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ABSTRACT

Forward Di-hadron Asymmetries from p↑(↓) + p at

√
s = 200 GeV at STAR. (May 2012)

James Lucus Drachenberg, B.S., Abilene Christian University

Chair of Advisory Committee: Dr. Carl A. Gagliardi

One unresolved question in hadronic physics is the origin of large transverse

single-spin asymmetries, AN , observed in hadron production from high-energy polarized-

proton collisions. Collinear perturbative Quantum Chromodynamics (pQCD) pre-

dicts that AN should scale with the quark mass, however, experiments have since re-

ported large AN for inclusive hadron production. Recent measurements from RHIC

experiments show examples of these asymmetries at forward angles in a kinematic

region where pQCD cross-section calculations reasonably agree with measured cross-

sections.

Disentangling dynamical contributions to AN from hadro-production requires

moving beyond inclusive measurements. One possibility is to investigate asymme-

tries in two-particle correlations due to Interference Fragmentation Functions (IFF)

and the Sivers effect. In 2008, RHIC dedicated a portion of the run to transversely po-

larized proton collisions at
√
s = 200 GeV. STAR was equipped with a Foward Meson

Spectrometer (FMS) and a Forward Time Projection Chamber (FTPC), overlapping

in the pseudorapidity range of 2.5 < η < 4. By analyzing neutral pions with the

FMS correlated with charged particles from the FTPC, correlation asymmetries can

be measured at kinematics where large inclusive asymmetries have been measured.

Correlations are measured for π0’s with 2 < pT,π0 < 5 GeV/c and associated

charged particles in two ranges of transverse momentum: 1 < pT,ch < 2 GeV/c and

0.5 < pT,ch < 1 GeV/c. IFF and Sivers asymmetries manifest themselves through the
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correlation of two particles from the same jet. These events are selected through a cut

on the pair radius, ∆R. Gain non-uniformities and electronics failures have resulted

in large holes in trigger acceptance and associated particle acceptance, respectively.

This non-uniform acceptance allows the Sivers and IFF effects to mix and distort the

raw asymmetries. Techniques are developed to measure this leak-through by means

of unpolarized yields and event weighting. They result in small corrections to the

asymmetries.

IFF and Sivers asymmetries both for xF > 0 and for xF < 0 are reported

for forward-angle π0-charged particle correlations from polarized-proton collisions at

√
s = 200 GeV. Asymmetries are shown corrected for full underlying-event and pile-

up backgrounds, as well as corrected only for pile-up contributions. It appears the

asymmetries are less sensitive to ∆R when corrected for the full underlying-event

background. Unfortunately, statistics limitations preclude a firm conclusion.
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CHAPTER I

INTRODUCTION

The nature of spin in particle physics has been described as everything from “an

inessential complication” to a “scalpel-like” probe whose path is “strewn with the

wreckage of discarded theories” [1]. With such a reputation, it is a wonder anyone

would want to study spin. Nevertheless, the brave (or, perhaps, deranged) souls

willing to take up such a study have illuminated intriguing ways to test leading

theories. Galvanized by the influx of polarized data, hope of answering some of the

questions remains alive.

A. Measurement History

By the mid-1970’s, fixed-target experiments studied transverse spin-effects by means

of inclusive production from strong interactions at center-of-mass energies,
√
s < 5

GeV [2]. Among the listed motivations was tantalizing insight into particle wave func-

tions. While cross-sections, dσ, provide access to the modulus of the wave function

amplitudes, the transverse single-spin asymmetry,

AN =
dσ↑ − dσ↓

dσ↑ + dσ↓
, (1.1)

provides access to interference terms, depending directly on “spin-flip” and “non-

flip” amplitudes and their relative phases (see eq. 2.26). Here, dσ↑(↓) denotes the

cross section for spin-up(down) beam or target polarization.

In a 1978 publication, Kane, Pumplin, and Repko proposed transverse polariza-

tion effects as a significant test of Quantum Chromodynamics (QCD) and its pertur-

The journal model is Physical Review D.
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(a) (b)

Fig. 1.: (a) Analyzing powers for inclusive charged and neutral pions at
√
s = 19.4

GeV, as measured by FNAL-E704 [6]. (b) Measured and pQCD-predicted cross sec-

tions for inclusive π0 production at
√
s = 23.3 GeV [7]. The measured cross sections

are significantly enhanced relative to predictions.

bative assumptions at high transverse momentum (pT ) [3]. Perturbative QCD states

that measured cross sections depend directly upon partonic cross-sections. Since, to

first order, the partons are massless, and thus, conserve chirality, first-order helicity-

flip amplitudes are zero. Beyond the first order, Kane, Pumplin, and Repko demon-

strated that collinear pQCD predicts a vanishing asymmetry, âN ∝ αsmq/
√
s. Quite

boldly, they stated, “the QCD prediction would be contradicted by observing large

polarization effects.”

By 1980 large π0 asymmetries had been observed up to pT = 2.5 GeV/c from

hadron collisions at
√
s = 6.8 GeV [4]. Antille et al. cautioned that the high-pT π

0’s

were produced near the kinematic limit and that observed spin effects may be the

result of something other than hard scattering. Nearly ten years later, Serpukhov

reported large inclusive π0 asymmetries up to pT = 3.2 GeV/c from π− + p↑ col-

lisions at
√
s = 8.8 GeV [5]. Their concluding statement proclaimed, “The epoch
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of hard scattering models with trivial noncoherent dynamics is over in the quark

phenomenology.”

Into the 1990’s, FNAL-E704 extended p↑ + p measurements out to
√
s = 19.4

GeV for charged and neutral pion production [6], reporting large asymmetries when

the pion contains a high fraction of the maximum longitudinal momentum, which we

denote xF = 2pz/
√
s. For example, E704 reported AN ∼ ±0.4 at xF ∼ 0.8 for π±

(Fig. 1a). While on the surface this might seem to contradict the predictions of pQCD,

cross-section measurements tell a different story. Bourrely and Soffer reported that

cross sections for the E704 kinematic region are enhanced, relative to the collinear

pQCD prediction, by up to an order of magnitude [7] (Fig. 1b). This opens reasonable

questions about the applicability of pQCD in this kinematic region. It is also worth

noting that E704 recognized that pQCD calculations may not apply in the kinematics

of the 1991 publications.

Most recently, RHIC experiments reported AN for inclusive hadron production,

this time, from a polarized-proton collider. STAR reported the first results from the

RHIC spin program showing large asymmetries for inclusive π0 production at forward

scattering angles from polarized-proton collisions at
√
s = 200 GeV [8]. Further STAR

measurements show these asymmetries persist at increasing transverse momentum

and fixed xF [9]. BRAHMS reported large charged hadron asymmetries at
√
s = 62.4

GeV [10], and PHENIX [11] reported π0 and charged hadron asymmetries consistent

with zero at mid-rapidity for
√
s = 200 GeV across the range of 0.5 < pT < 5.0

GeV/c.

The size of the forward asymmetries is similar to those reported from E704

[6] across the same region of xF (Fig. 2a). However, unlike the FNAL-E704 case,

forward π0 cross sections at RHIC energies are in general agreement with collinear

pQCD theory predictions [12] (Fig. 2b). This suggests if one wants to study the role
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(a) (b)

Fig. 2.: (a) Analyzing powers [9] and (b) cross-sections [12] for inclusive-π0 production

at
√
s = 200 GeV. Measured cross-sections are in relative agreement with pQCD

predictions.

of pQCD in large transverse single-spin asymmetries, clearly, the kinematic region of

the STAR data is prime real estate.

B. Non-zero Asymmetries and Transverse Momentum

Leader provides a simple way to visualize where the measured non-zero asymmetry

may arise [13]. To calculate the polarized cross section one needs to consider the quark

number densities, partonic cross sections, and fragmentation functions. The number

densities, f , describe the probability to find within a parent hadron a quark with

certain momentum fraction, x, of the parent hadron. The partonic cross sections, σ̂,

relate to the probability for a certain scattering process to occur. The fragmentation

functions, D, describe the probability for a quark to fragment into a particular hadron

with certain momentum fraction, z, of the scattered quark. For the reaction A↑(↓) +

B → C + X, with A and B colliding along the z-axis and A polarized along the
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y-axis, assuming unit polarization transfer for simplicity, one can write

dσ↑ ∼ f ↑
(
a↑
)
σ̂↑D

(
c↑
)

+ f ↑
(
a↓
)
σ̂↓D

(
c↓
)

dσ↓ ∼ f ↓
(
a↑
)
σ̂↑D

(
c↑
)

+ f ↓
(
a↓
)
σ̂↓D

(
c↓
)
. (1.2)

Here, f ↑
(
a↑
)

and f ↑
(
a↓
)

are the number densities of quarks polarized up and down,

respectively, in A↑; σ̂↑(↓) is the cross-section for the partonic reaction a↑(↓) + b →

c↑(↓) + d; and D(c↑(↓)) is the fragmentation function for parton c polarized up or

down. Now, to first order, âN = 0; so, one can take σ̂↑ = σ̂↓ ≡ σ̂. The total

quark number density in A↑ can be expressed, f ↑ = f ↑
(
a↑
)

+ f ↑
(
a↓
)
. Another

quantity of interest is the probability difference for quarks polarized parallel and anti-

parallel to the parent hadron. This quantity is known as the transversity and can

be expressed h↑1 = f ↑
(
a↑
)
− f ↑

(
a↓
)
. Furthermore, the unpolarized fragmentation

function can be expressed, D =
(
D(c↑) +D(c↓)

)
/2. Finally, one can define the

quantity H⊥1 (c) = D
(
c↑
)
− D

(
c↓
)
, and manipulate the expression to obtain for

“spin-up” and “spin-down”

dσ↑ ∼ f ↑σ̂D +
1

2
h↑1σ̂H

⊥
1 (c) (1.3)

dσ↓ ∼ f ↓σ̂D +
1

2
h↓1σ̂H

⊥
1 (c). (1.4)

Therefore, the asymmetry can be expressed

AN =
dσ↑ − dσ↓

dσ↑ + dσ↓

∼ 1

2dσ

[(
f ↑ − f ↓

)
σ̂D

+
1

2

(
h↑1 − h

↓
1

)
σ̂H⊥1 (c)

]
. (1.5)



6

Now, because of rotational invariance f ↑
(
a↑
)

= f ↓
(
a↓
)
, f ↑

(
a↓
)

= f ↓
(
a↑
)
, and,

therefore, h↑1 = −h↓1 ≡ h1. The final expression, then, is

AN ∼
1

2dσ

[
∆̃Nfσ̂D + h1σ̂H

⊥
1 (c)

]
. (1.6)

Leader’s approach makes it clear, a transverse single-spin asymmetry may arise

from two basic terms: one which depends on number densities, or parton distribu-

tion functions (PDF’s), and one which depends on fragmentation functions. In the

collinear parton model, ∆̃Nf = f ↑−f ↓ = 0, as there can be no difference in the num-

ber of partons with momentum fraction x when the parent hadron is polarized up

versus down. Likewise, when parton c fragments collinearly, H⊥1 = D(c↑)−D(c↓) = 0,

as there can be no difference in the production of hadrons with momentum fraction z

when c is polarized up versus down. Two leading theories address this situation with

transverse momentum dependence (TMD).

Ordinarily, for such a reaction as A + B → C + X with respective partons a, b,

c, and d, one considers cross sections

EC
dσAB→CX

d3~pC
=

∑
a,b,c,d

∫
dxadxbdzfa/A

(
xa, Q

2
)
fb/B

(
xb, Q

2
)

×dσ̂
ab→cd

dt̂

ŝ

πz2
δ
(
ŝ+ t̂+ û

)
DC/c

(
z,Q2

)
, (1.7)

where fa/A and fb/B denote the PDF’s for a and b in nucleons A and B, DC/c denotes

the fragmentation function for parton c into hadron C, and Q2 is the scale at which

the factorization of the cross-section into perturbative and non-perturbative parts is

valid. In this case, the scale is taken to correspond to the momentum transfer, i.e.

Q2 = −q2. However, these expressions do not explicitly consider intrinsic transverse

momentum effects, which have been integrated up to Q2. In general, one can write
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[14]

EC
dσAB→CX

d3~pC
=

∑
a,b,c,d

∫
dxad

2~k⊥adxbd
2~k⊥bdzd

3~kCδ
(
~kC · p̂c

)
f̂a/A

(
xa, ~k⊥a, Q

2
)

×f̂b/B
(
xb, ~k⊥b, Q

2
) ŝ

xaxbs

dσ̂ab→cd

dt̂

(
xa, xb, ŝ, t̂, û

) ŝ
π

×δ
(
ŝ+ t̂+ û

) 1

z2
J
(
z, |~kC |

)
D̂C/c

(
z,~kC , Q

2
)

, (1.8)

where J
(
z, |~kC |

)
/z2 is the proper invariant Jacobian factor for transforming from

the parton momentum to the hadron momentum with the inclusion of transverse

momentum effects. From this starting point are proposed two mechanisms from

which the asymmetry could arise.

C. Sivers and Collins Mechanism

The Sivers mechanism [15] is a model, where the transverse momentum (k⊥) depen-

dence of the PDF is correlated with the spin of the parent hadron, i.e.

f ↑(x, k⊥) = f(x, k⊥) +
1

2
∆̃Nf

↑(x, k⊥)P̂ ·
(
p̂× k̂⊥

)
, (1.9)

where, P̂ and p̂ are the polarization and momentum direction, respectively, of the

hadron. Isolating the PDF contribution to the asymmetry, one can consider

EC
dσ↑

d3~pC
− EC

dσ↓

d3~pC

=
∑
a,b,c,d

∫
dxad

2~k⊥adxbd
2~k⊥bdzd

3~kCδ
(
~kC · p̂c

)
∆̃N f̂

↑
a/A

(
xa, ~k⊥a, Q

2
)

×f̂b/B
(
xb, ~k⊥b, Q

2
) ŝ

xaxbs

dσ̂ab→cd

dt̂

(
xa, xb, ŝ, t̂, û

) ŝ
π

×δ
(
ŝ+ t̂+ û

) 1

z2
J
(
z, |~kC |

)
D̂C/c

(
z,~kC , Q

2
)

. (1.10)
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If φP and φk⊥ are, respectively, the azimuthal angles around p̂ of P̂ and k̂⊥, then one

can write

∆̃Nf (x, k⊥) = f ↑ (x, k⊥)− f ↓ (x, k⊥)

= ∆̃Nf
↑ (x, k⊥) P̂ ·

(
p̂× k̂⊥

)
= ∆̃Nf

↑ (x, k⊥) sin (φP − φk⊥) . (1.11)

Thus, the k⊥ dependence produces an asymmetry in the PDF. The scattering of the

asymmetrically distributed partons could then result in an azimuthal asymmetry in

production of the jet or final-state hadron.

The Collins mechanism [16], on the other hand, considers the transverse mo-

mentum dependence of the fragmentation of a polarized scattered parton, c, into a

hadron, C,

D
(
~Pc; z,~k⊥C

)
= D (z, k⊥C) +

1

2
∆D (z, k⊥C) ~Pc ·

(
p̂c × k̂⊥C

)
. (1.12)

Here, ~Pc and p̂c are the polarization and momentum directions, respectively, of the

scattered quark c; and k̂⊥C is the transverse momentum of the final-state hadron

C relative to the scattered quark direction, i.e. p̂c · k̂⊥C = 0. If one adopts the

approach similar to Yuan [17] and only considers the explicit ~k⊥-dependence of the

fragmentation function, the cross section can be expressed

EC
dσ↑

d3~pC
− EC

dσ↓

d3~pC
=

∑
a,b,c,d

∫
dxadxbdzd

2~k⊥Ch1a/A

(
xa, Q

2
)
fb/B

(
xb, Q

2
)

×dσ̂
ab→cd

dt̂

ŝ

πz2
δ
(
ŝ+ t̂+ û

)
∆̃D̂C/c

(
z, k⊥C , Q

2
)

. (1.13)

If φP and φk⊥ are, respectively, the azimuthal angles around p̂c of P̂c and k̂⊥C , then
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one can write

∆̃D̂C/c

(
z, k⊥C , Q

2
)

= ∆D̂C/c

(
z, k⊥C , Q

2
)
~Pc ·

(
p̂c × k̂⊥C

)
= ∆D̂C/c

(
z, k⊥C , Q

2
)
| ~Pc| sin (φP − φk⊥) . (1.14)

Thus, the Collins mechanism produces an azimuthal asymmetry in the fragmenting

hadrons about the jet axis. Furthermore, it is clear an essential part of the asymme-

try depends on the transfer of polarization from the incident parton to the scattered

parton, i.e. P̂a → P̂c. This can be calculated from the spin-transfer parameter,

d̂TT (θ∗) [13] (Eqs. 2.33, 2.34, 2.35), which describes how much of the initial polariza-

tion normal to the beam is transferred through the collision to the outgoing parton

in a direction normal to its momentum. For the relevant partonic subprocesses, as

cos θ∗ → 1, d̂TT → 1, (Fig. 3). This leads one to expect a larger Collins Effect in the

forward kinematic region.

The scattered polarization can be expressed in the partonic center of mass [13]

Pxc = d̂TT (θ∗) sinφ∗ cosφ∗ (cos θ∗ − 1) (1.15)

Pyc = d̂TT (θ∗)
(
sin2 φ∗ cos θ∗ + cos2 φ∗

)
(1.16)

Pzc = −d̂TT (θ∗) sinφ∗ sin θ∗. (1.17)

One finds

∆̃D̂C/c

(
z, k⊥C , Q

2
)

= ∆D̂C/c

(
z, k⊥C , Q

2
)
| ~Pc| sin (φP − φk⊥)

= ∆D̂C/c

(
z, k⊥C , Q

2
)
d̂TT (θ∗) sin (φP − φk⊥) , (1.18)

and, thus,

EC
dσ↑

d3~pC
− EC

dσ↓

d3~pC
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Fig. 3.: Partonic spin-transfer parameters, d̂TT , for the relevant subprocesses. Clearly,

d̂TT approaches unity as cos θ∗ approaces unity.

=
∑
a,b,c,d

∫
dxadxbdzd

2~k⊥C
ŝ

πz2
δ
(
ŝ+ t̂+ û

)
fb/B

(
xb, Q

2
)
h1a/A

(
xa, Q

2
)

×∆D̂C/c

(
z, k⊥C , Q

2
)
d̂TT (θ∗)

dσ̂ab→cd

dt̂
sin (φP − φk⊥) . (1.19)

The key component of the Sivers effect is the correlation between the polariza-

tion of the initial parent hadron and the transverse momentum of the unpolarized

internal parton, which can be either a quark or a gluon. Such a mechanism would

provide an indirect signature of parton orbital motion [18]. For the Collins effect, the

key component is the correlation between the scattered quark polarization and the

transverse momentum of the fragmenting hadron. One should note that a nonzero

Collins mechanism provides access to constrain the transversity, h1. As gluons cannot

have transverse polarization, there is no transversity or Collins function for gluons.

Thus, both mechanisms provide access to critical internal structure information.
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D. Deciphering Mechanisms

The history of the Collins and Sivers mechanisms is a bit tumultuous, with both

ideas experiencing various levels of disfavor. Initially, it was suggested that the Sivers

mechanism was non-physical based on time-reversal symmetry [16]. This was, later,

shown to be false, based on the inclusion of Wilson lines in the parton density opera-

tors; and the Sivers mechanism was welcomed out of exile [18, 19]. Later, calculations

seemed to predict that the Collins mechanism was suppressed for the inclusive pion

production shown in the STAR data [20]. It was discovered that a sign error in the

gluon-Compton channel was responsible for the apparent suppression [17, 21]. For

the time being, there is no reason to assume either mechanism would not contribute

significantly to the large asymmetries. A remaining challenge is to disentangle these

contributions. Success would provide insight on proton spin structure, namely, parton

orbital motion and transversity. The question, then, is how to separate the Sivers

and Collins contributions to non-zero AN .

Much work has been devoted to studying the Sivers and Collins contributions to

semi-inclusive deep inelastic scattering (SIDIS). As discussed in Ref. [22], the mech-

anisms can be distinguished from the process l + p↑ → l
′
+ h + X, where l and l

′

denote the incident and scattered leptons, respectively, and h denotes the measured

hadron, by considering the various moments of the single-spin asymmetry. The mo-

ments involve two angles: φS, which denotes the azimuthal angle of the nucleon spin

polarization, and φh, which denotes the azimuthal angle of the hadron, each measured

relative to the lepton plane. By considering the sin (φS + φh) moment, the Collins

effect is isolated. On the other hand, by considering the sin (φS − φh) moment, the

Sivers effect is isolated.

For hadron-hardron collisions, one must turn to different measurements to dis-
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entangle the Sivers and Collins effects [23]. The Sivers mechanism is an initial state

effect, resulting in a left-right asymmetry in jet production. On the other hand, the

Collins mechanism is a final state effect, contributing an asymmetry in the hadron

fragmentation around the jet axis. If one can move beyond an inclusive pion analysis

to a full jet analysis, one can separate the Sivers and Collins contributions to the

asymmetries from hadron-hadron collisions. The STAR data [9, 12] could provide

an opportunity to investigate jets in a region where not only are inclusive hadron

asymmetries sizable, but also observed cross-sections are in reasonable agreement

with collinear pQCD predictions. Furthermore, this kinematic region is also where

one would expect the Collins effect to be maximal, due to the limit d̂TT → 1 as

cos θ∗ → 1.

Additionally, effort has been devoted to developing a generalization of the collinear

framework by looking at higher-order calculations [24]. This approach utilizes a se-

ries of higher-order quark-gluon correlations and a class of universal non-perturbative,

“twist-3” quark-gluon distribution and fragmentation functions. This so-called “twist-

3” approach is able to predict large-xF asymmetries like those found in the STAR

data [25]. As a higher-order effect, however, the predicted asymmetry is suppressed

at high-pT , which is not seen in the data [9]. The twist-3 approach and the transverse

momentum-dependent (TMD) Sivers and Collins approaches are suited for separate

kinematic regions. The twist-3 approach is robust with large kT , while the TMD

approach is suited for low kT . As it turns out, the two approaches are unified in the

overlapping region of intermediate kT [26].

Factorization theorems are difficult for TMD approaches and efforts to prove

factorization for hadronic interactions are on-going [27, 28]. Factorization violation

would imply non-universality of the Collins and Sivers functions. For SIDIS, factor-

ization for both the TMD and twist-3 approaches has been proven [29]. Yuan has
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argued in Ref. [30] that the Collins mechanism is, indeed, universal between SIDIS

and hadronic interactions. On the other hand, it is argued the Sivers mechanism

is process-dependent [19, 31], e.g. exhibiting a sign-flip between SIDIS and Drell-

Yan Sivers asymmetries. Thus, disentangling the Sivers and Collins contributions in

hadronic interactions is further interesting as a tool for testing the universality of the

effects between the various types of interactions.

E. Extractions and Predictions from SIDIS

In SIDIS the bulk of work on the Sivers and Collins effects has been carried out

by the HERMES [32] and COMPASS experiments [33] examining both charged and

neutral pion asymmetries. In addition, the BELLE collaboration has measured asym-

metries in di-hadron correlations from e+ + e− → π+ + π− + X where the pions are

measured in separate hemispheres [34]. As a fully electromagnetic process, calcula-

tions are free from scale ambiguities found in QCD processes. The polarizations of

the outgoing quarks can be calculated absolutely and related to the convolution of

quark and antiquark Collins functions. In addition, since initial nucleons are absent,

these asymmetries decouple the Collins functions from transversity. Thus, by com-

bining the HERMES and COMPASS measurements with the BELLE measurements,

it is possible to isolate and extract the Sivers and Collins functions, as well as the

transversity distributions.

Anselmino and company have provided one example of a method to carry out

numerical predictions for the Sivers effect [35]. First, they assume the Sivers function,

∆̃Nf (x, k⊥), can be factorized in the form

∆̃Nf
↑
q/p (x, k⊥) = 2Nq (x) fq/p (x, k⊥)h (k⊥) , (1.20)
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with functional forms

Nq (x) = Nqx
aq (1− x)bq

(aq + bq)
(aq+bq)

a
aq
q b

bq
q

(1.21)

h (k⊥) =
√

2e
k⊥
M1

e−k
2
⊥/M

2
1 . (1.22)

Nq, aq, bq, and M1 are free parameters determined by fits to the data, and |Nq| ≤ 1

and h ≤ 1 to enforce the positivity bound for the Sivers function. Finally, they assert

that the unpolarized distributions and fragmentation functions can be factorized with

Gaussian form

fq/p (x, k⊥) = fq (x)
1

π〈k2
⊥〉
e−k

2
⊥/〈k

2
⊥〉 (1.23)

Dh/q (z, pT ) = Dh/q (z)
1

π〈p2
T 〉
e−p

2
T /〈p

2
T 〉, (1.24)

with 〈k2
⊥〉 = 0.25 (GeV/c)2 and 〈p2

T 〉 = 0.20 (GeV/c)2 from analyzing the Cahn effect

in SIDIS [36]. Anselmino and company consider the contributions of up, down, and

strange quarks; utilize the set of fragmentation functions from de Florian, Sassot,

and Stratmann (DSS) [37]; and utilize PDF’s from GRV98LO [38] (they note that

repeating the fit with the MRST01LO set of PDF’s [39] leads to such negligible

changes that the two fits are quite indistinguishable).

By tuning the free parameters to the HERMES and COMPASS data (Fig. 4),

Anselmino and company are able to extract the Sivers functions for up, down, and

strange quarks (Fig. 5a). These functions, then, may be used in a prediction for

hadronic interactions at RHIC kinematics [21, 40]. While, the Anselmio prediction

is consistent with the observed STAR data [9] (Fig. 5b), the limited kinematic cover-

age of the SIDIS data leads to rather sizable uncertainties at the STAR kinematics.

Furthermore, Anselmino points out that the prediction is also limited by simplifying

assumptions made to reduce the number of free parameters [21]. D’Alesio and com-
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(a)

(b)

Fig. 4.: Sivers asymmetries from SIDIS measured by (a) HERMES [32] on a polarized

hydrogen target and (b) COMPASS [33] on a polarized 6LiD target. The solid lines

reflect the results of the Anselmino fit [35] to the SIDIS data with the shaded area

corresponding to the statistical uncertainty of the parameters.
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(a) (b)

Fig. 5.: (a) The first moment of the Sivers function from the Anselmino fit [35] to

SIDIS data [32, 33]. The distribution is shown for up and down quark flavors at the

evolution scale Q2 = 2.4 (GeV/c)2. The blue dashed lines indicate the positivity

bound. (b) This extraction is applied to the STAR data [21, 40]. The band reflects

fit uncertainties by varying the parameters found in Eqs. 1.21 and 1.22.

pany, also, demonstrate the maximized Sivers contribution for p↑ + p→ jet + π +X

can be quite sizable [23].

Anselmino and company have also provided an example of how to carry out

numerical calculations for the Collins effect [41]. Much like the Sivers case [35], they

propose a factorized form for the transversity distribution and Collins function

h1q/p (x, k⊥) =
1

2
N T
q

[
fq/p (x) + ∆q (x)

] e−k2
⊥/〈k

2
⊥〉T

π〈k2
⊥〉T

(1.25)

∆D̂h/q (z, pT ) = 2NC
q Dh/q (z, pT )h (pT ) , (1.26)

where fq/p (x, k⊥) and Dh/q (z, pT ) are have Gaussian factorization as in Eqs. 1.23 and

1.24. They take the helicity distributions, ∆q, from Ref. [42] and, again, utilize the

DSS fragmentation functions [37] and GRV98LO PDF’s [38]. In analogy to the Sivers
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case, Anselmino and company choose functional forms of

N T
q (x) = NT

q x
αq (1− x)βq

(αq + βq)
(αq+βq)

α
αq
q β

βq
q

(1.27)

NC
q (x) = NC

q z
γq (1− z)δq

(γq + δq)
(γq+δq)

γ
γq
q δ

δq
q

(1.28)

h (pT ) =
√

2e
pT
Mh

e−p
2
T /M

2
h , (1.29)

with −1 ≤ NT
q ≤ 1, −1 ≤ NC

q ≤ 1, and 〈k2
⊥〉T = 〈k2

⊥〉.

By tuning the free parameters to the HERMES, COMPASS, and BELLE datasets

(Fig. 6), Anselmino and company can extract both the Collins fragmentation function

and transversity distributions (Fig. 7a). As with the Sivers case, these functions can

then be used to predict asymmetries for hadronic interactions at RHIC kinematics.

One such example is shown in Fig. 7b. Again, such a fit suffers from large uncertainties

for the STAR kinematics as well as strong dependence on simplifying assumptions to

reduce the number of free parameters. Again, D’Alesio and company show that for

RHIC kinematics, the maximized Collins contributions to p↑ + p→ jet + π + X can

be quite sizable [23].

F. A Third Option: Interference Fragmentation Functions

Ideally, then, one could consider reconstructing full jets in the kinematic region of

the STAR asymmetries. Unfortunately, this is not always feasible, given detector

constraints. In light of experimental realities, one can also consider the production

of two hadrons within a jet [44, 45, 46], for example the coincidence of neutral and

charged pions. Instead of considering correlations of the type

~ST ·
(
~k × ~Ph

)
, (1.30)
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(a)

(b)

Fig. 6.: Collins asymmetries from SIDIS measured by (a) HERMES [32] on a polarized

hydrogen target and (b) COMPASS [33] on a polarized 6LiD target. The solid lines

reflect the results of the Anselmino fit [41] to the SIDIS data with the shaded area

corresponding to the statistical uncertainty of the parameters. Note that HERMES

and COMPASS utilize different conventions introducing a sign flip between the two.
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(a) (b)

Fig. 7.: (a) The transversity function from the Anselmino fit [41] to SIDIS data

[32, 33]. The distribution is shown for up and down quark flavors at the evolution

scale Q2 = 2.4 (GeV/c)2. The blue lines indicate the positivity bound described by

Soffer [43]. (b) This extraction is applied to the STAR data [21, 40]. The band reflects

fit uncertainties by varying the parameters found in Eqs. 1.27 and 1.29.
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where ~ST is the polarization of the fragmenting quark, ~k is the quark momentum,

and ~Ph is the hadron momentum, one can consider correlations of the type

~ST ·
(
~R× ~Ph

)
, (1.31)

where ~R = ~P1 − ~P2 and ~Ph = ~P1 + ~P2 with ~Pi the three-momentum of the produced

hadrons. In this case, the asymmetry remains even in the collinear approximation.

As usual, the asymmetry for two hadrons in the same jet depends directly on

the difference between the cross sections for spin “up” and spin “down.” For the

process A + B↑(↓) → (C1C2)C + X, one can express the spin of incoming proton B

as SB, the momentum of outgoing hadrons Ci as PCi
, the combined momentum as

PC = PC1 + PC2 , the relative momentum as RC = PC1 − PC2 , and the invariant mass

of the two-hadron system as MC . Here, the approach follows that of Bacchetta and

Radici [47], who switch to A unpolarized and B polarized. This keeps a consistency

with a common approach for SIDIS, where A corresponds to the virtual photon, which

is taken to be unpolarized, and B corresponds to the polarized target nucleon. The

difference in cross sections can be expressed [47]

dσUT =
1

2

(
dσ↑

dηCd|~PC⊥|d cos θCdM2
CdφRC

dφSB

− dσ↓

dηCd|~PC⊥|d cos θCdM2
CdφRC

dφSB

)

= 2
∣∣∣~PC⊥∣∣∣ ∑

a,b,c,d

∣∣∣~SBT ∣∣∣ sin (φSB
− φRC

)

×
∫ dxadxb

8π2zc
f1 (xa)h1 (xb)

d∆σ̂ab↑→c↑d
dt̂

∣∣∣~RC

∣∣∣
MC

sin θC

×H 6 c
1

(
z̄c, cos θC ,M

2
C

)
, (1.32)

where the azimuthal angles are defined relative to the event plane, ηC is defined

relative to ~PA, and θC is the center of mass polar angle of the hadron pair with
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(a)

(b)

Fig. 8.: (a) HERMES data [49] and (b) COMPASS preliminary data [50] on di-

hadron asymmetries from SIDIS. Note the difference in sign between the HERMES

and COMPASS asymmetries. This stems from a difference in conventions of the same

nature as in Fig. 6.
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respect to ~PC in any other frame. The partonic component can be expressed

d∆σ̂ab↑→c↑d
dt̂

=
1

16πŝ2

1

4

∑
(allχ′s)

M̂χc,χd;χa,χb
M̂∗

χa,−χb;−χc,χd
, (1.33)

where, here, M̂χc,χd;χa,χb
are the helicity amplitudes. The asymmetry is, then, a

convolution of the transversity, h1, and a new fragmentation function, H
6 c
1 .

These functions arise from the interference between various production ampli-

tudes, so they are commonly referred to as interference fragmentation functions (IFF).

For example, Collins and Ladinsky [44] have discussed the interference between two-

pion production in a continuum state and a σ resonance; while Jaffe, Jin, and Tang

[46] analyzed the interference between the s and p wave of the two-pion system around

the ρ mass region. Bacchetta and Radici [47, 48] have utilized a partial wave analysis

to demonstrate contributing channels. Expanding the function in terms of Legendre

polynomials through the cos θC dependence,

dσUT ≈ 2|~PC⊥|
∑
a,b,c,d

∣∣∣~SBT ∣∣∣ sin (φSB
− φRC

)

×
∫ dxadxb

8π2zc
f1 (xa)h1 (xb)

d∆σ̂ab↑→c↑d
dt̂

∣∣∣~RC

∣∣∣
MC

×
(
H
6 c
1,ot

(
z̄c,M

2
C

)
sin θC +H

6 c
1,lt

(
z̄c,M

2
C

)
sin θC cos θC

)
. (1.34)

H
6 c
1,ot represents the interference between an s wave, L = 0, hadron pair and “trans-

versely” polarized p wave, L = 1 pair; while H
6 c
1,lt represents the interference between

a “longitudinally” polarized p wave and a “transversely” polarized p wave.

Recently, both HERMES [49] and COMPASS [50] have reported measurements of

di-hadron asymmetries from SIDIS (Fig. 8). Much like the SIDIS Collins analysis, the

IFF effect is isolated by considering moments of the single-spin asymmetry, where,

essentially, φh is replaced by φR. So, the moment of interest, here, for SIDIS is

sin (φS + φR). It is noteworthy that the data do not exhibit the change in sign at the
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ρ mass predicted by Jaffe, Jin, and Tang [46] through relative phase shifts between

the s and p wave channels. Again, in analogy to the Collins analysis, the transversity

can be extracted by combining information from fits to the SIDIS di-hadron data,

combined with fits of data from BELLE [51] (Fig. 9). Now, the BELLE data of interest

involve measuring asymmetries of two sets of di-hadron pairs with one pair in each

hemisphere. As in the Collins case, this process is fully electromagnetic, and outgoing

quark polarization is exactly calculable. Thus, these asymmetries may be related to

the convolution of quark and antiquark IFF’s; and, as there is no initial-state nucleon,

these IFF’s are divorced from transversity. Using the fit information combined with

estimations based on the MSTW08LO set of parton distribution functions [52] and

assumptions based on isospin symmetry and charge conjugation, Bacchetta, Courtoy,

and Radici [53] have presented the first extraction of transversity from IFF’s (Fig.

10).

To date, no published di-hadron single-spin asymmetries exist from polarized

proton data. However, PHENIX has presented preliminary data from 2006 and 2008

[54], which do not show significant di-hadron single-spin asymmetries at mid-rapidity

(|η| < 0.35) from collisions at
√
s = 200 GeV. Nonetheless, it is useful to get some

idea of the scale of the effects one might see from the STAR data.

If one considers a simple approximation, the asymmetry for the reaction a+ b→

c+X may be estimated

A ∼ fbh1,adTTdσH
6 c
1

fbfadσDc

=
h1,a

fa
× dTT ×

H
6 c
1

Dc

, (1.35)

where fa and fb are the PDF’s for a and b, h1,a is the transversity for a, dσ is the

partonic cross section, Dc is the unpolarized fragmentation function for the di-hadron



24

Fig. 9.: Asymmetries measured by BELLE [51] involving two sets of hadron pairs

in separate hemispheres from e+ − e− collisions. These asymmetries are void of

QCD ambiguities and are interpreted as an isolation of a convolution of IFF’s from

transversity. Additionally, these asymmetries may be related to the ratio of the IFF

to the unpolarized fragmentation function for the purposes of estimating the scale of

asymmetries expected in hadronic interactions.
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Fig. 10.: Extracted transversity by Bacchetta, et al. [53], from HERMES data [49].

decay of c, and H
6 c
1 is the IFF for c. Now, for the forward angle production, dTT ≈ 1

is an appropriate approximation. The ratio h1,a/fa can be estimated by referring

to the recent Anselmino transversity extraction [41] as well as the GRV98LO set of

PDF’s [38] used in the transversity extraction. This analysis ultimately focuses on di-

hadron correlations at xF ≈ 0.44 and 0.38, thus, the scale estimation should consider

the values of the transversity and PDF’s at these kinematics. Finally, since the scale

is all that matters for this purpose, the BELLE asymmetries [51] can be interpreted as(
H
6 c
1 /Dc

)2
, since they involve the convolution of IFF’s for the quark and antiquark.

At present, no SIDIS data exist on IFF’s for π0 − π±. Since the scale is all that

matters for this estimation, it is not unreasonable to expect that IFF’s for π0 − π±

are on the same order as those for π+ − π−. By assuming the STAR data lie in

the high-z region of the BELLE data (Fig. 9), one can reasonably estimate an IFF

contribution of 0.3 to the asymmetry scale. Also, at issue is which quark flavors in

the transversity and PDF’s correspond to the two types of hadron pairs. For such
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a rough estimate it is not unreasonable to assume the up quark distributions set

the scale for π0 − π+ and down quark distributions set the scale for π0 − π−. An

additional issue is the appropriate evolution scale, Q2, for the PDF’s. For the STAR

data, the kinematics imply Q2 ∼ 10 GeV2 rather than the Q2 = 2.4 GeV2 for which

the transversity is quoted. If one takes the values at 2.4 GeV2 for consistency with

the quoted transversity distribution, one can estimate a scale for IFF asymmetries at

xF,pair = 0.44

Aπ
0−π+

IFF ∼ 0.15 (1.36)

Aπ
0−π−
IFF ∼ −0.07, (1.37)

and at xF,pair = 0.38

Aπ
0−π+

IFF ∼ 0.15 (1.38)

Aπ
0−π−
IFF ∼ −0.08. (1.39)

On the other hand, if one takes the PDF values at 10 GeV2 and assumes the transver-

sity evolves slowly, one can estimate at xF,pair = 0.44

Aπ
0−π+

IFF ∼ 0.19 (1.40)

Aπ
0−π−
IFF ∼ −0.09. (1.41)

and at xF,pair = 0.38

Aπ
0−π+

IFF ∼ 0.18 (1.42)

Aπ
0−π−
IFF ∼ −0.10. (1.43)

Thus, one might expect sizable IFF asymmetries for the STAR data with charge-sign

dependence for pions.
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CHAPTER II

FORMALISM

It is useful to have some idea from where the theory expressions are derived. The

attempt, here, is to keep derivations appropriately concise. The approach follows that

of Leader in Ref. [13].

A. Relation of Final Spin to Initial Spin

A crucial step in any problem is to obtain an expression for the final-state system,

which is to be measured, in terms of the initial-state system, which is to be con-

trolled. For scattering problems, one typically (e.g. Ref. [55]) looks for asymptotic

wave solutions, e.g.

Ψ ∼
(
eikz +

eikr

r
S

)
χinc. (2.1)

By straightforward methods [55], one can conclude

dσ

dΩ
= (Sχinc)

† Sχinc = χ†incS
†Sχinc, (2.2)

or more generally,

dσ

dΩ
= Tr

(
SρincS

†
)

. (2.3)

So, to understand any scattering problem, one needs to understand the density matrix,

ρ, and the scattering matrix, S.

Following the advice of Jacob and Wick [56] by taking advantage of the helicity

quantum number, λ, one can consider a pure quantum state,

|ψ(i); ~p〉 =
s∑

λ=−s
c

(i)
λ |~p;λ〉, (2.4)

with c
(i)
λ = 〈~p;λ|ψ(i); ~p〉, distributed in an incoherent mixture with probability p(i).
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The spin density matrix can be defined [13]

ρ =
∑
i

p(i)|ψ(i); ~p〉〈ψ(i); ~p| (2.5)

ρλλ′ =
∑
i

p(i)c
(i)
λ c

(i)∗
λ′ . (2.6)

More accurately, this is the spin density matrix in the particle’s helicity rest frame.

Furthermore, in an inital-state system A + B, the pure state, Eq. 2.4, can be gener-

alized as

|ψ(i) (A,B)〉 =
sA∑

λA=−sA

sB∑
λB=−sB

|sA, λA; sB, λB〉〈sA, λA; sB, λB|ψ(i) (A,B)〉. (2.7)

The initial spin density matrix (Eq. 2.5) is now generalized

ρi =
∑
i

p(i)|ψ(i) (A,B)〉〈ψ(i) (A,B) |. (2.8)

Now, consider the reaction A + B → C + D, with helicities a, b, c, and d,

respectively. If the probability amplitudes to find the final helicities, c and d, from

initial helicities, a and b, are Mcd;ab, the final-state can be expressed in terms of the

initial-state (Eq. 2.7):

|ψ(i) (C,D)〉 = M |ψ(i) (A,B)〉. (2.9)

Note, here, ψ(i) denotes a pure quantum state with probability p(i). Now, utilizing

Eqs. 2.9 and 2.8, the final-state spin density matrix can take the form [13]

ρ′ (C,D) =
∑
i

p(i)|ψ(i) (C,D)〉〈ψ(i) (C,D) |

=
∑
i

p(i)M |ψ(i) (A,B)〉〈ψ(i) (A,B) |M †

= M

[∑
i

p(i)|ψ(i) (A,B)〉〈ψ(i) (A,B) |
]
M †

= Mρi (A,B)M † (2.10)
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ρ′cd;c′d′ (C,D) =
∑

a,b,a′,b′
Mcd;abρiab;a′b′ (A,B)M∗

c′d′;a′b′ , (2.11)

where ρiab;a′b′ (A,B) represents the components of the initial-state spin density matrix

(Eq. 2.8). For ρiab;a′b′(A,B) normalized such that Trρi(A,B) = 1, then

Trρ′ (C,D) = Tr
[
MρiM

†
]

= Tr
[
M †Mρi

]
= 〈|M |2〉i. (2.12)

The elements Mcd;ab are the elements of the scattering matrix when taken between

final and initial helicity states. Of course, |M |2 is related to the cross section, thus,

they can be normalized as [13]

〈|M |2〉i = 2π
d2σ

dtdφ
(ρi) . (2.13)

So, the final-state spin density matrix can be normalized by dividing by the trace:

ρ (C,D) =
ρ′ (C,D)

Trρ′ (C,D)
. (2.14)

In general, one can expand the density matrix by so-called spherical tensor op-

erators and multipole parameters [13]. For the case of spin-1/2, it is well-known [55]

that one can expand the density matrix as

ρ =
1

2

(
I + ~P · ~σ

)
=

1

2

∑
α

Pασα, (2.15)

where ~P = Tr [ρ~σ] = 〈~σ〉 is the polarization vector and σα are the Pauli matrices. For

the case at hand, the inital-state density matrix (Eq. 2.8) can be expressed

ρi (A,B) =
1

2× 2
×
∑
αβ

Pαβ (A,B)σαβ (A,B) . (2.16)

From Eqs. 2.10, 2.14, and 2.16, one can write

ρ (C,D) 2π
d2σ

dtdφ
(ρi) = Mρi (A,B)M †
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=
∑
αβ

1

4
Pαβ (A,B)Mσαβ (A,B)M †. (2.17)

By multiplying by σα′β′(C,D) and taking the trace, Eq. 2.17 becomes [13]

2π
d2σ

dtdφ
(ρi)Pα

′β′ (C,D) =
∑
αβ

Pαβ (A,B)
1

4
Tr
[
Mσαβ (A,B)M †σα′β′ (C,D)

]

=

(
dσ

dt

)∑
α,β

Pαβ (A,B) (α, β|α′, β′)φ . (2.18)

Thus, the final-state polarization can be expressed in terms of the inital-state polar-

ization. The key components are the “dynamical reaction parameters,” defined as

[13]

(α, β|α′, β′)φ ≡
1

4

(
dσ

dt

)−1

Tr
[
Mσαβ (A,B)M †σα′β′ (C,D)

]
(2.19)

= Rz
αα′′ (φ)Rz

ββ′′ (−φ) (α′′β′′|α′β′) , (2.20)

where

Rz (φ) =



1 0 0 0

0 cosφ −sinφ 0

0 sinφ cosφ 0

0 0 0 1


. (2.21)

B. The Analyzing Power

For an example, consider the reaction A↑(↓) +B → C+D with ~PA↑ = (Px,Py, 0) and

~PA↑ = − ~PA↓. Using Eqs. 2.18, 2.19, 2.20, and 2.21 one can write

d2σ

dtdφ
=

1

2π

(
dσ

dt

)∑
α

Pα (A) (α, 0|0, 0)φ

=
1

2π

(
dσ

dt

){
1 + Px (X, 0|0, 0)φ + Py (Y, 0|0, 0)φ

}
=

1

2π

(
dσ

dt

)
{1 + (Pxcosφ+ Pysinφ) (X, 0|0, 0)
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+ (Pycosφ− Pxsinφ) (Y, 0|0, 0)}

=
1

2π

(
dσ

dt

)
{1 + P (X, 0|0, 0) cos (φS − φ)

+P (Y, 0|0, 0) sin (φS − φ)} , (2.22)

where φS denotes the azimuthal angle of P . At this point, consider (X, 0|0, 0). From

Eq. 2.19,

(X, 0|0, 0) =
1

4

(
dσ

dt

)−1

Tr
[
MσxM

†
]

, (2.23)

for which one finds (X, 0|0, 0) = 0 [13]. Now, Eq. 2.22 simplifies to

d2σ

dtdφ
=

1

2π

(
dσ

dt

)
{1 + P (Y, 0|0, 0) sin (φS − φ)} . (2.24)

Now, since d2σ↑/dtdφ+ d2σ↓/dtdφ = (dσ/dt) 2/2π, Eq. 2.24 can be used to write

1

P

(
d2σ↑

dtdφ
− d2σ↓

dtdφ

)
/

(
d2σ↑

dtdφ
+
d2σ↓

dtdφ

)
= (Y, 0|0, 0) sin (φS − φ) . (2.25)

It is clear, now, (Y, 0|0, 0) is the “analyzing power,” AN . Specifically, one can write

[13]

(Y, 0|0, 0) =
1

4

(
dσ

dt

)−1

Tr
[
MσyM

†
]

=

(
dσ

dt

)−1

=
[
M∗

++;−+ (M++;++ +M+−;+−)

−M∗
++;+− (M++;−− −M+−;−+)

]
. (2.26)

One immediately sees that the analyzing power directly depends on so-called “helicity-

flip” amplitudes, M++;−+ and M++;+−. As discussed in chapter 1, this is tantalizing

insight which has drawn many into the tumultuous waters of spin physics.
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C. The Spin Transfer Parameters

As discussed in chapter 1, one of the keys to the Collins and IFF effects is the transfer

of spin from an incoming quark to an outgoing quark. Consider the partonic reaction

a↑+b→ c↑+d with initial polarization ~Pa and final polarization ~Pc. The components

of ~Pc can be expressed in terms of cartesian dynamical reaction parameters (Eq. 2.18)

[13]

Pxc = (X, 0|X, 0) sinφ∗ (2.27)

Pyc = (Y, 0|Y, 0) cosφ∗, (2.28)

where ∗ denotes the partonic center of mass. In terms of the helicity amplitudes, M ,

(Eq. 2.19) [13]

(Y, 0|Y, 0)
dσ̂

dt̂
=

1

4
Tr
[
Mσy (A)M †σy (C)

]
= <

(
M++;++M

∗
+−;+− −M++;−−M

∗
+−;−+

)
+|M++;+−|2 + |M++;−+|2, (2.29)

and

(X, 0|X, 0)
dσ̂

dt̂
=

1

4
Tr
[
Mσx (A)M †σx (C)

]
= <

(
M++;++M

∗
+−;+− +M++;−−M

∗
+−;−+

)
+|M++;+−|2 − |M++;−+|2. (2.30)

Now, since to first order, partonic helicity-flip amplitudes are zero, Eqs. 2.29 and 2.30

become

(Y, 0|Y, 0)
dσ̂

dt̂
= <

(
M++;++M

∗
+−;+−

)
(2.31)

(X, 0|X, 0)
dσ̂

dt̂
= <

(
M++;++M

∗
+−;+−

)
, (2.32)
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and one can define (X, 0|X, 0) = (Y, 0|Y, 0) = d̂TT (θ∗). These are the partonic spin-

transfer parameters. For this analysis the relevant subprocesses are q + q′ → q + q′,

q + q → q + q, and q + g → q + g. For these subprocesses, [30, 13]

q + q → q + q d̂TT
dσ̂

dt̂
= g4

s

2

9

[
4ŝû

−t̂2
− 1

3

4ŝ

−t̂

]
(2.33)

q + q′ → q + q′ d̂TT
dσ̂

dt̂
= g4

s

2

9

4ŝû

−t̂2
(2.34)

q + g → q + g d̂TT
dσ̂

dt̂
= g4

s

[
8

9
+

1

2

−4ûŝ

t̂2

]
. (2.35)

As shown in Fig. 3, in the limit cos θ∗ → 1, one finds d̂TT → 1, suggesting larger

Collins and IFF effects at forward kinematics.
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CHAPTER III

EXPERIMENTAL SETUP

Spin effects would be pointless to discuss had one no means to produce the polarized

beams necessary to observe them. As discussed in chapter 1, large spin effects have

been observed at a variety of facilities [2, 4, 5, 6, 10, 9]. One of the facilities at which

large spin effects have been observed in correlation with cross sections in agreement

with predicted collinear pQCD cross sections [9, 12] is the Relativistic Heavy Ion

Collider (RHIC) at Brookhaven National Laboratory (BNL) (Fig. 11).

A. A History of the Relativistic Heavy Ion Collider

The concept of RHIC dates back to 1983, when the DOE/NSF Nuclear Science Ad-

visory Committee identified “a relativisitic heavy ion collider as the highest priority

for the next major facility to be constructed” [57]. The original goal was the inves-

tigation of nuclear matter at extreme temperature and density, specifically, to create

and study quark-gluon plasma.

The notion to utilize RHIC as a “spin collider” was discussed at a November

1990 Polarized Collider Worshop at Pennsylvania State University [58]. Born out of

this meeting was the RHIC Spin Collaboration which submitted a letter of intent to

the BNL Program Advisory Committee in August 1991. The formal proposal [59]

was submitted in October 1992 gaining approval the following year. In September

1995, RIKEN agreed to provide additional funding for accelerator components and

spin-physics upgrades for the PHENIX detector.

Construction for the RHIC project began in 1991 and lasted eight years. On

June 12, 2000, the first Au + Au collisions, at
√
s = 56 GeV took place, followed by

additional collisions at
√
s = 130 GeV. Finally, on July 18, 2001, heavy-ion collisions
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Fig. 11.: The RHIC facility.
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reached the design energy of
√
s = 200 GeV.

RHIC as a spin collider became a reality on December 20, 2001, with the first

~p+ ~p collisions at
√
s = 200 GeV. A further milestone was achieved on February 12,

2009, with the first collisions at
√
s = 500 GeV.

B. The Polarized Beam

Achieving polarized-proton collisions at energies as high as
√
s = 200 and 500 GeV is

a complicated, multi-step process. The initial polarized protons are generated from an

Electron Cyclotron Resonance (ECR) type Optically-Pumped Polarized Ion Source

(OPPIS) constructed at TRIUMF from the KEK OPPIS [60]. H+ ions are produced

with a 28 GHz ECR source and passed into a Rb neutralization cell. Electron-spin

polarized Rb atoms are created by absorption of circularly-polarized light from dye

lasers tuned to the wavelength of the D1 line. Interaction between the H+ ions and

the optically-pumped Rb vapor neutralizes some of the H+ ions with a polarized

electron. As the resulting fast H0 passes to the Na ionizing cell, a short period of

low magnetic field polarizes the H0 nucleus via the hyperfine interaction. A Na-jet

ionizing cell produces the final H− ions ready for the acceleration process.

The pulse of polarizedH− is initially accelerated to 200 MeV by a radio-frequency

quadrupole and the 200 MHz LINAC. This pulse is strip-injected into the AGS

Booster, where it undergoes acceleration to 1.5 GeV before being transferred to the

AGS for acceleration to 25 GeV. After transport to RHIC via the AGS to RHIC

(AtR) transfer line the beams can be accelerated to the collision energies of 100 GeV

or 250 GeV in each beam [61].

During acceleration, the spin polarization, ~P is directed by the Thomas-BMT
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equation [62]

d~P

dt
= −

(
e

γm

) [
Gγ ~B⊥ + (1 +G) ~B‖

]
× ~P , (3.1)

where, for the purpose, here, m is the mass of the proton, G = 1.7928 is the anomalous

magnetic moment of the proton, and E = γm. Comparing this equation to the

Lorentz force law

d~v

dt
= −

(
e

γm

) [
~B⊥
]
× ~v, (3.2)

one sees that in a vertical field the polarization vector rotates Gγ times for every

orbit. One can refer to νsp = Gγ as the “spin tune.”

The main problem surrounding acceleration of polarized beams is overcoming

depolarization resonances, in particular, imperfection resonances and intrinsic reso-

nances. Imperfection resonances are achieved when νsp = n, where n is an integer;

and intrinsic resonances are achieved when νsp = kP ± νy, where k is an integer, P is

the number of identical accelerator sections (superperiodicity), and νy is the betatron

tune. To overcome these resonances, RHIC utilizes “Siberian Snakes” [63], which

rotate the polarization 180◦ through a horizontal axis. As the snake introduces a

half-integer spin tune, the requirements for depolarization resonances cannot be met,

as long as the betatron tune is not half-integer [61].

In the AGS Booster, three imperfection resonances are overcome by harmonic

corrections to the vertical closed orbit. Acceleration in the AGS crosses forty-one

imperfection resonances and seven strong intrinsic resonances. These are crossed

with a 5.9% partial snake and a 15% partial snake. For 2008, eighty-two horizontal

resonances were uncorrected, resulting in a ∼ 10% loss of polarization. Finally, two

pairs of full snakes, are positioned at opposite positions on the RHIC ring to avoid

the myriad of depolarization resonances encountered during acceleration to collision

energies [64].
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The polarization of the RHIC beam is determined by Coulomb-Nuclear Interfer-

ence (CNI) polarimetry. CNI polarimetry measures the elastic scattering asymmetry

due to the interference of spin-flip and non-flip terms of the electromagnetic and

hadronic amplitudes, i.e.

AN ∼
φem

flip
∗φhad

non−flip + φem
non−flip

∗φhad
flip

|φem|2 + |φhad|2
(3.3)

Relative polarization is quickly determined with a p + C polarimeter, which is later

normalized to a H-jet polarimeter for absolute polarization. In addition, both STAR

and PHENIX utilize local polarimetry, with PHENIX utilizing the spin-dependence

of forward neutrons and STAR detecting forward hadrons in the STAR Beam-Beam

Counter (BBC) [65].

In a typical run, such as the 2008 p↑+p↑ run, each ring is divided into 120 bunches

of protons, numbering from 0 to 119. The rings are then tuned in such a way that a

particular bunch from the clockwise beam, denoted as the “blue” beam, crosses the

experimental halls with a particular bunch from the counter-clockwise beam, denoted

as the “yellow” beam. This procedure is termed “cogging” the beam. As an example,

in 2008, the beam was cogged in such a way that bunch 0 for each beam crossed the 2

o’clock and 8 o’clock positions on the RHIC ring. This resulted in bunch 0 from the

blue beam intersecting with bunch 80 from the yellow beam at the STAR interaction

point at the 6 o’clock position on the ring. The intersections of the bunches are termed

“bunch-crossings” and are also assigned an index from 0 to 119. Each time the RHIC

ring is filled, the bunches are filled with a particular pattern to the spin orientation.

These patterns ensure that the interactions experience each possible combination of

polarization directions. Thus, by knowing the particular bunch crossing and the spin

pattern for the given fill, one can deduce the polarization orientation in each beam

for a particular event.
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Fig. 12.: The Solenoidal Tracker at RHIC in 2008.

C. The Solenoidal Tracker at RHIC

One of the large detectors equipped to utilize the polarized beam is the Solenoidal

Tracker at RHIC (STAR) (Fig. 12). Designed to handle the large particle multiplicity

from central heavy ion collisions over a large acceptance [66], STAR is outfitted with a

large Time Projection Chamber (TPC) [67], spanning |η| < 1.8 over the full azimuth.

Surrounding the TPC, the Barrel Electromagnetic Calorimeter (BEMC) [68] provides

large acceptance for neutral and electromagnetic energy, extending STAR’s capability

to measure neutral-decay mesons, such as π0’s and η mesons, as well as extending

STAR efficiency for jet reconstruction. Tracking at forward angles is achieved by

means of the Forward Time Projection Chamber (FTPC) [69], spanning 2.5 < |η| < 4

over the full azimuth. Forward calorimetry is extended with the Endcap Electromag-

netic Calorimeter (EEMC) [70] over the range of 1 < η < 2.0 and the Forward Meson

Spectrometer (FMS) [71] over the range of 2.5 < η < 4 each over the full azimuth.

The aforementioned BBC’s [65] consist of hexagonal tiles of scintillator annuli situ-
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ated 3.7 m from the interaction point, covering 2.1 < |η| < 5.0. Each BBC module is

composed of two groups of hexagonal tiles: two rings of small tiles surrounded by two

rings of large tiles. The BBC modules equip STAR with local polarimetry, luminos-

ity information, as well as coincidence information for tagging non-singly diffractive

events.

Because STAR includes subsystems with widely varying read-out times, the trig-

ger system [72] utilizes a multi-layered system. So-called “fast detectors,” such as the

BEMC, EEMC, BBC, and FMS, are digitized every crossing (∼ 10 MHz). The first

three trigger layers, L0, L1, and L2, utilize data from these fast detectors to determine

whether or not to read out the “slow detectors.” At L0, fast detector information is

sent to a tree of Data Storage and Manipulation (DSM) modules which propagate

this information to a Trigger Control Unit (TCU). If the information matches trigger

requirements and the requested detectors are live, L0 is satisfied. The slow detectors,

then, begin the digitization process. During the slow detector digitization, raw fast

detector data is analyzed with different levels of granularity for L1 and L2. If the

data satisfy this level, the event is sent to the STAR DAQ [73]. The L0, L1, and L2

decisions can be made in 1.5 µs, 100 µs, and 5 ms, respectively. A fourth level, L3,

is a software trigger utilizing slow detector data. Decisions at L3 can be made in 200

ms.

D. The Forward Time Projection Chamber

The FTPC [69] (Fig. 13) was constructed with the goal of 1-2 mm track separation

capability in the limited space available inside the STAR TPC. To make use of this

space, a radial drift configuration with curved readout chambers was used. The

anode wires were, first, glued to a flat pad plate with conductive epoxy. Between
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Fig. 13.: The STAR Forward Time Projection Chamber [69].

three rollers, the plate was then bent to the desired radius of 305 mm. Because of

the short drift length (23 cm.), an Ar/CO2 gas mixture is used.

The physical arrangement of the FTPC is organized into five rings of two padrows

each. Further, the rings are subdivided into six azimuthal readout chambers (sectors).

The field cage is composed of an inner high-voltage electrode and the outer cylinder

wall at ground voltage. The sensitive volumes span 93.7 cm in length (162.75 <

|zSTAR| < 256.75 cm) with an inner radius of 7.73 cm and an outer radius of 30.03

cm.

A total of 19,200 channels of electronics are used in the FTPC. The drift time,

50 µs for 23 cm, is divided into 256 time bins. A shaping time of 350 ns is used. All

told, this results in a 5 MHz sampling rate.

The FTPC is equipped with a laser system to provide straight tracks of known

position. These can be used to correct for spatial distortions, calibrate drift velocities,
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and test the detector in the absence of collider activity.

Data reconstruction is accomplished in a two-step process. First, a cluster-finding

algortithm [74] is used to determine hit coordinates. The cluster finder reads in the

electronics signal, finds areas of non-zero charge, deconvolutes clusters, and fits the co-

ordinates. Second, a track-reconstruction algorithm [75] determines charged-particle

tracks and their momenta. The track-reconstruction algorithm utilizes a conformal

mapping procedure. Tracks are determined by a straight-line fit to the cluster hits in

helical coordinates. Extrapolating the tracks to an intersection determines a primary

collision vertex. The momenta of the tracks are then determined by utilizing the

magnetic field and the primary vertex.

E. The Forward Meson Spectrometer

The FMS (Fig. 14) was constructed with the goal of studying nuclear gluon densities,

parton saturation, and proton spin [71]. Extending calorimetry to forward angles

allows STAR to access low-x gluon processes and forward pion production critical to

these goals.

The physical arrangement of the FMS is two lead-glass (PbGl) arrays surrounding

the beam pipe at a distance of 706 cm from the interaction point. The two arrays

are arranged as follows: an inner calorimeter of 476 “small cells” (3.8× 3.8× 45 cm3)

and an outer calorimeter of 788 “large cells” (5.8 × 5.8 × 60 cm3). The full stack

spans an area of 34× 34 large cells. Metal spacers (depicted as green cells in Fig. 14)

sit in the place of 28 large cells in each corner. The inner calorimeter spans an area

of 24× 24 small cells, utilizing plastic spacers to fit smoothly within a 16× 16 large

cell space around the beam. Within the inner calorimeter sits an aluminum spacer

of an area equal to 10 × 10 small cells surrounding the beam pipe. The FMS stack
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Fig. 14.: The STAR Forward Meson Spectrometer.

is physically separated into two halves, left and right of the beam, and situated on a

movable track, allowing the two halves to close toward and separate from around the

beam pipe.

Large cells are fitted with 10-stage Amperex XP2202 phototubes with 1200

V/mA resistive dividers and zener diodes on the last four stages to control rate depen-

dence. Small cells, on the other hand are fitted with two different types of phototubes.

224 small cells are outfitted with 12-stage FEU-84 phototubes with Cockroft-Walton

bases utilizing a diode-chain and chopper boards. The remaining small cells are fitted

with 10-stage Amperex XP2972 phototubes with Cockroft-Walton bases.

The FMS is equipped with an LED monitoring system to test detector response

and monitor gains during a run when the enclosure is inaccessible. The system is

composed of a box with optical fibers attached to a lucite mixer bar and LED’s. The

fibers are routed to holes in the face of the box positioned to distribute the LED light
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to each FMS cell.

Construction of the detector was completed in February of 2007. Because of

limited numbers of detectors, it was necessary to repair some detectors with varying

levels of damage, e.g. radiation damage and bad optical connections. Large cell

phototubes were fixed with an optical cookie to an aluminum can and phenolic block

assembly. This assembly was then glued to the PbGl with a two-part optical epoxy.

Small cell phototubes were glued directly to the PbGl face. Each cell was cleaned

with ethanol and wrapped in aluminized mylar to improve light containment and

limit cross-talk between detectors. After wrapping, each detector was measured for

length and width. Large cell phototube I/V curves were evaluated for faulty zener

diodes, and each cell was also LED tested to determine an optimal position relative to

the beam. Low gain cells were positioned closer to the beam, and high gain cells were

positioned farther from the beam to try to balance the response across the coverage

area.

Readout of the FMS is governed by so-called QT electronics. An eight-channel

QT-8 daughter card records ADC information from eight different cells. Four such

cards each send to a thirty-two channel QT-32 motherboard a three-bit ID and twelve-

bit ADC value for the highest ADC cell of the eight covered. Each QT-32, then, finds

the highest of the four values and passes this information along with a five bit ID to

DSM boards in the STAR trigger system [72].

For 2008, the FMS utilized a so-called “high-tower” trigger, firing when an indi-

vidual cell reported ADC’s above a certain threshold. In 2008, the thresholds were

200 for large cells and 400 for small cells. The trigger was applied over three “layers”

in the DSM tree. The first layer compared ADC values to the two thresholds and

OR’ed the results with a “mask” bit which determined if the ADC value was to con-

tribute to the trigger. These results were OR’ed together as they were propagated
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through the other layers.

Photon reconstruction in the FMS is accomplished by means of a cluster-finding

algorithm [76]. The towers from each event are divided into clusters, and a moment

analysis is performed to determine the number of photons within a cluster. A shower

shape function is used to fit the tower response from which photon location and energy

can be extracted.

PMT gains are calibrated using π0’s constructed from the reconstructed photons.

First, the π0’s are associated with the highest energy tower in the event. Then, for

each tower, the gains are scaled by the ratio of the reconstructed mass to the known

value of 135 MeV. The procedure is iterated until the gains converge. A further

correction is applied to the photons, themselves, to account for an energy-dependent

shift in the mass of the pion after calibration.
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CHAPTER IV

EVENT LEVEL CUTS

Not all events are of interest to this analysis. For that matter, not all of the events in

the data are physical. What one needs is a series of cuts to weed out useless events,

and, ultimately, trim away events that cause more trouble than they are worth (e.g.

too much background and not enough signal).

A. Trigger

For a correlation analysis involving multiple subsystems, one needs to access events

from triggers which simultaneously read out data from the desired subsystems. In

this case, I desire to correlate events from the FMS and FTPC. In 2008, STAR defined

a trigger known as FMS-slow. This trigger read out the slow detectors, such as the

TPC and FTPC, for a prescaled subset of the events that satisfied the FMS trigger

condition. FMS-slow triggers for the 2008 p+ p run can be accessed in the data files

by way of a trigger ID. In the early portion of the run (runs 9043035 to 9050071)

the FMS-slow ID was labeled 220980, while in the latter portion of the run (runs

9050072 to 9070007) the trigger ID was labeled 220981. The 2008 FMS-slow data

are stored in a separate data stream, known as st fmsslow, from the general STAR

physics triggers, typically labeled st phys. One might assume that all of the data in

the st fmsslow stream satisfy the FMS-slow trigger ID, however, investigation shows

that ≈ 5% of events within the stream do not satisfy either of the documented trigger

ID’s from the 2008 polarized-proton run. Thus, it is necessary to implement a trigger

ID cut to ensure selection of the relevant data for this analysis.

As discussed in chapter 3, the 2008 FMS trigger condition was a “high-tower”

trigger, where an ADC requirement was imposed on the individual towers of the FMS,
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above which the data are read out. For < 0.5% of events, communication or timing

errors occurred, manifesting themselves as events without a tower above the trigger

threshold. It is trivial to veto those events which do not appear to satisfy the trigger

requirement.

Unfortunately, the high-tower trigger in 2008 suffers from severe non-uniformity

in the gains (Fig. 15). This was exacerbated by what turned out to be insufficient

magnetic shielding around the phototubes. The close proximity to the RHIC DX

magnet coupled with the STAR magnet fringe field tended to reduce the phototube

gains, thus raising the effective energy threshold needed to satisfy the high-tower

requirement. As a result, the 2008 triggers are dominated by two low-threshold

towers, which account for nearly one-third of all triggers. Including these two towers,

the top ten most frequent trigger towers account for over half of the triggers from

the data set. Six of these towers are located in the outer calorimeter at lower η,

where one would expect lower multiplicity. Furthermore, around 12% of the towers

account for none of the triggers. Altogether, this is a substantial problem in terms of

trigger acceptance; and, so, it is necessary to mask out the top two towers. Without

such an action, acceptance effects are quite dramatic and difficult to correct, both for

the unpolarized correlation signal as well as the acceptance complications to the spin

asymmetries. To do this, I assign in the software an ADC of zero to the top two most

frequent trigger towers. This is a sizeable loss of data, but necessary for any hope of

a meaningful measurement.

As I will show in a forthcoming section, the gain non-uniformity can lead to

an energetic charged hadron leaving sufficient energy in the calorimeter to satisfy

the high-tower condition. Since I am only interested in events triggered by a π0,

these events are not of interest. In addition to the energy deposited in the FMS,

these events will also leave a track in the FTPC. These “auto-correlations” input
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Fig. 15.: The location of each trigger tower is shown. It is clear that the trigger

is represented in a non-uniform manner with a handful of towers accounting for the

bulk of the triggers and others never represented in the trigger. The top ten most

frequent towers, accounting for over half of the triggers, are circled in black. Note

that six of the ten are from the outer calorimeter (i.e. lower η), where one does not

expect significantly high multiplicity.
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significant dilution into the desired signal of a correlation of two different particles

from the event. Thus, it is necessary to cut auto-correlations from the trigger. Here,

I require that the event have at least one FMS tower above the high-tower threshold

which does not have an auto-correlated track in the FTPC. I leave open the possibility

for additional towers satisfying the trigger with auto-correlated tracks, as long as one

uncorrelated trigger tower is present in the event. The procedure for this veto will be

discussed in a forthcoming section.

B. LED Veto

As I discussed in the previous chapter, the FMS is equipped with an LED monitoring

system, which distributes LED light to each tower. LED-triggered events are non-

physical and distort the reconstruction of trigger pions which I correlate to tracks.

Additionally, LED’s can induce “after-pulsing,” which is commonly described as a

“false” signal appearing after a “true” signal. One of the ways these after-pulses

can occur is by an electron slipping out of the dynode and ionizing gas within the

PMT vacuum. If these ions perturb the photocathode, this can lead to electron

multiplication within the dynode chain creating a pulse well after the LED signal.

This LED after-pulsing needs to be rejected along with the LED events.

While LED events can be excluded simply by referring to the LED trigger bit,

a more involved method is needed to veto LED after-pulsing events in the FMS-slow

data. First, a full pass over the FMS-slow data is used to log run number, event

number, and bunch-crossing number when the LED bit in the trigger is “on.” From

this pass, a list for each run is compiled of bunch-crossings corresponding to an LED

event. After-pulsing events are excluded by referring to the LED lists. Events are

excluded when the current bunch-crossing is within three bunch-crossings before or
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(a) (b)

Fig. 16.: QT hit distributions (a) after rejecting LED and LED after-pulse bunch

crossings, and (b) after exclusion of problematic runs. Each step reduces the number

of LED-like events, yet LED-like events still remain. Remaining events are excluded

by way of a cut on summed FMS tower energy.

ten bunch-crossings after an LED event.

Evaluating the distribution of FMS QT hits from events passing the bunch-

crossing cuts (Fig. 16a) reveals that a small number of LED and after-pulsing events

remain after the bunch-crossing cut. Most of these events, apparently, correspond to

hardware issues during the run. Among the runs with Nhits > 200, three runs (run

9045006 containing 165 such events, run 9045014 containing 23, and run 9068063

containing 581) appear to have timing issues. Logs from each run show that past a

certain point in the run, no LED or after-pulsing events are tagged, but high Nhits

events persist. One possible explanation is that after a certain point in the run the

trigger clock began to go out of sync with the RHIC clock. In addition to these high-

Nhits runs, three runs (9065027, 9068081, and 9049048) contain many events with
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(a) (b)

Fig. 17.: (a) The energy spectrum for the sum of all FMS tower energy deposition

shows a small (≈ 0.08%) number of events above the collision energy of 200 GeV

(denoted with a red line). Exclusion of these events accounts for the final cut in the

LED veto. After the summed energy cut (b), the QT hit spectrum shows considerable

reduction in the number of high Nhits events. (b) shows a subset of runs used in (a)

to focus on those with high Nhits.

unusually high numbers of reconstructed trigger photons in the FMS. The logs for

these runs have similar structure to the high-Nhits runs, where, after a certain point

in the run, no LED events register, but high-Ntrig events persist. The most efficient

way to deal with these issues is to exclude events from these troublesome periods.

The LED leak-through is quite small after excluding the troubled runs (Fig. 16b).

Remaining leak-through is accounted for by imposing an upper-limit of 200 GeV on

the summed energy of all FMS towers (Fig. 17). As a sanity-check, the invariant

mass spectrum of di-photons satisfying the trigger is much cleaner after the LED

veto. Particularly, the spectrum for events when both photons satisfy the trigger
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(a) (b)

Fig. 18.: The invariant mass distribution for two-trigger photon events (a) before

LED exclusion and (b) after LED exclusion. The LED veto leaves most of the events

in the π0 peak, while eliminating most of the high-mass structure from the LED’s.

The cuts also appear to reveal the presence of an η peak.
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(Fig. 18) shows marked improvement. The cuts seem to preserve entirely the π0 peak

while excluding the LED-induced structures at higher mass. Furthermore, evidence

of an η peak is revealed after the LED cuts.

C. FTPC Detector State

Essential to this correlation analysis is the reliability of the FTPC data. One of

the standard methods within STAR is the detector state flag. The status for each

detector is stored event-by-event within the data file and can be referenced offline to

determine the reliability of the data for a particular subsystem. For this analysis,

the event is rejected if the west FTPC does not return a “good” detector state or if

the state is returned as “bad.” These events correspond to voltage trips in the west

FTPC and account for < 5% of the data.

D. Vertex

Tracks from the FTPC are only stored with information from the vertex corresponding

to the event’s collision (“primary vertex”). Furthermore, the efficiency of the FTPC

strongly depends on the quality of the reconstructed vertex as well as its location in

STAR. Requiring a primary vertex is a negligible cut, excluding < 0.1% of events.

To evaluate the quality of the event vertex, reconstructed vertices are given a “rank.”

Vertices of low quality or non-collision vertices are given a negative rank. About 38%

of the remaining events have negative rank, representing the largest event-level cut.

Following previous FTPC analyses [77, 81, 82], I have restricted the z-location of the

vertex to −50 cm < zvertex < 50 cm (Fig. 19). This cut excludes about 37% of the

remaining events with a primary vertex with positive rank.
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Fig. 19.: Event vertex distribution after cutting on vertex rank. The distribution

is biased toward negative z since the event triggers on a high-energy event in the

forward direction. The restriction −50 < zvertex < 50 cm excludes ≈ 37% of events.
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E. Auto-correlation

When one is studying two-particle correlations from overlapping subsystems, it is

important to remove “auto-correlation” events, where one particle registers hits in

both detectors. In the specific case of the FMS and the FTPC, this could occur

when a charged particle leaves a track in the FTPC and deposits sufficient energy in

the FMS to reconstruct as a “photon.” In 2008, the FMS gain was sufficiently non-

uniform that in certain low-threshold towers a hadronic shower could leave enough

energy to satisfy the high-tower ADC condition. These events are not of interest to

this correlation analysis, and an auto-correlation veto has been developed to exclude

them.

As a charged particle traverses the FTPC, it experiences the STAR solenoidal

magnetic field. For the 2008 run, the solenoidal field was “reversed full field,” i.e. full

strength of 0.5 T in the −z-direction. This solenoidal field introduces an azimuthal

progression to the charged particle trajectory. As the charged particle approaches the

pole-tip, it experiences a radial fringe field, which counters the azimuthal kick of the

solenoidal field. The net azimuthal kick of the charged particle results in a φ-offset

between events reconstructed in the FMS and the identical events reconstructed in

the FTPC.

If one only considers the azimuthal kick for the solenoidal field, one can use the

well-known formula

pT = cqBR

γmR
dφ

dt
= cqBR

∆φ = cqB∆t/γm, (4.1)

where pT is the momentum component in units of GeV/c transverse to the magnetic
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(a) (b)

Fig. 20.: The z-dependence of the STAR (a) solenoidal field and (b) radial field.

field, c is the speed of light in m/ns, q is the charge of the particle in units of positron

charge, B is the magnetic field in Teslas, and R is the radius of curvature in meters.

To determine the amount of time (∆t) the charged-particle is in the magnetic field,

one can utilize the fact that the axial field has no effect on the axial motion of the

particle, i.e. dpz/dt = 0, and, thus,

∆z = pz∆t/γm. (4.2)

Equation 4.1 can, then, be expressed

∆φ = cqB∆z/pz. (4.3)

Thus, the expectation is a 1/pz-like dependence to the azimuthal kick in the charged-

particle trajectory.

Referring to field maps of the STAR magnetic field (Fig. 20), one can also work

out a more informed numerical prediction. If one approximates the solenoidal field as

a step-wise function from 0 < z < 350 m and the fringe field as a step-wise function
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from 300 < z < 400 cm,

∆φ = c
(∫

Bzdr −
∫
Brdz

)
/pr

≈ c(0.5 T× (pr/pz)× 3.5 m

− (3.5/0.4) (pr/pz)× 0.1 T× 1 m)/pr

≈ (0.53− 0.26) /pz

≈ 0.27/pz. (4.4)

Since I am only interested in events which are triggered by a π0, I need to weed

out events where the trigger is fired by a charged hadron, happening upon a low-

threshold tower. The first task toward this end is to mask out the two towers which

account for nearly one third of the triggers, as discussed in a previous section. Beyond

that, I can examine the auto-correlation between charged tracks and the location of

the FMS towers. I, then, require that the event contain at least one tower above

trigger threshold which does not have an auto-correlated track.

The first step in the auto-correlation veto for towers, is to examine the relation

of tower energy to track momentum. Figure 21 demonstrates that the calorimeter

response as a function of track momentum seems to separate into two classes of

response. This is suggestive of a hadronic-like response for lower energy separating

from electromagnetic-like response for higher energy. I set a threshold of 6.5 GeV for

outer-calorimeter cells and 8.5 GeV for inner-calorimeter cells below which I define

as “hadron-like” and above which I call “electron-like” auto-correlations.

The second step is to examine the angular correlation spectra (Figs. 22 and

23). I define a sample of events (denoted in the figures by blue circles) which I will

investigate for 1/pz-dependence. It is clear that this sample exhibits offsets from zero

in both ∆η and ∆φ, which I quantify with gaussian fits to the peak. The ∆η offset is
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(a) (b)

Fig. 21.: Tower energy as a function of charged-track momentum for (a) outer FMS

calorimeter towers and (b) inner FMS calorimeter towers. The appearance of two

bands is suggestive of hadronic-like response and electromagnetic-like response in the

calorimeter. A red line denotes the cut separating the two responses.
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(a) (b)

Fig. 22.: Tower-track correlation spectra for (a)positively charged and (b) negatively

charged tracks with hadron-like response. The angles are defined between the track

coordinates and tower centroid coordinates relative to the event vertex. Blue circles

define the auto-correlation sample to be studied for 1/pz-dependence. It is clear that

the auto-correlations are offset in ∆η independent of charge sign as well as in ∆φ

with charge-sign dependence. The labels reflect the centroids of Gaussian fits to the

∆η and ∆φ projections of the auto-correlation peaks.
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(a) (b)

Fig. 23.: Tower-track correlation spectra for (a) positively charged and (b) negatively

charged tracks with electron-like response. The angles are defined between the track

coordinates and tower centroid coordinates relative to the event vertex. Blue circles

define the auto-correlation sample to be studied for 1/pz-dependence. As in Fig. 22,

it is clear that the auto-correlations are offset in ∆η independent of charge sign as

well as in ∆φ with charge-sign dependence. The Gaussian fits to (a) reflect offsets

of ∆η = −0.032 and ∆φ = 0.0097, while Gaussian fits to (b) reflect offsets of ∆η =

−0.032 and ∆φ = −0.019.
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not charge-sign dependent and is of similar order between hadron-like and electron-

like samples. The ∆φ offset is charged-sign dependent, in the direction expected for

correct discrimination of charge sign. The ∆φ offset in hadron-like events is larger

than that of the electron-like events. This is consistent with expectation of a sample

of lower pz events.

The final piece to the auto-correlation veto is to evaluate the 1/pz-dependence

of the ∆φ spectra. In Fig. 24 I show the azimuthal auto-correlation, defined by the

circular cuts in Figs. 22 and 23, as a function of pz, track scaled by the longitudinal

distance traveled in the magnetic field. To extract the dependence, I use a linear fit

to a profile of the 2-D histogram for each charge sign, averaging the absolute values

of the fitted slopes. The fit is constrained to pass through the origin. I tune the

dependence by focusing on data within a width of ±0.04 of the linear fit. Using the

average zvertex position, the average dependence becomes

〈|∆φhadron|〉 = 0.25/pz (4.5)

〈|∆φelectron|〉 = 0.28/pz. (4.6)

Thus, the dependence is very close to the field map calculation (Eq. 4.4).

This procedure works equally well considering reconstructed photons. It is cer-

tainly possible for an energetic hadron to leave a cluster of energy which reconstructs

in the FMS as a photon. Thus, it is useful to exclude photons with an auto-correlated

track. Following the same procedure used with the FMS trigger towers, I can evaluate

the 1/pz-dependence of photon-track auto-correlations (Fig. 25). The dependence is

similar to that observed in the trigger towers. Using the average zvertex position, the

average dependence becomes

〈|∆φhadron|〉 = 0.25/pz (4.7)
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(a) (b)

(c) (d)

Fig. 24.: ∆φ = φtower − φtrack as a function of ∆z/pz,track, where ∆z is the effective

longitudinal distance traversed through the STAR solenoidal field for hadron-like

response of (a) positively charged and (b) negatively charged tracks as well as electron-

like response of (c) positively charged and (d) negatively charged tracks. There is clear

charge-sign dependence. The dependence is determined by means of a linear fit to

a profile of the 2-D histogram (black points). The absolute value of the slope is

averaged across the charge signs. The fit is tuned by focusing on data within a width

of ±0.04 (blue lines) around the linear fit.
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(a) (b)

(c) (d)

Fig. 25.: ∆φ = φγ − φtrack as a function of ∆z/pz,track, where ∆z is the effective

longitudinal distance traversed through the STAR solenoidal field for hadron-like

response of (a) positively charged and (b) negatively charged tracks as well as electron-

like response of (c) positively charged and (d) negatively charged tracks. There is clear

charge-sign dependence. The dependence is determined by means of a linear fit to

a profile of the 2-D histogram (black points). The absolute value of the slope is

averaged across the charge signs. The fit is tuned by focusing on data within a width

of ±0.04 (blue lines) around the linear fit.
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〈|∆φelectron|〉 = 0.24/pz. (4.8)

Again, the dependence is very close to the field map prediction (Eq. 4.4).

The offset in ∆η is somewhat perplexing. One possibility is to consider the

implications of an η-offset on the z-coordinate between the photon and the track. If

the reconstruction code misplaces the z-location of the photon, this would translate

into an η-offset. There is some ambiguity on the proper z-location of the photon

within an FMS tower. Nominally, the location has been assumed to be the shower-

maximum location. If the real location is further down the tower, one should observe

ηreco − ηreal < 0. Moreover, the offset for hadron-like events should be different from

electron-like events. Hadronic showers should evolve slower in the FMS towers than

electromagnetic showers, pushing the real z-location even further down the beam

leading to smaller reconstructed η. Examining the ∆η offset for all towers, regardless

of whether they could fire the trigger, I find offsets of

〈∆ηhadron〉 = −0.040 (4.9)

〈∆ηelectron〉 = −0.031. (4.10)

This translates to an effective z-shift of 31 cm for hadron-like towers and 24 cm for

electron-like towers. If the issue is, indeed, misplaced photon z-location, then the

results in Eqs. 4.9 and 4.10 are consistent with hadronic showers developing slower

than electromagnetic showers. However, the magnitude of such a misplacement is

quite large and remains something of a mystery.

F. Spin Sorting

RHIC is able to store polarized beams in both rings, allowing one to study single-

spin effects as well as double-spin effects. Furthermore, RHIC has the capability
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to control the spin direction in either beam from bunch to bunch within a beam.

This allows one to utilize cross-section differences and cross-ratio formulations in

studying spin-effects. These methods are useful for canceling out non-physical effects

like instrumental or luminosity asymmetries. Thus, to utilize RHIC’s capability as

a “spin-collider” in isolating how changes in the spin direction relate to changes in

the observed particle production, one must be able to determine the polarization

orientation for each collision.

One important task to assure the quality of the data is to verify that the bunch-

crossing distributions make sense. To do this, I compare the measured bunch-crossing

distributions to what one expects based on the measured fill patterns. The measured

fill patterns are accessible from the RHIC wall-clock monitors, which are able to de-

termine if a particular bunch was actually populated for a particular fill. Nominally,

each beam contains one unpopulated or “kicked bunch” and a string of nine con-

secutive unfilled bunches called the “abort gap.” If the bunch crossings are sensible,

the measured distribution should be invariant when shifted by the relative offset be-

tween the blue and yellow beams. In the case of STAR in 2008, the intended offset

was 80 bunch-crossings. To check this offset, the expected fill pattern is compared

to the measured distribution when shifted by different offsets. The measured offset

is determined by the lowest χ2 between the expected and measured bunch-crossing

distributions.

The bunch-crossing quality check finds that the first several days of the 2008

polarized-proton run contain multiple runs exhibiting an offset of 79 rather than the

intended offset of 80. Deeper investigation finds a tight correspondence between these

runs of bunch-crossing offset 79 and the exclusion from the STAR trigger mix of a

particular configuration called TOF-TPX. No explanation has been found for this

feature, but the correlation is undeniable. Since a confident understanding of the
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bunch-crossings is essential for a spin analysis, these early runs must be excluded

from the analysis. Since these runs happen to correspond to a period of relatively

low RHIC luminosity, the effect on statistics is not significant.

Further investigation finds that a file containing information for trigger readout,

known as a tier-1 file, was changed during the early part of the polarized-proton run.

Examining FMS photon distributions reveals the FMS exhibited highly suppressed

photon population in the north half of the detector prior to the change in tier-1 file.

No documented explanation for the change has been found, but the use of such runs

would introduce even more severe instrumental asymmetries into the data. Thus,

runs prior to the change in tier-1 file must be excluded from the analysis. Once

again, however, these runs correspond to a relatively low RHIC luminosity period.

Thus, the effect on statistics is relatively minor.

As a sanity check, it is useful to examine the resulting pion asymmetries for the

runs passing the bunch-crossing quality assurance. Since slow detector information is

not necessary for this check, the much larger data set known as FMS-fast, which only

demands readout of the fast detectors, is available. I have calculated the asymme-

try as a function of xF (Fig. 26) for π0’s satisfying the 2008 FMS high-tower trigger

condition. The pions are required to satisfy a transverse momentum constraint of

2 < pT < 5 GeV/c. These pions show an average pseudorapidity of 〈η〉 = 3.2. These

asymmetries are small for low xF and rise quickly at high xF . Asymmetries for xF < 0

are consistent with zero. In Fig. 26, I show these asymmetries in comparison with

published asymmetries from the Forward Pion Detector (FPD), a modular predeces-

sor to the FMS, taken in 2006 at 〈η〉 = 3.3 [9]. While the FPD data are at similar

pseudorapidity to the FMS data, the FPD data have a different set of transverse mo-

mentum constraints. Furthermore, the effective pT -xF coverage of the two detectors

is quite different, as the FPD is a modular detector while the FMS is near-hermetic.
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Fig. 26.: AN in xF bins for π0’s satisfying the 2008 FMS high-tower trigger condition.

The FMS data are shown in comparison with published FPD data taken in 2006 [9].

FMS π0’s are required to satisfy 2 < pT < 5 GeV/c and have an average pseudora-

pidity of 3.2, compared to the FPD data with an average pseudorapidity of 3.3 and

a different set of pT constraints.
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Nevertheless, the 2008 FMS data show rather sensible agreement with the previous

FPD result [9], suggesting the spin states are well understood.
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CHAPTER V

EVENT-LEVEL ANALYSIS

Prior to correlating particles from the desired events, it is important to develop a set

of appropriate single-particle cuts to select the desired correlation constituents. For

the FTPC, one should consider cuts to optimize the tracking capability as well as

reduce pile-up due to the slow-detector readout. For FMS events, one should focus

in part on minimizing the effects of the non-uniform trigger.

A. Track Flag

Within the STAR computing framework one of the standard methods for selecting

tracks from a particular subsystem is the track flag. The track flag is a four-digit

number where the first digit distinguishes pile-up tracks from real tracks, the second

digit describes the detectors included in the fit, and the final two digits describe the

status of the fit. For the purpose, here, tracks of interest are those from the FTPC

where the primary vertex is included in the track fit. Specifically, these tracks are

denoted with a track flag of 0801. The first 0 corresponds to real tracks. The 8

denotes FTPC tracks with the primary vertex. The final 01 denotes a track with a

“good fit.” For this analysis, tracks are required to return a flag of 801.

B. Track Fit Quality

The quality of the track fit depends on the number of available points in the fit. The

number of available fit points is equivalent to the number of hits in the FTPC plus

the primary vertex. One way to select the most reliable tracks is to set a lower limit

on the ratio of the number of fitted hit points to the number of possible hit points
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Fig. 27.: Number of hit points fit as a function of the number of possible hit points

in a reconstructed track. The blue line denotes the minimum number of fit points,

Nhits fit/Nhits poss > 0.59. The cut effectively excludes only the case where 6 points

are fitted out of a possible 11.

for the event. Specifically, I have required Nhits fit/Nhits poss > 0.59, where Nhits fit is

the number of hit points fit and Nhits poss is the number of possible hits (Fig. 27).

C. Distance of Closest Approach to the Event Vertex

One of the largest concerns with a slow-readout detector such as the FTPC is the

presence of pile-up tracks. These occur when a particle track from an out-of-time

collision reconstructs as though it occurred during the current collision. One possible

situation for this is a non-trigger collision leaving drifting ions in the FTPC. This
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collision is followed by a triggering collision which reads out the current, or “prompt,”

tracks as well as those formed by the drifting ions from the previous event. One way

to reduce the amount of pile-up in a sample is to restrict the distance of closest

approach (DCA) of the track to the primary event vertex. The DCA is the closest

distance to the event vertex of an extrapolation of the measured track helix. Since

the track reconstruction applies the drift calibration according to the triggered event,

pile-up tracks will tend to reconstruct farther from the collision vertex than prompt

tracks, typically resulting in a larger DCA.

To get some idea of an appropriate DCA cut for these data, I make two assump-

tions. First, I assume each yield is a sum of a luminosity-independent signal and a

luminosity-dependent background. Second, I assume the luminosity dependence in

the background is linear in the event collision rate. Thus, by pulling data from two

different runs with two different collision rates from the same fill, I can construct a

data-driven background subtraction to evaluate the DCA signal as a function of track

transverse momentum. Consider

NLow
meas = Ntrue + C ×RLow

NHigh
meas = Ntrue + C ×RHigh

Ntrue = NLow
meas −

∆Nmeas

RHigh/RLow − 1
, (5.1)

where NLow
meas and NHigh

meas denote the measured yield for low and high collision rates,

∆Nmeas = NHigh
meas − NLow

meas, Ntrue denotes the rate-independent signal or “true” yield,

RHigh and RLow denote the rates of the two samples, and C is the constant of pro-

portionality. Figure 28 shows the results of the aforementioned procedure. The

measured yields have been normalized to match the number of events in each sam-

ple. The results suggest a pT -dependent DCA cut is appropriate. Conservatively, I
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Table I.: DCA cut as a function of pT (Fig. 29).

Range of pT Upper Limit on rDCA

pT < 0.3 GeV/c rDCA < 2 cm

0.3 < pT < 1.0 GeV/c rDCA < 349/140− (23/14)× pT cm

pT > 1.0 GeV/c rDCA < 0.85 cm

estimate upper limits of 2.5 cm below pT = 0.5 GeV/c, 1.5 cm from 0.5 < pT < 1.5

GeV/c, and 1 cm above pT = 1.5 GeV/c. Furthermore, it is clear from Fig. 28 that

above pT = 3 GeV/c, the yield is entirely background. The data-driven cut can be

tuned to optimize removal of the pile-up background, which is critical to this analysis.

Figure 29 shows the DCA as a function of transverse momentum with a tuned cut

summarized in Table I.

D. Pseudorapidity

For this correlation analysis, the relevant events are those with two particles from the

same jet. Thus, the associated tracks need to cover a pseudorapidity range similar

to that of the trigger. To this end, tracks are selected from the west FTPC, which

roughly covers the range of 2.5 < η < 4.0 (Fig. 30). Due to the physical layout of the

detectors, a cut of ηtrack > 0 is sufficient to select the west FTPC.

E. Azimuthal Sector

Throughout the course of the 2008 run, the FTPC was afflicted with various hardware

issues. In particular, one of the ten read-out (RDO) boards was dead for the duration

of the p+ p run. This restricted one φ-sector to a maximum of six detector hits and
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Fig. 28.: Data-driven background-subtracted yields as a function of track DCA for

four different bins of track transverse momentum. Above pT > 3 GeV/c, it appears

the yield is entirely background. The other panels suggest a pT -dependent DCA cut,

which tightens as pT increases.
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Fig. 29.: DCA magnitude as a function of transverse momentum. The pT -dependent

cut used in the analysis is denoted by a blue line and summarized in Table I.
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Fig. 30.: Charged-particle track η−φ distribution for tracks reconstructed within the

range of 1 < pT < 3 GeV/c. The shaded regions denote cuts in φ from hardware

failures. The blue shaded region is excluded for runs 9065034 and following. These

cuts are summarized in Table II
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Table II.: Regions of φtrack excluded due to hardware failures in the FTPC (Fig. 30).

Range of Runs Regions of φ Excluded

All Runs −1.571 < φ < −0.524

All Runs 1.2 < φ < 1.75

All Runs −0.125 < φ < 0.188

Runs 9065034 and Following 1.795 < φ < 1.995

an additional sector to a maximum of eight detector hits. Furthermore, starting from

run 9065034, a front-end module in an additional sector was dead. This and further

hardware issues suggest a cut on track φ to exclude troublesome electronics regions

(Fig. 30). The cuts implemented are summarized in Table II.

F. Embedding

To quantify the tracking efficiency of the FTPC, one needs to understand the detector

response including the effects of pile-up. Simple Monte Carlo simulations are limited

in the degree to which pile-up effects can be simulated. One way to incorporate

these effects is to generate Monte Carlo tracks and embed the simulated detector

response into real data files. The track reconstruction code does not distinguish

between simulated ADC’s and real data ADC’s, allowing the code to recover some

fraction of the simulated (“thrown”) tracks. Reconstructed tracks which correspond

to a thrown track are termed “matched” tracks. The ratio of the number of matched

tracks to thrown tracks is the calculated tracking efficiency. Because the real data files

contain pile-up effects, backgrounds, etc., this embedding procedure is not limited in

the ways of pure Monte Carlo simulations. To calculate the FTPC efficiency, 40,000
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Monte Carlo charged pions have been generated for each charge state and six bins

of thrown pT : 0.2-0.5 GeV/c, 0.5-1.0 GeV/c, 1.0-1.5 GeV/c, 1.5-2.0 GeV/c, 2.0-3.0

GeV/c, and 3.0-4.0 GeV/c. Studies [77] have shown the efficiency of the FTPC does

not begin to drop appreciably in Au+Au collisions until centralities pass 40%, where

the multiplicity approaches dN/dη ≈ 50 in the west FTPC region [78]. Including

secondary tracks, raw multiplicity approaches dN/dη ≈ 38 in the FTPC for FMS-

triggered p + p data. The addition of six Monte Carlo tracks across two units of

pseudorapidity per event, thus, keeps the multiplicity below the point where the

FTPC efficiency decreases. In order to save computing resources, one track from

each pT bin is embedded in each event. The Monte Carlo tracks are embedded into

a representative sample of FMS-slow triggered data. The simulation is generated flat

within the pT bins as well as the angular range of 2.25 < η < 4.45 and −π < φ < π.

As a means of quality control, embedding-to-data comparisons have been per-

formed on a sample of embedding with tracks thrown within the range of 1 < pT < 2

GeV/c. Out of the box, the matched-track distributions show substantial difference

from real-data distributions. In particular, distributions for the number of fitted hit

points tend to be much higher in the embedded tracks. Also, regions of low efficiency

in the φ distributions tend to be less exaggerated in the embedding. Further, intra-

sector fluctuations in the embedding do not agree with those seen in the real data.

Investigation by FTPC experts has shown that gain tables used in both the real

data and simulation are not properly optimized for the p+ p run. Additionally, they

have discovered that the ADC conversion used in the simulation is also not properly

optimized. Application of the new gain tables would require a full reproduction of

the 2008 FMS-slow dataset. The impact of this analysis simply cannot justify the

allocation of resources necessary for this task, as the estimated gain in statistics is

≈ 30%.
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(a) (b)

Fig. 31.: (a) Nfit distribution and (b) φ distribution for real data tracks and matched

embedding tracks. The Nfit distribution is shown for three bins of pseudorapidity

utilizing a 25% rejection scheme. The φ distributions utilize a 20% rejection scheme.

The φ distribution has been corrected for trigger bias in the FMS.
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Without the justification to perform a full reproduction of the data, a “quick fix”

has been developed. The true hit efficiency can be estimated by randomly rejecting

a certain fraction of hits in each event. In Fig. 31, I show comparisons of matched

tracks to real data for Nfit and φ distributions utilizing the random rejection scheme.

The comparisons utilizing the rejection scheme are greatly improved over the out-

of-the-box distributions. In addition to the hit rejection, the φ distributions are

corrected for FMS trigger bias. By convoluting the raw trigger spectrum with the

acceptance-corrected correlation distribution (Fig. 44), one can produce the expected

fluctuations in the track distribution due to the trigger prior to FTPC acceptance

effects. Dividing this distribution out of the measured data distribution effectively

removes the effects of the trigger from the comparison of data to matched embedding

tracks.

It is necessary, then, to optimize the hit-rejection percentage for the best com-

parison between matched-embedding tracks and real data. A procedure has been

developed to maximize the agreement for the Nfit distributions and the φ distribu-

tions. First, the matched track and real data distributions are normalized. Then,

absolute values of the differences between the various bins are fitted with a constant.

The values of these constants are then plotted in relation to the hit-rejection per-

centage. This relation is fit with a quadratic, the minimum of which is taken as the

optimum rejection percentage. Examples of this procedure are shown for Nfit dis-

tributions in Fig. 32 and φ distributions in Fig. 33. The φ optimization has been

performed four times, rebinning the histograms by factors of 4, 6, 8, and 10 to ensure

binning fluctuations are stable. The final φ optimization is taken as an average of

the four values. The final optimized hit-rejection percentage is taken as an average

of the Nfit optimization and the φ optimization and is reported as 21.6± 3%.

Since the embedding is generated flat in η and flat within the various thrown
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Fig. 32.: Optimization of the hit rejection efficiency for Nfit. Combining Nfit and φ

optimization (Fig. 33), the optimized rejection percentage is found to be 21.6± 3%.
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Fig. 33.: Optimization of the hit rejection efficiency for φ. Combining Nfit (Fig. 32)

and φ optimization, the optimized rejection percentage is found to be 21.6± 3%.
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pT bins, for efficiency calculations, a weighting procedure must be used to simulate

realistic distributions for thrown η and pT . First, a simple scaling is used to correct

for the non-uniform bin densities. Since the number of tracks thrown in each bin is

constant, this is simply scaling by the relative width of the bins. For η and pT , I

assume the pT spectrum to be exponential

d2N

dηdpT
= A (η)× pT e−B(η)pT . (5.2)

If I assume pT does not depend strongly on η, then I can simply factorize the problem

into an η weight and a pT weight. However, if I consider the dependence of η on pT ,

I can utilize the average pT as a function of η to obtain B (η)

〈pT 〉 (η) =

∫
dpT

d2N
dηdpT

pT∫
dpT

d2N
dηdpT

=

∫
dpTA (η)× pT e−B(η)pT pT∫
dpTA (η)× pT e−B(η)pT

=
2A (η) /B3 (η)

A (η) /B2 (η)

=
2

B (η)
. (5.3)

Thus, the pseudorapidity dependence of average transverse momentum will yield

B (η). To obtain A (η), I consider dN/dη

dN

dη
=

∫
dpT

d2N

dηdpT

=
∫
dpTA (η) pT e−B(η)pT

=
A (η)

B2 (η)
. (5.4)

Thus, given B (η) from the average transverse momentum, I can obtain A (η) from

the distribution of dN/dη.

Since nearly all p+ p data which exist for the FTPC are those I am analyzing, I
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turn to peripheral nuclear data to approximate the shapes of the spectra of interest.

An initial value for B (η) is obtained by performing a linear fit to 〈pT 〉 as a function of

η for peripheral (40-60% centrality) Au+ Au minimum-bias data [79]. To obtain an

initial value for A (η), a power-law fit is performed to peripheral (50-60% centrality)

Cu + Cu minimum-bias data [80]. To tune the expression to reflect the harder pT

spectrum from FMS-triggered data, I have varied the linear dependence of 〈pT 〉 on η.

I, then, compare the resulting mean η and pT for matched track distributions to those

from real data. I have selected for the weighting distribution the linear dependence

which achieves the best agreement between reconstructed embedding and measured

data in terms of η and pT . The final expression used to weight the thrown embedding

tracks is

d2N

dηdpT
=

19

(ηthrown − 1.9)0.66

(
2

0.71− 0.06ηthrown

)2

×pT,thrownexp

(
− 2

0.71− 0.06ηthrown

pT,thrown

)
. (5.5)

So, in evaluating distributions of matched tracks, the entries are weighted by Eq. 5.5,

based on the thrown values of η and pT .

With a sensible expression to simulate physical underlying distributions, track

cuts and efficiencies can be evaluated. Critical to the correlation asymmetry analysis

is the reliability of charge separation. Figure 34 shows the fraction of tracks recon-

structed with incorrect charge sign as a function of transverse momentum. Below 2

GeV/c, the fraction stays below 25%. Above 2 GeV/c, this fraction approaches 35%.

Thus, 2 GeV/c serves as a reasonable upper-limit on track pT . Furthermore, this

upper-limit is consistent with prior analyses of FTPC data [77, 82].
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Fig. 34.: The fraction of tracks reconstructed with incorrect charge sign as a function

of pT . Above 2 GeV/c, the ratio approaches 35%, setting a sensible upper-limit on

reliable FTPC tracking.
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G. Transverse Momentum Windows

It is useful to understand the efficiency of the FTPC in terms of pseudorapidity and

transverse momentum. To this end, I divide the sample into two bins of transverse

momentum: a “low-pT” bin for 0.5 < pT < 1.0 GeV/c and a “high-pT” bin for

1.0 < pT < 2.0 GeV/c. Finer binning than this is not practical for the amount of real

data statistics available.

One way to visualize the efficiency is in how it relates to “real” values and

“measured” values. For instance,

dNmeas

dη
= ε (η)

dNreal

dη
, (5.6)

where ε (η) denotes the efficiency as a function of pseudorapidity. In terms of the

embedding, then, the efficiency as a function of pseudorapidity can be calculated by

dividing the matched track η distribution by the thrown η distribution. In Fig. 35, I

show the calculated efficiency distributions as a function of pseudorapidity for “low-

pT” and “high-pT” tracks. For “low-pT” tracks the efficiency peaks around 45% and

falls rapidly at the edges of the FTPC acceptance. For “high-pT” tracks, the efficiency

peaks around 50%. Equation 5.6 can be used to express the average efficiency as

〈ε〉 =

∫
dηε (η) dNreal/dη∫
dηdNreal/dη

=

∫
dηdNmeas/dη∫
dηdNreal/dη

. (5.7)

Similar techniques can be used on the FMS-triggered data. In Fig. 36 I show the

measured and efficiency-corrected η distributions for “low-pT” and “high-pT” tracks.

The average efficiency across the range of pseudorapidity (in this case 2.5 < η < 4.0)

is the ratio of the integrated measured yield and the integrated corrected yield. This

turns out to be 34.5% for “low-pT” and 38.4% for “high-pT” tracks across the range
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Fig. 35.: Reconstructed matched track (left), thrown track (center), and efficiency

(right) η distributions for Monte Carlo tracks embedded in FMS-triggered data and

reconstructed 1.0 < pT < 2.0 GeV/c (top) and 0.5 < pT < 1.0 GeV/c (bottom).

of 2.5 < η < 4.0. Below η = 2.9 the corrected distributions show a dip. This is not

what one would expect for a physics distribution, particularly given the weighting

used in the embedding sample. No explanation has been found, and it appears this

reflects the limitations of the hit-rejection embedding technique.

H. Corrected Track Energy

It is also important to understand the systematic shift in reconstructed track energy.

First, one needs to understand how the true values relate to the reconstructed values.

Using the embedding sample, it is possible to evaluate the matched-track distributions

as they depend on the thrown-track distributions. In Fig. 37 I show the pT -resolution,
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Fig. 36.: Measured (left), efficiency (center), and efficiency-corrected (right) η distri-

butions for FMS-triggered FTPC tracks measured with 1.0 < pT < 2.0 GeV/c (top)

and 0.5 < pT < 1.0 GeV/c (bottom). Across 1.5 units of pseudorapidity, the FTPC

reflects an average efficiency of 38.4% for tracks with 1.0 < pT < 2.0 GeV/c and

34.5% for tracks with 0.5 < pT < 1.0 GeV/c. Below η = 2.9, the corrected distribu-

tions show an unexpected dip reflecting the limitations of the hit-rejection embedding

procedure.
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pT,reco − pT,thrown, for six bins of reconstructed pT . As reconstructed pT increases, the

distributions become less Gaussian with a tail consistent with increasing contributions

from tracks with pT,true < pT,reco. Above pT,reco = 2 GeV/c, it appears a majority of

tracks within the bin come from the tail rather than the peak. This ambiguity in true

pT sheds light on the inability to separate charge sign at high pT (Fig. 34) and, again,

suggests that the 2 GeV/c upper limit is a sensible cut. Because these distributions are

far from Gaussian, the RMS is a better approximation of the resolution. According

to the RMS, the resolution for tracks reconstructed with 0.5 < pT < 1.0 GeV/c

is 0.16 GeV/c, while the resolution for tracks reconstructed with 1.0 < pT < 1.5

GeV/c is 0.28 GeV/c, and the resolution for tracks reconstructed with 1.5 < pT < 2.0

GeV/c is 0.47 GeV/c. Combining tracks reconstructed with 1.0 < pT < 2.0 GeV/c,

the resolution is 0.35 GeV/c. This finite resolution tends to shift the measured pT -

distribution higher than reality. This is because lower pT tracks, with a relatively

large cross-section, are of greater significance rolling “downhill” onto the lower cross-

section of higher pT tracks than are higher pT tracks rolling “uphill” onto lower pT

tracks.

In Fig. 38 I show the reconstructed η and pT distributions for “low-pT” and

“high-pT” tracks. In Fig. 39 I show the underlying thrown distributions for these

reconstructed tracks. One can immediately see that a fraction of the yield arises from

tracks thrown with momentum outside of the reconstructed pT window. The shift in

η is quite small, so I ignore it.

To quantify the relation of thrown to reconstructed pT , I fit a linear regression

through the reconstructed average-pT values as a function of the corresponding thrown

averages. The resulting expression turns out to be

pT,reco = 1.393× pT,thrown − 0.276 GeV/c. (5.8)
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Fig. 37.: Transverse momentum resolution distributions in bins of reconstructed pT .

Above pT,reco = 2 GeV/c it appears most of the tracks populate the tail of the distri-

bution. For 0.5 < pT,reco < 1 GeV/c, the RMS suggests a resolution of ≈ 0.16 GeV/c;

while for 1.0 < pT,reco < 2 GeV/c the RMS suggests a resolution of ≈ 0.35 GeV/c.
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Fig. 38.: Reconstructed pseudorapidity and transverse momentum for Monte Carlo

FTPC tracks embedded in FMS-triggered data and reconstructed with 0.5 < pT < 1.0

GeV/c (left) and 1.0 < pT < 2.0 GeV/c (right).

Then, if I use the average measured values from FMS-triggered data (Fig. 40), I arrive

at true values of

〈plow
T,true〉 = 0.68± 0.04 GeV/c (5.9)

〈phigh
T,true〉 = 1.16± 0.14 GeV/c. (5.10)

The errors are systematic in nature and calculated by taking the difference in the

values when alternative weighting schemes are utilized. This can be converted into

an average true energy for each bin by the familiar formula

E = pT coshη. (5.11)

By utilizing the mean η values from the FMS-triggered data, I can approximate the

true charged-particle energy for each pT bin as

〈Elow
true〉 = 8.48± 0.5 GeV (5.12)
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Fig. 39.: Thrown pseudorapidity and transverse momentum for Monte Carlo FTPC

tracks embedded in FMS-triggered data and reconstructed with 0.5 < pT < 1.0 GeV/c

(left) and 1.0 < pT < 2.0 GeV/c (right).
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〈Ehigh
true 〉 = 15.18± 1.8 GeV. (5.13)

I. Trigger Determination

I am interested in events which are triggered by a π0 in the FMS. Thus, it is important

to verify that at least one daughter photon from the pion decay could have fired the

FMS high-tower trigger. To this end I have developed a procedure to define “trigger

photons.” A trigger photon must, first, arise from a cluster of towers containing a

tower above the trigger threshold. For clusters which yield only one photon, this

condition is sufficient to declare the photon a trigger photon. If the photon arises

from a two-photon cluster, then, the high tower is associated with the nearer of the

two photon centroids. In the rare case when the high tower is equidistant from the

photons, the high tower is associated with the higher-energy photon.

J. Neutral Pion Reconstruction

As discussed earlier, photons are required to be free of auto-correlated FTPC tracks.

Additionally, it was discussed that part of the calibration process is an energy-

dependent correction to photon energy. This correction is quadratic in nature and,

occasionally, can result in photons “corrected” to have negative energy. Energy cuts

eliminate all photons in this region, however, I implement a requirement up front to

eliminate photons with Eγ < 0 GeV.

In addition, photons are required to satisfy a fiducial-volume requirement. Stan-

dard FPD and FMS analyses [9, 83] have utilized a fiducial volume of one half of a

cell width from the edge of the detector. In this same spirit, photons in this analysis

are required to have a centroid reconstructed at least one half of a cell width from the

edge of the FMS. Photons within three quarters of a cell from a dead cell, or “hole,”
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Fig. 40.: Measured pseudorapidity and transverse momentum distributions for FTPC

tracks from FMS-triggered data.
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Fig. 41.: Di-photon invariant mass (left) and pion energy as a function of transverse

momentum (right). In both cases, a requirement of zγγ < 0.8 is imposed. For the

mass spectrum additional requirements of Eγγ < 60 GeV and 2 < pT < 5 GeV/c are

imposed. For energy as a function of transverse momentum a mass requirement of

0.07 < mγγ < 0.21 GeV/c2 is imposed. These cuts are denoted by red lines.
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are also vetoed in the fiducial cut.

Pions are selected from all combinations of photon pairs where at least one photon

satisfies the trigger requirement. To correct for the observed ∆η offset (discussed in

chapter 4), the photons are shifted by δη = −0.0256. Because of the limitations of

the two-photon separation capability of the cluster-finding algorithm, an upper-limit

of Eγγ < 60 GeV is enforced. One consequence of the high-tower trigger is that the

data are biased toward asymmetric pion decay. Achieving sufficient ADC in a single

tower favors an energetic photon depositing all of its energy in the center of a single

tower. The pion cross section falls as a function of energy and, thus, minimizing the

pion energy biases the decay in favor of one photon carrying most of the energy. This

situation is only exacerbated by the extreme nature of the gain non-uniformity. To

combat this trigger bias, an upper limit of 0.8 on the energy-sharing, zγγ, is enforced.

The energy sharing is defined as

zγγ =
|E1 − E2|
E1 + E2

, (5.14)

where En denotes the energy of the nth photon. A mass requirement of 0.07 < mγγ <

0.21 GeV/c2 is, then, enforced to select π0’s. In the event that more than one pion

satisfies the zγγ, Eγγ, and mγγ requirements, the pion with highest pT is selected.

Finally, pions are analyzed within a window of 2 < pT < 5 GeV/c (Fig. 41).

K. Corrected Pion Energy

Just as it is useful to evaluate the corrected values for track energy, it is also useful to

examine the corrected values for pion energy. Misidentification of the energy is due

to limitations in energy resolution and the effects of lower energy pions (with greater

cross section) reconstructing with higher energy, leading to a stiffer measured energy
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spectrum than is really there.

In understanding the shift in pion energy, toy models can be powerful tools. First,

the FPD neutral pion cross section for 〈η〉 = 3.3 [12] is fit with a simple exponential

function of the form σ ∝ exp (−αE). To evaluate how this is distorted by finite

resolution, the fit is convoluted with a response function. One such example is a

gaussian function with width based on the detector resolution. This resolution can

be estimated to be ∼ 8% [84]. Similarly, the true energy as a function of the measured

energy can be understood by convoluting the cross section with the response function

times the true energy and dividing by the measured cross section. Then, the average

energies can be calculated by the familiar integral form

〈Emeas〉 =

∫ Emax
Emin

dEmeasEmeasσ (Emeas)∫ Emax
Emin

dEmeasσ (Emeas)
(5.15)

〈Etrue〉 =

∫ Emax
Emin

dEmeasEtrue (Emeas)σ (Emeas)∫ Emax
Emin

dEmeasσ (Emeas)
. (5.16)

After tuning parameters for the cross section slope, minimum energy threshold, and

energy resolution, the shift in pion energy can be reported as

Etrue

Emeas

= 0.95± 0.05. (5.17)

The uncertainty is systematic in nature and derived by taking the difference between

the shifts for various extremes of cross-section slopes, energy thresholds, and energy

resolutions. Thus, for a nominal pion energy of Emeas = 31.0 GeV, the true energy

can be reported as Etrue = 29.5± 1.6 GeV.
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CHAPTER VI

TWO-PARTICLE CORRELATIONS

Having studied the neutral pions and charged particles in their own right, it is now

possible to evaluate the correlation of the neutral pions and the charged-particles. It

is in these correlations where new information on dynamical contributions to asym-

metries is accessible.

A. Acceptance Correction

As discussed in chapters 4 and 5, the FMS trigger suffers from considerable accep-

tance inefficiency due to gain non-uniformity, while electronics failures in the FTPC

introduce their own acceptance inefficiencies into the associations. While a correlation

signal may forgive acceptance transgressions for one participant, the convolution of

acceptance issues in both participants introduces significant distortions. Correction

of acceptance distortions constitutes one of the major tasks of this analysis.

One way to understand the effect of acceptance inefficiencies is to utilize a mixed-

event analysis. Two-particle correlations from the same event should contain a physics

signal on top of an underlying structure due to the acceptance inefficiency. Two-

particle correlations with each participant from different events should be void of

physics, revealing the underlying structure based solely on acceptance. Thus, divid-

ing the “same-event” correlation distribution by the mixed-event distribution should

remove the acceptance structure, revealing an acceptance-corrected correlation signal.

Mixed-event analyses are challenging from a computing standpoint, since the true

procedure involves calculations, in this case (ηπ − ηtrack, φπ − φtrack), while looping

over every track in all events for every pion from every event (save those from the

same event). The computing time for such a procedure is quite large, rendering the
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Fig. 42.: η-φ scatter plots for (left) neutral pions and (right) charged-particles. As-

sociated charged particles shown satisfy 0.5 < pT < 1 GeV/c, while the pions satisfy

2 < pT < 5 GeV/c.

true procedure impractical. In light of this, approximations are necessary. One option

is to mix events with like properties. Such a method will be discussed in a forthcoming

section. Additionally, one can work from histograms. The benefit of working from

histograms is a major reduction in computing time, in this case, down to a matter of

minutes. The sacrifice is a loss in granularity. For the purposes of this analysis the

gain in computing efficiency outweighs the loss in granularity. First, a pass is made

over the data, binning η and φ for every track and every π0 passing the cuts and

∆η = ηπ − ηtrack and ∆φ = φπ − φtrack for each coincidence in an event. To ensure

that the granularity is treated consistently, each correlation entry is computed with

the same granularity as the forthcoming histogram procedure. The single-particle

distributions in hand (Fig. 42), I loop over every track (η, φ)-bin for each pion bin.

For each iteration, ∆η and ∆φ are calculated from the histogram bin centers. These

values are binned in a new correlation histogram with a weight of the product of



99

the entries of the two single-particle bins. The resulting new correlation histogram

contains not only the mixed events but also “same events.” However, the “same

events” can be removed by subtracting out the raw correlation histogram produced in

the data pass from the new histogram. This results in a true mixed event distribution

(Fig. 43) with somewhat limited granularity. One remaining issue is the handling of

auto-correlations in the mixed events. Auto-correlations in the raw physics have been

discussed in chapter 4. One possibility is simply to zero out bins surrounding (0, 0)

in ∆η-∆φ-space. As long as the bin zeroing is a more liberal cut than the event-level

veto, the bin zero can be a consistent veto for both raw physics and mixed events.

To this end, I implement a veto excluding bins from −3π/100 < ∆φ < 3π/100 and

from −3/32 < ∆η < 3/32.

Figure 43 shows an example of dividing out the relative acceptance distortions

from raw physics correlations. It is clear that prior to correction, the acceptance

distortions (see Fig. 42), completely wash out the away-side signal. After correction,

there is clear evidence of an away-side peak. For a true physics measurement, scaling

for absolute efficiency is necessary. By applying the corrections discussed in chapter

5, the acceptance-corrected correlations can be scaled for the FTPC efficiency across

the range of 2.5 < η < 4.0. The results of this are shown in Fig. 44 for both ranges

of associated transverse momentum. The distributions have been fit with a series of

Gaussians plus a constant background. The function is of the form

dN

d∆φ
= CB.G. + CN.S.

[
exp

(
−1

2

∆φ2

σ2
N.S.

)
+ exp

(
−1

2

(∆φ− 2π)2

σ2
N.S.

)]

+CA.S.

[
exp

(
−1

2

(∆φ− π)2

σ2
A.S.

)
+ exp

(
−1

2

(∆φ+ π)2

σ2
A.S.

)]
, (6.1)

where B.G. denotes the continuum background, N.S. denotes the “near-side peak,”

centered at ∆φ = 0, and A.S. denotes the “away-side peak,” centered at ∆φ = π.
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Fig. 43.: Correlation distributions for (left) raw physics (center) mixed events uncor-

rected for absolute efficiency and (right) acceptance corrected physics not scaled for

absolute efficiency. Associated charged particles satisfy 1.0 < pT < 2.0 GeV/c. Bins

near (∆η,∆φ) = (0, 0) in the 2-D distributions (top row) are removed to veto residual

auto-correlations in a consistent manner between raw physics and mixed events.
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Table III.: Parameters for double-Gaussian plus constant (Eq. 6.1) fit to azimuthal

π0-charged particle correlations (Fig. 44).

Parameter 1 < pT,assoc < 2 GeV/c 0.5 < pT,assoc < 1 GeV/c

Continuum 0.0077± 0.0070 0.0671± 0.0048

N.S. Amplitude 0.0132± 0.0010 0.0246± 0.0042

N.S. Width 0.385± 0.030 0.516± 0.075

A.S. Amplitude 0.0100± 0.0070 0.0187± 0.0044

A.S. Width 1.60± 0.63 0.94± 0.24

Because the widths of the away-side peaks are rather large, I have included the

additional Gaussian functions, centered at ∆φ = 2π and ∆φ = −π, to account for

the “wrap-around” of the signal peaks. Results of the fits are summarized in Table

III. Associations with 1.0 < pT < 2.0 GeV/c suffer from statistics limitations, which

lead to large uncertainties for the away-side peak parameters and strong correlations

between the continuum and away-side peak parameters. Associations with 0.5 <

pT < 1.0 GeV/c tend to have a much larger continuum background than the higher-

pT counterparts.

B. Pile-up and Rate Dependence

Since the FTPC is a slow read-out detector, one large source of background is pile-up

tracks. A cut on the track distance of closest approach to the primary vertex is used

to limit pile-up (Fig. 29). Quantifying the remaining pile-up is an important step in

understanding the components of the yield which factor into asymmetry corrections.

In principle, physics should be independent of the collision rate. Pile-up on the
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(a) (b)

Fig. 44.: Efficiency and acceptance-corrected two-particle azimuthal correlations from

p + p collisions at 200 GeV. Correlations are between π0’s with 2 < pT < 5 GeV/c

and charged particles with (a) 1.0 < pT < 2.0 GeV/c and (b) 0.5 < pT < 1.0 GeV/c.

Distributions have been fit with a double-Gaussian plus constant background function

(Eq. 6.1). The near-side centroid is forced to ∆φ = 0 and the away-side centroid is

forced to ∆φ = π. Results of the fit are summarized in Table III.
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other hand, is strongly coupled to the rate of collisions. One way to model the yield is

to consider a linear dependence on collision rate for pile-up. To quantify the pile-up

fraction of the yield, I divide the ∆φ correlations into three bins of BBC coincidence

rate, ν. After correcting each bin for acceptance, I fit the resulting distribution with

a function of the form

dN

d∆φ
(ν) = CB.G.Phys. + Crateν

+CN.S.

[
exp

(
−1

2

∆φ2

σ2
N.S.

)
+ exp

(
−1

2

(∆φ− 2π)2

σ2
N.S.

)]

+CA.S.

[
exp

(
−1

2

(∆φ− π)2

σ2
A.S.

)
+ exp

(
−1

2

(∆φ+ π)2

σ2
A.S.

)]
, (6.2)

where B.G. Phys. denotes the physical, underlying-event component of the back-

ground. Figure 45 shows the results of the fits for each sample of associated trans-

verse momentum with the parameter values summarized in Table IV. The lower

of the two associated pT -bins shows a larger rate dependence. Applying the rate-

dependent fit to the full correlation distributions (Fig. 46) the rate-dependent com-

ponent, Crateν, constitutes 0.23± 0.13 of the total background, CB.G.Phys. +Crateν, for

tracks with 1 < pT < 2 GeV/c and 0.201 ± 0.017 of the total background for tracks

with 0.5 < pT < 1 GeV/c. The large error for the higher pT correlations is due to

the effect of limited statistics on the azimuthal correlation fit, specifically, the large

uncertainties related to the wide away-side peak.

A two-dimensional fit to the distribution proves problematic due to low statistics

and large bin fluctuations. Thus, I turn to a reasonably intuitive model for the two-

dimensional correlations. I assume a constant for the continuum background. For

the near-side peak, I assume a two-dimensional Gaussian centered on (0, 0) in η-φ

space with a single width for both dimensions. For the away-side peak, I assume the

Gaussian for ∆φ constant across the range of ∆η. This assumption for the away-
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(a)

(b)

Fig. 45.: ∆φ correlation for three bins of BBC coincidence rate for associated particles

with (a) 1 < pT < 2 GeV/c and (b) 0.5 < pT < 1 GeV/c. Distributions are shown

with two fits: shown in red is a raw fit to each panel with a double-Gaussian plus

constant background (Eq. 6.1), and shown in blue is a double-Gaussian plus a back-

ground linear in BBC coincidence rate (Eq. 6.2). The results of the rate-dependent

fit are summarized in Table IV.
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Table IV.: Parameters for double-Gaussian plus rate-dependent continuum fit (Eq.

6.2) to azimuthal π0-charged particle correlations (Fig. 45).

Parameter 1 < pT,assoc < 2 GeV/c 0.5 < pT,assoc < 1 GeV/c

Physics Continuum 0.0067± 0.0048 0.0530± 0.0058

Rate Dependence 0.0058± 0.0029 MHz−1 0.0382± 0.0071 MHz−1

N.S. Amplitude 0.0132± 0.0012 0.0249± 0.0045

N.S. Width 0.380± 0.034 0.518± 0.074

A.S. Amplitude 0.0087± 0.0046 0.0188± 0.0048

A.S. Width 1.43± 0.54 0.97± 0.25

(a) (b)

Fig. 46.: ∆φ correlation integrated over BBC coincidence rate for associated particles

with (a) 1 < pT < 2 GeV/c and (b) 0.5 < pT < 1 GeV/c. Distributions are shown

with two fits: shown in red is the raw fit (Eq. 6.1) as shown in Fig. 44, and shown in

blue is the rate-dependent fit (Eq. 6.2) as summarized in Table IV.
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side is a crude approximation. Ultimately, however, it is the near-side peak which

is of most interest. Approximations for the away-side peak should translate into

negligible ambiguities in the near-side peak given the available statistical precision. To

determine the parameters, I integrate the two-dimensional function across a sensible

range of ∆η and tune the two-dimensional parameters to equal the parameters from

the one-dimensional fits (Fig. 46). There is some ambiguity in the appropriate range

of ∆η, so I have performed the integration over two ranges. The range of−1 < ∆η < 1

is taken as the baseline measurement, and the range of −0.7 < ∆η < 0.7 will factor

into systematic uncertainties. The results are summarized in Table V.

C. Near-side Correlations

Ultimately, I am interested in two-particle correlations from the same jet. Thus, prior

to investigating polarized effects, it is useful to examine the unpolarized near-side

correlations. “Near-side,” here, means satisfaction of a restriction on the two-particle

pair radius,

∆R =
√

∆η2 + ∆φ2. (6.3)

Changing the upper-limit on ∆R will change the various contributions–signal, pile-up,

underlying-event, etc.–to the over-all near-side yield. Given the statistics limitations

of this analysis, it is important to optimize the amount of raw yield for the amount of

background dilution under the signal. In this analysis, I focus on three upper-limits of

∆R: π/3, 0.7, and 0.5. The components of the yield can be estimated by integrating

the two-dimensional correlation fit, summarized in Table V. The yield fractions are,

then, the ratios of the various components to the total yield, after accounting for the

auto-correlation cut. The various yield fractions are summarized in Table VI.

Finite momentum resolution in the FMS and FTPC leads to the need to apply
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Table V.: Parameters for two-dimensional double-Gaussian plus constant fit to az-

imuthal π0-charged particle correlations. The parameters are derived from integration

of the two-dimensional function across the range of ∆η and comparing to the param-

eters from the fit to the azimuthal distribution (Fig. 46).

−1 < ∆η < 1

Parameter 1 < pT,assoc < 2 GeV/c 0.5 < pT,assoc < 1 GeV/c

Continuum 0.00437± 0.00246 0.0332± 0.0031

N.S. Amplitude 0.0140± 0.0018 0.0202± 0.0042

N.S. Width 0.380± 0.034 0.518± 0.074

A.S. Amplitude 0.00433± 0.00229 0.00942± 0.00240

A.S. Width 1.43± 0.54 0.973± 0.254

−0.7 < ∆η < 0.7

Parameter 1 < pT,assoc < 2 GeV/c 0.5 < pT,assoc < 1 GeV/c

Continuum 0.00625± 0.00352 0.0474± 0.0045

N.S. Amplitude 0.0149± 0.0017 0.0232± 0.0045

N.S. Width 0.380± 0.034 0.518± 0.074

A.S. Amplitude 0.00619± 0.00327 0.0135± 0.0034

A.S. Width 1.43± 0.54 0.973± 0.254
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Table VI.: Yield fractions of the near-side peak, defined by upper-limits on the pair

radius, ∆R. Yields are determined by integrating the two-dimensional correlation

fit (Table V) tuned to the one-dimensional correlation fit (Fig. 46) by assuming an

active range of −1 < ∆η < 1. The integrated yields exclude the auto-correlation

component falling within −3/32 < η < 3/32 and −3π/100 < φ < 3π/100.

1 < pT,assoc < 2 GeV/c

Component ∆R < π/3 ∆R < 0.7 ∆R < 0.5

Signal Fraction 0.396± 0.158 0.557± 0.174 0.638± 0.168

Underlying-event Fraction 0.381± 0.301 0.285± 0.217 0.234± 0.176

Pile-up Fraction 0.114± 0.068 0.085± 0.048 0.070± 0.038

Away-side Fraction 0.110± 0.175 0.073± 0.128 0.057± 0.104

0.5 < pT,assoc < 1 GeV/c

Component ∆R < π/3 ∆R < 0.7 ∆R < 0.5

Signal Fraction 0.203± 0.062 0.282± 0.072 0.324± 0.077

Underlying-event Fraction 0.632± 0.092 0.571± 0.082 0.538± 0.078

Pile-up Fraction 0.159± 0.033 0.143± 0.030 0.135± 0.028

Away-side Fraction 0.007± 0.012 0.0037± 0.0083 0.0028± 0.0068
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the corrections discussed in chapters 4 and 5 to evaluate the kinematics of the near-

side correlations. Taking the example of ∆R < π/3, in the presence of a 1 < pT < 2

GeV/c association, π0’s show an average uncorrected energy of 30.53 GeV; and in

the presence of a 0.5 < pT < 1 GeV/c association, π0’s show an average uncorrected

energy of 30.79 GeV. Utilizing Eqn. 5.17, I can cite corrected pion energies of

〈E∆R<π/3
π0,low 〉 = 29.3± 1.5 GeV (6.4)

〈E∆R<π/3
π0,high 〉 = 29.0± 1.5 GeV, (6.5)

where “low” denotes 0.5 < pT < 1 GeV/c associations and “high” denotes 1 < pT < 2

GeV/c associations. Combining this information with Eqns. 5.12 and 5.13, I can

quote a corrected average pair-wise energy of

〈E∆R<π/3
pair,low 〉 = 37.7± 1.6 GeV (6.6)

〈E∆R<π/3
pair,high 〉 = 44.2± 2.4 GeV. (6.7)

Table VII summarizes the corrected average pair-wise energy for near-side correlations

defined by all three upper-limits on pair radius. The variation with ∆R is small

compared to the correlated systematic uncertainty associated with the conversion

from measured to true momenta. Thus, I can quote a common average xF for all

upper-limits on pair radius

〈xF,low〉 = 0.38± 0.02 (6.8)

〈xF,high〉 = 0.44± 0.02. (6.9)

Figures 47 and 48 show the invariant mass of the two-particle system for the three

upper limits on ∆R. In all but the tightest restriction on the low-pT correlations,

there is some evidence of a ρ peak on a falling continuum. The absence of a ρ signal
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Table VII.: Corrected average pair-wise energy for near-side correlations defined by

upper-limits on pair radius, ∆Rmax.

∆Rmax 1 < pT,assoc < 2 GeV/c 0.5 < pT,assoc < 1 GeV/c

π/3 44.2± 2.4 GeV 37.7± 1.6 GeV

0.7 44.4± 2.4 GeV 37.9± 1.6 GeV

0.5 44.3± 2.4 GeV 37.8± 1.6 GeV

in this particular bin is consistent with the expectation for maximal invariant mass

based on kinematic and geometric limits. At ∆R = 0.5, pT,π0 = 5 GeV/c, and

pT,assoc = 1 GeV/c, mmax
pair = 0.80 GeV/c2. The mass distributions suggest the events

provide sensitivity to a “jet-like” sample, rather than an inclusive meson sample, for

instance.

As discussed in chapter 1, spin effects due to IFF’s depend on two angles: φS,

which defines the azimuthal angle of the spin-polarization relative to the sum of the

two particle momenta, and φR, which defines the azimuthal angle of the difference of

the two particle momenta about the sum. Thus, it is useful to analyze the unpolarized

φR distribution prior to moving on to spin effects. For each event, I correlate the

trigger pion with each track in the event satisfying either 0.5 < pT < 1.0 GeV/c or

1.0 < pT < 2.0 GeV/c. Provided the pair radius limit and the auto-correlation cut

are satisfied, I calculate two vectors:

~P = ~pπ0 + ~ptrack (6.10)

~R = ~pπ0 − ~ptrack, (6.11)

where ~p denotes the three-momentum. I, then, rotate both ~P and ~R into the so-called
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Fig. 47.: Invariant pair mass for three upper-limits on pair radius for positively-

charged associated particles. The top row shows mass for associated particles with

0.5 < pT < 1 GeV/c while the lower row shows mass for associated particles with

1 < pT < 2 GeV/c. The red lines denote the mass for the ρ meson. Note that for

lower pT correlations with ∆R < 0.5, the kinematics severely restrict the ability to

reach the ρ mass.
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Fig. 48.: Invariant pair mass for three upper-limits on pair radius for negatively-

charged associated particles. The top row shows mass for associated particles with

0.5 < pT < 1 GeV/c while the lower row shows mass for associated particles with

1 < pT < 2 GeV/c. The red lines denote the mass for the ρ meson. Note that for

lower pT correlations with ∆R < 0.5, the kinematics severely restrict the ability to

reach the ρ mass.
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(a) (b)

Fig. 49.: φR correlations for negatively-charged associations with (a) ∆R < 0.7 and

1.0 < pT,assoc < 2.0 GeV/c and (b) ∆R < π/3 and 0.5 < pT,assoc < 1.0 GeV/c. (a)

separates the data into up (0 < φpair < π) and down (−π < φpair < 0) production,

while (b) separates the data into left (−π/2 < φpair < π/2) and right (π/2 < φpair <

3π/2) production. The top row reflects raw φR correlations, while the bottom row

reflects φR correlations for mixed events.

NLS frame, where ~P defines the z-axis. Then, φR is taken as the azimuthal angle

of ~R when rotated into the NLS coordinates. The forthcoming spin asymmetries

are measured using so-called cross-ratio techniques. This utilizes the symmetry of

the detectors to combine yields from various portions of the detector in forming the

asymmetries. Thus, it is useful to examine φR correlations when ~P falls in various

detector locations. Figure 49 shows examples of correlations when ~P falls in either

the “top” half, i.e. 0 < φpair < π, the “bottom” half, i.e. −π < φpair < 0, the “left”

half, i.e. −π/2 < φpair < π/2, or the “right” half, i.e. π/2 < φpair < 3π/2.
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The acceptance issues shown in Fig. 42 complicate not only the azimuthal cor-

relations as shown in Fig. 43, but also correlations in φR. Two examples of these

acceptance issues are shown in Fig. 49. Earlier, I discussed a mixed-event technique

using histograms as a means to overcome such acceptance effects. For these φR ac-

ceptance issues I use a different event-mixing procedure. Here, I mix events with

like properties. First, I divide the detector into six wedges in φ with three on the

left-hand side (−π/2 < φ < π/2) and three on the right (π/2 < φ < 3π/2). I define

“event classes” based on the wedge into which the event’s trigger pion falls. For each

event, the trigger pion is mixed with tracks from previous events of the same class.

The tracks are stored in one of six buffers (one for each event class). After the event

mixing, the tracks from the current event are stored in the buffer corresponding to

the event class defined by the trigger pion. Since correlations are restricted by the

pair-radius cut, the tracks are only stored if they fall within the class wedge or the

two adjacent wedges. For the sake of computing efficiency, the buffer size is restricted

to twenty tracks. After event mixing, the oldest tracks are removed to make room for

the newest tracks if the buffer is full.

The φR correlations can be corrected for relative efficiency by dividing the raw

yield by the mixed-event distributions. As shown in Fig. 50, the acceptance-corrected

distributions can be fitted with a function of the form p0 [1 + p1 × cos (φR)]. The con-

stant scale parameters, then, factor out the absolute efficiency, which is not corrected,

leaving the cosine term describing the physical aspects of the yield. The cosine fit

parameters for positively-charged and negatively-charged correlations at three differ-

ent pair-radius limits are summarized in Figs. 51 and 52. Statistics are limited, but

within the available precision the cosine parameters do not show strong dependence

on pair radius, charge sign, or location in the detector. The results suggest a posi-

tive value for the cosine parameter. This makes sense from a kinematics standpoint.
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Given that I cut both the pions and associated particles in terms of pT , the jet will

tend to orient the particles to minimize the jet energy. This is achieved when the

trigger, with higher pT , falls to lower η than the softer associated particle. So, the

expectation is a bias toward production in the event plane with the trigger at lower

η. With my definition of ~P = ~pπ0 − ~passoc, the expected bias is toward φR = 0 and,

thus, positive cosine parameter. This is consistent with the results in Figs. 51 and

52. It is also possible, that the behavior is influenced by the so-called Boer-Mulders

effect [22]. The Boer-Mulders effect is a correlation between the spin polarization and

transverse momentum of partons within an unpolarized nucleon. By coupling with

the Collins fragmentation function, this results in a cosφR dependence in the unpo-

larized cross section, and for maximized scenarios, could be sizable at the kinematics

of this analysis [23]. Since the asymmetry exists in the unpolarized cross section,

to isolate the contribution of such an effect, this analysis would need far more rig-

orous understanding of acceptance inefficiencies and a robust quantification of the

trigger-bias.
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(a)

(b)

Fig. 50.: Acceptance-corrected φR correlations for positively-charged associations

with 0.5 < pT,assoc < 1.0 GeV/c and (a) ∆R < 0.5 and (b) ∆R < 0.7. (a) separates

the data into up (0 < φpair < π) and down (−π < φpair < 0) production, while (b) sep-

arates the data into left (−π/2 < φpair < π/2) and right (π/2 < φpair < 3π/2) produc-

tion. The distributions have been fit with a function of the form p0 [1 + p1 × cos (φR)].

The differing constant scale parameters reflect differing absolute efficiency in the var-

ious portions of the detector. The peaks at φR ∼ 0 are consistent with kinematic

expectation for my pT cuts.



117

Fig. 51.: Cosine parameters describing φR correlations for three upper limits on pair

radius. Errors are statistical only. The left column demonstrates results for left

production, and the right column demonstrates results for right production. The top

row reflects results for associations with 1 < pT < 2 GeV/c and the bottom row

reflects results for associations with 0.5 < pT < 1 GeV/c. Within the statistical

precision, the results do not reflect a strong dependence on pair radius, charge sign,

pT , and detector location.
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Fig. 52.: Cosine parameters describing φR correlations for three upper limits on pair

radius. Errors are statistical only. The left column demonstrates results for up

production, and the right column demonstrates results for down production. The

top row reflects results for associations with 1 < pT < 2 GeV/c and the bottom

row reflects results for associations with 0.5 < pT < 1 GeV/c. Within the statistical

precision, the results do not reflect a strong dependence on pair radius, charge sign,

pT , and detector location.
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CHAPTER VII

TWO-PARTICLE CORRELATION ASYMMETRIES

The presence of a π0-charged particle correlation signal in the 200 GeV polarized-

proton data (Fig. 46) affords the opportunity to study spin asymmetries beyond

the current inclusive measurements from polarized-proton data discussed in chapter

1. Among the considerations in such an analysis are the effects of the observed

acceptance inefficiencies (Fig. 42) and the effects of the large background under the

correlation signal.

A. Cross Ratios

Asymmetries are often measured as a function of the angle between the spin polariza-

tion direction and the event plane (the plane containing the axes of the beam and the

scattered particle) (Eq. 2.25). The literature commonly defines the x-axis collinear

with the event plane. Using this convention, for the Sivers effect, an asymmetry is

measured in φS of the jet yield. A two-particle Sivers measurement is possible by

considering the sum of the momentum vectors of the two particles, ~p1 + ~p2, as a sur-

rogate for the jet axis. For an IFF measurement, an additional angle is needed. The

asymmetry exists in φS − φR, where φR (Fig. 50) measures the azimuthal angle of

~p1 − ~p2 around the sum, ~p1 + ~p2.

Asymmetries can be measured in a variety of ways. First, it is possible to measure

the angular dependence of cross sections, e.g.

dσ (θ, φ) = dσ0 (θ) [1 + PbeamA (θ)] . (7.1)

However, this requires detailed knowledge of such elements as efficiencies and lumi-

nosities. Since RHIC beams flip the spin of proton bunches several million times per
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second, it is possible to consider the difference in yields produced between collisions

with “spin-up” and “spin-down,”

A =
1

Pbeam

dσ↑ − dσ↓

dσ↑ + dσ↓
. (7.2)

In this formulation, detector acceptance effects cancel, however, knowledge of the

relative spin-up and spin-down beam luminosities remains critical. In the absence of

relative luminosity information, the cross-ratio formulation [85] provides a viable op-

tion for symmetric detectors. In the cross ratio formulation both detector acceptance

and relative luminosity asymmetries cancel. Given the large acceptance asymmetries

and the lack of relative luminosity information for the 2008 RHIC run, the cross-ratio

formulation remains the best option for this analysis.

For the asymmetry measurements, I follow the approach of Bacchetta and Radici

[47] with the caveat that I consider the incoming beam to be polarized rather than

the target beam, as is the typical SIDIS convention. As with the unpolarized φR

correlation analysis, I calculate two vectors: the sum vector ~P = ~pπ0 + ~ph and the

difference vector ~R = ~pπ0 − ~ph, where h denotes the associated charged particle.

For the polarized analysis, φR is calculated from the NLS frame, the same as in

the unpolarized analysis. As depicted in Fig. 53, φS is calculated depending on the

hemisphere into which ~P falls. If ~P falls in the upper (left) hemisphere, φS is the

angle between ~P and the positive vertical axis, independent of whether the beam spin

points up or down. If ~P falls in the lower (right) hemisphere, φS is the angle between

~P and the negative vertical axis. This convention ensures that like regions of the

detector are compared when the spin is flipped.

Figure 53 provides a pictorial representation of the yields and angles contributing

to the cross-ratio asymmetries. In this depiction the space is divided into an upper

hemisphere and a lower hemisphere. The formulation is equally valid when divided
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between left and right hemispheres. The yields, α and β, are functions of both φS

and ∆φ = φS − φR. For each measurement, the cross ratio is constructed with the

yields as

ε = Pbeam × A =

√
α↑β↓ −

√
α↓β↑√

α↑β↓ +
√
α↓β↑

, (7.3)

where ↑ (↓) denotes spin-up (spin-down). The product α↑β↓ combines instrumental

terms from both α and β as well as luminosity terms from both spin-up and spin-

down. Since the acceptance may be asymmetric between the two hemispheres, and

the luminosity may differ between spin-up and spin-down, these terms may differ.

The spin physics, however, is the same, between α↑ and β↓, simply rotated into

opposite detector hemispheres. Similarly, α↓β↑ combines the same instrumental and

luminosity terms as α↑β↓, and the spin physics is the same between α↓ and β↑. In

the ideal case, then, the luminosity and acceptance terms factor from the numerator

and denominator of Eq. 7.3, and the ratio cancels them. What remains is the spin

physics, i.e. how the yields in α and β change when the polarization is flipped.

For an IFF asymmetry, the yields are functions of ∆φ integrated over φS. For a

Sivers asymmetry, the yields are functions of φS integrated over ∆φ. The statistical

uncertainties in the raw cross ratio can be expressed

δε =

√
(1− A)2 (α↑ + β↓) /4 + (1 + A)2 (α↓ + β↑) /4√

α↑β↓ +
√
α↓β↑

. (7.4)

The analysis code is run twice for each measurement, once selecting spin-up events

and once selecting spin-down events. The ∆φ and φS yields are binned in histograms

corresponding to the appropriate hemisphere. The cross ratios are constructed offline

combining the appropriate yield histograms.

Aside from the physics cross-ratio asymmetry, two other cross ratios can be

constructed with the yields. An instrumental cross ratio, measuring the detector
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Fig. 53.: Pictorial diagram of yields and angles contributing to the cross-ratio asym-

metries for the IFF and Sivers effects. More detailed diagrams are outlined by Bac-

chetta and Radici [47].

acceptance asymmetry, can be constructed as

I =

√
α↑α↓ −

√
β↑β↓

√
α↑α↓ +

√
β↑β↓

. (7.5)

Additionally, a luminosity cross ratio, measuring the spin-up-spin-down beam asym-

metry, can be constructed as

L =

√
α↑β↑ −

√
α↓β↓√

α↑β↑ +
√
α↓β↓

. (7.6)

Figure 54 shows an example of a set of IFF cross ratios for xF > 0, 0.5 <

pT < 1.0 GeV/c associations with negative charge, and ∆R < 0.7. In this particular

example, I have adopted the formulation where the space is divided into left and

right hemispheres. The physics cross ratio is fit with a function of the form p0 +

p1 sin (∆φ). The asymmetry derives from the sine term, which for this example is
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Fig. 54.: Raw IFF Cross Ratios for π0 − h− with 0.5 < pT,h < 1 GeV/c, ∆R < 0.7,

and xF > 0 uncorrected for backgrounds and polarization. The cross ratios reflect

the left-right formulation. The physics cross ratio (left) is fit with a function of the

form p0 + p1 sin (∆φ) and returns a positive asymmetry of 2.2σ. The instrumental

cross ratio (center) shows considerable non-uniformity and sizable effects (≈ 0.4).

The luminosity cross ratio (right) is fit with a constant, the value of which is small

and consistent with 0.

p1 = 0.054±0.025, a 2.2σ effect. The instrumental cross-ratio shows sizable structure

and will be discussed in the forthcoming section. The luminosity cross ratio is fit

with a constant, the value of which is quite small and consistent with zero within the

available statistics. This is characteristic of the luminosity cross ratios for all cuts in

∆R, pT , and charge sign.

Figure 55 shows an example of a set of Sivers cross ratios for xF > 0, 1.0 <

pT < 2.0 GeV/c associations with negative charge, and ∆R < 0.7. For this example,

I have adopted the convention of dividing the space into up and down hemispheres.

Furthermore, the left-right formulation yields identical results to the up-down formu-

lation in the case of the Sivers asymmetry, since the data points are identical, shifted

by a phase. Therefore, I will only show examples of Sivers asymmetries using the

up-down convention. In this case, the physics cross ratio is fit with a function of the
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Fig. 55.: Sivers Cross Ratios for π0 − h− with 1 < pT,h < 2 GeV/c, ∆R < 0.7, and

xF > 0. The physics cross ratio (left) is fit with a function of the form p0 sin (φS) and

returns a negative asymmetry of 1.9σ. The instrumental cross ratio (center) shows

considerable non-uniformity and sizable effects (≈ ±0.8). The luminosity cross ratio

(right) is fit with a constant, the value of which is consistent with 0.

form p0 sin (φS). Again, the asymmetry derives from the sine term, which for this

example is p0 = −0.125±0.067, a 1.9σ effect. Just as in the IFF asymmetry example

(Fig. 54), the instrumental cross ratio shows considerable structure and reaches values

near 80%. The luminosity cross ratio is fit with a constant, as in the IFF example.

Again, the value is consistent with zero; and, like the IFF case, this is typical for all

combinations of cuts.

B. Acceptance Effects

It is possible for asymmetries in a number of different angular moments to contribute

to the yields depicted in Fig. 53. D’Alesio and company have shown that for the

kinematics of this analysis only the Sivers and IFF effects contribute in a meaningful

way, even for maximal considerations [23]. Thus, the yields from the two hemispheres
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depicted in Fig. 53 can be expressed in terms of Sivers and IFF asymmetries as

α↑ (∆φ, φS) = σL↑Iα (∆φ, φS) [1 + Pbeam (AIFF sin ∆φ+ ASIV sinφS)] (7.7)

α↓ (∆φ, φS) = σL↓Iα (∆φ, φS) [1− Pbeam (AIFF sin ∆φ+ ASIV sinφS)] (7.8)

β↓ (∆φ, φS) = σL↓Iβ (∆φ, φS) [1 + Pbeam (AIFF sin ∆φ+ ASIV sinφS)] (7.9)

β↑ (∆φ, φS) = σL↑Iβ (∆φ, φS) [1− Pbeam (AIFF sin ∆φ+ ASIV sinφS)] , (7.10)

where L↑(↓) denotes spin-up(down) beam luminosity and Iα(β) denotes the instrumen-

tal acceptance of the α (β) hemisphere. For an IFF measurement, the yields are taken

as functions of ∆φ, integrated over φS. If the acceptance is uniform in φS, Iα and

Iβ will factor out from the cross ratio. Furthermore, in the up-down formulation,

φS ranges from −π/2 to π/2; and the Sivers term disappears from the φS-integrated

yields. The IFF cross ratio completely decouples from the Sivers asymmetry, reducing

to

1

Pbeam

√
α↑β↓ −

√
α↓β↑√

α↑β↓ +
√
α↓β↑

= AIFF sin (∆φ) . (7.11)

In the left-right formulation, φS ranges from 0 to π introducing a Sivers-asymmetry-

dependent constant offset to the IFF asymmetry of the form

1

Pbeam

√
α↑β↓ −

√
α↓β↑√

α↑β↓ +
√
α↓β↑

= AIFF sin (∆φ) +
2

π
ASIV. (7.12)

The same procedure can be applied for the Sivers asymmetry cross ratio yielding

analogous results. If, however, the acceptance is not uniform in φS, then the Iα and

Iβ do not factor out from the cross ratio. The integration of I (∆φ, φS)ASIV sinφS

terms couples the acceptance to the Sivers asymmetry resulting in a distortion of

the IFF asymmetry. Analogously, for a Sivers asymmetry, non-uniformity in ∆φ

results in a distortion from coupling the instrumental effects to the IFF asymmetry

in ∆φ-integrated yields.
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The acceptance issues in the 2008 polarized-proton data (Fig. 42) translate into

non-uniform acceptance in both ∆φ and φS. Figure 56 shows the effective φS coverage

for each bin of ∆φ for ∆Rmax = π/3 with 0.5 < pT,h < 1 GeV/c. These inefficiencies

lead to the instrumental effects seen in Fig. 49 as well as the instrumental asymmetries

observed in Figs. 54 and 55. Thus, it is necessary to understand how the instrumental

effects and competing asymmetries conspire to “leak-through” and distort the desired

measurements.

C. Leak-through Correction

One common technique in understanding how a true signal is distorted by non-

physical effects is to implant an effect into the data and compare the known input

to the recovered measurement. For this analysis, I wish to understand how the pres-

ence of a Sivers measurement distorts the measured IFF asymmetry and vice versa.

One possibility, then, is to weight the IFF yields based on a Sivers asymmetry and

construct the cross ratios with the Sivers-weighted yields. The difference between the

weighted and un-weighted cross ratios, then, isolates the “leak-through” of the Sivers

asymmetry to the IFF asymmetry. The exact analogy works for the leak-through of

the IFF asymmetry to the Sivers.

One complication to this is that real IFF and Sivers effects may be present. These

real effects, then, couple to the weighting factors to produce higher-order distortions

which are difficult to quantify. One solution to this is to perform the weighting process

in an unpolarized environment. Thus, real Sivers and IFF effects will be removed,

and the resulting weighted cross ratios will only contain contributions from the input

asymmetry.

To achieve the unpolarized scenario, I proceed in the same manner as the polar-
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Fig. 56.: Effective φS coverage for each bin of ∆φ. Events satisfy ∆R < π/3 and

0.5 < pT,assoc < 1 GeV/c. The non-uniform FMS gain coupled with hardware failures

in the FTPC translate into the observed non-uniform acceptance in ∆φ-φS space.

For an IFF measurement, this acceptance non-uniformity introduces a distortion by

coupling to the Sivers asymmetry. Analogously, the acceptance introduces a distortion

in the Sivers asymmetry by coupling to the IFF asymmetry.
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ized analysis, now, removing the spin-state selection. For each event, I fill both the

spin-up and spin-down yield histograms. I weight the Sivers yields for the actual spin

state by 1 + Ainput
IFF sin ∆φtrue and the Sivers yields for the opposite spin state by 1−

Ainput
IFF sin ∆φtrue. I weight the IFF yields for the actual spin state by 1+Ainput

SIV sinφS,true

and the Sivers yields for the opposite spin state by 1−Ainput
SIV sinφS,true. Here, “true”

denotes that the weighting factors utilize φS calculated relative to the actual spin

direction, rather than the vertical direction corresponding to the hemispheres as de-

picted in Fig. 53. The statistical uncertainties for the weighted cross ratios can be

expressed

(δεw)2 =
1

(A+B)4

B2

A2

(β↓)2∑
i

(
w↑i
)2

+
(
α↑
)2∑

j

(
w↓j
)2


+
A2

B2

(β↑)2∑
i

(
w↓i
)2

+
(
α↓
)2∑

j

(
w↑j
)2


−2

β↓β↑∑
i

w↑iw
↓
i + α↑α↓

∑
j

w↑jw
↓
j

 , (7.13)

where A2 = α↑β↓, B2 = β↑α↓, and wi(j) denotes the weight factor for α (β) yields.

Two examples of unpolarized, weighted cross ratios are shown in Fig. 57. The Sivers

leak-through cross ratios are fit with a function of the form p0 + p1× sin ∆φ, and the

IFF leak-through cross ratios are fit with a function of the form p0× sin ∆φ. The fits

are often quite poor, however, they represent the leading-order harmonic terms. Given

the size of the statistical uncertainties in the raw cross ratios, as well as the over-all

small scale of the leak-through, the leading-order harmonics are sufficient. While

the scale of the leak-through cross ratios, shown here for a 10% input asymmetry, is

relatively small, the fluctuations are large compared to the statistical errors. Thus,

the leak-through is real and can be removed from the raw physics cross ratios as an

acceptance correction.
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(a) (b)

Fig. 57.: Unpolarized cross ratios for (a) Sivers weighting and (b) IFF weighting, each

with an input of Pbeam × A = 10%. (a) shows up-down formulated IFF cross ratios

for charged particles with 1 < pT < 2 GeV/c, positive charge, and ∆R < 0.5. The

cross ratio has been fit with a function of the form p0 + p1 × sin (∆φ). (b) shows up-

down formulated Sivers cross ratios for charged particles with 0.5 < pT < 1 GeV/c,

positive charge, and ∆R < 0.5. The cross ratio has been fit with a function of the

form p0 × sin (φS).
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To correct for competing effects, I, first, divide the Sivers leak-through cross

ratios by the input asymmetry and scale by the raw, measured Sivers effect (e.g. Fig.

55). I, then, subtract the scaled leak-through cross ratios from the raw, measured

IFF cross ratios. The resulting distribution can, then, be fit with a function of the

form p0 + p1 × sin ∆φ to extract the leak-through-corrected IFF asymmetry. To

calculate the uncertainties, it is important to account for the large uncertainty from

the Sivers asymmetry. One simple way to do this is by utilizing the first-order fits to

the leak-through cross ratios. The parameters of the fit to the corrected distribution

are approximately

pcorr
i = puncorr

i − pleak
i ; (7.14)

and, thus, the uncertainties are

(δpcorr
i )2 = (δpuncorr

i )2 +
(
δpleak

i

)2
. (7.15)

The “uncorrected” uncertainties are simply those of the fit to the raw IFF cross ratios.

The leak-through uncertainties, however, involve both the fit uncertainties as well as

the Sivers asymmetry uncertainties. The leak-through fit parameters should scale

with the Sivers asymmetry. Thus,

pleak
i = ASIV × praw

i (7.16)(
δpleak

i

)2
= (ASIV × δpraw

i )2 + (δASIV × praw
i )2

(
δpleak

i

)2
=

(
δpleak−fit

i

)2
+

(
pleak
i × δASIV

ASIV

)2

, (7.17)

where δpleak−fit
i is the uncertainty of the fit to the leak-through cross ratio, which

scales with the Sivers asymmetry. So, the calculated uncertainty on the leak-through-
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corrected IFF asymmetry is

(δpcorr
i )2 = (δpuncorr

i )2 +
(
δpleak−fit

i

)2
+

(
δASIV

ASIV

× pleak
i

)2

. (7.18)

With the leak-through-corrected IFF asymmetries in hand, I, then, repeat the proce-

dure to correct the leak-through on the Sivers asymmetries. This time, however, I use

the corrected IFF asymmetries to scale the leak-through cross ratios. Given the size of

the statistical uncertainties, any ambiguities from using uncorrected Sivers asymme-

tries to scale the leak-through cross ratios for the IFF correction should be negligible.

Figure 58 shows examples of leak-through-corrected cross ratios for IFF and Sivers

effects. These resulting cross ratios exhibit effects of 2.2σ and 2.5σ, respectively.

D. Scale Factors and Background Correction

So far, I have reported cross ratios uncorrected for polarization. To convert cross

ratios to asymmetries, it is necessary to divide by the beam polarization. Such a

correction is trivial, however, a more complicated question is how to correct for back-

ground and underlying event fractions. To a large degree, this question does not have

a definitive answer and is worth some exploration.

When an asymmetry is measured, the yields are always a combination of signal

and background. One way to visualize the situation is

Ameas =
N↑sig +

∑
iN

i↑
bg −N

↓
sig −

∑
iN

i↓
bg

Ntot

, (7.19)

where Ameas represents the measured asymmetry, N
↑(↓)
sig represents the signal yield for

spin-up or spin-down, the N
i↑(↓)
bg terms represent the various background yields for

spin-up or spin-down, and Ntot represents the sum of all components. Equation 7.19

can be reexpressed in terms of its yield fractions to obtain an expression for the true
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(a) (b)

Fig. 58.: Leak-through-corrected (a) IFF and (b) Sivers cross ratios. (a) is shown

in the up-down formulatlion for associated charged particles with 0.5 < pT < 1

GeV/c, negative charge, and ∆R < 0.7. (b) is shown in the up-down formulation for

associated charged particles with 1 < pT < 2 GeV/c, negative charge, and ∆R < 0.5.

The corrections result in a (a) 2.2σ effect and a (b) 2.5σ effect.
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asymmetry

Ameas =

(
N↑sig −N

↓
sig

)
+
∑
i

(
N i↑

bg −N
i↓
bg

)
Ntot

=
NsigAsig +

∑
iN

i
bgA

i
bg

Ntot

= fsigAsig +
∑
i

f ibgA
i
bg

Asig =
Ameas −

∑
i f

i
bgA

i
bg

fsig

, (7.20)

where Nsig and N i
bg represent the components summed over spin states and the f

terms represent the various fractions of the total yield. So, given the appropriate

background asymmetries, I can use the yield fractions listed in Table VI to correct the

measured asymmetries to obtain the desired signal asymmetry. The two non-signal

contributions for which I correct in this analysis are the pile-up and underlying-event

backgrounds. Additionally, there is a contribution from the away-side peak. Most

likely, the away-side contributions are simply artifacts of the fitting model coupled

to the limited statistics. Thus, I treat the away-side fraction as an additional piece

of the underlying event. The question, then, is what are the appropriate background

asymmetries.

For the IFF measurement, I assume the pile-up background contains no asymme-

try. The IFF asymmetry depends on the relative orientation of the associated particle

and the trigger. Thus, if the associated particle is randomly oriented, furthermore,

with no defined spin-state, as should be the case for pile-up, then there should exist

no asymmetry in the IFF pile-up. For the Sivers measurement, on the other hand, I

do assume a pile-up asymmetry. The Sivers effect is based on an asymmetry in the

sum of the two-particle momenta. This is largely anchored by the trigger pion, which

is prompt, carrying a defined spin-state. Since it is well known that the pion carries

an asymmetry, I must assume some asymmetry for the Sivers pile-up.
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Since the trigger pion carries the stiffer pT cut, it largely approximates the two-

particle axis. So, one sensible way to model the asymmetry from pile-up is to dilute

the pion asymmetry by a smearing function based on the difference of the pion and

pair axes. For all series of cuts, φS,π0 − φS,pair < 0.18. If I convolute a sine function

with a gaussian of RMS = 0.18, I find the sine amplitude damped by < 2%. Thus, any

effects from the axis smearing are negligible compared to the statistical uncertainties,

and the pion asymmetry serves as the background asymmetry for Sivers pile-up.

Since one expects the underlying event to know nothing about the spin of the

fragmenting parton, I assume no underlying event contribution to the IFF measure-

ment. On the other hand, if the underlying event and signal interfere with each other,

then, the IFF effect may have a greater reach than the near-side signal. For the Sivers

effect, the situation is reversed. The Sivers asymmetry exists in the distribution of

the hard-scattered parton. Thus, given no interference with the underlying event,

the pion-underlying-event pair will carry an asymmetry I can approximate with the

smearing procedure discussed above. If there is an interference, however, the situ-

ation changes, and I cannot assume the pion asymmetry survives in the underlying

event. The existence of interference is a physics question, of course, and so I am

motivated to two different corrections. First, I will present results correcting for the

full underlying event and pile-up backgrounds, i.e.

Asig =
Ameas − Abg (1− fsig)

fsig

. (7.21)

Second, I will also present results for only the pile-up correction, i.e.

Asig =
Ameas − fpu × Abg

1− fpu

, (7.22)

where fpu is the pile-up fraction. Differences in the behavior may motivate further

study to understand effects of final-state interactions (or the lack thereof) between
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the near-side peak and underlying event. Additionally, for the full underlying-event

and pile-up background corrections of the Sivers effect, I will factor into systematic

estimations the difference of applying the pion asymmetry to the pile-up fraction only.

To remove the background asymmetries from the Sivers measurement, I need

to understand what the pion asymmetry is for these kinematics. Earlier, I have

shown the pion asymmetry as a function of xF (Fig. 26). However, now, I need to

know the asymmetry integrated over xF . Figure 59 shows the set of φS cross ratios

for pions within 2 < pT < 5 GeV/c. The physics cross ratio has been corrected for

polarization (〈P 〉 = 47±2%), finite binning, and acceptance effects. An asymmetry of

AN = 0.027±0.003, a 7.9σ effect, is evident. This value can be factored in as the pile-

up and underlying-event backgrounds for the Sivers effect. For xF < 0, I measure an

asymmetry of AN = 0.0034± 0.0034. Additionally, Fig. 59 includes instrumental and

luminosity cross ratios. The instrumental effects are quite sizable, emphasizing the

importance of correctly handling statistics (e.g. Eq. 7.4). The luminosity cross ratio

is quite small, however, a constant fit yields a 2.5σ effect. This suggests that though

residual polarization may exist after summing over spin states in the unpolarized

leak-through procedure, it is miniscule and negligible.

E. Statistical Uncertainties

A major task in any physics analysis is to understand the statistical uncertainties.

For Eq. 7.21, the statistical uncertainties can be expressed

(δAsig)2 =

(
∂Asig

∂Ameas

δAmeas

)2

+

(
∂Asig

∂Abg

δAbg

)2

+

(
∂Asig

∂fsig

δfsig

)2

=

(
1

fsig

δAmeas

)2

+

(
1− fsig

fsig

δAbg

)2

+

(
Ameas − Abg

fsig

δfsig

fsig

)2

. (7.23)
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Fig. 59.: Cross ratios as a function of φS for trigger pions with 2 < pT < 5 GeV/c

integrated over xF . The physics asymmetry is shown corrected for beam polarization,

binning, and finite acceptance. The trigger pions exhibit AN = 0.027 ± 0.003. For

xF < 0, the asymmetry is small and consistent with zero. This can be factored in as

a correction for pile-up and underlying-event backgrounds for the Sivers asymmetry.

Similarly, for Eq. 7.22, the statistical uncertainties can be expressed

(δAsig)2 =

(
1

1− fpu

δAmeas

)2

+

(
fpu

1− fpu

δAbg

)2

+

(
Ameas − Abg

1− fpu

δfpu

1− fpu

)2

. (7.24)

So, the statistical uncertainties can be divided into three groups: the measured asym-

metries, the background asymmetries, and the yield fractions.

The uncertainty in the measured asymmetry can be expressed(
δAmeas

Ameas

)2

=

(
δεmeas

εmeas

)2

+

(
δPmeas

Pmeas

)2

, (7.25)

and, thus, contains two contributions: the uncertainty on the raw cross ratio (Eq.

7.4) and the uncertainty from the polarization. In this analysis, the limited statistics

translate into large statistical uncertainties in the raw cross ratios. Furthermore, the

large instrumental asymmetries work to compound the limitations of these uncertain-
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ties. Additionally, the leak-through correction introduces uncertainties related to the

measured effects (Eq. 7.18). For IFF and Sivers events, the average polarization is

48 ± 2% for xF > 0 and 40 ± 3% for xF < 0. The relative polarization uncertainty

is quoted as δP/P = 4.2% for xF > 0 and δP/P = 7.2% for xF < 0 [86]. In all

cases, the uncertainties related to the polarization are negligible compared to the raw

cross-ratio uncertainties.

As I discussed, the uncertainties from the yield fractions, fsig or fpu, are derived

from fits tuned to the one-dimensional azimuthal correlations (Fig. 46). The uncer-

tainties from the fit translate into uncertainties in the yield fractions (Table VI). In

all cases, the yield fraction uncertainties are smaller than those from the cross ratio.

However, in some cases the yield fraction uncertainties are still large enough that they

contribute in a meaningful way to the over-all statistical uncertainty.

Uncertainties in the background asymmetry (Fig. 59) take on the same form

as those from the measured asymmetry (Eq. 7.25). However, these uncertainties are

quite small, relative to cross ratio uncertainties, and do not contribute in a meaningful

way to the over-all statistical uncertainty.

F. Systematic Uncertainties

In chapter 4, I show that autocorrelations between the FMS and FTPC exhibit a

systematic offset in η (Figs. 22 and 22). This has motivated a shift in the reconstructed

photon location of δη = −0.0256 prior to reconstructing the π0’s. However, it is

important to understand how this photon shift changes the measured asymmetries.

To this end, I have repeated the analysis, leaving the photons unshifted. For this

pass, the autocorrelation veto is shifted to −5/32 < ∆η < 1/32 and −3π/100 <

∆φ < 3π/100 to account for the shift in η. The difference between the shifted and
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unshifted analyses is taken as the reconstruction systematic. In most cases, this

reconstruction systematic is the largest of the systematic contributions.

As I discussed, additional systematic uncertainties arise from the fitting pro-

cedure. To estimate this, the two-dimensional correlation fit function has been

tuned twice. The baseline measurement is taken by assuming an active range of

−1 < ∆η < 1. The function is also tuned to an active range of −0.7 < ∆η < 0.7.

The asymmetries are calculated using both functions, and the difference between the

two sets the contribution to the systematic uncertainties.

The final systematic estimation comes from varying the background asymmetry

contributions to the Sivers asymmetry. As I discussed earlier, the baseline measure-

ment assumes the pion asymmetry applies to the full pile-up and underlying-event

backgrounds. The asymmetry calculation is repeated, assuming the pion asymmetry

only applies to the pile-up background. The difference between the two calculations

sets the contribution to the systematic uncertainties. The three contributions are

added in quadrature to estimate the total systematic uncertainty.
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CHAPTER VIII

RESULTS AND CONCLUSIONS

A. IFF and Sivers Asymmetries

Summarized in Tables VIII and IX and shown in Figs. 60 and 61 are full-background-

corrected IFF asymmetries for xF > 0 and xF < 0. The asymmetries are shown for

three upper-limits on the pair radius ∆R. Asymmetries for xF < 0 are consistent

with zero. It is difficult to draw conclusions for xF > 0 given the statistics limitations.

There is some hint of a positive asymmetry (∼ 2σ effect) for π0−h− with xF ≈ 0.38.

All other bins are consistent with zero within the large statistical uncertainties.

Figure 62 shows full background-corrected Sivers asymmetries for xF > 0 and

xF < 0. As with the IFF asymmetries, the Sivers asymmetries are shown for three

different upper-limits on ∆R. Again, asymmetries for xF < 0 are consistent with

zero. Most asymmetries for xF > 0 are also consistent with zero, and the statistical

uncertainties make further conclusions difficult. There is some hint of a negative

effect (∼ 1.7σ) for π0 − h− with xF ≈ 0.44. All other bins are consistent with zero.

The values are summarized in Table X.

Given the questions concerning interference between the near-side peak and the

underlying event, I also present results of only correcting for pile-up (Figs. 63, 64,

65). The values are summarized in Tables XI and XII Once again, statistics limit

the ability to draw conclusions from the data. However, there is some hint that the

data are less dependent on the pair radius after correcting for the underlying event.

There is some ambiguity, however, as to what the pair-radius dependence should be.

As I show in Fig. 8, HERMES and COMPASS observe some mass-dependence to the

IFF asymmetry in SIDIS. Figures 47 and 48 illustrate that the pair mass varies with
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Table VIII.: IFF Asymmetries in the up-down formulation for p↑+ p→ π0 + h±+X

at
√
s = 200 GeV. Asymmetries are reported as A+ δAstat + δAsyst.

xF = 0.44± 0.02

∆Rmax = π/3 ∆Rmax = 0.7 ∆Rmax = 0.5

π0 + h+ 0.053± 0.191± 0.017 0.035± 0.164± 0.043 −0.160± 0.178± 0.075

π0 + h− −0.193± 0.231± 0.052 −0.150± 0.200± 0.049 −0.248± 0.228± 0.054

xF = 0.38± 0.02

∆Rmax = π/3 ∆Rmax = 0.7 ∆Rmax = 0.5

π0 + h+ −0.030± 0.179± 0.011 0.051± 0.165± 0.036 −0.083± 0.192± 0.021

π0 + h− 0.278± 0.219± 0.060 0.402± 0.213± 0.089 0.412± 0.241± 0.128

xF = −0.44± 0.02

∆Rmax = π/3 ∆Rmax = 0.7 ∆Rmax = 0.5

π0 + h+ 0.061± 0.225± 0.052 0.072± 0.193± 0.030 0.062± 0.202± 0.037

π0 + h− −0.150± 0.262± 0.065 −0.107± 0.230± 0.112 0.039± 0.257± 0.133

xF = −0.38± 0.02

∆Rmax = π/3 ∆Rmax = 0.7 ∆Rmax = 0.5

π0 + h+ 0.210± 0.221± 0.044 0.278± 0.206± 0.080 0.251± 0.231± 0.042

π0 + h− 0.165± 0.242± 0.114 0.066± 0.217± 0.022 0.062± 0.256± 0.040
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Fig. 60.: Background-corrected IFF asymmetries from the up-down formulation

shown as a function of the upper-limit on pair radius from p↑ + p→ π0 + h± +X at

√
s = 200 GeV. The pions satisfy 2 < pT < 5 GeV/c, while the associated charged-

particles satisfy (top) 1 < pT < 2 GeV and (bottom) 0.5 < pT < 1 GeV/c. The

asymmetries are shown for (left) xF > 0 and (right) xF < 0. Systematic errors are

shown as shaded boxes around the data points. The blue, dashed lines indicates the

expected scale of the IFF effect for π0−π+ (Eq. 1.36); and the red, dashed lines indi-

cates the expected scale of the IFF effect for π0−π− (Eq. 1.37). Statistics limitations

make drawing conclusions difficult.
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Table IX.: IFF Asymmetries in the left-right formulation for p↑ + p → π0 + h± + X

at
√
s = 200 GeV. Asymmetries are reported as A+ δAstat + δAsyst.

xF = 0.44± 0.02

∆Rmax = π/3 ∆Rmax = 0.7 ∆Rmax = 0.5

π0 + h+ 0.040± 0.244± 0.041 0.108± 0.225± 0.079 −0.032± 0.243± 0.147

π0 + h− −0.212± 0.283± 0.053 −0.049± 0.253± 0.040 −0.168± 0.287± 0.021

xF = 0.38± 0.02

∆Rmax = π/3 ∆Rmax = 0.7 ∆Rmax = 0.5

π0 + h+ 0.013± 0.218± 0.038 0.079± 0.211± 0.027 −0.017± 0.255± 0.060

π0 + h− 0.469± 0.282± 0.126 0.659± 0.292± 0.154 0.644± 0.324± 0.184

xF = −0.44± 0.02

∆Rmax = π/3 ∆Rmax = 0.7 ∆Rmax = 0.5

π0 + h+ 0.083± 0.234± 0.021 0.101± 0.216± 0.039 0.183± 0.240± 0.045

π0 + h− −0.262± 0.286± 0.059 −0.166± 0.256± 0.087 −0.302± 0.298± 0.228

xF = −0.38± 0.02

∆Rmax = π/3 ∆Rmax = 0.7 ∆Rmax = 0.5

π0 + h+ 0.181± 0.218± 0.065 0.184± 0.210± 0.094 0.101± 0.251± 0.041

π0 + h− 0.102± 0.238± 0.131 0.003± 0.230± 0.014 −0.013± 0.277± 0.080
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Fig. 61.: Background-corrected IFF asymmetries from the left-right formulation

shown as a function of the upper-limit on pair radius from p↑ + p→ π0 + h± +X at

√
s = 200 GeV. The pions satisfy 2 < pT < 5 GeV/c, while the associated charged-

particles satisfy (top) 1 < pT < 2 GeV and (bottom) 0.5 < pT < 1 GeV/c. The

asymmetries are shown for (left) xF > 0 and (right) xF < 0. Systematic errors are

shown as shaded boxes around the data points. The blue, dashed lines indicates the

expected scale of the IFF effect for π0−π+ (Eq. 1.36); and the red, dashed lines indi-

cates the expected scale of the IFF effect for π0−π− (Eq. 1.37). Statistics limitations

make drawing conclusions difficult.
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Table X.: Sivers Asymmetries for p↑+p→ π0+h±+X at
√
s = 200 GeV. Asymmetries

are reported as A+ δAstat + δAsyst.

xF = 0.44± 0.02

∆Rmax = π/3 ∆Rmax = 0.7 ∆Rmax = 0.5

π0 + h+ 0.098± 0.280± 0.141 0.121± 0.244± 0.055 0.130± 0.264± 0.131

π0 + h− −0.503± 0.363± 0.116 −0.509± 0.310± 0.103 −0.742± 0.360± 0.251

xF = 0.38± 0.02

∆Rmax = π/3 ∆Rmax = 0.7 ∆Rmax = 0.5

π0 + h+ −0.175± 0.266± 0.138 −0.091± 0.231± 0.140 −0.007± 0.265± 0.256

π0 + h− −0.211± 0.295± 0.098 0.052± 0.258± 0.073 −0.027± 0.305± 0.059

xF = −0.44± 0.02

∆Rmax = π/3 ∆Rmax = 0.7 ∆Rmax = 0.5

π0 + h+ −0.450± 0.376± 0.172 −0.290± 0.298± 0.045 −0.180± 0.303± 0.070

π0 + h− −0.101± 0.336± 0.082 −0.219± 0.314± 0.073 −0.503± 0.376± 0.183

xF = −0.38± 0.02

∆Rmax = π/3 ∆Rmax = 0.7 ∆Rmax = 0.5

π0 + h+ −0.503± 0.331± 0.109 −0.183± 0.270± 0.043 −0.110± 0.312± 0.170

π0 + h− 0.251± 0.334± 0.140 0.125± 0.305± 0.083 −0.245± 0.364± 0.221
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Fig. 62.: Background-corrected Sivers asymmetries shown as a function of the upper-

limit on pair radius from p↑ + p→ π0 + h± +X at
√
s = 200 GeV. The pions satisfy

2 < pT < 5 GeV/c, while the associated charged-particles satisfy (top) 1 < pT < 2

GeV and (bottom) 0.5 < pT < 1 GeV/c. The asymmetries are shown for (left) xF > 0

and (right) xF < 0. Systematic errors are shown as shaded boxes around the data

points. Statistics limitations make drawing conclusions difficult.
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the pair-radius cut. Thus, one might expect some sensitivity with the pair-radius.

Unfortunately, statistics render this question unanswered by this study.

B. Final Considerations

Unfortunately, statistics limit the conclusions one can draw from this study. There

are some hints at effects in π0 + h− for xF ≈ 0.38 IFF asymmetries and xF ≈ 0.44

Sivers asymmetries. Furthermore, there is also some hint that asymmetries are less

sensitive to pair radius after underlying-event correction. However, more data is

needed to conclude any further.

As of the fall of 2011, the FTPC has been removed from STAR. The 2008 p+ p

data are the only transverse-spin data that exist with the FMS trigger and read-out

of the slow-detectors. Thus, the data reported in this analysis are the only data that

will exist for these measurements at STAR. Further study at STAR requires a forward

tracking upgrade.



147

Table XI.: Pile-up-only corrected IFF Asymmetries for p↑ + p → π0 + h± + X at

√
s = 200 GeV. Asymmetries are reported as A+ δAstat + δAsyst.

xF = 0.44± 0.02 Up-Down

∆Rmax = π/3 ∆Rmax = 0.7 ∆Rmax = 0.5

π0 + h+ 0.024± 0.085± 0.005 0.022± 0.100± 0.024 −0.110± 0.119± 0.051

π0 + h− −0.086± 0.097± 0.018 −0.091± 0.118± 0.029 −0.171± 0.150± 0.034

xF = 0.38± 0.02 Up-Down

∆Rmax = π/3 ∆Rmax = 0.7 ∆Rmax = 0.5

π0 + h+ −0.007± 0.043± 0.003 0.017± 0.054± 0.011 −0.031± 0.071± 0.006

π0 + h− 0.067± 0.049± 0.004 0.132± 0.061± 0.015 0.154± 0.083± 0.038

xF = 0.44± 0.02 Left-Right

∆Rmax = π/3 ∆Rmax = 0.7 ∆Rmax = 0.5

π0 + h+ 0.018± 0.109± 0.016 0.066± 0.135± 0.043 −0.022± 0.167± 0.099

π0 + h− −0.095± 0.121± 0.017 −0.030± 0.154± 0.024 −0.115± 0.194± 0.004

xF = −0.38± 0.02 Left-Right

∆Rmax = π/3 ∆Rmax = 0.7 ∆Rmax = 0.5

π0 + h+ 0.003± 0.052± 0.010 0.026± 0.069± 0.008 −0.006± 0.096± 0.023

π0 + h− 0.113± 0.059± 0.017 0.217± 0.079± 0.029 0.241± 0.107± 0.053
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Fig. 63.: IFF asymmetries from the up-down formulation shown as a function of

the upper-limit on pair radius from p↑ + p → π0 + h± + X at
√
s = 200 GeV. The

asymmetries are shown for two different sets of background correction: (left) full pile-

up and underlying event correction and (right) pile-up-only correction. The blue,

dashed lines indicates the expected scale of the IFF effect for π0−π+ (Eq. 1.36); and

the red, dashed lines indicates the expected scale of the IFF effect for π0 − π− (Eq.

1.37). As before, statistics limitations make conclusions difficult, however, it appears

the full background correction may hint at a slower pair-radius dependence.
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Fig. 64.: IFF asymmetries from the left-right formulation shown as a function of

the upper-limit on pair radius for p↑ + p → π0 + h± + X at
√
s = 200 GeV. The

asymmetries are shown for two different sets of background correction: (left) full pile-

up and underlying event correction and (right) pile-up-only correction. The blue,

dashed lines indicates the expected scale of the IFF effect for π0−π+ (Eq. 1.36); and

the red, dashed lines indicates the expected scale of the IFF effect for π0 − π− (Eq.

1.37). As before, statistics limitations make conclusions difficult, however, it appears

the full background correction may hint at a slower pair-radius dependence.
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Fig. 65.: Sivers asymmetries shown as a function of the upper-limit on pair radius

for p↑ + p → π0 + h± + X at
√
s = 200 GeV. The asymmetries are shown for

two different sets of background correction: (left) full pile-up and underlying event

correction and (right) pile-up-only correction. As before, statistics limitations make

conclusions difficult, however, it appears the full background correction may hint at

a slower pair-radius dependence.



151

Table XII.: Pile-up-only corrected Sivers Asymmetries for p↑ + p → π0 + h± + X at

√
s = 200 GeV. Asymmetries are reported as A+ δAstat + δAsyst.

xF = 0.44± 0.02

∆Rmax = π/3 ∆Rmax = 0.7 ∆Rmax = 0.5

π0 + h+ 0.059± 0.125± 0.055 0.085± 0.148± 0.027 0.098± 0.181± 0.084

π0 + h− −0.209± 0.128± 0.012 −0.299± 0.157± 0.046 −0.501± 0.203± 0.168

xF = 0.38± 0.02

∆Rmax = π/3 ∆Rmax = 0.7 ∆Rmax = 0.5

π0 + h+ −0.022± 0.060± 0.022 −0.012± 0.074± 0.040 0.014± 0.099± 0.095

π0 + h− −0.030± 0.066± 0.006 0.035± 0.085± 0.017 0.007± 0.114± 0.013
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