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ABSTRACT

Performance Projections of HPC Applications on
Chip Multiprocessor (CMP) Based Systems. (May 2011)
Sameh Sh Shawky Sharkawi, B.S., The American University in Cairo;
M.S., Texas A&M University

Chair of Advisory Committee: Dr. Valerie Elaine Taylor

Performance projections of High Performance Computing (HPC) applications
onto various hardware platforms are important for hardware vendors and HPC users. The
projections aid hardware vendorsin the design of future systems and help HPC users with
system procurement and application refinements. In this dissertation, we present an
efficient method to project the performance of HPC applications onto Chip
Multiprocessor (CMP) based systems using widely available standard benchmark data.
The main advantage of this method is the use of published data about the target machine;
the target machine need not be available.

With the current trend in HPC platforms shifting towards cluster systems with
chip multiprocessors (CMPs), efficient and accurate performance projection becomes a
challenging task. Typically, CMP-based systems are configured hierarchically, which
significantly impacts the performance of HPC applications. The goal of this research isto
develop an efficient method to project the performance of HPC applications onto systems
that utilize CMPs. To provide for efficiency, our projection methodology is automated

(projections are done using atool) and fast (with small overhead).



Our method, called the surrogate-based workload application projection method,
utilizes surrogate benchmarks to project an HPC application performance on target
systems where computation component of an HPC application is projected separately
from the communication component. Our methodology was validated on a variety of
systems utilizing different processor and interconnect architectures with high accuracy
and efficiency. The average projection error on three target systems was 11.22% with

standard deviation of 1.18% for twelve HPC workloads.
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1. INTRODUCTION

Performance projections of High Performance Computing (HPC) applications
onto various hardware platforms are important for hardware vendors and HPC users. The
projections aid hardware vendors in the design of future systems, allowing them to
compare the application performance across different existing and future systems; the
projections help HPC users with system procurement and application refinements. In this
dissertation, we present an efficient method to project the performance of HPC
applications onto Chip Multiprocessor (CMP) based systems using widely available
standard benchmark data. The main advantage of this method is the use of published data
about the target machine; the target machine need not be available.

Performance projection of HPC applications allows designers of future systemsto
explore design trade-offs, such as in-order-execution versus out-order-execution, to
develop a system that better matches the performance requirements of the HPC clients.
Designers need projections because, in most cases, availability of platforms for HPC
applications measurements is limited, especially for competitors’ future systems. Further,
simulations of such complicated applications on future systems are extremely time
consuming. For HPC users, knowing in advance how applications will perform on
different platforms help with selecting the best platform for procurement and execution.
Further, the projections can aid in identifying areas for performance refinements.

The contributions of this dissertation to the current literature of performance

projections can be summarized in the following points:

This dissertation follows the style of IEEE Systems Journal.



1. The proposed method uses publicly available benchmarks performance data

for the target system in projecting the performance of HPC applications with
average error rate of 11.22%. The proposed projection method does not
reguire any access to the target system.

The projection method requires low overhead resulting from the use of one
base system to characterize the properties of an HPC application and the
benchmarks in combination with the publicly available benchmark data.

In this work, we model the micro-architecture of the base system and the
impact of the micro-architecture on the application performance using detailed
hardware counters. Modeling an application behavior independent of the
micro-architecture specifications of the system it is executing on may yield
inaccurate results [1].

For the communication projections, the proposed method uses MPI profiles of
the HPC application instead of MPI traces resulting in very little storage

reguirements and eliminating the need for extensive 10 during execution.

The publications resulting from this work are the following:

S. Sharkawi, D. DeSota, R. Panda, S. Stevens, V. Taylor, X. Wu, Using MPI
Benchmarks to Project MPI  Communication Performance of HPC
Applications, Submitted to ICPP 2011.

S. Sharkawi, D. DeSota, R. Panda, R. Indukuru, S. Stevens, V. Taylor, X. Wu,
Performance Projection of HPC Applications Using SPEC CFP2006

Benchmarks, in Proceedings of IEEE IPDPS, Rome, Italy, 20009.



The remainder of this section identifies the different requirements and challenges
with respect to performance projections and provides a discussion about related work.
The remainder of this dissertation is organized as follows. The second Section provides
an overview of the proposed performance projection scheme and presents some
background on the problem. Section three describes the computation component
projection method. Section four describes the communication component projection
method and Section six provides the method that we use to integrate the projections of
both components. The final section summarizes the overall research and presents areas of

future work.

1.1 Perfor mance Projection Requirements

In this dissertation, we present an efficient and accurate method for performance
projection of HPC applications. An efficient performance projection method has low
overhead in data collection and in the projection process [2], [3]. In addition, a
performance projection method is considered accurate when projection error rate is below

20% [1].

1.1.1 Perfor mance Data Requirements. HPC Application and Systems

In this dissertation, we efficiently collect performance data for the HPC
applications and benchmarks on one base system. We use this performance data to

characterize the micro-architectural characteristics of the base system and the impact of



the base system on the HPC application performance. In order to be efficient, the data

collection process must satisfy the following requirements:

@

(b)

Low overhead and low cost. Acceptable low overhead is typically within 5%
of the total execution time of the application [2], [3]. Also, the total size of the
data collected needs to be moderate for current systems’ memories and
storage.

No manual intervention for recompilation and instrumentation so as to reduce
the requirements on the user for the projections [4]. When instrumentation is
inserted before compilation, the presence of instrumentation may inhibit
optimization, in which case it will not measure the performance of optimized
code; alternatively, optimization may move instrumentation, in which case the
measured interval may not include al or only the code from the region of

interest.

To produce accurate projections, performance data is required to have the following

characteristics:

@

Performance data needs to capture the major factors that impact the HPC
application performance on the system used for execution. The measurement
of time or one species of system event seldom identifies performance
characteristics [1], [4]. Since HPC applications can be typically viewed as a
combination of computation and communication [5], [6], the performance
data should accurately represent the single core computation performance as
well as the communication between the cores. From a computation

perspective, each component of the processor and the memory hierarchy will



have an impact on application performance. As for communication, each
communication routine performance and characteristics need to be identified.
(b) Raw event counts are seldom the desired metrics. Derived metrics such as
cache miss ratios or cycles per floating point operation are far more useful
than raw events in performance modeling [7], [8]. Also, for each application
different performance metrics have different impact and this impact varies

from one system to another.

1.1.2 Benchmarks Requirements

It is important that the benchmarks used for the projections satisfy the following
requirements. First, the set of benchmarks must cover most of the performance space of
HPC applications and HPC architectural characteristics. In addition, the benchmark set
needs to be able to capture the micro-architectural features of the system it is testing.
Second, the benchmark set needs to be a standard benchmark that is used by the industry,
academia and HPC users. This allows for abundance of public data for the target systems.
Even for future systems, vendors typically publicize about their systems performance
using standard benchmarks. Finaly, the benchmarks must be scalable to thousands of

cores to allow for projections onto systems with different numbers of cores.

1.2 Perfor mance Projection Challenges

HPC systems are becoming more complex and hierarchical utilizing nodes of

CMPs [9]. These systems can be configured to scale up to peta- or exa-scale systems. In



addition, CMP based systems utilize different processor architectures and interconnect
schemes; thus, mapping from one base system to a target system imposes challenges

described in the following subsections.

1.2.1 Complex and Hierarchical System Design

The hierarchical system design has a significant impact on the application
performance [10]. The hierarchical design entails the sharing of resources and memory at
the level of the cores. In addition, the hierarchical design involves the use of different
interconnects for the different levels of the hierarchy. Thus, the projection method needs

to take into account these features of the hierarchy.

1.2.2 Mapping Architectural Characteristicsfrom Baseto Target System

Recall, published benchmark performance data about target system should suffice
to understand the architectural characteristics of the target system in relation to the base.
Typicaly, published benchmark data is a one metric value representing the performance
of certain benchmark on a specific system [11]. This one performance metric, although
represents some aspect of the system, masks many architectural characteristics of the
system [1]. In order to map from the base system to the target, one needs to understand
the behavior of the benchmark on the base system, the effect of the base system
architecture on the benchmark performance, and the differences in the micro-architecture
of the base versus that of the target system as depicted by the differences in the

performance metrics of the benchmarks on the two systems.



1.3 Related Work

Severa techniques for performance projection have been proposed and used.
Most common techniques include program modeling, code analysis, or architectural
simulation. Code analysis, in addition to requiring significant expertise and abundant
time, may not yield accurate performance projections due to the complexity of the
hierarchical systems and applications. Performance projection using program modeling,
on the other hand, needs to be a function of (at least) algorithm, implementation,
compiler, operating system, underlying processor architecture, and interconnect
technology to produce accurate projections. This may be impossible to achieve with the
current complex systems and architectures. Architectural simulation yields extremely
accurate projection results. Simulation provides the capability to observe component and
system characteristics (e.g. performance and power) in order to make vital design
decisions. However, simulating high-fidelity models can be very time consuming and

even prohibitive when evaluating large-scale systems.

1.3.1 Code Analysis

Manual source code analysis of HPC applications is a very complicated task. It is
time consuming, requires high level of expertise and may lack accuracy [4]. To produce
accurate projections, it is important to understand the performance characteristics of
computation, communication and message passing software used for paralléization.
Further, it is important to understand the interaction of the underlying architecture and
interconnect with the application. All these keys require significant amount of expertise

in parallel programming paradigms and techniques, parallel systems’ architecture,



interconnect architecture and significant understanding of the source code of the
application. Thus, manual source code analysis can be difficult and time consuming,
especially with the hierarchical CMP based systems.

K"uhnemann et al in [12] proposed automatic source code analysis, which entails
compile time prediction of execution time. They use SUIF (Stanford University
Intermediate Format), which automates performance prediction of HPC applications. For
each target system, a system profile is created for computation and communication.
Their tool then generates a corresponding runtime function modeling the CPU execution
time and the message passing overhead for the source code. This static runtime prediction
lacks accuracy especially for MPI calls since collective calls can be translated differently
at runtime. There are other automation tools for source code analysis [13]-[17]; however,
such tools are better suited for compiler optimizations, identifying bottlenecks and code
optimizations.

Miller et a in [15], [17] proposed ParaDyn tool, which uses Dyninst [18] to
automatically instrument the application binary. ParaDyn’s goal is to automate the search
for performance bottlenecks in parallel applications, not to project their performance.
This is accomplished by attaching ParaDyn instrumentation manager to an application
process. ParaDyn then scans the application binary image for procedures entry and exit
points. Once this is done, performance metrics, such as CPU usage from the operating
system and performance counter data using hardware performance counters, are collected
for each procedure to identify performance bottlenecks. Further, Reed et a in [14]
proposed SvPablo, which uses Pablo [13] in identifying bottlenecks. Pablo’s main

difference to ParaDyn is that Pablo instruments source code instead of binary.



Meéllor-Crummy et a have developed HPCToolKit [16] that identifies bottlenecks
without requiring any code instrumentation. HPCToolKit incorporates three components
that are used in the performance anaysis process. The first component, hpcrun, is
responsible for collecting the hardware performance counters; hpcrun uses statistical
sampling of hardware performance counters, and attributes metrics to both, the calling
context and program structure. This is done using stack unwinding techniques to relate
performance metrics to source code. The second component, hpcstruct, is responsible for
analyzing the application binary to recover information about files, functions, loops etc.
Finally, hpcprof correlates dynamic performance metrics to code structure. Again, the

focusis on identifying bottlenecks, not performance predictions.

1.3.2 Simulators

Simulation is often used to predict the performance of key applications to be
executed on new systems. Simulation provides the capability to observe component and
system characteristics (e.g. performance and power) in order to make vital design
decisions. Simulating high-fidelity models, however, can be very time consuming and
even prohibitive when evaluating large-scale systems. Simulations can require one to two
orders of magnitude more time than the actual application. Currently, there are three
major types of simulators:

1. Cycle-accurate node-level simulators [19]-[21]. These simulators are extremely
accurate, slow and can only simulate the node level performance of a system.

Scaling down an HPC application to fit on the simulator is nearly impossible

since these cycle accurate simulators are typicaly designed to simulate only the
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processor core performance. Hardware vendors use these simulators to measure
their systems node level performance using industry standard benchmarks such as
SPEC CPU.

. Stochastic network models. These ssimulators are typically accurate in measuring
the interconnect capabilities. They can only simulate network calls such as MPI
calls; thus, they can’t be used to execute a full HPC application. Typically,
benchmarks such as IMB are executed on these simulators to measure the
interconnect properties. Prakash and Bagrodia in [22] introduced MPI-SIM,
which simulates the MPI communication library using a detailed contention
model. The computation component of an application is executed on an actual
processor. This limits prediction to systems using the same processor as the base
machine. Also Wilmarth et al. in [23] introduced POSE, which uses a detailed
network contention model to simulate the communication library only, i.e. ho
computation component projection.

Pseudo-accurate simulators. These simulators attempt to simulate the entire
system, computation and communication, with less accuracy to reduce the
simulation overhead. Zheng et al in [24] introduced BigSim, which is designed to
predict performance using paralel simulation for massively large systems. In
BigSim each target processor is emulated using a thread. Since each thread has a
significant memory requirement to emulate a full processor, BigSim is well suited
for systems that have low memory to processor ratio such as BlueGene systems.
For other systems, simulations can be extremely slow. BigSim uses an optimistic

approach for communication simulation, which assumes determinism in program
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execution rather than an accurate contention model. In addition, BigSim uses
heuristics to predict computation (not cycle-accurate). Also Susukita et al in [25]
proposed macro-level simulation of communication. Mainly communication is
macro simulated by replacing each MPI call by predicted runtime (compile time
prediction based on target machine interconnect specification). As for
computation, it is skeletonized into single processor execution. In [25],
interleaved communication and computation, such as non-blocking MPI calls with
computation blocks executed before the MPI call completion, cannot be
accurately simulated. Other researches have proposed simulating only the critical
components of an HPC application [26]. However, these simulators are not cycle-

accurate.

1.3.3 Application Modeling

Performance projection of HPC applications using application modeling provides
for a faster method than simulations. Performance projection using program modeling
must incorporate agorithm, implementation, compiler, operating system, underlying
processor architecture, and interconnect technology in the model to produce accurate
projections. Furthermore, since the performance enhancing features of novel processing
devices may be significantly different from a conventional microprocessor system,
current performance modeling schemes have limited applicability on systems such as
vector supercomputers and parallel systems with accelerator devices, systems with deeper

memory hierarchy and different multi-core configurations. Thus, performance models
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need to employ an application modeling paradigm that allows a user to develop not only
"architecture aware" but also "application aware" performance models.

One approach is to build an analytica model for the application on the target
platform using one of the known modeling techniques such as LogGP [27] or LogP [28].
The LogP models a parallel application based on four parameters. computational
bandwidth, communication bandwidth, communication delay and efficiency of coupling
of computation and communication. Since LogP was originally designed for short
messages, LogGP extends the LogP model by adding the additional parameter G which
reflects the bandwidth for long messages. Both the LogP and LogGP models assume a
uniprocessor machine architectures where task placement effect on performance is
ignored. Task placement on current SMP systems with CMP hierarchical designs has a
major effect on performance specially due to the different communication protocols,
shared memory or network interconnect, used by the communication library when
communicating with inter vs. intra node processors. We can summarize the main
advantages of this work over the LogP and LogGP models in the following points. First,
LogP and LogGP models ignore the network topology and the routing algorithm. In
current systems, network topologies have complicated and hierarchical designs, which
have significant effect on communication performance. In our scheme, network topology
effects are reflected in IMB values. Second, in our prediction methodology, support for
collective communication acceleration in the hardware on the target system is captured
by IMB; however, LogP and LogGP models assume that a processor will only do

Send/Recv. Finally, we model WaitTime defined in section 4.3 which is typically due to
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load imbalance between computation and communication among different tasks. The
LogP and LogGP don’t model such WaitTime.

Blasko in [29] proposed a modeling technique that would significantly reduce the
simulation time. Blasko used hierarchical modeling to analyze the program call structure.
He utilized a call graph of the parallel program for the hierarchical performance analysis.
In his bottom-up model, all procedures that do not contain any procedure calls are
evauated and simulated at stage one. These are the leaves of the graph. In the second
stage, which concerns the callers, the calers are ssimulated and leaves aready simulated
in stage one are represented by delays. He then simulates parents all the way up to the
root of the graph. This model was tightly coupled to VFCS and also doesn’t accurately
simulate the contention in the interconnect.

Taylor et a in [30] introduced the Prophesy system. In Prophesy, there are three
program modeling techniques, curve fitting which is used to explore application
scalability on the same system, parameterization which requires manua analysis of
source code kernels to predict performance on target systems and kernel coupling which
explores the interaction and sharing between different kernels. Clement and Quinnin [31]
proposed modeling an application as a function of compiler effects, memory effects,
communication overhead and floating point trends. Their work focused on projecting
parallel speedup of an application rather than its performance on different systems.

Another application modeling technique achieves cross platform prediction using
partial execution. Yang et a. in [2] proposed the use of partia execution of parallel

applications on different systems in performance projection. They used partial execution
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of application on target system to indicate its relative performance. This technique

requires access to the target system.
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2. PROPOSED PERFORMANCE PROJECTION SCHEME AND

BACKGROUND

2.1 Performance Projection Framework

In this work we propose an efficient and accurate approach to projecting HPC
applications’ performance onto systems utilizing CMPs. Our method, called the
surrogate-based workload application projection method, utilizes surrogate benchmarks
(the surrogate is a linear equation of the appropriate benchmarks) to project an HPC
application performance on target systems. Figure 1 depicts the high level framework of
our projection scheme. Asindicated in Figure 1, our projection scheme entails five steps:

1. Find the surrogate for the computation component of an HPC application.

The metrics used to identify the surrogate are described in detail in Section 3.

2. Use the performance data of the surrogate on the target system to project the

compute performance of the HPC application on the target system.

3. Find set of surrogates for the communication component of HPC application.

The metrics used to identify the set of surrogates are described in detail in
Section 4.

4. Use the performance data of the surrogate on the target system to project the

communication performance of the HPC application on the target system.

5. Combine the communication and the computation performance projections to

come up with the entire HPC application performance projection on the target

system.
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Figure 1: Projection scheme high-level framework

Asindicated in Figure 1, this work encompasses modeling the HPC application as
two separate components, the computation and the communication. Each component is
further modeled as a combination of benchmarks. Compute performance is projected
using CPU intensive benchmarks, specifically the SPEC CPU2006 suite [11], and
hardware performance counter metrics, communication performance is projected using
MPI benchmarks for MPI communications. The components in Figure 1 that are in
dashed squares are the main focus of this research. The three main components are given
below:

a. Modeling the computation component of an HPC application

b. Modeling the communication component of an HPC application

c. Combining the two models to come up with an HPC application projection
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We use the actual executions of surrogates on existing systems to model the HPC
application as a linear function of the benchmarks. For the case of non-existing future
systems, the only option is to use the ssmulated runtimes of the benchmarks. In addition,
the complex hierarchical design of systems is accounted for in the linear function of the
benchmarks. Different configurations for the benchmarks, such as binding one task per
core or two tasks per core, exploit different system characteristics.

As for the communication component, we project the communication
performance of HPC applications onto different systems using MPI benchmark data on
the different systems as well as a base system, and the communication profile of the
application on the base system. In particular, we use the Intel MPI Benchmarks (IMB)
[32] as we find it the most comprehensive MPI benchmark suite. The arrow from the
computation modeling to the communication modeling indicates that communication
modeling partialy depends on computation modeling.

The use of surrogates for performance projection of HPC applications has been
proposed in [33]-[35]. The novelty of our approach in comparison to previous work that

used surrogate based projections can be summarized in the following points:

Computation Projection:

1. The use of published benchmarks performance data for the target system
suffices to project the performance of HPC application using only one base
system.

2. Hardware performance counter metrics are grouped into several groups where

each group has certain rank (in comparison to other metric groups) based on
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the application properties and the system characteristics. Other research in the
literature that used performance counter metrics and benchmarks for HPC
projections do not rank metrics. In [33]-[35], al metrics have the same weight
and have equal importance to the application.

3. Our approach incorporates available published benchmark data to model the
target system in contrast to other work [26], [36], [37], [38] where access to at
least one node of target system is required. Further, our approach allows for
ranking the metric groups differently for each target system based on the
system characteristics. The ranking of metric groups based on system
characteristics provides for better projections for different architectures and
systems.

4. Our method is independent of any benchmark suite. In this work, we used
SPEC CPU2006 suite; however, adding any other benchmark suite(s) is very

simple and doesn’t require any change to the method.

Communication Projection:

5. The main advantage of our method is the use of MPI profiles of the HPC
application in contrast to MPI traces, which require significant storage and are
very complicated, hard to understand and parse. For example, our method
requires 12KB storage for the communication profile of the NAS BT
benchmark [39], in contrast to 2.6 GB storage for an MPI trace of the
communication behavior of the same benchmark for 128 tasks. Further, our

method does not involve any simulations.
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6. Another advantage is that we don’t require any simulations of network events
as in [5], [6], [40]. Such smulators are typicaly time consuming. Also
creating an accurate contention model for al MPI routines [41]-[43],

especially collective calls, can be extremely challenging.

2.2 Proposed Projection Framework Challenges

The separation of the communication and the computation components introduces
some challenges and opportunities. MPI calls are reflected in the hardware performance
counter metrics. To reduce the noise, we execute the HPC application using four tasks to
reduce the communication. It is noted that some applications can’t be executed on four
tasks due to their large datasets. Also, some applications may have significant
communication even with four tasks. A solution to this challenge would be to collect
hardware performance counters in between MPI calls. That would require turning off
counter collections during the MPI calls. However, there is a huge opportunity in this
separation of computation and communication. Such separation allows for more
scalability. If computation and communication were coupled, we would have to, one, find
surrogates that match the application in communication and computation, two, be limited

to parallel benchmarks, and, three, be limited to how scalable the benchmarks are.

2.3 Background

In this section, we discuss how CMP based systems are built and how their design

affects the performance of HPC applications. Also, we discuss the base system that is
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used throughout this research as well as its architectural characteristics. Finally, we
present the benchmark suites of choice for this work that meets the requirements and
challenges presented in section 1.2 as well as the HPC applications that are used for

validation of our proposed method.

2.3.1 CMPsand Hierarchical System Design

The current trend in high performance computing systems is shifting towards
cluster systems with CMPs; further, the CMPs are usually configured hierarchicaly (e.g.,
multiple CMPs compose an MCM (multi-chip module), multiple MCMs compose a node,
and multiple nodes compose a system). To illustrate, Figures 2 and 3 depict an Intel
Nehaem CMP illustrative diagram and a Nehalem CMP chip micro-photograph,
respectively. From figure 2, the Nehalem CMP has the following components: four
identical compute cores, Cache Interface Unit (ClU) (switch connecting the 4 cores to the
4 L3 cache segments), level-3 (L3) cache controller and data block memory, 1 integrated
memory controller (IMC) with 3 DDR3 memory channels and 2 Quick Path Interconnect
(QPI) ports [44]. As indicated in the figure, the bandwidth to the main memory, 31.992
GBl/s, is quite different from the bandwidth to the interconnect through the QPIs, 25.6
GiB/s ~ 27.5 GB/s. Furthermore, the bandwidth to the interconnect is affected by the

geometry of the system and number of hops from source to destination.
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Figure 4: An Intel Nehalem CMP node

As indicated in Figure 4, two CMPs are stacked together to form a CMP node.
This CMP node is used a building block to build a larger cluster system connected
through an interconnect switch. Typically, an interconnect switch using an InfiniBand
technology will use a Fattree topology. This topology has an impact on an HPC
application performance since the bandwidth and latency differ from one core to another
depending on the distance between cores, number of hops, and layered switch latency.

Hierarchical system design imposes a major challenge for performance projection

of HPC applications. The hierarchical design allows for sharing of resources and memory
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at the lowest level involving the processing cores, L3 as in Figure 3. In addition, the
hierarchical design provides for different interconnect characteristics for different levels
in the hierarchy, i.e. cores on the same chip (latency of ~40 cycles), cores on different
chips (~32GB/s) or cores on different nodes (~27.5GB/s). These issues must be
considered in performance projection schemes of HPC applications. The application
interaction with the system needs to be modeled. For example, a memory intensive
application performance would be negatively impacted from memory and bandwidth
sharing among cores on a CMP; however, the performance of a compute intensive
application with minimal memory requirements could be greatly improved. Also, the
interconnect characteristics have a major impact on HPC application performance due to
the variation in bandwidth and latency among different interconnect levels as explained
above. Furthermore, the architecture of interconnect between cores on the same CMP
may also be different than the architecture of interconnect between CMPs on an MCM
e.g. direct link vs. shared bus based. Therefore, the projection scheme has to be

architecture and application aware.

2.3.2 Base System

The base machine used for this work is the p575 POWERS5+ cluster system,
TAMU Hydra The POWERS5+ chip features single-threaded and multi-threaded
execution for higher performance. A single die contains two identical processor cores,
each of which uses simultaneous multithreading (SMT) to support two logical threads.
The result is a single dual-core POWERS5+ chip that appears to be a four-way symmetric

multiprocessor to the operating system. Both threads share execution units if both have
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work. To the operating system, each thread executes on a logical processor. In our work,
the data was collected in SMT mode, with configurations of one thread per core and two
threads per core. We refer to the one thread per core configuration as Pseudo Single
Thread mode (PST) and two threads per core as Simultaneous Multi Threading (SMT)
mode [47].

The motivation for using PST and SMT metrics is to capture the behavioral
changes in the application when running under different computing environments or with
different set of resources. For example, when running an application in SMT mode, the
bandwidth and cache available for each task is different than when running in PST mode.
Also when the pipeline resources in the core are shared between threads, there are fewer
resources available to each thread; thus, the behavior of the application is likely to change
between these modes. The benchmarks that behave similarly to the HPC application
under different computing conditions are a better representation for the application on
different architectures.

The POWERS5+ microprocessor provides Performance Monitor Unit (PMU)
counters and a number of Performance Monitor Counters (PMC) to monitor and record
several performance events. The POWERS+ has six PMCs per thread. The POWERS+
has 900 total events, 500 unique events, and 230 events per counter [48], [49]. We use the
HPMCOUNT [50] tool on IBM systems to collect our hardware counter data. Figures 5

and 6 depict the POWER5S+ CMP and the p575 node, respectively.
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2.3.3 Benchmarks

Recall from section 1.1.2 that the benchmark suites need to be an industry
standard, have abundant published data, and span a magjority of the performance
characteristics space of HPC applications and CMP based systems. Also, to achieve
scalability, we presented in section 2.1 our proposed projection method where the

computation component is modeled in isolation of the communication component. Thus,
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we use a suite of compute intensive benchmarks, specificaly SPEC CPU2006, and a
suite of communication intensive benchmarks, specifically Intel MPI Benchmarks (IMB).
(8 Compute Intensive Benchmarks: SPEC CPU2006

CPU2006 is SPEC's next-generation, industry-standardized, CPU-intensive
benchmark suite, stressing a system's processor, memory subsystem and compiler
[11]. SPEC designed CPU2006 to provide a comparative measure of compute-
intensive performance across the widest practical range of hardware using workloads
developed from real user applications.

SPEC CPU2006 focuses on compute intensive performance, which means these
benchmarks emphasize the performance of: the computer processor (CPU), the
memory architecture, and the compilers. It is important to remember the contribution
of the latter two components. SPEC CPU performance intentionally depends on more
than just the processor.

SPEC CPU2006 contains two components that focus on two different types of
compute intensive performance: the CINT2006 suite measures compute-intensive
integer performance, and the CFP2006 suite measures compute-intensive floating
point performance. SPEC CPU2006 is not intended to stress other computer
components such as networking, the operating system, graphics, or the I/0O system.
CINT2006 and CFP2006 are based on compute-intensive applications provided as
source code. CINT2006 contains 12 benchmarks: 9 use C, and 3 use C++. The
benchmarks are provided in Table 1 below. CFP2006 has 17 benchmarks: 4 use C++,
3 use C, 6 use Fortran, and 4 use a mixture of C and Fortran. The benchmarks are

provided in Table 2 below.



Table 1: CINT2006 benchmark suite

Benchmark Language | ArealField

400.perlbench C PERL Programming Language
401.bzip2 C Compression

403.gcc C C Compiler

429.mcf C Combinatorial Optimization
445.gobmk C Artificia Intelligence: go
456.hmmer C Search Gene Sequence
458.5eng C Artificial Intelligence: chess
462.libquantum | C Physics: Quantum Computing
464.h264ref C Video Compression
471.0mnetpp C++ Discrete Event Simulation
473.astar C++ Path-finding Algorithms
483.xa ancbmk C++ XML Processing

Table 2: CFP2006 benchmark suite

Benchmark Language Area/Field

410.bwaves Fortran Fluid Dynamics

416.gamess Fortran Quantum Chemistry

433.milc C Physics: Quantum
Chromodynamics

434.zeusmp Fortran PhysicsCFD

435.gromacs C/Fortran | Biochemistry/Molecular Dynamics

436.cactusADM | C/Fortran | Physics/General Relativity

437.ledlie3d Fortran Fluid Dynamics

444 . namd C++ Biology/Molecular Dynamics

447 .dedl I C++ Finite Element Analysis

450.soplex C++ Linear Programming,
Optimization

453.povray C++ Image Ray-tracing

454.calculix C/Fortran | Structural Mechanics

459.GemsFDTD | Fortran Computational Electromagnetics

465.tonto Fortran Quantum Chemistry

470.1bm C Fluid Dynamics

481.wrf C/Fortran | Weather Prediction

482.5phinx3 C Speech recognition
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The SPEC CPU2006 is a benchmark suite composed of serial applications. It can
be run in throughput mode with multiple instances of a workload to understand
multiprocessor behavior. In parallel applications, the execution processes (threads)
are distributed across different parallel computing cores. Often the dataset is divided
among processors. In contrast, serial applications have one execution process working
on the entire dataset. One way to account for this difference is to use throughput data
for SPEC. This still leaves the issue that when the number of threads in parallél
application changes the dataset per thread changes while with serial applications the
working set is a constant size. When running in PST mode, we run four serial tasks of
SPEC each bound to a separate core of the POWERS5+ chip, thereby using two chips.
In this case each task gets a dedicated CPU and L2 resources and the L3 is shared
between two tasks. On the other hand, when we run in SMT mode, we run four serial
tasks of SPEC each bound on alogical CPU (thread), thus using one chip. In this case
two tasks share the CPU and L2 resources and the L3 is shared between four tasks.
As for the HPC applications, al runs are configured as four parallel tasks each bound
to a separate core on two chips in PST mode or each bound to a separate thread on
one chip in SMT mode. Since both runs use four tasks, the dataset size per task
remains constant on the paralel application as in the SPEC throughput runs. The
effective cache size for each task changes proportionaly between PST and SMT
modes. Using such configurations we guarantee that the working set size per thread

doesn’t change from SMT mode to PST mode.
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(b) Communication Intensive Benchmarks: IMB
The idea of Intel MPI Benchmark is to provide a concise set of elementary MPI
benchmark kernels. Its objective isto provide a concise set of benchmarks targeted at
measuring the most important MPI functions. The IMB-MPI1 contains the
benchmarks:

e PingPong: isthe classical pattern used for measuring startup and through-put of a
single message sent between two processes.

e PingPing: measures startup and throughput of single messages, with the crucial
difference from PingPong that messages are obstructed by oncoming messages.

e Sendrecv: Based on MPI_Sendrecv, the processes form a periodic communication
chain. Each process sends to the right and receives from the left neighbor in the
chain.

e Exchange: The group of processes is seen as a periodic chain, and each process
exchanges data with both left and right neighbor in the chain.

e Bcast: A root process broadcasts X bytesto all.

e Allgather: Every process inputs X bytes and receives the gathered X* (#processes)
bytes.

e Allgatherv: Functionally is the same as Allgather. However, with the
MPI_Allgatherv function it shows whether MPI produces overhead due to the
more complicated situation as compared to MPI_Allgather.

e Scatter: The root process inputs X* (#processes) bytes (X for each process); all

processes receive X bytes.
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e Scatterv: The root process inputs X* (#processes) bytes (X for each process); all
processes receive X bytes.

e Gather: All processes input X bytes, the root process receives X* (#processes)
bytes (X from each process).

e Gatherv: All processes input X bytes, the root process receives X* (#processes)
bytes (X from each process).

e Alltoall: Every process inputs X* (#processes) bytes (X for each process) and
receives X* (#processes) bytes (X from each process).

e Alltoallv: Every process inputs X* (#processes) bytes (X for each process) and
receives X* (#processes) bytes (X from each process).

¢ Reduce: Reduces a vector of length L = X/sizeof(float) float items where X is
message size. The MPI data-type is MPI_FLOAT, the MPI operation is
MPI_SUM.

e Reduce scatter: Reduces a vector of length L = X/sizeof(float)float items. The
MPI data-type is MPI_FLOAT, the MPI operation is MPI_SUM. In the scatter
phase, the L items are split as evenly as possible.

e Allreduce: Reduces a vector of length L = X/sizeof(float) float items. The MPI
data-typeis MPI_FLOAT, the MPI operationis MPI_SUM.

e Barrier: MPI_Barrier

In addition to the IMB-MPI1 (MPI1 Standard), IMB provides the extended IMB
suite which includes a set of benchmarks to measure the MPI2 standard MPI

functionalities. In this work, we only focus on the one sided routines of MPI from the
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MPI2 standard. The remaining set of routines in the MPI2 standard is MPI-I1O related
which is not addressed in this dissertation. The benchmarks in the IMB-EXT are
classified into three categories [32]:

1. Single transfer: The benchmarks in this class focus on a single data transferred
between one source and one target. Single transfer IMB-EXT benchmarks only run
with 2 active processes. Single transfer benchmarks, roughly speaking, are local
mode. The particular pattern is purely local to the participating processes. There is no
concurrency with other activities. Best case results are to be expected.

2. Pardlel transfer: These benchmarks focus on global mode, say, patterns. The
activity at a certain process is in concurrency with other processes, the benchmark
timings are produced under global load. The number of participating processes is
arbitrary.

3. Collective: This class contains benchmarks of functions that are collective in the
proper MPI sense. Not only is the power of the system relevant here, but also the

quality of the implementation for the corresponding higher level functions.

The benchmarks of interest in IMB-EXT that we focus on in thiswork are:

Unidir_Put: Benchmark for the MPI_Put function.

Unidir_Get: Benchmark for the MPI_Get function.

Bidir_Put: Benchmark for MPI_Put, with bi-directional transfers.

Bidir_Get: Benchmark for MPI_Get, with bi-directional transfers.
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e Accumulate: Benchmark for the MPI_Accumulate function. Reduces a vector of
length L = X/sizeof(float) float items. The MPI data-type is MPI_FLOAT, the MPI
operation isMPI_SUM.

e Window: Benchmark measuring the overhead of an MPI_Win create /
MPI_Win fence / MPI_Win free combination. In order to prevent the
implementation from optimizations in case of an unused window, a negligible non
trivia action is performed inside the window. The MPI_Win_fence is to properly

initialize an access epoch.

2.3.4HPC Applications

In this work, we used eight large-scale scientific applications and the three NAS
Multi-Zone Parallel Benchmarks [39] to validate our projection method. The eight large-
scae scientific applications are: AMBER [51], CHARMM [52], FLUENT [53],
GAMESS [54], LS-DYNA [55], a seismic application that will be referred to as Seismic,
STAR-CD [56] and WRF [57]. Some of these applications have multiple datasets totaling
to 16 different workloads each having different computational and communication

characteristics. Description of the applicationsis given in Table 3 below.



Table 3: HPC applications, their HPC areas, datasets and descriptions

33

Application Name  Category | Datasets Description
Amber (Assisted Molecular | «GB-COX2: | A suite of programs focused on
Model Building with | Dynamics | Generalized molecular dynamics
Energy Refinement) Born model simulations, particularly on
oFactor IX: biomolecules.
Human Factor
IX
«JAC: Joint
Amber and
CHARMM
CHARMM Molecular | Alanine A molecular simulation program
(Chemistry at Dynamics | Dipeptide that focuses on the study of
HARvard molecules of biological interest,

Macromolecul ar

Mechanics)

including peptides, proteins,
prosthetic groups, small
molecule ligands, nucleic acids,

lipids, and carbohydrates.




Application Name

Category

Table 3: continued
Datasets

Description
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FLUENT Computational | L1, L2, L3, | A CFD solver for complex
Fluid M1, M2and | flowsranging from
Dynamics M3 incompressible (low subsonic)
to mildly compressible
(transonic) to highly
compressible (supersonic and
hypersonic) flows.
GAMESS (General | Ab Initio L- An electronic structure code
Atomic and Quantum ROTENON | with the primary focus on ab
Molecular Chemistry and SICCC | initio quantum chemistry
Electronic Structure calculations.
System)
LSDYNA Crash 3 Car Crash | A genera purpose transient
Simulation dynamic finite element
program focused on complex
real world problems.
Seismic Seismic N/A A finite-difference algorithm
applied in the frequency
domain focused on Seismic
Migration.




Application Name

Table 3: continued

Category

Datasets

Description
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STAR-CD Computational | Mercedes | A CFD code that focuses on
Fluid C-Class performing powerful multi-
Dynamics physics (flow, thermal and
stress) ssmulations.
WRF (Weather Weather ConUsS A next-generation mesoscale
Research and Simulation numerical weather prediction

Forecasting model)

system designed to serve both
operational forecasting and

atmospheric research needs.
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3. COMPUTE COMPONENT PERFORMANCE PROJECTION*

Recall that an HPC application performance is modeled as a function of its

computation and communication. The behavior of the compute component of an HPC

application is represented by a set of hardware performance counter metrics. This allows

for modeling the compute component without the need for simulations or the need for

code analysis. We use the SPEC CPU2006 benchmark suite, described in section 2.3.3,

for our possible surrogates and the IBM p575 machine, described in section 2.3.2, as the

base machine.

Benchmarks HPC Application

Available
Benchmarks Data Execute on Base
for Target Machine
Platform
Benchmarks Application
Performance Metrics Performance Metrics

Archive Genetic Algorithm

Performance > Tool' <
Metrics |
> Application Surrogate
S~ (Taw
v The Genetic Algorithm toal is only
Projection of HPC used for faster runtime. Any other
C technique such as exhaustive search can
Application on be utilized.
Target Platform

Figure 7: Compute performance projection framework

*Part of this section is reprinted with permission from “Performance Projection of HPC
Applications Using SPEC CFP2006 Benchmarks”, by Sameh Sharkawi, Don DeSota, Rgj
Panda, Rajeev Indukuru, Stephen Stevens, Vaerie Taylor, and Xingfu Wu, in Proc. IEEE
IPDPS, Rome, Italy, May 2009, Copyright 2009 by |EEE.
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Figure 7 depicts the high level framework of our compute projection scheme. The
SPEC CPU2006 benchmarks are executed once on the base machine in Simultaneous
Multi Threading (SMT) mode, i.e. two threads per core, and in Single Threaded (ST)
mode, i.e. one thread per core. The resultant hardware performance counter data is
archived for use as needed. In addition, the HPC applications are executed once on the
base machine in SMT and PST modes and the resultant hardware counter data is
archived. A tool based on a Genetic Algorithm (GA) is then used to identify the “best”
group of benchmarks that have similar behavior as the HPC application; this is done for
each HPC application. The output of the GA is a linear equation of the group of
benchmarks that best match the HPC application; this equation is given the term
“surrogate”. Performance data of the benchmarks that comprise the surrogate is then
used to project the performance of the application onto a target machine. The target
machine performance data for the surrogate is obtained from published data from actual

execution or simulations (for future machines).

3.1 Hardwar e Performance Counter Metrics
We define the applications and benchmarks’ behavior as a function of six groups
of metrics. These six groups are:
e G; - CyclesPer Instruction (CPI) Completion Cycles [49],
e G,-- CPlI Stal Cycles[49],

e Gg3-- Floating Point Instructions [48],
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e G, — Data Effective to Real Address Trandation (DERAT), Data Segment
Lookahead Buffer (DSLB) and Data Table Lookahead Buffer (DTLB) caches
miss rates [48],
e G5 - Data Cache Reloads and [48]
e Gg— Memory Bandwidth [48].
The choice of these groups of metrics is intended to characterize the application’s
behavior from a micro-architecture perspective. The first three groups focus on the
computation behavior and the last three groups focus on the memory behavior. Group 1
(Gy) shows the portion of the total CPI that was spent by the processor to complete
architected instructions, while group 2 (G;) shows the portion of the total CPI that was
spent in various stalling conditions. Group 3 (G3z) shows the distribution of the different
types of floating point instruction. Group 4 (G4) shows the miss rates for DERAT, DTLB
and DSLB caches. Group 5 (Gs) shows the application’s memory behavior due to cache
hits/misses, cache configuration, memory access patterns and memory latency while
group 6 (Gg) shows the application’s memory bandwidth behavior. Table 4 has the

detailed list of the metrics used in this work.

Table 4: Metrics used to capture application behavior

Metric Name Metric Description
Gi |my; |CPI_CMPL_CYC Completion cycles
G, |mp1 | CPI_GCT_EMPTY_IC Pipeline Empty due to Instruction-

_MISS Cache Miss




Table 4: continued
Metric Description

Metric Name
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m,, | CPI_GCT_EMPTY_BR Pipeline Empty due to Branch
_MPRED MisPrediction
mp3 | CPI_GCT_EMPTY_OTHER | Pipeline Empty ( Other)
mp4 | CPI_STALL_LSU_ERAT Load,Store Trandation Stalls
_MISS
mys | CPI_STALL_LSU_REJECT | Load Store (Other Reject) Stalls
_OTHERS
mpe | CPI_STALL_LSU Data Cache Miss Stalls
_DCACHE_MISS
my7 | CPI_STALL_LSU L oad/Store flush penalty and latency
_OTHERS
mpg | CPI_STALL_FXU_DIV Stall by any form of
DIV/MTSPR/MFSPR instruction
mps | CPI_STALL_FXU Stall by FXU basic latency
_OTHERS
My10 | CPI_STALL_FPU_DIV Stall by any form of FDIV/FSQRT
instruction
mp11 | CPI_STALL_FPU Stall by FPU basic latency

_OTHERS
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Table 4: continued

Metric Name

Metric Description

my1, | CPI_STALL_OTHERS Stall by others (Completion Stall cycles
- Stall by LSU Instruction - Stall by
FXU Instruction - Stall by FPU
Instruction)
Gs | mg; | FPU_FMA _PI Floating Point multiply and add Per
Instruction
mz, | FPU_OTHER_PI Floating Point other (div,sgrt,etc.) Per
Instruction
mz3 | FPU_STF _PI Floating Point stores Per Instruction
Gs | ms: | DERAT_MISS RATE Data Effective to Real Address
Trand ation Cache missrate
my> | DSLB_MISS RATE Data Segment L ook-ahead Buffer
Cache missrate
my3 | DTLB_MISS RATE Data Table Look-ahead Buffer Cache
miss rate
Gs | ms1 | DATA_FROM_L2_PI Demand d-L 1 Reloads from L2 per
Instruction
ms> | DATA_FROM_L3 Pl Demand d-L 1 Reloads from L3 per

Instruction
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Table 4: continued

Metric Name Metric Description

ms3 | DATA_FROM_LMEM_PI Demand d-L1 Reloads from Local

Memory per Instruction

ms, | DATA_FROM_RMEM_PI | Demand d-L1 Reloads from Remote

Memory per Instruction

Gs | Mgy | MEM_RD_BAND_PI Memory Read Bandwidth (Bytes/Inst)

mex | MEM_WR_BAND_PI Memory Write Bandwidth (Bytes/Inst)

3.2 Relating Metrics and Metrics” Groups to Runtime

Relating each metric to the runtime R of the application allows for understanding
the contribution of these metrics in the overal behavior of the application. This
relationship is dependent on the architecture of the base machine. The process of relating
metrics to runtime R is accomplished in two steps: (1) local to each metric group and (2)
across all metric groups. The first step entails finding the contribution of each metric to
the overall group for that metric. The second step entails finding the contribution of a
given group to the overall runtime. Details about each step are given below.

For the local step, we use the typical number of cycles that each metric uses to
calculate the contribution of each metric in its respective group. For example, each metric
in Gz represents a different type of FPU instruction. Understanding the base machine
architecture, we know how many cycles each of these different types of FPU instructions

typically require. This can be represented mathematically by defining a function F; for
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each metric group G; where F; is directly proportional to runtime R. We define this

function F; as given below:
MI
Fi :Zq’jxm’j (1)
j=1

where M; is the number of metrics in G and c;j is a coefficient representing the
contribution of metric m; to runtime R relative to other metrics within G;. Each
coefficient ¢ is determined based on the cycles associated with metric m j; the values for
cij are obtained from the specification of the base micro-architecture. To illustrate, using
the same example of Gz c3; (FPU_FMA_PI), c32 (FPU_OTHER PI) and cs3
(FPU_STF_PI) have the values of X, Y, Z, respectively, corresponding to X~ 6 cycles
required for the floating-point multiply-add operation, Y~ 35 cycles required for other
floating-point operations, and Z~ 20 cycles required for floating-point store operations.

The second step in the process of relating metrics to overall runtime is to find the
contribution of each group of metrics to the overall application runtime. In other words,
we need to find the function H that relates each group G; to R using coefficients a such
that H « R. H can be defined as follows:

H =aG, +a,G, +aG;+3a,G, +a.G, +a,G,,H « R 2
where g represents the contribution of each metric group G; to the total runtime. The
values for g are calculated using the cycles associated with each group relative to the
runtime. These values are obtained from the micro-architecture specification of the base

machine.



3.3 Computation Performance Projection Scheme

The process of performance projection of the compute component of HPC
applications entails three steps. The first step involves characterizing/modeling each HPC
application by providing ranks, corresponding to aG; as in Equation 2, to the different
metric groups on the base machine. The second step is to adjust these ranks for each
target machine we want to project the performance on. These adjusted ranks provide for a
performance model of the application on the target machine. Once we have the ranks in
place for the target machines, we then use a genetic algorithm (GA) tool to identify the
benchmarks and their respective coefficients that are smilar to the HPC application based
upon the performance on the base machine. The three steps alow for the HPC
characterization/modeling on the target machine to be used with the similarity analysisto

produce better results.

3.3.1 Calculating Ranks for Metrics’ Groups on Base Machine

Our goal in this step is to find the rank for each metric group. In other words, we
want to arrange the metrics’ groups according to their contribution in runtime on the base
machine in a descending order. Thus, the rank of each metric group reflects its
significance to the application behavior/runtime. To illustrate, HPC applications can be
broadly characterized as compute intensive (e.g., requires significant number of compute
operations per memory operation) or memory intensive (e.g., requires significant number
of memory operations per computation). Consequently, memory intensive applications

may have groups Gs (data cache reloads) ranked higher than G3 (FPU instructions).
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Cdculating the ranks of metric groups follows directly from Equation 2. The
coefficients a in Equation 2 are adready caculated based on the architectura
characteristics of the base machine as in Section 3.2. The values for G; are calculated
using the function F; in Equation 1 corresponding to each group G;. The rank of a group
Gi then corresponds to the magnitude of the term aG; for this group, the higher the

magnitude of aG; the higher the rank of the group G;.

3.3.2 Calculating Ranksfor Metrics’ Groups on Target Machine

The significance of each metric group to the performance of the HPC application
is relative to the architecture of the machine the application is running on. Since the rank
of each metric group reflects the significance of this metric group to the performance of
the HPC application in relation to the architecture of the machine, the rankings calcul ated
on the base machine need to be adjusted for the target machine. The availability of
performance counter metrics for the set of benchmarks on the base machine, and the
availability of their runtimes on both the base and the target machine alows for
mathematically adjusting the ranks of the metric groups from the base to the target.

Since the goal in this step is to adjust the ranks of metrics’ groups on the base for
the target machine, we need to identify the differences between these two machines. The
architectural characteristics of a machine are reflected in the coefficients a in Equation 2;
thus, we need to calculate coefficients a” for each group G; on the target machine that
will reflect the architectural difference of the target machine from the base. To calculate
&, we define the set B which includes all the benchmarks, SPEC CFP2006 in this case.

For each benchmark by in the set B, we define Hy using Equation 2 as follows:
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H, =aG, +a0G, +aG; +a,G, +aG; +aG; H, <R, VleB (3)

where Ry is runtime of benchmark by on base machine. Also we define Hy’ using

Equation 2 as follows:
H,'=a'G, +a,'G, +a,'G; +a,'G, +a;'G; +a,'G; ,H,'cR,'VleB 4

where Ry’ is runtime of benchmark by on target machine. From Equations (3) and (4), we
can get the ratio between the runtimes of benchmark b, on the base machine and the

target and define Hy,” as follows:
h X5 ®)

Since Hy, can be calculated for the base machine, and runtimes Ry, of the base and R, of
the target are known, we end up with a set of simultaneous linear equations each for a
different benchmark by in B. In this set, we are solving for six unknowns, a;’, a,’, as’, a4’,
as’ and ag’. After solving the set of linear equations, we identify the values for the
coefficients a” for each group G; on the target machine. These coefficients reflect the
architectural characteristics of the target machine and how different/similar it is from the
base machine. Once the coefficients &’ are identified, we calculate the ranks for the
metrics’ groups on the target machine in the same way we calculated the ranks for the
base using Equation 2 where the rank of a group G; corresponds to the magnitude of the
term &’Gi for this group, the higher the magnitude of &’G; the higher the rank of the

group G;.
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3.3.3 Identifying Surrogates

In the last step of our projection methodology we attempt to select some
benchmarks and coefficients for those benchmarks that will represent an application
whose behavior is the closest to the HPC application at hand. These selected benchmarks
that comprise the surrogate for a given application, app, form the set Sypp. Sypp IS @ subset
of the set B, the set of SPEC CPU2006 benchmarks, and Sy, < B. Each member s of Sy
has a weight wy. The combination of the surrogate called comb_surrogates is defined as

follows;

comb__surrogates = %Wk X S, (6)

k=1
The smaller the error between the metrics of the application and the metrics of
comb_surrogates, the closer is the behavior of comb_surrogates to the application. Thus,
we identify comb_surrogates of an HPC application by attempting to minimize the error
between the metrics of the HPC application and that of comb_surrogates for the base
machine. A genetic algorithm (GA) tool is used to identify the members of Sy, and their

respective weights. We define the error between the metrics of the application and the

metrics of comb_surrogates asin Equation 7

M.
| M, (app)
Ei = Z (‘m,j(app) - rrx,j(comb_surrogat%)‘ X M; ) @)
j=1

m ,a(app)
g=1

where E; is the weighted sum of errors of al metrics in group G;, M; is the number of
metricsin G;, mj ismetric j in group G; asin Table 4. AISO M j(comb_surrogates) 1S Calcul ated

asfollows:
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‘Sapp‘ I
rT1,j(<:omb_s~|rrogate£) = Z(m,j(sk) stk X > ))] (8)
k=1

[ total

where I« is the total number of run instructions or the path length of surrogate s and ligta
is the sum of all run instructions of al s in Syp. We multiply the weighted metric of a
surrogate s¢ by the term lg/lia t0 account for the contribution of this surrogate in
comb_surrogates since by combining surrogates we assume running the surrogates
serially. The multiplication of this term accounts for the differences in runtimes of the
surrogates.

Since we collect the metrics of the HPC application and the benchmarks in both
SMT and ST modes as mentioned earlier above, the GA tool attempts to minimize the
error in metrics for each of the six groups for both SMT and ST modes to be below a
chosen limit. In this work, we chose the limit to be 10.0%. To achieve this, we defined

the fitness function of the GA tool as follows:

|f (Mli < 01& MZL < Ol& L& Mei < 01)
Z ml,q(app) Z mZ.q(app) z mG,q(app)
g=1 g=1 g=1
return(0)
dse (9)
return(—;- & - E, +....+L)

M, Mg
Z ml,q(app) Z mZ.q(app) Z m&q(app)
g=1 g=1 g=1
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The GA tool terminates when the return value of the fitness function is O; thus, the term

Ei/ %qu(app) for each of the six groups for both SMT and PST modes has to be below 0.1.
q=1

The goal of reducing the error in metrics below the 10.0% limit for all metrics’
groups is not achievable in many cases. Nevertheless, the ultimate goal is to reduce the
projection results error in runtime on the target machine. Consequently, reducing the
error in metrics’ groups with the highest contribution in runtime will yield better
projection results than reducing the error in metrics’ groups with the least contribution in
runtime. Thus, in the cases where the limit of 10% is not achievable, we adjust the GA
tool to reduce the error in metrics with the highest rank on the target machine first. Once
the error limit is achieved in the highest ranked metric group, the GA tool attempts to
reduce the error on the next highest ranked metric group and so on. These ranks were
calculated in the previous step of projection methodology in Section 3.3.2. The HPC
application characterization/modeling on the target machine using the metrics’ group
ranking in combination with the similarity analysis produces better projection results.

In our scheme, we use the SPEC CFP2006 performance throughput data of target
machines and calculate the relative performance to our base machine. Once the set Sypp of
the surrogate and the respective weights for the HPC application is found using our
scheme, we apply the following steps to get the application runtime on atarget machine:

l. Multiply the surrogates with their respective weights to get the application

relative performance on the target machine.

S
Papp = Z (Wk Pk) (10)
k=1

where Py is the relative performance of surrogate s and w is the weight for surrogate s.
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Il. The scaling factor is then multiplied by the application runtime on the base

system which gives the projection of the application on the target system.

3.3.4 Genetic Algorithm to Identify Surrogates

In the previous section, we discussed the details of the projection scheme used.
To address time requirements, we use a probabilistic method to minimize the difference
value discussed in the previous section. In particular, the complexity of the agorithm to
find the best combination of surrogates and their respective weights is in the order of
O(wn™) where w is the range of weights to try on each benchmark that comprise the
surrogate, n is the number of surrogates and m the combination size. In this work, we
used a string based Genetic Algorithm (GA) tool [58]. Parameters for the genetic
algorithm are shown in Table 5. We defined the string as a sequence of bits representing
the benchmarks and sequences of weights for each of these benchmarks. A “1” bit means
choose this benchmark otherwise don’t choose it. The weights for the benchmarks range
from 0.0009765625 (1/1024) to 1024. Figure 8 shows the framework for the genetic tool.
Once the population is generated, each string is decoded and we get the surrogates and
their weights. We use Equation 9 as our fitness as indicated earlier. After calculating
fitness, we check for termination fitness (zero for perfect match) or we try other
individuals. When the tool is stuck for severa generations, cataclysm is performed until

reaching max generations.



Table 5: Genetic Algorithm parameters
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Parameter Value

Tournament Size 7

Population Size 10000

Mutation Rate 0.03
Reproduction Rate 0.10- 1/Pop Size
Elite Reproduction 1/Pop Size
Crossover rate 0.77

Max Generations 2000

Max Generations No Progress | 15

Termination Fitness 0.0

String Genetic Tool
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Calculate Same

Fitv

Termination
Fitness

Figure 8: Genetic tool framework
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3.4 Experimental Results

We used our method given in Figure 7 to project the performance of the following
eight large-scale scientific applications: AMBER [51], CHARMM [52], FLUENT [53],
GAMESS [54], LS-DYNA [55], a seismic application that will be referred to as Seismic,
STAR-CD [56] and WRF [57] on four different systems.. Table 3 in section 2.3.4 lists
the input datasets and the category for the applications we used in our experiments. Table
6 presents the different systems that we projected on and their respective properties. We
chose the systems to be quite different from the base as well as from each other. The
POWERS® chip utilized in the two JS22 and p570 systems, although having the same ISA
as the base machine, has an extremely different micro-architecture than the POWERS5+
chip. Asindicated in Table 6, POWERS5+ chip utilizes two out-of-order execution cores,
while POWERG6 chip utilizes two in-order execution cores. Also, the two POWERG
systems have quite different cache and memory subsystems. On the other hand, the Intel
Woodcrest chip has dual out-of-order execution cores that have different ISA and micro-
architecture than the POWERS+. The Clovertown is a multi-chip module (MCM) with

dual Woodcrest chips that run at a slower frequency and share the memory bandwidth.



Table 6: Computation base system and target systems used for validation

Machine  Processor Number Processor Memory L2
of Frequency Per Cache/core
Cores Core
IBM p575 | Out of Order 2 1.9 GHz 4GB 19MB
Execution POWER5+ (shared)
IBM JS22 | In Order Execution 2 4.0 GHz 4GB 4MB
POWERG6
IBM p570 | In Order Execution 2 4.7 GHz 8GB 4MB
POWERG
IBM Out of Order Intel 2 3 GHz 2GB 2MB
x3550 Woodcrest
IBM Out of Order Intel 4 24 GHz 2GB 2MB
x3650 Clovertown

In the results figures below we show the signed value of the error in runtime;
however, in this work, we focused on reducing the magnitude of the runtime error and all
averages are based on absolute errors. The number of selected benchmarks that comprise
the surrogate for each application was ranging between a minimum of one and a

maximum of four as indicated in Table 7. Typically, the benchmark(s) with the highest

weights were from the same scientific area of the HPC application.




53

Table 7 indicates the different surrogates of the HPC applications for the
POWER6 IBM JS22 system. In the area column the abbreviations for areas are as
follows: QC — Quantum Chemistry, FD — Fluid Dynamics, MD — Molecular Dynamics,
WS - Weather Simulation, P — Physics, RT — Ray Tracing, O — Optimization, SM —
Structural Mechanics and S — Seismic. For the properties column the abbreviations for
properties are as follows. Cl — Compute Intensive, Ml — Memory Intensive, IB — In
Between (it lies in the middle between compute intensive and memory intensive), LB —
Low Bandwidth and HB — High Bandwidth. The numbers in the surrogates’ column
correspond to the SPEC CFP2006 numbers and their weights respectively. As it indicates
in Table 7, al surrogates for HPC applications are typicaly from the same area of the
HPC application. From a micro-architectural perspective, the combined benchmarks in
the surrogate always have the micro —architectural properties as the HPC application. For
example, in the case of AMBER-COX2, the combined surrogates are computing
intensive with very low bandwidth requirements as AMBER-COX2; in addition, the
bigger component of the combined surrogates (435.gromacs) is Molecular Dynamics
benchmark as AMBER-COX2. Another point worth mentioning is that in some cases the
individual benchmarks have different micro-architectural properties compared to the
HPC application; however, when combined, the resultant combined surrogate has very
similar properties to the HPC application. To illustrate, in the case of LS-DYNA,
416.gamess is a compute intensive benchmark with very low bandwidth requirement,
while LS-DYNA is a memory intensive application; nevertheless, when 416.gamess is
combined with the other surrogates such as 470.Ibm, 436.cactusADM, the resultant

combined surrogates have very similar propertiesto LS-DY NA.



Table 7: Surrogates for the HPC applications on POWERG IBM JS22 system

Area Prop.

Surrogates

Surr. Area Surr.

Prop.

AMBER-COX2 |MD [CI 416 x 0.877 +435x 1.712 |QC - MD (CI
AMBER-FIX MD MI-LB |416x0.737 + 436 x 1.479 |QC - MI-LB
+ 444 x 1.936 P-
MD
AMBER-JAC MD [MI-LB [410x0.092 +435x 0.633 [FD - MD [MI-LB
+ 444 x 2.359
CHARMM MD [CI 416 x 0.907 + 444 x 1.487 |QC - MD (CI
FLUENT-L1 FD MI-HB [416x 1.035+444x 1.393 [QC-MD [MI-HB
+ 447 x 1.251 + 450 x — O
1.356
FLUENT-L2 FD MI-HB 410x 1.169 +416x 0.742 FD - QC MI - HB
+ 437 x 1.113 + 465 X
1.583
FLUENT-L3 FD MI-HB 410x 1.106 +416x 0.573 FD-QC |MI-HB
+ 454 x 0.792 + 465 X — SM
2.104
FLUENT-M1 FD |[IB 465 x 1.569 + 481 x 0.138 QC - WS |IB
FLUENT-M2 FD IB 416 x 0.229 + 437 X QC-FD |IB
0.674 + 465 x 2.938
FLUENT-M3 FD IB 437 x 0.337 + 465 x FD-QC (B
1.853 + 481 x 0.489 — WS
GAMESS-LROT |QC [CI 453 x 0.079 + 465 x 1.094 RT - QC [CI
GAMESS-SICC |QC [CI 465 x 0.860 QC Cl
LS-DYNA FD MI-HB [416x0.793+436x 1.837 |QC-O- MI-HB
+ 450 x 0.158 + 470 X P-FD
1.414
Seismic S MI-HB 416 x 1.004 + 470x 1.518 QC-FD |MI - HB
STAR-CD FD MI-HB [410x1.782+481x0.736 [FD - WS [MI-HB
WRF WS [MI-HB 410x0.971+436x0.491 FD-P- |MI-HB
+ 454 x 1.187 + 481 X SM - WS
1.153
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Projection Results for POWERG6 IBM JS22 System
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Figure 9: Projection results for POWERG IBM JS22 system

Figure 9 shows that our scheme was able to predict the performance of the HPC
applications within 5.5% average error (based upon magnitudes of the error) on IBM
JS22 POWERG system. Our projection errors are less than 10.0% for all workloads with
the exception of GAMESS SICC. GAMESS SICC projection error, athough still low, is
the only error above 10.0% (14.1%) on JS22. GAMESS SICC requires very little
memory bandwidth. When applying our ranking scheme in Section 3.2 for JS22, groups
G, and G; are ranked the highest respectively; however, the GA tool couldn’t find a

combination of surrogates that are similar to GAMESS SICC G; and G;.
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Projection Results for POWERG6 IBM p570 System
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Figure 10: Projection results for POWER6 IBM p570 system

Figure 10 shows the projection results on the IBM p570 POWERG6 system. The
average projection error for the 16 workloads on the p570 system was 9.8%. With the
exception of Seismic and GAMESS SICC, al projection errors are below 15.0%. In fact,
only five applications had their projection error between 10.0% and 15.0% while the rest
were below 10.0%. The reason GAMESS SICC projection error is 15.9% is due to the
same reason as in JS22 system. The Seismic application on the other hand exhibits
unique behavior that SPEC CFP2006 doesn’t have an application that copies it. Seismic
is a bandwidth intensive application; however, good prefetching on the base machine
hides the effect of the high bandwidth. Thus, the application doesn’t stall waiting on the
load-store unit (LSU) and the CPI is low. No benchmark in the SPEC CFP2006 suite
exhibits the same behavior and the best combination of surrogates was off on many
metrics’ groups specially G; and G,. This will be reflected in the other machines as in

Figures 11 and 12.
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Projection Results for Intel Woodcrest IBM x3550 System
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Figure 11: Projection results for Intel Woodcrest IBM x3550 system

Figure 11 shows the projection results on the IBM x3550 system with Intel
Woodcrest chip. The average error for the 16 applications is 8.3%. This is very
interesting since our scheme projected the performance using hardware performance
counters collected on a different system using a chip that has different micro-architecture
and different ISA with such accuracy. With the exception of Seismic, for the reasons

mentioned above, al projection errors are below 15.0%. In fact, 10 applications had

projection errors less than 10.0%.
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Projection Results for Intel Clovertown IBM x3650 System
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Figure 12: Projection results for Intel Clovertown IBM x3650 system

Figure 12 shows the projection results on the IBM x3650 system with Intel
Clovertown MCM. Recall, the Intel Clovertown is an MCM with two Woodcrest chips
that share the bandwidth. Thus, Clovertown has a significantly limited bandwidth
compared to the base machine. The average projection error for the IBM x3650 system is
12.8%. AMBER FIX and CHARMM are both memory intensive applications. Due to the
nature of the Clovertown MCM, Gs is ranked as the highest group for these two
applications; however, the GA tool couldn’t identify a combination of surrogates that is
quite similar to these two applications in Gs. This dissimilarity between the combined
surrogates and these two applications didn’t have a significant effect in the projection
results for the other systems since Gs was ranked as high as it is ranked on the IBM
x3650 system with the Clovertown MCM. This explains the 19.9% and 25.9% error for
AMBER FIX and CHARMM respectively. As for FLUENT L3, with projection error of
29.9%, the highest ranked group was Gg followed by Gs. The mismatch, however, wasin

Ge. FLUENT L3 bandwidth in the PST mode is higher than the bandwidth in SMT mode.
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This happens in the case of FLUENT L3 because in PST mode each task has more
resources than in SMT mode and this allows prefetching to prefetch more data in PST
mode than in SMT mode. Again in this case no benchmark in the SPEC CFP2006 suite
exhibits the same bandwidth behavior as FLUENT L3. This mismatch effect is
exacerbated on Clovertown and doesn’t show on other systems since Gg is ranked as the
highest group only on Clovertown. A point worth mentioning, GAMESS SICC mismatch
for groups G; and G, didn’t have an effect on the projection on Clovertown because G;
and G; are ranked lower for GAMESS SICC on Clovertown than on the other machines.
Overdl, our projection scheme projected with high accuracy using micro-
architecture dependent metrics collected on one base system to four different systems
utilizing different micro-architecture and different I1SA in the case of the Intel systems.
When the highly ranked metrics’ groups on a system for a certain application has
significantly high metrics’ error, the projection results for this application on that system
are comparatively high and our scheme indicate that those projections are not very

accurate.

3.5 Redated Work

Severa researches have been done on using surrogate workloads to predict
application performance. SPEC benchmarks suite was often proposed as the benchmarks
of choice due to the abundance of published data but it was not used for HPC
applications. NAS Parallel [59] benchmarks, on the other hand, were used more often
with HPC applications due to their paralel nature. Also curve fitting on runtimes is

extensively used in industry to project performance using surrogate workloads.
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Todi and Gustafson [35] mapped applications to the HINT benchmark curve and
then used the HINT curve for a given machine to predict the application performance.
They showed that HINT is a superset for the other benchmarks included in the study,
NAS Paradldl, SPEC, STREAM and others. The main goal of their work was to find the
correlation between HINT and the other benchmarks indicating that HINT is a superset of
these benchmarks and then using it in prediction.

Phansalkar [60] used hardware performance counter experimentation to
categorize the SPEC CPU2006 benchmarks. His work used statistical techniques such as
principa component analysis and clustering to draw inferences on the similarity of the
benchmarks and the redundancy in the suite and arrive at meaningful subsets. In his
paper, he didn’t extend the work to involve performance projection.

Hoste [34] proposed the use of SPEC CPU2000 in performance projection of
applications. His scheme was to measure a number of micro-architecture-independent
characteristics from the application of interest, and relate these characteristics to the ones
of the programs from SPEC 2000. Based on the similarity of the application of interest
with programs in the benchmark suite, he made a performance prediction of the
application of interest. He proposed and evaluated three approaches (normalization,
principa components analysis and genetic algorithm) to transform the raw data set of
micro-architecture independent characteristics into a benchmark space in which the
relative distance is a measure for the relative performance differences. His work was not
extended to HPC applications as this paper does. In addition, he used binary
instrumentation instead of hardware performance counters collected on several systemsto

create the data matrix not just one base machine. Also, Hoste’s main goal was to predict
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machine ranks for applications rather than actual performance of application on certain
target machine which makes his accuracy measurements different than ours.

Tikir [33] used genetic algorithms approach to moded the performance of
memory-bound computations. He proposed a scheme for predicting the performance of
HPC applications based on the results of MultiMAPS benchmarks. A Genetic Algorithm
approach was used to "learn” bandwidth as a function of cache hit rates per machine with
MultiMAPS as the fithess test. His approach differs than what we propose in this paper
in many aspects. His scheme works only on memory bound applications while ours can
be used on all applications. His approach requires simulating different cache sizes to
understand the cache characteristics of the application while we use performance counter
measurements with SMT and PST mode. Our approach doesn’t require instrumentation
of binary code as we depend on hardware performance counters collected by simply
executing the binary on a base machine. Also, Tikir approach is tightly coupled to
MultiMAPS as the set of benchmarks. Our approach can use any set of benchmarks or

several sets of benchmarks.

3.6 Summary

We presented a scheme to project the performance of HPC applications using
surrogate workloads from the SPEC CPU2006 benchmark suite and hardware
performance counter data. The scheme is very flexible since it doesn’t require any
instrumentation to the binary code or the source code and only requires execution of the

application and the benchmarks on one base machine. Moreover, simulation is not needed
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eliminating the long runtimes incurred in simulations. The use of a string based genetic
tool reduces the projection scheme runtime significantly.

SPEC CPU2006 being developed as a seria version of real paralel applications
covers a large range of HPC applications’ space but not the entire range as in the case of
Clovertown projections. However, our scheme is not tightly coupled to SPEC CPU2006
and can easily incorporate other benchmark suites such as SPEC MPI2007, NAS Parallel
Benchmarks or others. The choice of SPEC CPU2006 was mainly because of its
abundant published data and its similarity to real HPC applications.

Our scheme uses hardware performance counter data for the HPC applications
and the SPEC CPU2006 suite from one base machine to model the behavior of the HPC
applications as a function of the benchmarks of SPEC CPU2006. The model of the HPC
application characterizes its behavior based upon a common set of benchmarks using
hardware performance counter data. This model gives an insight on the nature of the
application, category (Fluid Dynamics, Weather, etc...) and what is the best system it
would run on.

Also, in our scheme, we combine the runtimes of the benchmarks on the base
machine and on the target with the performance metrics to architecturally characterize
each system we are projecting on. This architectura characterization allows for
understanding the relation between the behavior of the application and the target
architecture. This understanding gives us insight on which metrics are of more
significance to the behavior of the application on the target system alowing for better
projection results. Furthermore, our scheme has the ability to point out possible

inaccurate projections based on the rankings of the metrics groups on the target machine.
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For those applications with the highest ranked group(s) having significantly higher

metrics’ errors, our scheme indicates that those projections may be inaccurate.
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4. COMMUNICATION COMPONENT PERFORMANCE

PROJECTION

In section 3, we presented our method to project the performance of only the
computation component of an HPC application using published data of industry standard
benchmarks, the SPEC CPU2006, and hardware performance counter data from one base
system. In this section, we extend our method to project the communication performance
of HPC applications onto different systems using MPI benchmark data on the different
systems as well as a base system, and the communication profile of the application on the
base system. In particular, we use the Intel MPI Benchmarks (IMB) [32] aswe find it the
most comprehensive MPI benchmark suite. The main advantage of our method is the use
of MPI profiles of the HPC application instead of MPI traces, which require significant
storage and are very complicated, hard to understand and parse. For example, our method
requires 12KB storage for the communication profile of the NAS BT benchmark, in
contrast to 2.6GB storage for an MPI trace of the communication behavior of the same
benchmark for 128 tasks. Further, our method does not involve any simulations, which
are often very time-consuming.

Figure 13 depicts the high level framework of our method. The HPC application
is executed multiple times on the base machine where each execution utilizes different
number of cores C; for j&{1,...c} and c is the maximum number of cores the HPC
application can utilize. During each execution, we obtain the application’s MPI profile
for C; number of cores. The resultant MPI profiles are used to produce an MPI

communication model for the HPC application. The model is a function of the number of
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cores, the MPI routines (e.g. MPI_Bcast, MPI_Reduce, etc), the mess age sizes, and the
number of calls for each routine. The MPI communication model provides for
understanding the HPC application scaling of each MPI routine for different C;. In
addition, the performance of IMB benchmarks, is obtained for the base and the target
machines for different numbers of cores, C;. Target system parameters provide the
performance of each MPI routine from the IMB benchmark for different message sizes a
each C; on the target system. The application WaitTime model on the base machine is
generated by analyzing the load imbalance of the application using the IMB data on the
base machine and the application MPI profile data on the base machine. In the fina step
of our method, we combine the application MPI model on the base machine with the
WaitTime model on the base machine and the IMB parameters for the target machine to

project the HPC application MPI communication performance on the target system.

| HPC Application | |

Xecute on Base
Machine

Intel MPI Benchmarks |

xecute on Base
Machine

Intel MPI Benchmarks for
Target System

Different Number Yof Cares C Different Numv¥ ber of Care CI ;DjﬁELEDLM.LDILbﬁLDLCQLF_aCJ
C, MPI C. MPI C, Base C. Base C, Target C. Target
Profile | -----7mmmmmmoooos Profile Machine |77 Machine Machine |77 Machine
| | IMB Values IMB Values IMB Values IMB Values

lication MP1 Model on Base Machin

A4

»Application WaitTime Model on@

ES

Application MPI Target Machine Model

A 4

A 4

Target Machin@

Projection of HPC Application Communication Performance
on Target System

Figure 13: Framework for MPI communication projection scheme
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The use of MPI profiles in projecting the communication performance of HPC
applications allows for an efficient and fast projection scheme. In contrast to MPI traces,
MPI profiles do not have the level of detail found in MPI traces, such as traces obtained
by MPIDtrace, which often obscures the high level behavior of the communication
component of an HPC application. In addition, obtaining MPI traces is a Slow process
which often results in massive trace files. These massive trace files are typically too
complicated to parse. Also using MPI trace files as input to network simulators is
extremely time consuming. On the other hand, MPI profiles are easy and simple to obtain
and understand. MPI profiles provide a high level picture of the MPI communication

component of an HPC application.

4.1 MPI Profile

An MPI profileisahigh level representation of the communication component of
an HPC application. This high level representation provides for speed in collection and
efficiency in modeling An MPI profile consists of a summary of al MPI routines called
by the application, their message sizes and runtime of each call as well as the total
runtime of the program. The frequency of each call and its contribution in the overal
runtime can be calculated from the profile data. To obtain the MPI profile, one links the
HPC application to the profiling library. Once linked, the MPI profile is produced during
execution and an output file of size 12KB (for a 128 tasks) is produced. The profile is
produced on a per task basis, i.e. each task hasits own MPI profile. In this work, we used
an MPI profiling library available with the IBM Paradlel Environment [61]. The

information in the profile is as follows:
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1. A summary of all MPI routines the application called and the aggregate timing for
each routine. The profiling starts with the MPI_Init cal and ends at the
MPI_Finalize.

2. Message sizes distribution. The message size distribution breaks down each MPI
routine into message sizes for this MPI routine, number of calls for this specific
message size and the aggregate time for the calls.

3. The breakdown of total execution time for each task. This breakdown involves the
percentage of execution time spent doing computation and the percentage spent in
communication. The communication percentage also includes time spent waiting

inan MPI_Waitall for example.

4.2 Intel Benchmarks and Target Machine Parameters

The IMB, explained in details in section 2.3.3, is the benchmark suite of choice
for most hardware vendors and researchers in measuring the communication and
interconnect architecture of a system. It checks many MPI communication patterns and
automatically detects clustering, and reports intra-cluster and inter-cluster performance.
IMB is targeted at measuring Point to Point MPI communication and Collective MPI
communication. Also, IMB measures performance for different message sizes.

In this work, we use IMB benchmarks to measure the performance of the
communication and interconnect architecture of both, the base and target, systems. IMB
provides a concise set of benchmarks targeted at measuring the most important MPI
functions. In addition to the default set of benchmarks included in IMB, we add one extra

benchmark, multi-Sendrecv. The multi-Sendrecv benchmark measures the performance of
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the MPI library and the underlying interconnect when multiple successions (one or more)
of non-blocking point to point calls (MPI_Isend and MPI_Irecv) are issued followed by
an MPI_Waitall as in Figure 14. Note that multi-Sendrecv benchmark defined here is
different than IMB Multi-Sendrecv. In a blocking point to point call, the control returns
back to the user only when the user buffer can be safely used. IMB benchmarks such as
PingPong utilize such calls to measure the interconnect network latency and bandwidth.
Contrary to non-blocking calls, control returns to user before the buffer can be safely
used. Thus, understanding the behavior of a sequence of non-blocking calls followed by
an MPI_Waitall requires special handling in order to accurately parameterize the non-

blocking calls on the base and target machines.

do{
NUM | SEND | RECV++;
Time_Stanp(entry);
for(i=0;i< | TERATIONS;i ++)
{
for(int j=0; j < NUM.ISEND | RECV; | ++)
{
MPI | send(destination);
MPI _I recv(source);
}
MPI _Waitall;
}
Time_Stanp(exit);
}
whi | e
("mul ti-Sendrecv_performnce_cal cul ated());
[* Calculate TLibraryOverhead and TinFlight */

Figure 14: multi-Sendrecv benchmark
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In the case of blocking MPI routines, the execution time measured by IMB is the
total time from the instance the MPI routine is called until the control returns back to the
caler. This measured time includes the time the message takes in the interconnect
network (time of flight) to reach the destination in addition to the software library
overhead on both the send and receive sides. In the case of the multi-Sendrecv
benchmark, the measured execution time is the entire time span from the instance of the
first MPI_Isend/MPI_Irecv is caled until the completion of the MPI_Waitall as indicated

in Figure 14. Therefore, we can define this measured time Trranger(M) for an MPI routine

m,VieM where M isthe set of all MPI routines as;

Trransier (M) = TLibraryOverhead (m)+ XTinFIight (m),vieM (11)

Tlibraryoverhead(My) 1S the time in the MPI software library from the instance the call to MPI
routine my is issued until the message reaches the interconnect hardware for transferring.
This Tiibraryovernead(My) is typically very little compared to the Tinmiign(M). The second
portion of Equation 11, XTinriign(M) represents the Tinmiign(M) that it takes the message, in
the interconnect, for an MPI routine m to reach the destination multiplied by x which is
the number of messages in flight. For a typical MPI routine such as MPI_Bcast or
MPI_Sendrecv we assume x is 1. In the case of multi-Sendrecv benchmark, x is the
number of MPI_lIsend/MPI_Irecv calls issued before the MPI_Waitall. The multi-
Sendrecv benchmark measures the execution time for different number of successions of
MPI_Isend and MPI_lIrecv followed by MPI_Waitall. This alows for finding the
TLibraryoverhead(M) and Tinriigne(My) in Equation 1. Note that Trranger(M) doesn’t include any
time MPI_Waitall spends waiting because of load imbalance between tasks especialy

load imbalance in computation and communication. The time MPI_Waitall spends
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waiting because of load imbalance called WaitTime is defined later in details in Section
4.3. Note that a similar benchmark to the multi-Sendrecv is required for the one sided
MPI2 routines which follows the same idea.

Recall that target machine parameters are used to understand the performance of
each MPI routine on the target system, the change in performance of these call types with
different message sizes and the scaling with different number of cores C,. IMB
benchmarks, as previously mentioned, provide the performance of each MPI routine for
different message sizes utilizing different number of cores. Thus, using IMB we can

obtain target machine parameters which can be represented by Equation 12.
P, (m.,S,),Vjefl,....c}ieM kell,...,st (12)

From Equation 12, a target machine parameter P indicates the performance (in execution
time) for an MPI routine m; and message size S at core count C; where c is the maximum
number of cores the HPC application can utilize, M is the set of all MPI point to point
and collective routines and s is the maximum message size feasible on the target system.
To illustrate, parameter P for an MPI_Bcast, message size 1 and core count 32 would
indicate the time it takes to broadcast a message of size 1 byte to 32 cores on the
interconnect of the target machine.

Parameter P for the multi-Sendrecv benchmark represents performance for MPI
tasks on the target system placed in a ring topology. This is similar to IMB Sendrecv
where the processes form a periodic communication chain. Each process sends to the
right and receives from the left neighbor in the chain. Thus, P for multi-Sendrecv doesn’t
consider queuing delays in interconnect due to different communication patterns such as

closest neighbors.
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Target machine parameters can be obtained through target machine simulators if
the system doesn’t exist yet or through direct execution on the platform if it exists and
available. In the case of future systems, simulating IMB is a much simpler task than
simulating the actual HPC application. In case of an existing system, executing IMB on
the system may also be simpler than executing the actual HPC application especialy if
the HPC application is incompatible with the target system OS. In addition, if the target
system required is larger than the available system, regression based approaches to
extrapolate IMB values for a larger system is simpler than extrapolating performance of

the HPC application due to the non-linear behavior of HPC applications.

4.3 Defining WaitTime

The communication benchmarks do not entail any computation. Also, all tasks
send the same number of messages with the same message sizes. Therefore, there is no
load imbalance between tasks and all the performance data illustrated by IMB and the
multi-Sendrecv benchmarks reflect the performance of the interconnect architecture.
However, HPC applications typically involve communication and computation
components. In addition, computation and communication may not be balanced among
all tasks, i.e. the ratio of computation to communication is not the same among all tasks.
This imbalance results in some tasks idly waiting for other tasks to finish before
continuing on with their next phase of the compute iteration or timestep. We call thisidle
waiting WaitTime. Therefore, the performance of the MPI communication component of

an HPC application represented in elapsed time can be defined as:

TEIap%d (m ) = TTransfer (m ) +TWait (m )’ Vie M (13)
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Trranger(M)is the transfer time for an MPI routine m,vie M where M is the set of all
MPI point to point and collective routines utilized by the HPC application as defined in
Equation 11. Note that the set M c M since Teapsed(M) iS Specific to an HPC application
which may not utilize all MPI routines in set M. The Tw,it(m), on the other hand, is the
WaitTime elapsed due to load imbaance especially between computation and
communication among different tasks for MPI routine m. Note that Trrangier(My) defined in
Equation 11 does not include Twsit((m) due to load imbalance. To illustrate, consider the
multi-Sendrecv benchmark defined in Section 4.2. Recal, in the multi-Sendrecv
benchmark successions of MPI_Isend/MPI_Irecv are called followed by an MPI_Waitall.
Since in the benchmark there are no computations taking place, no imbalance due to
computation occurs, and Trranster(Multi-Sendrecv) corresponds to Tiipraryoverhead(Multi-
Sendrecv) and Tinriigne(multi-Sendrecv); thus, no waiting time on computation completion
occurs, i.e. N0 Twair(multi-Sendrecv). Imbalance between tasks due to network times in

the IMB isincluded in the Trranger(M) component reported by IMB.

4.4 Performance Projection Scheme

Recall that, we introduce a scheme to project the MPI communication
performance of HPC applications using MPI profiles obtained on one base machine. As
indicated in Figure 13, we obtain MPI profiles for the HPC application for all core counts
C; where j&{1,..,.c}. These profiles are then used to create the HPC application MPI
communication model explained in details in section 4.4.1. The same MPI profiles are
used in conjunction with IMB data for the base system to create the WaitTime model due

to load imbalance explained in section 4.4.2. To understand the performance of each MPI
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routine on the target system, the change in performance with different message sizes and
the scaling with different number of cores C;, IMB is used to obtain the target machine
parameters. In our projection scheme, we combine the HPC application MPI
communication model, the WaitTime model and the target system parameters to produce
the HPC application MPI performance model on the target system. This model is used to
project the performance of the MPI communication component of the HPC application on
the target system. In this section, we discuss the details of the MPI profile, IMB
benchmarks and how these benchmarks are used to create target machine parameters. We
also define the concept of WaitTime due to load imbalance in HPC applications.

The process of performance projection of HPC applications, in this work, entails
three steps.

1. Characterizing/modeling the MPI communication component of each HPC
application. The HPC application MPI communication modd is a function of MPI
routine, message sizes for these routines and the number of calls for each of these
message sizes at each C,.

2. Modeling the WaitTime, defined in section 4.3, due to load imbalance in the HPC
application.

3. Combining the MPI communication model, the WaitTime model and the target
system parameters to produce the HPC application target system MPI
communication model which is used to project the communication performance

of the HPC application on the target system.
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4.4.1 HPC Application MPI Communication Model

The MPI communication Model provides for understanding the HPC application
scaling of each MPI routine for different C;. The target machine parameters detailed in
Section 4.2 are target system specific; however, the HPC application MPI communication
Model is an HPC application specific model independent of the system the application is
executing on. Therefore, we define an MPI communication model MM for an HPC
application A with a specific problem size D. The problem size D indicates that the
dataset size and the algorithm used by an application A are constant for al C,.

Furthermore, an application A with problem size D will utilize a set of MPI routines

McM where M is the set of al MPI point to point and collective routines as indicated in
Section 4.3.

The MM model identifies how each MPI routine scales with different number of
cores C;. For each MPI routine, the message size and number of calls change with
changing the number of cores. We define the change in message size for an MPI routine

as:

SﬂiCj =0, xSﬂcl,Vi eM,je{l..¢ ”

where @m  defines the scaling function of message sizes for an MPI routine my and

S

mc; 1S the message size for an MPI routine my at core count C; (least possible core

count for application A with problem size D). We can aso define the change in number

of calsas:

Nrnicj :ﬂmi X NmiCl,‘v’i em, ] €{L...,¢} 1)
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where /~'m defines the scaling function of number of calls for an MPI routine m and

Npc, isthe number of callsfor an MPI routine m at core count C; (least possible core

count for application A with problem size D). Thus MM model for an MPI routine my can

be defined as the ordered pair in Equation 16:

MM(m)CJ = (SrquJ ’Nij )'VI Em,j E{].,...,C} (16)

Using MPI profiles for an HPC application A with problem size D at different core counts

C;, we can solve for Uy and ,Bmi Viem. The « and g scaling functions can be as

simple as a constant value or a complicated function that depends on multiple variables
such as MPI rank and dataset dimensions. To illustrate, the g for an MPI_Bcast can be 1,
which means the number of broadcast messages a task sends is constant no matter what
the number of cores are. For the same MPI_Bcast, the « can be 2, which means that the

message sizes doubles by doubling the number of cores.

4.4.2 WaitTime M odel

In Section 4.3 we defined the WaitTime in an HPC application as the idle time a
task spends waiting for other tasks to finish before continuing on with their next phase of
the compute iteration or timestep. This WaitTime is mainly due to load imbalance
between computation and communication among different tasks. On the base machine,
WaitTime can be modeled accurately using MPI profiles for the HPC application and
IMB+multi-Sendrecv benchmark data obtained on the base machine. To illustrate, an

HPC application MPI profile, asindicated in Section 4.1, includes the MPI message type,
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message size for each type, number of calls for each message size and the elapsed time
for these calls, i.e. Taapsed defined in Equation 13 which includes Trranser 8nd Twit. The
IMB+multi-Sendrecv benchmark data will show the transfer time each MPI routine will
take to complete, i.e. Tranger defined in Equation 11. By subtracting the IMB transfer
time, Trranger, from the MPI profiles elapsed time, Tejapsed, We Obtain the Ty On the base
machine. Therefore we can define the WaitTime model of an HPC application on the base

machine as:
TWajtbase (mi )cj :TEIapsedbase (mi )cj ~Transier base(mi )cj VieM, j€l....c} 17)

where M is the set of all MPI point to point and collective routines utilized by an HPC
application A and c is the maximum core count that A can utilize. Recall that Tt anger fOr
point-to-point routines and multi-Sendrecv in IMB represents time measured for certain
communication patterns as indicated in Section 4.2, e.g. ring pattern for multi-Sendrecv.
The communication patterns in the application may differ than those in IMB. This
difference is a source of error in projection. In this paper we focus on how to utilize
existing standard MPI benchmarks such as IMB. It is expected that as the MPI
benchmarks evolve to include a larger set of communication patterns our method will

have a better approximation to the application.

From Equation 17, since TEIapsed base = TTransfer base » then the TWaitbase >0.1In

the case of a blocking collective MPI routine where all tasks are synchronized, load

imbalance is highly reduced and TWaitbase approaches 0. On the other hand, in the case

of non-blocking MPI routines, load imbalance is higher and TWaitbase Increases.
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4.4.3 HPC Application Target System Communication Model

In this fina step of our projection scheme, our goal is to model the
communication component of the HPC application on the target system. This model is
then used to project the performance of the HPC application. Using Equation 13, we can

define the communication of the HPC application on the target system as:

TEIapseqarget (m)= TTransfqarget (m)+ TWai'rta,»get (m),Vie M (18)

From Equation 18, identifying the Tranger Value for the target system as well as the Tyait
value, one can project the performance of the communication component of the HPC
application.

From the definition of Trranger iN Section 4.2, Tranger ON the target system can be
obtained by combining the MM model for the HPC application with the parameters P for

the target system. The MM model defined in Equation 16 provides for the message size

Shc j of an MPI routine m at core count C;. Also MM provides the number of calls

NmiCj for message size SmiCj . Using Smcj and Nn‘qu for the HPC application from

Equation 16 and the target system parameter P from Equation 12 we can represent the

Trangter(My) ON the target system as:

Trransfq’arget(m)Cj :FE:J (m’ST]CJ )XNrT]Cj ’Vi GM’j E{l . g (19)
From Equation 19, the Tranger(My) for the target system is the aggregate transfer time for
number of calls Nic, to MPI routine m, with message size Smcj obtained from MM

mode! at core count C;. Single message time is obtained from the target system parameter

P.
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The remaining portion of the communication time, from Equation 18, on the
target system is the T,4it(Mm) on the target. To project the WaitTime on the target machine,
we need to find the scaling factor in WaitTime performance from the base to the target
system, SF. According to WaitTime definition in Section 4.3, WaitTime is due to load
imbalance between computation and communication in an HPC application. Therefore,
WaitTime scaling factor depends on scaling in computation and communication

performance from the base system to the target. S- can be defined by Equation 20:
S:(m )Cj :\NmC j ><s:comm(rn )Cj +V\4:omp(} ><s:comp((x)rnp 1Vi eM ’ J E{l e p} (20)

where the weight W, is the MPI routine my percentage in total elapsed time and the

weight Weonp 1S the computation percentage in total elapsed time. Wy, and Weonp Can both

be obtained directly from the MPI profile for the application. SF¢omm(M) is the scaling
factor in communication of the MPI routine my from base to target and is calculated using
the IMB data for the base and target systems. The SFcomp(cOmp), on the other hand, is the
scaling factor in computation from base to target and is calculated using our computation
projection methodology presented in section 3. Notice that the SFcomp(comp) in Equation

20 is not dependent on number of cores C; as the other components of the equation. Using
the SF from Equation 20 and Twaity,e Obtained in Equation 17, we can obtain the

projected WaitTime on target asin Equation 21

Twaitiargee (MDcj =SF (M) XTwaitgaee (M) VieM, je{lnd (1)

Once this step is complete, we complete the projection for the two portions in Equation

18, hence the projection of the communication performance on the target system.
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The projection of the WaitTime on the target system is dependent on the value for

S-(m) as indicated in Equation 21. From Equation 20, S-(m) calculation depends on

four components:

Wi which is the percentage in the total elapsed time for MPI routine m obtained

on the base system. This percentage could change for the target system; hence,
Wy, component affects projection accuracy for WaitTime.

Weomp Which is the percentage of computation in the total elapsed time on the base
system. This percentage could change on the target system; hence, Weony
component affects projection accuracy for WaitTime.

S comm(My) Which is the scaling factor for MPI routine my from the base to target.
This component of Equation 10 is calculated using the IMB values obtained for
the base and target systems. For each MPI routine m, IMB reports an average
value over al tasks. These averages obscure task placement effect on results. This
may slightly affect projection accuracy.

SFeomp(comp) which is the scaling factor for computation from base to target. This
factor is obtained using scheme presented in section 3. Thus, accuracy of
projecting the computation scaling factor directly affects the accuracy of

projecting WaitTime.

4.5 Experimental Results

We used the methodology depicted in Figure 13 to project the communication

performance of the three NAS Multi-Zone benchmarks BT-MZ, LU-MZ and SP-MZ.
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The choice of the Multi-Zone benchmarks was mainly for their OpenMP capabilities
since we want to extend this work to encompass Hybrid MPI/OpenM P HPC applications.
All NAS-MZ benchmarks were compiled for classes C and D in our validation
experiments. Details on benchmarks are provided in Table 8. We used the TAMU Hydra
system as our base machine. We projected the performance onto two target systems, an
IBM internal POWERG6 575 cluster system and an IBM interna BlueGene/P system.
Details of the three systems are listed below in Table 9. Throughout our validation
process, the IMB benchmarks and NAS-MZ benchmarks are executed using the same
MPI library on a system. Also they both follow the same task placement strategy for
consistency. On the BlueGene/P system, our experiments were all done using the “Virtual
Node” mode where four MPI tasks are utilizing the four cores per node. On the TAMU

Hydra and the IBM POWERG6 575 systems, the Single Thread (ST) mode was utilized.

Table 8: NAS-MZ benchmarks characteristics on base system for 16-128 tasks

Benchmark Communication percent  multi-Sendrecv Reduce and Bcast

(16 tasks — 128 tasks) percent (16— 128)  percent (16 — 128)

3.2-59.7
LU-MZC 14 1.38 0.014
SP-MZ C 4.8-16 4.75- 1584 0.048 - 0.016
BT-MZ-D 23-68 2.27-6.7 0.023 - 0.068
LU-MZD 12 118 0.012
SP-MZ D 4.16- 6.6 41-65 0.041 - 0.066
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Table 9: Base system and the different systems used for validation

Total  CoresPer Memory Per  Interconnect

Cores Node Core

TAMU Hydra [POWERS5+ 832 16 2GB Federation

IBM  POWERGPOWERG 128 32 4GB InfiniBand

575 cluster

BG/P PowerPC 450 4096 |4 1GB 3D Torug/
Collective Tree

The first step in our validation process is to vaidate the MM model and how
accurate it is in modeling the scaling of each MPI routine utilized by the HPC
application. Since the MM model is an HPC application specific and independent of the
underlying system, we validated the MM model for the BT-MZ and SP-MZ on the
BlueGene/P system (LU-MZ only utilizes 16 cores and doesn’t scale). We used four core
counts (16, 32, 64 and 128) in order to create the MM model. We then validated the MM
model for 256, 512 and 1024 task count. The accuracy was 100% for the five MPI
routines utilized (MPI_Isend, MPI_Irecv, MPI_Waitall, MPI_Reduce and MPI_Bcast).

In the results figures below we show the signed value of the error in
communication time; however, as in the computation projection, we focused on reducing
the magnitude of the error and al the averages are based on absolute errors. The
WaitTime for the MPI_Reduce and MPI_Bcast for the three NAS-MZ benchmarks was
essentialy zero. For the MPI_Isend, MPI_Irecv and MPI_Waitall routines, the WaitTime

was a maor component of their communication time. The results here indicate the
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aggregate error for both the Ttranger @aNd Twait COMponents i.e. overall communication
error for each MPI routine. Note that the MPI_Isend, MPI_Irecv and MPI_Waitall are
equivalent to our multi-Sendrecv benchmark with x = 1. In al our experiments,

MPI_lIsend, MPI_Irecv and MPI_Waital in the NAS-MZ benchmarks are represented as

multi-Sendrecv with x =1.
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Figure 15: BT results on BG/P
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BT Results on POWERG6 575
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Figure 16: BT results on POWERG6 575

Figures 15 and 16 show the results of our communication projection scheme for
the BT-MZ benchmark. The results indicate that our scheme accurately projected the
communication performance for the BT-MZ with an average error of 12.22% and
standard deviation of 1.48% on the BG/P system and 11.74% average error with standard
deviation of 2.01% on the POWERG6 575 cluster system. An obvious trend on both
systems is that the magnitude of the error isless for larger number of cores. Thisis due to
the fact that WaitTime component in the communication decreases as more time is being
spent in the interconnect (Tinright). Therefore, Twair becomes of less significance in the
overall projected elapsed communication time. The projection error for BT-MZ on BG/P
system is mostly attributed to the SFcomp(comp) component of Equation 20 where the
projection error for the computation component on BG/P was ranging between 7%-10%.
On the POWERG 575 system, on the other hand, the projection error for WaitTime is due

to the change in ratio between computation and communication from the base to the
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POWERSG 575 system (Weomp and Wiy components in Equation 20). Also, on the BG/P

system, the computation projection error was obviously the main factor impacting the
communication projection error. As indicated in figure 15, computation projection error
being a negative value forced the communication error to also be of a negative value.
Thistrend on BG/P system is consistent for the three NAS benchmarks.

In Figure 17 we show the projection results for the LU-MZ benchmark. As
indicated in Figure 17, the projected communication time for the collectives that exhibit
almost no WaitTime is highly accurate. On the other hand, the multi-Sendrecv with a
large WaitTime component has a less accurate projection. The projection error for
WaitTime component in the multi-Sendrecv ranges between 14% and 15% for LU-MZ.
On both BG/P and POWERG6 575 systems, thisis attributed to the computation projection

error of 14% and 12% respectively affecting the SFcomp(comp) component in Equation 20.

LU results on BG/P and POWERG6 575
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Figure 17: LU results on BG/P and POWERG6 575
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Figures 18 and 19 show the results of our communication projection scheme for
the SP-MZ benchmark. The results indicate that our scheme accurately projected the
communication performance for the SP-MZ with an average error of 11.89% and
standard deviation of 2.13% on the BG/P system and 11.92% average error with standard
deviation of 2.48% on the POWERG6 575 system. A similar trend to BT-MZ where the
magnitude of error is less for larger number of cores can be noticed here. The projection
error for WaitTime on BG/P system utilizing 16 and 32 cores is ranging between 14% and
15% percent. This is mostly attributed to the SFcomp(comp) component of Equation 20
where the projection error for the computation component on BG/P was ranging between
9%-12% for SP-MZ. On the POWERG6 575 system, on the other hand, the WaitTime
projection error ranging between 12%-14% for 16, 32 and 64 cores is due to the change
in ratio between computation and communication from the base to the POWERG6 575

system (Weomp and W, components in Equation 20).
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Figure 18: SP results on BG/P
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SP Results on POWERG6 575
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Figure 19: SP results on POWERG6 575

Overadl, our projection scheme projected with high accuracy using MPI profiles
of HPC applications obtained on one base system and IMB benchmark numbers obtained
on the target system. From the previous figures one can summarize the results as
follows:

1. Projection accuracy for MPI collective routines that have a small WaitTime
component (almost negligible) is higher than projection accuracy for multi-
Sendrecv with alarge WaitTime component.

2. Accuracy of projecting the multi-Sendrecv was higher for larger number of tasks.
This trend is obvious in SP-MZ and BT-MZ for both classes C and D. This trend
is due to the decrease in the WaitTime component in multi-Sendrecv, i.e. Tyait
decreases when utilizing larger number of tasks because more time is being spent
in the interconnect (Tinriight)-

Although the average projection error for BlueGene/P is very close to average projection

error on IBM POWERG6 575, the average error on IBM POWERG 575 was consistently
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lower, especially for the WaitTime component. This trend is due to the higher similarity
between the base system and IBM POWERG6 575 interconnect architecture (Federation
and Infiniband) and processor architecture (POWER5+ and POWERSG), resulting in better

computation projection.

4.6 Related Work

There is extensive research dealing with the performance prediction of HPC
applications. One approach is to build an analytical model for the application on the
target platform using one of the known modeling techniques such as LogGP [27] or LogP
[28]. The main advantages of this work over the LogP and LogGP models can be
summarized in the following points. First, LogP and LogGP models ignore the network
topology and the routing algorithm. In current systems, network topologies have
complicated and hierarchical designs, which have significant effect on communication
performance. In our scheme, network topology effects are reflected in IMB values.
Second, in our prediction methodology, support for collective communication
acceleration in the hardware on the target system is captured by IMB; however, LogP and
LogGP models assume that a processor will only do Send/Recv. Finally, we model
WaitTime defined in section 4.3 which is typically due to load imbalance between
computation and communication among different tasks. The LogP and LogGP don’t
model such WaitTime.

Another HPC performance modeling approach entails combining a performance
profile of an application on a well-known HPC architecture, and the machine

characteristics of an emerging architecture to project an application's performance on the
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emerging architecture [36], [40], [62]. Error rates were in the range of 0.03% up to
24.70%. Our work primarily differs in the use of MPI profiles to characterize the
application communication performance rather than MPI traces. Further, with respect to
target machine, we use the machine characteristics obtained from the benchmark data for
the projection.

The PHANTOM [36] tool uses deterministic replay techniques to execute any
process of a parallel application on a single node of the target system at rea speed, hence
measuring computation performance. PHANTOM also integrates this replay technique
with atrace-driven network simulator, SIM-MPI, to predict communication performance.
PHANTOM performance prediction error was 2.22%, 3.95% and 2.29% for BT, LU and
SP of the NAS MPI benchmarks respectively. The SIM-MPI simulation overhead was
132%, 420% and 171% of actual execution time for these three benchmarks. In contrast,
our MPI profile based methodology used in this work has a maximum overhead of 0.05%
of actual execution time.

In [40], Snavely et a introduced a framework for performance modeling and
prediction. In the framework, an application signature is created (single processor
signature through MetaSim and communication signature through MPIDTrace). Then a
machine profile is created (MAPS profile of memory and PMB profile of interconnect).
Finally, the machine profile is convoluted with application signature to predict its
performance. Projecting the MPI communication performance relies on an MPI trace and
the Dimemas simulator [41], [42], [43]. Similar to PHANTOM, network traces and

simulation have a significant overhead when compared to our profile based scheme.
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Also in [62], Kerbyson et a. introduced the PACE framework where CHIPS
application model is convoluted with hardware mode of the target system to provide
application performance projection. The workload definitions have an Application Layer
and Paralel Template Layer. This powerful approach requires significant performance
anaysis effort.

Clement and Quinn in [31] proposed modeling an application as a function of
compiler effects, memory effects, communication overhead and floating point trends.
Their work focused on projecting parallel speedup of an application rather than its
performance on different systems.

Prakash and Bagrodia in [22] introduced MPI-SIM which simulates the MPI
communication library. MPI-SIM uses a detailed contention model. Also Wilmarth et al.
in [23] introduced POSE which uses a detailed network contention model to simulate the
communication library. Simulators athough highly accurate, they are slow and time

consuming.

4.7 Summary

We presented a method to project the performance of the MPI communication
component of HPC applications using MPI profiles obtained on one base machine. The
use of MPI profilesinstead of MPI traces allows for efficient and fast projection. The use
of MPI traces may yield more accurate results;, however, projecting using MPI traces can
be impossible in many cases for large scale production applications due to the huge sizes

of the traces and the long time it takes to simulate these traces for target systems.
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The MM model for an HPC application A assumes a constant dataset size D and a
constant agorithm for all cores C;. The MM model identifies how each MPI routine
scales with different number of cores C;. If the dataset size D changes or the algorithm is
altered, anew MM model isrequired.

In our scheme, we model the time atask spends waiting on other tasksto finish as
WaitTime. Thisis specifically important for MPI asynchronous calls in HPC applications
that exhibit load imbalance between tasks. We calculate the scaling factor for the
WaitTime from the base to the target system using the scaling of performance for
individual MPI routines as well as the scaling in computation performance. The ratio of
computation to communication on the base system, which may differ than the ratio on the
target, as well as the computation scaling factor are the three parameters that affect the
accuracy of projecting WaitTime; thus, the accuracy of projecting the performance of
MPI routines with little WaitTime component, synchronous routines, is higher than
projecting MPI routines with higher WaitTime since they don’t depend on these three

parameters.
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5. COMBINED COMPUTATION AND COMMUNICATION

PERFORMANCE PROJECTION

In section 3, we presented our method to project the performance of only the
computation component of an HPC application using published data of industry standard
benchmarks, the SPEC CPU2006, and hardware performance counter data from one base
system. In section 4, we extended our method to project the communication performance
of HPC applications onto different systems using MPI benchmark data on the different
systems as well as a base system, and the communication profile of the application on the
base system. In this section, we present a scheme to combine the communication
projection with the computation projection to project the entire HPC application
performance on a target system. In particular, we identify the communication strong
scaling factor of the HPC application as well as the computation strong scaling factor.
We then apply the scaling factor to the projected performance of each component and
combine both scaled components.

Figure 20 depicts the high level framework of our scheme for combining the
communication and computation projections. The HPC application is executed multiple
times on the base machine where each execution utilizes different number of cores C; for
j €{1,..,c} and c is the maximum number of cores the HPC application can utilize. During
each execution, we obtain the application’s MPI profile for C; number of cores. Note that
this step is already completed in the MPI communication projection scheme and need not
be repeated here. The resultant MPI profiles are used to produce the Application MPI

Model MM defined in section 4.3.1 and Equation 16. These MPI profiles are also used to
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Figure 20: Framework for combining computation and communication projection

produce the Application Compute Component Strong Scaling Model (CCSM) on the
base machine. CCSM identifies how the compute component scales with increasing
number of cores. Furthermore, we collect hardware performance counter metrics for the
HPC application at different processor counts C; for i £{1,...,n} and n <'c. Using hardware
performance counter metrics, we develop the Application Cache Strong Scaling M odel
(CSM) on the base machine. The CSM model alows for identifying the number of cores
at which the application cache footprint may be contained in a lower level cache. Once
these models are developed, projecting the entire application performance is achieved in
three steps. One, the CSM model and the CCSM model are combined with the compute
component projection to produce the compute component performance projection at the
required number of cores C.. Two, the MM model is combined with the MPI

communication projection to produce the communication component performance
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projection at the required number of cores Cy. Finally, we add the projected performance
for the compute component at core count Cy to the projected performance of the
communication component at core count Cy to produce the entire application projected

performance at core count Cy where Cy is the required core count on the target system.

5.1 Cache Scaling M od€l

Cache Strong Scaling Model (CSM) allows one to identify the number of cores at
which the application cache footprint may be contained in a lower level cache. For
example, an HPC application utilizing four cores could be using the L3, L2 and L1
caches; however, the same application when utilizing 1000+ cores, only L2 and L1 may
be needed. In such case, hyper scaling in performance may occur when using more than
1000 cores. Since there is a significant difference between latency of L3 and L2, the
application performance benefits from never having to access the L3 cache and hyper
scaling occurs.

Using CSM model, one can identify the number of cores at which the application
performance exhibits hyper scaling. In our projection scheme, once the CSM model
identifies the number of cores C;, at which the application experience hyper scaling, a
new computation projection is required at Cy,. This implies that the compute projection
scheme explained in section 3 will be repeated for the HPC application at Cn where
hardware performance counter metrics collected at Cy, will reflect the new cache footprint
and its effect on application performance on the processing core. The need to repesat the

compute performance projection at Cy, is due to the fact that the change in the cache
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footprint affects several hardware performance metrics such as memory bandwidth, CPI
stack breakdown and data from different memory levels.

Cdculating C,, at which the application experiences hyper scaling due to
significant change in cache footprint follows directly from the values of metrics ms;,
M52, Ms3 and ms4 in metric group Gs in Table 4 for different processor counts C; for
ie{l,...,n} and n <c. Typicaly, n = 4 suffices to calculate Cy, for an application by
extrapolating on the values of the metrics to identify C,. For example, using ms;
(DATA_FROM_L3) one can identify the C, where al the data will be contained in L2
for an HPC application by calculating C,, where ms» value will be 0. This is done by

extrapolating on the decreasing values of ms > when increasing number of cores.

5.2 Compute Component Strong Scaling M odéel

Compute Component Strong Scaling Model alows one to calculate the scaling

factor /' for the compute component of the HPC application. The MPI profiles for the

HPC application at different task counts C; for j £{1,..,c} contains information about the

computation elapsed time at C;. Using curve fitting techniques, the scaling factor Y can

be directly calculated.

5.3 Combined Communication and Computation Perfor mance Projection Scheme

Asindicated in Figure 20, the process of combining the communication projection
with the computation projection to produce the entire HPC application projections entails

three steps:
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1. Combining the projected performance of the MPI communication component of
the HPC application with the MPI communication model MM. Recall that the MM
mode! identifies how each MPI routine scales with different number of cores C,.
For each MPI routine, the message size and number of calls change with changing
the number of cores. Also recall that the MPI communication model MM is for an
HPC application A with a specific problem size D. The problem size D indicates
that the dataset size and the algorithm used by an application A are constant for all
Ci. By combining the projected performance of the MPI communication
component of the HPC application with the MM model, one can produce the
projected performance of the MPI communication for the required task count C.
As indicated previoudly, this step follows directly from section 4.4.3. Thus, we
can define the projected performance of the MPI communication at the required

task count Cy using Equation 18 as follows:

TEIapseqarget (M), :TTransfeltarget (Mg, +TWajttarget (M)¢,,vieM (22)

2. Combining the projected performance of the compute component of the HPC
application with the CCSM and the CSM models. Recall that the CCSM model
identifies how the compute component scal es with increasing number of cores. By
combining the CCSM model with the projected performance of the compute
component as in Equation 10, one can define the projected compute component

performance at required task count Cy as follows:

[Sapp|
Pappck =Y é(wk Pe, 23)
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where 7 is the scaling factor for the compute component identified by the

CCSM model as indicated previousy. The CSV model is used in this step to

identify the point where 7 will not be applicable as hyper scaling of the

application may occur due to significant changes in cache footprint.
3. Inthe fina step of the projection process, we add the projected performance of
the two components of the HPC application. The result of this addition is the

projected performance of the entire HPC application.

5.4 Experimental Results

We used the methodology depicted in Figure 20 to project the performance of
some of the workloads that were used in validating the computation component as well as
the three NAS Multi-Zone benchmarks BT-MZ, LU-MZ and SP-MZ. The HPC
applications used for validating the combining scheme are AMBER (GB_COX, JAC,
Factor_I1X), GAMESS (SICCC, L-Rotenon) and WRF (CONUS). The remaining
workloads from the computation validation, Fluent, StarCD, CHARMM, Siesmic and
LS-Dyna were not used due to licensing issues. Please refer to Tables 3 and 8 for details
of the applications. We projected the performance onto three target systems, an IBM
internal POWERG6 575 cluster system, an IBM internal Intel Westmere (Xeon X5670)
cluster system and an IBM internal BlueGene/P system. The choice of the three target
systems allows for validating on different processor architectures and different
interconnect architecture. Details of the three target systems and the base system are

provided below in Table 10. Throughout our validation process, the IMB benchmarks and
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NAS-MZ benchmarks are executed using the same MPI library on a system. Also they
both follow the same task placement strategy for consistency. On the BlueGene/P system,
our experiments were all done using the “Virtual Node” mode where four MPI tasks are
utilizing the four cores per node. On the TAMU Hydra and the IBM POWERG6 575

systems, the Single Thread (ST) mode was utilized.

Table 10: Base system and different systems used for validation

Processor Totd Cores Per Memory Per  Interconnect

Cores Node Core
TAMU Hydra |POWERS5+ (832 16 2GB Federation
IBM  POWERGPOWERG 128 32 AGB InfiniBand
575 cluster
BG/P PowerPC 450 4096 |4 1GB 3D Torug/|

Collective Tree

IBM X5670 Intel Xeon768 12 2GB I dataplex

X5670

Table 11 shows the characteristics of the HPC workloads used in the validation
process as well as the characteristics of the NAS Benchmarks. In all the following results
graphs we divided the communication as Point-to-Point Blocking (P2P-B), Point-to-Point
Non-Blocking (P2P-NB) and Collectives. The details of these calls and their types are
explained in more details in Table 8 for the applications on the base system at 128 tasks

for elaboration.
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Table 11: HPC workloads characteristics on base system for 128 tasks

HPC Workload Comm. Collective Dominating P2P-NB Dominating P2P-
Percent Percent Collective Percent NB

BT-MZ-C 59.7% (0.59% MPI_Bcast and59.1% |multi-Sendrecv
MPI_Reduce

LU-MZ-C 14% [0.014% |MPI_Bcast and1.38% |multi-Sendrecv
MPI_Reduce

SP-MZ-C 16% |0.016% |MPI_Bcast and15.84% |multi-Sendrecv
MPI_Reduce

BT-MZ-D 6.8% [0.068% [MPI_Bcast and6.7%  |multi-Sendrecv
MPI_Reduce

LU-MZ-D 12 0.012% [MPI_Bcast and1.18% |multi-Sendrecv
MPI_Reduce

SP-MZ-D 6.6% [0.066% [MPI_Bcast and6.5%  |multi-Sendrecv
MPI_Reduce

AMBER-GB_COX2(67.2% [67.1% |MPI_Reduce scatter [0% N/A
and MPl_Bcast

AMBER-Factor_IX [53.7% 41.87% [MPI_Bcasr and11.28% |multi-Sendrecv
MPI_Allreduce

AMBER-JAC 41.4% (34.28% |MPI_Bcast and7.1%  |multi-Sendrecv
MPI_Allreduce
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Table 11: continued
HPC Workload Comm. Collective Dominating P2P-NB Dominating P2P-

Percent Percent Collective Percent NB

GAMESS-SICCC [.78% [(5.02% |MPI_Bcast and0.69% |multi-Sendrecv

MPI_Allreduce

GAMESS-LROT [3.08% [2.99%  [MPI_Bcast and0.09% |multi-Sendrecv

MPI_Allreduce

WRF 18.7% [13.2%  |MPI_Bcast 4.37% [Multi-Sendrecv

Figures 21-23 show the results for the BT-MZ benchmark on the three target
systems. Overal, the average errors were 10.53%, 9.32% and 13.61% on the BG/P,
POWERG 575 cluster and the Intel Westmere cluster systems respectively. The maximum
error didn’t exceed the 15% on any of the systems. An apparent trend on all systems is
that the computation projections for the Class D workloads were more accurate, i.e. less
projection error. This trend is due to the fact that the Class D has alonger execution time
than Class C allowing for collecting more accurate hardware performance counters data.
This trend continues in the SP-MZ workloads as well. Another point worth mentioning is
that for the BT-MZ, SP-MZ and LU-MZ benchmarks, the computation projection
accuracy determines the entire projection accuracy even in the cases where
communication is the dominating component. Recall that WaitTime projection in the
communication component, which is the dominating factor in communication for the

three NA S benchmarks highly depends on the computation projection.
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BT Results on the BG/P system
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Figure 21: BT results on the BG/P system

BT Results on the POWERG6 575 system
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Figure 22: BT results on the POWERG 575 system
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BT Results on the Intel Westmere X5670 system
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Figure 23: BT results on the Intel Westmere X5670 system

LU Results on the three target systems
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Figure 24: LU results on the three target systems

Figure 24 shows the LU-MZ benchmark results of the projection methodology on
the three target systems. As indicated earlier from the BT results, Class D has better

computation projection results than Class C which drives the entire projection error

down.
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SP Results on the BG/P system
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Figure 25: SP results on the BG/P system

SP Results on the POWERG6 575 system
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Figure 26: SP results on the POWERG 575 cluster system

Figures 25-27 show the results for the SP-MZ benchmark on the three target
systems. The average projection errors were 11.06%, 9.08% and 13.54% on BG/P,
POWER®6 575 and Intel Westmere systems respectively. As indicated earlier in the BT-

MZ case, computation projection is typically more accurate for the Class D case. Also,
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the POWERG6 575 projections were more accurate than the BG/P and the Westmere
system where the Westmere was typicaly the system with less accurate projections. The
fact that the POWER6 system uses a POWER ISA alows for better matching of

performance metrics resulting in a set of surrogates with closer behavior to the HPC

workload.

SP Results on the Intel Westmere X5670 system
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Figure 27: SP results on the Intel Westmere X5670 system

Figures 28-30 show the results for the AMBER Gb_COX2 workload. The average
errors were 12.17%, 11.21% and 13.55% for the BG/P, POWERG6 575 and Intel
Westmere systems respectively. In the case of the BG/P system, it is noticeable that the
computation projection accuracy decreases with increasing number of cores, computation
projection is about 17% for the 1024 tasks. This behavior is due to the fact that the
AMBER Gb_COX2 workload has a small dataset that doesn’t scale very well and the
scaling factor y used in Equation 23 doesn’t reflect the exact scaling of the workload for

larger number of tasks. Nevertheless, the overall projection error is still below 10%, 8.9%
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to be exact for the 1024 tasks. In the case of 1024 tasks, the communication component is
the dominating factor in performance. Since the dominating MPI routines in the
communication are the collectives calls as indicated in Table 11, and collectives have
almost no WaitTime component, i.e. independent of computation, the communication

projections have high accuracy. Thus, the overal application projection accuracy is less

than 10%.

AMBER-GB_COX2 Results on the BG/P system
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Figure 28: AMBER-GB_COX2 results on the BG/P system
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AMBER-GB_COX2 Results on the POWERG6 575 system
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Figure 29: AMBER-GB_COX2 results on the POWER®6 575 system

AMBER-GB_COX2 Results on the Intel Westmere X5670
system
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Figure 30: AMBER-GB_COX2 results on the Intel Westmere X5670 system

Figures 31-36 show the results for the AMBER-Factor_IX and AMBER _JAC
respectively. Both workloads exhibit similar behavior and their projection results follow
the same trends. The average errors for the Factor_IX workload are 10.42%, 7.07% and

10.15% for the BG/P, POWERG6 575 and Intel Westmere systems respectively. As for the
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JAC workload, the average errors are 11.78%, 9.45% and 12.65% for the BGI/P,
POWER6 575 and Intel Westmere systems respectively. For both workloads, the
communication component performance is dominated by the collective routines
MPI_Bcast and MPI_Allreduce. Since collective calls projection is independent from the
projection of computation, the low computation projection error is worsened by the
higher projection error of the communication; however, the overal error is still much
lower than 15%. In these two workloads, we notice the same trend of higher computation

projection error for the larger number of tasks on BG/P as in the Gb_COX 2 workload.

AMBER-Factor_IX Results on the BG/P system
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Figure 31: AMBER-Factor_|IX results on the BG/P system
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AMBER-Factor_IX Results on the POWERG6 575 system
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Figure 32: AMBER-Factor_|IX results on the POWERG6 575 system

AMBER-Factor_IX Results on the Intel Westmere X5670
system
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Figure 33: AMBER-Factor_IX results on the Intel Westmere X5670 system
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AMBER-JAC Results on the BG/P system
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Figure 34: AMBER-JAC results on the BG/P system

AMBER-JAC Results on the POWERG6 575 system
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Figure 35: AMBER-JAC results on the POWERG 575 system
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AMBER-JAC Results on the Intel Westmere X5670 system
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Figure 36: AMBER-JAC results on the Intel Westmere X5670 system

Figures 37-42 show the results for the two GAMESS workloads. The average
projection error for both workloads are 12.11%, 8.74% and 13.9% for the BG/P,
POWERS6 575 and the Intel Westmere systems. As it is clear from the averages, the
POWERG6 system has the lowest errors. The errors on POWERG are lower since the
computation component is the more significant factor in the performance and POWERG
has the most accurate computation projection. As it is clear from the results, the
collective and P2P-B communication projection results have minor effect on the overall

projection accuracy due to their minor significance in the overal performance of the

applications.
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GAMESS-SICCC Results on the BG/P system
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Figure 37: GAMESS-SICCC results on the BG/P system

GAMESS-SICCC Results on the POWERG6 575 system
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Figure 38: GAMESS-SICCC results on the POWERG 575 system
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GAMESS-SICCC Results on the Intel Westmere X5670 system

TRIELR

——
E
[
=]
=
=

Ll

-1}
E
=
(=
=
(-4

* P2P-NB * P2P-B = COLLECTIVES

* Overall Communication ® Computation ® Combined Projection

Figure 39: GAMESS-SICCC results on the Intel Westmere X5670 system

GAMESS-LROT Results on the BG/P system
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Figure 40: GAMESS-LROT results on the BG/P system
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GAMESS-LROT Results on the POWERG6 575 system
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Figure 41: GAMESS-LROT results on the POWERG6 575 system

GAMESS-LROT Results on the Intel Westmere X5670 system
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Figure 42: GAMESS-LROT results on the Intel Westmere X5670 system

Figures 43-45 show the results for the WRF application. The average projection
errors are 10.67%, 10.12% and 13.45% for the BG/P, POWERG6 575 and the Intel
Westmere systems respectively. There is a mgjor point to notice in WRF projection data.

The scaling factor y on the BG/P machine is more accurate in the WRF case than in any
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other workload. This is due to the fact that the CON-US dataset scales well on larger
number of tasks. The better scaling for WRF also contributed to better projections results

on the three systems with very small standard deviation.

WREF Results on the BG/P system
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Figure 43: WRF results on the BG/P system
WRF Results on the POWERG6 575 system
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Figure 44: WREF results on the POWERG 575 system
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WRF Results on the Intel Westmere X5670 system
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Figure 45: WRF results on the Intel Westmere X5670 system

Overdl, our projection methodology projected the performance of the HPC
workloads with high accuracy and efficiency. The average projected error on the BG/P
system was 11.36% with standard deviation of 1.51%. Also the average projected error
on the POWERG6 575 cluster system was 9.21% with standard deviation of 1.31%. Since
the POWERG system has asimilar ISA to the POWERS+ base system, al the workloads,
with the computation component as the dominating factor in performance, have less
projection error than on other systems. Finaly, the average projected error on the Intel
Westmere X5670 is 13.09% with standard deviation 0.74%. Since the Intel Westmere has
the most different ISA and micro-architecture from the base processor, the projections for
the compute component and the communication component that has a significant
WaitTime have a higher error than other systems.

In the cases where the y scaling factor was not accurate, the computation
projection at a higher task count was not accurate; however, this happened in the case

where the dataset size was relatively small and the workload didn’t scale very well with
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increasing number of tasks. On the other hand, when the application scales well with the
increasing number of tasks, the y scaling factor was accurate. Also, in the cases where the
application has a very short execution time, the performance counter data may be less
accurate. In such cases, we recommend that one collects the hardware counter data one

group at atime, i.e. no performance counter groups multiplexing.

5.5 Related Work

Current state-of-art HPC performance modeling techniques primarily rely on
combining a performance profile of an application on a well-known HPC architecture,
and the machine characteristics of an emerging architecture to project an application's
performance on the emerging architecture [63]. Existing profiling and tracing tools on
well-known architectures are typically used to collect the necessary performance data by
executing applications and benchmarks on available systems.

In our approach of surrogate based performance projection an HPC application is
modeled as a combination of benchmarks. These benchmarks may be executed on the
target system if the system exists or simulated if the system is still in the design phase.
This technique provides for the accuracy of cycle-accurate simulation and the speed and
ease of performance modding. In this work, we model the compute component
separately from the communication component. The compute component is modeled
after the SPEC CPU benchmarks while the communication is modeled after the IMB
benchmarks for MPI communication.

Severa researches have been done on using surrogate workloads to predict

application performance. SPEC benchmarks suite was often proposed as the benchmarks
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of choice due to the abundance of published data but it was not used for HPC
applications. NAS Parallel [59] benchmarks, on the other hand, were used more often
with HPC applications due to their paralel nature. Also curve fitting on runtimes is
extensively used in industry to project performance using surrogate workloads.

An approach to similar to the approach introduced in this work is the PHANTOM
tool [36]. The PHANTOM tool uses deterministic replay techniques to execute any
process of a parallel application on a single node of the target system at rea speed, hence
measuring computation performance. This assumes that a single node of the target system
is available which may not always be the case. PHANTOM aso integrates this replay
technigue with a trace-driven network simulator, SIM-MPI, to predict communication
performance. Thus, PHANTOM simulates only the communication component while
replacing computation blocks with their actual execution time to speed up simulation
time. PHANTOM performance prediction error was 2.22%, 3.95% and 2.29% for BT,
LU and SP of the NAS MPI benchmarks respectively. The SIM-MPI simulation overhead
was 132%, 420% and 171% of actual execution time for these three benchmarks. In
contrast, our MPI profile based methodology used in this work has a maximum overhead
of 0.05% of actual execution time.

WARPP simulator introduced in [37] also uses benchmarks to acquire target
machine performance specific characteristics. WARPP prediction framework entails four
steps: (1) model construction which is achieved by hand-coded simulation script
programming that requires significant work by the user, (2) machine benchmarking using
a reliable MPI benchmarking utility, a filesystem 1/0 benchmark and an instrumented

version of the application, (3) the post-execution analysis of machine benchmarking
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results to produce simulator inputs and finally (4) simulation. Although simulation in the
last step proved to be significantly efficient and accurate in [37], step (1) requires
significant manual source code analysis and instrumentation by the user. A similar
approach to the one used in WARPP was a so introduced in [38].

In [5], [6], [40], Snavely et a introduced a framework for performance modeling
and prediction. In the framework, an application signature is created (single processor
signature through MetaSim and communication signature through MPIDTrace). Then a
machine profile is created (MAPS profile of memory and PMB profile of interconnect).
Finally, the machine profile is convoluted with application signature to predict its
performance. Projecting the MPI communication performance relies on an MPI trace and
the Dimemas simulator [41]-[43]. These network traces and simulation have a significant
overhead when compared to our profile based scheme.

Also in [62], Kerbyson et a. introduced the PACE framework where CHIPS
application model is convoluted with hardware mode of the target system to provide
application performance projection. The workload definitions have an Application Layer
and Paralel Template Layer. This powerful approach requires significant performance

analysis effort.

5.6 Summary

In this section we presented a scheme for combining the computation and
communication projection. In our scheme, the projected computation performance is
combined with the HPC application scaling factor y to produce the application projection

at the required task count Cy on the target system. Similarly, the MM model that defines
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the MPI communication scaling for the HPC application is combined with the MPI
communication projection to produce the application projection at the required task count
Cx on the target system. Once these two steps are completed, the projected performance
of the two components are added together to produce the HPC application performance
projection.

The Cache Scaling Model CSM is used to identify the point at which the HPC
application cache behavior significantly impacts the application scaling. CSM model
identifies at which task count the application data can be contained in alower cache level

causing hyper scaling in performance of the application.
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6. SUMMARY AND FUTURE WORK

6.1 Summary

Using the framework provided in Figure 20, it is our goa to provide for an
accurate and fast performance projection scheme for HPC applications on future systems.
As indicated in section 2 and explained in details in sections 3, 4 and 5 our scheme
involves deep analysis of computation and communication behavior of HPC applications
on target systems. For the computation component, we developed a scheme to project the
performance of HPC applications using surrogate workloads from the SPEC CPU2006
benchmark suite and hardware performance counter data. The scheme projected the
performance of eight HPC applications on 2 IBM POWERG6 systems with 7.2% average
error and standard deviation of 5.3%. The results on systems with different 1SAs than
POWER are in the range of 8.3% and 12.8% for Intel Woodcrest and Intel Clovertown
respectively which indicates that the base machine is a representative of a number of
different systems. More importantly, the scheme is very flexible since it doesn’t require
any instrumentation to the binary code or the source code and only requires execution of
the application and the benchmarks on one base machine. Moreover, smulation is not
needed eliminating the long runtimes incurred in simulations. The use of a string based
genetic tool reduces the projection scheme runtime significantly.

As for the communication component, we presented a method to project the
performance of the MPI communication component of HPC applications using MPI
profiles obtained on one base machine, TAMU Hydra utilizing a Federation interconnect,
and IMB benchmark data obtained for the target system. The projected communication

elapsed times for the three NAS MultiZone benchmarks were with 12.84% average error
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on the BlueGene/P system utilizing a 3D Torus and collective tree interconnect. The
average error on an IBM POWERG6 575 system utilizing an InfiniBand interconnect was
12.81% with standard deviation of 1.13%.

The use of MPI profiles instead of MPI traces alows for efficient and fast
projection. The use of MPI traces may yield more accurate results; however, projecting
using MPI traces can be impossible in many cases for large scale production applications
due to the huge sizes of the traces and the long time it takes to simulate these traces for
target systems.

The MM model for an HPC application A assumes a constant dataset size D and a
constant agorithm for all cores C;. The MM model identifies how each MPI routine
scales with different number of cores C;. If the dataset size D changes or the algorithm is
altered, anew MM model isrequired.

In our scheme, we model the time atask spends waiting on other tasksto finish as
WaitTime. Thisis specifically important for MPI asynchronous calls in HPC applications
that exhibit load imbalance between tasks. We calculate the scaling factor for the
WaitTime from the base to the target system using the scaling of performance for
individual MPI routines as well as the scaling in computation performance. The ratio of
computation to communication on the base system, which may differ than the ratio on the
target, as well as the computation scaling factor are the three parameters that affect the
accuracy of projecting WaitTime; thus, the accuracy of projecting the performance of
MPI routines with little WaitTime component, synchronous routines, is higher than
projecting MPI routines with higher WaitTime since they don’t depend on these three

parameters.
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In combining the computation and communication components projection to
achieve a full application performance projection we introduced the methodology
depicted in Figure 20 to combine the computation projection with the communication
projection. We projected on three different systems utilizing a variety of processor
architectures as well as different interconnect architectures. Our methodology accurately
projected the performance of the HPC workloads with an average error of 11.22% and
standard deviation of 1.18% on the three systems for the twelve workloads. Our
methodology proved to be quite efficient as it doesn’t require any simulation or massive

traces.

6.2 FutureWork

6.2.1 OpenM P Communication Projection

(a) OpenMP Profile: Typically an OpenMP profile contains the program genera
information (Header), region overview, program callgraph, flat region profile, callgraph
region profiles, overhead analysis report and performance properties report [64]. In this
work, we are mostly interested in the overhead anaysis report. An overhead analysis
report gives a detailed overview of overhead caused by the different OpenMP directives
and this overhead contribution in the overal runtime. The overhead analysis can be
visualized as a 2D matrix where the columns correspond to the type of overhead, i.e.
thread management overhead, synchronization overhead, limited parallelism overhead or
imbalance overhead, and the rows are the different directives such as Paralld,
Parallel_Loop, Barrier etc. The overhead analysis profile shows the total overhead

runtime for the different directives and their counts. In essence, we just need to capture
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the different directives and their counts on the base machine. Thus, the OpenMP profile

data provides for enough information.

(b) OpenMP uBenchmarks. The OpenMP uBenchmarks are [65] intended to measure the
overheads of synchronization, loop scheduling and array operations in the OpenMP
runtime library. The first part of the synchronization benchmark measures the overhead
incurred by the following directives, all of which contain barrier synchronization:

e PARALLEL: Defines a parald region, which is code that will be executed by
multiple threadsin parallel.

e DO/for: Non parallel DO/for loops.

e PARALLEL DO/paralld for: Paralel DO/for loops where work inside the DO/for
is divided among threads.

e BARRIER: Synchronizes all threads in a team; all threads pause at the barrier,
until all threads execute the barrier.

e SNGLE: Specifies that a section of code should be executed on a single thread,
not necessarily the master thread.

e WORKSHARE and PARALLEL WORKSHARE (for FORTRAN): divides the
execution of the enclosed structured block into separate units of work, each of
which is executed only once

The overhead is defined as follows: if Ts is the sequentia time for a section of code, and
T, the time for the parallel version of this on p processors, then the overhead is given by
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(c) OpenMP Proposed Projection Methodology: As in Figure 46, the OpenMP
communication performance projection scheme entails 4 steps.
1. Execute HPC application on a base machine to collect OpenMP Profile for
different task counts
o Different task counts to understand application scaling
2. Decompose OpenMP profile into categories of directives for each task count asin
Figure 46
3. Obtain OpenM P uBenchmarks data on target system for different task counts
e Different task counts to capture the OpenMP overhead scaling
4. Map application OpenMP directives to uBenchmarks directives on target system

and cal cul ate communication runtime for different task counts

HPC Application

OpenMP
MicroBenchmarks
Different Task counts
‘ ‘ * + Different Task counts
OpenMP | OpenMP | OpenmP | OpenMP
Profile Profile Profile Profile
RSRURURUS TO ST RO .
___________ IS S 2 B
' :‘,:::::::Y_::::::::::!_:::::::::::::::::::::::::::::::::::::::::::::::::::_
Profile
Decomposition
T
(0]
x° <

Figure 46: OpenM P communication performance projection framework
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(d) Challenges: In the OpenMP proposed projection methodology, we face one major
challenge. This challenge is similar to that of the MPI which is the separation of
computation from communication. In fact, it is harder in the case of OpenMP than MPI
since the communications in OpenMP is just a memory read and write operation and
there is no explicit communication calls. To illustrate, in an MPI application, the
separation of computation and communication can be achieved by turning off
performance monitoring at MPI function entry and turning them on again at function exit;

in openMP, thisis hard to achieve since there is no explicit function entry and exit.

6.2.2 Hybrid Applications

Hybrid applications are composed of computation, MPI communications and
OpenMP communications. In our approach, each of these components is projected
separately. There may be, however, some overlapping communication time between
OpenMP and MPI. To account for this overlap, we calculate an overlapping factor ¢ asin
Equation 24 on the base machine. The overlapping factor is then applied on the target
machine.

o Total ExecutionTime
ComputationRuntime+ MPICommunicationRuntime + OpenMPOverhead

(14)

The overall Hybrid application projection methodology can be summarized as follows:
1. Calculate overlapping factor between OpenM P and MPI on base machine
2. Project MPI communication overhead on target machine

3. Project OpenM P communication overhead on target machine
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4. Combine the projection of both communication schemes and apply the

overlapping factor

6.2.3 Overall Proposed Projection Framework

| HPC Application |
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l Computation | Communication
v
SPEC CPU HPC Application OpenMP
Hardware Counters Hardware Counters OpenMP P Corzm.
Performance Metrics Performance Metrics uBenchmarks Mode
OpenMP
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l OpenMP Profile
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Combine l
»| Communication with Scale
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Figure 47: Proposed projection scheme framework

Asindicated in Figure 47, we project computation and communication separately.
This separation allows for the use of already available benchmark data without requiring
any further execution for the surrogates. The SPEC CPU suite provides the surrogates for
the computation component. The Intel MPI Benchmarks (IMB) or the OpenMP
MicroBenchmarks provide the surrogates for the communication component. SPEC CPU,

IMB or uBenchmarks data are available either online for target machine processors, or
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through hardware vendors for communication interconnects. Also, the separation of

computation from communication alows for maximum projection scalability.

6.2.4 Predicting Projection Error Value

Predicting the value of the projection error is very beneficia for both the HPC
vendors and users. In fact, predicting the value of the projection error is a very
challenging task; however, there are several possible means that could be utilized in
predicting the value of error. One way isto find the relationship between the differencein
metrics values of the surrogates and the application and the percent error. To illustrate, if
the performance of application A on target machine X requires that metrics group 5 be
the highest ranked group, then we do the following:

1 - Identify the percent difference between the metrics values of the application and the
surrogate for group 5.

2 — Find the relationship between the percent difference of the metrics values for each
metric group for target machine X and application A and the error percent.

3 - Apply the previous relationship to find the error percent.
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