s], total enthalpy [J/mol], heat flux due to conduction and species 

diffusion [W/m3], and viscous dissipation [N/m2-s], respectively. 
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B. Numerical Methodology 

 

Computational model development and simulations are performed using a 

commercial finite element analysis (FEA) tool (Ansys®). The computational model is 

used to perform a parametric study of the coupled electro – thermo – mechanical 

analyses of the microcantilever platform used in this study. Proper estimate for the 

temperature profile of the microcantilevers is a key factor in simulating the response of 

the nano-calorimeter platform for chemo-mechanical sensing of explosives. However, 

the thermal response to chemical reactions is not available in the FEA tool (Ansys®). 

The chemo-mechanical model is formulated for predicting the mechanical deflection for 

changes in temperature distribution of the bimorph structure. Hence, an electro – thermo 

– structural model is coupled with a computational fluid dynamics (CFD) model, as 

shown schematically in Figure 37. The thermal data obtained from the chemical reaction 

model (using Fluent®) is mapped onto each finite element (FE) node, which serves as the 

initial condition for the structural dynamics simulation using Ansys®. 
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Fig. 37. Schematic of a complete model of an electro-thermally actuated microcantilever. 

 

1. Computational Fluid Dynamics (CFD) 

 

The volumetric generation (q) by electric current through resistive heating 

element (Joule heating) can be calculated from Ohm’s Law as follows: 

2
2 2        

 
l Q I

Q I R I q
A V A

                               (3.5) 

Fluent® does not provide the solution for joule heating, so we implement the user-

defined function (UDF) code into the Fluent® case file. In our UDF code, the electrical 

conductivity value is defined as the diffusivity of the solid phase potential in the solid 

zones. Then we perform the thermal analysis for the catalytic oxidation based on species 

transport and gas phase as well as surface oxidation models. 
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Numerical simulations were performed based on the 3D, laminar, species 

transport, gas phase as well as surface reaction, and steady-state simulation techniques. 

Hexagonal and gradient meshing techniques were used. Figure 38 shows the solid model 

generated in Gambit® software for thermal analysis using Fluent®. 

 

 
 

Fig. 38. Geometry of the control volume for simulation. 

 

The thickness of thermal boundary layer (δT) (as shown in Figure 39) on natural 

convection over the heated microcantilever surface is expressed as follows [125]: 
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0.240.0014  T Ra                                                  (3.6) 

where Raδ is the Rayleigh number which is given by 

3Pr ( )


    s

g
Ra Gr T T L                                        (3.7) 

where Gr is the Grashof number, Pr is the Prandtl number, g is the acceleration [9.81 

m/s2] due to gravity, β is the thermal expansion coefficient [K-1], Ts is the wall 

temperature [K], T∞ is the ambient temperature [K], ν is the kinematic viscosity [m2/s], α 

is the thermal diffusivity [m2/s], and L is the characteristic length [m]. 

 
( )

( )


Surface area A
L

Perimeter of the surface P
                                (3.8) 

For the maximum temperature (e.g., ~580 K) at the actuation current of 20 mA, the 

thermal boundary layer is approximately 200 μm in height. Also, the thickness for other 

direction is determined by using the same way. For the size of the simulation volume 

(shown in Figure 38) obtained from the calculation of thermal boundary layer thickness, 

the convective heat transfer coefficient (h) calculated based on the pure conduction 

correlation (equation 2.9) by Nusselt number (Nu) was consistent with value obtained 

from the experiments (h = 700 W/m2-K) [73]. 

1 
hL

Nu
k

                                                     (3.9) 

where L is the characteristic length [m], L = Volume / Surface Area, and k is the thermal 

conductivity [W/m-K] for the mean temperature, Tm = ( Ts + T∞) / 2. 
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Fig. 39. Schematic representation for thermal boundary layer on natural convection over 

a horizontal plate. 

 

a. Vapor-Liquid Equilibrium (VLE)  

Simulations are performed at a constant gas mole (or mass) fraction in a testing 

chamber. The vapor-liquid equilibrium (VLE) mole fraction is determined from a vapor 

pressure at a room temperature (293.15 K). The vapor pressure, sat
ip , of each explosive 

is commonly represented by Antoine equation which is given by: 

log sat
i

B
p A

T C
 


                                            (3.10) 

Table V shows Antoine Coefficients (A, B and C) used in equation (3.10) and vapor 

pressures of some VOCs gases predicted by Antoine Equation.  

 

 

Heated Surface Ts 

δT 

T∞ 
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Table V. Antoine coefficients and VLE vapor pressure at room temperature (T is in 

Celsius) [126]. 

At 273.15 K A B C sat
ip  [mmHg] yi 

Acetone 

(CH3)2CO 
7.23160 1277.030 237.230 184.950 0.243 

2-Propanol 

C3H7OH 
8.11820 1580.920 219.620 33.158 0.044 

 

From the given pressure values in Table V, we can calculate the mole fraction of each 

species using Dalton’s law. 

i
i

total

p
y

p
  where 

1

n

total i
i

p p


                                      (3.11) 

 

b. Chemical Kinetics 

The main assumptions for the numerical model are (i) The flow remains laminar 

during the entire combustion process (Laminar finite-rate model); (ii) Multi-step 

chemical kinetics in gas-phase (volumetric) and complete (or deep) reaction model in 

catalytic surface reactions occur with rate constants following the Arrhenius type 

dependence (equation (1.7)); (iii) Explosives of constant concentrations are presented in 

the control volume by forming a mixture with air. In Fluent®, concentrations of reactants 

need to be specified on the basis of mass fractions. 
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At the constant-pressure processes, the enthalpy of reaction as the difference 

between the enthalpies of products and the reactants is defined as: 

ΔH = Hproducts - Hreactants                                          (3.12) 

The enthalpy of reaction can be positive or negative or zero depending upon whether the 

heat is gained or lost or no heat is lost or gained: 

 

ΔH > 0, if Hproducts > Hreactants endothermic reaction (ΔH is positive [+]) 

ΔH < 0, if Hproducts < Hreactants, exothermic reaction (ΔH is negative [-]) 

ΔH = 0, if Hproducts = Hreactants, no heat is lost or gained (ΔH is zero [0]) 

(3.13)

 

Table VI represents the standard state enthalpy of some products and reactants used in 

this study. 

 

Table VI. Standard state enthalpy of some gases. 

 C3H6O C3H7OH O2 H2 H2O CO CO2 

H 
[J/kmol] 

-2.19×108 -2.73×108 0 0 -2.42×108 -1.11×108 -3.94×108

 

The complete oxidation reaction of VOCs is highly exothermic and the global oxidation 

models of different gases (that were used for numerical simulations) are summarized in 

Table VII. 
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Table VII. Global one-step reaction models of acetone and 2-propanol. 

Gases Combustion Model Heat of Combustion

Acetone 
(CH3)2CO 

 3 2 2 22
CH CO  4O 3 3CO H O   –1761 kJ/mol 

(–303.2×105 J/kg) 

2-Propanol 
C3H7OH 3 7 2 2 22 9 6 8C H OH O CO H O    –1907 kJ/mol 

(–317.3×105 J/kg) 

 

The gas phase reaction scheme is based on reports in the literatures. The models 

were based on 1st order homogeneous reactive flow proportional to the volumetric 

concentrations of the species. Basically, in the gas phase reactions of VOCs, hydrogen 

abstraction leads to the formation of CO2 or H2O as a result of deep (or complete) 

oxidation. Also, especially at low temperatures, VOCs are oxidized to form the 

intermediate products (i.e. acetone: CO, 2-propanol: CO, C3H6 or C3H6O). The multiple-

step combustion models are listed in Table VIII, and this list provides a more optimized 

value (as opposed to the “global” one-step reaction model). 
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Table VIII. Chemical kinetic parameters for gas phase reaction of acetone and 2-

propanol (p = 1 atm) [127-129]. 

Reaction 
Ar 

[s-1] 
Er 

[J/kmol] 

 3 6 2 22.5O 3 3C H O CO H O    4.0 × 1014
 
 2.09 × 108 

 2 2 2H 0.5O H O   7.0 × 1013 8.79 × 107 

 2 2CO+0.5O CO  8.5 × 1012 8.79 × 107 

 2 2 2CO H O CO H   1.0 × 1012 
3.1 × 1013 

1.74 × 108 
2.05 × 108 

 3 8 3 6 2C H O  C H H O  1.26 × 1013  1.06 × 108  

 3 8 2 3 6 2C H O+0.5O  C H O H O   1.0 × 1014 1.05 × 108 

 3 6 2 2 2C H +4.5O 3 3CO H O   6.75 × 109 1.256 × 108 

 

As shown in Figure 5, catalytic oxidation is initiated at much lower activation 

energy than the values in Table VIII. Everaert et al. [130] demonstrated experimentally 

that the activation energy of VOCs can be correlated as a function of the molecular 

weight (M). The constants, a and b, are obtained as a curve-fit from the experimental 

results reported in the literature [131-134]. 

   exp 98.631exp 0.0039rE a b M M                              (3.14) 



 81

The constants, a and b, in equation (2.14) vary with different classes of organic 

compounds [130] or catalyst materials [135]. This equation cannot completely explain 

the catalysts-dependent properties such as high selectivity in partial oxidation. In general, 

Au shows high selectivity in catalytic oxidation of VOCs [136]; however, the selectivity 

is decreased with increasing temperature, hence the higher activation energy is required 

for complete oxidation pathway [131]. In this study, we primarily consider a complete 

oxidation over the catalysts surface. In the case of 2-propanol, the conversion to acetone 

is only initiated at lower temperatures, and the deep oxidation process becomes 

dominant as the temperature increases. Thus, both the partial oxidation to acetone and 

complete oxidations of acetone and 2-propanol were explored for 2-propanol. 

For manganese oxide (Mn3O4) catalysts the activation energy, Es, were reported 

for the complete oxidation of acetone with the values being 100 ~ 121 kJ/mol [137], also 

for Cu-doped ceria catalysts (CuxCe1-xOy) Es lying between 96.5 kJ/mol and 97.0 kJ/mol 

was reported [138]; however, for vanadium pentoxide (V2O5) catalysts a significantly 

smaller value was reported, i.e. 75 ± 8 kJ/mol [139]. The gold-based catalysts supported 

on metal oxides (i.e. Au/Fe2O3, Au/CeO2, Au/TiO2, or Au/Al2O3) have investigated due to 

its importance in industrial processes and transportation activities [140-142]. The 

activity of each metal catalyst is quite different [137-143] and literature on complete 

catalytic oxidation model of acetone over pure Au was not available. Thus, the activation 

energy was estimated from the correlation between the activation energy and activity of 

VOCs by Au catalysts using equation (3.14). For instance, the activation energies of 

VOCs over Au catalysts are 87 kJ/mol (61.5 kJ/mol for partial oxidation) methanol 
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(CH3OH) [131-133] and 83.7 kJ/mol for propene (C3H6) [134]. Thus, the activation 

energy for complete oxidation of acetone over Au is assumed to be 78.65 kJ/mol. 

The parameters for complete or partial oxidation of 2-propanol over the metal 

catalysts have been obtained from various reports [136, 144-149]. In general, the 

catalytic oxidation of 2-propanol begins with dehydration to yield propene. The 

formation of the dehydrogenated product (acetone) occurs at low temperature (i.e. 393 K 

for Au/iron oxide catalysts) [144]. The complete oxidation from acetone (or propene) to 

carbon dioxide (CO2) and water vapor (H2O) occurs at high temperature (i.e. 553 K for 

Au/iron oxide catalysts) [146]. However, due to high selectivity of acetone over 2-

propanol in pure gold catalytic oxidation process [136], the deep oxidation processes of 

2-propanol to carbon dioxide as well as via acetone (red box in Figure 40) are considered 

in this study. 

 

                                                                                CH3CH=CH2              CO2 + H2O 

 

      CH3       CH3              CH3        CH3 

             CH                               CH 

             OH                               O                            CH3       CH3              CO2 + H2O 

                                                                                            C 

                                                                                            O  

 

 
Fig. 40. Schematic of reaction scheme for selective oxidation of 2-propanol to acetone 

over the gold catalysts. 

Au

Au
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The activation energy for the partial oxidation of 2-propanol is reported for a 

value of 1.6 kJ/mol [136]. The surface reaction of VOCs and the corresponding chemical 

kinetics parameters are listed in Table IX. Thus, both processes that are listed in Table 

IX are applied for the oxidation of 2-propanol. 

 

Table IX. Chemical kinetic parameters for surface reaction of acetone and 2-propanol. 

Reaction 
As 

[s-1] 
Es 

[J/kmol] 

 3 6 2 2 24O 3 3C H O CO H O    4.19 × 1010 7.865 × 107 

 3 7 2 2 24.5O 3 4C H OH CO H O    3.54 × 1010 7.802 × 107 

3 7 2 3 6 20.5OC H OH C H O H O    4.40 × 101 1.6 × 106 

 

Catalysts are substances which accelerate chemical reactions without being 

consumed. Catalysts change the reaction rates by offering a different path or mechanism 

for the reaction (as mentioned earlier in Chapter I). Catalysts change the speed of 

reaction. However, they do not affect the equilibrium. As written in equation (1.7), the 

reaction rate is the function of the pre-exponential factor and the activation energy. The 

pre-exponential factor, As, is usually determined by experimental measurements. Three 

approaches (i.e. Collision theory, Collision theory combined with empirical data, and 

Activated Complex Theory) of As for VOCs oxidation have been previously presented 
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[130, 135]. Since the Activated Complex Theory was reported to be consistent with the 

experimental results [130, 135], this theory is used for the proposed study. The theory is 

expressed as: 

exp
   

 
n B

s

k T S
A e

h R
  [s-1]                                        (3.15) 

where kB is the Boltzmann constant (1.38 × 10-23 J/K), T is the temperature [K], h is the 

Planck constant (6.6256 × 10-34 Js), ΔS is the activation entropy [J/mol-K], R is the ideal 

gas constant (0.082051 atm/mol-K), e is the Euler-number (2.7183), and n is the number 

of molecules participating in the reaction. For catalytic reactions, ΔS should be negative 

(i.e. -20 ~ -60 J/mol-K for acetone and 2-propanol [135]) because of the immobility of 

the chemisorbed complex [130, 135]. Values of ΔS can be determined from the 

experimental results. Finally, for the complete oxidation of Acetone and 2-propanol 

equation (3.15) is used for this study, and As for partial oxidation of 2-propanol is the 

value by the experiments.  

 

2. Finite Element Analysis (FEA) 

 

The Computational Fluid Dynamics (CFD) tool provides a powerful and flexible 

numerical framework for modeling fluid flow and performing associated convection heat 

transfer calculations, but does not have built-in advanced solid mechanics analysis 

capabilities for performing thermo-mechanical stress analysis. On the other hand, the 

Finite Element Analysis (FEA) tool provides the advanced solid mechanics analysis 
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capabilities. To calculate the mechanical deflection by the thermal stress at the surface of 

microcantilevers, UDF code for CFD/FEA thermal mapping was implemented into 

Fluent® calculation. The limitation of this approach is that the meshing and scaling of 

the models needs to be consistent in both Fluent® and Ansys®, as shown in Figure 41. 

 

      

Fig. 41. Solid model of microcantilever in (LEFT) Gambit® and (RIGHT) Ansys®. 

 

C. Temperature Dependent Properties 

 

The temperature dependence of physical constants and thermo-chemical 

properties is considered to obtain more accurate estimate for the results. The property 

values are obtained from various reports or from the Fluent® database (which relies on a 

NIST database) [150] for source information. The effective mass diffusion coefficient, 

Deff,i, is computed using equation (3.16). 
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                                                 (3.16) 



 86

The binary mass diffusivity, Dij, is calculated by using the relationships of Reid et al. 

[151]. The methodology is based on the Chapman-Enskog theoretical description of a 

binary mixture of gases at low to moderate pressures. In this theory, the binary diffusion 

coefficient for the species pair i and j is given by equations (3.17). 

3/2

1/2 2

0.0266
ij

ij ij D

T
D

pM 



                                             (3.17) 

1 1 12[ ]ij i jM M M                                               (3.18) 

( ) / 2ij i j                                                   (3.19) 

* 0.15610 * * *

1.06036 0.19300 1.03587 1.76474

( ) exp(0.47635 ) exp(1.52996 ) exp(3.89411 )
    D T T T T

     (3.20) 

* 1/2/ ( )B i jT k T                                                 (3.21) 

where p is the pressure [Pa], T is the temperature [K], M is the molecular weight [g/mol], 

σ is the species molecular diameter [Å], ΩD is the collision integral, and T* is the 

dimensionless temperature. Table X lists the values of hard-sphere collision diameter as 

well as Lennard-Jones energy for various species involved in the calculations. 

All thermo-physical properties such as specific heat, dynamic viscosity, and 

thermal conductivity are assumed to be temperature dependent. The physical property 

values are summarized in Appendix I. The viscosity of gas mixture is determined using 

the kinetic theory of gases, 
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where φij and μi are given by 
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The thermal conductivity of gas mixture is determined from the thermal conductivity of 

each of the individual gases in the mixture using the ideal gas mixing law. 
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Table X. Hard-sphere collision diameter and Lennard-Jones energy parameter for each 

species [150, 152-153]. 

Species σ [Å] ε / kb [K] 

H2 2.827 59.7 

H2O 2.641 809.1 

N2 3.798 71.4 

O2 3.467 106.7 

CO 3.690 91.7 

CO2 3.941 195.2 

C3H6 4.807 248.9 

C3H6O 4.670 443 

C3H8O 4.937 393.42 
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CHAPTER IV	

EXPERIMENTAL CONFIGURATION 

 

A. Experimental Apparatus 

 

In this study, two different techniques were used to measure the deflections of 

microcantilevers, namely: (i) projection-screen method and (ii) optical lever method (as 

shown in Figure 42). The experimental setup consists of an air-tight acrylic chamber, a 

platform to support and control the movement of the laser, a platform for the 

microcantilever beam, and a piece of paper (or position sensitive detector: PSD) to mark 

the location of (or detect) the reflected laser beam spot. 

 

    

  (a)                                                                   (b) 

Fig. 42. Schematic of the experimental apparatus (a) projection-screen method (b) 

optical detection method. 
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The experimental apparatus is placed inside an environmental control chamber, 

which is constructed from rectangular acrylic walls with a hinged door made from ½” 

thick acrylic sheets as shown in Figure 43. In order to render the chamber airtight, 

silicone was used to seal the edges inside the box and a tape insert was used to seal the 

edges along the exterior of the box. Weather-stripping was used as a sealant between the 

door and the front wall of the chamber. Inside the chamber, a low-power laser (1 mW, 

635 nm) was affixed to a semi-automated stage with 4 axes of motion (assembled from 

Newport components). The Newport stage system (Figure 43) supports the laser and can 

be actuated remotely for laser beam alignment with the cantilever axes in the nano-

calorimeter apparatus. In addition to altering the position of the laser, the remote control 

can also be used to rotate the cantilever array within the xy-plane. Hence, laser alignment 

and cantilever positioning can be accomplished without disturbing the chamber 

environment. 
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Fig. 43. Experimental appratus based on the optical-detection method for explosive 

detection. 
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B. Experimental Procedure 

 

Each experiment was performed in two separate steps: a control experiment 

(baseline) was performed in ambient atmospheric conditions, and a second experiment 

was performed in the presence of the explosive vapor at equilibrium vapor 

concentration.  The deflection response of the microcantilever (as a function of actuation 

current) in uncontaminated air environment was compared to that of air saturated with 

the explosives vapor. As shown in Figure 42, the laser beam incident on the 

microcantilever surface is reflected by the gold coating on to the screen (paper) or PSD. 

The actuation current (for heating the microheaters and therefore for actuating the 

microcantilever beam) is increased from 0 to 20 mA at 2 mA intervals. It was observed 

that at actuation current values exceeding 20 mA - the bending response diverged from 

the control experiments. For each 2 mA increment, the resulting deflection of the 

microcantilever beam is tracked by measuring the location of the laser beam spot 

reflected on the screen (paper) attached to the chamber wall or voltage values 

corresponding the position from PSD. The deflection is expected to be proportional to 

the change in the location of the reflected laser spot, which is measured by calculating 

the difference in vertical location of the laser spot centroid from a reference position (in 

this case, the laser beam position at 0 mA actuating current). The resistance of the gold 

filament is also recorded for each value of the actuation current. Once the data is 

collected for the control experiment, the liquid explosive is poured into a small bowl and 

placed inside the chamber. The liquid remains in the chamber for approximately thirty 
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minutes to ensure saturation conditions are established for explosive vapor.  

Subsequently, the experiment is repeated in the presence of the vapor samples. The 

results are then recorded and compared to the results obtained from the control 

experiments. 

 

C. Measurement Uncertainty 

 

The change in deflection angle of the microcantilevers is measured as a function 

of actuation current. The total experimental error (percentage) in measuring the angle is 

given by [57]: 

2 2  


       
  

y L

y L
                                            (4.1) 

where θ is the deflection angle [degrees], y is the change in height [m] from the 

reference point on the screen (or PSD), and L is the distance [m] from the cantilevers to 

the projection screen (or PSD) and δθ is the error in the calculation of the deflection 

angle. The experimental error for measuring the change in angular deflection was found 

to be less than 0.5 %.   



 94

CHAPTER V	

RESULTS AND DISCUSSION 

 

A. Base Line 

 

The FEA results for the thermal deformation are based on the thermal history 

during metal film deposition (as shown in Figure 44). Both models show similar trends 

and are consistent with the FEA results. At low temperature, the FEA results are more 

consistent with Lee’s model [68]. However, as the temperature is increased, the FEA 

results are more consistent with Hsueh’s model [67]. This response is usually 

characterized by the geometrical factors, material properties and most importantly, 

temperature variations during heating treatment [67-68]. 

 

 

Fig. 44. Comparison on variations in free end deflection during heat treatment. 
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In this study, we analyzed only thermally induced stress and excluded intrinsic 

stress values (that can arise from defects and impurities incorporated in the material). 

The deflection due to residual stress is generated when metal layers with different 

thermal expansion coefficient are thermally bonded. Hence, for application of the 

theoretical models only the length (e.g. 122 μm) corresponding to the area where Au 

thin-film is deposited was considered. 

The thermal deformation that exceeds the elastic limit cannot be completely 

reversed to the original status (even at room temperature). The estimation of initial 

deflection due to residual stress is shown in Figure 45(a). Since the stress distribution 

through the thickness is not significant, the average residual film stress is calculated by 

[67] 
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    Pa     (5.1) 

where f  is defined as the mismatch between elastic stress (Eε) and thermal stress (βΔT). 

As shown in Figure 45(a), the negative stress causes the microcantilever deflection to be 

inverted. After calculating the initial deflection, subsequently deflection values are 

estimated from the electro-thermal-structural coupling simulations. Figure 45(b) shows 

the resultant deflections of the microcantilever for an actuation current of 20 mA. Since 

the deflection by thermal actuation occurs in the reverse direction (of the deflection due 

to residual stress). The total deflection can be defined as the sum of deflections due to 

residual stress and thermal stresses. 
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                   Ansys® Multiphysics                    ESI CFD-ACE+® 

(a) 

   

                   Ansys® Multiphysics                    ESI CFD-ACE+® 

(b) 

Fig. 45. Deflection of bimorph microcantilever occurred due to thermal-actuation for an 

actuation current of 20 mA. Total deflection (Ansys®-37.335 μm / ESI CFD-

ACE+®-35.45 μm) is determined by the sum of deflections by residual stress and 

thermal actuation. (a) Initial deflection due to residual stress (b) Final position 

due to thermal actuaction. 
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                   Ansys® Multiphysics             ESI CFD-ACE+® 

(a) 

    

                  Ansys® Multiphysics                    ESI CFD-ACE+® 

(b) 

Fig. 46. (a) Joule heating and (b) temperatue profile of thermal-actuated birmorph 

microcantilever (actuation current = 20 mA). 
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Fig. 47. Flexural motions of bimorph microcantielvers thermally activated by electrical 

current (0 mA ~ 40 mA). 
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Figure 46(a) shows the heat generation from the resistive heating element of thin 

gold film type for an actuation current of 20 mA. As shown in Figure 46(b), for the 

actuation current of 20 mA, the microcantilever is heated to 580 K. Also, it was 

demonstrated that the temperature distribution within the microcantilever is not uniform. 

This is due to the convective heat transfer coefficient (h = 700 W/m2-K [73]) that is 

imposed in these calculations. Moreover, the theoretical model does not account for the 

temperature dependence of resistivity for the Au heating element. The nominal resistance 

value that is used in the theoretical model, given by equation (1.20), is 21 Ω. This value 

was measured using multi-meter, for the micro-heater device. 

To ascertain the validity of applying the FEA model for estimating the 

microcantilever deflection, the results are plotted for comparison with the analytical 

model (proposed by Jiang et al. [72]) and the experimental data obtained from this study 

(as shown in Figure 47). Figure 45 represents the thermal-induced deflection due to 

bimetallic effect, which is simulated based on the temperature profile, as shown in 

Figure 46(b). For actuation current below ~25 mA, the numerical predictions are 

consistent with experimental data with errors within 10 %. However, for the current 

exceeding 25 mA, theoretical and numerical model did not agree with the experimental 

results. This disagreement can be explained from the data sheet provided by the 

manufacturer (NanoInk Inc., Skokie, IL). According to the technical manual for the 

Active Pen array (Model#: DS001), the optimum actuation current is ~20-25 mA. For 

actuation currents exceeding 35 mA, the Active PenTM can be damaged irreversibly. In 

addition, since the analytical and numerical models follow the linear characteristics, 
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these cannot completely account for non-linear behaviors of over-heated micro 

structures. The simulation results of two commercial multiphysics tools were almost 

identical. However, the results predicted by ESI CFD-ACE+® were found to be more 

consistent with the experiments for higher actuation currents (as shown in Figure 48). 

 

 

Fig. 48. Comparison of deflection among FEA model (Ansys® and ESI CFD-ACE+®), 

theoretical model, and experimental data. 

 
In addition, to investigating the radiation effect, the radiation model in Fluent®, 

P1 mdole, has been used for solving the radiative flux. From the results shown in Figure 

48, the radiation effect could not completely compensate for the difference between the 

predictions and the measurments. The thermo-mechanical properties of each metal layer 

in Table II are used for this calculation. 
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B. Bending Response Due to Thermal Actuation 

 

1. Numerical Analysis 

 

Before performing simulations using the multi-step reaction model and 

temperature dependent properties, the preliminary simulations were performed to verify 

the theoretical model. In this calculation, the global one-step oxidation model of propane 

(C3H8) is adopted for the simplicity of the calculations. The chemical kinetics such as 

activation energy and rate constant are obtained from Hayes et al. [61] as follows: 

7
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The results also help to provide confidence for the Governing Equations used in the CFD 

code. The concentrations profiles over the heated surface are shown in Figure 49. In the 

1D model, the temperature differences for the same heights level are similar. Hence, the 

concentrations of explosive vapor are assumed to vary with the height. Nevertheless, the 

predictions by theoretical calculation were found to be in agreement with the results 

obtained from the CFD models. 
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Fig. 49. Concentration profile over the microcantilever surface in the logitudinal 

direction. 

 

Oxidation of Volatile Organic Compounds (VOCs) in air is numerically explored 

for specific values of initial concentrations within the control volume. The chemical 

kinetics is expressed in an Arrhenius form (equation 1.7) and is used to model the 

temperature dependence of reaction rate as well as activation energy for oxidation. The 

higher surface area to volume ratio at the nano-scale is expected to expedite the kinetics 

of the area-limited catalytic reactions, which means the chemical reactions only occur on 

the catalyst surface provided by the gold coatings on the microcantilevers [58]. The 

catalytic reaction on the surface of the microcantilevers depends on the core temperature 

of the heating element. Figure 50 shows the surface temperature range of electrically 
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pre-heated microcantilevers in air. These results can be easily obtained from the electro-

thermo coupling simulation in Ansys® or ESI CFD-ACE+®. 

 

 

Fig. 50. Temperature range of microcantilever heated in air. 

 

However, to estimate the variations of surface temperature after oxidation on the 

pre-heated catalyst surface, the mass and heat transfer equations along with chemical 

species equations as well as resistive heating should be solved simultaneously. Since the 

mapping of temperature data from Ansys® to Fluent® is not supported, the UDF code for 

resistive heating was implemented in the chemical reaction model. To verify the UDF 

code, temperature profile was calculated by UDF for Ohmic-heating in Fluent® along 

with the calculations for electro-thermo multiphysics in Ansys® and ESI CFD-ACE+®. 
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Figure 51 represents the comparison of numerical simulation when three 

different simulation tools were used for the actuation current of 20 mA. In this simulation, 

the values for geometrical and material properties of microcantilevers are summarized in 

Table II. As shown in Figure 50 and 51, the numerical results using Fluent®, Ansys®, 

and ESI CFD-ACE+® demonstrated almost identical temperature distribution over the 

cantilever surface. 

Complete oxidation of VOCs proceeds with the formation of oxidation products 

carbon dioxide (CO2) and water vapor (H2O) as summarized in Table VII. The initial 

conditions for concentration and the enthalpy for phase change are listed in Table V and 

Table VI, respectively. Since the oxidation reactions of explosives are highly exothermic, 

(as shown in Figure 52 and 53) the surface temperature is increased by the presence of 

heat generation that is occurs due to the oxidation reactions. Accordingly, the 

microcantilevers demonstrate a downward bending response, as shown Figure 52. 

Finally, the change in surface temperature due to combustion of VOCs contributes to the 

differences in deflections caused by the bimetallic effect. 

Figure 53 shows the simulation results for the bending response as a function of 

actuation current. Since the evaporation pressure of acetone is higher than that of 2-

propanol, it is observed that the effects of the oxidation was more pronounced in the case 

of acetone. Accordingly, the surface temperature increased due to oxidation is more 

significant in acetone. Figure 53 also shows the surface temperature of microcantilevers 

obtained from the simulations for the nano-scale combustion reactions. 
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(a) 

 

 

(b) 

Fig. 51. Temperature profile of bimorph microcantilever due to ohmic-heating (a) UDF 

in Fluent® (b) Multiphysics in (Top) Ansys® and (Bottom) ESI CFD-ACE+®.  
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(a) 

        

(b) 

Fig. 52. Surface temperature profile by nano-scale combustion reactions on the surface 

of the microcantilevers and bending response caused by bimetallic effect at 20 

mA (a) Acetone (b) 2-Propanol. 



 107

 

      (a) 

 

       (b) 

Fig. 53. Simulation of the resultant deflection and temperature changes due to nano-scale 

combustion at the actuation current of from 6 mA to 20 mA (a) Acetone (b) 2-

Propanol. 
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Figure 54 shows the concentration profiles for reaction products for catalytic 

oxidation of acetone and 2-propanol over the microcantilevers for an actuation current of 

20 mA. At the applied current of 20 mA, as shown in Figure 51(a) the maximum surface 

temperature is 572 K, which is below the ignition temperature (e.g. acetone: 738 K/ 2-

propanol: 672 K) that is reported for macro-scale combustion devices. So, during the 

oxidation of acetone and 2-propanol complete oxidation products such as CO2 and H2O 

are formed - as well as intermediate products such as CO are formed due to partial 

oxidation. In addition, the numerical analysis was performed to find the effect of sensor 

performance on the variations of concentrations of explosives. At room temperature , the 

constant saturation concentrations are listed in Table V. Those values are obtained for 

saturated air mixture in the control volume. 

Acetone has a relatively high evaporation pressure compared with 2-propanol. So, 

the mole fraction (i.e. 0.243) of acetone in binary mixture of air and explosives is much 

higher than that of 2-propanol (i.e. 0.044). The amount of gas comsumed for oxidation is 

proportional to the concentrations over the surface which are assumed as the constant 

value, initially. Therefore, the change in temperature by oxidation is more vigourous in 

acetone as expected; however, the mixture of air and acetone can be regarded as a richer 

mixture (lower air-fuel ratio: AFR), which makes the reacton to be diffusion controlled. 

As shown in the right hand side of Figure 54, the case of reduced concentrations in 

acetone demonstrates the bigger temperature change due to higher AFR. But, since the 

mixture of air and 2-propanol is lean, the surface temperature is decreased when the 

concentrations of reactants are reduced by a factor of two. 



 109

      

(a) 

      

(b) 

Fig. 54. Surface coverage and wall temperature in different mole fractions (or 

concentrations) (a) Acetone (Explosive : Air = (LEFT) 0.243 : 0.598 and 

(RIGHT) 0.122 : 0.694) (b) 2-Propanol (Explosive : Air = (LEFT) 0.044 : 0.756 

and (RIGHT) 0.022 : 0.773). 
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2. Experimental Results 

 

The nano-calorimeter was tested by performing experiments using different 

explosive materials (e.g. acetone and 2-propanol) as the sources for pure vapor. Figure 

55 and Figure 56 show the results for the change in height of the reflected beam as a 

function of actuation current. The experimental results are achieved using both detection 

methods (i.e. projection screen method and optical lever method) supposed in this study. 

The trends observed from the results show that at a specific value of actuation current 

the change in deflection deviates from the control experiments (performed in air). This is 

identified as the threshold value which is used for uniquely detecting the combustible 

material. However, the threshold current value depends on various factors such as vapor 

pressure (or concentrations) of the combustible vapors, chemical kinetics (i.e. activation 

energy and rate constant), and ignition temperature. Figure 55 represents the comparison 

of the change in position of the reflected light on the projection screen between 

explosives and air. 
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(a) 

 

(b) 

Fig. 55. Experimental results of microcantilever deflection based on projection screen 

method in explosive sensing (a) Acetone (Self Ignition Temperature = 738.15 

K) (b) 2-Propanol (Self Ignition Temperature = 672.15 K). 
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In general, in the low current region the microcantilever bending response in the 

presence of the combustible vapors is almost the same as that of air. As the actuation 

current is increased, the temperature of the bimorph microcantilever structure is 

increased causing additional bending of the beam. Thus, the incident laser ray is 

reflected from the microcantilever and begins to deflect upwards causing the reflected 

light beam to move upwards. That is because the ignition temperatures of most 

combustible vapors are higher than the ambient temperature; furthermore, the presence 

of the vapor causes more vigorous oxidation on the surface of the microcantilever at 

elevated temperatures (caused by the higher actuation current). As shown in Figure 55(a), 

the cantilever bending response matched the control experiments for actuation currents 

up to ~14 mA. This is compatible with my numerical analysis as well as the results of 

Nelson et al. [57]; on the other hand, the case of 2-propanol is more complex due to its 

chemical characteristics in thermal oxidation. A small divergence in response was 

observed for low actuation currents (e.g. < 6 mA). However, this value was not depicted 

in the experimental results based on the projection screen method. The possible reason is 

that this method has the limitations in detecting small difference of deflections. Also, 

this difference is within the ranges of the experimental uncertainty. Figure 56 represents 

the measurement results based on PSD method, for which the output voltage 

corresponding to the change in position of reflected light is monitored using PSD. The 

values are obtained by averaging three times measurements for each actuation current 

value. In addition, measured signals obtained by using an oscilloscope are listed in 

Appendix C. 
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(a) 

 

(b) 

Fig. 56. Experimental results of microcantilever deflection based on optical lever 

method in explosive sensing (a) Acetone (b) 2-Propanol.  
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The PSD method affords higher precision (as opposed to the projection screen 

method) even for small differences in deflection values. In the case of acetone, similar 

trends are observed as with the predictions by numerical analysis and the measurements 

by projection screen method. The deflections diverge as the temperature (or actuation 

current) increases. Also, in the case of 2-propnaol, the response to the conversion from 

2-propanol to acetone at room temperature (i.e. 0 mA actuation current) as well as 

thermal oxidation of 2-propanol at higher actuation currents were observed in this 

method. However, in the experiment using the microcantilever involving carbon nano-

structures, the experimental evidence showing the enhancement in sensitivity compared 

with the clean one are not found in this study (The results are almost the same with those 

shown in Figure 56). This is because the CNTs are not existed on the cantilever surface 

where the heat transfer with surroundings dominates. 

In addition, since acetone and 2-propanol are highly volatile, their ignition 

temperatures as well as vapor pressures are key factors for predicting the threshold 

current. On the other hand, for solid explosives (e.g. TNT, Ammonium Nitrate, RDX, 

and Picramic Acid), the threshold current can be estimated only from the self-ignition 

temperature due to their low evaporation pressures (or concentrations in air). The vapor 

pressures of acetone and 2-propanol are summarized in Table V. The response to 

chemical reaction is more pronounced at the lower temperature region than the self-

ignition temperature value due to higher volatility. The vapor pressure (186 mmHg) of 

acetone is much higher than that (33 mmHg) of 2-propanol. However, the catalytic 

surface reaction of 2-propanol can be activated at lower surface temperature (or 
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actuation currents) since the activation energy of 2-propanol for initializing the oxidation 

is lower than that of acetone; in other words; the combustion reaction of acetone requires 

higher energy (or temperature). Nevertheless, at higher surface temperature, the 

sensitivity for 2-propanol was quite low due to low concentrations (vapor pressure) and 

formation of water vapors. It is observed that the deflection characteristics in VOCs 

show the same tendency (downward bending response) from both the numerical and 

experimental results. 

 

3. Sensitivity Analysis 

 

The sensitivity analysis that was performed in Chapter I provides the design 

guidelines for the microcantilever-based sensor. In real operation, the sensitivity can be 

evaluated as the ratio of input values and output results. In other words, the sensitivity is 

calculated based on the change in the deflection in relation to the electrical actuation. 

Equation (5.4) [154] implies the change of sensitivity for each explosive as a function of 

the actuation current. 

/
( )


 

output change z z
Sensitivity S

load I
                              (5.4) 

From the results shown in Figure 57, the optimum operating current can be defined as 

the current value that enables higher sensitivity. The specific current region (i.e., from 14 

mA to 20 mA or from 6 mA to 8 mA) can provide higher sensitivity for acetone and 2-

propanol vapors. The sensitivity of the microcantilever sensor used in this study was 
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obtained as 0.052 ± 0.047 mA-1 for acetone and 0.011 ± 0.014 mA-1 for 2-propanol. 

These results can vary with the different design parameters of the microcantilever (e.g., 

length, width, thickness, or elastic properties) or different chemical properties (e.g., 

enthalpy of reaction or concentration). 

 

 

Fig. 57. Actuation current dependence of sensitivity for microcantilever-based sensor. 
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4. Manufacturing Tolerance Effect 

 

The micro-fabrication based on photo-lithography is excellent for achieving 

small absolute tolerances as opposed to material removal by machining. Nevertheless, 

the substantial geometrical variations for microcantilevers fabricated with MEMS 

processing technologies (e.g., Photolithography) can significantly affect the performance 

of the sensor. In this study, the effect of manufacturing tolerances on the bending 

response is numerically investigated. The tolerance values summarized in Table XI are 

based on information received from the manufacturer (NanoInk, Inc., Skokie, IL). 

The variations due to manufacturing tolerance are subject to the geometrical 

variations (e.g., absolute values of deflections) rather than depending on the chemical 

properties. So, the numerical analysis is performed for only acetone vapor, which 

provides enough information to evaluate the effect of manufacturing tolerance. The 

results from the numerical analysis are summarized in Table XI. The results demonstrate 

that the geometrical variations do not affect the detection of explosives. However, small 

variations in sensor response (compared with the total variations in the presence of 

explosives vapor) can be caused due to manufacturing tolerance. 
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Table XI. Change in bending response due to manufacturing tolerance. 

Parameters 
Manufacturing 

Tolerance 

Change in bending response (Δzdif) 
for the actuation current of 20 mA 

(Δzdif = Δzexplosives - Δzair) 

Length 
± 2 μm 

(± 1.3 %) 
± 0.48 μm 
(± 2.68 %) 

 Heater Size (+10 %)

Length 
(+2 μm) 

 
Length 
(-2 μm) 

-0.74 μm 
(-4.11 %) 

 
-1.64 μm 
(-9.09 %) 

Thickness N/A - 
 Heater Size (-10 %)

Length 
(+2 μm) 

 
Length 
(-2 μm) 

1.78 μm 
(9.89 %) 

 
0.75 μm 
(4.18 %) 

Heater Size ± 10 % 

-1.2 μm 
(- 7.74 %) 

1.1 μm 
(7.1 %) 
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5. Humidity Effect 

 

The screening or identification of explosives based on electrochemical detection 

is not affected by the relative humidity (RH) which can cause the change in resistance or 

capacitance of electric components [155]. However, the sensitivity to VOCs decreases 

with increasing humidity [156]. The relative humidity (RH) is the ratio of the actual 

water vapor pressure (pw) to the saturation water vapor pressure (psw) [157]. 

100w

sw

p
RH

p
   [%]                                               (5.5) 

where 

17.2694
610.78 exp

238.3sw

T
p

T

     
 [Pa]                                 (5.6) 

From the results shown in Table XII, it was observed that the variations in surface 

temperature under the high humidity environment are not significant. However, since the 

humidity dependence of the electrical property of bimetallic components is not 

considered in this study, the effect of resistance variations due to humidity on Joule 

heating was not explored. 
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Table XII. Change in bending response due to relative humidity in air (Top: acetone/ 

Bottom: 2-propanol). 

RH 
Temperature distribution 

for the actuation current of 20 mA 
Note 

40 % 
443.9 ~ 661.7 K 

   When RH = 0 %, 
T = 445.1 ~ 664.2 K 

396.9 ~ 585.3 K 

60 % 
444.1 ~ 661.9 K 

397.4 ~ 586.2 K 

   When RH = 0 %, 
T = 401.6 ~ 595.1 K 

80 % 
444.1 ~ 661.8 K 

397.3 ~ 586.0 K 
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CHAPTER VI	

SUMMARY AND FUTURE DIRECTIONS 

 

A. Summary and Conclusion 

 

In this study the static response of a microcantilever in the presence of explosive 

or combustible vapors were characterized experimentally and by performing numerical 

simulations. Also, the bending characteristics of a bi-layer microcantilever, parametric 

study for optimized operation as well as nano-coatings of high thermal conductivity 

materials for enhancing the sensitivity were investigated. These results demonstrate the 

advantages and response characteristics of bimorph microcantilever as the sensing 

platform for energetic materials.  

To explore the bending response to explosive vapors, the change in deflection of 

the microcantilevers caused by bimetallic effect was measured in both air saturated with 

explosive vapor and uncontaminated air as a function of the actuation current. From the 

results, it was found that the specific actuation current value (i.e., threshold value) 

causing the deflection deviated from the value measured in the absence of explosive 

vapors depends on explosive materials. (e.g., acetone ~= 12 mA and 2-propanol ~= 14 

mA). Therefore, these values can be used for identifying the specific explosives. 

Additionally, the numerical analysis was performed based on electro-thermo-

mechanical coupling model by using UDF in Fluent® and Ansys®. The consistency 

between theoretical calculation and CFD simulation for global one-step chemical 
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kinetics of propane demonstrates the reliability of CFD results. The simulation results 

showed similar trends with the experimental results for monitoring the bending response 

of the microcantilever sensors as a function of the actuation current. 

 

 There was no response to acetone vapor at lower actuation currents (e.g., 0 mA ~ 

10 mA). However, as the actuation current value is increased, the deflection 

deviated from the baseline (i.e., values measured in air) was observed at the 

specific actuation current value (i.e., 12 mA). 

 The response to 2-propanol vapors occurs at lower actuation current (as the 

response to conversion of 2-propanol to acetone - 6 mA ~ 10 mA) as well as 

higher actuation current (as the response to complete oxidation of 2-propanol 

over the catalysts - 16 mA). 

 

The predictions from the numerical simulations provide insights about the fundamental 

interactions between various transport mechanisms responsible for the observed 

behavior of the thermally actuated microcantilever array, such as effect of manufacturing 

tolerance and humidity on the responsiveness and effect of chemical kinetics or vapor 

concentrations on threshold current value. Also, numerical models offer the guideline for 

design optimization of microcantilevers. 

In conclusion, the feasibility of implementing the proposed bimorph 

microcantilever-based nano-calorimeter sensing platform for detection of energetic 

materials was demonstrated in this study. The predictions from the numerical models for 
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the various transport mechanisms coupled with the chemical reactions for the 

combustion reactions were validated experimentally.  

 

B. Future Directions 

 

The predictions from the numerical models can be validated experimentally by 

using other combustible materials and explosive materials. In the aspect of numerical 

analysis, chemical kinetics for other materials can be explored by experimental or 

numerical approaches. Moreover, to clearly verify the response to the materials with low 

volatility (e.g., Ammonium Nitrate, Ammonium Picrate, TNT, RDX, Picric Acid, 

Picramic Acid, and EGDN as listed in Appendix D), additional measurements can be 

performed by experimentally controlling the species concentrations of these analytes. 

Also, the robust recipe for obtaining stable coating of CNTs on the 

microcantilever surface can be explored. In addition, the experiments can be repeated by 

using different sizes or kinds of nano-structured metal catalysts to find the optimum 

parameters at different operating temperatures for the growth (and coating) of CNTs on 

the microcantilever surface.  

Ultimately, this approach can be implemented into a portable detection platform 

or integrated instrument for remote monitoring and real-time detection of explosives. For 

this purpose, miniaturization of optoelectronics platform is essential. Also, since the 

operation in the real situation is quite different compared with the experimental 

conditions in the laboratory (e.g., clean and optimized environment inside the chamber), 
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additional apparatus (e.g., fine meshed screen) is required to prevent false positive 

alarms that are likely to be triggered in harsh operating environment (such as for low 

vapor pressure or dust). In addition, optimization of the geometry of micro-heater and 

microcantilever can enable the application of the sensor platform for a wide range of 

energetic materials as well as obviate the false-positives/ false-negatives by enhancing 

the statistical confidence of the results. Alternatively, individual microcantilevers can be 

designed in an array for the highest sensitivity to particular analytes and for enhancing 

the specificity of the sensor array for desired analytes. 
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APPENDIX A	

PHYSICAL AND THERMO-CHEMICAL DATA 

 

Table XIII. Specific heat of acetone and 2-propanol in gas phase [150, 158]. 

Acetone [C3H6O] 2-Propanol [C3H7OH] 

Temperature 
[K] 

Cp,gas 
[J/kg-K] 

Temperature 
[K] 

Cp,gas 
[J/kg-K] 

100 890.67 50 587.72 

150 967.29 100 766.10 

200 1053.72 150 964.78 

273.15 1224.00 200 1136.17 

298.15 1291.67 273.15 1393.09 

300 1296.83 298.15 1486.27 

400 1585.06 300 1493.26 

500 1860.88 400 1866.16 

600 2103.99 500 2195.80 

700 2314.57 600 2467.69 

800 2496.56 700 2691.50 

900 2654.10 800 2879.36 

1000 2790.81 900 3039.61 

1100 2909.09 1000 3177.72 

1200 3011.71 1100 3297.36 

1300 3100.72 1200 3401.36 

1400 3178.03 1300 3491.88 

1500 3245.35 1400 3570.92 

  1500 3639.97 

  1750 3777.25 

  2000 3878.75 

  2250 3953.63 

  2500 4010.21 

  2750 4055.14 

  3000 4088.42 
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Table XIV. Thermal conductivity [W/m-K] of species in gas phase [150, 158]. 

Species 100 K 200 K 300 K 400 K 500 K 600 K 

H2 Hydrogen 0.0686 0.1317 0.1869 0.2304 - - 

H2O Water Vapor - - 0.0187 0.0271 0.0357 0.0471

N2 Nitrogen 0.0098 0.0187 0.026 0.0323 0.0383 0.044 

O2 Oxygen 0.0093 0.0184 0.0263 0.0337 0.041 0.0481

CO Carbon Monoxide - - 0.025 0.0323 0.0392 0.0457

CO2 Carbon Dioxide - 0.0096 0.0168 0.0251 0.0335 0.0416

C3H6 Propylene - 0.0053 0.0188 0.0323 0.0458 0.0592

C3H6O Acetone - - 0.0115 0.0202 0.0306 0.0427

C3H8O 2-Propanol - 0.0076 0.0168 0.0260 0.0352 0.0444



 149

APPENDIX B	

DISTRIBUTION OF GAS SPECIES 

             

(a)                                                 (b) 

             

(c)                                                 (d) 

             

(e)                                                 (f) 

             

(g)                                                 (h) 

Fig. 58. Surface coverage and wall temperature in different actuation current at room 

temperature (293.15 K) – Explosive vapor: Acetone (C3H6O) (a) 6 mA (b) 8 mA 

(c) 10 mA (d) 12 mA (e) 14 mA (f) 16 mA (g) 18 mA (h) 20 mA. 
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(a)                                                 (b) 

             

(c)                                                 (d) 

             

(e)                                                 (f) 

             

(g)                                                 (h) 

Fig. 59. Surface coverage and wall temperature in different actuation current at room 

temperature (293.15 K) – Explosive vapor: 2-Propanol (C3H8O) (a) 6 mA (b) 8 

mA (c) 10 mA (d) 12 mA (e) 14 mA (f) 16 mA (g) 18 mA (h) 20 mA.  
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                                            (a)                                              (b) 

      

                                            (c)                                              (d) 

      

                                            (e)                                              (f) 

Fig. 60. (a) Simulation results for surface temperature profile; (b) Simulation results for 

temperature profile within the control volume; Species concentrations 

distribution for (c) Acetone (C3H6O) (d) Oxygen (O2) (e) Carbon Dioxide (CO2) 

(f) Water Vapor (H2O); Actuation current = 6 mA. 
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                                            (a)                                              (b) 

      

                                            (c)                                              (d) 

      

                                            (e)                                              (f) 

Fig. 61. (a) Simulation results for surface temperature profile; (b) Simulation results for 

temperature profile within the control volume; Species concentrations 

distribution for (c) Acetone (C3H6O) (d) Oxygen (O2) (e) Carbon Dioxide (CO2) 

(f) Water Vapor (H2O); Actuation current = 8 mA. 
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                                            (a)                                              (b) 

      

                                            (c)                                              (d) 

      

                                            (e)                                              (f) 

Fig. 62. (a) Simulation results for surface temperature profile; (b) Simulation results for 

temperature profile within the control volume; Species concentrations 

distribution for (c) Acetone (C3H6O) (d) Oxygen (O2) (e) Carbon Dioxide (CO2) 

(f) Water Vapor (H2O); Actuation current = 10 mA. 
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                                            (a)                                              (b) 

      

                                            (c)                                              (d) 

      

                                            (e)                                              (f) 

Fig. 63. (a) Simulation results for surface temperature profile; (b) Simulation results for 

temperature profile within the control volume; Species concentrations 

distribution for (c) Acetone (C3H6O) (d) Oxygen (O2) (e) Carbon Dioxide (CO2) 

(f) Water Vapor (H2O); Actuation current = 12 mA. 
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                                            (a)                                              (b) 

      

                                            (c)                                              (d) 

      

                                            (e)                                              (f) 

Fig. 64. (a) Simulation results for surface temperature profile; (b) Simulation results for 

temperature profile within the control volume; Species concentrations 

distribution for (c) Acetone (C3H6O) (d) Oxygen (O2) (e) Carbon Dioxide (CO2) 

(f) Water Vapor (H2O); Actuation current = 14 mA. 
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                                            (a)                                              (b) 

      

                                            (c)                                              (d) 

      

                                            (e)                                              (f) 

Fig. 65. (a) Simulation results for surface temperature profile; (b) Simulation results for 

temperature profile within the control volume; Species concentrations 

distribution for (c) Acetone (C3H6O) (d) Oxygen (O2) (e) Carbon Dioxide (CO2) 

(f) Water Vapor (H2O); Actuation current = 16 mA. 
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                                            (a)                                              (b) 

      

                                            (c)                                              (d) 

      

                                            (e)                                              (f) 

Fig. 66. (a) Simulation results for surface temperature profile; (b) Simulation results for 

temperature profile within the control volume; Species concentrations 

distribution for (c) Acetone (C3H6O) (d) Oxygen (O2) (e) Carbon Dioxide (CO2) 

(f) Water Vapor (H2O); Actuation current = 18 mA. 
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                                            (a)                                              (b) 

      

                                            (c)                                              (d) 

      

                                            (e)                                              (f) 

Fig. 67. (a) Simulation results for surface temperature profile; (b) Simulation results for 

temperature profile within the control volume; Species concentrations 

distribution for (c) Acetone (C3H6O) (d) Oxygen (O2) (e) Carbon Dioxide (CO2) 

(f) Water Vapor (H2O); Actuation current = 20 mA. 
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                                            (a)                                              (b) 

      

                                            (c)                                              (d) 

      

                                            (e)                                              (f) 

Fig. 68. (a) Simulation results for surface temperature profile; (b) Simulation results for 

temperature profile within the control volume; Species concentrations 

distribution for (c) 2-Propanol (C3H8O) (d) Oxygen (O2) (e) Carbon Dioxide 

(CO2) (f) Water Vapor (H2O); Actuation current = 6 mA. 
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                                            (a)                                              (b) 

      

                                            (c)                                              (d) 

      

                                            (e)                                              (f) 

Fig. 69. (a) Simulation results for surface temperature profile; (b) Simulation results for 

temperature profile within the control volume; Species concentrations 

distribution for (c) 2-Propanol (C3H8O) (d) Oxygen (O2) (e) Carbon Dioxide 

(CO2) (f) Water Vapor (H2O); Actuation current = 8 mA. 
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                                            (a)                                              (b) 

      

                                            (c)                                              (d) 

      

                                            (e)                                              (f) 

Fig. 70. (a) Simulation results for surface temperature profile; (b) Simulation results for 

temperature profile within the control volume; Species concentrations 

distribution for (c) 2-Propanol (C3H8O) (d) Oxygen (O2) (e) Carbon Dioxide 

(CO2) (f) Water Vapor (H2O); Actuation current = 10 mA. 
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                                            (a)                                              (b) 

      

                                            (c)                                              (d) 

      

                                            (e)                                              (f) 

Fig. 71. (a) Simulation results for surface temperature profile; (b) Simulation results for 

temperature profile within the control volume; Species concentrations 

distribution for (c) 2-Propanol (C3H8O) (d) Oxygen (O2) (e) Carbon Dioxide 

(CO2) (f) Water Vapor (H2O); Actuation current = 12 mA. 
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                                            (a)                                              (b) 

      

                                            (c)                                              (d) 

      

                                            (e)                                              (f) 

Fig. 72. (a) Simulation results for surface temperature profile; (b) Simulation results for 

temperature profile within the control volume; Species concentrations 

distribution for (c) 2-Propanol (C3H8O) (d) Oxygen (O2) (e) Carbon Dioxide 

(CO2) (f) Water Vapor (H2O); Actuation current = 14 mA. 
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                                            (a)                                              (b) 

      

                                            (c)                                              (d) 

      

                                            (e)                                              (f) 

Fig. 73. (a) Simulation results for surface temperature profile; (b) Simulation results for 

temperature profile within the control volume; Species concentrations 

distribution for (c) 2-Propanol (C3H8O) (d) Oxygen (O2) (e) Carbon Dioxide 

(CO2) (f) Water Vapor (H2O); Actuation current = 16 mA. 
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                                            (a)                                              (b) 

      

                                            (c)                                              (d) 

      

                                            (e)                                              (f) 

Fig. 74. (a) Simulation results for surface temperature profile; (b) Simulation results for 

temperature profile within the control volume; Species concentrations 

distribution for (c) 2-Propanol (C3H8O) (d) Oxygen (O2) (e) Carbon Dioxide 

(CO2) (f) Water Vapor (H2O); Actuation current = 18 mA. 
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                                            (a)                                              (b) 

      

                                            (c)                                              (d) 

      

                                            (e)                                              (f) 

Fig. 75. (a) Simulation results for surface temperature profile; (b) Simulation results for 

temperature profile within the control volume; Species concentrations 

distribution for (c) 2-Propanol (C3H8O) (d) Oxygen (O2) (e) Carbon Dioxide 

(CO2) (f) Water Vapor (H2O); Actuation current = 20 mA. 
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APPENDIX C 

 

				 	
(a) 

     
(b) 

     
(c) 

Fig. 76. Voltage values corresponding to the position of reflected laser spot varying with 

applied current values: (a) 0 mA (b) 2 mA (c) 4 mA (d) 6 mA (e) 8 mA (f) 10mA 

(g) 12 mA (h) 14 mA (i) 16 mA (j) 18 mA (k) 20 mA. 
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(d) 

				 	
(e) 

     
(f) 

Fig. 76. Continued 
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(g) 

     
(h) 

     
(i) 

Fig. 76. Continued  
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(j) 

     
(k) 

Fig. 76. Continued 
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APPENDIX D 
 

     

                        (a)                                            (b)                                            (c) 

     

                        (d)                                            (e)                                            (f) 

 

                        (g) 

Fig. 77. Bending response of microcantilever to the solid explosives measured by the 

projection-screen method; (a) Ammonium Nitrate (b) Ammonium Picrate (c) 

TNT (d) RDX (e) Picric Acid (f) Picramic Acid (g) EGDN. 
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