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ABSTRACT

Medial Axis Loal Planner:

Loal Planning for Medial Axis Roadmaps. (May 2012)

Kasra Mehron Manavi, B.S., University of New Mexio

Chair of Advisory Committee: Nany M. Amato

In motion planning, high learane paths are favorable due to their inreased

visibility and redution of ollision risk, suh as the safety of problems involving human-

robot ooperation. One popular approah to solving motion planning problems is the

Probabilisti Roadmap Method (PRM), whih generates a graph of the free spae of

an environment, referred to as a roadmap. In this work we desribe a new approah to

making high learane paths when using PRM. The medial axis is useful for this sine

it represents the set of points with maximal learane and is well de�ned in higher

dimensions. However, it an only be omputed exatly in workspae. Our goal is to

generate roadmaps with paths following the medial axis of an environment without

expliitly omputing the medial axis.

One of the major steps of PRM is loal planning, the planning of motion between

two nearby nodes. PRMs have been used to build roadmaps that have nodes on the

medial axis, but so far there has been no loal planner method proposed for onneting

these nodes on the medial axis. These types of high learane motions are desirable and

needed in many robotis appliations. This work proposes Medial Axis Loal Planner

(MALP), a loal planner whih attempts to onnet medial axis on�gurations via

the medial axis. The reursive method takes a simple path between two medial axis

on�gurations and attempts to deform the path to �t the medial axis. This deformation

reates paths with high learane and visibility properties. We have implemented this

loal planner and have tested it in 2D and 3D rigid body and 8D and 16D �xed base
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artiulated linkage environments. We ompare MALP with a straight-line loal planner

(SL), a typial loal planner used in motion planning that interpolated along a line in

the planning spae. Our results indiate that MALP generated higher learane paths

than SL loal planning. As a result, MALP found more onnetions and generated fewer

onneted omponents as ompared to onneting the same nodes using SL onnetions.

Using MALP onnets nodes on the medial axis, inreasing the overall learane of the

roadmap generated.
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CHAPTER I

INTRODUCTION

One of the major problems in robotis is that of �nding a valid, ollision-free path for

a robot through a given environment. Motion planning [1℄ has been extensivly studied

and has appliations in a variety of domains, from roboti path planning to virtual

prototyping/virtual reality [2℄ to omputational biology [3℄. Thus it is important to

�nd higher quality and more aurate methods for solving the motion planning problem.

Sampling-based planners [4℄ were a major breakthrough in motion planning. These

methods were able to solve previously unsolvable problems, inluding high-dimensional

problems. Sampling-based planners have been shown to be probabilistially omplete,

meaning that the probablity of �nding a solution approahes 1 as the sampling den-

sity is inreased. However narrow passages, or tightly onstrained environments, still

remain diÆult to traverse.

There have been many variants to the original algorithm that address the weakness

of sampling-based planners in these narrow regions by produing better samples [5℄ [6℄

[7℄ [8℄. One method, Medial Axis PRM (MAPRM) [9℄, inreases samples in the narrow

passage by retrating all on�gurations, valid or not, to the medial axis of the free

spae. The medial axis is de�ned as the set of points of a spae having more than

one losest point on the spae boundary. The medial axis de�nition extends into

higher dimensions and an be viewed simply as the set of on�gurations with maximal

learane. MAPRM improves the quality of the samples generated and has been shown

to be more e�etive than uniform random sampling in narrow orridors. This method

inreases the number of nodes found in narrow orridors in a way that is independent of

the volume of a orridor, depending solely on the volume of the obstales surrounding

The journal model is IEEE Transations on Automati Control.
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it. MAPRM produes samples with high learane, thus high visibility, and onnetions

have a better hane at suess. Thus, this inrease in narrow passage sampling allowed

for solutions to be found in quiker time using fewer, but higher quality samples.

When these medial axis samples are onneted using simple loal planners (e.g.,

SL), the roadmap generated ontains onnetions whih diverge from the medial axis.

Hene the resulting roadmap has paths that may have sub-optimal learane for plan-

ning. Also, depending on how well sampling overs an environment, simple onnetion

strategies might not be enough and inreased sampling potentially leads to over sam-

pling and longer running times.

This paper introdues the Medial Axis Loal Planner (MALP), a loal planner

intended to produe high learane onnetions. The loal planner attempts to deform

a simple path between two medial axis on�gurations to the medial axis. MALP begins

by pushing the middle on�guration of a path between start and goal on�gurations to

the medial axis. MALP then reurses on eah new path, the segment between the newly

pushed on�guration and an existing on�guration until it has onverged to a solution

lose enough to the medial axis or until the maximum number of iterations is reahed.

A maximum number of reursions is a user spei�ed variable sine a onnetion may

not exist sine the medial axis may be disjoint, samples may be too far away, or it may

be a degenerate onnetion. MALP an be used with MAPRM to build roadmaps that

lie entirely on the medial axis. MAPRM and MALP an utilize approximate methods

of medial axis omputation in ases where expliit medial axis omputation would be

prohibitively expensive if not impossible due to the nature of the problem studied [10℄.

We test MALP in 2D and 3D rigid body and 8D and 16D �xed-base artiulated

linkage environments. MALP is tested against SL loal planner, a loal planner typ-

ially used in motion planning. Our results show that MALP generates paths with

higher learane than SL, leading to higher onnetion suess rates and resulting in
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larger onneted omponents. Though MALP may be more ostly, it an be e�etive at

planning paths between narrow passage on�gurations and omplex regions of Cspae.

This paper's ontributions inlude the following:

� MALP, a loal planner whih attempts to onnet two medial axis nodes via the

medial axis without expliitly omputing the medial axis.

� A foundation for roadmap onstrution along the medial axis in arbitrary dimen-

sions.

Our results show that MALP has greater suess rates of onnetion than SL in

all environments tested. As we expeted, the number of edges MALP found inreased

as the number of maximum iterations inreases. This led to a redution of the number

of onneted omponents in the roadmap.

This thesis desribes MALP, our proposed medial axis loal planner. We desribe

in Chapter II the related work to our method. This inludes medial axis motion

planning, loal planning and path deformation. In Chapter III we desribe MALP and

improvements made to approximate medial axis retration. Chapter IV desribes the

experiments run and thier results. Finally, in Chapter V we disuss our results and

onlusions about MALP.
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CHAPTER II

RELATED WORK

In this setion we disuss the related work. We �rst give an introdution to sampling-

based motion planning and Probabilisti Roadmap Methods (PRM). We then provide

an introdution to medial axis PRMs whih utilize high learane on�gurations. Fi-

nally, we present an overview of loal planning and path deformation.

1. Sampling-Based Motion Planning

A robot is a moveable objet whose position and orientation an be de�ned by d pa-

rameters, or degrees of freedom (DOFs). These parameters de�ne the robot plaement,

or on�guration, in an environment. These d parameters an be used to desribe the

robot as a point in an d -dimensional spae. This spae is referred to as on�guration

spae, or Cspae and inludes all possible on�gurations, valid and invalid [11℄. All valid,

or feasible, on�gurations are onsidered to be in the subset Cfree and all invalid, or

infeasible, on�gurations are in Cobst. The motion planning problem has now beome a

problem of �nding a valid series of on�gurations in Cfree between a start and a goal.

Sampling-based motion planners attempt to explore Cspae by sampling and onneting

on�gurations in Cfree.

One important sampling-based planner is the Probabilisti Roadmap Method

(PRM) [4℄. PRMs build a roadmap, a graph that represents the onnetivity of Cfree.

This graph an then be used as a foundation for traversing Cfree The PRM algorihtm

is outlined in Algorithm 1.

As an be seen in Figure 1, the planner begins the onstrution phase with node

generation. Random samples are generated and valid on�gurations in Cfree are saved

and added to the roadmap as nodes. The seond phase of onstrution is onnetion
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Algorithm 1 Probablisti Roadmap Method

INPUT: Environment e, number of on�gurations n, nearest neighbors k,

distane metri dm, loal planner lp, and start and goal on�gurations

OUTPUT: Roadmap r, with n on�gs and path p if it exists

GenerateNodes( e, r, n)

ConnetNodes( e, r, k, dm, lp)

ConnetQuery( start, goal, e, r, k, dm, lp)

FindPath( start, goal, p )

where distane metris are used to determine the nearest neighbors in the roadmap,

in the ase of Figure 1, k=2, k being the number of nearest neighbors. A loal plan-

ner is used to determine if a onnetion an be made between neighbors. Suessful

onnetions are added to the roadmap as edges between nodes. One the roadmap is

onstruted, we an attempt a query to �nd a planned solution. Queries are proessed

�rst by onneting start and goal on�gurations to the roadmap. From there a pathway

is extrated if one exists using simple shortest path graph searh algorithms.

2. Medial Axis Motion Planning

The Medial Axis Probabilisti Roadmap Method (MAPRM) is a variant of PRM whih

utilizes the medial axis [9℄ [12℄ [10℄. This algorithm is outlined in Algorithm 2. Random

on�gurations are sampled and then retrated to the medial axis, i.e., pushed to areas

of Cfree with higher lerane. as an be seen in Figure 2. This is done by �nding the

on�guration with minimal learane/penetration distane from an initial on�guration

and using it to determine a diretion to retrat the initial on�guration to the medial

axis. A retrated on�guration is pushed out of Cobst if neessary, then pushed away

from Cobst til a seond on�guration in Cobst is found to be equidistant to the �rst.

Clearane is an important omputation and an be performed in both exat and
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Fig. 1. PRM is performed by generating random on�gurations and saving the valid

ones (top left), then �nding the k nearest neighbors (here k=2) of all the on�g-

urations and onneting them (top right). Start and goal on�gurations are add

to the graph (bottom left) and the shortest path solution is determined (bottom

right)

approximate fashions. Con�gurations on the medial axis have high visibility and are

easier to onnet. It should be noted that MAPRM only samples on the medial axis

and nodes are onneted by loal planners whih generally do not make onnetions

on the medial axis.

There are other medial axis planners that have been developed but are restrited

to workspae. A Framework for Using Workspae Medial Axis in PRM [13℄ explores the

workspae medial axis, not the Cfree medial axis, by omputing a polygonal approxima-

tion of the workspae medial axis. Another method is the Voronoi Based Framework for

Motion Planning [14℄ whih pre-omputes the Generalized Voronoi Diagram (GVD) of

the workspae using graphis hardware and uses that as a foundation for environment

traversal. This method uses randomized path planning to traverse invalid segments of a

robot moving along the GVD pathway. Another method uses sensor based exploration

to inrementally onstrut a heirarhial generalized Voronoi graph (HGVG) [15℄ [16℄.
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Algorithm 2 MAPRM Sampling

INPUT: Environment e, number of on�gs n

OUTPUT: Roadmap r, with n Medial Axis on�gs

for i from 1 to n do

Con�g a = e.GetRandomCon�g()

if !IsValid( a, e ) then

a.PushOutOfCollision()

end if

a.PushToMedialAxis()

r.AddCon�g( a )

end for

This method attempts to map an environment using a series of sensors to provide data

whih is used numerially onstrut the HGVG and was tested on physial systems

as well as in simulation. These methods work well in workspae but are not general

enough to plan on the medial axis in arbitrary dimensions besides the HGVG.

3. Loal Planning

A loal planner is the hek performed to see if two on�gurations are onnetable and

is usually run on the nearest neighboring samples in Cspae. Loal planners are intended

to be inexpensive in terms of omputation sine they are performed many times. SL

loal planning linearly interpolates a series of on�gurations that transition from one

on�guration to the other in Cspae. Another popular loal planner is rotate-at-s [17℄

whih translates a on�guration to a spei�ed perentage of its pathway towards its

goal, rotates it, then ompletes the translation to the goal on�guration. This helps

with obstale-based planners suh as [5℄ and [6℄. Both SL and rotate-at-s are quik

and simple loal planners but an lead to many failures in sparsely sampled areas of
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Fig. 2. MAPRM sampling is performed by generating random on�gurations and re-

trating them to the medial axis. Here, the initial on�gurations are olored

gray and the retrated on�gurations are olored blak.

the Cspae or more ompliated areas of an environment.

More expensive loal planners suh as those based on A* [18℄ and Path Planning

in Expansive Spaes [19℄, are better at �nding onnetions. A* uses a best-�rst searh

over a resolution sized grid in Cspae and �nds the lowest osting path. Path Planning

in Expansive Spaes grows trees rooted at the nodes and onnets them one their

visibility regions beome overlapping. These loal planners when used between further

away nodes potentially require large amounts of storage along the edge, requiring many

samples in the region of onnetion. These algorithms are expensive and generally have

a timeout parameter to ensure problem stoppage in a reasonable time.

In [20℄, a simpli�ed potential �eld loal planner was used to analyze the reahability

of sampling based planners. This loal planner attempts a SL onnetion and either

reahes the goal or if while stepping out, ollides with an obstale. If a ollision

happens, a series of random diretions oriented towards the goal are tested for ollision.

The best andidate (free and losest to the goal) is used to step out and avoid the
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ollision. Stepping towards the goal ontinues till either the goal is found or �nding a

diretion to avoid ollision fails. One of the major onlusions made from this study

was that for motion planning, espeially narrow passage problems, the major problem

was not overing Cfree, but was instead ahieving good onnetivity. Strategies they

reommend to resolve this inlude using hybrid strategies in diÆult areas of Cspae

and by employing more powerful loal planners to onnet nodes.

4. Path Deformation

Elasti Bands [21℄ and Elasti Straps [22℄ address real-time obstale avoidane in a

dynami environment. Elasti Bands/Straps start with an initially ollision free path

and inrementally modify the path to maintain a smooth, ollsion free path. This

method does not utilize any expliit Cspae information, it relies on protetive bubbles

de�ned in workspae to maintain Cfree information, and has the onstraint of requiring

an initial ollsion free path. Methods used in [23℄ reate high-quality paths by re�ning

a path in terms of length and learane. These methods require an initial valid path

from whih eah intermediate node is retrated to the medial axis to inrease learane.

The path is then pruned to redue the overall length.

Path Deformation Roadmaps [24℄ rely on the notion of path deformability indiat-

ing whether or not a spei�ed path an be ontinuously deformed into another existing

path. This method only looks at homotopy lasses and is dependent on visibility to

determine if a deformation is possible. The Reahability Roadmap Method (RRM)

[25℄, intended for 2D and 3D virtual environments, takes an initial roadmap and query

solution and adds "useful" nodes and edges to the roadmap to improve the solution.

If a potential node redues the distane of the existing shortest path onneting its

nearest neighbors, it is onsidered "useful" and added to the roadmap. The roadmap

is then reonneted by rearranging and adding edges to better �t the new nodes, and
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then retrating these edges to the medial axis. RRM showed that alternative and

reasonably short query paths an be found by enhaning an existing roadmap.

Reative Robot Motion using Path Replanning and Deformation [26℄ uses path

deformation in online path replanning by pushing invalid parts of a SL path away from

obstales. The midpoint of an invalid pathway is pushed to the outside edge of the

obstales repulsion area, an area de�ned as too lose to an obstle. The two new SL

paths formed are reursed upon until a valid path is found or the replanner times out.
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CHAPTER III

MEDIAL AXIS LOCAL PLANNING (MALP)

We begin this hapter introduing MALP, a loal planner whih produes paths along

the medial axis. We then disuss approximate Cspae learane and how it impats

medial axis retration. Finally, we introdue a heuristi used to inrease the auray

of medial axis retration using approximate learane omputation.

1. MALP

MAPRM generates samples on the medial axis, but onneting them may redue the

overall learane properties of a roadmap sine edges do not lie on the medial axis.

Medial Axis Loal Planner (MALP) omputes onnetions that reside on the medial

axis. This is done by deforming a path between two medial axis on�gurations to

be �-lose to the medial axis. The path is onsidered �-lose to the medial axis if all

the on�gurations along the path are no greater than � away from the medial axis.

Algorithm 3 outlines the approah.

Algorithm 3 begins by taking two medial axis on�gurations and determining

if a path between them is �-lose to the medial axis. This path is tested for both

ollisions and for �-loseness to the the medial axis. To test for �-loseness, intermediate

on�gurations along the path are retrated to the medial axis and their displaement is

measured. This is the same retration proedure as used in MAPRM sampling [9℄. If

the path is not �-lose, the middle on�guration of the path is retrated to the medial

axis. The two new paths generated between the retrated midpoint and endpoints are

now reursed upon. MALP ontinues to reurse until it has onverged to a solution

that is onsidered �-lose to the medial axis or reahes an exit ase. If the maximum

number of iterations has been reahed or the on�gurations being onneted are loser



12

Algorithm 3 MALP

INPUT: Medial axis on�gurations a and b, distane �, and iteration itr

OUTPUT: A path �-lose to the medial axis if feasible, else ;

OTHER: A loal planner lp, validity heker v and maximum iteration itrmax

// Let v be a funtion that returns true if on�gurations are ollision free and

�-lose

if ( itr � itrmax ) then

Return ;

end if

P0 = lp.GetValidPath( a, b, v ) // Returns valid path P0 based on the validity

de�nition

// given by v, or ; if the path doesn't exist

if ( P0 != ; ) then

Return P0

end if

mid = PushToMedialAxis( ( a + b ) = 2 )

P1 = MALP( a, mid, �, itr+1 )

if ( P1 == ; ) then

Return ;

end if

P2 = MALP( mid, b, �, itr+1 )

if ( P2 == ; ) then

Return ;

end if

Return ( P1 Æ P2 )
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than the environment resolution and the path has still not onverged, the attempt is

onsidered a failure. This new edge, if suessfully generated, onnets medial axis

nodes along the medial axis. A step by step example is desribed in Figure 3.

Fig. 3. Using MALP to onnet two MAPRM on�gurations with SL as the base loal

planner. MALP omputes the SL path between two medial axis on�gurations,

retrats the midpoint to the medial axis and reurses on these new SL paths as

neessary. The dashed lines show the medial axis and the gray lregion is the

�-lose area surrounding it.

If � is very small MALP an be very expensive. Paths produed using di�erent

� values have di�erent learane properties. Larger � valued paths require fewer alls

to push the medial axis and solve in fewer iterations sine paths have more leeway in
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thier traversal of the medial axis.

A onnetion may not exist sine the medial axis may be disjoint, samples are too

far away, or a degenerate ase is enountered. For example, the loal planner an get

aught up when two medial axis on�gurations are on opposite sides of a symmetri

obstale as an be seen in Figure 4. This degenerate ase is a loal minima, the

retrated middle on�guration ends up exatly where an outer on�guration lies. This

yle will ontinue sine the new midpoint is in the same loation as the last. Thus,

we use a maximum number of iterations as an input parameter to stop omputation of

these non-onnetable paths.

Fig. 4. An example of a degenerate ase using MALP. Two medial axis on�gurations

on opposite sides of a symmetri obstale. The middle on�guration ends up

being retrated to one of the on�gurations being onneted, resulting in a new

middle on�guration at the same position as the previous one.

Using a medial axis loal planner, although potentially more expensive, provides

a higher learane path between two medial axis on�gurations on the medial axis.

We now disuss two details of the approah that deal with medial axis retration,

approximate Cspae learane omputations and history retaining.
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2. Approximate C-Spae Clearane

The learane omputation is an important operation in medial axis motion planning.

Clearane omputations an be performed in both exat and approximate fashions.

Exat learane works well for workspae planning but does not generalize to Cspae.

2D and 3D environments an utilize polygonal information to ompute exat learanes

and it works well for rigid bodies. Exat learane omputations annot, however, be

guarenteed using non-onvex obstales, partiularly when omputing penetration. Take

for instane deomposing a 'T' shaped obstale into onvex obstales into two boxes,

top and bottom. An internal fae is introdued at their intersetion that an be used

to alulate inorret learane/penetration distanes, eventually leading to erroneous

medial axis retration. Exat learane omputations also annot take into aount

rotational and internal degrees of freedom, i.e., links of an artiulated robot. Approx-

imate Cspae learane beomes important in higher DOF problems where workspae

learane is not suÆient for planning. Approximate Cspae learane is better for these

higher DOF problems sine the workspae obstale learane beomes less of a fator

and self-ollisions an be fatored in. To approximate the Cspae learane, a series of

random rays are shot out from the on�guration and stop on the boundary of Cfree

[10℄. An example an be seen in Figure 5. The number of random rays is an input

parameter to MAPRM and MALP. As the number of rays inrease, auray inreases

but so does omputation time.

3. History Heuristi

We present a heuristi alled history whih attempts to improve the quality of approx-

imate medial axis retration from [10℄. As an be seen in Figure 6, when retrating to

the medial axis with approximate on�guration learane, the only referene for �nding

the medial axis is the learane distane. The witness points (yan) are approximate
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Fig. 5. Approximating Cspae learane is done by shooting out random rays and using

the distane of the shortest ray as minimum learane.

and an't be used as a referene sine eah step of the retration omputes a new

approximate learane, resulting with a di�erent witness.

As a on�guration is being retrated onto the medial axis, the approximate lear-

ane values are added to a queue. This queue is used essentially as a lo-� �lter, looking

for a peaking trend in the learane values. This helps approximations with lower ray

ounts by trying to ompensate for the noisy learane data olleted. When retrat-

ing onto the medial axis we would expet to see a unimodal sequene, an inrease in

learane till the medial axis was reahed, then a derease. Notie in Figure 6 the third

on�guration of the retration has over approximated its learane, resulting in a value

greater than the next retration steps learane. This an be seen as a false positive if

we adhere to a strit peaking trend poliy. As a on�guration is being retrated, the

learane values are added to the history queue, up to a spei�ed size, and retains the

most urrent learane values.

The history queue is then iterated over and a ratio of positive to negative derivative

values is alulated. One this ratio beomes beomes 50/50, we an assume the medial

axis lies within the history list. Figure 7 shows examples using di�erent sized history
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Fig. 6. The retration proess is performed by retrating in the opposite diretion of

minimal learane till maximal learane or a di�erent witness point is found

lengths (l) to determine the span surrounding the peak. We an see that the longer

history queue spans signi�ed by pairs of squares (l=17) and irles (l=9) ontain the

real peak. Shorter history lenghts an end �nding false positive peaks early in the

retration, suh as the spans signifed by pairs of '+' (l=5) and '*' (l=3).

The span of the history queue is then used as the foundation for a modi�ed

binomial-type searh to �nd the peak. This binomial searh plaes 5 equally spaed

points spanning the history line segment. These points de�ne 4 line segments that

have their derivative omputed and used to searh for a peaking trend. The 2 on-

seutive segments whih best desribe a peak, a positive followed by a negative and

whose shared point has the highest learane, or the highest end of a monotoni set of

learane values is then reursed upon. The reursion stops when the distane between

the two points de�ning the span reahes a spei�ed �.
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Fig. 7. History spans using di�erent history lenghts and the peaks they determine.

Spans signi�ed by pairs of squares (l=17) and irles (l=9) ontain the real

peak, but spans signifed by pairs of '+' (l=5) and '*' (l=3) determine a false

positive peak prematurely.
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CHAPTER IV

EXPERIMENTS

In our experiments we study several di�erent aspets of MALP and medial axis path

planning: MALP performane ompared to SL, MALP roadmap and path learane

properties ompared to SL, quality of the history heuristi, and using MALP with

approximate retration. Figure 8 visualizes the di�erenes between a map generetated

using SL (right) and MALP (left) in a simple 2D environment.

Fig. 8. Roadmaps generated using 25 MAPRM nodes in a simple 2D environment are

onneted using SL (right) and MALP (left). Note that more onnetions are

found using MALP along with inreased path learane.

First, we analyze the performane of MALP and ompare it to SL loal planning.

We then ompare the paths and roadmaps produed by MALP and SL loal plan-

ners and analyze their learane and length. From there we move on to the history

heuristi and show that it is e�etive in produing better approximate medial axis

retrations. Finally, we look at MALP using approximate medial axis retration in

higher dimensions.
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1. Experimental Setup

Here we disuss the di�erent aspets of the experimental setup. First we desribe the

environments used and why they were hosen, they an be seen in Figure 9. We then

disuss the experiments run and the resulting statistis olleted. Finally we go over

the implmentation details of the experiment.

a. Environments

We use 2D and 3D environments (Figures 9(a) and 9(b)) to test the performane of

MALP. The 2D maze environment (Figure 9(a)) has two solutions, generally uniform

learane values sine the hallways throughout the maze are the same width, and is

traversed by a point robot. In this environment, onnetions are diÆult sine nearest

neighbors an be lose aording to Eulidean distane but far apart when traversing

Cfree. The 3D luttered environment (Figure 9(b)) has a small box robot and ontains

48 thik plate obstales randomly plaed throughout the spae. This environment is

intended to apture a more heterogeneous Cspae inluding free and luttered spaes as

well as narrow orridors.

To explore the di�erenes in roadmaps and paths generated using either MALP

or SL, we use environments with di�erent homotopi groups. We look at single ho-

motopy lass environments in both 2D (Figure 9()) and 8D examples. The 2D single

homotopy lass environment has a single narrow passage and uses a point robot. The

8D grid environment has a set of 8 artiulated links with a �xed base on a plane. The

environment has a series of ompartments that are divided by a set of obstales. The

8D grid environment is the same as seen in Figure 9(f), but uses 8 artiulated links

instead of the displayed 16 links and has the same overall robot dimensions. Both of

these environments have a query solution and all solution paths an be deformed to all

others, thus we have single homotopy lass environments. We also look at environments
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with multiple homotopi lasses in 2D (Figure 9(d)) and 3D (Figure 9(b)). The 2D

environment ontains a narrow passage similar to that in the simple homotopi lass

environment in Figure 9() and uses the same point robot. However, this environment

has the outer portion of the obstales removed, allowing for the de�nition of 3 homo-

topi groups. The 3D lutter environment (Figure 9(b)) has a great deal more query

solutions whih are not deformable to one another due to the omplexity of Cobst.

To test the performane of the history heuristi, we use a simple 2D environment

as seen in Figure 9(e). The 2D simple environment ontains two non-onvex obstales

de�ning a narrow passage and is sampled by a point robot.

Finally, we look at 3D and high DOF artiulated linkage environments to explore

approximate medial axis retration. 3D lutter is used along with the grid environment

(Figure9(f)) using 8D and 16D artiulated linkages (16 Link being shown).

b. Experiments

To test MALP performane, we generate a spei�ed number of medial axis samples (100

and 300 in 2D, 200 in 3D) and attempt onnetions between the �ve nearest neighbors

to eah sample as de�ned by Eulidean distane. Thus, the same edges are attempted

by eah loal planner studied, in our ase SL and MALP. Using the di�erent number

of samples allowes us to see the performane of di�erent roadmap densities in the ase

of 2D maze. We examine the e�et of epsilon distane and the maximum number of

iterations on the onstrution statistis and properties of the roadmap using MALP. We

look at suessful onnetion attempts and the size of the largest onneted omponent

as a measure of quality and onnetivity, and the number of ollision detetion alls as

a measure of time. We also test the generality of MALP by using di�erent base loal

planers. We attempt MALP onnetions using SL and rotate-at-s as the base loal

planner.
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(a) 2D Maze (b) 3D Clutter () 2D 1 Homotopy Class

(d) 2D 3 Homotopy Class (e) 2D Simple (f) 8D/16D Grid

Fig. 9. Environments used in our studies inlude a 2D maze environment, a 3D lut-

tered environment, 2 2D environments with di�erent homotopi groups, a simple

2D non-onvex narrow passage and �xed based artiulated linkage environment

using 8D and 16D robots (16D shown).

For experiments involving path and roadmap learane, we generate a set of me-

dial axis samples and onnet them using SL and MALP. The newly onneted maps

are then queried and a solution path is produed. From there, both query solution

and roadmap learanes are analyzed. When analyzing paths, we look at minumin,

maximum, and average learanes of the on�gurations along the path and the length

of the path. When analyzing roadmaps, we �rst look at roadmap length and average,

minimum, and maximum learaes followed by average edge minumims and maximums.

For the history heuristi experiment, we sample 100 on�gurations using di�erent
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ray ount and history length parameters and alulate their distane from the medial

axis. We report the average learane values over all on�gurations sampled.

For the approximate retration experiments, di�erent ray ounts and epsilon values

are studied. The same parameters are analyzed as in the prior MALP performane

experiment.

. Implementation Details

The algorithm was implemeneted and tested in the Parasol Motion Planning Library

(PMPL) framework and results averaged over a series of 10 runs. We used the ollision

deteion library PQP [27℄ for our experiments. The developement and experimentation

were done in Linux environments and ompiled using GCC 4.1.2.

2. MALP Performane

a. MALP for 2 Degrees of Freedom

Figure 10 ompares the performane of MALP and SL in the 2D maze environment

(Figure 9(a)) using exat learane omputation and the same set of medial axis sam-

ples. Roadmap size (i.e,. sampling density), � and the number of MALP iterations were

varied. To analyze MALP, we normalize all statistis over SL loal planner results to

see the performane di�erene.

In Figure 10(a), we are looking at the suess rate of MALP over SL (y axis)

for di�erent map sizes, epsilon values and maximum iteration values (x axis) using

MALP. We see that MALP has equivalent, if not greater, suess rates than SL for all

roadmap sizes sparse (n=100) and dense (n=300). We see that MALP performs as

good if not better than SL in all 2D maze ases at all � values and iteration ounts.

As expeted, the number of edges MALP �nds inreases as the number of iterations

inreases. We an see that the sparse roadmap sees a greater bene�t using MALP
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(a) Suessful Connetion Attempts

(b) Largest Conneted Component Sizes

() Collision Detetion Call Counts

Fig. 10. Results from the 2D maze environment (Figure 9(a)) using MALP with 1, 2,

4 and 8 maximum iterations and � values of 0.15 and 0.075 on both sparse

(n=100) and dense (n=300) roadmaps, n being the number of samples in the

roadmap. All results are normalized on SL loal planner performane.

than a dense roadmap. This is due to the fat that more dense maps have more simple

onnetions, reduing the perentage of diÆult onnetions MALP ould make that

SL ould not. Figure 10(b) plots the relative size of the largest onneted omponent

found ompared to that of one found using SL loal planner. These are plotted against

the same map sizes and epsilons values as the prior onnetions experiment. We see

that roadmaps produed using MALP an inrease the size of the largest onneted

omponent, showing that it an make more unique onnetions and an better apture
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the onnetivity of Cfree. In Figure 10(), we plot the ost of MALP relative to SL

loal planner (y axis) versus the same map sizes and epsilon values as before (x axis).

We see that MALP is more expensive that SL, the ost being a funtion of map size,

�, and maximum number of iterations allowed. More dense maps have more simple

onnetions for MALP to make, thus reduing the overhead of retration. Higher �

values redue the ost by relaxing the learane onstraint, but maximum number of

iterations looks to be the main fator.

b. MALP for 3 Degrees of Freedom

Figure 11 shows the results for MALP using SL as a base loal planner in the 3D

luttered environment (Figure 9(b)) using exat learane omputations while varying �

and the number of maximum iterations. Results for the MALP are reported normalized

against SL performane.

Figure 11(a) shows the suess rate of MALP relative to SL versus MALP with

di�erent epsilon values and maximum number of iterations. As we saw earlier the 2D

maze results (Figure 10(a)), MALP suess rate inreases with inreasing iterations

in the 3D ase. Note that at 1 maximum iteration using the smaller epsilong value,

MALP has a lower suess rate than SL. We attribute this initial performane derease

to the value of � being used. A smaller � an redue the number of onnetions beause

even if a free path is available, it is onsidered a failure if it is not �-lose. We again

see similar trends in the size of the largest onneted omponent as we saw in 2d maze.

Figure 11(b) shows that the size of the largest onneted omponent inreases with

inreasing iteration ounts and inreasing �. In this instane, setting the maximum

iterations to 8, the resulting map was fully onneted, all samples were apart of the

same onneted omponent. In Figure 11(), we ompare the number of ollision

detetion alls between MALP and SL. Retration is an expensive operation, but there
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(a) Suessful Connetion Attempts

(b) Size of the Largest Conneted Component

() Number of Collision Detetion Calls

Fig. 11. Results from the 3D lutter environment (Figure 9(b)) using MALP with SL

as a base loal planner, values of 1, 2, 4 and 8 for maximum iterations, � values

of 0.15 and 0.075 and exat learane omputation.

is a guaranteed quality to the paths generated and in many ases a higher suess rates

and more roadmap onnetivity.

To test the generality of MALP, we use MALP to onnet a roadmap but using

rotate-at-s as the base loal planner. Figure 12 shows the results for MALP using

rotate-at-s in the 3D luttered environment (Figure 9(b)) using exat learane om-

putations while varying � and the maximum number of iterations. Results for MALP

are reported normalized against rotate-at-s performane.

Figure 12(a) plots the suess of MALP onnetions relative to rotate-at-s versus
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(a) Suessful Connetion Attempts

(b) Size of the Largest Conneted Component

() Number of Collision Detetion Calls

Fig. 12. Results from the 3D lutter environment (Figure 9(b)) using MALP with ro-

tate-at-s as a base planner, using values 1, 2, 4 and 8 for maximum iterations,

� values of 0.15 and 0.075 and exat learane omputations.

di�erent � and maximum iteration values. We see that the MALP suess rate in-

reases with inreasing iterations, as expeted. We see a similar trend in the inreasing

size of the largest onneted omponent between MALP using rotate-at-s and normal

rotate-at-s as well. Figure 12(b) shows the size of the largest onneted omponent in-

reasing with inreasing iteration ounts and � value. In Figure 12(), we ompare the

number of ollision detetion alls between MALP and rotate-at-s and we see similar

omputational ost inreases as we saw using SL as the base loal planner.
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3. Path and Roadmap Clearane

To demonstrate MALP and the e�ets of deforming paths to the medial axis, we use

a series of environments to build roadmaps and query them. We look at both query

path and roadmap learanes by omparing roadmaps onneted using SL and MALP

and their query solutions.

a. Path Clearane

Path learane experiments were performed using 2D (Figure 9()) and 8D (8 link

version of Figure 9(f)) single homotopy lass environments. Path learane results are

reported in Table I. Table I entries one and two are the 2D experiment and three

and four the 8D experiment. In both ases, the query path extrated using MALP

had both higher learane and length than SL, showing us that the MALP paths are

further away from obstales and longer whih is expeted. Minimum and maximum

path learanes are generally larger when using MALP as well.

Exploring multiple homotopy lasses, we look at a 2D environment with 3 homo-

topy lasses and the 3D lutter environment with multiple homotopy lasses. In the

2D results, we see from olumns 3 and 4 that MALP �nds a path with muh lower

learane and is shorter than SL path. Looking at Figure 9(d), we see the ause of this

is that MALP �nds a solution through the narrow passage where SL annot. MALP

an generate more onnetions than SL, allowing for di�erent query solutions to be

found. We see the same result in the many homotopy lass 3D lutter environment

Figure 9(b) MALP an generate maps whih produe shorter medial axis paths than

the medial axis path that an be found by a SL solution. This shorter path does

not have any ensured inrease or derease average learane, but for a path in that

homotopi group, it has maximal learane.
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Table I. Statistis of di�erent query solution paths. The set of entries (�rst through

fourth) are for single homotopy lass environments, the seond set (�fth through

eigth) are for multiple homotopy lass environments. Paths are extrated from

roadmaps using the same set of on�gurations onneted using either MALP

or SL loal planner.

Homotopy

Classes

Loal

Planner

Query

Average

Clearane

Query

Length

Minimum

Clearane

Maximum

Clearane

1 (2D) SL 0.3916 4673 0.0021 0.9499

MALP 0.5246 5213 0.0039 1.0345

1 (8D) SL 0.0344 101 0.0032 0.0864

MALP 0.0466 120 0.0090 0.0857

3 SL 1.0255 3515 0.2202 1.3229

MALP 0.2370 2745 0.0024 0.9513

Many SL 3.6486 4667 0.0410 7.9096

MALP 4.5572 2584 0.0187 11.121

b. Roadmap Clearane

Roadmap learane experiments were performed on the the same environments as the

path learane experiments. The roadmap learane results are reported in Table II.

Roadmap learane (third olumn of Table II) is alulated as the average learane of

all on�gurations, both nodes and edges, of a roadmap. The roadmap length (fourth

olumn of Table II) is the sum of all the edge lengths in the roadmap. In our experi-

ments the number of intermediate on�gurations along an edge is onsidered the length.

Minimum and maximum learane values are over all edges in the roadmap and the

average minimum and maximum values are the averages of the minimums/maximums
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of all the edges.

Table II. Statistis of di�erent roadmaps generated using MALP and SL loal planner.

The set of entries (�rst through fourth) are for single homotopy lass environ-

ments, the seond set (�fth through eighth) are for multiple homotopy lass

environments.

Homo-

topy

Classes

Loal

Planner

Average

Roadmap

Clearane

Road-

map

Length

Minimum

Roadmap

Clearane

Maximum

Roadmap

Clearane

Average

Edge

Min

Average

Edge

Max

1 (2D) SL 0.6017 143052 0.0021 1.0324 0.4662 0.7096

MALP 0.6498 177334 0.0021 1.0415 0.4670 0.6831

1 (8D) SL 0.0474 7092 0.00016 0.0950 0.0304 0.0548

MALP 0.0485 9246 0.00002 0.0950 0.0485 0.0559

3 SL 1.0002 158358 0.0002 1.3402 0.9954 1.1207

MALP 0.9908 178122 0.0024 1.3517 0.9706 1.0800

Many SL 4.5031 100240 0.0410 12.1546 3.0351 6.7148

MALP 4.5385 254814 0.0048 12.0344 2.3678 7.0778

Looking at olumns 3 and 4, we see that MALP generates roadmaps generally

with higher average roadmap learane and always longer in length ompared to SL.

When looking at average minimum, we see that the single homotopy lass environ-

ments see and inrease when looking at SL versus MALP, where as multiple homotopy

lass environments see a derease. We attribute this to the multiple homotopy lass

environments and the ability MALP has of �nding suessful paths in tighter areas of

Cspae. MALP may �nd a path in these areas, but would redue the overall learane

of the roadmap.
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4. History Length

Here we explore the e�et of the number of rays used for approximation and the history

length on approximate medial axis retration. We �rst generate medial axis samples in

the 2D environment seen in Figure 9(e) using various ray ount (5, 10, and 20) values

and history lengths (5, 10, 20, and 40) using approximate medial axis retration. We

then measure the obstale learane of the sample and report the average learane of

the generated nodes in Figure 13. We would like to see the average learane inrease

as we inrease both history length and ray ount.

Fig. 13. Comparing the average distane away from the medial axis samples are using

di�erent history lengths (5, 10, 20, and 40) and ray ounts (5, 10, and 20) in

the 2D simple environment (Figure 9(e)).

From the Figure 13 we see that history length does impat retration. As history

length inreases, the average obstale learane inreases with the same ray ount.

Higher ray ounts have better approximations sine there is not as muh noise to

signal the premature �nding of a peak. Thus, we onlude that history length redues

the e�et of false positives aused by noisy approximate learane omputation and

this bene�t is greater with noisier approximations.
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5. MALP Using Approximate Retration

a. MALP for 3 Degrees of Freedom

Figure 14 displays the same experiment seen in Figure 11, but using approximate

Cspae learane omputations instead of exat. Here, results for the MALP suessful

onnetion attempts, largest onneted omponent size and ollision detetion alls are

all normalized against MALP using exat learane omputation.

(a) Suessful Connetion Attempts

(b) Size of Largest Conneted Component

() Number of Collision Detetion Calls

Fig. 14. Results from the 3D lutter environment (Figure 9(b)) using MALP with 1, 2,

4 and 8 iterations and approximate learane omputations using 5 and 10 rays

with a history length of 20. The results are normalized against the performane

of MALP using exat learane omputation.

In Figure 14(a) we plot the suess of MALP relative to SL versus di�erent ray



33

ounts and maximum iteration values. We see that approximate alulations perform

almost as well as exat, with more 10 rays �nding more onnetions than 5 rays, as

expeted. MALP using approximate learane omputation found generally %90 or

more of the onnetions MALP using exat learane omputation found. We also see

in Figure 14(b) that inreasing the number of rays (i.e., improving the approximation)

yields larger onneted omponents and are relative in size the the ones found using

MALP with exat learane omputation. Approximating Cspae is not heap and

the ost is ompounded by the retration proess, making approximate medial axis

retration quite expensive, see Figure 14().

We note the ollision detetion alls relative to MALP exat derease as itera-

tions inrease. We suspet this is attributed to the inreased error using approximate

learane alulation in high learane regions. False positives an be found earlier if

initial on�gurations are already lose to the medial axis. This seems to only be an

artifat seen in the ollision detetion alls, onnetivity does not seem to be e�eted.

As seen in Figure 14(b), approximate retration does not degrade with higher maxi-

mum iterations ounts. Thought the ost may be expensive, in many ases, suh as

in non-onvex environments or high degree of freedom problems, some or all of the

learane omputations annot be omputed exatly and approximate methods must

be used.

b. MALP for Higher Degrees of Freedom

To analyze MALP in higher dimensions, we use an artiulated linkage robot with only

internal degrees of freedom. We onnet nodes using MALP with approximate lear-

ane omputation and ompare the performane to SL sine MALP with exat lear-

ane omputation annot be used. Figure 15 shows the results whih are normalized

on SL performane.
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(a) Suessful Connetion Attempts

(b) Size of Largest Conneted Component

() Number of Conneted Components

Fig. 15. Results from the 8D lutter environment (Figure 9(f)) using MALP with 1, 2,

4 and 8 iterations, and approximate learane omputations using 10 and 15

rays and a history length of 20.

We see in Figure 15(a) that MALP �nds more onnetions as maximum iterations

inreases and performs better with with more rays, as expeted. As with the other

experiments, we see a inreasing trend in the size of the largest onneted omponent

as the number of iterations inreases (Figure 15(b)). Again, we see the ost of using

MALP is expensive relative to SL as seen in Figure 15().

We see similar trends in the 16D results as we did in the 8D results lookin at

Figure 16. Connetion ounts inrease, as seen in Figure 16(a), and largest onneted

omponent size inreases, as seen in Figure 16(b), as the maximum number of iterations
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(a) Suessful Connetion Attempts

(b) Size of Largest Conneted Component

() Number of Collision Detetion Calls

Fig. 16. Results from the 16D lutter environment (Figure 9(f)) using MALP with 1,

2, 4 and 8 iterations and approximate learane omputations using 10 and 15

rays and a history length of 20.

inreases. Looking at all the approximate experiments, we an state that higher ray

ounts perform better than lower ounts due to the inrease in auray. As we have

mentioned, approximating Cspae is not heap, as an be seen looking at Figure 16(),

but still follows the general trends of MALP using exat learane omputation seen in

Figure 11(). However, approximate learane omputation is the only way to alulate

learane in higher degrees of freedom. MALP is expensive, but we see bene�ts in

perentage of suessful attempts. In pratie MALP should be used in onjuntion

with a heaper loal planner if there are no restritions on medial axis planning.
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CHAPTER V

CONCLUSION

In this work we introdue MALP, a new loal planner whih deforms loal planning

paths to the medial axis. MALP works by taking a path between two medial axis

on�guations and determines if that path is �-lose to the medial axis. If the path

is �-lose, a suessful onnetion is found. If not, the middle point of that path

is retrated to the medial axis and the 2 new paths, start to retrated middle and

retrated middle to end, are reursed upon up to a maximum number of iterations.

MALP, though ostly, guarantees that edges are �-lose to the medial axis, thus greatly

improving the quality of roadmap edges by inreasing their learane to obstales. We

have demonstrated MALP's use in 2D, 3D, 8D and 16D environments using both exat

and approximate learane omputations.

Our results show that MALP out-performs SL loal planning in terms of both

onnetion suess rate and size of largest onneted omponent, and works in high

dimensional problems. MALP produes roadmaps that not only have inreased lear-

anes over SL, but also have improved onnetivity, a major hallenge to PRMmethods.

The generality of MALP is reinfored by the de�nable base loal planner. We have also

shown that history length is a useful tool for improving the auray of approximate

medial axis retration.

MALP is more expensive than naive tehniques suh as SL but is more suessful

at onneting diÆult to onnet nodes and may in some ases �nd the key onnetion

to bridge two onneted omponents together. In pratie MALP may be used in

onjuntion with heaper loal planners, suh as SL, when maximal onnetivity is

priority.
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