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ABSTRACT

Performance Projections of HPC Applications on

Chip Multiprocessor (CMP) Based Systems. (May 2011)

Sameh Sh Shawky Sharkawi, B.S., The American University in Cairo;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Valerie Elaine Taylor

Performance projections of High Performance Computing (HPC) applications

onto various hardware platforms are important for hardware vendors and HPC users. The

projections aid hardware vendors in the design of future systems and help HPC users with

system procurement and application refinements. In this dissertation, we present an

efficient method to project the performance of HPC applications onto Chip

Multiprocessor (CMP) based systems using widely available standard benchmark data.

The main advantage of this method is the use of published data about the target machine;

the target machine need not be available.

With the current trend in HPC platforms shifting towards cluster systems with

chip multiprocessors (CMPs), efficient and accurate performance projection becomes a

challenging task. Typically, CMP-based systems are configured hierarchically, which

significantly impacts the performance of HPC applications. The goal of this research is to

develop an efficient method to project the performance of HPC applications onto systems

that utilize CMPs. To provide for efficiency, our projection methodology is automated

(projections are done using a tool) and fast (with small overhead).
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Our method, called the surrogate-based workload application projection method,

utilizes surrogate benchmarks to project an HPC application performance on target

systems where computation component of an HPC application is projected separately

from the communication component. Our methodology was validated on a variety of

systems utilizing different processor and interconnect architectures with high accuracy

and efficiency. The average projection error on three target systems was 11.22% with

standard deviation of 1.18% for twelve HPC workloads.
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1. INTRODUCTION

Performance projections of High Performance Computing (HPC) applications

onto various hardware platforms are important for hardware vendors and HPC users. The

projections aid hardware vendors in the design of future systems, allowing them to

compare the application performance across different existing and future systems; the

projections help HPC users with system procurement and application refinements. In this

dissertation, we present an efficient method to project the performance of HPC

applications onto Chip Multiprocessor (CMP) based systems using widely available

standard benchmark data. The main advantage of this method is the use of published data

about the target machine; the target machine need not be available.

Performance projection of HPC applications allows designers of future systems to

explore design trade-offs, such as in-order-execution versus out-order-execution, to

develop a system that better matches the performance requirements of the HPC clients.

Designers need projections because, in most cases, availability of platforms for HPC

applications measurements is limited, especially for competitors’ future systems. Further,

simulations of such complicated applications on future systems are extremely time

consuming. For HPC users, knowing in advance how applications will perform on

different platforms help with selecting the best platform for procurement and execution.

Further, the projections can aid in identifying areas for performance refinements.

The contributions of this dissertation to the current literature of performance

projections can be summarized in the following points:

____________
This dissertation follows the style of IEEE Systems Journal.
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1. The proposed method uses publicly available benchmarks performance data

for the target system in projecting the performance of HPC applications with

average error rate of 11.22%. The proposed projection method does not

require any access to the target system.

2. The projection method requires low overhead resulting from the use of one

base system to characterize the properties of an HPC application and the

benchmarks in combination with the publicly available benchmark data.

3. In this work, we model the micro-architecture of the base system and the

impact of the micro-architecture on the application performance using detailed

hardware counters. Modeling an application behavior independent of the

micro-architecture specifications of the system it is executing on may yield

inaccurate results [1].

4. For the communication projections, the proposed method uses MPI profiles of

the HPC application instead of MPI traces resulting in very little storage

requirements and eliminating the need for extensive IO during execution.

The publications resulting from this work are the following:

 S. Sharkawi, D. DeSota, R. Panda, S. Stevens, V. Taylor, X. Wu, Using MPI

Benchmarks to Project MPI Communication Performance of HPC

Applications, Submitted to ICPP 2011.

 S. Sharkawi, D. DeSota, R. Panda, R. Indukuru, S. Stevens, V. Taylor, X. Wu,

Performance Projection of HPC Applications Using SPEC CFP2006

Benchmarks, in Proceedings of IEEE IPDPS, Rome, Italy, 2009.
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The remainder of this section identifies the different requirements and challenges

with respect to performance projections and provides a discussion about  related work.

The remainder of this dissertation is organized as follows: The second Section provides

an overview of the proposed performance projection scheme and presents some

background on the problem. Section three describes the computation component

projection method. Section four describes the communication component projection

method and Section six provides the method that we use to integrate the projections of

both components. The final section summarizes the overall research and presents areas of

future work.

1.1 Performance Projection Requirements

In this dissertation, we present an efficient and accurate method for performance

projection of HPC applications. An efficient performance projection method has low

overhead in data collection and in the projection process [2], [3]. In addition, a

performance projection method is considered accurate when projection error rate is below

20% [1].

1.1.1 Performance Data Requirements: HPC Application and Systems

In this dissertation, we efficiently collect performance data for the HPC

applications and benchmarks on one base system. We use this performance data to

characterize the micro-architectural characteristics of the base system and the impact of
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the base system on the HPC application performance. In order to be efficient, the data

collection process must satisfy the following requirements:

(a) Low overhead and low cost. Acceptable low overhead is typically within 5%

of the total execution time of the application [2], [3]. Also, the total size of the

data collected needs to be moderate for current systems’ memories and

storage.

(b) No manual intervention for recompilation and instrumentation so as to reduce

the requirements on the user for the projections [4]. When instrumentation is

inserted before compilation, the presence of instrumentation may inhibit

optimization, in which case it will not measure the performance of optimized

code; alternatively, optimization may move instrumentation, in which case the

measured interval may not include all or only the code from the region of

interest.

To produce accurate projections, performance data is required to have the following

characteristics:

(a) Performance data needs to capture the major factors that impact the HPC

application performance on the system used for execution. The measurement

of time or one species of system event seldom identifies performance

characteristics [1], [4]. Since HPC applications can be typically viewed as a

combination of computation and communication [5], [6], the performance

data should accurately represent the single core computation performance as

well as the communication between the cores. From a computation

perspective, each component of the processor and the memory hierarchy will
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have an impact on application performance. As for communication, each

communication routine performance and characteristics need to be identified.

(b) Raw event counts are seldom the desired metrics. Derived metrics such as

cache miss ratios or cycles per floating point operation are far more useful

than raw events in performance modeling [7], [8]. Also, for each application

different performance metrics have different impact and this impact varies

from one system to another.

1.1.2 Benchmarks Requirements

It is important that the benchmarks used for the projections satisfy the following

requirements. First, the set of benchmarks must cover most of the performance space of

HPC applications and HPC architectural characteristics. In addition, the benchmark set

needs to be able to capture the micro-architectural features of the system it is testing.

Second, the benchmark set needs to be a standard benchmark that is used by the industry,

academia and HPC users. This allows for abundance of public data for the target systems.

Even for future systems, vendors typically publicize about their systems performance

using standard benchmarks. Finally, the benchmarks must be scalable to thousands of

cores to allow for projections onto systems with different numbers of cores.

1.2 Performance Projection Challenges

HPC systems are becoming more complex and hierarchical utilizing nodes of

CMPs [9]. These systems can be configured to scale up to peta- or exa-scale systems. In
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addition, CMP based systems utilize different processor architectures and interconnect

schemes; thus, mapping from one base system to a target system imposes challenges

described in the following subsections.

1.2.1 Complex and Hierarchical System Design

The hierarchical system design has a significant impact on the application

performance [10]. The hierarchical design entails the sharing of resources and memory at

the level of the cores.  In addition, the hierarchical design involves the use of different

interconnects for the different levels of the hierarchy. Thus, the projection method needs

to take into account these features of the hierarchy.

1.2.2 Mapping Architectural Characteristics from Base to Target System

Recall, published benchmark performance data about target system should suffice

to understand the architectural characteristics of the target system in relation to the base.

Typically, published benchmark data is a one metric value representing the performance

of certain benchmark on a specific system [11]. This one performance metric, although

represents some aspect of the system, masks many architectural characteristics of the

system [1]. In order to map from the base system to the target, one needs to understand

the behavior of the benchmark on the base system, the effect of the base system

architecture on the benchmark performance, and the differences in the micro-architecture

of the base versus that of the target system as depicted by the differences in the

performance metrics of the benchmarks on the two systems.
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1.3 Related Work

Several techniques for performance projection have been proposed and used.

Most common techniques include program modeling, code analysis, or architectural

simulation. Code analysis, in addition to requiring significant expertise and abundant

time, may not yield accurate performance projections due to the complexity of the

hierarchical systems and applications. Performance projection using program modeling,

on the other hand, needs to be a function of (at least) algorithm, implementation,

compiler, operating system, underlying processor architecture, and interconnect

technology to produce accurate projections. This may be impossible to achieve with the

current complex systems and architectures. Architectural simulation yields extremely

accurate projection results. Simulation provides the capability to observe component and

system characteristics (e.g. performance and power) in order to make vital design

decisions. However, simulating high-fidelity models can be very time consuming and

even prohibitive when evaluating large-scale systems.

1.3.1 Code Analysis

Manual source code analysis of HPC applications is a very complicated task. It is

time consuming, requires high level of expertise and may lack accuracy [4]. To produce

accurate projections, it is important to understand the performance characteristics of

computation, communication and message passing software used for parallelization.

Further, it is important to understand the interaction of the underlying architecture and

interconnect with the application. All these keys require significant amount of expertise

in parallel programming paradigms and techniques, parallel systems’ architecture,
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interconnect architecture and significant understanding of the source code of the

application. Thus, manual source code analysis can be difficult and time consuming,

especially with the hierarchical CMP based systems.

K¨uhnemann et al in [12] proposed automatic source code analysis, which entails

compile time prediction of execution time. They use SUIF (Stanford University

Intermediate Format), which automates performance prediction of HPC applications. For

each target system, a system profile is created for computation and communication.

Their tool then generates a corresponding runtime function modeling the CPU execution

time and the message passing overhead for the source code. This static runtime prediction

lacks accuracy especially for MPI calls since collective calls can be translated differently

at runtime. There are other automation tools for source code analysis [13]-[17]; however,

such tools are better suited for compiler optimizations, identifying bottlenecks and code

optimizations.

Miller et al in [15], [17] proposed ParaDyn tool, which uses DynInst [18] to

automatically instrument the application binary. ParaDyn’s goal is to automate the search

for performance bottlenecks in parallel applications,  not to project their performance.

This is accomplished by attaching ParaDyn instrumentation manager to an application

process. ParaDyn then scans the application binary image for procedures entry and exit

points. Once this is done, performance metrics, such as CPU usage from the operating

system and performance counter data using hardware performance counters, are collected

for each procedure to identify performance bottlenecks. Further, Reed et al in [14]

proposed SvPablo, which uses Pablo [13] in identifying bottlenecks. Pablo’s main

difference to ParaDyn is that Pablo instruments source code instead of binary.
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Mellor-Crummy et al have developed HPCToolKit [16] that identifies bottlenecks

without requiring any code instrumentation. HPCToolKit incorporates three components

that are used in the performance analysis process. The first component, hpcrun, is

responsible for collecting the hardware performance counters; hpcrun uses statistical

sampling of hardware performance counters, and attributes metrics to both, the calling

context and program structure. This is done using stack unwinding techniques to relate

performance metrics to source code. The second component, hpcstruct, is responsible for

analyzing the application binary to recover information about files, functions, loops etc.

Finally, hpcprof correlates dynamic performance metrics to code structure. Again, the

focus is on identifying bottlenecks, not performance predictions.

1.3.2 Simulators

Simulation is often used to predict the performance of key applications to be

executed on new systems. Simulation provides the capability to observe component and

system characteristics (e.g. performance and power) in order to make vital design

decisions. Simulating high-fidelity models, however, can be very time consuming and

even prohibitive when evaluating large-scale systems. Simulations can require one to two

orders of magnitude more time than the actual application.  Currently, there are three

major types of simulators:

1. Cycle-accurate node-level simulators [19]-[21]. These simulators are extremely

accurate, slow and can only simulate the node level performance of a system.

Scaling down an HPC application to fit on the simulator is nearly impossible

since these cycle accurate simulators are typically designed to simulate only the
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processor core performance. Hardware vendors use these simulators to measure

their systems node level performance using industry standard benchmarks such as

SPEC CPU.

2. Stochastic network models. These simulators are typically accurate in measuring

the interconnect capabilities. They can only simulate network calls such as MPI

calls; thus, they can’t be used to execute a full HPC application. Typically,

benchmarks such as IMB are executed on these simulators to measure the

interconnect properties. Prakash and Bagrodia in [22] introduced MPI-SIM,

which simulates the MPI communication library using a detailed contention

model. The computation component of an application is executed on an actual

processor. This limits prediction to systems using the same processor as the base

machine. Also Wilmarth et al. in [23] introduced POSE, which uses a detailed

network contention model to simulate the communication library only, i.e. no

computation component projection.

3. Pseudo-accurate simulators. These simulators attempt to simulate the entire

system, computation and communication, with less accuracy to reduce the

simulation overhead. Zheng et al in [24] introduced BigSim, which is designed to

predict performance using parallel simulation for massively large systems. In

BigSim each target processor is emulated using a thread. Since each thread has a

significant memory requirement to emulate a full processor, BigSim is well suited

for systems that have low memory to processor ratio such as BlueGene systems.

For other systems, simulations can be extremely slow. BigSim uses an optimistic

approach for communication simulation, which assumes determinism in program
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execution rather than an accurate contention model. In addition, BigSim uses

heuristics to predict computation (not cycle-accurate). Also Susukita et al in [25]

proposed macro-level simulation of communication. Mainly communication is

macro simulated by replacing each MPI call by predicted runtime (compile time

prediction based on target machine interconnect specification). As for

computation, it is skeletonized into single processor execution. In [25],

interleaved communication and computation, such as non-blocking MPI calls with

computation blocks executed before the MPI call completion, cannot be

accurately simulated. Other researches have proposed simulating only the critical

components of an HPC application [26]. However, these simulators are not cycle-

accurate.

1.3.3 Application Modeling

Performance projection of HPC applications using application modeling provides

for a faster method than simulations. Performance projection using program modeling

must incorporate algorithm, implementation, compiler, operating system, underlying

processor architecture, and interconnect technology in the model to produce accurate

projections. Furthermore, since the performance enhancing features of novel processing

devices may be significantly different from a conventional microprocessor system,

current performance modeling schemes have limited applicability on systems such as

vector supercomputers and parallel systems with accelerator devices, systems with deeper

memory hierarchy and different multi-core configurations. Thus, performance models
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need to employ an application modeling paradigm that allows a user to develop not only

"architecture aware" but also "application aware" performance models.

One approach is to build an analytical model for the application on the target

platform using one of the known modeling techniques such as LogGP [27] or LogP [28].

The LogP models a parallel application based on four parameters: computational

bandwidth, communication bandwidth, communication delay and efficiency of coupling

of computation and communication. Since LogP was originally designed for short

messages, LogGP extends the LogP model by adding the additional parameter G which

reflects the bandwidth for long messages. Both the LogP and LogGP models assume a

uniprocessor machine architectures where task placement effect on performance is

ignored. Task placement on current SMP systems with CMP hierarchical designs has a

major effect on performance specially due to the different communication protocols,

shared memory or network interconnect, used by the communication library when

communicating with inter vs. intra node processors. We can summarize the main

advantages of this work over the LogP and LogGP models in the following points.  First,

LogP and LogGP models ignore the network topology and the routing algorithm. In

current systems, network topologies have complicated and hierarchical designs, which

have significant effect on communication performance. In our scheme, network topology

effects are reflected in IMB values. Second, in our prediction methodology, support for

collective communication acceleration in the hardware on the target system is captured

by IMB; however, LogP and LogGP models assume that a processor will only do

Send/Recv. Finally, we model WaitTime defined in section 4.3 which is typically due to



13

load imbalance between computation and communication among different tasks. The

LogP and LogGP don’t model such WaitTime.

Blasko in [29] proposed a modeling technique that would significantly reduce the

simulation time. Blasko used hierarchical modeling to analyze the program call structure.

He utilized a call graph of the parallel program for the hierarchical performance analysis.

In his bottom-up model, all procedures that do not contain any procedure calls are

evaluated and simulated at stage one. These are the leaves of the graph. In the second

stage, which concerns the callers, the callers are simulated and leaves already simulated

in stage one are represented by delays. He then simulates parents all the way up to the

root of the graph. This model was tightly coupled to VFCS and also doesn’t accurately

simulate the contention in the interconnect.

Taylor et al in [30] introduced the Prophesy system. In Prophesy, there are three

program modeling techniques, curve fitting which is used to explore application

scalability on the same system, parameterization which requires manual analysis of

source code kernels to predict performance on target systems and kernel coupling which

explores the interaction and sharing between different kernels. Clement and Quinn in [31]

proposed modeling an application as a function of compiler effects, memory effects,

communication overhead and floating point trends. Their work focused on projecting

parallel speedup of an application rather than its performance on different systems.

Another application modeling technique achieves cross platform prediction using

partial execution. Yang et al. in [2] proposed the use of partial execution of parallel

applications on different systems in performance projection. They used partial execution
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of application on target system to indicate its relative performance. This technique

requires access to the target system.
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2. PROPOSED PERFORMANCE PROJECTION SCHEME AND

BACKGROUND

2.1 Performance Projection Framework

In this work we propose an efficient and accurate approach to projecting HPC

applications’ performance onto systems utilizing CMPs.  Our method, called the

surrogate-based workload application projection method, utilizes surrogate benchmarks

(the surrogate is a linear equation of the appropriate benchmarks) to project an HPC

application performance on target systems. Figure 1 depicts the high level framework of

our projection scheme.  As indicated in Figure 1, our projection scheme entails five steps:

1. Find the surrogate for the computation component of an HPC application.

The metrics used to identify the surrogate are described in detail in Section 3.

2. Use the performance data of the surrogate on the target system to project the

compute performance of the HPC application on the target system.

3. Find set of surrogates for the communication component of HPC application.

The metrics used to identify the set of surrogates are described in detail in

Section 4.

4. Use the performance data of the surrogate on the target system to project the

communication performance of the HPC application on the target system.

5. Combine the communication and the computation performance projections to

come up with the entire HPC application performance projection on the target

system.
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Figure 1: Projection scheme high-level framework

As indicated in Figure 1, this work encompasses modeling the HPC application as

two separate components, the computation and the communication. Each component is

further modeled as a combination of benchmarks. Compute performance is projected

using CPU intensive benchmarks, specifically the SPEC CPU2006 suite [11], and

hardware performance counter metrics; communication performance is projected using

MPI benchmarks for MPI communications. The components in Figure 1 that are in

dashed squares are the main focus of this research. The three main components are given

below:

a. Modeling the computation component of an HPC application

b. Modeling the communication component of an HPC application

c. Combining the two models to come up with an HPC application projection
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We use the actual executions of surrogates on existing systems to model the HPC

application as a linear function of the benchmarks. For the case of non-existing future

systems, the only option is to use the simulated runtimes of the benchmarks. In addition,

the complex hierarchical design of systems is accounted for in the linear function of the

benchmarks. Different configurations for the benchmarks, such as binding one task per

core or two tasks per core, exploit different system characteristics.

As for the communication component, we project the communication

performance of HPC applications onto different systems using MPI benchmark data on

the different systems as well as a base system, and the communication profile of the

application on the base system. In particular, we use the Intel MPI Benchmarks (IMB)

[32] as we find it the most comprehensive MPI benchmark suite. The arrow from the

computation modeling to the communication modeling indicates that communication

modeling partially depends on computation modeling.

The use of surrogates for performance projection of HPC applications has been

proposed in [33]-[35]. The novelty of our approach in comparison to previous work that

used surrogate based projections can be summarized in the following points:

Computation Projection:

1. The use of published benchmarks performance data for the target system

suffices to project the performance of HPC application using only one base

system.

2. Hardware performance counter metrics are grouped into several groups where

each group has certain rank (in comparison to other metric groups) based on
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the application properties and the system characteristics. Other research in the

literature that used performance counter metrics and benchmarks for HPC

projections do not rank metrics. In [33]-[35], all metrics have the same weight

and have equal importance to the application.

3. Our approach incorporates available published benchmark data to model the

target system in contrast to other work [26], [36], [37], [38] where access to at

least one node of target system is required. Further, our approach allows for

ranking the metric groups differently for each target system based on the

system characteristics. The ranking of metric groups based on system

characteristics provides for better projections for different architectures and

systems.

4. Our method is independent of any benchmark suite. In this work, we used

SPEC CPU2006 suite; however, adding any other benchmark suite(s) is very

simple and doesn’t require any change to the method.

Communication Projection:

5. The main advantage of our method is the use of MPI profiles of the HPC

application in contrast to MPI traces, which require significant storage and are

very complicated, hard to understand and parse. For example, our method

requires 12KB storage for the communication profile of the NAS BT

benchmark [39], in contrast to 2.6 GB storage for an MPI trace of the

communication behavior of the same benchmark for 128 tasks. Further, our

method does not involve any simulations.
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6. Another advantage is that we don’t require any simulations of network events

as in [5], [6], [40]. Such simulators are typically time consuming. Also

creating an accurate contention model for all MPI routines [41]-[43],

especially collective calls, can be extremely challenging.

2.2 Proposed Projection Framework Challenges

The separation of the communication and the computation components introduces

some challenges and opportunities. MPI calls are reflected in the hardware performance

counter metrics. To reduce the noise, we execute the HPC application using four tasks to

reduce the communication. It is noted that some applications can’t be executed on four

tasks due to their large datasets. Also, some applications may have significant

communication even with four tasks. A solution to this challenge would be to collect

hardware performance counters in between MPI calls. That would require turning off

counter collections during the MPI calls. However, there is a huge opportunity in this

separation of computation and communication. Such separation allows for more

scalability. If computation and communication were coupled, we would have to, one, find

surrogates that match the application in communication and computation, two, be limited

to parallel benchmarks, and, three, be limited to how scalable the benchmarks are.

2.3 Background

In this section, we discuss how CMP based systems are built and how their design

affects the performance of HPC applications. Also, we discuss the base system that is
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used throughout this research as well as its architectural characteristics. Finally, we

present the benchmark suites of choice for this work that meets the requirements and

challenges presented in section 1.2 as well as the HPC applications that are used for

validation of our proposed method.

2.3.1 CMPs and Hierarchical System Design

The current trend in high performance computing systems is shifting towards

cluster systems with CMPs; further, the CMPs are usually configured hierarchically (e.g.,

multiple CMPs compose an MCM (multi-chip module), multiple MCMs compose a node,

and multiple nodes compose a system). To illustrate, Figures 2 and 3 depict an Intel

Nehalem CMP illustrative diagram and a Nehalem CMP chip micro-photograph,

respectively. From figure 2, the Nehalem CMP has the following components: four

identical compute cores, Cache Interface Unit (CIU) (switch connecting the 4 cores to the

4 L3 cache segments), level-3 (L3) cache controller and data block memory, 1 integrated

memory controller (IMC) with 3 DDR3 memory channels and 2 Quick Path Interconnect

(QPI) ports [44]. As indicated in the figure, the bandwidth to the main memory, 31.992

GB/s, is quite different from the bandwidth to the interconnect through the QPIs, 25.6

GiB/s ~ 27.5 GB/s. Furthermore, the bandwidth to the interconnect is affected by the

geometry of the system and number of hops from source to destination.
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Figure 2: A Nehalem processor and memory module [45], [46]

Figure 3: A Nehalem processor chip micro-photograph [45], [46]
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Figure 4: An Intel Nehalem CMP node

As indicated in Figure 4, two CMPs are stacked together to form a CMP node.

This CMP node is used a building block to build a larger cluster system connected

through an interconnect switch. Typically, an interconnect switch using an InfiniBand

technology will use a Fattree topology. This topology has an impact on an HPC

application performance since the bandwidth and latency differ from one core to another

depending on the distance between cores, number of hops, and layered switch latency.

Hierarchical system design imposes a major challenge for performance projection

of HPC applications. The hierarchical design allows for sharing of resources and memory
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at the lowest level involving the processing cores, L3 as in Figure 3.  In addition, the

hierarchical design provides for different interconnect characteristics for different levels

in the hierarchy, i.e. cores on the same chip (latency of ~40 cycles), cores on different

chips (~32GB/s) or cores on different nodes (~27.5GB/s). These issues must be

considered in performance projection schemes of HPC applications. The application

interaction with the system needs to be modeled. For example, a memory intensive

application performance would be negatively impacted from memory and bandwidth

sharing among cores on a CMP; however, the performance of a compute intensive

application with minimal memory requirements could be greatly improved. Also, the

interconnect characteristics have a major impact on HPC application performance due to

the variation in bandwidth and latency among different interconnect levels as explained

above. Furthermore, the architecture of interconnect between cores on the same CMP

may also be different than the architecture of interconnect between CMPs on an MCM

e.g. direct link vs. shared bus based. Therefore, the projection scheme has to be

architecture and application aware.

2.3.2 Base System

The base machine used for this work is the p575 POWER5+ cluster system,

TAMU Hydra. The POWER5+ chip features single-threaded and multi-threaded

execution for higher performance. A single die contains two identical processor cores,

each of which uses simultaneous multithreading (SMT) to support two logical threads.

The result is a single dual-core POWER5+ chip that appears to be a four-way symmetric

multiprocessor to the operating system. Both threads share execution units if both have
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work. To the operating system, each thread executes on a logical processor. In our work,

the data was collected in SMT mode, with configurations of one thread per core and two

threads per core. We refer to the one thread per core configuration as Pseudo Single

Thread mode (PST) and two threads per core as Simultaneous Multi Threading (SMT)

mode [47].

The motivation for using PST and SMT metrics is to capture the behavioral

changes in the application when running under different computing environments or with

different set of resources. For example, when running an application in SMT mode, the

bandwidth and cache available for each task is different than when running in PST mode.

Also when the pipeline resources in the core are shared between threads, there are fewer

resources available to each thread; thus, the behavior of the application is likely to change

between these modes. The benchmarks that behave similarly to the HPC application

under different computing conditions are a better representation for the application on

different architectures.

The POWER5+ microprocessor provides Performance Monitor Unit (PMU)

counters and a number of Performance Monitor Counters (PMC) to monitor and record

several performance events. The POWER5+ has six PMCs per thread. The POWER5+

has 900 total events, 500 unique events, and 230 events per counter [48], [49]. We use the

HPMCOUNT [50] tool on IBM systems to collect our hardware counter data. Figures 5

and 6 depict the POWER5+ CMP and the p575 node, respectively.
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Figure 5: Power5+ CMP and a shared 36MiB L3 cache

Figure 6: A 16-way p5-575 node (8 CMPs with 2 POWER5+ cores per CMP)

2.3.3 Benchmarks

Recall from section 1.1.2 that the benchmark suites need to be an industry

standard, have abundant published data, and span a majority of the performance

characteristics space of HPC applications and CMP based systems. Also, to achieve

scalability, we presented in section 2.1 our proposed projection method where the

computation component is modeled in isolation of the communication component. Thus,
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we use a suite of compute intensive benchmarks, specifically SPEC CPU2006, and a

suite of communication intensive benchmarks, specifically Intel MPI Benchmarks (IMB).

(a) Compute Intensive Benchmarks: SPEC CPU2006

CPU2006 is SPEC's next-generation, industry-standardized, CPU-intensive

benchmark suite, stressing a system's processor, memory subsystem and compiler

[11]. SPEC designed CPU2006 to provide a comparative measure of compute-

intensive performance across the widest practical range of hardware using workloads

developed from real user applications.

SPEC CPU2006 focuses on compute intensive performance, which means these

benchmarks emphasize the performance of: the computer processor (CPU), the

memory architecture, and the compilers. It is important to remember the contribution

of the latter two components. SPEC CPU performance intentionally depends on more

than just the processor.

SPEC CPU2006 contains two components that focus on two different types of

compute intensive performance: the CINT2006 suite measures compute-intensive

integer performance, and the CFP2006 suite measures compute-intensive floating

point performance. SPEC CPU2006 is not intended to stress other computer

components such as networking, the operating system, graphics, or the I/O system.

CINT2006 and CFP2006 are based on compute-intensive applications provided as

source code. CINT2006 contains 12 benchmarks: 9 use C, and 3 use C++. The

benchmarks are provided in Table 1 below. CFP2006 has 17 benchmarks: 4 use C++,

3 use C, 6 use Fortran, and 4 use a mixture of C and Fortran. The benchmarks are

provided in Table 2 below.
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Table 1: CINT2006 benchmark suite

Benchmark Language Area/Field
400.perlbench C PERL Programming Language
401.bzip2 C Compression
403.gcc C C Compiler
429.mcf C Combinatorial Optimization
445.gobmk C Artificial Intelligence: go
456.hmmer C Search Gene Sequence
458.sjeng C Artificial Intelligence: chess
462.libquantum C Physics: Quantum Computing
464.h264ref C Video Compression
471.omnetpp C++ Discrete Event Simulation
473.astar C++ Path-finding Algorithms
483.xalancbmk C++ XML Processing

Table 2: CFP2006 benchmark suite

Benchmark Language Area/Field
410.bwaves Fortran Fluid Dynamics
416.gamess Fortran Quantum Chemistry
433.milc C Physics: Quantum

Chromodynamics
434.zeusmp Fortran Physics/CFD
435.gromacs C/Fortran Biochemistry/Molecular Dynamics
436.cactusADM C/Fortran Physics/General Relativity
437.leslie3d Fortran Fluid Dynamics
444.namd C++ Biology/Molecular Dynamics
447.dealII C++ Finite Element Analysis
450.soplex C++ Linear Programming,

Optimization
453.povray C++ Image Ray-tracing
454.calculix C/Fortran Structural Mechanics
459.GemsFDTD Fortran Computational Electromagnetics
465.tonto Fortran Quantum Chemistry
470.lbm C Fluid Dynamics
481.wrf C/Fortran Weather Prediction
482.sphinx3 C Speech recognition
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The SPEC CPU2006 is a benchmark suite composed of serial applications. It can

be run in throughput mode with multiple instances of a workload to understand

multiprocessor behavior. In parallel applications, the execution processes (threads)

are distributed across different parallel computing cores. Often the dataset is divided

among processors. In contrast, serial applications have one execution process working

on the entire dataset. One way to account for this difference is to use throughput data

for SPEC.  This still leaves the issue that when the number of threads in parallel

application changes the dataset per thread changes while with serial applications the

working set is a constant size. When running in PST mode, we run four serial tasks of

SPEC each bound to a separate core of the POWER5+ chip, thereby using two chips.

In this case each task gets a dedicated CPU and L2 resources and the L3 is shared

between two tasks. On the other hand, when we run in SMT mode, we run four serial

tasks of SPEC each bound on a logical CPU (thread), thus using one chip. In this case

two tasks share the CPU and L2 resources and the L3 is shared between four tasks.

As for the HPC applications, all runs are configured as four parallel tasks each bound

to a separate core on two chips in PST mode or each bound to a separate thread on

one chip in SMT mode. Since both runs use four tasks, the dataset size per task

remains constant on the parallel application as in the SPEC throughput runs. The

effective cache size for each task changes proportionally between PST and SMT

modes. Using such configurations we guarantee that the working set size per thread

doesn’t change from SMT mode to PST mode.
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(b) Communication Intensive Benchmarks: IMB

The idea of Intel MPI Benchmark is to provide a concise set of elementary MPI

benchmark kernels. Its objective is to provide a concise set of benchmarks targeted at

measuring the most important MPI functions. The IMB-MPI1 contains the

benchmarks:

 PingPong: is the classical pattern used for measuring startup and through-put of a

single message sent between two processes.

 PingPing: measures startup and throughput of single messages, with the crucial

difference from PingPong that messages are obstructed by oncoming messages.

 Sendrecv: Based on MPI_Sendrecv, the processes form a periodic communication

chain. Each process sends to the right and receives from the left neighbor in the

chain.

 Exchange: The group of processes is seen as a periodic chain, and each process

exchanges data with both left and right neighbor in the chain.

 Bcast: A root process broadcasts X bytes to all.

 Allgather: Every process inputs X bytes and receives the gathered X*(#processes)

bytes.

 Allgatherv: Functionally is the same as Allgather. However, with the

MPI_Allgatherv function it shows whether MPI produces overhead due to the

more complicated situation as compared to MPI_Allgather.

 Scatter: The root process inputs X*(#processes) bytes (X for each process); all

processes receive X bytes.
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 Scatterv: The root process inputs X*(#processes) bytes (X for each process); all

processes receive X bytes.

 Gather: All processes input X bytes, the root process receives X*(#processes)

bytes (X from each process).

 Gatherv: All processes input X bytes, the root process receives X*(#processes)

bytes (X from each process).

 Alltoall: Every process inputs X*(#processes) bytes (X for each process) and

receives X*(#processes) bytes (X from each process).

 Alltoallv: Every process inputs X*(#processes) bytes (X for each process) and

receives X*(#processes) bytes (X from each process).

 Reduce: Reduces a vector of length L = X/sizeof(float) float items where X is

message size. The MPI data-type is MPI_FLOAT, the MPI operation is

MPI_SUM.

 Reduce_scatter: Reduces a vector of length L = X/sizeof(float)float items. The

MPI data-type is MPI_FLOAT, the MPI operation is MPI_SUM. In the scatter

phase, the L items are split as evenly as possible.

 Allreduce: Reduces a vector of length L = X/sizeof(float) float items. The MPI

data-type is MPI_FLOAT, the MPI operation is MPI_SUM.

 Barrier: MPI_Barrier

In addition to the IMB-MPI1 (MPI1 Standard), IMB provides the extended IMB

suite which includes a set of benchmarks to measure the MPI2 standard MPI

functionalities. In this work, we only focus on the one sided routines of MPI from the
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MPI2 standard. The remaining set of routines in the MPI2 standard is MPI-IO related

which is not addressed in this dissertation. The benchmarks in the IMB-EXT are

classified into three categories [32]:

1. Single transfer: The benchmarks in this class focus on a single data transferred

between one source and one target. Single transfer IMB-EXT benchmarks only run

with 2 active processes. Single transfer benchmarks, roughly speaking, are local

mode. The particular pattern is purely local to the participating processes. There is no

concurrency with other activities. Best case results are to be expected.

2. Parallel transfer: These benchmarks focus on global mode, say, patterns. The

activity at a certain process is in concurrency with other processes, the benchmark

timings are produced under global load. The number of participating processes is

arbitrary.

3. Collective: This class contains benchmarks of functions that are collective in the

proper MPI sense. Not only is the power of the system relevant here, but also the

quality of the implementation for the corresponding higher level functions.

The benchmarks of interest in IMB-EXT that we focus on in this work are:

 Unidir_Put: Benchmark for the MPI_Put function.

 Unidir_Get: Benchmark for the MPI_Get function.

 Bidir_Put: Benchmark for MPI_Put, with bi-directional transfers.

 Bidir_Get: Benchmark for MPI_Get, with bi-directional transfers.
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 Accumulate: Benchmark for the MPI_Accumulate function. Reduces a vector of

length L = X/sizeof(float) float items. The MPI data-type is MPI_FLOAT, the MPI

operation is MPI_SUM.

 Window: Benchmark measuring the overhead of an MPI_Win_create /

MPI_Win_fence / MPI_Win_free combination. In order to prevent the

implementation from optimizations in case of an unused window, a negligible non

trivial action is performed inside the window. The MPI_Win_fence is to properly

initialize an access epoch.

2.3.4 HPC Applications

In this work, we used eight large-scale scientific applications and the three NAS

Multi-Zone Parallel Benchmarks [39] to validate our projection method. The eight large-

scale scientific applications are: AMBER [51], CHARMM [52], FLUENT [53],

GAMESS [54], LS-DYNA [55], a seismic application that will be referred to as Seismic,

STAR-CD [56] and WRF [57]. Some of these applications have multiple datasets totaling

to 16 different workloads each having different computational and communication

characteristics. Description of the applications is given in Table 3 below.
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Table 3: HPC applications, their HPC areas, datasets and descriptions

Application Name Category Datasets Description

Amber (Assisted

Model Building with

Energy Refinement)

Molecular

Dynamics

GB-COX2:

Generalized

Born model

Factor IX:

Human Factor

IX

JAC: Joint

Amber and

CHARMM

A suite of programs focused on

molecular dynamics

simulations, particularly on

biomolecules.

CHARMM

(Chemistry at

HARvard

Macromolecular

Mechanics)

Molecular

Dynamics

Alanine

Dipeptide

A molecular simulation program

that  focuses on the study of

molecules of biological interest,

including peptides, proteins,

prosthetic groups, small

molecule ligands, nucleic acids,

lipids, and carbohydrates.
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Table 3: continued

Application Name Category Datasets Description

FLUENT Computational

Fluid

Dynamics

L1, L2, L3,

M1, M2 and

M3

A CFD solver for complex

flows ranging from

incompressible (low subsonic)

to mildly compressible

(transonic) to highly

compressible (supersonic and

hypersonic) flows.

GAMESS (General

Atomic and

Molecular

Electronic Structure

System)

Ab Initio

Quantum

Chemistry

L-

ROTENON

and SICCC

An electronic structure code

with the primary focus on ab

initio quantum chemistry

calculations.

LS-DYNA Crash

Simulation

3 Car Crash A general purpose transient

dynamic finite element

program focused on complex

real world problems.

Seismic Seismic N/A A finite-difference algorithm

applied in the frequency

domain focused on Seismic

Migration.
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Table 3: continued

Application Name Category Datasets Description

STAR-CD Computational

Fluid

Dynamics

Mercedes

C-Class

A CFD code that focuses on

performing powerful multi-

physics (flow, thermal and

stress) simulations.

WRF (Weather

Research and

Forecasting model)

Weather

Simulation

ConUS A next-generation mesoscale

numerical weather prediction

system designed to serve both

operational forecasting and

atmospheric research needs.
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3. COMPUTE COMPONENT PERFORMANCE PROJECTION*

Recall that an HPC application performance is modeled as a function of its

computation and communication. The behavior of the compute component of an HPC

application is represented by a set of hardware performance counter metrics. This allows

for modeling the compute component without the need for simulations or the need for

code analysis. We use the SPEC CPU2006 benchmark suite, described in section 2.3.3,

for our possible surrogates and the IBM p575 machine, described in section 2.3.2, as the

base machine.

Figure 7: Compute performance projection framework

____________
*Part of this section is reprinted with permission from “Performance Projection of HPC
Applications Using SPEC CFP2006 Benchmarks”, by Sameh Sharkawi, Don DeSota, Raj
Panda, Rajeev Indukuru, Stephen Stevens, Valerie Taylor, and Xingfu Wu, in Proc. IEEE
IPDPS, Rome, Italy, May 2009, Copyright 2009 by IEEE.
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1The Genetic Algorithm tool is only
used for faster runtime. Any other

technique such as exhaustive search can
be utilized.
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Figure 7 depicts the high level framework of our compute projection scheme. The

SPEC CPU2006 benchmarks are executed once on the base machine in Simultaneous

Multi Threading (SMT) mode, i.e. two threads per core, and in Single Threaded (ST)

mode, i.e. one thread per core. The resultant hardware performance counter data is

archived for use as needed.  In addition, the HPC applications are executed once on the

base machine in SMT and PST modes and the resultant hardware counter data is

archived.  A tool based on a Genetic Algorithm (GA) is then used to identify the “best”

group of benchmarks that have similar behavior as the HPC application; this is done for

each HPC application.  The output of the GA is a linear equation of the group of

benchmarks that best match the HPC application; this equation is given the term

“surrogate”.  Performance data of the benchmarks that comprise the surrogate is then

used to project the performance of the application onto a target machine. The target

machine performance data for the surrogate is obtained from published data from actual

execution or simulations (for future machines).

3.1 Hardware Performance Counter Metrics

We define the applications and benchmarks’ behavior as a function of six groups

of metrics. These six groups are:

 G1 – Cycles Per Instruction (CPI) Completion Cycles [49],

 G2 -- CPI Stall Cycles [49],

 G3 -- Floating Point Instructions [48],
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 G4 – Data Effective to Real Address Translation (DERAT), Data Segment

Lookahead Buffer (DSLB) and Data Table Lookahead Buffer (DTLB) caches

miss rates [48],

 G5 – Data Cache Reloads and [48]

 G6 – Memory Bandwidth [48].

The choice of these groups of metrics is intended to characterize the application’s

behavior from a micro-architecture perspective. The first three groups focus on the

computation behavior and the last three groups focus on the memory behavior.   Group 1

(G1) shows the portion of the total CPI that was spent by the processor to complete

architected instructions, while group 2 (G2) shows the portion of the total CPI that was

spent in various stalling conditions. Group 3 (G3) shows the distribution of the different

types of floating point instruction. Group 4 (G4) shows the miss rates for DERAT, DTLB

and DSLB caches. Group 5 (G5) shows the application’s memory behavior due to cache

hits/misses, cache configuration, memory access patterns and memory latency while

group 6 (G6) shows the application’s memory bandwidth behavior. Table 4 has the

detailed list of the metrics used in this work.

Table 4: Metrics used to capture application behavior

Metric Name Metric Description

G1 m1,1 CPI_CMPL_CYC Completion cycles

G2 m2,1 CPI_GCT_EMPTY_IC

_MISS

Pipeline Empty due to Instruction-

Cache Miss
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Table 4: continued

Metric Name Metric Description

m2,2 CPI_GCT_EMPTY_BR

_MPRED

Pipeline Empty due to Branch

MisPrediction

m2,3 CPI_GCT_EMPTY_OTHER Pipeline Empty ( Other)

m2,4 CPI_STALL_LSU_ERAT

_MISS

Load,Store Translation Stalls

m2,5 CPI_STALL_LSU_REJECT

_OTHERS

Load Store (Other Reject) Stalls

m2,6 CPI_STALL_LSU

_DCACHE_MISS

Data Cache Miss Stalls

m2,7 CPI_STALL_LSU

_OTHERS

Load/Store flush penalty and latency

m2,8 CPI_STALL_FXU_DIV Stall by any form of

DIV/MTSPR/MFSPR instruction

m2,9 CPI_STALL_FXU

_OTHERS

Stall by FXU basic latency

m2,10 CPI_STALL_FPU_DIV Stall by any form of FDIV/FSQRT

instruction

m2,11 CPI_STALL_FPU

_OTHERS

Stall by FPU basic latency
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Table 4: continued

Metric Name Metric Description

m2,12 CPI_STALL_OTHERS Stall by others (Completion Stall cycles

- Stall by LSU Instruction - Stall by

FXU Instruction - Stall by FPU

Instruction)

m3,1 FPU_FMA_PI Floating Point multiply and add Per

Instruction

m3,2 FPU_OTHER_PI Floating Point other (div,sqrt,etc.) Per

Instruction

G3

m3,3 FPU_STF_PI Floating Point stores Per Instruction

m4,1 DERAT_MISS_RATE Data Effective to Real Address

Translation Cache miss rate

m4,2 DSLB_MISS_RATE Data Segment Look-ahead Buffer

Cache miss rate

G4

m4,3 DTLB_MISS_RATE Data Table Look-ahead Buffer Cache

miss rate

m5,1 DATA_FROM_L2_PI Demand d-L1 Reloads from L2 per

Instruction

G5

m5,2 DATA_FROM_L3_PI Demand d-L1 Reloads from L3 per

Instruction
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Table 4: continued

Metric Name Metric Description

m5,3 DATA_FROM_LMEM_PI Demand d-L1 Reloads from Local

Memory per Instruction

m5,4 DATA_FROM_RMEM_PI Demand d-L1 Reloads from Remote

Memory per Instruction

m6,1 MEM_RD_BAND_PI Memory Read Bandwidth (Bytes/Inst)G6

m6,1 MEM_WR_BAND_PI Memory Write Bandwidth (Bytes/Inst)

3.2 Relating Metrics and Metrics’ Groups to Runtime

Relating each metric to the runtime R of the application allows for understanding

the contribution of these metrics in the overall behavior of the application. This

relationship is dependent on the architecture of the base machine. The process of relating

metrics to runtime R is accomplished in two steps: (1) local to each metric group and (2)

across all metric groups. The first step entails finding the contribution of each metric to

the overall group for that metric. The second step entails finding the contribution of a

given group to the overall runtime.  Details about each step are given below.

For the local step, we use the typical number of cycles that each metric uses to

calculate the contribution of each metric in its respective group. For example, each metric

in G3 represents a different type of FPU instruction. Understanding the base machine

architecture, we know how many cycles each of these different types of FPU instructions

typically require. This can be represented mathematically by defining a function Fi for
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each metric group Gi where Fi is directly proportional to runtime R. We define this

function Fi as given below:





iM

j
jijii mcF

1
,,                                                          (1)

where Mi is the number of metrics in Gi and ci,j is a coefficient representing the

contribution of metric mi,j to runtime R relative to other metrics within Gi. Each

coefficient ci,j is determined based on the cycles associated with metric mi,j; the values for

ci,j are obtained from the specification of the base micro-architecture. To illustrate, using

the same example of G3, c3,1 (FPU_FMA_PI), c3,2 (FPU_OTHER_PI) and c3,3

(FPU_STF_PI) have the values of X, Y, Z, respectively, corresponding to X 6 cycles

required for the floating-point multiply-add operation, Y 35 cycles required for other

floating-point operations, and Z 20 cycles required for floating-point store operations.

The second step in the process of relating metrics to overall runtime is to find the

contribution of each group of metrics to the overall application runtime. In other words,

we need to find the function H that relates each group Gi to R using coefficients ai such

that H  R. H can be defined as follows:

RHGaGaGaGaGaGaH  ,665544332211                      (2)

where ai represents the contribution of each metric group Gi to the total runtime. The

values for ai are calculated using the cycles associated with each group relative to the

runtime.  These values are obtained from the micro-architecture specification of the base

machine.
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3.3 Computation Performance Projection Scheme

The process of performance projection of the compute component of HPC

applications entails three steps. The first step involves characterizing/modeling each HPC

application by providing ranks, corresponding to aiGi as in Equation 2, to the different

metric groups on the base machine. The second step is to adjust these ranks for each

target machine we want to project the performance on. These adjusted ranks provide for a

performance model of the application on the target machine. Once we have the ranks in

place for the target machines, we then use a genetic algorithm (GA) tool to identify the

benchmarks and their respective coefficients that are similar to the HPC application based

upon the performance on the base machine. The three steps allow for the HPC

characterization/modeling on the target machine to be used with the similarity analysis to

produce better results.

3.3.1 Calculating Ranks for Metrics’ Groups on Base Machine

Our goal in this step is to find the rank for each metric group. In other words, we

want to arrange the metrics’ groups according to their contribution in runtime on the base

machine in a descending order. Thus, the rank of each metric group reflects its

significance to the application behavior/runtime. To illustrate, HPC applications can be

broadly characterized as compute intensive (e.g., requires significant number of compute

operations per memory operation) or memory intensive (e.g., requires significant number

of memory operations per computation). Consequently, memory intensive applications

may have groups G5 (data cache reloads) ranked higher than G3 (FPU instructions).
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Calculating the ranks of metric groups follows directly from Equation 2. The

coefficients ai in Equation 2 are already calculated based on the architectural

characteristics of the base machine as in Section 3.2. The values for Gi are calculated

using the function Fi in Equation 1 corresponding to each group Gi. The rank of a group

Gi then corresponds to the magnitude of the term aiGi for this group, the higher the

magnitude of aiGi the higher the rank of the group Gi.

3.3.2 Calculating Ranks for Metrics’ Groups on Target Machine

The significance of each metric group to the performance of the HPC application

is relative to the architecture of the machine the application is running on. Since the rank

of each metric group reflects the significance of this metric group to the performance of

the HPC application in relation to the architecture of the machine, the rankings calculated

on the base machine need to be adjusted for the target machine. The availability of

performance counter metrics for the set of benchmarks on the base machine, and the

availability of their runtimes on both the base and the target machine allows for

mathematically adjusting the ranks of the metric groups from the base to the target.

Since the goal in this step is to adjust the ranks of metrics’ groups on the base for

the target machine, we need to identify the differences between these two machines. The

architectural characteristics of a machine are reflected in the coefficients ai in Equation 2;

thus, we need to calculate coefficients ai’ for each group Gi on the target machine that

will reflect the architectural difference of the target machine from the base. To calculate

ai’, we define the set B which includes all the benchmarks, SPEC CFP2006 in this case.

For each benchmark bl in the set B, we define Hbl using Equation 2 as follows:
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BlRHGaGaGaGaGaGaH
lllblblblblblbl bbb  ,665544332211            (3)

where Rbl is runtime of benchmark bl on base machine. Also we define Hbl’ using

Equation 2 as follows:

BlRHGaGaGaGaGaGaH
lllblblblblblbl bbb  '',''''''' 665544332211       (4)

where Rbl’ is runtime of benchmark bl on target machine. From Equations (3) and (4), we

can get the ratio between the runtimes of benchmark bl on the base machine and the

target and define Hbl’ as follows:

l

l

ll

b

b

bb R

R
HH

'
'                                                (5)

Since Hbl can be calculated for the base machine, and runtimes Rbl of the base and Rbl’ of

the target are known, we end up with a set of simultaneous linear equations each for a

different benchmark bl in B. In this set, we are solving for six unknowns, a1’, a2’, a3’, a4’,

a5’ and a6’. After solving the set of linear equations, we identify the values for the

coefficients ai’ for each group Gi on the target machine. These coefficients reflect the

architectural characteristics of the target machine and how different/similar it is from the

base machine. Once the coefficients ai’ are identified, we calculate the ranks for the

metrics’ groups on the target machine in the same way we calculated the ranks for the

base using Equation 2 where the rank of a group Gi corresponds to the magnitude of the

term ai’Gi for this group, the higher the magnitude of ai’Gi the higher the rank of the

group Gi.
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3.3.3 Identifying Surrogates

In the last step of our projection methodology we attempt to select some

benchmarks and coefficients for those benchmarks that will represent an application

whose behavior is the closest to the HPC application at hand. These selected benchmarks

that comprise the surrogate for a given application, app, form the set Sapp. Sapp is a subset

of the set B, the set of SPEC CPU2006 benchmarks, and Sapp  B. Each member sk of Sapp

has a weight wk. The combination of the surrogate called comb_surrogates is defined as

follows:





appS

k
kk swsurrogatescomb

1

_                                  (6)

The smaller the error between the metrics of the application and the metrics of

comb_surrogates, the closer is the behavior of comb_surrogates to the application. Thus,

we identify comb_surrogates of an HPC application by attempting to minimize the error

between the metrics of the HPC application and that of comb_surrogates for the base

machine.  A genetic algorithm (GA) tool is used to identify the members of Sapp and their

respective weights. We define the error between the metrics of the application and the

metrics of comb_surrogates as in Equation 7
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                       (7)

where Ei is the weighted sum of errors of all metrics in group Gi, Mi is the number of

metrics in Gi, mi,j is metric j in group Gi as in Table 4. Also mi,j(comb_surrogates) is calculated

as follows:
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where Isk is the total number of run instructions or the path length of surrogate sk and Itotal

is the sum of all run instructions of all sk in Sapp. We multiply the weighted metric of a

surrogate sk by the term Isk/Itotal to account for the contribution of this surrogate in

comb_surrogates since by combining surrogates we assume running the surrogates

serially. The multiplication of this term accounts for the differences in runtimes of the

surrogates.

Since we collect the metrics of the HPC application and the benchmarks in both

SMT and ST modes as mentioned earlier above, the GA tool attempts to minimize the

error in metrics for each of the six groups for both SMT and ST modes to be below a

chosen limit. In this work, we chose the limit to be 10.0%. To achieve this, we defined

the fitness function of the GA tool as follows:

)1.0&..&1.0&1.0(
621

1
)(,6

6

1
)(,2

2

1
)(,1

1 




M

q
appq

M

q
appq

M

q
appq m

E

m

E

m

E
if .

return(0) .

else (9)

)....(
621

1
)(,6

6

1
)(,2

2

1
)(,1

1




 M

q
appq

M

q
appq

M

q
appq m

E

m

E

m

E
return .



48

The GA tool terminates when the return value of the fitness function is 0; thus, the term

Ei /


iM

q
appqim

1
)(,
for each of the six groups for both SMT and PST modes has to be below 0.1.

The goal of reducing the error in metrics below the 10.0% limit for all metrics’

groups is not achievable in many cases. Nevertheless, the ultimate goal is to reduce the

projection results error in runtime on the target machine. Consequently, reducing the

error in metrics’ groups with the highest contribution in runtime will yield better

projection results than reducing the error in metrics’ groups with the least contribution in

runtime. Thus, in the cases where the limit of 10% is not achievable, we adjust the GA

tool to reduce the error in metrics with the highest rank on the target machine first. Once

the error limit is achieved in the highest ranked metric group, the GA tool attempts to

reduce the error on the next highest ranked metric group and so on. These ranks were

calculated in the previous step of projection methodology in Section 3.3.2. The HPC

application characterization/modeling on the target machine using the metrics’ group

ranking in combination with the similarity analysis produces better projection results.

In our scheme, we use the SPEC CFP2006 performance throughput data of target

machines and calculate the relative performance to our base machine. Once the set Sapp of

the surrogate and the respective weights for the HPC application is found using our

scheme, we apply the following steps to get the application runtime on a target machine:

I. Multiply the surrogates with their respective weights to get the application

relative performance on the target machine.





appS

k
kkapp PwP

1

)( (10)

where Pk is the relative performance of surrogate sk and wk is the weight for surrogate sk.
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II. The scaling factor is then multiplied by the application runtime on the base

system which gives the projection of the application on the target system.

3.3.4 Genetic Algorithm to Identify Surrogates

In the previous section, we discussed the details of the projection scheme used.

To address time requirements, we use a probabilistic method to minimize the difference

value discussed in the previous section.  In particular, the complexity of the algorithm to

find the best combination of surrogates and their respective weights is in the order of

O(wnm) where w is the range of weights to try on each benchmark that comprise the

surrogate, n is the number of surrogates and m the combination size. In this work, we

used a string based Genetic Algorithm (GA) tool [58]. Parameters for the genetic

algorithm are shown in Table 5.  We defined the string as a sequence of bits representing

the benchmarks and sequences of weights for each of these benchmarks. A “1” bit means

choose this benchmark otherwise don’t choose it. The weights for the benchmarks range

from 0.0009765625 (1/1024) to 1024. Figure 8 shows the framework for the genetic tool.

Once the population is generated, each string is decoded and we get the surrogates and

their weights. We use Equation 9 as our fitness as indicated earlier. After calculating

fitness, we check for termination fitness (zero for perfect match) or we try other

individuals. When the tool is stuck for several generations, cataclysm is performed until

reaching max generations.
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Table 5: Genetic Algorithm parameters

Figure 8: Genetic tool framework

Parameter Value
Tournament Size 7

Population Size 10000

Mutation Rate 0.03

Reproduction Rate 0.10- 1/Pop Size

Elite Reproduction 1/Pop Size

Crossover rate 0.77

Max Generations 2000

Max Generations No Progress 15

Termination Fitness 0.0

String
format Generate Population Strings

Do Mutation-Crossover-Reproduction

String Genetic Tool

Decode Strings

Get Weights

Weight Metrics

Get Surrogates

Calculate
Fitness

Termination
Fitness

Getting Closer To Termination Same
Fitness

Weight
Method
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3.4 Experimental Results

We used our method given in Figure 7 to project the performance of the following

eight large-scale scientific applications: AMBER [51], CHARMM [52], FLUENT [53],

GAMESS [54], LS-DYNA [55], a seismic application that will be referred to as Seismic,

STAR-CD [56] and WRF [57] on four different systems..  Table 3 in section 2.3.4 lists

the input datasets and the category for the applications we used in our experiments. Table

6 presents the different systems that we projected on and their respective properties. We

chose the systems to be quite different from the base as well as from each other. The

POWER6 chip utilized in the two JS22 and p570 systems, although having the same ISA

as the base machine, has an extremely different micro-architecture than the POWER5+

chip. As indicated in Table 6, POWER5+ chip utilizes two out-of-order execution cores,

while POWER6 chip utilizes two in-order execution cores. Also, the two POWER6

systems have quite different cache and memory subsystems. On the other hand, the Intel

Woodcrest chip has dual out-of-order execution cores that have different ISA and micro-

architecture than the POWER5+. The Clovertown is a multi-chip module (MCM) with

dual Woodcrest chips that run at a slower frequency and share the memory bandwidth.
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Table 6: Computation base system and target systems used for validation

Machine Processor Number

of

Cores

Processor

Frequency

Memory

Per

Core

L2

Cache/core

IBM p575 Out of Order

Execution POWER5+

2 1.9 GHz 4GB 1.9 MB

(shared)

IBM JS22 In Order Execution

POWER6

2 4.0 GHz 4GB 4 MB

IBM p570 In Order Execution

POWER6

2 4.7 GHz 8GB 4 MB

IBM

x3550

Out of Order Intel

Woodcrest

2 3 GHz 2GB 2 MB

IBM

x3650

Out of Order Intel

Clovertown

4 2.4 GHz 2GB 2 MB

In the results figures below we show the signed value of the error in runtime;

however, in this work, we focused on reducing the magnitude of the runtime error and all

averages are based on absolute errors. The number of selected benchmarks that comprise

the surrogate for each application was ranging between a minimum of one and a

maximum of four as indicated in Table 7. Typically, the benchmark(s) with the highest

weights were from the same scientific area of the HPC application.
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Table 7 indicates the different surrogates of the HPC applications for the

POWER6 IBM JS22 system. In the area column the abbreviations for areas are as

follows: QC – Quantum Chemistry, FD – Fluid Dynamics, MD – Molecular Dynamics,

WS – Weather Simulation, P – Physics, RT – Ray Tracing, O – Optimization, SM –

Structural Mechanics and S – Seismic. For the properties column the abbreviations for

properties are as follows: CI – Compute Intensive, MI – Memory Intensive, IB – In

Between (it lies in the middle between compute intensive and memory intensive), LB –

Low Bandwidth and HB – High Bandwidth. The numbers in the surrogates’ column

correspond to the SPEC CFP2006 numbers and their weights respectively. As it indicates

in Table 7, all surrogates for HPC applications are typically from the same area of the

HPC application. From a micro-architectural perspective, the combined benchmarks in

the surrogate always have the micro –architectural properties as the HPC application. For

example, in the case of AMBER-COX2, the combined surrogates are computing

intensive with very low bandwidth requirements as AMBER-COX2; in addition, the

bigger component of the combined surrogates (435.gromacs) is Molecular Dynamics

benchmark as AMBER-COX2. Another point worth mentioning is that in some cases the

individual benchmarks have different micro-architectural properties compared to the

HPC application; however, when combined, the resultant combined surrogate has very

similar properties to the HPC application. To illustrate, in the case of LS-DYNA,

416.gamess is a compute intensive benchmark with very low bandwidth requirement,

while LS-DYNA is a memory intensive application; nevertheless, when 416.gamess is

combined with the other surrogates such as 470.lbm, 436.cactusADM, the resultant

combined surrogates have very similar properties to LS-DYNA.
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Table 7: Surrogates for the HPC applications on POWER6 IBM JS22 system

Area Prop. Surrogates Surr. Area Surr.
Prop.

AMBER-COX2 MD CI 416 x 0.877 + 435 x 1.712 QC – MD CI
AMBER-FIX MD MI - LB 416 x 0.737 + 436 x 1.479

+ 444 x 1.936
QC –
P –
MD

MI – LB

AMBER-JAC MD MI – LB 410 x 0.092 + 435 x 0.633
+ 444 x 2.359

FD – MD MI – LB

CHARMM MD CI 416 x 0.907 + 444 x 1.487 QC – MD CI
FLUENT-L1 FD MI – HB 416 x 1.035 + 444 x 1.393

+ 447 x 1.251 + 450 x
1.356

QC – MD
– O

MI – HB

FLUENT-L2 FD MI – HB 410 x 1.169 + 416 x 0.742
+ 437 x 1.113 + 465 x
1.583

FD – QC MI - HB

FLUENT-L3 FD MI – HB 410 x 1.106 + 416 x 0.573
+ 454 x 0.792 + 465 x
2.104

FD – QC
– SM

MI – HB

FLUENT-M1 FD IB 465 x 1.569 + 481 x 0.138 QC – WS IB
FLUENT-M2 FD IB 416 x  0.229 + 437 x

0.674 + 465 x 2.938
QC – FD IB

FLUENT-M3 FD IB 437 x 0.337  + 465 x
1.853 + 481 x 0.489

FD – QC
– WS

IB

GAMESS-LROT QC CI 453 x 0.079 + 465 x 1.094 RT – QC CI
GAMESS-SICC QC CI 465 x 0.860 QC CI
LS-DYNA FD MI – HB 416 x 0.793 + 436 x 1.837

+ 450 x 0.158 + 470 x
1.414

QC – O –
P – FD

MI - HB

Seismic S MI – HB 416 x 1.004 + 470 x 1.518 QC – FD MI - HB
STAR-CD FD MI – HB 410 x 1.782 + 481 x 0.736 FD – WS MI – HB
WRF WS MI – HB 410 x 0.971 + 436 x 0.491

+ 454 x 1.187 + 481 x
1.153

FD – P –
SM – WS

MI – HB
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Figure 9: Projection results for POWER6 IBM JS22 system

Figure 9 shows that our scheme was able to predict the performance of the HPC

applications within 5.5% average error (based upon magnitudes of the error) on IBM

JS22 POWER6 system. Our projection errors are less than 10.0% for all workloads with

the exception of GAMESS SICC. GAMESS SICC projection error, although still low, is

the only error above 10.0% (14.1%) on JS22. GAMESS SICC requires very little

memory bandwidth. When applying our ranking scheme in Section 3.2 for JS22, groups

G2 and G1 are ranked the highest respectively; however, the GA tool couldn’t find a

combination of surrogates that are similar to GAMESS SICC G2 and G1.
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Figure 10: Projection results for POWER6 IBM p570 system

Figure 10 shows the projection results on the IBM p570 POWER6 system. The

average projection error for the 16 workloads on the p570 system was 9.8%. With the

exception of Seismic and GAMESS SICC, all projection errors are below 15.0%. In fact,

only five applications had their projection error between 10.0% and 15.0% while the rest

were below 10.0%. The reason GAMESS SICC projection error is 15.9% is due to the

same reason as in JS22 system. The Seismic application on the other hand exhibits

unique behavior that SPEC CFP2006 doesn’t have an application that copies it. Seismic

is a bandwidth intensive application; however, good prefetching on the base machine

hides the effect of the high bandwidth. Thus, the application doesn’t stall waiting on the

load-store unit (LSU) and the CPI is low. No benchmark in the SPEC CFP2006 suite

exhibits the same behavior and the best combination of surrogates was off on many

metrics’ groups specially G1 and G2. This will be reflected in the other machines as in

Figures 11 and 12.
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Figure 11: Projection results for Intel Woodcrest IBM x3550 system

Figure 11 shows the projection results on the IBM x3550 system with Intel

Woodcrest chip. The average error for the 16 applications is 8.3%. This is very

interesting since our scheme projected the performance using hardware performance

counters collected on a different system using a chip that has different micro-architecture

and different ISA with such accuracy. With the exception of Seismic, for the reasons

mentioned above, all projection errors are below 15.0%. In fact, 10 applications had

projection errors less than 10.0%.
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Figure 12: Projection results for Intel Clovertown IBM x3650 system

Figure 12 shows the projection results on the IBM x3650 system with Intel

Clovertown MCM. Recall, the Intel Clovertown is an MCM with two Woodcrest chips

that share the bandwidth. Thus, Clovertown has a significantly limited bandwidth

compared to the base machine. The average projection error for the IBM x3650 system is

12.8%. AMBER FIX and CHARMM are both memory intensive applications. Due to the

nature of the Clovertown MCM, G5 is ranked as the highest group for these two

applications; however, the GA tool couldn’t identify a combination of surrogates that is

quite similar to these two applications in G5. This dissimilarity between the combined

surrogates and these two applications didn’t have a significant effect in the projection

results for the other systems since G5 was ranked as high as it is ranked on the IBM

x3650 system with the Clovertown MCM. This explains the 19.9% and 25.9% error for

AMBER FIX and CHARMM respectively. As for FLUENT L3, with projection error of

29.9%, the highest ranked group was G6 followed by G5. The mismatch, however, was in

G6. FLUENT L3 bandwidth in the PST mode is higher than the bandwidth in SMT mode.
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This happens in the case of FLUENT L3 because in PST mode each task has more

resources than in SMT mode and this allows prefetching to prefetch more data in PST

mode than in SMT mode. Again in this case no benchmark in the SPEC CFP2006 suite

exhibits the same bandwidth behavior as FLUENT L3. This mismatch effect is

exacerbated on Clovertown and doesn’t show on other systems since G6 is ranked as the

highest group only on Clovertown. A point worth mentioning, GAMESS SICC mismatch

for groups G1 and G2 didn’t have an effect on the projection on Clovertown because G1

and G2 are ranked lower for GAMESS SICC on Clovertown than on the other machines.

Overall, our projection scheme projected with high accuracy using micro-

architecture dependent metrics collected on one base system to four different systems

utilizing different micro-architecture and different ISA in the case of the Intel systems.

When the highly ranked metrics’ groups on a system for a certain application has

significantly high metrics’ error, the projection results for this application on that system

are comparatively high and our scheme indicate that those projections are not very

accurate.

3.5 Related Work

Several researches have been done on using surrogate workloads to predict

application performance. SPEC benchmarks suite was often proposed as the benchmarks

of choice due to the abundance of published data but it was not used for HPC

applications.  NAS Parallel [59] benchmarks, on the other hand, were used more often

with HPC applications due to their parallel nature. Also curve fitting on runtimes is

extensively used in industry to project performance using surrogate workloads.
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Todi and Gustafson [35] mapped applications to the HINT benchmark curve and

then used the HINT curve for a given machine to predict the application performance.

They showed that HINT is a superset for the other benchmarks included in the study,

NAS Parallel, SPEC, STREAM and others. The main goal of their work was to find the

correlation between HINT and the other benchmarks indicating that HINT is a superset of

these benchmarks and then using it in prediction.

Phansalkar [60] used hardware performance counter experimentation to

categorize the SPEC CPU2006 benchmarks. His work used statistical techniques such as

principal component analysis and clustering to draw inferences on the similarity of the

benchmarks and the redundancy in the suite and arrive at meaningful subsets. In his

paper, he didn’t extend the work to involve performance projection.

Hoste [34] proposed the use of SPEC CPU2000 in performance projection of

applications. His scheme was to measure a number of micro-architecture-independent

characteristics from the application of interest, and relate these characteristics to the ones

of the programs from SPEC 2000. Based on the similarity of the application of interest

with programs in the benchmark suite, he made a performance prediction of the

application of interest. He proposed and evaluated three approaches (normalization,

principal components analysis and genetic algorithm) to transform the raw data set of

micro-architecture independent characteristics into a benchmark space in which the

relative distance is a measure for the relative performance differences. His work was not

extended to HPC applications as this paper does. In addition, he used binary

instrumentation instead of hardware performance counters collected on several systems to

create the data matrix not just one base machine. Also, Hoste’s main goal was to predict
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machine ranks for applications rather than actual performance of application on certain

target machine which makes his accuracy measurements different than ours.

Tikir [33] used genetic algorithms approach to model the performance of

memory-bound computations. He proposed a scheme for predicting the performance of

HPC applications based on the results of MultiMAPS benchmarks. A Genetic Algorithm

approach was used to "learn" bandwidth as a function of cache hit rates per machine with

MultiMAPS as the fitness test.  His approach differs than what we propose in this paper

in many aspects. His scheme works only on memory bound applications while ours can

be used on all applications. His approach requires simulating different cache sizes to

understand the cache characteristics of the application while we use performance counter

measurements with SMT and PST mode. Our approach doesn’t require instrumentation

of binary code as we depend on hardware performance counters collected by simply

executing the binary on a base machine. Also, Tikir approach is tightly coupled to

MultiMAPS as the set of benchmarks. Our approach can use any set of benchmarks or

several sets of benchmarks.

3.6 Summary

We presented a scheme to project the performance of HPC applications using

surrogate workloads from the SPEC CPU2006 benchmark suite and hardware

performance counter data. The scheme is very flexible since it doesn’t require any

instrumentation to the binary code or the source code and only requires execution of the

application and the benchmarks on one base machine. Moreover, simulation is not needed
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eliminating the long runtimes incurred in simulations. The use of a string based genetic

tool reduces the projection scheme runtime significantly.

SPEC CPU2006 being developed as a serial version of real parallel applications

covers a large range of HPC applications’ space but not the entire range as in the case of

Clovertown projections. However, our scheme is not tightly coupled to SPEC CPU2006

and can easily incorporate other benchmark suites such as SPEC MPI2007, NAS Parallel

Benchmarks or others. The choice of SPEC CPU2006 was mainly because of its

abundant published data and its similarity to real HPC applications.

Our scheme uses hardware performance counter data for the HPC applications

and the SPEC CPU2006 suite from one base machine to model the behavior of the HPC

applications as a function of the benchmarks of SPEC CPU2006. The model of the HPC

application characterizes its behavior based upon a common set of benchmarks using

hardware performance counter data. This model gives an insight on the nature of the

application, category (Fluid Dynamics, Weather, etc...) and what is the best system it

would run on.

Also, in our scheme, we combine the runtimes of the benchmarks on the base

machine and on the target with the performance metrics to architecturally characterize

each system we are projecting on. This architectural characterization allows for

understanding the relation between the behavior of the application and the target

architecture. This understanding gives us insight on which metrics are of more

significance to the behavior of the application on the target system allowing for better

projection results. Furthermore, our scheme has the ability to point out possible

inaccurate projections based on the rankings of the metrics groups on the target machine.
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For those applications with the highest ranked group(s) having significantly higher

metrics’ errors, our scheme indicates that those projections may be inaccurate.
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4. COMMUNICATION COMPONENT PERFORMANCE

PROJECTION

In section 3, we presented our method to project the performance of only the

computation component of an HPC application using published data of industry standard

benchmarks, the SPEC CPU2006, and hardware performance counter data from one base

system. In this section, we extend our method to project the communication performance

of HPC applications onto different systems using MPI benchmark data on the different

systems as well as a base system, and the communication profile of the application on the

base system.  In particular, we use the Intel MPI Benchmarks (IMB) [32] as we find it the

most comprehensive MPI benchmark suite. The main advantage of our method is the use

of MPI profiles of the HPC application instead of MPI traces, which require significant

storage and are very complicated, hard to understand and parse. For example, our method

requires 12KB storage for the communication profile of the NAS BT benchmark, in

contrast to 2.6GB storage for an MPI trace of the communication behavior of the same

benchmark for 128 tasks. Further, our method does not involve any simulations, which

are often very time-consuming.

Figure 13 depicts the high level framework of our method. The HPC application

is executed multiple times on the base machine where each execution utilizes different

number of cores Cj for j{1,..,c} and c is the maximum number of cores the HPC

application can utilize. During each execution, we obtain the application’s MPI profile

for Cj number of cores. The resultant MPI profiles are used to produce an MPI

communication model for the HPC application. The model is a function of the number of
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cores, the MPI routines (e.g. MPI_Bcast, MPI_Reduce, etc), the mess age sizes, and the

number of calls for each routine. The MPI communication model provides for

understanding the HPC application scaling of each MPI routine for different Cj. In

addition, the performance of IMB benchmarks, is obtained for the base and the target

machines for different numbers of cores, Cj. Target system parameters provide the

performance of each MPI routine from the IMB benchmark for different message sizes at

each Cj on the target system. The application WaitTime model on the base machine is

generated by analyzing the load imbalance of the application using the IMB data on the

base machine and the application MPI profile data on the base machine.  In the final step

of our method, we combine the application MPI model on the base machine with the

WaitTime model on the base machine and the IMB parameters for the target machine to

project the HPC application MPI communication performance on the target system.

HPC Application

C1 MPI
Profile

Intel MPI Benchmarks for
Target System

Cc MPI
Profile

Different Number   of Cores Cj

Application MPI Model on Base Machine

C1 Target
Machine

IMB Values

Cc Target
Machine

IMB Values

Different Num ber of Cores Cj

Target Machine Parameters

Application MPI Target Machine Model

Application WaitTime Model on Base Machine

C1 Base
Machine

IMB Values

Cc Base
Machine

IMB Values

Different Num ber of Cores Cj

Intel MPI Benchmarks

Execute on Base
Machine

Execute on Base
Machine

Projection of HPC Application Communication Performance
on Target System

Figure 13: Framework for MPI communication projection scheme
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The use of MPI profiles in projecting the communication performance of HPC

applications allows for an efficient and fast projection scheme. In contrast to MPI traces,

MPI profiles do not have the level of detail found in MPI traces, such as traces obtained

by MPIDtrace, which often obscures the high level behavior of the communication

component of an HPC application. In addition, obtaining MPI traces is a slow process

which often results in massive trace files. These massive trace files are typically too

complicated to parse. Also using MPI trace files as input to network simulators is

extremely time consuming. On the other hand, MPI profiles are easy and simple to obtain

and understand. MPI profiles provide a high level picture of the MPI communication

component of an HPC application.

4.1 MPI Profile

An MPI profile is a high level representation of the communication component of

an HPC application. This high level representation provides for speed in collection and

efficiency in modeling An MPI profile consists of a summary of all MPI routines called

by the application, their message sizes and runtime of each call as well as the total

runtime of the program. The frequency of each call and its contribution in the overall

runtime can be calculated from the profile data. To obtain the MPI profile, one links the

HPC application to the profiling library. Once linked, the MPI profile is produced during

execution and an output file of size 12KB (for a 128 tasks) is produced. The profile is

produced on a per task basis, i.e. each task has its own MPI profile. In this work, we used

an MPI profiling library available with the IBM Parallel Environment [61]. The

information in the profile is as follows:
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1. A summary of all MPI routines the application called and the aggregate timing for

each routine. The profiling starts with the MPI_Init call and ends at the

MPI_Finalize.

2. Message sizes distribution. The message size distribution breaks down each MPI

routine into message sizes for this MPI routine, number of calls for this specific

message size and the aggregate time for the calls.

3. The breakdown of total execution time for each task. This breakdown involves the

percentage of execution time spent doing computation and the percentage spent in

communication. The communication percentage also includes time spent waiting

in an MPI_Waitall for example.

4.2 Intel Benchmarks and Target Machine Parameters

The IMB, explained in details in section 2.3.3, is the benchmark suite of choice

for most hardware vendors and researchers in measuring the communication and

interconnect architecture of a system. It checks many MPI communication patterns and

automatically detects clustering, and reports intra-cluster and inter-cluster performance.

IMB is targeted at measuring Point to Point MPI communication and Collective MPI

communication. Also, IMB measures performance for different message sizes.

In this work, we use IMB benchmarks to measure the performance of the

communication and interconnect architecture of both, the base and target, systems. IMB

provides a concise set of benchmarks targeted at measuring the most important MPI

functions. In addition to the default set of benchmarks included in IMB, we add one extra

benchmark, multi-Sendrecv. The multi-Sendrecv benchmark measures the performance of
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the MPI library and the underlying interconnect when multiple successions (one or more)

of non-blocking point to point calls (MPI_Isend and MPI_Irecv) are issued followed by

an MPI_Waitall as in Figure 14. Note that multi-Sendrecv benchmark defined here is

different than IMB Multi-Sendrecv. In a blocking point to point call, the control returns

back to the user only when the user buffer can be safely used. IMB benchmarks such as

PingPong utilize such calls to measure the interconnect network latency and bandwidth.

Contrary to non-blocking calls, control returns to user before the buffer can be safely

used. Thus, understanding the behavior of a sequence of non-blocking calls followed by

an MPI_Waitall requires special handling in order to accurately parameterize the non-

blocking calls on the base and target machines.

Figure 14: multi-Sendrecv benchmark

do{
     NUM_ISEND_IRECV++;

Time_Stamp(entry);
     for(i=0;i< ITERATIONS;i++)
     {

for(int j=0; j < NUM_ISEND_IRECV; j++)
{
   MPI_Isend(destination);
   MPI_Irecv(source);
}
MPI_Waitall;

     }
Time_Stamp(exit);

}
while
(!multi-Sendrecv_performance_calculated());
/* Calculate TLibraryOverhead and TinFlight */
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In the case of blocking MPI routines, the execution time measured by IMB is the

total time from the instance the MPI routine is called until the control returns back to the

caller. This measured time includes the time the message takes in the interconnect

network (time of flight) to reach the destination in addition to the software library

overhead on both the send and receive sides. In the case of the multi-Sendrecv

benchmark, the measured execution time is the entire time span from the instance of the

first MPI_Isend/MPI_Irecv is called until the completion of the MPI_Waitall as indicated

in Figure 14. Therefore, we can define this measured time TTransfer(mi)  for an MPI routine

Mimi ,  where M is the set of all MPI routines as:

MimxTmTmT iinFlightirheadLibraryOveiTransfer  ),()()( (11)

TLibraryOverhead(mi) is the time in the MPI software library from the instance the call to MPI

routine mi is issued until the message reaches the interconnect hardware for transferring.

This TLibraryOverhead(mi) is typically very little compared to the TinFlight(mi). The second

portion of Equation 11, xTinFlight(mi) represents the TinFlight(mi) that it takes the message, in

the interconnect, for an MPI routine mi to reach the destination multiplied by x which is

the number of messages in flight. For a typical MPI routine such as MPI_Bcast or

MPI_Sendrecv we assume x is 1. In the case of multi-Sendrecv benchmark, x is the

number of MPI_Isend/MPI_Irecv calls issued before the MPI_Waitall. The multi-

Sendrecv benchmark measures the execution time for different number of successions of

MPI_Isend and MPI_Irecv followed by MPI_Waitall. This allows for finding the

TLibraryOverhead(mi) and TinFlight(mi) in Equation 1. Note that TTransfer(mi) doesn’t include any

time MPI_Waitall spends waiting because of load imbalance between tasks especially

load imbalance in computation and communication. The time MPI_Waitall spends
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waiting because of load imbalance called WaitTime is defined later in details in Section

4.3. Note that a similar benchmark to the multi-Sendrecv is required for the one sided

MPI2 routines which follows the same idea.

Recall that target machine parameters are used to understand the performance of

each MPI routine on the target system, the change in performance of these call types with

different message sizes and the scaling with different number of cores Cj. IMB

benchmarks, as previously mentioned, provide the performance of each MPI routine for

different message sizes utilizing different number of cores. Thus, using IMB we can

obtain target machine parameters which can be represented by Equation 12.

},...,1{,},,...,1{),,( skMicjSmP kijC  (12)

From Equation 12, a target machine parameter P indicates the performance (in execution

time) for an MPI routine mi and message size Sk at core count Cj where c is the maximum

number of cores the HPC application can utilize, M is the set of all MPI point to point

and collective routines and s is the maximum message size feasible on the target system.

To illustrate, parameter P for an MPI_Bcast, message size 1 and core count 32 would

indicate the time it takes to broadcast a message of size 1 byte to 32 cores on the

interconnect of the target machine.

Parameter P for the multi-Sendrecv benchmark represents performance for MPI

tasks on the target system placed in a ring topology. This is similar to IMB Sendrecv

where the processes form a periodic communication chain. Each process sends to the

right and receives from the left neighbor in the chain. Thus, P for multi-Sendrecv doesn’t

consider queuing delays in interconnect due to different communication patterns such as

closest neighbors.
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Target machine parameters can be obtained through target machine simulators if

the system doesn’t exist yet or through direct execution on the platform if it exists and

available. In the case of future systems, simulating IMB is a much simpler task than

simulating the actual HPC application. In case of an existing system, executing IMB on

the system may also be simpler than executing the actual HPC application especially if

the HPC application is incompatible with the target system OS. In addition, if the target

system required is larger than the available system, regression based approaches to

extrapolate IMB values for a larger system is simpler than extrapolating performance of

the HPC application due to the non-linear behavior of HPC applications.

4.3 Defining WaitTime

The communication benchmarks do not entail any computation. Also, all tasks

send the same number of messages with the same message sizes. Therefore, there is no

load imbalance between tasks and all the performance data illustrated by IMB and the

multi-Sendrecv benchmarks reflect the performance of the interconnect architecture.

However, HPC applications typically involve communication and computation

components. In addition, computation and communication may not be balanced among

all tasks, i.e. the ratio of computation to communication is not the same among all tasks.

This imbalance results in some tasks idly waiting for other tasks to finish before

continuing on with their next phase of the compute iteration or timestep. We call this idle

waiting WaitTime. Therefore, the performance of the MPI communication component of

an HPC application represented in elapsed time can be defined as:

MimTmTmT iWaitiTransferiElapsed  ),()()( (13)
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TTransfer(mi)is the transfer time for an MPI routine Mimi , where M  is the set of all

MPI point to point and collective routines utilized by the HPC application as defined in

Equation 11. Note that the set MM   since TElapsed(mi) is specific to an HPC application

which may not utilize all MPI routines in set M. The TWait(mi), on the other hand, is the

WaitTime elapsed due to load imbalance especially between computation and

communication among different tasks for MPI routine mi. Note that TTransfer(mi) defined in

Equation 11 does not include TWait(mi) due to load imbalance. To illustrate, consider the

multi-Sendrecv benchmark defined in Section 4.2. Recall, in the multi-Sendrecv

benchmark successions of MPI_Isend/MPI_Irecv are called followed by an MPI_Waitall.

Since in the benchmark there are no computations taking place, no imbalance due to

computation occurs, and TTransfer(multi-Sendrecv) corresponds to TLibraryOverhead(multi-

Sendrecv) and TinFlight(multi-Sendrecv); thus, no waiting time on computation completion

occurs, i.e. no TWait(multi-Sendrecv). Imbalance between tasks due to network times in

the IMB is included in the TTransfer(mi) component reported by IMB.

4.4 Performance Projection Scheme

Recall that, we introduce a scheme to project the MPI communication

performance of HPC applications using MPI profiles obtained on one base machine. As

indicated in Figure 13, we obtain MPI profiles for the HPC application for all core counts

Cj where j{1,..,c}. These profiles are then used to create the HPC application MPI

communication model explained in details in section 4.4.1. The same MPI profiles are

used in conjunction with IMB data for the base system to create the WaitTime model due

to load imbalance explained in section 4.4.2. To understand the performance of each MPI
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routine on the target system, the change in performance with different message sizes and

the scaling with different number of cores Cj, IMB is used to obtain the target machine

parameters. In our projection scheme, we combine the HPC application MPI

communication model, the WaitTime model and the target system parameters to produce

the HPC application MPI performance model on the target system. This model is used to

project the performance of the MPI communication component of the HPC application on

the target system. In this section, we discuss the details of the MPI profile, IMB

benchmarks and how these benchmarks are used to create target machine parameters. We

also define the concept of WaitTime due to load imbalance in HPC applications.

The process of performance projection of HPC applications, in this work, entails

three steps.

1. Characterizing/modeling the MPI communication component of each HPC

application. The HPC application MPI communication model is a function of MPI

routine, message sizes for these routines and the number of calls for each of these

message sizes at each Cj.

2. Modeling the WaitTime, defined in section 4.3, due to load imbalance in the HPC

application.

3. Combining the MPI communication model, the WaitTime model and the target

system parameters to produce the HPC application target system MPI

communication model which is used to project the communication performance

of the HPC application on the target system.
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4.4.1 HPC Application MPI Communication Model

The MPI communication Model provides for understanding the HPC application

scaling of each MPI routine for different Cj. The target machine parameters detailed in

Section 4.2 are target system specific; however, the HPC application MPI communication

Model is an HPC application specific model independent of the system the application is

executing on. Therefore, we define an MPI communication model MM for an HPC

application A with a specific problem size D. The problem size D indicates that the

dataset size and the algorithm used by an application A are constant for all Cj.

Furthermore, an application A with problem size D will utilize a set of MPI routines

MM   where M is the set of all MPI point to point and collective routines as indicated in

Section 4.3.

The MM model identifies how each MPI routine scales with different number of

cores Cj. For each MPI routine, the message size and number of calls change with

changing the number of cores. We define the change in message size for an MPI routine

as:

},...,1{,,
1

cjMiSS CimimjCim 
(14)

where im  defines the scaling function of message sizes for an MPI routine mi and

1CimS  is the message size for an MPI routine mi at core count C1 (least possible core

count for application A with problem size D). We can also define the change in number

of calls as:

},...,1{,,
1

cjMiNN CimimjCim  
(15)
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where im  defines the scaling function of number of calls for an MPI routine mi and

1CimN  is the number of calls for an MPI routine mi at core count C1 (least possible core

count for application A with problem size D). Thus MM model for an MPI routine mi can

be defined as the ordered pair in Equation 16:

},...,1{,),,()( cjMiNSmMM
jCimjCimjCi 

(16)

Using MPI profiles for an HPC application A with problem size D at different core counts

Cj, we can solve for im and im Mi . The  and  scaling functions can be as

simple as a constant value or a complicated function that depends on multiple variables

such as MPI rank and dataset dimensions. To illustrate, the   for an MPI_Bcast can be 1,

which means the number of broadcast messages a task sends is constant no matter what

the number of cores are. For the same MPI_Bcast, the  can be 2, which means that the

message sizes doubles by doubling the number of cores.

4.4.2 WaitTime Model

In Section 4.3 we defined the WaitTime in an HPC application as the idle time a

task spends waiting for other tasks to finish before continuing on with their next phase of

the compute iteration or timestep. This WaitTime is mainly due to load imbalance

between computation and communication among different tasks. On the base machine,

WaitTime can be modeled accurately using MPI profiles for the HPC application and

IMB+multi-Sendrecv benchmark data obtained on the base machine. To illustrate, an

HPC application MPI profile, as indicated in Section 4.1, includes the MPI message type,
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message size for each type, number of calls for each message size and the elapsed time

for these calls, i.e. TElapsed defined in Equation 13 which includes TTransfer and TWait. The

IMB+multi-Sendrecv benchmark data will show the transfer time each MPI routine will

take to complete, i.e. TTransfer defined in Equation 11. By subtracting the IMB transfer

time, TTransfer, from the MPI profiles elapsed time, TElapsed, we obtain the TWait on the base

machine. Therefore we can define the WaitTime model of an HPC application on the base

machine as:

},...,1{,,)()()( cjMimTmTmT
jCibaseTransferjCibaseElapsedjCibaseWait  (17)

where M is the set of all MPI point to point and collective routines utilized by an HPC

application A and c is the maximum core count that A can utilize. Recall that TTransfer for

point-to-point routines and multi-Sendrecv in IMB represents time measured for certain

communication patterns as indicated in Section 4.2, e.g. ring pattern for multi-Sendrecv.

The communication patterns in the application may differ than those in IMB. This

difference is a source of error in projection. In this paper we focus on how to utilize

existing standard MPI benchmarks such as IMB. It is expected that as the MPI

benchmarks evolve to include a larger set of communication patterns our method will

have a better approximation to the application.

From Equation 17, since baseElapsedT  baseTransferT , then the baseWaitT  0. In

the case of a blocking collective MPI routine where all tasks are synchronized, load

imbalance is highly reduced and baseWaitT  approaches 0. On the other hand, in the case

of non-blocking MPI routines, load imbalance is higher and baseWaitT  increases.
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4.4.3 HPC Application Target System Communication Model

In this final step of our projection scheme, our goal is to model the

communication component of the HPC application on the target system. This model is

then used to project the performance of the HPC application. Using Equation 13, we can

define the communication of the HPC application on the target system as:

MimTmTmT itargetWaititargetTransferitargetElapsed  ),()()( (18)

From Equation 18, identifying the TTransfer value for the target system as well as the TWait

value, one can project the performance of the communication component of the HPC

application.

From the definition of TTransfer in Section 4.2, TTransfer on the target system can be

obtained by combining the MM model for the HPC application with the parameters P for

the target system. The MM model defined in Equation 16 provides for the message size

jCimS  of an MPI routine mi at core count Cj. Also MM provides the number of calls

jCimN  for message size jCimS . Using jCimS  and jCimN  for the HPC application from

Equation 16 and the target system parameter P from Equation 12 we can represent the

TTransfer(mi) on the target system as:

},...,1{,,),()( cjMiNSmPmT
jCimjCimijCjCitargetTransfer  (19)

From Equation 19, the TTransfer(mi)  for the target system is the aggregate transfer time for

number of calls jCimN to MPI routine mi, with message size jCimS  obtained from MM

model at core count Cj. Single message time is obtained from the target system parameter

P.
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The remaining portion of the communication time, from Equation 18, on the

target system is the Twait(mi) on the target. To project the WaitTime on the target machine,

we need to find the scaling factor in WaitTime performance from the base to the target

system, SF. According to WaitTime definition in Section 4.3, WaitTime is due to load

imbalance between computation and communication in an HPC application. Therefore,

WaitTime scaling factor depends on scaling in computation and communication

performance from the base system to the target. SF can be defined by Equation 20:

},...,1{,),()()( cjMicompSFwmSFwmSF compjcompCjCicommjCimjCi  (20)

where the weight imw  is the MPI routine mi  percentage in total elapsed time and the

weight wcomp is the computation percentage in total elapsed time. imw  and wcomp can both

be obtained directly from the MPI profile for the application. SFcomm(mi) is the scaling

factor in communication of the MPI routine mi from base to target and is calculated using

the IMB data for the base and target systems. The SFcomp(comp), on the other hand, is the

scaling factor in computation from base to target and is calculated using our computation

projection methodology presented in section 3. Notice that the SFcomp(comp) in Equation

20 is not dependent on number of cores Cj as the other components of the equation. Using

the SF from Equation 20 and baseWaitT  obtained in Equation 17, we can obtain the

projected WaitTime on target as in Equation 21:

},...,1{,,)()()( cjMimTmSFmT
jCibaseWaitjCijCitargetWait  (21)

Once this step is complete, we complete the projection for the two portions in Equation

18, hence the projection of the communication performance on the target system.
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The projection of the WaitTime on the target system is dependent on the value for

SF(mi) as indicated in Equation 21. From Equation 20, SF(mi) calculation depends on

four components:

 imw  which is the percentage in the total elapsed time for MPI routine mi obtained

on the base system. This percentage could change for the target system; hence,

imw  component affects projection accuracy for WaitTime.

 wcomp which is the percentage of computation in the total elapsed time on the base

system. This percentage could change on the target system; hence, wcomp

component affects projection accuracy for WaitTime.

 SFcomm(mi) which is the scaling factor for MPI routine mi from the base to target.

This component of Equation 10 is calculated using the IMB values obtained for

the base and target systems. For each MPI routine mi, IMB reports an average

value over all tasks. These averages obscure task placement effect on results. This

may slightly affect projection accuracy.

 SFcomp(comp) which is the scaling factor for computation from base to target. This

factor is obtained using scheme presented in section 3. Thus, accuracy of

projecting the computation scaling factor directly affects the accuracy of

projecting WaitTime.

4.5 Experimental Results

We used the methodology depicted in Figure 13 to project the communication

performance of the three NAS Multi-Zone benchmarks BT-MZ, LU-MZ and SP-MZ.



80

The choice of the Multi-Zone benchmarks was mainly for their OpenMP capabilities

since we want to extend this work to encompass Hybrid MPI/OpenMP HPC applications.

All NAS-MZ benchmarks were compiled for classes C and D in our validation

experiments. Details on benchmarks are provided in Table 8. We used the TAMU Hydra

system as our base machine. We projected the performance onto two target systems, an

IBM internal POWER6 575 cluster system and an IBM internal BlueGene/P system.

Details of the three systems are listed below in Table 9. Throughout our validation

process, the IMB benchmarks and NAS-MZ benchmarks are executed using the same

MPI library on a system. Also they both follow the same task placement strategy for

consistency. On the BlueGene/P system, our experiments were all done using the “Virtual

Node” mode where four MPI tasks are utilizing the four cores per node. On the TAMU

Hydra and the IBM POWER6 575 systems, the Single Thread (ST) mode was utilized.

Table 8: NAS-MZ benchmarks characteristics on base system for 16-128 tasks

Benchmark Communication percent

(16 tasks – 128 tasks)

multi-Sendrecv

percent (16 – 128)

Reduce and Bcast

percent (16 – 128)

BT-MZ C 3.2 - 59.7 3.17 - 59.1 0.032 - 0.59

LU-MZ C 1.4 1.38 0.014

SP-MZ C 4.8 – 16 4.75 - 15.84 0.048 - 0.016

BT-MZ-D 2.3 - 6.8 2.27 - 6.7 0.023 - 0.068

LU-MZ D 1.2 1.18 0.012

SP-MZ D 4.16 - 6.6 4.1 - 6.5 0.041 - 0.066



81

Table 9: Base system and the different systems used for validation

Machine Processor Total

Cores

Cores Per

Node

Memory Per

Core

Interconnect

TAMU Hydra POWER5+ 832 16 2GB Federation

IBM POWER6

575 cluster

POWER6 128 32 4GB InfiniBand

BG/P PowerPC 450 4096 4 1GB 3D Torus/

Collective Tree

The first step in our validation process is to validate the MM model and how

accurate it is in modeling the scaling of each MPI routine utilized by the HPC

application. Since the MM model is an HPC application specific and independent of the

underlying system, we validated the MM model for the BT-MZ and SP-MZ on the

BlueGene/P system (LU-MZ only utilizes 16 cores and doesn’t scale). We used four core

counts (16, 32, 64 and 128) in order to create the MM model. We then validated the MM

model for 256, 512 and 1024 task count. The accuracy was 100% for the five MPI

routines utilized (MPI_Isend, MPI_Irecv, MPI_Waitall, MPI_Reduce and MPI_Bcast).

In the results figures below we show the signed value of the error in

communication time; however, as in the computation projection, we focused on reducing

the magnitude of the error and all the averages are based on absolute errors. The

WaitTime for the MPI_Reduce and MPI_Bcast for the three NAS-MZ benchmarks was

essentially zero. For the MPI_Isend, MPI_Irecv and MPI_Waitall routines, the WaitTime

was a major component of their communication time. The results here indicate the
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aggregate error for both the TTransfer and TWait components i.e. overall communication

error for each MPI routine. Note that the MPI_Isend, MPI_Irecv and MPI_Waitall are

equivalent to our multi-Sendrecv benchmark with x = 1. In all our experiments,

MPI_Isend, MPI_Irecv and MPI_Waitall in the NAS-MZ benchmarks are represented as

multi-Sendrecv with x =1.

Figure 15: BT results on BG/P
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Figure 16: BT results on POWER6 575

Figures 15 and 16 show the results of our communication projection scheme for

the BT-MZ benchmark. The results indicate that our scheme accurately projected the

communication performance for the BT-MZ with an average error of 12.22% and

standard deviation of 1.48% on the BG/P system and 11.74% average error with standard

deviation of 2.01% on the POWER6 575 cluster system. An obvious trend on both

systems is that the magnitude of the error is less for larger number of cores. This is due to

the fact that WaitTime component in the communication decreases as more time is being

spent in the interconnect (TinFlight). Therefore, TWait becomes of less significance in the

overall projected elapsed communication time. The projection error for BT-MZ on BG/P

system is mostly attributed to the SFcomp(comp) component of Equation 20 where the

projection error for the computation component on BG/P was ranging between 7%-10%.

On the POWER6 575 system, on the other hand, the projection error for WaitTime is due

to the change in ratio between computation and communication from the base to the
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POWER6 575 system (wcomp and imw  components in Equation 20). Also, on the BG/P

system, the computation projection error was obviously the main factor impacting the

communication projection error. As indicated in figure 15, computation projection error

being a negative value forced the communication error to also be of a negative value.

This trend on BG/P system is consistent for the three NAS benchmarks.

In Figure 17 we show the projection results for the LU-MZ benchmark. As

indicated in Figure 17, the projected communication time for the collectives that exhibit

almost no WaitTime is highly accurate. On the other hand, the multi-Sendrecv with a

large WaitTime component has a less accurate projection. The projection error for

WaitTime component in the multi-Sendrecv ranges between 14% and 15% for LU-MZ.

On both BG/P and POWER6 575 systems, this is attributed to the computation projection

error of 14% and 12% respectively affecting the SFcomp(comp) component in Equation 20.

Figure 17: LU results on BG/P and POWER6 575
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Figures 18 and 19 show the results of our communication projection scheme for

the SP-MZ benchmark. The results indicate that our scheme accurately projected the

communication performance for the SP-MZ with an average error of 11.89% and

standard deviation of 2.13% on the BG/P system and 11.92% average error with standard

deviation of 2.48% on the POWER6 575 system. A similar trend to BT-MZ where the

magnitude of error is less for larger number of cores can be noticed here. The projection

error for WaitTime on BG/P system utilizing 16 and 32 cores is ranging between 14% and

15% percent. This is mostly attributed to the SFcomp(comp) component of Equation 20

where the projection error for the computation component on BG/P was ranging between

9%-12% for SP-MZ. On the POWER6 575 system, on the other hand, the WaitTime

projection error ranging between 12%-14% for 16, 32 and 64 cores is due to the change

in ratio between computation and communication from the base to the POWER6 575

system (wcomp and imw  components in Equation 20).

Figure 18: SP results on BG/P
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Figure 19: SP results on POWER6 575

Overall, our projection scheme projected with high accuracy using MPI profiles

of HPC applications obtained on one base system and IMB benchmark numbers obtained

on the target system.  From the previous figures one can summarize the results as

follows:

1. Projection accuracy for MPI collective routines that have a small WaitTime

component (almost negligible) is higher than projection accuracy for multi-

Sendrecv with a large WaitTime component.

2. Accuracy of projecting the multi-Sendrecv was higher for larger number of tasks.

This trend is obvious in SP-MZ and BT-MZ for both classes C and D. This trend

is due to the decrease in the WaitTime component in multi-Sendrecv, i.e. Twait

decreases when utilizing larger number of tasks because more time is being spent

in the interconnect (TinFlight).

Although the average projection error for BlueGene/P is very close to average projection

error on IBM POWER6 575, the average error on IBM POWER6 575 was consistently
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lower, especially for the WaitTime component. This trend is due to the higher similarity

between the base system and IBM POWER6 575 interconnect architecture (Federation

and Infiniband) and processor architecture (POWER5+ and POWER6), resulting in better

computation projection.

4.6 Related Work

There is extensive research dealing with the performance prediction of HPC

applications. One approach is to build an analytical model for the application on the

target platform using one of the known modeling techniques such as LogGP [27] or LogP

[28]. The main advantages of this work over the LogP and LogGP models can be

summarized in the following points.  First, LogP and LogGP models ignore the network

topology and the routing algorithm. In current systems, network topologies have

complicated and hierarchical designs, which have significant effect on communication

performance. In our scheme, network topology effects are reflected in IMB values.

Second, in our prediction methodology, support for collective communication

acceleration in the hardware on the target system is captured by IMB; however, LogP and

LogGP models assume that a processor will only do Send/Recv. Finally, we model

WaitTime defined in section 4.3 which is typically due to load imbalance between

computation and communication among different tasks. The LogP and LogGP don’t

model such WaitTime.

Another HPC performance modeling approach entails combining a performance

profile of an application on a well-known HPC architecture, and the machine

characteristics of an emerging architecture to project an application's performance on the
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emerging architecture [36], [40], [62].   Error rates were in the range of 0.03% up to

24.70%. Our work primarily differs in the use of MPI profiles to characterize the

application communication performance rather than MPI traces. Further, with respect to

target machine, we use the machine characteristics obtained from the benchmark data for

the projection.

The PHANTOM [36] tool uses deterministic replay techniques to execute any

process of a parallel application on a single node of the target system at real speed, hence

measuring computation performance. PHANTOM also integrates this replay technique

with a trace-driven network simulator, SIM-MPI, to predict communication performance.

PHANTOM performance prediction error was 2.22%, 3.95% and 2.29% for BT, LU and

SP of the NAS MPI benchmarks respectively. The SIM-MPI simulation overhead was

132%, 420% and 171% of actual execution time for these three benchmarks. In contrast,

our MPI profile based methodology used in this work has a maximum overhead of 0.05%

of actual execution time.

In [40], Snavely et al introduced a framework for performance modeling and

prediction. In the framework, an application signature is created (single processor

signature through MetaSim and communication signature through MPIDTrace). Then a

machine profile is created (MAPS profile of memory and PMB profile of interconnect).

Finally, the machine profile is convoluted with application signature to predict its

performance. Projecting the MPI communication performance relies on an MPI trace and

the Dimemas simulator [41], [42], [43]. Similar to PHANTOM, network traces and

simulation have a significant overhead when compared to our profile based scheme.
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Also in [62], Kerbyson et al. introduced the PACE framework where CHIPS

application model is convoluted with hardware model of the target system to provide

application performance projection. The workload definitions have an Application Layer

and Parallel Template Layer. This powerful approach requires significant performance

analysis effort.

Clement and Quinn in [31] proposed modeling an application as a function of

compiler effects, memory effects, communication overhead and floating point trends.

Their work focused on projecting parallel speedup of an application rather than its

performance on different systems.

Prakash and Bagrodia in [22] introduced MPI-SIM which simulates the MPI

communication library.  MPI-SIM uses a detailed contention model. Also Wilmarth et al.

in [23] introduced POSE which uses a detailed network contention model to simulate the

communication library. Simulators although highly accurate, they are slow and time

consuming.

4.7 Summary

We presented a method to project the performance of the MPI communication

component of HPC applications using MPI profiles obtained on one base machine. The

use of MPI profiles instead of MPI traces allows for efficient and fast projection. The use

of MPI traces may yield more accurate results; however, projecting using MPI traces can

be impossible in many cases for large scale production applications due to the huge sizes

of the traces and the long time it takes to simulate these traces for target systems.
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The MM model for an HPC application A assumes a constant dataset size D and a

constant algorithm for all cores Cj. The MM model identifies how each MPI routine

scales with different number of cores Cj. If the dataset size D changes or the algorithm is

altered, a new MM model is required.

In our scheme, we model the time a task spends waiting on other tasks to finish as

WaitTime. This is specifically important for MPI asynchronous calls in HPC applications

that exhibit load imbalance between tasks. We calculate the scaling factor for the

WaitTime from the base to the target system using the scaling of performance for

individual MPI routines as well as the scaling in computation performance. The ratio of

computation to communication on the base system, which may differ than the ratio on the

target, as well as the computation scaling factor are the three parameters that affect the

accuracy of projecting WaitTime; thus, the accuracy of projecting the performance of

MPI routines with little WaitTime component, synchronous routines, is higher than

projecting MPI routines with higher WaitTime since they don’t depend on these three

parameters.
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5. COMBINED COMPUTATION AND COMMUNICATION

PERFORMANCE PROJECTION

In section 3, we presented our method to project the performance of only the

computation component of an HPC application using published data of industry standard

benchmarks, the SPEC CPU2006, and hardware performance counter data from one base

system. In section 4, we extended our method to project the communication performance

of HPC applications onto different systems using MPI benchmark data on the different

systems as well as a base system, and the communication profile of the application on the

base system. In this section, we present a scheme to combine the communication

projection with the computation projection to project the entire HPC application

performance on a target system. In particular, we identify the communication strong

scaling factor of the HPC application as well as the computation strong scaling factor.

We then apply the scaling factor to the projected performance of each component and

combine both scaled components.

Figure 20 depicts the high level framework of our scheme for combining the

communication and computation projections. The HPC application is executed multiple

times on the base machine where each execution utilizes different number of cores Cj for

j{1,..,c} and c is the maximum number of cores the HPC application can utilize. During

each execution, we obtain the application’s MPI profile for Cj number of cores. Note that

this step is already completed in the MPI communication projection scheme and need not

be repeated here. The resultant MPI profiles are used to produce the Application MPI

Model MM defined in section 4.3.1 and Equation 16. These MPI profiles are also used to
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Figure 20: Framework for combining computation and communication projection

produce the Application Compute Component Strong Scaling Model (CCSM) on the

base machine. CCSM identifies how the compute component scales with increasing

number of cores. Furthermore, we collect hardware performance counter metrics for the

HPC application at different processor counts Ci for i{1,...,n} and n  c. Using hardware

performance counter metrics, we develop the Application Cache Strong Scaling Model

(CSM) on the base machine. The CSM model allows for identifying the number of cores

at which the application cache footprint may be contained in a lower level cache. Once

these models are developed, projecting the entire application performance is achieved in

three steps. One, the CSM model and the CCSM model are combined with the compute

component projection to produce the compute component performance projection at the

required number of cores Ck. Two, the MM model is combined with the MPI

communication projection to produce the communication component performance
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projection at the required number of cores Ck.  Finally, we add the projected performance

for the compute component at core count Ck to the projected performance of the

communication component at core count Ck to produce the entire application projected

performance at core count Ck where Ck is the required core count on the target system.

5.1 Cache Scaling Model

Cache Strong Scaling Model (CSM) allows one to identify the number of cores at

which the application cache footprint may be contained in a lower level cache. For

example, an HPC application utilizing four cores could be using the L3, L2 and L1

caches; however, the same application when utilizing 1000+ cores, only L2 and L1 may

be needed. In such case, hyper scaling in performance may occur when using more than

1000 cores. Since there is a significant difference between latency of L3 and L2, the

application performance benefits from never having to access the L3 cache and hyper

scaling occurs.

Using CSM model, one can identify the number of cores at which the application

performance exhibits hyper scaling. In our projection scheme, once the CSM model

identifies the number of cores Ch at which the application experience hyper scaling, a

new computation projection is required at Ch. This implies that the compute projection

scheme explained in section 3 will be repeated for the HPC application at Ch where

hardware performance counter metrics collected at Ch will reflect the new cache footprint

and its effect on application performance on the processing core. The need to repeat the

compute performance projection at Ch is due to the fact that the change in the cache
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footprint affects several hardware performance metrics such as memory bandwidth, CPI

stack breakdown and data from different memory levels.

Calculating Ch at which the application experiences hyper scaling due to

significant change in cache footprint follows directly from the values of metrics m5,1,

m5,2, m5,3 and m5,4 in metric group G5 in Table 4 for different processor counts Ci for

i{1,...,n} and n  c. Typically, n = 4 suffices to calculate Ch for an application by

extrapolating on the values of the metrics to identify Ch. For example, using m5,2

(DATA_FROM_L3) one can identify the Ch where all the data will be contained in L2

for an HPC application by calculating Ch where m5,2 value will be 0. This is done by

extrapolating on the decreasing values of m5,2 when increasing number of cores.

5.2 Compute Component Strong Scaling Model

Compute Component Strong Scaling Model allows one to calculate the scaling

factor   for the compute component of the HPC application. The MPI profiles for the

HPC application at different task counts Cj for j{1,..,c} contains information about the

computation elapsed time at Cj. Using curve fitting techniques, the scaling factor   can

be directly calculated.

5.3 Combined Communication and Computation Performance Projection Scheme

As indicated in Figure 20, the process of combining the communication projection

with the computation projection to produce the entire HPC application projections entails

three steps:
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1. Combining the projected performance of the MPI communication component of

the HPC application with the MPI communication model MM. Recall that the MM

model identifies how each MPI routine scales with different number of cores Cj.

For each MPI routine, the message size and number of calls change with changing

the number of cores. Also recall that the MPI communication model MM is for an

HPC application A with a specific problem size D. The problem size D indicates

that the dataset size and the algorithm used by an application A are constant for all

Cj. By combining the projected performance of the MPI communication

component of the HPC application with the MM model, one can produce the

projected performance of the MPI communication for the required task count Ck.

As indicated previously, this step follows directly from section 4.4.3. Thus, we

can define the projected performance of the MPI communication at the required

task count Ck using Equation 18 as follows:

MimTmTmT
kCitargetWaitkCitargetTransferkCitargetElapsed  ,)()()( (22)

2. Combining the projected performance of the compute component of the HPC

application with the CCSM and the CSM models. Recall that the CCSM model

identifies how the compute component scales with increasing number of cores. By

combining the CCSM model with the projected performance of the compute

component as in Equation 10, one can define the projected compute component

performance at required task count Ck as follows:
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where   is the scaling factor for the compute component identified by the

CCSM model as indicated previously. The CSM model is used in this step to

identify the point where   will not be applicable as hyper scaling of the

application may occur due to significant changes in cache footprint.

3. In the final step of the projection process, we add the projected performance of

the two components of the HPC application. The result of this addition is the

projected performance of the entire HPC application.

5.4 Experimental Results

We used the methodology depicted in Figure 20 to project the performance of

some of the workloads that were used in validating the computation component as well as

the three NAS Multi-Zone benchmarks BT-MZ, LU-MZ and SP-MZ. The HPC

applications used for validating the combining scheme are AMBER (GB_COX, JAC,

Factor_IX), GAMESS (SICCC, L-Rotenon) and WRF (CONUS). The remaining

workloads from the computation validation, Fluent, StarCD, CHARMM, Siesmic and

LS-Dyna were not used due to licensing issues. Please refer to Tables 3 and 8 for details

of the applications. We projected the performance onto three target systems, an IBM

internal POWER6 575 cluster system, an IBM internal Intel Westmere (Xeon X5670)

cluster system and an IBM internal BlueGene/P system. The choice of the three target

systems allows for validating on different processor architectures and different

interconnect architecture. Details of the three target systems and the base system are

provided below in Table 10. Throughout our validation process, the IMB benchmarks and
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NAS-MZ benchmarks are executed using the same MPI library on a system. Also they

both follow the same task placement strategy for consistency. On the BlueGene/P system,

our experiments were all done using the “Virtual Node” mode where four MPI tasks are

utilizing the four cores per node. On the TAMU Hydra and the IBM POWER6 575

systems, the Single Thread (ST) mode was utilized.

Table 10: Base system and different systems used for validation

Machine Processor Total

Cores

Cores Per

Node

Memory Per

Core

Interconnect

TAMU Hydra POWER5+ 832 16 2GB Federation

IBM POWER6

575 cluster

POWER6 128 32 4GB InfiniBand

BG/P PowerPC 450 4096 4 1GB 3D Torus/

Collective Tree

IBM X5670 Intel Xeon

X5670

768 12 2GB Idataplex

Table 11 shows the characteristics of the HPC workloads used in the validation

process as well as the characteristics of the NAS Benchmarks. In all the following results

graphs we divided the communication as Point-to-Point Blocking (P2P-B), Point-to-Point

Non-Blocking (P2P-NB) and Collectives. The details of these calls and their types are

explained in more details in Table 8 for the applications on the base system at 128 tasks

for elaboration.
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Table 11: HPC workloads characteristics on base system for 128 tasks

HPC Workload Comm.

Percent

Collective

Percent

Dominating

Collective

P2P-NB

Percent

Dominating P2P-

NB

BT-MZ-C 59.7% 0.59% MPI_Bcast and

MPI_Reduce

59.1% multi-Sendrecv

LU-MZ-C 1.4% 0.014% MPI_Bcast and

MPI_Reduce

1.38% multi-Sendrecv

SP-MZ-C 16% 0.016% MPI_Bcast and

MPI_Reduce

15.84% multi-Sendrecv

BT-MZ-D 6.8% 0.068% MPI_Bcast and

MPI_Reduce

6.7% multi-Sendrecv

LU-MZ-D 1.2 0.012% MPI_Bcast and

MPI_Reduce

1.18% multi-Sendrecv

SP-MZ-D 6.6% 0.066% MPI_Bcast and

MPI_Reduce

6.5% multi-Sendrecv

AMBER-GB_COX2 67.2% 67.1% MPI_Reduce_scatter

and MPI_Bcast

0% N/A

AMBER-Factor_IX 53.7% 41.87% MPI_Bcasr and

MPI_Allreduce

11.28% multi-Sendrecv

AMBER-JAC 41.4% 34.28% MPI_Bcast and

MPI_Allreduce

7.1% multi-Sendrecv
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Table 11: continued

HPC Workload Comm.

Percent

Collective

Percent

Dominating

Collective

P2P-NB

Percent

Dominating P2P-

NB

GAMESS-SICCC 5.78% 5.02% MPI_Bcast and

MPI_Allreduce

0.69% multi-Sendrecv

GAMESS-LROT 3.08% 2.99% MPI_Bcast and

MPI_Allreduce

0.09% multi-Sendrecv

WRF 18.7% 13.2% MPI_Bcast 4.37% Multi-Sendrecv

Figures 21-23 show the results for the BT-MZ benchmark on the three target

systems. Overall, the average errors were 10.53%, 9.32% and 13.61% on the BG/P,

POWER6 575 cluster and the Intel Westmere cluster systems respectively. The maximum

error didn’t exceed the 15% on any of the systems. An apparent trend on all systems is

that the computation projections for the Class D workloads were more accurate, i.e. less

projection error. This trend is due to the fact that the Class D has a longer execution time

than Class C allowing for collecting more accurate hardware performance counters data.

This trend continues in the SP-MZ workloads as well. Another point worth mentioning is

that for the BT-MZ, SP-MZ and LU-MZ benchmarks, the computation projection

accuracy determines the entire projection accuracy even in the cases where

communication is the dominating component. Recall that WaitTime projection in the

communication component, which is the dominating factor in communication for the

three NAS benchmarks highly depends on the computation projection.
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Figure 21: BT results on the BG/P system

Figure 22: BT results on the POWER6 575 system
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Figure 23: BT results on the Intel Westmere X5670 system

Figure 24: LU results on the three target systems

Figure 24 shows the LU-MZ benchmark results of the projection methodology on

the three target systems. As indicated earlier from the BT results, Class D has better

computation projection results than Class C which drives the entire projection error

down.
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Figure 25: SP results on the BG/P system

Figure 26: SP results on the POWER6 575 cluster system

Figures 25-27 show the results for the SP-MZ benchmark on the three target

systems. The average projection errors were 11.06%, 9.08% and 13.54% on BG/P,

POWER6 575 and Intel Westmere systems respectively. As indicated earlier in the BT-

MZ case, computation projection is typically more accurate for the Class D case. Also,
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the POWER6 575 projections were more accurate than the BG/P and the Westmere

system where the Westmere was typically the system with less accurate projections. The

fact that the POWER6 system uses a POWER ISA allows for better matching of

performance metrics resulting in a set of surrogates with closer behavior to the HPC

workload.

Figure 27: SP results on the Intel Westmere X5670 system

Figures 28-30 show the results for the AMBER Gb_COX2 workload. The average

errors were 12.17%, 11.21% and 13.55% for the BG/P, POWER6 575 and Intel

Westmere systems respectively. In the case of the BG/P system, it is noticeable that the

computation projection accuracy decreases with increasing number of cores, computation

projection is about 17% for the 1024 tasks. This behavior is due to the fact that the

AMBER Gb_COX2 workload has a small dataset that doesn’t scale very well and the

scaling factor  used in Equation 23 doesn’t reflect the exact scaling of the workload for

larger number of tasks. Nevertheless, the overall projection error is still below 10%, 8.9%
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to be exact for the 1024 tasks. In the case of 1024 tasks, the communication component is

the dominating factor in performance. Since the dominating MPI routines in the

communication are the collectives calls as indicated in Table 11, and collectives have

almost no WaitTime component, i.e. independent of computation, the communication

projections have high accuracy. Thus, the overall application projection accuracy is less

than 10%.

Figure 28: AMBER-GB_COX2 results on the BG/P system
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Figure 29: AMBER-GB_COX2 results on the POWER6 575 system

Figure 30: AMBER-GB_COX2 results on the Intel Westmere X5670 system

Figures 31-36 show the results for the AMBER-Factor_IX and AMBER_JAC

respectively. Both workloads exhibit similar behavior and their projection results follow

the same trends. The average errors for the Factor_IX workload are 10.42%, 7.07% and

10.15% for the BG/P, POWER6 575 and Intel Westmere systems respectively. As for the
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JAC workload, the average errors are 11.78%, 9.45% and 12.65% for the BG/P,

POWER6 575 and Intel Westmere systems respectively. For both workloads, the

communication component performance is dominated by the collective routines

MPI_Bcast and MPI_Allreduce. Since collective calls projection is independent from the

projection of computation, the low computation projection error is worsened by the

higher projection error of the communication; however, the overall error is still much

lower than 15%. In these two workloads, we notice the same trend of higher computation

projection error for the larger number of tasks on BG/P as in the Gb_COX2 workload.

Figure 31: AMBER-Factor_IX results on the BG/P system
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Figure 32: AMBER-Factor_IX results on the POWER6 575 system

Figure 33: AMBER-Factor_IX results on the Intel Westmere X5670 system
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Figure 34: AMBER-JAC results on the BG/P system

Figure 35: AMBER-JAC results on the POWER6 575 system
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Figure 36: AMBER-JAC results on the Intel Westmere X5670 system

Figures 37-42 show the results for the two GAMESS workloads. The average

projection error for both workloads are 12.11%, 8.74% and 13.9% for the BG/P,

POWER6 575 and the Intel Westmere systems. As it is clear from the averages, the

POWER6 system has the lowest errors. The errors on POWER6 are lower since the

computation component is the more significant factor in the performance and POWER6

has the most accurate computation projection. As it is clear from the results, the

collective and P2P-B communication projection results have minor effect on the overall

projection accuracy due to their minor significance in the overall performance of the

applications.



110

Figure 37: GAMESS-SICCC results on the BG/P system

Figure 38: GAMESS-SICCC results on the POWER6 575 system
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Figure 39: GAMESS-SICCC results on the Intel Westmere X5670 system

Figure 40: GAMESS-LROT results on the BG/P system
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Figure 41: GAMESS-LROT results on the POWER6 575 system

Figure 42: GAMESS-LROT results on the Intel Westmere X5670 system

Figures 43-45 show the results for the WRF application. The average projection

errors are 10.67%, 10.12% and 13.45% for the BG/P, POWER6 575 and the Intel

Westmere systems respectively. There is a major point to notice in WRF projection data.

The scaling factor  on the BG/P machine is more accurate in the WRF case than in any
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other workload. This is due to the fact that the CON-US dataset scales well on larger

number of tasks. The better scaling for WRF also contributed to better projections results

on the three systems with very small standard deviation.

Figure 43: WRF results on the BG/P system

Figure 44: WRF results on the POWER6 575 system
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Figure 45: WRF results on the Intel Westmere X5670 system

Overall, our projection methodology projected the performance of the HPC

workloads with high accuracy and efficiency. The average projected error on the BG/P

system was 11.36% with standard deviation of 1.51%. Also the average projected error

on the POWER6 575 cluster system was 9.21% with standard deviation of 1.31%. Since

the POWER6 system has a similar ISA to the POWER5+ base system, all the workloads,

with the computation component as the dominating factor in performance, have less

projection error than on other systems. Finally, the average projected error on the Intel

Westmere X5670 is 13.09% with standard deviation 0.74%. Since the Intel Westmere has

the most different ISA and micro-architecture from the base processor, the projections for

the compute component and the communication component that has a significant

WaitTime have a higher error than other systems.

In the cases where the  scaling factor was not accurate, the computation

projection at a higher task count was not accurate; however, this happened in the case

where the dataset size was relatively small and the workload didn’t scale very well with
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increasing number of tasks. On the other hand, when the application scales well with the

increasing number of tasks, the  scaling factor was accurate. Also, in the cases where the

application has a very short execution time, the performance counter data may be less

accurate. In such cases, we recommend that one collects the hardware counter data one

group at a time, i.e. no performance counter groups multiplexing.

5.5 Related Work

Current state-of-art HPC performance modeling techniques primarily rely on

combining a performance profile of an application on a well-known HPC architecture,

and the machine characteristics of an emerging architecture to project an application's

performance on the emerging architecture [63]. Existing profiling and tracing tools on

well-known architectures are typically used to collect the necessary performance data by

executing applications and benchmarks on available systems.

In our approach of surrogate based performance projection an HPC application is

modeled as a combination of benchmarks. These benchmarks may be executed on the

target system if the system exists or simulated if the system is still in the design phase.

This technique provides for the accuracy of cycle-accurate simulation and the speed and

ease of performance modeling. In this work, we model the compute component

separately from the communication component. The compute component is modeled

after the SPEC CPU benchmarks while the communication is modeled after the IMB

benchmarks for MPI communication.

Several researches have been done on using surrogate workloads to predict

application performance. SPEC benchmarks suite was often proposed as the benchmarks
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of choice due to the abundance of published data but it was not used for HPC

applications.  NAS Parallel [59] benchmarks, on the other hand, were used more often

with HPC applications due to their parallel nature. Also curve fitting on runtimes is

extensively used in industry to project performance using surrogate workloads.

An approach to similar to the approach introduced in this work is the PHANTOM

tool [36]. The PHANTOM tool uses deterministic replay techniques to execute any

process of a parallel application on a single node of the target system at real speed, hence

measuring computation performance. This assumes that a single node of the target system

is available which may not always be the case. PHANTOM also integrates this replay

technique with a trace-driven network simulator, SIM-MPI, to predict communication

performance. Thus, PHANTOM simulates only the communication component while

replacing computation blocks with their actual execution time to speed up simulation

time. PHANTOM performance prediction error was 2.22%, 3.95% and 2.29% for BT,

LU and SP of the NAS MPI benchmarks respectively. The SIM-MPI simulation overhead

was 132%, 420% and 171% of actual execution time for these three benchmarks. In

contrast, our MPI profile based methodology used in this work has a maximum overhead

of 0.05% of actual execution time.

WARPP simulator introduced in [37] also uses benchmarks to acquire target

machine performance specific characteristics. WARPP prediction framework entails four

steps: (1) model construction which is achieved by hand-coded simulation script

programming that requires significant work by the user, (2) machine benchmarking using

a reliable MPI benchmarking utility, a filesystem I/O benchmark and an instrumented

version of the application, (3) the post-execution analysis of machine benchmarking
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results to produce simulator inputs and finally (4) simulation. Although simulation in the

last step proved to be significantly efficient and accurate in [37], step (1) requires

significant manual source code analysis and instrumentation by the user. A similar

approach to the one used in WARPP was also introduced in [38].

In [5], [6], [40], Snavely et al introduced a framework for performance modeling

and prediction. In the framework, an application signature is created (single processor

signature through MetaSim and communication signature through MPIDTrace). Then a

machine profile is created (MAPS profile of memory and PMB profile of interconnect).

Finally, the machine profile is convoluted with application signature to predict its

performance. Projecting the MPI communication performance relies on an MPI trace and

the Dimemas simulator [41]-[43]. These network traces and simulation have a significant

overhead when compared to our profile based scheme.

Also in [62], Kerbyson et al. introduced the PACE framework where CHIPS

application model is convoluted with hardware model of the target system to provide

application performance projection. The workload definitions have an Application Layer

and Parallel Template Layer. This powerful approach requires significant performance

analysis effort.

5.6 Summary

In this section we presented a scheme for combining the computation and

communication projection. In our scheme, the projected computation performance is

combined with the HPC application scaling factor  to produce the application projection

at the required task count Ck on the target system. Similarly, the MM model that defines
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the MPI communication scaling for the HPC application is combined with the MPI

communication projection to produce the application projection at the required task count

Ck on the target system. Once these two steps are completed, the projected performance

of the two components are added together to produce the HPC application performance

projection.

The Cache Scaling Model CSM is used to identify the point at which the HPC

application cache behavior significantly impacts the application scaling. CSM model

identifies at which task count the application data can be contained in a lower cache level

causing hyper scaling in performance of the application.
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6. SUMMARY AND FUTURE WORK

6.1 Summary

Using the framework provided in Figure 20, it is our goal to provide for an

accurate and fast performance projection scheme for HPC applications on future systems.

As indicated in section 2 and explained in details in sections 3, 4 and 5 our scheme

involves deep analysis of computation and communication behavior of HPC applications

on target systems. For the computation component, we developed a scheme to project the

performance of HPC applications using surrogate workloads from the SPEC CPU2006

benchmark suite and hardware performance counter data. The scheme projected the

performance of eight HPC applications on 2 IBM POWER6 systems with 7.2% average

error and standard deviation of 5.3%. The results on systems with different ISAs than

POWER are in the range of 8.3% and 12.8% for Intel Woodcrest and Intel Clovertown

respectively which indicates that the base machine is a representative of a number of

different systems. More importantly, the scheme is very flexible since it doesn’t require

any instrumentation to the binary code or the source code and only requires execution of

the application and the benchmarks on one base machine. Moreover, simulation is not

needed eliminating the long runtimes incurred in simulations. The use of a string based

genetic tool reduces the projection scheme runtime significantly.

As for the communication component, we presented a method to project the

performance of the MPI communication component of HPC applications using MPI

profiles obtained on one base machine, TAMU Hydra utilizing a Federation interconnect,

and IMB benchmark data obtained for the target system. The projected communication

elapsed times for the three NAS MultiZone benchmarks were with 12.84% average error
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on the BlueGene/P system utilizing a 3D Torus and collective tree interconnect. The

average error on an IBM POWER6 575 system utilizing an InfiniBand interconnect was

12.81% with standard deviation of 1.13%.

The use of MPI profiles instead of MPI traces allows for efficient and fast

projection. The use of MPI traces may yield more accurate results; however, projecting

using MPI traces can be impossible in many cases for large scale production applications

due to the huge sizes of the traces and the long time it takes to simulate these traces for

target systems.

The MM model for an HPC application A assumes a constant dataset size D and a

constant algorithm for all cores Cj. The MM model identifies how each MPI routine

scales with different number of cores Cj. If the dataset size D changes or the algorithm is

altered, a new MM model is required.

In our scheme, we model the time a task spends waiting on other tasks to finish as

WaitTime. This is specifically important for MPI asynchronous calls in HPC applications

that exhibit load imbalance between tasks. We calculate the scaling factor for the

WaitTime from the base to the target system using the scaling of performance for

individual MPI routines as well as the scaling in computation performance. The ratio of

computation to communication on the base system, which may differ than the ratio on the

target, as well as the computation scaling factor are the three parameters that affect the

accuracy of projecting WaitTime; thus, the accuracy of projecting the performance of

MPI routines with little WaitTime component, synchronous routines, is higher than

projecting MPI routines with higher WaitTime since they don’t depend on these three

parameters.
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In combining the computation and communication components projection to

achieve a full application performance projection we introduced the methodology

depicted in Figure 20 to combine the computation projection with the communication

projection. We projected on three different systems utilizing a variety of processor

architectures as well as different interconnect architectures. Our methodology accurately

projected the performance of the HPC workloads with an average error of 11.22% and

standard deviation of 1.18% on the three systems for the twelve workloads. Our

methodology proved to be quite efficient as it doesn’t require any simulation or massive

traces.

6.2 Future Work

6.2.1 OpenMP Communication Projection

(a) OpenMP Profile: Typically an OpenMP profile contains the program general

information (Header), region overview, program callgraph, flat region profile, callgraph

region profiles, overhead analysis report and performance properties report [64]. In this

work, we are mostly interested in the overhead analysis report. An overhead analysis

report gives a detailed overview of overhead caused by the different OpenMP directives

and this overhead contribution in the overall runtime. The overhead analysis can be

visualized as a 2D matrix where the columns correspond to the type of overhead, i.e.

thread management overhead, synchronization overhead, limited parallelism overhead or

imbalance overhead, and the rows are the different directives such as Parallel,

Parallel_Loop, Barrier etc. The overhead analysis profile shows the total overhead

runtime for the different directives and their counts. In essence, we just need to capture
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the different directives and their counts on the base machine. Thus, the OpenMP profile

data provides for enough information.

(b) OpenMP uBenchmarks: The OpenMP uBenchmarks are [65] intended to measure the

overheads of synchronization, loop scheduling and array operations in the OpenMP

runtime library. The first part of the synchronization benchmark measures the overhead

incurred by the following directives, all of which contain barrier synchronization:

 PARALLEL: Defines a parallel region, which is code that will be executed by

multiple threads in parallel.

 DO/for: Non parallel DO/for loops.

 PARALLEL DO/parallel for: Parallel DO/for loops where work inside the DO/for

is divided among threads.

 BARRIER: Synchronizes all threads in a team; all threads pause at the barrier,

until all threads execute the barrier.

 SINGLE: Specifies that a section of code should be executed on a single thread,

not necessarily the master thread.

 WORKSHARE and PARALLEL WORKSHARE (for FORTRAN): divides the

execution of the enclosed structured block into separate units of work, each of

which is executed only once

The overhead is defined as follows: if Ts is the sequential time for a section of code, and

Tp the time for the parallel version of this on p processors, then the overhead is given by

Op = Tp - Ts/p.
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(c) OpenMP Proposed Projection Methodology: As in Figure 46, the OpenMP

communication performance projection scheme entails 4 steps:

1. Execute HPC application on a base machine to collect OpenMP Profile for

different task counts

 Different task counts to understand application scaling

2. Decompose OpenMP profile into categories of directives for each task count as in

Figure 46

3. Obtain OpenMP uBenchmarks data on target system for different task counts

 Different task counts to capture the OpenMP overhead scaling

4. Map application OpenMP directives to uBenchmarks directives on target system

and calculate communication runtime for different task counts

HPC Application

Execute on Base
Machine

OpenMP
Profile

OpenMP
MicroBenchmarks

Mapping

OpenMP
Profile

OpenMP
Profile

OpenMP
Profile

Different Task counts
Different Task counts

Profile
Decomposition

Parallel Parallel For/Do

Reduction No Reduction

OpenMP Communication
Performance Projection

Figure 46: OpenMP communication performance projection framework
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(d) Challenges: In the OpenMP proposed projection methodology, we face one major

challenge. This challenge is similar to that of the MPI which is the separation of

computation from communication. In fact, it is harder in the case of OpenMP than MPI

since the communications in OpenMP is just a memory read and write operation and

there is no explicit communication calls. To illustrate, in an MPI application, the

separation of computation and communication can be achieved by turning off

performance monitoring at MPI function entry and turning them on again at function exit;

in openMP, this is hard to achieve since there is no explicit function entry and exit.

6.2.2 Hybrid Applications

Hybrid applications are composed of computation, MPI communications and

OpenMP communications. In our approach, each of these components is projected

separately. There may be, however, some overlapping communication time between

OpenMP and MPI. To account for this overlap, we calculate an overlapping factor  as in

Equation 24 on the base machine. The overlapping factor is then applied on the target

machine.

headOpenMPOverimecationRuntMPICommuninRuntimeComputatio

tionTimeTotalExecu


      (14)

The overall Hybrid application projection methodology can be summarized as follows:

1. Calculate overlapping factor between OpenMP and MPI on base machine

2. Project MPI communication overhead on target machine

3. Project OpenMP communication overhead on target machine
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4. Combine the projection of both communication schemes and apply the

overlapping factor

6.2.3 Overall Proposed Projection Framework

SPEC CPU

GA Tool

HPC App Compute Projection
on 4 cores (Divide by 2 for 8

cores etc..)

Scale
Communication

Combine
Communication with

Computation
Projection

MPI
Profile

MPI Profile
Decomposition
And Mapping

Execute on Base
Machine

Intel MPI
Benchmarks

Execute on Base
Machine

SPEC CPU
Hardware Counters
Performance Metrics

OpenMP Profile
Decomposition
And Mapping

OpenMP
uBenchmarks

OpenMP
Profile

HPC Application
Hardware Counters
Performance Metrics

OpenMP MPI

Computation Communication

Comm.
Model

HPC Application

Figure 47: Proposed projection scheme framework

As indicated in Figure 47, we project computation and communication separately.

This separation allows for the use of already available benchmark data without requiring

any further execution for the surrogates. The SPEC CPU suite provides the surrogates for

the computation component. The Intel MPI Benchmarks (IMB) or the OpenMP

MicroBenchmarks provide the surrogates for the communication component. SPEC CPU,

IMB or uBenchmarks data are available either online for target machine processors, or
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through hardware vendors for communication interconnects. Also, the separation of

computation from communication allows for maximum projection scalability.

6.2.4 Predicting Projection Error Value

Predicting the value of the projection error is very beneficial for both the HPC

vendors and users. In fact, predicting the value of the projection error is a very

challenging task; however, there are several possible means that could be utilized in

predicting the value of error. One way is to find the relationship between the difference in

metrics values of the surrogates and the application and the percent error. To illustrate, if

the performance of application A on target machine X requires that metrics group 5 be

the highest ranked group, then we do the following:

1 - Identify the percent difference between the metrics values of the application and the

surrogate for group 5.

2 – Find the relationship between the percent difference of the metrics values for each

metric group for target machine X and application A and the error percent.

3 – Apply the previous relationship to find the error percent.
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