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ABSTRACT 

 

Performance-Based Reliability Analysis and Code Calibration for RC Column Subject to 

Vehicle Collision. (May 2012) 

Hrishikesh Sharma, B.E., Visvesvaraya National Institute of Technology, Nagpur, India; 

M.S., Texas A&M University 

Chair of Advisory Committee:  Dr. Stefan Hurlebaus 

 

Infrastructure and transportation facilities have increased rapidly over the years.  The 

progress has been accompanied by an increasing number of vehicle collisions with 

structures.  This type of collision might lead to the damage, and often, collapse of the 

structure.  In reinforced concrete (RC) structures, columns are usually the most 

vulnerable members exposed to collisions.  However, the existing design guidelines and 

provisions for protection of these members against collision of vehicles are not adequate.  

In particular, the desired behavior and the associated performance levels of a structure 

during a vehicle collision are not defined.  Therefore, there is need to assess the 

vulnerability of structures against such collisions.   

This research aims to develop a framework for the performance-based analysis 

and design of RC columns subject to vehicle impact.  It helps mitigate maximum 

damage and achieve an economical design.  The current research takes into account 

performance-based analysis and design as opposed to only collapse prevention design.  

The performance level is tied to the impact levels to estimate the reliability of the RC 
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column for the desired performance objectives.  The performance-based probabilistic 

models for estimating shear resistance of RC column and shear demand on RC column 

are developed.  The reliability of the RC column subject for selected performance levels 

is evaluated.  The performance levels are tied to impact demand and load and resistance 

factors are proposed to achieve desired performance objectives of the RC column subject 

to vehicle collision.  
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1 INTRODUCTION 

 

With the rapid increase in the number of infrastructure projects, the collision of vehicles 

with structures has increased.  The collision can be accidental in the case of a vehicle 

going astray or intentional, as in a terrorist attack.  This has made vehicle collisions one 

of the leading causes of the structural failure.  Bridge columns, lower story columns of 

buildings, traffic signal structures and electric poles are the structural members most 

vulnerable to vehicle impact (El-Tawil et al., 2005, Tsang and Lam, 2008).  The rise in 

structural collision cases has been reported in the USA as well as in other parts of the 

world.  Hartik et al. (1990) analyzed 114 bridge failures in the United States over a 38-

year period (1951-1988).  Out of the 114 failures, 17 (15%) were due to truck collisions.  

In a similar study, Wardhana and Hadipriono (2003) analyzed 503 bridge failures over 

an 11-year period (1989-2000) and reported that 14 (3%) bridge failures were caused by 

collisions of trucks or other vehicles.  A review of the causes of bridge failures in USA 

was done from 1966 to 2005 (Briaud, 2007).  Fig. 1.1 shows the frequency of the various 

causes of the bridge failure in USA. 

 

 

 

 

 

This dissertation follows the style of Journal of Structural Engineering (ASCE). 
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Fig. 1.1. Causes of bridge failure in USA from 1966 to 2005 (Briaud, 2007). 

 

This study shows that after hydraulic causes, the most likely cause of bridge 

failure is collision (14%).  Interestingly, while often more feared, failure due to 

earthquakes is only about 1%.  Overall, 200 bridges failed due to collision from 1502 

studied cases of bridge failure.  Sharma et al. (2008) discusses various scenarios vehicle 

collision with a bridge.  Suter (2005) mentions significant increases in the number of 

vehicle collisions with bridge columns in European countries. 

 Fig. 1.2 shows two examples of such incidents.  The economic cost due to the 

closure of bridges, rerouting, maintenance, and repair becomes large combined with the 

invaluable loss of human life.  The risk of damage to property and loss of human life 

increases for buildings subject to impact. 
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Fig. 1.2. (Left) Collision of truck with bridge column (Staples, 2007); (Right) Collapse 

of bridge on I-80 in Nebraska after being struck by a tractor trailer (El-Tawil et al., 

2005). 

 

Bridge columns, building columns, and electric poles are often made of 

reinforced concrete (RC).  Therefore, the design and protection of RC columns subject to 

vehicle impact are important considerations.  The RC column sustains damage during 

impact due to the transfer of a large shear force over a short interval of time.  Due to the 

short interval, the resisting mechanism is based on shear, inertia, and local deformation 

rather than overall displacement.  So, the dynamic shear force capacity of and demand 

on the RC column becomes important quantities rather than static shear quantities.  Also, 

the damage state varies depending upon the type and severity of the impact.  The current 

code provisions (AASHTO -LRFD 2007) do not account for various damage states and 

only design for collapse prevention.  For minimizing the damage to the RC column and 

ensuring an economical design, a performance-based analysis and design is required.  
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The damage state has to be identified with the performance levels of the structure whose 

RC column might be subject to vehicle impact.  These performance levels have to be 

associated with the different impact levels of vehicle for achieving the desired design 

criteria.  The dynamic shear resistance of and demand on the RC column corresponding 

to these performance criteria needs to be estimated.  The need for accurate procedures 

based on performance levels to estimate the dynamic shear resistance of the RC column 

and predicting the dynamic shear force demand imposed on it during vehicle collision 

becomes vital. 

The current analysis methods and experimental procedures to estimate the shear 

resistance and demand of RC columns do not capture the complex mechanism of impact 

events.  Current procedures of estimating the shear capacity of RC columns are based on 

static calculations and are verified and calibrated by quasi–static experiments (PEER, 

2010, Gardoni et al., 2002, Moehle et al. 1999 and 2000, Kowalsky and Priestley 2000).  

These procedures are based on a cantilever RC column with the first mode 

approximation.  However, experiments and simulations have shown that the shear 

resistance during an impact event can be higher than the values estimated by the static 

procedures (Louw et al., 1992, Sharma et al., 2009).  The procedure in practice to 

calculate the energy absorbed by the structure is based on the static force-deformation, 

or moment-curvature methods (EUR 23738 EN, 2009).  This in turn again leads to the 

inaccurate quantities.  Tsang and Lam (2008) have shown the energy absorbed by the 

RC column based on elastic-plastic curvature.  But the research does not provide 
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corresponding forces which could be used in design purposes.  The energy calculations 

require dynamic simulations which could be impractical for use in design codes. 

The increase in the shear resistance of the RC column during an impact can be 

attributed to various factors, such as increase in strength due to strain rate effects, crack 

propagation, inertia effect, viscous damping, relative stiffness between the impacting 

bodies, and composite action.  The behavior of the RC column also changes from the 

first mode approximation of the cantilever column.  The current code AASHTO -LRFD 

(2007) provision assumes a constant value for the shear force demand on a bridge 

column.  The shear force demand imposed on the RC column is often underestimated in 

a real collision event (El-Tawil et al., 2005).  Furthermore, uncertainties, such as relative 

stiffness between the bridge and vehicle, probability of occurrence, material properties, 

and dynamic effects, are not addressed in the present design codes. 

The need to accurately estimate the dynamic shear resistance and demand on the 

RC column associated with the performance levels is important.  The current code 

provisions do not take into account the dynamic shear resistance of the RC columns.  

The code provision does not take into consideration the varying demand imposed on the 

RC column.  The code also does not account for the force levels based on different 

performance levels.  Instead the RC column is designed for the collapse prevention limit 

state. 

This research aims to develop a framework for the performance-based analysis 

and design of RC columns subject to vehicle impact.  In the spirit of a performance-

based analysis and design, three performance levels are defined based on four possible 
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damage levels of the structure subject to vehicle collision.  This ensures that the desired 

performance of RC column is achieved when subject to a vehicle impact.  It helps 

mitigate maximum damage and achieve an economical design.  This research proposes a 

procedure to accurately estimate the different dynamic shear resistance of and demand 

on the RC columns subject to vehicle impact corresponding to different performance 

levels.  The proposed procedure accounts for the interdependency of the capacity and 

demand on the configuration of RC columns and the nature of loading.  The procedure is 

based on the analysis of the actual configuration of the RC columns.  The dynamic shear 

resistance of and demand on the RC column is estimated by using representative 

vehicles and realistic values of velocity.  The proposed method can be used to perform 

experiments as well as simulations.  The finite element (FE) simulation is used to show 

an application of the described procedure.  The proposed methodology is an 

improvement over the existing static or quasi-static analysis to the dynamic analysis, 

which is a more realistic representation of vehicle impacts with structures.  The current 

research takes into account performance-based analysis and design as opposed to only 

collapse prevention design.  The research aims to develop performance-based dynamic 

shear resistance and demand models for RC column subject to vehicle collision.  The 

performance-based models will be used for code calibration to estimate the load and 

resistance factor. The hazard curves will be developed together with the performance-

based dynamic shear resistance and demand models to develop framework to evaluate 

the total probability or the reliability of the RC column subject to the vehicle collision.  

The performance level will be tied to the impact levels to estimate the reliability of the 
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RC column for the desired performance objectives.  The research done in the dissertation 

will lead to development of framework to achieve desired performance objectives of the 

RC column subject to vehicle collision based on the reliability analysis of the RC 

column. 

This dissertation is organized in 10 sections.  Following this introduction, the 

dynamic shear resistance of and demand on the RC column subject to vehicle impact 

based on performance levels are described.  Then the procedure to estimate the different 

levels of dynamic shear resistance and demand are discussed.  The next section presents 

the application of this procedure using the FE method.  After that, case studies for 

estimating resistance of and demand on RC column by FE simulations are presented.  

Next, description of experimental design is presented.  The section after that describes 

the development of performance-based dynamic shear resistance model.  This section is 

followed by section describing development of dynamic shear demand model.  The next 

section presents the result for reliability-based code calibration for RC column subject to 

vehicle collision.  Finally, the dissertation concludes by assessing the applicability of the 

proposed procedure in conclusion section and the recommendations for future work are 

presented. 
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2 PERFORMANCE-BASED DYNAMIC SHEAR RESISTANCE OF 

AND DEMAND ON RC COLUMNS DURING VEHICLE 

COLLISION 

 

The dynamic shear resistance of a RC column and the demand imposed on it during an 

impact depends both on the structural properties as well as on the loading conditions.  

Therefore, it is necessary to understand the behavior of the RC column during impact in 

order to accurately estimate the shear force capacity of the RC column.  An accurate 

estimate of the dynamic shear resistance and the dynamic shear force demand is 

necessary so that the structural capacity can be kept more than the demand.  This ensures 

the safety and smooth operation of the structure during a vehicle impact.  The damage 

states observed during vehicle impact are identified and related with the performance 

levels of dynamic shear resistance of and demand on RC column.  The performance 

levels are identified with the different impact scenarios of the vehicle to insure the 

desired design and behavior of the RC column. 

 

2.1 Behavior of RC Column during Vehicle Impact 

A number of experiments have been conducted to understand the failure mechanism and 

dynamic effects during vehicle impact.  The salient features can be summarized as 

follows:  

 Cracks propagate through the aggregate thickness, thus increasing the strength 

and toughness of the concrete member (Mendis et al., 2000) (system).  
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 In concrete, the brittle behavior increases with the increase in loading rate 

(material). 

 The strength of the reinforcing steel bar increases with loading rate (Malvar, 

1998) (material). 

 Shear failure mode becomes predominant with increasing loading (system). 

 A plastic hinge is formed at the point of contact (system). 

The damage in RC columns is due to the large instantaneous force applied.  The 

behavior of a RC column during vehicle impact is explained as follows.  The impact 

process can be divided into two phases.  In the first phase, the vehicle comes in contact 

with the RC column with an initial velocity.  The first phase is the duration from the 

time of initial contact of the RC column with the vehicle to the time when part of the RC 

column and vehicle acquire a common velocity and move together.  Due to the inertia of 

the RC column, a large contact force develops in a very short time period (a few 

milliseconds), as evident from the results presented in the research (Sharma et al., 2009).  

The vehicle extends large force in order to move the column from rest.  Since column is 

at rest and has a large mass, a large contact force develops in order that both the RC 

column and the impacting vehicle acquire a common velocity.  The area of the RC 

column in contact with the vehicle experiences large force and acceleration.  This phase 

is governed by the inertia of the RC column.  The force is localized to the area in 

contact.  In the second phase, the vehicle and part of RC column acquires a common 

velocity and move together.  The second phase is thus the duration from the time when a 

part of the RC column and vehicle acquire a common velocity to the time when either 
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the failure of column occurs or vehicle comes to rest.  The kinetic energy is transferred 

from the vehicle to the RC column.  The amount of kinetic energy transferred to the 

column is proportional to the stiffness of the column and the inertia of the column.  

Local displacement in the RC column occurs due to the crushing of the concrete and 

shear deformation of the column.  Part of the initial kinetic energy is absorbed by the 

vehicle as result of deformation of the vehicle.  The amount of energy absorbed by the 

vehicle is proportional to the stiffness of the vehicle.  Typically vehicles are made to 

deform and dissipate energy so that passengers have a better protection in the event of an 

accident.  Because of this, the force developed in the first phase is low.  While the forces 

developed in the second phase are larger and might lead to failure of the RC column.  A 

shear failure is usually observed with the crushing of concrete and in plane crack across 

the thickness of the member.  A hinge formation occurs at the point of contact, near the 

bottom of the column. 

The force imparted to the RC column during the impact is the demand on the RC 

column.  The demand changes with the stiffness of the vehicle, mass and the velocity of 

vehicle as well as the structural configuration and properties of the RC column.  The 

demand on the RC column is not a constant quantity.  To emphasize its interdependency 

on the impacting vehicle as well as the body being impacted the demand will be called 

the dynamic force demand on the RC column.  The initial kinetic energy of vehicle is 

shared between the vehicle and RC column during the collision.  The vehicle absorbs 

part of the total kinetic energy due to its deformation.  The RC column also absorbs part 

of the energy due to deformation and the energy required to set the RC column in 
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motion.  The energy transfer and in turn the force transferred are proportional to the 

stiffness of the RC column, stiffness of the vehicle, inertia of the RC column and 

vehicle.  These properties are in turn dependent on the structural configuration and 

properties of the RC column and the vehicle.  So the applied force is dependent on the 

above properties.  This dynamic demand should used for analysis and design purposes as 

opposed to the equivalent shear force defined in El-Tawil et al. (2005) because it reflects 

the actual demand on the RC column.  The RC column gets time to develop the full 

response and it is not governed by inertia alone.  Similarly, the force required to cause 

the failure of the RC column is greater than its static capacity.  The vehicle along with 

the RC column comes to rest after the kinetic energy is dissipated in the form of 

deformation, heat and sound.  For analysis purposes, the heat and sound energy are 

ignored. 

 

2.2 Dynamic Shear Capacity 

The resistance mechanism of column consists of strength of the column called capacity, 

inertial resistance and damping resistance.  The capacity of the column increases during 

impact event due to the strain rate dependency of the materials.  The member 

contribution is therefore called dynamic shear capacity and the total contribution of 

member, inertia and damping is called dynamic shear resistance.  The dynamic shear 

capacity of the column is evaluated by performing push over analysis and accounting for 

the strain rate effect in the concrete and steel. 
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2.3 Performance Levels for Vehicle Impact 

During an impact with a vehicle, the RC column sustains different levels of damage 

depending on the geometry, material properties and boundary condition of the column 

and velocity and type of vehicle.  The radial velocity defined as radial component of the 

velocity Rv  controls the damage to the RC column due to the vehicle impact.  The 

tangential velocity defined as tangential component Tv  does not have significant 

contribution to the damage of the RC column. The velocity components are shown in 

Fig. 2.1. 

 

 

 

Fig. 2.1. Velocity components affecting the damage to the RC column. 

 

The proposed damage levels can be categorized into four levels with increasing 

intensity.  In the spirit of a performance-based analysis and design, three performance 

v 

vR 

vT 

Impacting 

Vehicle 

RC Column 
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levels are defined based on four possible damage levels of the structure subject to 

vehicle collision.   

Table 2.1 lists the damage levels, the associated damage description, and the 

corresponding performance level and the description of the performance levels. 

 

 

Table 2.1. Performance Level of RC Column Subject to Vehicle Impact. 

Damage 

Level 

Damage Description 

 

Performance 

Level 

Performance level 

Description 

D1 Insignificant damage   

  P1 
Fully operational 

with no damage 

D2 
Minor spalling of concrete, yielding 

of longitudinal steel 
  

  P2 
Operational structure 

with damage 

D3 

Significant cracking of concrete, 

Spiral and longitudinal bar exposed, 

buckling of bars 

  

  P3 Collapse prevention 

D4 
Loss of axial load capacity, 

longitudinal bar fracture 
  

 

 

The damage levels increase in intensity from insignificant damage to total 

collapse of column.  The corresponding defined performance levels are fully operational 

with no damage (P1), operational structure with damage (P2), and collapse prevention of 

structure (P3).  The defined performance levels ensure the desired behavior of the RC 

column during an impact scenario.  The severity of the impact scenario also varies 

depending upon the type of vehicle and its velocity.  Table 2.2 groups the intensity of the 
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impact scenario in three categories: low (L), moderate (M), and severe (S) based on the 

mass of the vehicle vm and the velocity of the vehicle 0v .  Table 2.3 shows the desired 

performance levels of the structure whose RC column is subject to vehicle impact. 

 

Table 2.2. Categorization of Impact levels. 

  Velocity of Vehicle (v0) 

M
as

s 
o
f 

V
eh

ic
le

 (
m

v
) 

 v0≤15 m/s (54 

km/hr)(Low) 

15 m/s (54 km/hr)< 

v0<27 m/s (97 

km/hr)(Intermediate) 

v0≥27 m/s 

(97 km/hr) 

(High) 

mv ≤2722 kg 

(Passenger cars) 

L L M 

2722 kg < mv< 11793 

kg(Commercial 

Vehicles) 

L M S 

mv ≥11793 kg Heavy 

(Trucks, Buses) 

M S S 

 

 

Table 2.3. Design Performance Objectives for RC Column Subject to Vehicle 

Impact. 

 Performance Level 

Fully operational  

with no damage 

(P1) 

Operational 

structure 

 with damage (P2) 

Collapse 

prevention (P3) 

L
o
ad

in
g
 

Impact level (L)    

Impact level (M)    

Impact level (S)    
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The inclined line stands for the desired performance levels for the RC column 

during different impact scenarios.  This design requirement ensures that the structure 

remains fully operational (P1) during low (L) impact intensity and operational with 

damage (P2) during moderate (M) intensity event.  It also helps to design the structure so 

that total collapse (P3) is prevented during severe (S) intensity events.  The 

performance-based design helps in ensuring that the structure has minimum damage 

during low intensity impact scenarios and collapse prevention is ensured during high 

intensity events with sufficiently high probability.  

A frequent case of vehicle collision involves bridge columns with heavy 

vehicles.  In such an event, the dynamic shear action affects the shear capacity of the 

column.  These cases are critical, as shown in Fig. 1.2, because they can lead to failure 

of the column and it turn of the bridge.  In an earlier study, Tsang and Lam (2008) have 

addressed the issue of building columns subject to impact.  The dynamic shear action is 

not considered in the analysis.  It was based on the assumption that the time required to 

develop the full contact force is much larger than the duration required by the shear 

wave velocity to travel.  Full scale Finite Element (FE) simulations of the impact of 

vehicles (NCAC, 2010) with bridges were carried out.  It was noted that the time 

required for the full contact to develop is comparable to the duration of shear wave 

velocity in the case of a large mass and velocity.  It can be attributed to the localized 

contact, the inertia of the vehicle, and the relative stiffness of the contact region 

compared to the global stiffness.  Modified Compression Field theory gives an estimate 
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of the increase in the shear capacity based on the influence of strain rate on material 

properties (Mendis et al., 2000). 

Currently, no method is available to estimate the dynamic shear resistance and 

demand on the RC column subject to vehicle collision. The analysis and design methods 

do not account for varying damage states and the required performance levels.  In light 

of the conclusions drawn, it is necessary to lay a standard procedure to estimate the 

dynamic shear resistance of the RC column and to estimate the dynamic shear force 

demand imposed on it corresponding to different performance levels and impact 

scenarios.  The following section explains the proposed method. 

  



17 

 

 

3 PROCEDURE FOR ESTIMATING DIFFERENT LEVELS OF 

PERFORMANCE-BASED DYNAMIC SHEAR RESISTANCE 

AND DEMAND 

 

The estimation of dynamic shear resistance of and demand on RC column corresponding 

to different performance levels and impact scenario are done from the crash test on the 

RC column.  According to the definition provided earlier, the dynamic shear resistance 

at a particular performance level is computed in this analysis as the lateral force resisted 

by the RC column showing the defined damage state.  The dynamic shear force demand 

is the maximum lateral force imposed on the RC column.  Different levels of the 

dynamic shear force demand can be obtained corresponding to the weight and velocity 

of the impacting vehicle as categorized in Table 2.2.  The actual structural configuration 

and boundary conditions are used. 

 

3.1 Performance-Based Dynamic Shear Resistance of RC Column 

The RC column whose dynamic shear resistance needs to be evaluated is subject to a 

dynamic loading.  The dynamic shear resistance is interdependent on the structural 

configuration and properties as well as the rate of applied loading, mass, and contact 

area.  Thus, the dynamic shear resistance is characterized as a function of the applied 

loading.  With many available variables to characterize the loading, the analysis 

procedure becomes more difficult.  It is dependent on all the variables: the change in 

velocity, relative stiffness of the bodies, and inertia.  In an impact event the loads are 
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applied suddenly, and there is no reversal of the loading.  The studies for the estimation 

of acceleration for a column subject to vehicle impact give a range of about 10 50g g

where g is the acceleration due to gravity 9.81 m/s
2
 (Ydenius and Kullgren, 2001, 

Steffan et al., 1998, Kloeden et al., 1999).  There is large variability in the type of 

vehicles.  This variation leads to different contact areas and point of application when a 

RC column is subject to impact by a vehicle.  The appropriate vehicle with 

corresponding velocity is used as loading for estimation of the dynamic shear resistance. 

The dynamic shear resistance obtained gives an estimate of the resistance offered 

by the RC column during a vehicle impact scenario.  The dynamic shear resistance for 

the performance level of fully operational (P1) is the maximum horizontal force resisted 

by the RC column before the limiting damage state (D2), mentioned in Table 2.1 begins 

to occur.  Similarly, the dynamic shear resistance for the performance level of 

operational with damage (P2) is the maximum horizontal force resisted by the RC 

column before the limiting damage state (D3), mentioned in Table 2.1 begins to occur.  

In the same lines, the dynamic shear resistance for the performance level of total 

collapse (P3) is the maximum horizontal force resisted by the RC column before the 

limiting damage state (D4), mentioned in Table 2.1 begins to occur. 

 

3.2 Performance-Based Dynamic Shear Force Demand on RC Column 

The dynamic shear force demand is the maximum lateral force applied to the RC column 

by impacting vehicle.  The appropriate vehicle with corresponding velocity is used as 

loading for estimation of the dynamic demand.  The dynamic shear demand can be used 
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in design and analysis purposes.  Due to the deformable nature of the vehicle, the contact 

response during the initial phase is not large.  Therefore, the entire response is not 

governed by the inertia effect.  The RC column gets the time to develop the resistance 

against the collision.  Hence the applied force gives a true estimate of the demand 

imposed on the RC column.  The dynamic shear force demand can be categorized into 

various demand levels depending on the three vehicle impact levels low (L), moderate 

(M), and severe (S), as defined in Table 2.2. 

These procedures can be applied experimentally to estimate the dynamic shear 

resistance and demand of a RC column.  The proposed procedure can also be simulated 

numerically to estimate the quantities of interest.  The following section provides a 

demonstration of the proposed procedure using FE simulation. 
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4 FINITE ELEMENT MODEL 

 

This section uses the proposed procedure to assess the performance-based dynamic shear 

resistance of RC columns and the dynamic shear force demand due to vehicle impacts 

using data from detailed FE analysis.  A parametric study is performed using the FE 

method.  In this study, the commercial FE program LS-DYNA is used for the FE 

analysis (Livermore Software Technology Corporation, 2003). The FE models 

considered in this study are generated using HyperMesh (Altair Computing, 2003).  The 

quantities of interest monitored are the force applied to the column, strain rate, shear 

force at the bottom, and the acceleration.  The explicit integration scheme based on the 

central difference method is used for the analysis. 

 

4.1 Structural Configuration, Imposed Load, and Boundary Conditions 

A three dimensional solid model is used for modeling the impact of vehicle with the RC 

column.  The RC column is modeled by a fully integrated quadratic eight node element 

with nodal rotations.  The reinforcement bars are modeled explicitly using a one 

dimensional element. The contact between the concrete and reinforcements is modeled 

using the Langragian coupling method.  This method saves the effort of matching the 

nodes of the reinforcement and the concrete which might be very difficult in some cases.  

The RC column supports the load imposed by the structure.  This is called the imposed 

load.  In order to model this imposed load a solid body is placed over the RC column to 

uniformly distribute the imposed load on the top surface of the RC column.  The total 
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mass of the solid body placed over the body imposes the same load as imparted by the 

structure.  This is done in order to study the behavior of the RC column with realistic 

imposed load.  The imposed load and the gravitational load are supported by the RC 

column during normal operation of the structure.  To model this effect a static analysis is 

first performed in which the forces due to imposed load and gravity are transferred to the 

RC column.  The state of the RC column after transfer of these forces and their 

subsequent effects is used as an initial condition for the dynamic analysis in which the 

RC column is subject to collision with a vehicle.  The foundation is modeled by 

restricting the nodes at the base or by equivalent springs.  Mesh refinement achieves 

convergence and hourglass energy is minimized. 

 

4.2 Material Models 

A rate dependent material model is used for all the materials due to the sensitivity of 

material properties with loading rate.  In this research, a continuous surface cap model 

available in the software is used to model the concrete.  This model also takes into 

account the strain rate dependency of the concrete strength.  A strain rate dependent 

elasto-plastic model is used as the material model for the reinforcement bars.  The RC 

column supports the structure which in turn exerts load on the RC column.  This is called 

imposed load.  In order to model the imposed load, a solid body is placed over the RC 

column as described in Section 4.1.  The total imposed load on the RC column is then 

divided by the volume of the solid body placed over the RC column to calculate the 
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density of material used for the imposed load.  The material models for the vehicles are 

used as provided in the input files (NCAC, 2010). 

 

4.3 Dynamic Shear Resistance of and Demand on RC Columns 

The estimation of the dynamic shear resistance and demand involves monitoring the 

lateral force applied on the RC column.  The vehicles for the analysis purpose are chosen 

from the available pool of vehicles developed for the crash analysis purpose (NCAC, 

2010).  The RC column is impacted with the vehicle with the expected velocity with no 

eccentricity.  The impact is thus symmetric to the RC column.  The impact velocity 

becomes the radial velocity.  The applied force reaches a maximum value and then 

decreases with a steep slope indicating a shear failure.  The applied force then becomes 

constant at a lower value called residual force.  The erosion and cracking of the elements 

of RC column and vehicle are monitored.  A detailed description of the FE model is 

provided in Appendix-I.  The total lateral force resisted by the RC column is monitored 

to determine the different dynamic shear force capacities of the column corresponding to 

the three performance levels.  The total force imparted by the vehicle to the RC column 

is monitored.  The maximum force is the dynamic shear force demand imposed on the 

RC column by the vehicle during the collision. 

The FE method shows that the proposed procedure can be used to estimate the 

dynamic shear resistance of and demand on the RC column subject to a vehicle impact.  

Different case studies are presented to study the variation of the dynamic shear 

resistance of and demand on the RC column with structural properties, configuration and 
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loading conditions.  The FE modeling requires validation so that the results obtained can 

be accepted.  The following section presents validation of the material model, contact 

algorithm, and modeling assumptions. 

 

4.4 Validation of the Finite Element Model 

One of the critical aspects of FE modeling is the validation of the obtained results with 

experimental results or agreement with the physical phenomenon.  Validating the FE 

model has different aspects like confirming that the material model used exhibits the 

physical properties of the actual material, the realistic boundary conditions are achieved 

in the modeling, the contact between different parts and materials is achieved, and the 

loading is accurately modeled.  This paper presents three cases for validation.  Similar 

modeling techniques are used for the validation cases as well as presented earlier in 

Section 4.1 and 4.2. 

The first validation is using the results for a bogie impact experiment conducted 

by the Texas Transportation Institute (TTI).  The details of the experiment can be 

obtained from the report (Murray et al., 2007).  Fig. 4.1 shows the validation of the 

impact experiment.  Fig. 4.1 (top) shows the high speed photograph of the impact 

experiment. Fig. 4.1 (bottom) shows the simulated FE model of the impact experiment.  

Fig. 4.1 (top) and (bottom) are extracted at the same time of the impact.  The figure 

shows an agreement between the shapes of the impacted beam.  The cracks on the actual 

beam are similar to the simulated beam. 
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(top) 

 
     (bottom) 

 

Fig. 4.1. Validation of TTI bogie impact experiment at 48 ms. (top) High speed 

photograph of the impact experiment; (bottom) FE simulated model of the experiment. 

 

The second validation is done for the composite column and wall systems for 

impact and blast resistance (COSIMB) project conducted in Europe for different types of 

columns subject to impact, blast, and fire loading (EUR 23738 EN, 2009).  A detailed 

description of the FE model is provided in Appendix-I.  The experimental displacement 

time history at the mid span of the beam subject to impact is compared with the FE 

simulation in Fig. 4.2. 
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(a)                                                                         (b) 

 

Fig. 4.2. Validation of the COSIMB experiment. (left) Displacement time history of the 

column at mid span; (right) Velocity time history of the column at mid span and 

impacting body. 

 

Fig. 4.2 also shows the comparison between the velocity profiles of the 

experiment and simulated values.  The experimental values were obtained from the 

graph provided in the COSIMB report by the authors by interpolation, so the values are 

less in number.  This might explain the slight discrepancy in the comparison, however, 

overall the values agree well with each other.   

The third validation is presented next.  Several cases of vehicle collision are 

listed in Buth (2009) including an actual vehicle collision with an exterior RC column of 

a three column bent of a bridge over I-20 in Tyler, Texas.  A detailed description of the 

FE model is provided in Appendix-I.  Fig. 4.3 shows the comparison of the FE 

simulation and the crash photograph of the column. 
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(a)                                                    (b) 

 

Fig. 4.3. Validation for a tractor-truck collision with bridge column of IH-20, Longview, 

Texas.(left) RC Column after collision with the vehicle; (right) FE simulation of the 

collision event. 

 

The details of the column are mentioned in the report (Buth, 2009).  The 

impacted column is a 0.6 m diameter exterior column of an interior 3-pier bent.  The 

column had eight 22.2 mm diameter rebars in the longitudinal direction.  The transverse 

reinforcement consisted of 6.35 mm spiral stirrups with 150 mm pitch.  In the report, 

only the type, mass and velocity of the vehicle are mentioned.  The impacting vehicle 

had a mass of 36 Mg.  This case was simulated using an IVECO truck (Atahan et al., 

2007) as it has a comparable mass as mentioned in the report.  A general agreement on 

the observed failure mechanism of the RC column and crack pattern is shown in Fig. 4.3. 

These verifications provide sufficient confidence that the modeling technique 

used in the FE models is able to capture the complex process of a vehicle crash with a 

RC column.  The verification shows that the material, contact, boundary and other 
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conditions are appropriately modeled.  The total energy, the energy balance, ratio of 

hourglass energy to the total energy is monitored to check the stability and validity of the 

numerical simulation.  The initial energy is compared with the hand calculation to check 

the accuracy of the numerical simulation.  The final velocities are compared with hand 

calculations to provide sanity check for the numerical simulations.  The results obtained 

are reliable and agree to the physical phenomenon observed during the impact.  Thus, 

the results obtained by the FE model can be used for making inferences and drawing 

conclusions.  Several case studies are simulated in the next section to understand the 

behavior of a RC column during impact and estimate dynamic shear force capacity of 

and demand on the RC column. 
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5 CASE STUDIES FOR ESTIMATING RESISTANCE OF AND 

DEMAND ON RC COLUMN BY FE SIMULATION 

 

The FE model is used to simulate the behavior of representative RC columns and 

estimate the dynamic shear resistance of and demand.  A parametric study is performed 

to understand the variation of the dynamic shear resistance and demand with the loading 

conditions. 

 

5.1 Structural Configuration, Material Property and Loading 

Two different types of RC columns are simulated.  The first one is similar to the exterior 

column of the three column bent presented previously.  It represents the bridge RC 

column (C1).  The second RC column has a similar configuration to the exterior building 

column presented in Tsang and Lam (2008) (C2).  The material properties used for these 

two RC columns are presented in Table 5.1.  The configuration of the columns is 

presented in Table 5.2. 
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Table 5.1. Material Properties of RC Columns. 

 

 

Table 5.2. Static Shear Response of RC Columns. 

 

 

An imposed loading of 250 kN is applied at the top of both columns to simulate 

the effect of the structure supported by the columns.  For the RC columns, the imposed 

loads are usually 7% of the axial load capacity based on gross sectional area with 25% 

COV (Gardoni et al., 2002).  To account for the variation, the bridge column C1 has an 

imposed ratio of 3% and the building column C2 has an imposed load ratio of 7%.  The 

bases of both of the columns have fixed condition.  The horizontal and transverse 

direction refers to the directions in the plane of the cross section of the RC column.  For 

the bridge column C1, the horizontal direction is along the flow of the traffic and 

Material Density 
 

[kg/m
3
] 

 

Modulus 

of 

Elasticity 

 [GPa] 

Poisson’s 

ratio 
 

Unconfined 

Compressive 

Strength 

[MPa] 

Unconfined 

Tensile 

Strength 

[MPa] 

Yield 

Stress 

[MPa] 

Concrete 2500 25.7 0.2 30.0 3.0 - 

Steel 7850 210.0 0.3 - - 415 

No. Diameter 

[m] 

Length 

[m] 

Longitudinal 

Reinforcement 

Transverse 

Reinforcement 

Static Shear 

Capacity 

[kN] 

C1 0.61 5.18 8-   22mm 

bars 

 6.35mm-

0.15m pitch 
342.0 

C2 0.40 3.00 8-   22mm 

bars 

  9.6mm-

0.30m pitch 
178.5 



E


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transverse direction is perpendicular to the horizontal direction.  For the bridge column 

C1, rotation along the transverse direction at the top of the RC column is constrained.  

For the building column C2, rotations along both the horizontal and transverse directions 

at the top of RC column are constrained.  The static shear capacity is also reported in 

Table 5.1 (ACI-318, 2005). 

Four vehicles are used for the impact loading.  The vehicles used for loading are 

a 8,000 kg (8 Mg) Ford truck (NCAC, 2010), a 30,000 kg (30 Mg) IVECO truck 

(Atahan et al., 2007), a 38,000 kg (38 Mg) tractor trailer (NCAC, 2010), and a 50,000 kg 

(50 Mg) IVECO truck (Atahan et al., 2007).  Each vehicle collides with the RC columns 

C1 and C2 six times by varying the velocity.  The values of velocities for each vehicle 

are 18 m/s, 22 m/s, 27 m/s, 32 m/s, 36 m/s and 45 m/s (65 km/h, 80 km/h, 96 km/h, 113 

km/h, 128 km/h, and 161 km/h respectively).  The RC columns C1 and C2 are simulated 

for 24 cases with variation of four vehicles and six velocity cases for each type of 

vehicle.  The impacts are central impact with no eccentricity between the centroid of the 

vehicle and the RC column.  The impact velocity thus comprises of the radial velocity 

only. 

 

5.2 Dynamic Shear Force Resistance for Performance Levels 

The dynamic shear resistance is estimated for both bridge and building columns (C1 and 

C2). Fig. 5.1 shows the contour plot of the variation of dynamic shear resistance (MN) 

with radial velocity (m/s) on the vertical axis and mass (Mg) on the horizontal axis for 

the performance levels.  The Fig. 5.1 (a), Fig. 5.1 (c), and Fig. 5.1 (e) is for the RC 
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column C1.  Fig. 5.1 (b), Fig. 5.1 (d), and Fig. 5.1 (f) is for the RC column C2.  In Fig. 

5.1 (a) and Fig. 5.1 (b), the performance level P1 for the two columns C1 and C2 is 

compared.  Similarly in Fig. 5.1 (c) and Fig. 5.1 (d), the performance level P2 for the 

two columns C1 and C2 is compared.  Following the same trend, Fig. 5.1 (e) and Fig. 5.1 

(f), compares the performance level P3 for the columns C1 and C2.  Fig. 5.1 shows that 

each of the three performance levels increases with increase in radial velocity as well as 

the mass of the vehicle.  This is because the strength increases with the strain rate and 

more inertia is utilized for the resistance.  The performance levels have higher value for 

C1 as compared to C2 as C1 has more strength than C2 which is evident from its 

configuration presented in Table 5.1 and Table 5.2.  The performance level P1 is less 

than P2 which is in turn less than P3 in all the cases.  This is due to the fact that P1 

corresponds to less severe damage state and hence the force required for maintaining the 

damage state is also lower than the next higher performance level P2.  The same 

conclusion applies for P2 being lower than P3. 
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(a)                                                                  (b) 

 
(c)                                                                 (d) 

 
(e)                                                                  (f) 

 

Fig. 5.1. Variation of dynamic shear resistance of RC column with velocity and mass. 

Dynamic shear resistance (MN) of column (a) C1 for performance level P1; (b) C2 for 

performance level P1; (c) C1 for performance level P2; (d) C2 for performance level P2; 

(e) C1 for performance level P3; (f) C2 for performance level P3. 
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These simulations confirm the notion that the capacity of a RC column is not a 

static value.  It is dependent on the structural configuration as well as the applied 

loading.  The failure of the column occurs by shear failure mode.  The dynamic shear 

resistance corresponding to different performance levels can be evaluated by the 

proposed procedure. 

 

5.3 Dynamic Shear Force Demand on RC Column 

The dynamic shear force demand is estimated for both bridge and building columns (C1 

and C2).  Fig. 5.2 shows the collision for one case each of C1 and C2 with a vehicle 

velocity of 18 m/s (65 km/h). 

 

 

 
(a)                                                     (b) 

 

Fig. 5.2. FE simulation of collision of RC column with vehicles with no failure. (a) 

column C1 impacted by a vehicle of mass 38 Mg and velocity 18 m/s; (b) column C2 

impacted by a vehicle of mass 8 Mg and velocity 18 m/s. 
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No significant damage is observed in either of the collisions.  The velocity of the 

vehicle is only 18 m/s which is the allowable velocity inside city limits.  Due to this, a 

low demand is applied to the columns, hence no failure is observed with only some 

spalling.  Four cases of vehicle collision are shown in Fig. 5.3, two for column C1 and 

two for column C2. 

 

 
(a)                                                           (b)  

 
(c)                                                           (d)  

 

Fig. 5.3. FE simulation of collision of RC column with vehicles with shear failure (a) C1 

impacted by a vehicle of mass 38 Mg and velocity 32 m/s; (b) C1 impacted by a vehicle 

of mass 50 Mg and velocity 32 m/s; (c) C2 impacted by a vehicle of mass 8 Mg and 

velocity 32 m/s; (d) C2 impacted by a vehicle of mass 30 Mg and velocity 32 m/s. 
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The impact velocity is 32 m/s (113 km/h) which is the common velocity on most 

highways.  Shear failure is observed in all the cases.  The hinge formation at the base is 

more dominant at the base than at the top.  It is because the main thrust of the impact is 

concentrated at the lower part of the column.  For column C1 (Fig. 5.3 (a) and (b)) the 

hinge is formed near the base of the column.  The cracking is observed in the lower part 

only for vehicle with mass 38 Mg whereas the cracking occurs in the entire contact 

length for vehicle with mass 50 Mg.  For column C2 (Fig. 5.3 (c) and (d)) the hinge is 

formed near the base with cracking occurring at the base as well as at the top of the 

column.  It is because for column C2, the percentage of the contact area is more than C1.  

Hence a large portion of the column is utilized in resisting the force, so some cracks are 

formed in the top portion of the column along with the base.  The vehicle bends itself 

around the column in all the cases.  The shape of bending is influenced by the net area in 

contact (after subtracting the area for openings like windows, etc.). 

Fig. 5.4 (a) shows the contour plot of the variation of dynamic shear force 

demand (MN) with radial velocity (m/s) on the vertical axis and mass (Mg) on the 

horizontal axis for the various simulated cases.  The dynamic shear demand for column 

C1 increases with mass and velocity (Fig. 5.4 (a)). 
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                                         (a)                                                                   (b) 

 

Fig. 5.4. Response of RC column during impact with vehicle. Dynamic shear demand 

(MN) of column (a) C1; (b) C2. 

 

The increase of the dynamic shear force demand with mass and velocity confirms 

the earlier notion and is in accordance with the physical phenomenon of an increase in 

shear demand due to inertia, rate, and other effects.  Fig. 5.4 (b) presents the results for 

column C2.  The figure is a contour plot of the dynamic shear force demand (MN) on 

column C2 with the variation of radial velocity (m/s) on the vertical axis and mass (Mg) 

on the horizontal axis.  A similar trend is observed in the increase in dynamic shear force 

demand with increase in mass and velocity. 

The dynamic shear force demand imposed on a RC column is interdependent on 

the structural properties of the RC column and the loading.  It increases with an increase 

in mass and velocity of the impacting vehicle.  The demand imposed can be greater than 

the maximum design value adopted by the current code.  The shear cracking and hinge 
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formation occurs near the base of the RC column as the main thrust of impact is 

concentrated in that zone.  The dynamic shear force demand on the RC column can be 

categorized into different demand levels depending on the categorization of the vehicle 

mass and velocity as mentioned in Table 2.2.  This will give different dynamic demands 

corresponding to different impact scenarios for which a RC column can be designed for 

desired performance level.  

The dynamic shear resistance is less than the dynamic force demand for the cases 

in which damage is observed.  This serves as an additional validation for the proposed 

methodology.  The proposed procedure is able to estimate the dynamic shear resistance 

of and demand on the RC column corresponding to different performance levels.  The 

change in dynamic shear resistance and demand with the variation of structural 

configuration and loading is also observed.  A corresponding dynamic shear resistance 

and demand can be evaluated to estimate the safety of the RC column during an impact 

event. 

 

5.4 Conclusion 

The work in this section focuses on shifting the existing paradigm in the analysis and 

design of RC columns subject to vehicle impact in a number of ways.  It lays out a 

framework to quantify the different observed damages into applicable damage levels.  

The damage levels are then related to the appropriate performance levels.  The 

performance levels are tied to the different impact scenarios of vehicle impacts to ensure 

that the desired performance of the structure is met when the RC column is impacted.  



38 

 

 

Then a procedure to estimate the different dynamic shear resistance corresponding to 

performance levels is established.   

The proposed procedure shifts the existing methodology based on static or quasi-

static analysis to the dynamic analysis which is a more realistic representation of the 

vehicle impact with structures.  A method to estimate the dynamic shear force demand 

on the RC column during vehicle impact is also laid out.  The dynamic shear force 

demand can be categorized into different demand levels depending on the intensity of 

the impact.  A FE model is used to implement the framework.  The FE model is 

validated with experimental and realistic crash scenarios.  The case studies show that the 

dynamic shear resistance of and demand on RC column are interdependent on the 

structural configuration as well as the loading.  The dynamic shear resistance of and 

demand on RC column varies with the mass and velocity of the vehicle.  This agrees 

with the proposed methodology which uses the quantities to estimate the dynamic shear 

force capacity and demand.  The estimated dynamic shear resistance is more than the 

static shear capacity evaluated by ACI 318 (2005).  The estimated dynamic shear force 

demand quantities are greater than the static quantity and vary with the loading.  The 

proposed procedure gives a better estimate for design and analysis of RC columns 

subject to impact.  The performance-based dynamic shear resistance and demand can be 

used to determine the performance of a structure in a given scenario and evaluate the 

survival of the structure.  Actual structural configurations and loading scenarios are used 

to evaluate the response which is more accurate in representing the complex impact 

scenario. 
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The proposed procedure has its merits for application in the design of RC 

columns to minimize damage and meet a set of performance objectives during different 

vehicle impact scenarios.  The performance-based proposed procedure can be used for 

other hazards such as high velocity impacts due to blasts or missiles impact.  The current 

work can be extended to estimate the resistance of and demand on for other members 

such as prestressed columns, steel columns, and beams. 
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6 EXPERIMENTAL DESIGN 

 

The validity of a probabilistic model is only within the range of the data used for the 

model.  Therefore, an accurate probabilistic model requires representative data that cover 

the entire range of the input variables.  Also there should be a sufficiently large amount 

of data to minimize the statistical uncertainty (Gardoni et al., 2002).  Therefore, a large 

number of full-scale experiments would be needed to generate the required data.  

However, the availability of number of full-scale experiments on RC column subject to 

different loading rates is currently limited.  Furthermore, creating an adequate database 

would require a large amount of resources and time.  So, in this dissertation, virtual 

experiments are conducted using refined FE analyses.  The range of variables used for 

the experimental design is optimally selected so that they are representative of the range 

of actual RC column and applied loading.  The FE analyses have the additional 

advantage of providing any response of interest and allow for parametric variations. 

The design of virtual experiments for FE simulations requires the creation of a 

number of models of the RC column and loading.  A detailed review of national bridge 

inventory (NBI) was made by Nielson and DesRoches (2006) to assess representative 

ranges of the variables x  for RC columns and is followed in this dissertation.  However, 

if all the variables that characterized the material and geometric properties of RC 

columns are randomly combined an unrealistic case may result.  To prevent having an 

unrealistic bridge, the material and geometric variables are divided into basic and 

derived variables.  The variables that capture the basic design requirements are 
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categorized as basic variables.  Table 6.1 gives the ranges for these variables.  The 

expression or ranges of the derived variables are obtained by satisfying the design 

requirements and they are given in Table 6.2.  Defining basic and derived variables 

ensures that the bridge models from this pool are realistic.  AASHTO -LRFD (2007) 

requirements are used as design specifications. 

 

Table 6.1. Range of Basic Variables for the Experimental Design. 

Variable Symbol Range 

Column Height (m) H  3−10 

Column Diameter (m) 
gD

 0.40−2.00 

Longitudinal reinforcement ratio (%) 
l  1−4 

Volumetric transverse reinforcement ratio 

(%) s  0.70−3.00 

Compressive strength of concrete (MPa) 
cf   20−55 

Yield strength of longitudinal and transverse 

reinforcement (MPa) 
,y yhf f  250−550 

Boundary condition at the top of the column TB
 

Propped (Simply 

Supported) 

Boundary condition at the bottom of the 

column BB
 

Fixed 

Initial velocity of the vehicle (m/s) 
0v
 

15.70−53.60 

Mass of the vehicle (Mg) 
vm
 

8.00, 30.00, 50.00 

Stiffness of vehicle (kN/m) vk
 

1200 (Light), 

1500 (Medium), 

2500 (Heavy) 
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Table 6.2. Expression and Range of Derived Variables for the Experimental Design. 

Variable Symbol Expression/Range 

Diameter of longitudinal bar  

(mm) ld
 

25.4, 28.575, 31.75, 34.925, 44.45, 

57.15 

Diameter of longitudinal bar  

(mm) sd  9.525, 12.7, 15.875, 19.05, 22.225, 25.4 

Number of longitudinal bar 
ln
 

2 2100 /l g lD d  

Pitch of spiral (mm) s  
2100 /s s cd D   

Clear cover (mm) c  (0.05-0.10) gD
 

Axial load (kN) N  
2

4
c gf D


  , 0.07, 0.25COV    

 

 

The range of column heights H  spans from the height of an overpass on a rural 

road to the height of a multilane bridge.  The column diameter 
gD

 
ranges between the 

diameter of columns in multi column bent to the diameter of single column bents.  The 

range of values for longitudinal reinforcement ratio l  
and volumetric transverse 

reinforcement ratio s  
are as per AASHTO -LRFD (2007) and construction practices.  

The range for the yield strength of longitudinal reinforcement 
yf  and compressive 

strength of concrete cf   is adopted from the values that are most widely used for 

construction steel.  The yield strength of the spiral reinforcement 
yhf  is taken to be the 

same as that of longitudinal reinforcement.  The diameter of longitudinal ld
 

and 

transverse spiral reinforcement sd  covers the size of the bars widely used in the 

engineering practice. The bar sizes were consistent with the values in representative 

drawings of the bridges available at the Texas Department of Transportation (TxDOT) 
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website (TxDOT 2010).  The boundary condition at the bottom of the column is taken as 

fixed while variation of three boundary conditions, free, fixed and propped are used at 

the top of the RC column.  The axial load N  is the load due to the superstructure.  It is 

taken as 7% of the axial capacity based on the cross sectional area with 25% Coefficient 

of Variation (COV) (Gardoni et al. 2002).  In this dissertation, the axial load percentage 

of the total axial load N for each RC column is randomly generated from the above 

mentioned mean and COV.  This randomly generated quantity is then multiplied with 

the gross cross sectional area to get the total axial load N .  In this way the variation in 

the axial load N  is accounted for the each simulated RC column. 

The dynamic shear force capacity also depends on the velocity and type of the 

vehicle involved in the collision.  Three models of vehicle are used for FE simulation.  

The vehicles used for loading are an 8,000 kg (8 Mg) Ford truck representative of a light 

medium vehicle (modeled by the National Crash Analysis Center, NCAC 2010), a 

30,000 kg (30 Mg) IVECO truck representative of a medium weight vehicle (modeled 

by Atahan et al., 2007), and a 50,000 kg (50 Mg) IVECO truck representative of a heavy 

vehicle (modeled by Atahan et al., 2007).  The velocity of the vehicles is varied between 

15.7 m/s (56.5 km/hr) to 53.6 m/s (192.6 km/hr) to cover the entire range.  The stiffness 

of vehicle is taken as 1200 kN/m for light vehicle, 1500 kN/m for medium vehicle, and 

2500 kN/m for heavy vehicle. 

The design is split into design of column and design of load cases.  The load 

cases are separately designed to create cases of all combinations as shown in Table 2 

(low, moderate and severe impact events).  The experimental design considers 50 RC 
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columns and each RC column are run with 5 variations of the velocity and mass of the 

vehicle combination.  By this strategy, each column experiences the three impact events.  

In case of designing the column and load cases together, there would have been cases 

when some columns do not experience all the impact events.  This is avoided by splitting 

the design into column and load cases.  The D-optimal point selection scheme (Myers 

and Montgomery 1995) is used for the selection of the best set of cases from a given 

range.  The D-optimal scheme is chosen because it has the flexibility of allowing any 

number of designs to be placed appropriately in a design space with an irregular 

boundary.  Overall, 250 cases are simulated to assess the probabilistic dynamic shear 

capacity models which is the sample size Ns. 
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7 PERFORMANCE-BASED DYNAMIC SHEAR RESISTANCE 

MODELS 

 

The dynamic shear resistance is defined as the maximum resistance offered by an RC 

column during a vehicle impact scenario at each performance level.  That is, the 

dynamic shear resistance for the performance level of fully operational (P1), 1PV  is the 

maximum shear force resisted by the RC column before D2 begins to occur.  Similarly, 

the dynamic shear resistance for the performance level of operational with some damage 

(P2), 2PV  is the maximum shear force resisted by the RC column before D3 begins to 

occur.  Finally, 3PV  is defined as the maximum shear force resisted by the RC column 

before D4 begins to occur.  This section develops probabilistic resistance models for 

performance levels P1, P2 and P3. 

The section presents the result for the variation of the dynamic shear capacity 

with increasing velocity.  Using the results of the FE simulations, this section develops 

probabilistic models for estimating the dynamic shear resistance of RC columns subject 

to vehicle collision for each of the three performance levels.  The models take into 

account the relevant uncertainties including model error and statistical uncertainty as 

described in Gardoni et al. (2002).  Because the data used for the model assessment 

come from FE simulations, it is assumed that there is no measurement error in the data.  

The probabilistic models are unbiased and incorporate current understanding on the 

mechanics of the problem.  The natural logarithm is used to stabilize the model variance 
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in order to satisfy the homoskedasticity and the normality assumptions.  Following the 

general formulation for probabilistic models proposed by Gardoni et al., 2002, the 

dynamic shear resistance model for performance level Pi, i=1, 2, 3 is formulated as  

ˆln[ ( , )] ln[ ( )] ( , )Pi Pi Pi Pi Pi Pi Piv v e   x Θ x x θ   (7.1) 

where /Pi Pi Piv V NF = normalized dynamic shear resistance for performance levels Pi, 

i=1, 2, 3; PiV = dynamic shear resistance; PiNF = normalizing factor for dynamic shear 

resistance; ˆ ( )Piv x = normalized dynamic shear resistance obtained from mechanical 

model ˆ
PiV ; ( , )Pi Pi x θ = correction term for the bias inherit in the mechanical model is 

defined as  

      , ,
1

( , ) ( )
Pi

Pi

k

Pi Pi j Pi j
j

h 


x θ x       (7.2) 

where 
, ( ), 1,...,Pi jh j kx  = explanatory function and 

, ( ), 1,...,Pi j Pij k x  is the parameter 

associated with the explanatory function, 
Pi Pie  model error; 

Pie = random variable with 

zero mean and unit variance and normal distribution (normality assumption); 
Pi = 

standard deviation of the model error, which is assumed to be independent of x  

(homoskedasticity assumption), and =( , )Pi Pi Θ θ = set of unknowns model parameters. 

For each performance level Pi, the maximum shear force calculated in each FE 

simulation is classified as an equality datum if the simulated RC column reached a 

damage level larger than Di in shear, and as a lower-bound or censored datum if 

otherwise. 
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7.1 Dynamic Shear Capacity Estimation 

A moment curvature analysis is performed on the simulated column to estimate the 

dynamic shear capacity of the column as described in Sub-section 2.1.  The estimated 

capacity without considering the strain rate effect is called static shear capacity and the 

estimated capacity with strain rate effect is called dynamic shear capacity.  The ratio 

between dynamic shear capacity and static shear capacity is called Dynamic shear ratio 

(DSR).  Fig. 7.1 shows the variation of the DSR with the velocity of the column. 

 

 

 

Fig. 7.1. Variation of DSR with velocity. 
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The figure shows that the dynamic shear capacity increases with the increase in 

velocity of the column.  The increase is attributed to the increase in corresponding strain 

rate with the velocity.  Therefore in a dynamic event such as impact, the contribution 

from the shear capacity can increase as high as 1.9 times the static value.  So the 

consideration of the strain rate becomes an important factor.  A detailed description of 

DSR is provided in Appendix-II. 

 

7.2 Mechanical Model for Performance Level P1 

The estimate of the dynamic shear resistance for P1 is proposed in this research by 

                                               

3

1 2

2.8ˆ
( ) ( 2 )

t c
P

g a a a

f I H
V

D H H H H H




 
      (7.3)

 

where tf = tensile strength of concrete, cI = gross 2
nd

 moment of area of cross section of 

column, H = height of the column,
gD = diameter of the column, and aH = distance from 

the bottom of the column to the impact point of the vehicle as shown in Fig. 7.2. 
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Fig. 7.2. Schematic of vehicle collision with RC column. 

 

7.3 Mechanical Model for Performance Level P2 

The estimate for the dynamic shear resistance for P2 is proposed in this dissertation by 

                                        2 2
ˆ 2.23 exp( 3.5 )P c PV k d f      (7.4) 

where, 3/ (0.77 )c r c ck k E I H , 

3 0.5

2 3/2

0.67

( 2 )

y cc a

P

g c c a

I H H
d

D E I H H





, 

g

ty g

ND
f

f A H



, 

y cf DIF  , 

     
2 2

23

1 2 1 2
0

( ) ( ) / max( , )
a

a

H H

r
H

k x x H   
 

   
 
   , 

2 2 2 2 3

1 (3 2 ) /b a aH x H H Hx H x H    , 2 2 2 2 3

2 ( ) (3 2 ) /a a aH H x H x H x H H H     ,  

where, cE = modulus of concrete of RC column,
 ccI = 2

nd
 moment of area of cross 

section of column considering diameter = 2gD c , c  clear cover of the column,
tyf = 

Dg 

mv, kv ,v0 

mc, kc 

Hb 

H 

Ha 

N 
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tensile strength of concrete considering yield stress 
y ,

gA = gross are of column, DIF

=dynamic increase factor accounting for increase in strength of concrete due to strain 

rate (Mander et al. 1988). 

The probabilistic model to estimate the strain rate is proposed in this research by 

   1 2 3 4     ln 1 ln ln( /15)  ln( / 2000)
T

r s vk v m e             (7.5) 

where,  = predicted strain rate (1/s), rk = stiffness ratio as defined above, 

0
v

s

v c

m
v v

m m



 is the system velocity (m/s), vm = mass of vehicle (kg), e   model 

error for strain rate model;e = random variable with zero mean and unit variance and 

normal distribution (normality assumption);  = standard deviation of the model error, 

which is assumed to be independent of x  (homoskedasticity assumption).  A 

noninformative prior is selected to estimate the parameters.  The posterior estimate of 

the parameters is given in Table 7.1.  The median estimate of the probabilistic model is 

given by  

1/5 1.5 3/50.4( ) ( /15) ( / 2000)r s vk v m      (7.6) 
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Table 7.1. Posterior Statistics of Parameters in Strain Rate  Model. 

Parameter Mean 
Standard 

deviation 

Correlation Coefficient 

1  2  3  4    

1  −0.871 0.791 1.00     

2  0.213 0.139 −0.97 1.00    

3  1.510 0.110 −0.26 0.27 1.00   

4  0.594 0.076 −0.40 0.17 −0.14 1.00  

  0.602 0.038 0.01 −0.01 0.02 0.00 1.00 

 

 

Fig. 7.3 shows a comparison between the measured and predicted values of the 

strain rate.  The median predictions are shown for the probabilistic model. 

 

 

 

Fig. 7.3. Comparison between measured and predicted strain rate  . 
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For a perfect model, the failure data should line up along the 1:1 line.  The 

dashed lines indicate the bounds obtained as the ±1 standard deviation (SD).  The 

median of Equation 7.5 is assessed using the data generated from experimental design.  

The median of the model in the Equation 7.6 is used in Equations 7.4 and 7.7. 

 

7.4 Mechanical Model for Performance Level P3 

The estimate of the dynamic shear resistance for P3 is proposed in this dissertation by 

3

3 2

2.4ˆ
( 2 )

cc c
P

g a b a

f I H DIF
V

D H H H H





                                      (7.7)

 

where ccf  = compressive strength of confined concrete. 

 

7.5 Model Correction 

The model correction terms are used to capture the physical phenomena that are not 

accounted for in the mechanical model.  Table 7.2 lists the selected explanatory 

functions.  The table also lists the physical quantity which influences the model and is 

captured by the explanatory functions.  All functions are dimensionless. 
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Table 7.2. List of Explanatory Functions for Resistance Models. 

Variable Description Expression 

1( )h x
 

constant bias 1 

2 ( )h x
 

longitudinal 

reinforcement l  

3( )h x
 

axial load / ( )g ty gND f A L  

4 ( )h x
 

transverse reinforcement / ( )v yh g ty gA f D f A s  

5( )h x
 

energy 2 2

0( ) /v c s vm m v m v  

6 ( )h x
 

inertia ( ) /v c vm m m  

7 ( )h x
 

frequency 
c et f  

8( )h x
 

slenderness ratio / gH D  

9 ( )h x
 

Stress /cc yf DIF   

10 ( )h x  acceleration ( ) / ( )v c s ty c gm m v f t A  

11( )h x  displacement /fd H  

12 ( )h x  stiffness ratio 
rk  

13( )h x
 

 
4ln ( )h x

 

14 ( )h x
 

 
9ln ( )h x

 

15( )h x
 

 
10ln ( )h x

 

16 ( )h x
  

1ln Pv


 
 

The first explanatory function 1( )h x  is designed to capture a potential constant 

bias present in the mechanical model.  The second explanatory function 2 ( )h x accounts 

for the contribution of the longitudinal reinforcement to the dynamic shear resistance.  

The imposed load at the top of the RC column affects its behavior in bending and shear.  

The third explanatory function 3( )h x accounts for this effect.  The fourth explanatory 

function 4 ( )h x accounts for the contribution of the transverse reinforcement to the 

dynamic shear resistance.  The effect of energy transferred to the column from the 

vehicle is accounted by the fifth explanatory function 5( )h x .  In a dynamic scenario, the 
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inertia contributes to resist the imposed load.  The sixth explanatory function 6 ( )h x takes 

into consideration this contribution.  The contribution of the natural frequency and the 

time of applied loading are accounted by the seventh explanatory function 7 ( )h x . 

In the definition of 7 ( )h x , ef  
= the natural frequency of the column written as 

/e c ef k m , where e v r cm m m m  = equivalent mass of the system, 

     
2 2

2

1 2 1 2
0

( ) ( ) / max( , )
a

a

H H

r
H

m x x H   
 

  
 
   = mass ratio of the column,

 ct  = the 

time period of the collision.   

The time period ct  of the collision is given by the following expression (Goldsmith 

1960) 

1.068

m
c

s

t
v


       (7.8) 

where, 

2/5
2

1 2

5

4

s
m

v

k k


 
  
 

, 
1

c v

c v

m m
k

m m


 , 

2

1 2

4

3( )( )

kq
k

A B 


 
, 0.318kq  , 

2

1

1 v

vE







 , 

2

2

1 c

cE







 , 

1

2g s

A B
D c d

 
 

.
 

The slenderness ratio is the eighth explanatory function 8( )h x  that accounts for the 

potential effect of the slenderness on the dynamic shear resistance.   

The effect of state of stress is modeled by 9 ( )h x .  The effect of the acceleration 

of the bodies is accounted by 10 ( )h x .  The effect of the deformation of the RC column is 

accounted by 11( )h x .  The contribution of bending stiffness is accounted by the 12
th
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explanatory function 12 ( )h x .  Finally, 13( )h x , 14 ( )h x , 15( )h x , and 16 ( )h x take into account 

the nonlinear contributions of the transverse reinforcement, the state of stress, the 

acceleration and the normalized dynamic shear resistance for performance level P1 by 

taking the natural logarithm of 4 ( )h x , 9 ( )h x , 10 ( )h x  and 1
ˆ

Pv  respectively. 

 

7.6 Model Assessment 

Bayesian inference is chosen for the estimation of the model parameters Θ .  A 

noninformative prior is selected (Box & Tiao 1992).  A step wise deletion process is 

used for selecting the parsimonious model.  In this method, diagnostic plots are created 

between the explanatory function and the residual of the dynamic shear resistance of the 

FE model and the mechanical model.  Suitable explanatory functions are chosen one at a 

time which shows the strongest correlation.  The mean of the standard deviation is 

monitored to check the adequacy of the model. 

 

7.7 Parameter Estimation for Performance Level P1 

The most important explanatory functions for the performance level P1 are 13( )h x , 

14 ( )h x , 15( )h x ,and 16 ( )h x .  These terms takes into account the contributions from the 

transverse reinforcement, the state of stress, the acceleration and 1
ˆ

Pv .  Table 7.3 lists the 

posterior statistics of the model. 
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Table 7.3. Posterior Statistics of Parameters in Selected Dynamic Resistance (P1) 

Model. 

Parameter Mean 
Standard 

deviation 

Correlation Coefficient 

13  14  15  16  
1P  

13  1.244 0.224 1.00     

14  −1.965 0.656 −0.85 1.00    

15  −0.530 0.136 0.66 −0.76 1.00   

16  −0.362 0.267 0.30 −0.34 0.86 1.00  

1P  1.035 0.096 0.00 0.00 0.00 0.00 1.00 

 

Fig. 7.4 shows the comparison between the estimates of normalized dynamic 

shear resistance based on the proposed mechanical model (left) and the median of the 

developed probabilistic model (right) where the median predication for the normalized 

dynamic shear resistance
 1Pv  is given by 

1.244 1.965 0.53

0.362

1 1

( )
ˆ v yh g cc v c s

P P

ty g y ty c g

A f D f DIF m m v
v v

f A s f t A

 


      

      
           

   (7.9) 

1 1 /P P t gv V f A  normalized dynamic shear resistance, and 
1 1

ˆˆ /P P t gv V f A  normalized 

dynamic shear resistance given by the mechanical model. 
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Fig. 7.4. Comparison between measured and predicted Dynamic Shear Resistance for P1 

based on deterministic (left) and probabilistic (right) models. 

 

The mechanical and probabilistic models are both plotted against the resistance 

values estimated from the simulations.  All the data are equality data as the Performance 

Level P1 was reached in all simulated cases.  The predictions of mechanical model are 

biased as majority of the data lies above the 1:1 line.  The probabilistic model corrects 

this bias. 

 

7.8 Parameter Estimation for Performance Level P2 

The most important explanatory functions for the performance level P2 are 1( )h x , 2 ( )h x ,

3( )h x ,and 9 ( )h x .  These terms correct for a constant bias, and account for the influence 
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of longitudinal reinforcement, the contribution of applied load at the top, and the stress 

in the column, respectively.  Table 7.4 lists the posterior statistics of the model. 

 

Table 7.4. Posterior Statistics of Parameters in Selected Dynamic Shear Resistance (P2) 

Model. 

Parameter Mean 
Standard 

deviation 

Correlation Coefficient 

1  2  3  9  
2P  

1  −2.577 0.269 1.00     

2  0.243 0.044 −0.54 1.00    

3  0.904 0.247 −0.40 0.17 1.00   

9  0.846 0.125 −0.83 0.09 0.14 1.00  

2P  0.525 0.041 −0.08 0.08 0.14 0.05 1.00 

 

Fig. 7.5 shows the comparison between the estimates of normalized dynamic 

shear resistance based on the proposed mechanical model (left) and the median of the 

developed probabilistic model (right) where, the median predication for the normalized 

dynamic shear resistance
 2Pv  is given by 

2 2
ˆ exp 2.577 0.243 0.904 0.846

g cc
P P l

ty g y

PD f DIF
v v

f A L




 
     

  

   (7.10) 

where, 
2 2 /P P c gv V f A normalized dynamic shear resistance, 

2 2
ˆˆ /P P c gv V f A  

normalized dynamic shear resistance given by the mechanical model. 
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Fig. 7.5. Comparison between measured and predicted Dynamic Shear 

Resistance for P2 based on deterministic (left) and probabilistic (right) models. 

 

The mechanical and probabilistic models are both plotted against the resistance 

values estimated from the simulations.  The data contains equality data as well as the 

censored data for the Performance Level P2.  The predictions of mechanical model 

shows that the equality data lays both above and below the 1:1 line and majority of 

censored data lies above the line.  The probabilistic model corrects this inherent bias in 

the model. 

 

7.9 Parameter Estimation for Performance Level P3 

The most important explanatory functions for the performance level P3 are 1( )h x , 3( )h x ,

6 ( )h x ,and 12 ( )h x .  These terms takes into correct for a constant bias, the contribution of 
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applied load at the top, the inertia and the stiffness of the column, respectively.  Table 

7.5 lists the posterior statistics of the model. 

 

Table 7.5. Posterior Statistics of Parameters in Selected Dynamic Shear Resistance (P3) 

Model. 

Parameter Mean 
Standard 

deviation 

Correlation Coefficient 

1  3  6  12  
3P  

1  0.336 0.268 1.00     

3  −2.434 0.329 −0.03 1.00    

6  0.679 0.253 −0.68 −0.60 1.00   

12  −0.005 0.001 −0.27 0.69 −0.49 1.00  

3P  0.429 0.040 −0.22 0.02 0.22 0.00 1.00 

 

Fig. 7.6 shows the comparison between the estimates of normalized dynamic 

shear resistance based on the proposed mechanical model (left) and the median of the 

developed probabilistic model (right) where the median predication for the normalized 

dynamic shear resistance
 3Pv  is given by 

3 3
ˆ exp 0.336 2.434 0.679 0.005

g v c
P P r

ty g v

PD m m
v v k

f A L m

 
    

  

   (7.11) 

where, 
3 3 /P P c gv V f A normalized dynamic shear resistance, 

3 3
ˆˆ /P P c gv V f A  

normalized dynamic shear resistance given by the mechanical model. 
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Fig. 7.6. Comparison between measured and predicted Dynamic Shear Resistance for 

performance level P3 based on deterministic (left) and probabilistic (right) models. 

 

The mechanical and probabilistic models are both plotted against the resistance 

values estimated from the simulations.  The data contains equality data as well as the 

censored data for the Performance Level P3.  The predictions of mechanical model 

shows that the equality data lays both above and below the 1:1 line and majority of 

censored data lies above the line.  The probabilistic model corrects this inherent bias in 

the model. 

The proposed mechanical model is compared with the shear model proposed by 

Moehle et al. (1999, 2000), which is a refinement of the FEMA 273 (1997) model.  

Table 7.6 presents comparison of the model statistics for the two model forms.  Four 

model statistics are used for the comparison and selection of the model form, the 
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standard deviation of the model form, the Akaike Information Criterion (Akaike, 1974), 

Bayesian Information Criterion (Schwarz, 1978), Mean Absolute Percentage Error 

(MAPE). 

 

Table 7.6. Comparison of Model Statistics for the Different Developed Models for P3. 

3
ˆ ( )Pv x  

based on 

Number 

of 

terms in 
( ) x,θ  

  AIC BIC MAPE(%) 

Moehle et al. 

(1999, 2000), 

refinement of 

FEMA 273 (1997) 

4 0.464 −231.8 −223.3 42.9 

→Proposed Model 4 0.429 −231.0 −222.5 38.8 

 

The proposed mechanical model form has smaller values of standard deviation, 

AIC, BIC, and MAPE among the models. 

2ln( ) 2 pAIC L N         (7.12) 

2ln( ) ln( )P SBIC L N N        (7.13) 

1

1 Measured, Predicted,
100

Measured,

n

is

MAPE
N

 




     (7.14) 

where, L= maximum of the likelihood function for the estimated model, Nk= number of 

explanatory function, Ns= sample size. 
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7.10 Fragility Estimates 

The fragility estimates gives an estimate of the reliability of the bridge with the variation 

in the demand imposed to the RC column.  It also shows the behavior of the different 

performance levels with the variation in the demand imposed on the RC column.  The 

fragility of the RC column subjected to vehicle column is formulated as  

( ) [ ( ) 0 | ]DF P g v x,Θ x,Θ      (7.15) 

where, ( )Pig x,Θ is the limit state function defined as 

( ) ( ) ,     1,2,3Pi Pi Dg v v Pi  x,Θ x,Θ     (7.16) 

for the three performance levels P1, P2, and P3.  The fragility of a representative RC 

column is estimated by directly conditioning on the dynamic shear demand.  The 

configuration and properties of the RC column is taken same as the exterior bridge 

column which was subject to an impact by a tractor-trailer over IH-20 at Longview, 

Texas (Buth, 2009).  Fig. 4.3 shows the comparison of the FE simulation and the crash 

photograph of the column.  A general agreement on the observed failure mechanism of 

the RC column and crack pattern is shown in Fig. 4.3.  Fig. 7.7 shows the fragility 

estimates of the RC column for the three performance levels. 
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Fig. 7.7. Fragility curves for case study structure for P1, P2 and P3. 

 

The fragility estimate is directly conditioned on the normalized dynamic shear 

demand.  The performance level P1 depicted by solid line.  The performance level P2 is 

shown by dashed lines and performance level P3 is shown by dotted lines.  The 15% and 

85% confidence bound for each performance level is also shown in the figure.  The 

performance level P1 has the steepest curve as compared to other performance levels.  

The performance level P3 has the least steep curve as it is the collapse limit state and it 

takes more shear demand to achieve a state of collapse.  The normalized dynamic shear 

demand imposed on the RC column is 1.45 as calculated from the simulation.  For this 
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value the failure probability of performance levels P1, P2, and P3 is 1.0.  The RC 

column lies in the damage state D4 as PD4=PP3=1 as shown in the figure.  This is 

consistent with the observed occurrence in the field.  The RC column failed during this 

vehicle collision.  This is reflected by the state of RC column being in damage state 4 

and probability of failure of all performance levels being 1.  This establishes the validity 

of the developed models for P1, P2, and P3 and the framework to estimate the reliability 

of the RC column. 

 

7.11 Conclusion 

In the present section a performance-based resistance models are developed which can 

be used to achieve the desired behavior of the RC column under different impact 

scenarios.  The probabilistic resistance model captures the dynamic behavior of the RC 

column and accounts for the associated uncertainties.  A framework to assess the 

fragility of RC column subjected to vehicle impact is developed.  The framework 

provides an accurate estimate of the fragility.  The performance-based dynamic 

resistance can be used to determine the performance of structure in a given scenario and 

evaluate the survival of the structure.  Actual structural configurations and loading 

scenarios are used to evaluate the response which is more accurate in representing the 

complex impact scenario. 

The developed models advance the knowledge of behavior of RC columns 

subject to vehicle collision.  The model is simple and easy to implement.  This work can 

be extended to develop a demand model for the bridge system and enhance the goal of a 
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reliability based design.  The developed models can be used to design safer columns and 

the work can be extended to other structures under similar loading conditions.  The state 

of knowledge can be applied to study similar cases of collision such as ship collision to a 

barge, projectile collision into concrete walls and develop adequate models. 
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8 DYNAMIC SHEAR FORCE DEMAND MODEL 

 

Using the results of the FE simulations, this section develops probabilistic models for 

estimating the dynamic shear force demand on RC columns subject to vehicle collision.  

The model take into account the relevant uncertainties including model error and 

statistical uncertainty as described in Gardoni et al. (2002).  Because the data used for 

the model assessment come from FE simulations, it is assumed that there is no 

measurement error in the data.  The probabilistic model is unbiased and incorporates 

current understanding on the mechanics of the problem.  The natural logarithm is used to 

stabilize the model variance to satisfy the homoskedasticity and the normality 

assumptions.  Following the general formulation for probabilistic models proposed by 

Gardoni et al. (2002), the dynamic shear force demand model is formulated as  

ˆln[ ( , )] ln[ ( )] ( , )D D D D Dv v e   x Θ x x θ   (8.1) 

where /D D Dv V NF = normalized dynamic shear force demand, DV = dynamic shear 

force demand, DNF = normalizing factor for dynamic shear force demand; ˆ ( )Dv x = 

normalized dynamic shear force demand obtained from mechanical model ˆ
DV , ( , )D x θ

= correction term for the bias inherit in the mechanical model for demand is defined as  

     , ,
1

( , ) ( )
Dk

D D j D j
j

h 


x θ x     (8.2) 

where 
, ( ), 1,...,D jh j kx  = explanatory function and 

, ( ), 1,...,D j j k x  is the parameter 

associated with the explanatory function, 
D De  model error for demand model;

De = 
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random variable with zero mean and unit variance and normal distribution (normality 

assumption); 
D = standard deviation of the model error, which is assumed to be 

independent of x  (homoskedasticity assumption), and =( , )Θ θ σ = set of unknowns 

model parameters. 

The maximum shear force calculated in each FE simulation is classified as an 

equality datum as the calculated value is the actual estimate of the force applied to the 

RC column. 

 

8.1 Mechanical Model 

The estimate of the dynamic shear force demand is proposed in this dissertation by the 

following equation which has contributions from Hertz’s contact law (Goldsmith 1960) 

and force utilized for the deformation of the vehicle 

2

1

0.26ˆ s
D v f

m

v
V k d

k
       (8.3) 

where, 
3 0.5

3/2

0.4

( 2 )

cc a
f

g c a

f DIFH H
d

D E H H





= deformation of the bodies at failure, 

0
v

s

v c

m
v v

m m



 is 

the system velocity (m/s), vm = mass of the vehicle,
 cm = mass of the column,.

 cE = 

modulus of concrete of RC column,
 vE = modulus of steel of the vehicle, c = 

poisson’s ratio of concrete of the RC column, v = poisson’s ratio of steel of the vehicle. 
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8.2 Model Correction 

The model correction terms are used to capture the physical phenomena that are not 

accounted for in the mechanical model.  Table 8.1 lists the explanatory functions.  The 

table also lists the physical quantity which influences the model and is captured by the 

explanatory functions.  All functions are dimensionless. 

 

Table 8.1. List of Explanatory Functions for Demand Model. 

Variable Description Expression 

1( )h x
 

constant bias 1 

2 ( )h x
 

longitudinal 

reinforcement l  

3( )h x
 

axial load / ( )g ty gND f A L  

4 ( )h x
 

transverse reinforcement / ( )v yh g ty gA f D f A s  

5( )h x
 

energy 2 2

0( ) /v c s vm m v m v  

6 ( )h x
 

inertia ( ) /v c vm m m  

7 ( )h x
 

frequency 
c et f  

8( )h x
 

slenderness ratio / gH D  

9 ( )h x
 

stress /cc yf DIF   

10 ( )h x  acceleration ( ) / ( )v c s ty c gm m v f t A  

11( )h x  displacement /fd H  

12 ( )h x  stiffness ratio 
rk  

 

The first explanatory function 1( )h x   is designed to capture a potential constant 

bias present in the mechanical model.  The second explanatory function 2 ( )h x accounts 

for the contribution of the longitudinal reinforcement to the dynamic shear force 

demand.  The imposed load at the top of the RC column affects the column behavior in 

bending and shear.  The third explanatory function 3( )h x accounts for this effect.  The 
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fourth explanatory function 4 ( )h x accounts for the contribution of the transverse 

reinforcement to the dynamic shear force demand.  The effect of energy transferred to 

the column from the vehicle is accounted by the fifth explanatory function 5( )h x .  In a 

dynamic scenario, the inertia contributes to resist the imposed load.  The sixth 

explanatory function 6 ( )h x takes into consideration this contribution.  The contribution 

of the natural frequency and the time of applied loading are accounted by the seventh 

explanatory function 7 ( )h x .  The slenderness ratio is the eighth explanatory function 

8( )h x  that accounts for the potential effect of the slenderness on the dynamic shear force 

demand. 

The effect of state of stress is modeled by 9 ( )h x .  The effect of the acceleration 

of the bodies is accounted by 10 ( )h x .  The effect of the deformation of the RC column is 

accounted by 11( )h x .  The contribution of bending stiffness is accounted by 12 ( )h x . 

 

8.3 Model Assessment 

Bayesian inference is chosen for the estimation of the model parameters.  A 

noninformative prior is selected (Box & Tiao 1992).  A step wise deletion process is 

used to obtain a parsimonious model.  In this method, diagnostic plots are created 

between the explanatory function and the residual of the dynamic shear demand on the 

FE model and the mechanical model.  Suitable explanatory functions are chosen one at a 

time which shows the strongest correlation.  The mean of the standard deviation is 

monitored to check the adequacy of the model. 
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8.4 Parameter Estimation 

The most important explanatory functions for the dynamic shear force demand are 1( )h x

, 5( )h x , 6 ( )h x ,and 10 ( )h x .  These terms takes correct for a constant bias, and account for 

the energy of the system, the inertia of the system, the contribution of acceleration, 

respectively.  Table 8.2 lists the posterior statistics of the model. 

 

Table 8.2. Posterior Statistics of Parameters in Selected Dynamic Shear Demand Model. 

Parameter Mean 
Standard 

deviation 

Correlation Coefficient 

1  5  6  10  
D  

1  −1.630 0.294 1.00     

5  0.884 0.351 −0.97 1.00    

6  0.208 0.047 −0.87 0.76 1.00   

10  0.002 0.000 0.52 −0.65 −0.35 1.00  

D  0.427 0.026 −0.01 0.01 −0.00 −0.02 1.00 

 

Fig. 8.1 shows the comparison between the estimates of normalized dynamic 

shear force demand based on the proposed mechanical model (left) and the median of 

the developed probabilistic model (right) where, the median predication for the 

normalized dynamic shear force demand Dv  is given by 

2

2

0

( ) ( )
ˆ exp 1.63 0.884 0.208 0.002v c s v c v c s

D D

v v ty c g

m m v m m m m v
v v

m v m f t A

   
     

  

 (8.4) 

where, 
2

D
D

cc g

V
v

f DIFA



normalized dynamic shear force demand, 

ˆ
ˆ

2

D
D

cc g

V
v

f DIFA



 

normalized dynamic shear force demand given by the mechanical model..  The 
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mechanical and probabilistic models are both plotted against the demand values 

estimated from the simulations. 

 

 
 

Fig. 8.1. Comparison between measured and predicted Dynamic Shear Demand based 

on deterministic (left) and probabilistic (right) models. 

 

The prediction of mechanical model shows that the data lies both above and below 

the 1:1 line.  The probabilistic model corrects the inherent bias in the model.  In the 

probabilistic model the spread of the data is minimized as that they lie close to the 1:1 

line as compared to the mechanical model. 
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8.5 Fragility Estimates 

The fragility estimates gives an estimate of the reliability of the bridge with the variation 

in the demand imposed to the RC column.  It also shows the behavior of the different 

performance levels with the variation in the demand imposed on the RC column.  The 

fragility of the RC column subjected to vehicle column is formulated as  

0( ) [ ( ) 0 | ( , )]vF P g v m x,Θ x,Θ      (8.5) 

where, ( )Pig x,Θ is the limit state function defined as 

( ) ( ) ,     1,2,3Pi Pi Dg v v Pi  x,Θ x,Θ     (8.6) 

for the three performance levels P1, P2, and P3.  The performance-based probabilistic 

models for the three performance levels P1, P2, and P3 are constructed in previous 

section.  The fragility of a representative RC column is estimated by conditioning on the 

initial velocity of the vehicle is 0v and mass of the vehicle is vm .  The configuration and 

properties of the RC column is taken same as the exterior bridge column which was 

subject to an impact by a tractor-trailer over IH-20 at Longview, Texas (Buth, 2009).  

Fig. 8.2 shows the contour plot for the fragility estimates of the RC column for 

performance level 1.   
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Fig. 8.2. Contour plot for the fragility estimate for the RC column for P1. 

 

The plot is done with range of initial velocity of the vehicle (m/s) on x axis and 

range of mass of the vehicle (Mg) on y axis.  The contours show the variation of the 

fragility over the domain of the velocity and mass.  For the performance level P1, there 

is steep increase in the value of the fragility from 0.1 to 0.9 as shown in the Fig. 8.2.  

This is because the performance level P1 is exceeded with a low value of the dynamic 

shear demand.  The figure also shows that the fragility estimate of the RC column 

located over IH-20 at Longview, Texas is 1.  The result is in accordance of the 

observation in the field as the RC column failed after the collision with the vehicle.  So, 

the probability of failure of performance level P1 is 1 which is shown in Fig. 8.2. 

In accordance with the Fig. 8.2, Fig. 8.3 shows the contour plot for the fragility 

estimates of the RC column for performance level P2.  The plot is done with range of 

10 20 30 40 50 60

10

20

30

40

50

60

P
P1

= 1.0 

0.1
0.9

 Velocity (m/s)

M
as

s 
(M

g
)



75 

 

 

initial velocity of the vehicle (m/s) on x axis and range of mass of the vehicle (Mg) on y 

axis. 

 

 
 

Fig. 8.3. Contour plot for the fragility estimate for the RC column for P2. 

 

The contours show the variation of the fragility over the domain of the velocity 

and mass.  The increase in the value of fragility is less steep than for performance level 

1.  This is because more shear demand is required to exceed the performance level P2 

than performance level P1.  There is a region velocity of the vehicle for which the 

fragility remains zero no matter how much the value of mass of vehicle is increased.  

Similarly a thin region also exists for the mass of the vehicle for which the increase in 

velocity of vehicle does not result in the increase in the value of the fragility.  The figure 

also shows that the fragility estimate of the RC column located over IH-20 at Longview, 
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Texas is 1 for performance level P2.  The result is in accordance of the observation in 

the field as the RC column failed after the collision with the vehicle.  So, the probability 

of failure of performance level P2 is 1 which is shown in Fig. 8.3. 

Continuing from Fig. 8.3, Fig. 8.4 shows the contour plot for the fragility 

estimates of the RC column for performance level P3.  The plot is done with range of 

initial velocity of the vehicle (m/s) on x axis and range of mass of the vehicle (Mg) on y 

axis. 

 

 
 

Fig. 8.4. Contour plot for the fragility estimate for the RC column for P3. 

 

The contours show the variation of the fragility over the domain of the velocity 

and mass.  The increase in the value of fragility is well spread and less steep than for 

performance level 2.  This is because more shear demand is required to exceed the 
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performance level P3 than performance level P1 and P2.  There is a region velocity of 

the vehicle for which the fragility remains zero no matter how much the value of mass of 

vehicle is increased and the region is greater than observed for performance level P2.  

Similarly a region for the mass of the vehicle for which the increase in velocity of 

vehicle does not result in the increase in the value of the fragility is also greater.  The 

figure also shows that the fragility estimate of the RC column located over IH-20 at 

Longview, Texas is 1 for performance level P3.  The result is in accordance of the 

observation in the field as the RC column failed after the collision with the vehicle.  So, 

the probability of failure of performance level P3 is 1 which is shown in Fig. 8.4. 

The results obtained from the contour plots of the fragility for three performance 

levels are consistent with the observed occurrence in the field.  The RC column failed 

during this vehicle collision.  This is reflected by probability of failure of all 

performance levels being 1.  This establishes the validity of the developed models for 

performance levels P1, P2, and P3 and developed dynamic shear model and the 

framework to estimate the reliability of the RC column. 

 

8.6 Conclusion 

In the section, a performance-based demand model is developed which can be used to 

achieve the desired behavior of the RC column under different impact scenarios.  The 

probabilistic demand model captures the dynamic interaction between the RC column 

the vehicle during collision and accounts for the associated uncertainties.  A framework 

to assess the fragility of RC column subjected to vehicle impact based on performance-
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based models is developed.  The framework provides an accurate estimate of the 

fragility.  The performance-based fragility estimates can be used to determine the 

performance of structure in a given scenario and evaluate the survival of the structure.  

Actual structural configurations and loading scenarios are used to evaluate the response 

which is more accurate in representing the complex impact scenario. 

The section advances the knowledge of behavior of RC columns subject to 

vehicle collision.  The developed demand model is simple and easy to implement.  This 

work can be extended to develop load and resistance factors for the bridge system and 

enhance the goal of a reliability based design.  The developed models can be used to 

design safer columns and the work can be extended to other structures under similar 

loading conditions.  The state of knowledge can be applied to study similar cases of 

collision such as ship collision to a barge, projectile collision into concrete walls and 

develop adequate models. 
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9 RELIABILITY-BASED CODE CALIBRATION FOR RC 

COLUMNS 

 

The performance-based dynamic shear force capacity and force models developed in 

previous sections are used to calibrate the load and resistance factors for RC columns 

subject to vehicle collision.  Currently AASHTO -LRFD 2007 has a load factor of 1.0 

for vehicle impact scenario.  In the light of the present research, this load and resistance 

factors need to be revisited and reexamined.  This section presents a code calibration for 

the RC column.  The hazard curve for the mass of the vehicle and the velocity of the 

vehicle colliding with RC column are developed.  This hazard curves are used for 

estimating the total probability of the failure/survival of the RC column subject to 

vehicle collision.  The framework is developed to estimate the reliability of RC columns 

subject to vehicle impact under different hazard conditions as developed in Table 2.2.  

This approach ties the performance-based models to the relevant hazard scenarios and 

estimates the reliability of the RC column for desired response. 

 

9.1 Hazard Curves 

Buth et al. (2010) presents data for the collision of vehicles with RC column in Texas for 

the period of 1998-2001.  This data is used to develop the hazard curve for the mass of 

the vehicle that collides with the RC column in this period.  The inverse CDF approach 

is used to find the goodness-of-fit of the candidate distribution for the four year variation 

of the mass of the vehicle.  Fig. 9.1 shows the comparison of the goodness-of-fit for the 
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candidate distributions.  The data collected is plotted on the x-axis as mass of the vehicle 

in Mg.  The mass of the vehicle predicted by the distributions is plotted on the y-axis in 

Mg.  The distributions compared are ‘Normal’, ‘Log-Normal’, ‘Extreme Type –I’.  The 

prediction of Log-Normal and Extreme Type I distribution is closer than that of the 

‘Normal’ distribution.  Extreme Type I distribution is chosen as the best fit as it is closer 

than the Normal distribution and it has been used for the prediction of wind, snow and 

other extreme events. 

 

 

 

Fig. 9.1. Comparison of goodness-of-fit of the candidate distribution for four year 

variation of the mass of the vehicle. 

0 5 10 15
0

5

10

15

Measured Mass of Vehicle (Mg)

P
re

d
ic

te
d

 M
as

s 
o

f 
V

eh
ic

le
 (

M
g

)(
in

v
er

se
 C

D
F

)

 

 

X line

Normal

Lognormal

Type I



81 

 

 

The four year hazard curve based on the Extreme Type I distribution for the mass 

of the vehicle has parameters mean = 4.20 Mg and COV = 0.37.  Fig. 9.2 shows the 

hazard curve developed for the four year exceeding probability of the mass of the 

vehicle and the corresponding PDF for the Extreme Type I distribution.  The exceeding 

probability and ( )vf m is plotted in the y-axis against mass of the vehicle plotted on the 

x-axis.  The data collected had the lowest mass of the vehicle at 2.00 Mg.  This is the 

reason for the sharp decline in the developed PDF for the mass of the vehicle. 

 

 

 

Fig. 9.2. Four year exceeding probability of the mass of the vehicle and PDF for 

Extreme Type I distribution. 
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Fig. 9.3 shows the hazard curves developed for the annual and 75 year exceeding 

probability of the mass of the vehicle and the corresponding PDF’s for the Extreme Type 

I distribution.  The exceeding probability and ( )vf m is plotted in the y-axis against mass 

of the vehicle plotted on the x-axis.  The annual hazard curve based on the Extreme Type 

I distribution for the mass of the vehicle has parameters mean = 2.46 Mg and COV = 

0.64.  The 75 year hazard curve based on the Extreme Type I distribution for the mass of 

the vehicle has parameters mean = 7.80 Mg and COV = 0.20. 

 

 

 

Fig. 9.3. Annual and 75 year exceeding probability of the mass of the vehicle and PDF 

for Extreme Type I distribution. 
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Hazards curves are developed for the velocity of the vehicle colliding with the 

RC column.  In absence of significant data required to find an appropriate distribution, 

Extreme Type I distribution is chosen to model the distribution of the vehicle of the 

velocity.  Three different distributions are developed as per the three increasing levels of 

velocity of the vehicle mentioned in Table 2.2.  Fig. 9.4 shows the hazard curve 

developed for the 75 year exceeding probability of the velocity of the vehicle for low 

category velocity and the corresponding PDF for the Extreme Type I distribution. 

 

 

 

Fig. 9.4. 75 year exceeding probability of the velocity of the vehicle and PDF for 

Extreme Type I distribution for low category shown in Table 2.2. 
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The exceeding probability and 0( )lf v is plotted in the y-axis against mass of the 

vehicle plotted on the x-axis.  The 75 year hazard curve based on the Extreme Type I 

distribution for the mass of the vehicle has parameters mean = 7 m/s (16 miles/h) and 

COV = 0.10. 

 

 

 

Fig. 9.5. 75 year exceeding probability of the velocity of the vehicle and PDF for 

Extreme Type I distribution for intermediate category shown in Table 2.2. 
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Fig. 9.5 shows the hazard curve developed for the 75 year exceeding probability 

of the velocity of the vehicle for intermediate category velocity and the corresponding 

PDF for the Extreme Type I distribution.  The exceeding probability and 0( )if v is plotted 

in the y-axis against mass of the vehicle plotted on the x-axis.  The 75 year hazard curve 

based on the Extreme Type I distribution for the mass of the vehicle has parameters 

mean = 20 m/s (45 miles/h) and COV = 0.10.   

 

 

 

Fig. 9.6. 75 year exceeding probability of the velocity of the vehicle and PDF for 

Extreme Type I distribution for high category shown in Table 2.2. 
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Fig. 9.6 shows the hazard curve developed for the 75 year exceeding probability of 

the velocity of the vehicle for high category velocity and the corresponding PDF for the 

Extreme Type I distribution.  The exceeding probability and 0( )hf v is plotted in the y-

axis against mass of the vehicle plotted on the x-axis.  The 75 year hazard curve based 

on the Extreme Type I distribution for the mass of the vehicle has parameters mean = 27 

m/s (60 miles/h) and COV = 0.10. 

 

9.2 Code Calibration 

The performance-based shear resistance and demand models developed in previous 

sections are used for the code calibration to estimate the load and resistance factors for 

RC column subject to vehicle collision.  The current AASHTO -LRFD 2007 code has 

load and resistance factor 1.0 for the vehicle impact scenario.  The adequacy of these 

factors is examined.  The load factor is only for the ultimate limit state.  So, using the 

performance-based models developed in this research load and resistance factors for 

other limit states are proposed.  The general equation for the load and resistance factor 

design is given by 

n nR D       (9.1) 

The equation for the load and resistance factor design corresponding to the three 

performance levels P1, P2, and P3 is given by 

      1, 2, 3Pin DnV V Pi P P P      (9.2) 

The limit state for the three performance levels is given by 
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      1, 2, 3Pi D
Pi

Pin Dn

V V
g Pi P P P

V V 
     (9.3) 

where, PiV = mean value of the dynamic shear resistance for performance level Pi, PinV = 

nominal value of the dynamic shear resistance for performance level Pi,  = resistance 

factor, DV = mean value of the dynamic shear force demand, DnV = nominal value of the 

dynamic shear force demand,  =demand factor. 

The statistics for the models is given in Table 9.1.  The mean-to-nominal value is 

kept constant at 1.000 for the three performance levels and demand model.  The COV of 

the models are taken equal to the COV of the predicted model in the earlier sections. 

 

Table 9.1. Statistical Information for the Models. 

Performance Level Mean-to-Nominal COV 

P1 1.000 1.386 

P2 1.000 0.564 

P3 1.000 0.449 

D 1.000 0.447 

 

A parametric study on the variation of the reliability index   with load   and 

resistance   factors is performed for the three limit states given by Equation 9.3.  This 

parametric analysis is used to calculate the suitable value of load   and resistance   

factors for a safe design of RC column subject to vehicle collision.  The value of target 

reliability index   is kept at 2.0 for the performance level P1 and it is kept at 2.5 for the 

performance levels P2 and P3.  A lower reliability index   is chosen for the 

performance level P1 because this level corresponds to minor damage, hence this state is 
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less severe.  The performance levels P2 and P3 correspond to significant damage and 

collapse respectively.  So, a higher reliability index   is used for these more severe 

performance levels.  The value of 2.5 is chosen as this value has been widely accepted in 

the literature as a target reliability index for shear failure (Ellingwood et al., 1980).  Fig. 

9.7 shows the variation of reliability index   with load   and resistance   factors for 

performance level P1.  The load factor   is plotted on x axis and reliability index   is 

plotted on y axis.  Three curves are shown which are for the varying values of the 

resistance factor . 

 

 

 

Fig. 9.7. Variation of reliability index   with load factor   for P1. 
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The value of reliability index   decreases with the increase in the value of 

resistance factor .  The value of reliability index   increases with the increase in the 

value of load factor .  A value of 10 is chosen for load factor   corresponding to 0.6 

value of resistance factor for the reliability index  =2.0.  The large value of load 

factor   is attributed to the large variation in prediction of the dynamic shear resistance 

for performance level P1 evident from its COV value of 1.386. 

Fig. 9.8 shows the variation of reliability index   with load   and resistance   

factors for performance level P2.  The load factor   is plotted on x axis and reliability 

index   is plotted on y axis.  Three curves are shown which are for the varying values 

of the resistance factor . 

 

 

 

Fig. 9.8. Variation of reliability index   with load factor   for P2. 
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The value of reliability index   decreases with the increase in the value of 

resistance factor .  The value of reliability index   increases with the increase in the 

value of load factor .  This consistent with the trend observed in Fig. 9.7.  A value of 

3.4 is chosen for load factor   corresponding to 0.6 value of resistance factor for the 

reliability index  =2.5.  The value of load factor   is greater than the present code 

value for the other load factors.  This is due to the greater value of the COV for the 

dynamic shear resistance and demand for the performance level P2 than the COV of the 

resistance factors such as in shear or dead, and live loads. 

Fig. 9.9 shows the variation of reliability index   with load   and resistance   

factors for performance level P3.  The load factor   is plotted on x axis and reliability 

index   is plotted on y axis.  Three curves are shown which are for the varying values 

of the resistance factor . 
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Fig. 9.9. Variation of reliability index   with load factor   for P3. 
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Table 9.2 lists the load and resistance factors obtained from the code calibration.  

A consistent value of 0.6 is adopted for the resistance factor for all the three limit 

states.  The value of load factor   is 10, 3.4, and 2.7 respectively for the limit states 

corresponding to performance levels P1, P2, and P3. 

 

Table 9.2. Proposed Load and Resistance Factors. 

Limit 

State 

    

for P1 0.6 10.0 

for P2 0.6 3.4 

for P3 0.6 2.7 

 

9.3 Total Probability and Coupled Reliability Index 

The performance-based dynamic shear resistance and demand model are used to develop 

framework to estimate total probability of the failure and coupled reliability index  of 

RC column subject to vehicle collision.  The performance levels is linked to the impact 

levels given in Table 2.2 to evaluate the reliability of the RC column subject to vehicle 

collision based on desired design performance objectives given in Table 2.3.  The 

generalized form to evaluate total probability of failure of RC column subject to vehicle 

collision is given by 

0 0[ ( ) 0 |( , )] ( ) ( )d d     1, 2, 3v vPifPiP P g v m f v f m v m Pi P P P   x,Θ  (9.4) 

0( ) ( ) 0 | ( , )       1, 2, 3pi Pi vF g v m Pi P P P  x,Θ x,Θ   (9.5) 

( )             1, 2, 3Pi Pi Dg v v Pi P P P  x,Θ    (9.6) 
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where, 
fPiP =Probability of failure for the performance levels P1,P2, and P3, ( )Pig x,Θ

=limit state for the performance levels P1,P2, and P3, 0( )f v =PDF of the distribution of 

the velocity of vehicle, ( )vf m =PDF of the distribution of the mass of the vehicle.   

The generalized Equation 9.4 can be used to estimate the probability of failure or 

reliability of the RC column subject to vehicle collision based on desired design 

performance objectives given in Table 2.3.  The limit state and fragility for the 

performance levels P1, P2, and P3 are developed in the previous sections.  The PDF of 

the distribution of the velocity of vehicle and the mass of the vehicle has been developed 

earlier in this section. 

Using the above information, the probability of the failure of RC column for 

performance level P1 in low impact level is estimated by 

1 0 01

0 0

[ ( , ) 0 | ( , )] ( ) ( )d d
m vl l

v vPfP lP P g x v m f v f m v m      (9.7) 

where, 
1fPP =Probability of failure for the performance levels P1 in impact level low (L),

1( )Pg x,Θ =limit state for the performance levels P1, 0( )lf v =PDF of the distribution of 

the velocity of vehicle for low category, ( )vf m =PDF of the distribution of the mass of 

the vehicle, vl = upper limit of the velocity of the vehicle for the low category of velocity 

given in Table 2.2, ml = upper limit of the mass of the vehicle for the light category of 

mass given in Table 2.2. 

 Using the above information, the probability of the failure of RC column for 

performance level P2 in moderate impact level is estimated by 
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2 0 02 [ ( , ) 0 | ( , )] ( ) ( )d d
m v

m v

m i

v i vPfP

l l

P P g x v m f v f m v m      (9.8) 

where, 
2fPP =Probability of failure for the performance levels P2 in impact level medium 

(M), 2 ( )Pg x,Θ =limit state for the performance levels P1, 0( )if v =PDF of the distribution 

of the velocity of vehicle for intermediate category, ( )vf m =PDF of the distribution of 

the mass of the vehicle, vl = upper limit of the velocity of the vehicle for the low 

category of velocity given in Table 2.2, vi = upper limit of the velocity of the vehicle for 

the intermediate category of velocity given in Table 2.2, , ml = upper limit of the mass of 

the vehicle for the light category of mass given in Table 2.2, mm = upper limit of the 

mass of the vehicle for the medium category of mass given in Table 2.2. 

 Using the above information, the probability of the failure of RC column for 

performance level P3 in severe impact level is estimated by 

3 0 03 [ ( , ) 0 | ( , )] ( ) ( )d d
m v

m v

h h

v vPfP h

m i

P P g x v m f v f m v m      (9.9) 

where, 
3fPP =Probability of failure for the performance levels P3 in impact level severe 

(S), 3( )Pg x,Θ =limit state for the performance levels P3, 0( )hf v =PDF of the distribution 

of the velocity of vehicle for high category, ( )vf m =PDF of the distribution of the mass 

of the vehicle, vi = upper limit of the velocity of the vehicle for the intermediate category 

of velocity given in Table 2.2, vh = upper limit of the velocity of the vehicle for the high 

category of velocity given in Table 2.2, mm = upper limit of the mass of the vehicle for 
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the medium category of mass given in Table 2.2, mh = upper limit of the mass of the 

vehicle for the heavy category of mass given in Table 2.2, 

Equation 9.7 relates the performance level P1 to the impact level low (L), thus 

estimating  the reliability of the RC column subject to vehicle collision being fully 

operational and sustaining minor damage during low impact events.  Similarly, Equation 

9.8 relates the performance level P2 to the impact level moderate (M), thus estimating  

the reliability of the RC column subject to vehicle collision being operational with 

sustaining structural damage during medium impact events.  Continuing as above, 

Equation 9.9 relates the performance level P3 to the impact level severe (S), thus 

estimating  the reliability of the RC column subject to vehicle collision being in state of 

collapse prevention during severe impact events. 

 

9.4 Conclusion 

In the section, hazard curves are developed for the mass of the vehicle and the velocity 

of the vehicle that collide with the RC column.  Code calibration to estimate the load and 

resistance factor for the three performance level is performed and load and resistance 

factors are proposed for the desired reliability index.  The developed hazard curve in this 

section with the performance-based dynamic shear resistance and demand models are 

used to develop framework to evaluate the total probability or the reliability of the RC 

column subject to the vehicle collision.  The performance level is tied to the impact 

levels to estimate the reliability of the RC column for the desired performance 

objectives.  The equations to estimate the reliability for critical cases like the RC column 
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subject to vehicle collision being fully operational and sustaining minor damage during 

low impact events, the RC column subject to vehicle collision being operational with 

sustaining structural damage during medium impact events, and the RC column subject 

to vehicle collision being in state of total collapse during severe impact events is 

established.  The section thus presents the code calibration to estimate the load and 

resistance factors as well as equations to achieve desired performance objectives of the 

RC column subject to vehicle collision. 
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10 CONCLUSION AND FUTURE WORK 

 

The current work focuses on shifting the existing paradigm in the analysis and design of 

RC columns subject to vehicle impact in a number of ways.  The proposed procedure 

shifts the existing methodology based on static or quasi-static analysis to the dynamic 

analysis which is a more realistic representation of the vehicle impact with structures.   

The present research lays out a framework to quantify the different observed 

damages into applicable damage levels.  The damage levels are then related to the 

appropriate performance levels.  The performance levels are tied to the different impact 

scenarios of vehicle impacts to ensure that the desired performance of the structure is 

met when the RC column is impacted.  Then a procedure to estimate the different 

dynamic shear resistance corresponding to performance levels is established.  A method 

to estimate the dynamic shear force demand on the RC column during vehicle impact is 

also laid out.  The dynamic shear force demand can be categorized into different demand 

levels depending on the intensity of the impact.  Actual structural configurations and 

loading scenarios are used to evaluate the response which is more accurate in 

representing the complex impact scenario. 

Performance-based resistance models are developed which can be used to 

achieve the desired behavior of the RC column under different impact scenarios.  The 

probabilistic resistance model captures the dynamic behavior of the RC column and 

accounts for the associated uncertainties.   
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A demand model is developed which can be used to achieve the desired behavior 

of the RC column under different impact scenarios.  The probabilistic demand model 

captures the dynamic interaction between the RC column the vehicle during collision 

and accounts for the associated uncertainties.  A framework to assess the fragility of RC 

column subjected to vehicle impact based on performance-based models is developed.   

Hazard curves are developed for the mass of the vehicle and the velocity of the 

vehicle that collide with the RC column.  Code calibration to estimate the load and 

resistance factor for the three performance level is performed and load and resistance 

factors are proposed for the desired reliability index.  The developed hazard curve 

together with the performance-based dynamic shear resistance and demand models are 

used to develop framework to evaluate the total probability or the reliability of the RC 

column subject to the vehicle collision.  The performance level is tied to the impact 

levels to estimate the reliability of the RC column for the desired performance 

objectives.  The framework to achieve desired performance objectives of the RC column 

subject to vehicle collision is developed. 

The proposed procedure has its merits for application in the design and analysis 

of RC columns to minimize damage and meet a set of performance objectives during 

different vehicle impact scenarios.   

Experimental data are required to further verify and assess the suitability of the 

developed models.  More representative data is required to further refine the hazard 

models developed in this research.  The performance-based proposed procedure can be 

used for other hazards such as high velocity impacts due to blasts or missiles impact.  
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The current work can be extended to estimate the capacity of and demand on for other 

members such as prestressed columns, steel columns, and beams.  The state of 

knowledge can be applied to study similar cases of collision such as ship collision to a 

barge, projectile collision into concrete walls and develop adequate models. 
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APPENDIX-I 

 

The FE simulation is discussed in detail in this Appendix section.  The modeling aspects, 

input for the material models, contact algorithm, initial conditions are explained with 

suitable input files.  The process to obtain the various quantities of interest in this 

dissertation is also laid out in detail.  This section goes step by step into the complex FE 

modeling and simulation process and focuses to make the process understandable and 

easy to replicate. 

 

I.1 Modeling of RC Column 

The geometric modeling of the RC column is done using Hypermesh (Altair Computing, 

2003).  A three dimensional solid model is used for modeling RC column.  The RC 

column is modeled by a fully integrated quadratic eight node element with nodal 

rotations.  The required input from the user is as follows: 

PID: Part identification number (Any number can be provided). 

SECID: Section identification number (Any number can be provided). 

MID: Material identification number (Any number can be provided). 

ELFORM: Constant stress solid element (1). 

Keep all other cards to their default value. 

Sample input for RC column with solid elements. 

*PART 

$# title 
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$HMNAME PROPS      1conc_beam 

$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 

         1         1         1         0       100         0         0         0 

*SECTION_SOLID 

$HMNAME PROPS      1conc_beam 

$#   secid    elform       aet 

         1         1         0 

The reinforcement bars are modeled explicitly using a one dimensional element.  

The required input from the user for beam elements is as follows: 

PID: Part identification number (Any number can be provided). 

SECID: Section identification number (Any number can be provided). 

MID: Material identification number (Any number can be provided). 

ELFORM: Hughes-Liu with cross section integration (1). 

SHRF: Default (1). 

QR/IRID: 2X2 Gauss quadrature (2). 

CST: Tubular (1). 

SCOOR: 2 

TS1-TS2: Beam outer diameter. 

TT1-TT2: Beam inner diameter (0). 

Keep all other cards to their default value. 

Sample input for reinforcements with beam elements. 

*PART 
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$# title 

$HMNAME PROPS      2beam_transv 

$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 

         2         2         2         0       100         0         0         0 

*SECTION_BEAM 

$#   secid    elform      shrf   qr/irid       cst     scoor       nsm 

         2         1  1.000000         2         1  2.000000     0.000 

$#     ts1       ts2       tt1       tt2     nsloc     ntloc 

   25.4000   25.4000     0.000     0.000  1.000000  1.000000 

The geometric modeling of the RC column is shown in Fig. I.1.  The figure 

shows the concrete modeled as solid elements and reinforcements modeled as beam 

elements. 
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                                                      (a)                               (b) 

 

Fig. I.1. Modeling of RC column (a) concrete modeled as solid elements, (b) 

reinforcements modeled as beam elements. 

 

I.2 Material Properties of RC Column 

The material model for concrete used in FE modeling is material type 159 (MAT-

CSCM_CONCRETE).  This is a smooth or continuous surface cap model and is 

available for solid elements in LS-DYNA.  The material properties form experiment 

conducted can be used as input or default material properties for normal strength 

concrete can be used from the library of the materials.  In the present modeling, the 

default material properties are used.  The required input from the user is as follows: 

MID: Material identification number (Any number can be provided). 

RO: Mass density of the concrete. 
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NPLOT: Default option 1 is used to obtain maximum of brittle and ductile damages. 

INCRE: Maximum strain increment for subincrementation (left blank). 

IRATE: Rate effect model turned on (1). 

ERODE: Set value of 1.1 for concrete. 

RECOV: Set value of 1 for modulus to remain at the brittle damage level. 

IRETRC: Cap retraction option set to 0. 

PRED: Pre existing damage set to 0. 

FPC: Unconfined compressive strength. 

DAGG: Maximum aggregate size set to 19 mm. 

UNITS: Option 2. Used units of MPa, mm, sec, Mg/mm
3
, N. 

Sample input for concrete with unconfined compressive strength of 30 MPa. 

*MAT_CSCM_CONCRETE 

$#     mid        ro     nplot     incre     irate     erode     recov   itretrc 

         1 2.5000E-9         1     0.000         1  1.100000    1.0000         0 

$#    pred 

     0.000 

$#     fpc      dagg     units 

  30.00000      19.0         2 

The material model used for modeling longitudinal and transverse steel is 

material type 24 (MAT_PIECEWISE_LINEAR_PLASTICITY).  In this material type, 

an elasto-plastic material with a stress versus strain curve can be defined.  A failure 

based on plastic strain is defined.  The required input from the user is as follows: 
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MID: Material identification number (Any number can be provided). 

RO: Mass density of the steel. 

E: Young’s modulus. 

PR: Poisson’s ratio. 

SIGY: Yield stress. 

ETAN: Tangent modulus (left blank). 

FAIL: Plastic strain (0.2) considered for failure. 

TDEL: Minimum time step size for automatic element deletion (left blank). 

C: Strain rate parameter (left blank). 

P: Strain rate parameter (left blank). 

LCSS: Left blank. 

LCSR: Load curve id defining strain rate scaling effect on yield stress (defined by 

DEFINE CURVE). 

VP: Scale yield stress (0). 

EPS1-EPS8: Left blank. 

ES1-ES8: Left blank. 

Sample input for steel with yield stress of 517 MPa. 

*MAT_PIECEWISE_LINEAR_PLASTICITY 

$#     mid        ro         e        pr      sigy      etan      fail      tdel 

         3 7.8500E-9 210000.00  0.300000  517.0000     0.000  0.200000     0.000 

$#       c         p      lcss      lcsr        vp 

     0.000     0.000         0         3     0.000 
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$#    eps1      eps2      eps3      eps4      eps5      eps6      eps7      eps8 

     0.000     0.000     0.000     0.000     0.000     0.000     0.000     0.000 

$#     es1       es2       es3       es4       es5       es6       es7       es8 

     0.000     0.000     0.000     0.000     0.000     0.000     0.000     0.000 

*DEFINE_CURVE 

$     LCID      SIDR      SCLA      SCLO      OFFA      OFFO 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

         3         0     0.000     0.000     0.000     0.000         0 

$                 A1                  O1 

$#                a1                  o1 

               0.000           1.0000000 

           0.0000100           1.0100000 

           1.0000000           1.2100000 

           5.0050000           1.7100000 

         100.0000000           2.0000000 

      100000.0000000           2.0000000 

 

I.3 Contact Definitions and Initial Conditions 

The bond between the concrete and transverse reinforcement and longitudinal 

reinforcement is defined by Lagrangian coupling method.  In this method, the need to 

match the nodes between concrete and reinforcements is not necessary hence this is 

effective and efficient method.  The concrete element is treated as master element and 
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reinforcements are treated as slave elements.  The required input from the user is as 

follows: 

COUPID: Coupling identification number (Any number can be provided). 

SLAVE: ID of the reinforcement. 

MASTER: ID of the concrete. 

Keep all other cards to their default value. 

Sample input for concrete and reinforcement is as follows: 

*CONSTRAINED_LAGRANGE_IN_SOLID_TITLE 

$#  coupid                                                                 title 

       150                                                                       

$#   slave    master     sstyp     mstyp     nquad     ctype     direc     mcoup 

         2         1         1         1         0         2         1         0 

$#   start       end      pfac      fric    frcmin      norm   normtyp      damp 

     0.0001.0000E+10  0.100000     0.000  0.500000         0         0     0.000 

$#      cq      hmin      hmax     ileak     pleak   lcidpor     nvent  blockage 

     0.000     0.000     0.000         0  0.010000         0         0         0 

$#  iboxid   ipenchk   intforc   ialesof    lagmul    pfacmm      thkf 

         0         0         0         0     0.000         0     0.000 

The contact between the vehicle and RC column is defined by 

CONTACT_AUTOMATIC_SINGLE_SURFACE_ID.  This contact type is efficient and 

less costly in evaluating response of the structure during crash.  The required input from 

the user is as follows: 
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CID: Contact identification number (Any number can be provided). 

SSID: Slave segment number.  It is left blank so that all part ID’s are included. 

MSID: Master segment id (leave blank). 

FS: Static coefficient of friction (0.3). 

FD: Dynamic coefficient of friction (0.3). 

SOFT: Used due to large variation in the elastic moduli of the materials (1). 

Keep all other cards to their default value. 

Sample input for contact between RC column and vehicle is as follows: 

*CONTACT_AUTOMATIC_SINGLE_SURFACE_ID 

$#     cid                                                                 title 

        10                                                                       

$#    ssid      msid     sstyp     mstyp    sboxid    mboxid       spr       mpr 

         0         0         0         0         0         0         0         0 

$#      fs        fd        dc        vc       vdc    penchk        bt        dt 

  0.300000  0.300000     0.000     0.000     0.000         0     0.0001.0000E+20 

$#     sfs       sfm       sst       mst      sfst      sfmt       fsf       vsf 

  1.000000  1.000000     0.000     0.000  1.000000  1.000000  1.000000  1.000000 

$#    soft    sofscl    lcidab    maxpar     sbopt     depth     bsort    frcfrq 

         1  0.100000         0  1.025000  2.000000         2         0         1 

$#  penmax    thkopt    shlthk     snlog      isym     i2d3d    sldthk    sldstf 

     0.000         0         0         0         0         0     0.000     0.000 

$#    igap    ignore    dprfac    dtstif   unused     unused    flangl 
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         1         1     0.000     0.000         0         0     0.000 

Gravity and initial load at the top of the column are applied by dynamic 

relaxation (CONTROL_DYNAMIC_RELAXATION). 

Keep all other cards to their default value. 

Sample input for dynamic relaxation is as follows: 

*CONTROL_DYNAMIC_RELAXATION 

$#  nrcyck     drtol    drfctr    drterm    tssfdr    irelal     edttl    idrflg 

       250  0.001000  0.9950001.0000E+28     0.000         0  0.040000         1 

The total time required to run the simulation is controlled by the user 

(CONTROL_TERMINATION).  A maximum time of 0.1 s is used to run the 

simulations. 

ENDTIM: Maximum time required to run the simulation. 

Keep all other cards to their default value. 

Sample input for dynamic relaxation is as follows: 

*CONTROL_TERMINATION 

$$  ENDTIM    ENDCYC     DTMIN    ENDENG    ENDMAS 

$#  endtim    endcyc     dtmin    endeng    endmas 

  0.100000 

 

I.4 Modeling and Material Properties of Vehicle 

The vehicles used for loading are a 8,000 kg (8 Mg) Ford truck (NCAC, 2010), a 30,000 

kg (30 Mg) IVECO truck (Atahan et al., 2007), a 38,000 kg (38 Mg) tractor trailer 
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(NCAC, 2010), and a 50,000 kg (50 Mg) IVECO truck (Atahan et al., 2007) as shown in 

Fig. I.2. 

 

 
                               (a)                                                               (b) 

 
                               (c)                                                                (d) 

 

Fig. I.2. FE model of the vehicles (a) 8 Mg Ford truck, (b) 30 Mg IVECO truck, (c) 38 

Mg tractor trailer, (d) 50 Mg IVECO truck. 

 

The vehicle models are given different initial velocities to model different traffic 

scenarios.  The initial velocity of the vehicle is varied using initial velocity generation 

card (INITIAL_VELOCITY_GENERATION).  In this method all the parts of the 
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vehicle are assigned same initial velocity instantaneously.  The required input from the 

user is as follows: 

PID: Part id to be assigned the initial velocity (select all parts of the vehicle). 

VX, VY, VZ: Assign the initial velocity in the appropriate direction. 

Keep all other cards to their default value. 

Sample input for giving initial velocity of 47.4 m/s to the vehicle is as follows: 

*INITIAL_VELOCITY_GENERATION 

$HMNAME LOADCOLS       1InitialVelGen_1 

$HMCOLOR LOADCOLS       1       1 

$#nsid/pid      styp     omega        vx        vy        vz     ivatn      icid 

         1         1     0.000 47376.100     0.000     0.000         0         0 

$#      xc        yc        zc        nx        ny        nz     phase    iridid 

     0.000     0.000     0.000     0.000  1.000000     0.000         0         0 

 

I.4 Analysis 

The RC column and vehicle models need to be combined together in order to simulate 

the collision between them.  In order to do that, a transformation card is defined 

(DEFINE_TRANSFORMATION and INCLUDE_TRANSFORMATION).  The 

required input from the user is as follows: 

TRANSID: Transformation identification number (Any number can be provided). 

SCALE: Scaling the vehicle model (Use 1 for no scaling). 

TRANSL: Placing the vehicle model with respect to the RC column. 
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FILENAME: Name of the file of vehicle model. 

IDNOFF: Offset to the node id. 

IDEOFF: Offset to the element id. 

IDPOFF: Offset to the part id. 

IDMOFF: Offset to the material id. 

IDSOFF: Offset to the set id. 

IDFOFF: Offset to the function or table id. 

IDDOFF: Offset to the define id. 

IDROFF: Offset to the section and hourglass id. 

FCTMAS: Mass transformation factor (1). 

FCTTIM: Time transformation factor (1). 

FCTLEN: Length transformation factor (1). 

FCTTEM: Temperature transformation factor (1). 

Sample input combining the RC column and 50 M vehicle is given as follows: 

*DEFINE_TRANSFORMATION 

$#  tranid 

         1 

$# option         a1        a2        a3        a4        a5        a6        a7 

SCALE       1.000000  1.000000  1.000000 

TRANSL       700.000     0.000     0.000 

*INCLUDE_TRANSFORM 

$# filename 
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trk_mod.k                                                              

$#  idnoff    ideoff    idpoff    idmoff    idsoff    idfoff    iddoff 

    400000    400000       500       500       500       500       500 

$#  idroff 

       500 

$#  fctmas    fcttim    fctlen    fcttem   incout1 

  1.000000  1.000000  1.000000  1.000000         1 

$#  tranid 

         1  

The combined file is given to LS-DYNA solver for analysis.  A job file is used 

since the process requires more than 20 minutes.  The simulation is carried on an IBM-

AIX machine.  The job file is given as follows: 

# --------------- Begining of ls-dyna sample job1 ------------- 

#@ shell            = /bin/ksh 

#@ job_name         = smp_ls-dyna 

#@ output           = $(job_name).o$(schedd_host).$(jobid) 

#@ error            = $(job_name).e$(schedd_host).$(jobid) 

#@ job_type         = parallel 

#@ wall_clock_limit = 5:00:00 

#@ resources        = ConsumableCpus(4) ConsumableMemory(2000mb) 

#@ notification     = error 

#@ queue 
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export OBJECT_MODE=64 

export OMP_DYNAMIC=FALSE 

export OMP_NUM_THREADS=4 

export AIXTHREAD_SCOPE=S 

export LSTC_INTERNAL_CLIENT=fork 

module load ls-dyna-971-R4.2 

ls-dyna_d i=c5.k memory=200m ncpu=4 

# --------------- End of ls-dyna sample job1 ------------- 

The time required for a single case to run is approximately 5 hours on 4 cpus. 

 

I.6 Result 

The output files are viewed in LS-PREPOST viewing software.  The time history 

simulation, force time history and all other requested output is obtained by this software.  

The d3plot files show the progress of the crash process at each 1 millisecond instance.  

The ASCII files contain all the requested outputs.  The total energy, energy ratio, 

hourglass energy is checked to verify the numerical validity of the simulation. 

 The shear force at the base of the column is monitored.  The simulation is 

monitored.  The shear force at the instant when the stress in the longitudinal 

reinforcement exceeds the yield stress is recorded as dynamic shear resistance 

corresponding to the performance level P1.  The shear force at the instant when the 

spalling of cover starts to occur and the reinforcements are exposed is recorded as 

dynamic shear resistance corresponding to the performance level P2.  The shear force at 
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the instant when the core of the RC column starts to erode/break or the reinforcement 

begins to buckle is recorded as dynamic shear resistance corresponding to the 

performance level P3.  The maximum force imparted by the vehicle is recorded as the 

maximum force applied to the RC column.  As per the length and point of application of 

the vehicular load and the boundary conditions, the maximum applied force is 

transformed to the dynamic shear demand.  In this way the quantities of interest are 

calculated from the FE simulation. 

 

I.7 Conclusion 

In this section, the details involved in the FE simulation are presented.  The modeling of 

the RC column, material properties, contact algorithm, initial conditions is discussed in 

details.  The input parameters are explained with appropriate examples.  The vehicles 

used in the FE simulation are shown and the way to vary the velocity to these vehicles is 

explained.  The combination of the RC column and the vehicle to run crash scenario is 

also explained.  The process to check the numerical stability and validity of the FE 

model is discussed.  The process to obtain the various dynamic shear resistances 

corresponding to different performance levels is laid out.  The process to obtain the 

dynamic shear demand from the FE simulation is also mentioned.  This appendix 

presents a detailed account of the FE simulation used in this dissertation.  By following 

the procedure mentioned in this appendix, the results presented in this dissertation can be 

recreated and/or future work can be carried out. 
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APPENDIX-II 

 

The shear resistance of RC column has components of inertial resistance, damping 

resistance and shear strength of the RC column also called shear capacity.  In this 

appendix, the contribution of the shear capacity will be evaluated.  The strength of the 

concrete and steel increases due to the effect of strain rate.  This in turn increases the 

shear capacity of the RC column.  The shear capacity thus depends on the strain rate and 

in turn with the velocity at which the RC column is moving.  This shear contribution is 

called dynamic shear capacity. 

 

II.1 Static Shear Capacity 

The static shear capacity will be evaluated by performing a moment curvature analysis 

of the RC column.  The maximum obtained moment is used to calculate the shear 

capacity.  The idealization of the vehicle collision with RC column is shown in Fig. II.1. 
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Fig. II.1. Idealization of vehicle collision with RC column. 

 

In order to perform the moment curvature analysis, the material properties of 

concrete and steel are obtained.  The material property of concrete is obtained as per 

Mander et al., 1988.  The Popovics equation is modified in order to obtain the stress 

strain behavior in the unconfined concrete.  The stress in the unconfined concrete is 

given by 
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where, cf  = stress in steel corresponding to the strain c , '

cf = unconfined concrete 

strength, co = strain (.002) corresponding to maximum unconfined concrete strength, 

spall = spalling strain of confined concrete, 
sec

c

c

E
n

E E



, cE = modulus of elasticity of 

concrete, secE = Secant modulus given by 
'

c
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The stress in the confined concrete is given by 
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where, cf  = stress in steel corresponding to the strain c , '

ccf = confined concrete 

strength ( '

ckf ), cco = strain corresponding to maximum confined concrete strength (

 1 5 1co k     ),
hoopfr = fracture strain of transverse reinforcement (5 cco ),
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The stress-strain behavior of reinforcing steel including the strain hardening 

branch is given by the following equation 
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, sf = stress in reinforcing steel at strain s , sE  = modulus of 

elasticity of steel, shE = strain hardening modulus of steel, 
yf  = yield strength of steel, 

suf  = ultimate strength of steel, su  = ultimate strain, sh = strain hardening strain. 

The moment curvature analysis is performed by following the algorithm in 

Mander et al, 1988.  In this process the curvature is fixed and the centroidal strain is 

adjusted to obtain the target axial load.  The step are given as follows 

1) To the value of the last known solution, the curvature increment is added to give the 

new curvature 

1k k         (II.5) 

2) From the out of balance force remaining from the last solution, 1kP P N   , the 

 required change in section centroidal strain necessary to obtain force equilibrium is 

determined by the following  

1

1

k

k
ok

k

P
P

P















 
   

 
 

 
 
 

    (II.6) 

The total reference axis strain is obtained from the following  

1ok ok ok        (II.7) 
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The revised strain profile is given by 

( )k ok ky y        (II.8) 

The total force in the section is given by 

T T T

k s s c c cc cck k k
P f A f A f A       (II.9) 

The out of balance force is given by 

1kP P N                  (II.10) 

If P tolerance  , then the moment is calculated as given in the next step, otherwise the 

algorithm reverts back to step 2. 

3) The moment is calculated as  

T T T T T T

k s s s c c c cc cc cck k k
M f A y f A y f A y     (II.9) 

The following stopping criterion are checked to stop the moment-curvature analysis 

a) Spalling of core concrete: The moment-curvature analysis is stopped when the strain 

in the core concrete exceeds the hoop fracture strain of the transverse reinforcement. 

b) Fracture of longitudinal reinforcing bars: The moment-curvature analysis is 

terminated when the strains in the longitudinal reinforcement exceeds the fracture strain 

of the longitudinal reinforcing bars. 

4) The shear capacity of the RC column is calculated from the maximum moment 

capacity of the column given by 

max2
static

eff

M
V

l
     (II.10) 
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where, staticV = static shear capacity of the RC column, maxM = maximum value of the 

moment capacity obtained from the moment curvature analysis, 
effl = distance between 

base of the column to the point of vehicle collision as shown in Fig. II.1. 

 

II.2 Dynamic Shear Capacity 

The dynamic shear capacity is defined as the shear capacity of the RC column when the 

RC column is moving with velocity sv .  The shear capacity increases due to the increase 

in strength of the material due to the strain rate effect.  In order to calculate the dynamic 

shear capacity, first the force deformation analysis of the RC column is performed for 

length equal to / 2effl  as this portion of the column acts as a cantilever (the moment at 

the distance is approximately zero).  The displacement is then divided by velocity sv  to 

obtain the time to reach the displacement.  The maximum strain in concrete and steel is 

then divided by the time to obtain the corresponding maximum strain rates at maximum 

displacement.  The strain rate is then varied linearly from zero to the maximum strain 

rate as the curvature (displacement) increases.  The corresponding strain rate at each 

instant is used to obtain the increase in the strength of concrete and steel.  This in turn 

gives the increase in moment-curvature relationship.  The increased moment is again 

used to calculate the dynamic shear capacity of the column. 

The material model of the concrete and steel are multiplied by the corresponding 

Dynamic Increase Factor (DIF) to get the increase in strength.  The DIF for concrete as 

per Mander et al., 1988 is given by 
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    (II.11) 

The DIF for mild steel is given as per Mander et al., 1988 by 

1/6

0.953 1
700

sDIF
 

  
  

    (II.12(a)) 

and for high strength steel is given by  

1/6

6
0.953 1

50 10
sDIF

X

 
  

  

   (II.12(b)) 

The force deformation plot is obtained from the moment curvature analysis. The 

force deformation analysis is done in two stages viz. non-linear elastic behavior and 

post-yield non linear behavior. 

1) Non Linear elastic behavior 

In this stage of analysis the elastic deformation is given by 

          
2

1 1 1 12 1
2 2

6

m

e k k k k k k k kk
m

L
M M M M M M

M
    

             (II.13) 

where, e = elastic deformation, mM = moment at the current point, kM  and k  are the 

moment and the curvature at the k
th

 point, L = length of the cantilever portion. 

The total deformation is given by 

e stub                    (II.14) 
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where, 
2 4

stub stub
stub

stub

ML L
L

EI

 
   

 
, 

4

12

stub
stub c

L
EI E


 ,  varying form 0.1 for RC column 

with less axial load to 1 for columns with heavy axial load. 

2) Post Yield non linear behavior 

The displacement in this stage of the analysis consists of two parts, the elastic and the 

plastic component of displacement. 

The elastic deformation is given by 

2

3
e

eff

ML

EI
                            (II.15) 

where, 

2

3

y

eff

y

M L
EI 


, 

yM  = yield moment, 
y = yield curvature. 

The plastic deformation is given by  

 0.25p p pcL L       (II.16) 

where,   4400
3

pc

p m e y b

L
d   

 
   

 
, 

max

1
y

pc

M
L L

M

 
  

 
, m

e y

y

M

M
  . 

For squat columns with low aspect ratio, the deformation caused by shear is significant; 

therefore, the contribution due to shear deformation is added to obtain the total 

displacement.  The shear deformation is given by 

 
2

2 tan 0.78cot
c

s

c
s sh

d
V

L E bh
E A

s

 

 
  
     

        

  (II.17) 

where, tan cd

L
  , shA  = area of shear reinforcement across a cross section. 
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The total deformation in the post yield region is given by 

e p stub s         (II.18) 

For each case of the vehicle collision, the total deformation is divided with the 

velocity at which the RC column is moving in order to obtain the time taken to reach the 

total deformation as given by 
c

s

t
v


 .  The time obtained is divided by the maximum 

strain in the concrete and steel to get the maximum strain rate in concrete and steel given 

by /
/

c s
c s

ct


  .  Now the moment curvature analysis is again performed by linearly 

increasing the strain rate for concrete and steel from zero to the maximum strain rate 

obtained at the maximum deformation.  The strength of the material is modified as per 

Equations II.11 and II.12 to account for the increase in strength.  The new maximum 

moment is called the dynamic moment capacity from which the Dynamic Shear 

Capacity (DSC) is calculated as follows 

2 dynamic

dynamic

eff

M
V

l
     (II.19) 

The ratio of the dynamic shear capacity and the static shear capacity obtained as above 

from the moment curvature analysis is called Dynamic Shear Ratio (DSR) given by 

dynamic

static

V
DSR

V
     (II.20) 

Fig. 7.1 shows the variation of the DSR with the velocity sv at which the RC column is 

moving during a vehicle collision. 
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II.3 Case Study 

This section presents the estimation of static shear capacity, dynamic shear capacity and 

DSR for two RC columns used in this dissertation.  A step by step procedure is followed 

with numerical values in order to calculate the value of DSR.  Table II.1 describes the 

configuration of the two RC columns C3 and C4. 

 

Table II.1. Configuration of RC Columns. 

 

Table II.2 and Table II.3 lists the material properties of the RC column C3 and 

C4. 

 

Table II.2. Material Properties of RC Columns C3. 

 

 

 

 

No. Diameter 

[m] 

Length 

[m] 

Longitudinal 

Reinforcement 

Transverse 

Reinforcement 
Axial load N  

[kN] 

C3 1.00 6.00 32-   25 mm 

bars 

 12.7 mm-

0.06 m pitch 

2961 

C4 0.58 3.78 8-   25 mm 

bars 

  9.6 mm-0.08 

m pitch 

2354 

Material Density 
 

[kg/m
3
] 

 

Modulus 

of 

Elasticity 

 [GPa] 

Poisson’s 

ratio 
 

Unconfined 

Compressive 

Strength 

[MPa] 

Unconfined 

Tensile 

Strength 

[MPa] 

Yield 

Stress 

[MPa] 

Concrete 2500 25.7 0.2 30.0 3.0 - 

Steel 7850 210.0 0.3 - - 415 



E


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Table II.3. Material Properties of RC Columns C4. 

 

 

Following the procedure outlined in the Sub-section II.1, the moment curvature 

analysis is performed for C3 and C4.  As per Equation II.9, the maximum moment maxM

sustained by C3 is 3072.4 kNm and maxM  for C4 is 540.4 kNm. The static shear capacity 

staticV  as given by Equation II.10 for C3 is 4096.5 kN and staticV  for C4 is 720.5 kN.  The 

effl  for both of the RC columns is taken as 1.5 m assuming that both of the columns are 

subject to collision with the same type of vehicle. 

In order to evaluate the dynamic shear capacity 
dynamicV  for the two RC columns 

under different loading conditions the procedure described in Sub-section II.2 is 

followed.  First, the force-deformation analysis is performed on C3 and C4.  The 

effective length of the cantilever portion is taken as half of 
effl  which is 0.75 m as at this 

position the moment in the column is approximately zero.  So, the effective length L  of 

the cantilever portion of the RC columns is taken 0.75 m.  The maximum displacement 

  is calculated from the force-deformation analysis for C3 and C4.  Then the different 

cases loadings are examined where the column is subject to different velocities sv .  The 

Material Density 
 

[kg/m
3
] 

 

Modulus 

of 

Elasticity 

 [GPa] 

Poisson’s 

ratio 
 

Unconfined 

Compressive 

Strength 

[MPa] 

Unconfined 

Tensile 

Strength 

[MPa] 

Yield 

Stress 

[MPa] 

Concrete 2500 34.9 0.2 55.0 5.0 - 

Steel 7850 210.0 0.3 - - 250 



E


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different time taken to reach the total deformation is calculated by 
c

s

t
v


 .  Using the 

total time ct and the maximum strain in the outer fiber, the maximum strain rate /c s for 

concrete and steel is calculated.  The value of maximum strain rate /c s  is again used in 

the moment-curvature analysis as described in Sub-section II.2 to calculate the 

maximum dynamic moment 
dynamicM  for C3 and C4 under different velocities.  From the 

dynamic moment 
dynamicM  the value of dynamic shear capacity 

dynamicV is calculated using 

Equation II.19.  Table II.4 and Table II.5 present the results of the above mentioned case 

study. 

 

Table II.4. Intermediate Values in Calculating Dynamic Moment. 

 

 

Column Displac

ement 

  
[m] 

 

Velocity 

sv  [m/s] 

Time 

ct  

[s*10
-3

] 

Strain rate 

/c s  

[1/s] 

Static 

Moment 

staticM

[kNm] 

Dynamic 

Moment 

dynamicM

[kNm] 

C3 0.026 

15.0 1.73 14.4 

3072 

4686 

25.0 1.04 23.9 4845 

35.0 0.74 33.6 4959 

45.0 0.58 42.9 5045 

55.0 0.47 52.9 5122 

C4 .019 

15.0 1.27 13.7 

540 

787 

25.0 0.76 22.9 812 

35.0 0.54 32.2 829 

45.0 0.42 41.4 843 

55.0 0.35 49.7 853 
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Table II.4 shows the value of the maximum displacement of C3 and C4 obtained 

by force-deformation analysis.  Five values of velocities sv  are used as shown in Table 

II.4 to evaluate the increase in the capacity of the RC columns.  From the velocities, the 

value of time ct  taken to undergo the respective displacements is calculated.  Using the 

time ct  the maximum strain rate /c s  is calculated from the maximum strain value /c s  of 

0.0249 for C3 and 0.0174 for C4.  The maximum strain rate /c s  is used to calculate the 

dynamic moment from the moment-curvature analysis, the values of maximum dynamic 

moment 
dynamicM  is presented in Table II.4. 

Table II.5 presents the value of static shear capacity, dynamic shear capacity and 

DSR calculated from the procedure outlined in Sub-section II.2. 

 

Table II.5. Dynamic Quantities of Interest for RC Column. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Column Velocity 

sv  [m/s] 

Static 

Shear 

Capacity 

staticV  

[kN] 

Dynamic 

Shear 

Capacity 

dynamicV  

[kN] 

Dynamic 

Shear 

Ratio 

DSR 

 

C3 

15.0 

4096 

6249 1.53 

25.0 6460 1.58 

35.0 6612 1.61 

45.0 6727 1.64 

55.0 6830 1.67 

C4 

15.0 

720 

1050 1.46 

25.0 1083 1.5 

35.0 1106 1.54 

45.0 1125 1.56 

55.0 1138 1.58 
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Fig. II.2 shows the variation of DSR with the velocity sv  of the RC columns.  

The DSR increases with a non-linear trend with the increase in the velocity sv  of the RC 

columns.  The DSR is also influenced by the static capacity of the RC column.  The DSR 

value is more for C3 than C4, which can be attributed to the larger static shear capacity 

of C3 than C4. 

 

 

 

Fig. II.2. Increase in DSR of RC column with velocity. 
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II.4 Conclusion 

In this section, the details for calculating static shear capacity form moment curvature 

analysis are presented.  This section also details the process of calculating dynamic shear 

capacity by accounting for the increase in strength due to strain rate.  The DSR is 

defined which represents the increase in strength of shear capacity of RC column with 

the movement of the RC column with velocity sv .  The contribution of the shear 

capacity is uncoupled from the total shear resistance and is analyzed to see the effect of 

velocity and in turn the strain rate on the shear capacity of RC column.  Case study for 

two RC columns is presented in this section.  A step by step procedure is shown with 

numerical values to calculate DSR.  The variation of DSR for two example RC columns 

is shown.  The DSR varies from 1 to 2 for the range of velocities analyzed in this 

dissertation.  So for a very severe impact scenario, the contribution of the shear capacity 

can double from the static shear contribution. 
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