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ABSTRACT

Medial Axis Lo
al Planner:

Lo
al Planning for Medial Axis Roadmaps. (May 2012)

Kasra Mehron Manavi, B.S., University of New Mexi
o

Chair of Advisory Committee: Nan
y M. Amato

In motion planning, high 
learan
e paths are favorable due to their in
reased

visibility and redu
tion of 
ollision risk, su
h as the safety of problems involving human-

robot 
ooperation. One popular approa
h to solving motion planning problems is the

Probabilisti
 Roadmap Method (PRM), whi
h generates a graph of the free spa
e of

an environment, referred to as a roadmap. In this work we des
ribe a new approa
h to

making high 
learan
e paths when using PRM. The medial axis is useful for this sin
e

it represents the set of points with maximal 
learan
e and is well de�ned in higher

dimensions. However, it 
an only be 
omputed exa
tly in workspa
e. Our goal is to

generate roadmaps with paths following the medial axis of an environment without

expli
itly 
omputing the medial axis.

One of the major steps of PRM is lo
al planning, the planning of motion between

two nearby nodes. PRMs have been used to build roadmaps that have nodes on the

medial axis, but so far there has been no lo
al planner method proposed for 
onne
ting

these nodes on the medial axis. These types of high 
learan
e motions are desirable and

needed in many roboti
s appli
ations. This work proposes Medial Axis Lo
al Planner

(MALP), a lo
al planner whi
h attempts to 
onne
t medial axis 
on�gurations via

the medial axis. The re
ursive method takes a simple path between two medial axis


on�gurations and attempts to deform the path to �t the medial axis. This deformation


reates paths with high 
learan
e and visibility properties. We have implemented this

lo
al planner and have tested it in 2D and 3D rigid body and 8D and 16D �xed base
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arti
ulated linkage environments. We 
ompare MALP with a straight-line lo
al planner

(SL), a typi
al lo
al planner used in motion planning that interpolated along a line in

the planning spa
e. Our results indi
ate that MALP generated higher 
learan
e paths

than SL lo
al planning. As a result, MALP found more 
onne
tions and generated fewer


onne
ted 
omponents as 
ompared to 
onne
ting the same nodes using SL 
onne
tions.

Using MALP 
onne
ts nodes on the medial axis, in
reasing the overall 
learan
e of the

roadmap generated.
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CHAPTER I

INTRODUCTION

One of the major problems in roboti
s is that of �nding a valid, 
ollision-free path for

a robot through a given environment. Motion planning [1℄ has been extensivly studied

and has appli
ations in a variety of domains, from roboti
 path planning to virtual

prototyping/virtual reality [2℄ to 
omputational biology [3℄. Thus it is important to

�nd higher quality and more a

urate methods for solving the motion planning problem.

Sampling-based planners [4℄ were a major breakthrough in motion planning. These

methods were able to solve previously unsolvable problems, in
luding high-dimensional

problems. Sampling-based planners have been shown to be probabilisti
ally 
omplete,

meaning that the probablity of �nding a solution approa
hes 1 as the sampling den-

sity is in
reased. However narrow passages, or tightly 
onstrained environments, still

remain diÆ
ult to traverse.

There have been many variants to the original algorithm that address the weakness

of sampling-based planners in these narrow regions by produ
ing better samples [5℄ [6℄

[7℄ [8℄. One method, Medial Axis PRM (MAPRM) [9℄, in
reases samples in the narrow

passage by retra
ting all 
on�gurations, valid or not, to the medial axis of the free

spa
e. The medial axis is de�ned as the set of points of a spa
e having more than

one 
losest point on the spa
e boundary. The medial axis de�nition extends into

higher dimensions and 
an be viewed simply as the set of 
on�gurations with maximal


learan
e. MAPRM improves the quality of the samples generated and has been shown

to be more e�e
tive than uniform random sampling in narrow 
orridors. This method

in
reases the number of nodes found in narrow 
orridors in a way that is independent of

the volume of a 
orridor, depending solely on the volume of the obsta
les surrounding

The journal model is IEEE Transa
tions on Automati
 Control.



2

it. MAPRM produ
es samples with high 
learan
e, thus high visibility, and 
onne
tions

have a better 
han
e at su

ess. Thus, this in
rease in narrow passage sampling allowed

for solutions to be found in qui
ker time using fewer, but higher quality samples.

When these medial axis samples are 
onne
ted using simple lo
al planners (e.g.,

SL), the roadmap generated 
ontains 
onne
tions whi
h diverge from the medial axis.

Hen
e the resulting roadmap has paths that may have sub-optimal 
learan
e for plan-

ning. Also, depending on how well sampling 
overs an environment, simple 
onne
tion

strategies might not be enough and in
reased sampling potentially leads to over sam-

pling and longer running times.

This paper introdu
es the Medial Axis Lo
al Planner (MALP), a lo
al planner

intended to produ
e high 
learan
e 
onne
tions. The lo
al planner attempts to deform

a simple path between two medial axis 
on�gurations to the medial axis. MALP begins

by pushing the middle 
on�guration of a path between start and goal 
on�gurations to

the medial axis. MALP then re
urses on ea
h new path, the segment between the newly

pushed 
on�guration and an existing 
on�guration until it has 
onverged to a solution


lose enough to the medial axis or until the maximum number of iterations is rea
hed.

A maximum number of re
ursions is a user spe
i�ed variable sin
e a 
onne
tion may

not exist sin
e the medial axis may be disjoint, samples may be too far away, or it may

be a degenerate 
onne
tion. MALP 
an be used with MAPRM to build roadmaps that

lie entirely on the medial axis. MAPRM and MALP 
an utilize approximate methods

of medial axis 
omputation in 
ases where expli
it medial axis 
omputation would be

prohibitively expensive if not impossible due to the nature of the problem studied [10℄.

We test MALP in 2D and 3D rigid body and 8D and 16D �xed-base arti
ulated

linkage environments. MALP is tested against SL lo
al planner, a lo
al planner typ-

i
ally used in motion planning. Our results show that MALP generates paths with

higher 
learan
e than SL, leading to higher 
onne
tion su

ess rates and resulting in
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larger 
onne
ted 
omponents. Though MALP may be more 
ostly, it 
an be e�e
tive at

planning paths between narrow passage 
on�gurations and 
omplex regions of Cspa
e.

This paper's 
ontributions in
lude the following:

� MALP, a lo
al planner whi
h attempts to 
onne
t two medial axis nodes via the

medial axis without expli
itly 
omputing the medial axis.

� A foundation for roadmap 
onstru
tion along the medial axis in arbitrary dimen-

sions.

Our results show that MALP has greater su

ess rates of 
onne
tion than SL in

all environments tested. As we expe
ted, the number of edges MALP found in
reased

as the number of maximum iterations in
reases. This led to a redu
tion of the number

of 
onne
ted 
omponents in the roadmap.

This thesis des
ribes MALP, our proposed medial axis lo
al planner. We des
ribe

in Chapter II the related work to our method. This in
ludes medial axis motion

planning, lo
al planning and path deformation. In Chapter III we des
ribe MALP and

improvements made to approximate medial axis retra
tion. Chapter IV des
ribes the

experiments run and thier results. Finally, in Chapter V we dis
uss our results and


on
lusions about MALP.
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CHAPTER II

RELATED WORK

In this se
tion we dis
uss the related work. We �rst give an introdu
tion to sampling-

based motion planning and Probabilisti
 Roadmap Methods (PRM). We then provide

an introdu
tion to medial axis PRMs whi
h utilize high 
learan
e 
on�gurations. Fi-

nally, we present an overview of lo
al planning and path deformation.

1. Sampling-Based Motion Planning

A robot is a moveable obje
t whose position and orientation 
an be de�ned by d pa-

rameters, or degrees of freedom (DOFs). These parameters de�ne the robot pla
ement,

or 
on�guration, in an environment. These d parameters 
an be used to des
ribe the

robot as a point in an d -dimensional spa
e. This spa
e is referred to as 
on�guration

spa
e, or Cspa
e and in
ludes all possible 
on�gurations, valid and invalid [11℄. All valid,

or feasible, 
on�gurations are 
onsidered to be in the subset Cfree and all invalid, or

infeasible, 
on�gurations are in Cobst. The motion planning problem has now be
ome a

problem of �nding a valid series of 
on�gurations in Cfree between a start and a goal.

Sampling-based motion planners attempt to explore Cspa
e by sampling and 
onne
ting


on�gurations in Cfree.

One important sampling-based planner is the Probabilisti
 Roadmap Method

(PRM) [4℄. PRMs build a roadmap, a graph that represents the 
onne
tivity of Cfree.

This graph 
an then be used as a foundation for traversing Cfree The PRM algorihtm

is outlined in Algorithm 1.

As 
an be seen in Figure 1, the planner begins the 
onstru
tion phase with node

generation. Random samples are generated and valid 
on�gurations in Cfree are saved

and added to the roadmap as nodes. The se
ond phase of 
onstru
tion is 
onne
tion
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Algorithm 1 Probablisti
 Roadmap Method

INPUT: Environment e, number of 
on�gurations n, nearest neighbors k,

distan
e metri
 dm, lo
al planner lp, and start and goal 
on�gurations

OUTPUT: Roadmap r, with n 
on�gs and path p if it exists

GenerateNodes( e, r, n)

Conne
tNodes( e, r, k, dm, lp)

Conne
tQuery( start, goal, e, r, k, dm, lp)

FindPath( start, goal, p )

where distan
e metri
s are used to determine the nearest neighbors in the roadmap,

in the 
ase of Figure 1, k=2, k being the number of nearest neighbors. A lo
al plan-

ner is used to determine if a 
onne
tion 
an be made between neighbors. Su

essful


onne
tions are added to the roadmap as edges between nodes. On
e the roadmap is


onstru
ted, we 
an attempt a query to �nd a planned solution. Queries are pro
essed

�rst by 
onne
ting start and goal 
on�gurations to the roadmap. From there a pathway

is extra
ted if one exists using simple shortest path graph sear
h algorithms.

2. Medial Axis Motion Planning

The Medial Axis Probabilisti
 Roadmap Method (MAPRM) is a variant of PRM whi
h

utilizes the medial axis [9℄ [12℄ [10℄. This algorithm is outlined in Algorithm 2. Random


on�gurations are sampled and then retra
ted to the medial axis, i.e., pushed to areas

of Cfree with higher 
leran
e. as 
an be seen in Figure 2. This is done by �nding the


on�guration with minimal 
learan
e/penetration distan
e from an initial 
on�guration

and using it to determine a dire
tion to retra
t the initial 
on�guration to the medial

axis. A retra
ted 
on�guration is pushed out of Cobst if ne
essary, then pushed away

from Cobst til a se
ond 
on�guration in Cobst is found to be equidistant to the �rst.

Clearan
e is an important 
omputation and 
an be performed in both exa
t and
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Fig. 1. PRM is performed by generating random 
on�gurations and saving the valid

ones (top left), then �nding the k nearest neighbors (here k=2) of all the 
on�g-

urations and 
onne
ting them (top right). Start and goal 
on�gurations are add

to the graph (bottom left) and the shortest path solution is determined (bottom

right)

approximate fashions. Con�gurations on the medial axis have high visibility and are

easier to 
onne
t. It should be noted that MAPRM only samples on the medial axis

and nodes are 
onne
ted by lo
al planners whi
h generally do not make 
onne
tions

on the medial axis.

There are other medial axis planners that have been developed but are restri
ted

to workspa
e. A Framework for Using Workspa
e Medial Axis in PRM [13℄ explores the

workspa
e medial axis, not the Cfree medial axis, by 
omputing a polygonal approxima-

tion of the workspa
e medial axis. Another method is the Voronoi Based Framework for

Motion Planning [14℄ whi
h pre-
omputes the Generalized Voronoi Diagram (GVD) of

the workspa
e using graphi
s hardware and uses that as a foundation for environment

traversal. This method uses randomized path planning to traverse invalid segments of a

robot moving along the GVD pathway. Another method uses sensor based exploration

to in
rementally 
onstru
t a heirar
hi
al generalized Voronoi graph (HGVG) [15℄ [16℄.



7

Algorithm 2 MAPRM Sampling

INPUT: Environment e, number of 
on�gs n

OUTPUT: Roadmap r, with n Medial Axis 
on�gs

for i from 1 to n do

Con�g a = e.GetRandomCon�g()

if !IsValid( a, e ) then

a.PushOutOfCollision()

end if

a.PushToMedialAxis()

r.AddCon�g( a )

end for

This method attempts to map an environment using a series of sensors to provide data

whi
h is used numeri
ally 
onstru
t the HGVG and was tested on physi
al systems

as well as in simulation. These methods work well in workspa
e but are not general

enough to plan on the medial axis in arbitrary dimensions besides the HGVG.

3. Lo
al Planning

A lo
al planner is the 
he
k performed to see if two 
on�gurations are 
onne
table and

is usually run on the nearest neighboring samples in Cspa
e. Lo
al planners are intended

to be inexpensive in terms of 
omputation sin
e they are performed many times. SL

lo
al planning linearly interpolates a series of 
on�gurations that transition from one


on�guration to the other in Cspa
e. Another popular lo
al planner is rotate-at-s [17℄

whi
h translates a 
on�guration to a spe
i�ed per
entage of its pathway towards its

goal, rotates it, then 
ompletes the translation to the goal 
on�guration. This helps

with obsta
le-based planners su
h as [5℄ and [6℄. Both SL and rotate-at-s are qui
k

and simple lo
al planners but 
an lead to many failures in sparsely sampled areas of
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Fig. 2. MAPRM sampling is performed by generating random 
on�gurations and re-

tra
ting them to the medial axis. Here, the initial 
on�gurations are 
olored

gray and the retra
ted 
on�gurations are 
olored bla
k.

the Cspa
e or more 
ompli
ated areas of an environment.

More expensive lo
al planners su
h as those based on A* [18℄ and Path Planning

in Expansive Spa
es [19℄, are better at �nding 
onne
tions. A* uses a best-�rst sear
h

over a resolution sized grid in Cspa
e and �nds the lowest 
osting path. Path Planning

in Expansive Spa
es grows trees rooted at the nodes and 
onne
ts them on
e their

visibility regions be
ome overlapping. These lo
al planners when used between further

away nodes potentially require large amounts of storage along the edge, requiring many

samples in the region of 
onne
tion. These algorithms are expensive and generally have

a timeout parameter to ensure problem stoppage in a reasonable time.

In [20℄, a simpli�ed potential �eld lo
al planner was used to analyze the rea
hability

of sampling based planners. This lo
al planner attempts a SL 
onne
tion and either

rea
hes the goal or if while stepping out, 
ollides with an obsta
le. If a 
ollision

happens, a series of random dire
tions oriented towards the goal are tested for 
ollision.

The best 
andidate (free and 
losest to the goal) is used to step out and avoid the
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ollision. Stepping towards the goal 
ontinues till either the goal is found or �nding a

dire
tion to avoid 
ollision fails. One of the major 
on
lusions made from this study

was that for motion planning, espe
ially narrow passage problems, the major problem

was not 
overing Cfree, but was instead a
hieving good 
onne
tivity. Strategies they

re
ommend to resolve this in
lude using hybrid strategies in diÆ
ult areas of Cspa
e

and by employing more powerful lo
al planners to 
onne
t nodes.

4. Path Deformation

Elasti
 Bands [21℄ and Elasti
 Straps [22℄ address real-time obsta
le avoidan
e in a

dynami
 environment. Elasti
 Bands/Straps start with an initially 
ollision free path

and in
rementally modify the path to maintain a smooth, 
ollsion free path. This

method does not utilize any expli
it Cspa
e information, it relies on prote
tive bubbles

de�ned in workspa
e to maintain Cfree information, and has the 
onstraint of requiring

an initial 
ollsion free path. Methods used in [23℄ 
reate high-quality paths by re�ning

a path in terms of length and 
learan
e. These methods require an initial valid path

from whi
h ea
h intermediate node is retra
ted to the medial axis to in
rease 
learan
e.

The path is then pruned to redu
e the overall length.

Path Deformation Roadmaps [24℄ rely on the notion of path deformability indi
at-

ing whether or not a spe
i�ed path 
an be 
ontinuously deformed into another existing

path. This method only looks at homotopy 
lasses and is dependent on visibility to

determine if a deformation is possible. The Rea
hability Roadmap Method (RRM)

[25℄, intended for 2D and 3D virtual environments, takes an initial roadmap and query

solution and adds "useful" nodes and edges to the roadmap to improve the solution.

If a potential node redu
es the distan
e of the existing shortest path 
onne
ting its

nearest neighbors, it is 
onsidered "useful" and added to the roadmap. The roadmap

is then re
onne
ted by rearranging and adding edges to better �t the new nodes, and
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then retra
ting these edges to the medial axis. RRM showed that alternative and

reasonably short query paths 
an be found by enhan
ing an existing roadmap.

Rea
tive Robot Motion using Path Replanning and Deformation [26℄ uses path

deformation in online path replanning by pushing invalid parts of a SL path away from

obsta
les. The midpoint of an invalid pathway is pushed to the outside edge of the

obsta
les repulsion area, an area de�ned as too 
lose to an obst
le. The two new SL

paths formed are re
ursed upon until a valid path is found or the replanner times out.
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CHAPTER III

MEDIAL AXIS LOCAL PLANNING (MALP)

We begin this 
hapter introdu
ing MALP, a lo
al planner whi
h produ
es paths along

the medial axis. We then dis
uss approximate Cspa
e 
learan
e and how it impa
ts

medial axis retra
tion. Finally, we introdu
e a heuristi
 used to in
rease the a

ura
y

of medial axis retra
tion using approximate 
learan
e 
omputation.

1. MALP

MAPRM generates samples on the medial axis, but 
onne
ting them may redu
e the

overall 
learan
e properties of a roadmap sin
e edges do not lie on the medial axis.

Medial Axis Lo
al Planner (MALP) 
omputes 
onne
tions that reside on the medial

axis. This is done by deforming a path between two medial axis 
on�gurations to

be �-
lose to the medial axis. The path is 
onsidered �-
lose to the medial axis if all

the 
on�gurations along the path are no greater than � away from the medial axis.

Algorithm 3 outlines the approa
h.

Algorithm 3 begins by taking two medial axis 
on�gurations and determining

if a path between them is �-
lose to the medial axis. This path is tested for both


ollisions and for �-
loseness to the the medial axis. To test for �-
loseness, intermediate


on�gurations along the path are retra
ted to the medial axis and their displa
ement is

measured. This is the same retra
tion pro
edure as used in MAPRM sampling [9℄. If

the path is not �-
lose, the middle 
on�guration of the path is retra
ted to the medial

axis. The two new paths generated between the retra
ted midpoint and endpoints are

now re
ursed upon. MALP 
ontinues to re
urse until it has 
onverged to a solution

that is 
onsidered �-
lose to the medial axis or rea
hes an exit 
ase. If the maximum

number of iterations has been rea
hed or the 
on�gurations being 
onne
ted are 
loser
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Algorithm 3 MALP

INPUT: Medial axis 
on�gurations a and b, distan
e �, and iteration itr

OUTPUT: A path �-
lose to the medial axis if feasible, else ;

OTHER: A lo
al planner lp, validity 
he
ker v
 and maximum iteration itrmax

// Let v
 be a fun
tion that returns true if 
on�gurations are 
ollision free and

�-
lose

if ( itr � itrmax ) then

Return ;

end if

P0 = lp.GetValidPath( a, b, v
 ) // Returns valid path P0 based on the validity

de�nition

// given by v
, or ; if the path doesn't exist

if ( P0 != ; ) then

Return P0

end if

mid = PushToMedialAxis( ( a + b ) = 2 )

P1 = MALP( a, mid, �, itr+1 )

if ( P1 == ; ) then

Return ;

end if

P2 = MALP( mid, b, �, itr+1 )

if ( P2 == ; ) then

Return ;

end if

Return ( P1 Æ P2 )
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than the environment resolution and the path has still not 
onverged, the attempt is


onsidered a failure. This new edge, if su

essfully generated, 
onne
ts medial axis

nodes along the medial axis. A step by step example is des
ribed in Figure 3.

Fig. 3. Using MALP to 
onne
t two MAPRM 
on�gurations with SL as the base lo
al

planner. MALP 
omputes the SL path between two medial axis 
on�gurations,

retra
ts the midpoint to the medial axis and re
urses on these new SL paths as

ne
essary. The dashed lines show the medial axis and the gray lregion is the

�-
lose area surrounding it.

If � is very small MALP 
an be very expensive. Paths produ
ed using di�erent

� values have di�erent 
learan
e properties. Larger � valued paths require fewer 
alls

to push the medial axis and solve in fewer iterations sin
e paths have more leeway in
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thier traversal of the medial axis.

A 
onne
tion may not exist sin
e the medial axis may be disjoint, samples are too

far away, or a degenerate 
ase is en
ountered. For example, the lo
al planner 
an get


aught up when two medial axis 
on�gurations are on opposite sides of a symmetri


obsta
le as 
an be seen in Figure 4. This degenerate 
ase is a lo
al minima, the

retra
ted middle 
on�guration ends up exa
tly where an outer 
on�guration lies. This


y
le will 
ontinue sin
e the new midpoint is in the same lo
ation as the last. Thus,

we use a maximum number of iterations as an input parameter to stop 
omputation of

these non-
onne
table paths.

Fig. 4. An example of a degenerate 
ase using MALP. Two medial axis 
on�gurations

on opposite sides of a symmetri
 obsta
le. The middle 
on�guration ends up

being retra
ted to one of the 
on�gurations being 
onne
ted, resulting in a new

middle 
on�guration at the same position as the previous one.

Using a medial axis lo
al planner, although potentially more expensive, provides

a higher 
learan
e path between two medial axis 
on�gurations on the medial axis.

We now dis
uss two details of the approa
h that deal with medial axis retra
tion,

approximate Cspa
e 
learan
e 
omputations and history retaining.
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2. Approximate C-Spa
e Clearan
e

The 
learan
e 
omputation is an important operation in medial axis motion planning.

Clearan
e 
omputations 
an be performed in both exa
t and approximate fashions.

Exa
t 
learan
e works well for workspa
e planning but does not generalize to Cspa
e.

2D and 3D environments 
an utilize polygonal information to 
ompute exa
t 
learan
es

and it works well for rigid bodies. Exa
t 
learan
e 
omputations 
annot, however, be

guarenteed using non-
onvex obsta
les, parti
ularly when 
omputing penetration. Take

for instan
e de
omposing a 'T' shaped obsta
le into 
onvex obsta
les into two boxes,

top and bottom. An internal fa
e is introdu
ed at their interse
tion that 
an be used

to 
al
ulate in
orre
t 
learan
e/penetration distan
es, eventually leading to erroneous

medial axis retra
tion. Exa
t 
learan
e 
omputations also 
annot take into a

ount

rotational and internal degrees of freedom, i.e., links of an arti
ulated robot. Approx-

imate Cspa
e 
learan
e be
omes important in higher DOF problems where workspa
e


learan
e is not suÆ
ient for planning. Approximate Cspa
e 
learan
e is better for these

higher DOF problems sin
e the workspa
e obsta
le 
learan
e be
omes less of a fa
tor

and self-
ollisions 
an be fa
tored in. To approximate the Cspa
e 
learan
e, a series of

random rays are shot out from the 
on�guration and stop on the boundary of Cfree

[10℄. An example 
an be seen in Figure 5. The number of random rays is an input

parameter to MAPRM and MALP. As the number of rays in
rease, a

ura
y in
reases

but so does 
omputation time.

3. History Heuristi


We present a heuristi
 
alled history whi
h attempts to improve the quality of approx-

imate medial axis retra
tion from [10℄. As 
an be seen in Figure 6, when retra
ting to

the medial axis with approximate 
on�guration 
learan
e, the only referen
e for �nding

the medial axis is the 
learan
e distan
e. The witness points (
yan) are approximate
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Fig. 5. Approximating Cspa
e 
learan
e is done by shooting out random rays and using

the distan
e of the shortest ray as minimum 
learan
e.

and 
an't be used as a referen
e sin
e ea
h step of the retra
tion 
omputes a new

approximate 
learan
e, resulting with a di�erent witness.

As a 
on�guration is being retra
ted onto the medial axis, the approximate 
lear-

an
e values are added to a queue. This queue is used essentially as a lo-� �lter, looking

for a peaking trend in the 
learan
e values. This helps approximations with lower ray


ounts by trying to 
ompensate for the noisy 
learan
e data 
olle
ted. When retra
t-

ing onto the medial axis we would expe
t to see a unimodal sequen
e, an in
rease in


learan
e till the medial axis was rea
hed, then a de
rease. Noti
e in Figure 6 the third


on�guration of the retra
tion has over approximated its 
learan
e, resulting in a value

greater than the next retra
tion steps 
learan
e. This 
an be seen as a false positive if

we adhere to a stri
t peaking trend poli
y. As a 
on�guration is being retra
ted, the


learan
e values are added to the history queue, up to a spe
i�ed size, and retains the

most 
urrent 
learan
e values.

The history queue is then iterated over and a ratio of positive to negative derivative

values is 
al
ulated. On
e this ratio be
omes be
omes 50/50, we 
an assume the medial

axis lies within the history list. Figure 7 shows examples using di�erent sized history
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Fig. 6. The retra
tion pro
ess is performed by retra
ting in the opposite dire
tion of

minimal 
learan
e till maximal 
learan
e or a di�erent witness point is found

lengths (l) to determine the span surrounding the peak. We 
an see that the longer

history queue spans signi�ed by pairs of squares (l=17) and 
ir
les (l=9) 
ontain the

real peak. Shorter history lenghts 
an end �nding false positive peaks early in the

retra
tion, su
h as the spans signifed by pairs of '+' (l=5) and '*' (l=3).

The span of the history queue is then used as the foundation for a modi�ed

binomial-type sear
h to �nd the peak. This binomial sear
h pla
es 5 equally spa
ed

points spanning the history line segment. These points de�ne 4 line segments that

have their derivative 
omputed and used to sear
h for a peaking trend. The 2 
on-

se
utive segments whi
h best des
ribe a peak, a positive followed by a negative and

whose shared point has the highest 
learan
e, or the highest end of a monotoni
 set of


learan
e values is then re
ursed upon. The re
ursion stops when the distan
e between

the two points de�ning the span rea
hes a spe
i�ed �.
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Fig. 7. History spans using di�erent history lenghts and the peaks they determine.

Spans signi�ed by pairs of squares (l=17) and 
ir
les (l=9) 
ontain the real

peak, but spans signifed by pairs of '+' (l=5) and '*' (l=3) determine a false

positive peak prematurely.



19

CHAPTER IV

EXPERIMENTS

In our experiments we study several di�erent aspe
ts of MALP and medial axis path

planning: MALP performan
e 
ompared to SL, MALP roadmap and path 
learan
e

properties 
ompared to SL, quality of the history heuristi
, and using MALP with

approximate retra
tion. Figure 8 visualizes the di�eren
es between a map generetated

using SL (right) and MALP (left) in a simple 2D environment.

Fig. 8. Roadmaps generated using 25 MAPRM nodes in a simple 2D environment are


onne
ted using SL (right) and MALP (left). Note that more 
onne
tions are

found using MALP along with in
reased path 
learan
e.

First, we analyze the performan
e of MALP and 
ompare it to SL lo
al planning.

We then 
ompare the paths and roadmaps produ
ed by MALP and SL lo
al plan-

ners and analyze their 
learan
e and length. From there we move on to the history

heuristi
 and show that it is e�e
tive in produ
ing better approximate medial axis

retra
tions. Finally, we look at MALP using approximate medial axis retra
tion in

higher dimensions.
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1. Experimental Setup

Here we dis
uss the di�erent aspe
ts of the experimental setup. First we des
ribe the

environments used and why they were 
hosen, they 
an be seen in Figure 9. We then

dis
uss the experiments run and the resulting statisti
s 
olle
ted. Finally we go over

the implmentation details of the experiment.

a. Environments

We use 2D and 3D environments (Figures 9(a) and 9(b)) to test the performan
e of

MALP. The 2D maze environment (Figure 9(a)) has two solutions, generally uniform


learan
e values sin
e the hallways throughout the maze are the same width, and is

traversed by a point robot. In this environment, 
onne
tions are diÆ
ult sin
e nearest

neighbors 
an be 
lose a

ording to Eu
lidean distan
e but far apart when traversing

Cfree. The 3D 
luttered environment (Figure 9(b)) has a small box robot and 
ontains

48 thi
k plate obsta
les randomly pla
ed throughout the spa
e. This environment is

intended to 
apture a more heterogeneous Cspa
e in
luding free and 
luttered spa
es as

well as narrow 
orridors.

To explore the di�eren
es in roadmaps and paths generated using either MALP

or SL, we use environments with di�erent homotopi
 groups. We look at single ho-

motopy 
lass environments in both 2D (Figure 9(
)) and 8D examples. The 2D single

homotopy 
lass environment has a single narrow passage and uses a point robot. The

8D grid environment has a set of 8 arti
ulated links with a �xed base on a plane. The

environment has a series of 
ompartments that are divided by a set of obsta
les. The

8D grid environment is the same as seen in Figure 9(f), but uses 8 arti
ulated links

instead of the displayed 16 links and has the same overall robot dimensions. Both of

these environments have a query solution and all solution paths 
an be deformed to all

others, thus we have single homotopy 
lass environments. We also look at environments
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with multiple homotopi
 
lasses in 2D (Figure 9(d)) and 3D (Figure 9(b)). The 2D

environment 
ontains a narrow passage similar to that in the simple homotopi
 
lass

environment in Figure 9(
) and uses the same point robot. However, this environment

has the outer portion of the obsta
les removed, allowing for the de�nition of 3 homo-

topi
 groups. The 3D 
lutter environment (Figure 9(b)) has a great deal more query

solutions whi
h are not deformable to one another due to the 
omplexity of Cobst.

To test the performan
e of the history heuristi
, we use a simple 2D environment

as seen in Figure 9(e). The 2D simple environment 
ontains two non-
onvex obsta
les

de�ning a narrow passage and is sampled by a point robot.

Finally, we look at 3D and high DOF arti
ulated linkage environments to explore

approximate medial axis retra
tion. 3D 
lutter is used along with the grid environment

(Figure9(f)) using 8D and 16D arti
ulated linkages (16 Link being shown).

b. Experiments

To test MALP performan
e, we generate a spe
i�ed number of medial axis samples (100

and 300 in 2D, 200 in 3D) and attempt 
onne
tions between the �ve nearest neighbors

to ea
h sample as de�ned by Eu
lidean distan
e. Thus, the same edges are attempted

by ea
h lo
al planner studied, in our 
ase SL and MALP. Using the di�erent number

of samples allowes us to see the performan
e of di�erent roadmap densities in the 
ase

of 2D maze. We examine the e�e
t of epsilon distan
e and the maximum number of

iterations on the 
onstru
tion statisti
s and properties of the roadmap using MALP. We

look at su

essful 
onne
tion attempts and the size of the largest 
onne
ted 
omponent

as a measure of quality and 
onne
tivity, and the number of 
ollision dete
tion 
alls as

a measure of time. We also test the generality of MALP by using di�erent base lo
al

planers. We attempt MALP 
onne
tions using SL and rotate-at-s as the base lo
al

planner.
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(a) 2D Maze (b) 3D Clutter (
) 2D 1 Homotopy Class

(d) 2D 3 Homotopy Class (e) 2D Simple (f) 8D/16D Grid

Fig. 9. Environments used in our studies in
lude a 2D maze environment, a 3D 
lut-

tered environment, 2 2D environments with di�erent homotopi
 groups, a simple

2D non-
onvex narrow passage and �xed based arti
ulated linkage environment

using 8D and 16D robots (16D shown).

For experiments involving path and roadmap 
learan
e, we generate a set of me-

dial axis samples and 
onne
t them using SL and MALP. The newly 
onne
ted maps

are then queried and a solution path is produ
ed. From there, both query solution

and roadmap 
learan
es are analyzed. When analyzing paths, we look at minumin,

maximum, and average 
learan
es of the 
on�gurations along the path and the length

of the path. When analyzing roadmaps, we �rst look at roadmap length and average,

minimum, and maximum 
leara
es followed by average edge minumims and maximums.

For the history heuristi
 experiment, we sample 100 
on�gurations using di�erent
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ray 
ount and history length parameters and 
al
ulate their distan
e from the medial

axis. We report the average 
learan
e values over all 
on�gurations sampled.

For the approximate retra
tion experiments, di�erent ray 
ounts and epsilon values

are studied. The same parameters are analyzed as in the prior MALP performan
e

experiment.


. Implementation Details

The algorithm was implemeneted and tested in the Parasol Motion Planning Library

(PMPL) framework and results averaged over a series of 10 runs. We used the 
ollision

dete
ion library PQP [27℄ for our experiments. The developement and experimentation

were done in Linux environments and 
ompiled using GCC 4.1.2.

2. MALP Performan
e

a. MALP for 2 Degrees of Freedom

Figure 10 
ompares the performan
e of MALP and SL in the 2D maze environment

(Figure 9(a)) using exa
t 
learan
e 
omputation and the same set of medial axis sam-

ples. Roadmap size (i.e,. sampling density), � and the number of MALP iterations were

varied. To analyze MALP, we normalize all statisti
s over SL lo
al planner results to

see the performan
e di�eren
e.

In Figure 10(a), we are looking at the su

ess rate of MALP over SL (y axis)

for di�erent map sizes, epsilon values and maximum iteration values (x axis) using

MALP. We see that MALP has equivalent, if not greater, su

ess rates than SL for all

roadmap sizes sparse (n=100) and dense (n=300). We see that MALP performs as

good if not better than SL in all 2D maze 
ases at all � values and iteration 
ounts.

As expe
ted, the number of edges MALP �nds in
reases as the number of iterations

in
reases. We 
an see that the sparse roadmap sees a greater bene�t using MALP
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(a) Su

essful Conne
tion Attempts

(b) Largest Conne
ted Component Sizes

(
) Collision Dete
tion Call Counts

Fig. 10. Results from the 2D maze environment (Figure 9(a)) using MALP with 1, 2,

4 and 8 maximum iterations and � values of 0.15 and 0.075 on both sparse

(n=100) and dense (n=300) roadmaps, n being the number of samples in the

roadmap. All results are normalized on SL lo
al planner performan
e.

than a dense roadmap. This is due to the fa
t that more dense maps have more simple


onne
tions, redu
ing the per
entage of diÆ
ult 
onne
tions MALP 
ould make that

SL 
ould not. Figure 10(b) plots the relative size of the largest 
onne
ted 
omponent

found 
ompared to that of one found using SL lo
al planner. These are plotted against

the same map sizes and epsilons values as the prior 
onne
tions experiment. We see

that roadmaps produ
ed using MALP 
an in
rease the size of the largest 
onne
ted


omponent, showing that it 
an make more unique 
onne
tions and 
an better 
apture
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the 
onne
tivity of Cfree. In Figure 10(
), we plot the 
ost of MALP relative to SL

lo
al planner (y axis) versus the same map sizes and epsilon values as before (x axis).

We see that MALP is more expensive that SL, the 
ost being a fun
tion of map size,

�, and maximum number of iterations allowed. More dense maps have more simple


onne
tions for MALP to make, thus redu
ing the overhead of retra
tion. Higher �

values redu
e the 
ost by relaxing the 
learan
e 
onstraint, but maximum number of

iterations looks to be the main fa
tor.

b. MALP for 3 Degrees of Freedom

Figure 11 shows the results for MALP using SL as a base lo
al planner in the 3D


luttered environment (Figure 9(b)) using exa
t 
learan
e 
omputations while varying �

and the number of maximum iterations. Results for the MALP are reported normalized

against SL performan
e.

Figure 11(a) shows the su

ess rate of MALP relative to SL versus MALP with

di�erent epsilon values and maximum number of iterations. As we saw earlier the 2D

maze results (Figure 10(a)), MALP su

ess rate in
reases with in
reasing iterations

in the 3D 
ase. Note that at 1 maximum iteration using the smaller epsilong value,

MALP has a lower su

ess rate than SL. We attribute this initial performan
e de
rease

to the value of � being used. A smaller � 
an redu
e the number of 
onne
tions be
ause

even if a free path is available, it is 
onsidered a failure if it is not �-
lose. We again

see similar trends in the size of the largest 
onne
ted 
omponent as we saw in 2d maze.

Figure 11(b) shows that the size of the largest 
onne
ted 
omponent in
reases with

in
reasing iteration 
ounts and in
reasing �. In this instan
e, setting the maximum

iterations to 8, the resulting map was fully 
onne
ted, all samples were apart of the

same 
onne
ted 
omponent. In Figure 11(
), we 
ompare the number of 
ollision

dete
tion 
alls between MALP and SL. Retra
tion is an expensive operation, but there
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(a) Su

essful Conne
tion Attempts

(b) Size of the Largest Conne
ted Component

(
) Number of Collision Dete
tion Calls

Fig. 11. Results from the 3D 
lutter environment (Figure 9(b)) using MALP with SL

as a base lo
al planner, values of 1, 2, 4 and 8 for maximum iterations, � values

of 0.15 and 0.075 and exa
t 
learan
e 
omputation.

is a guaranteed quality to the paths generated and in many 
ases a higher su

ess rates

and more roadmap 
onne
tivity.

To test the generality of MALP, we use MALP to 
onne
t a roadmap but using

rotate-at-s as the base lo
al planner. Figure 12 shows the results for MALP using

rotate-at-s in the 3D 
luttered environment (Figure 9(b)) using exa
t 
learan
e 
om-

putations while varying � and the maximum number of iterations. Results for MALP

are reported normalized against rotate-at-s performan
e.

Figure 12(a) plots the su

ess of MALP 
onne
tions relative to rotate-at-s versus
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(a) Su

essful Conne
tion Attempts

(b) Size of the Largest Conne
ted Component

(
) Number of Collision Dete
tion Calls

Fig. 12. Results from the 3D 
lutter environment (Figure 9(b)) using MALP with ro-

tate-at-s as a base planner, using values 1, 2, 4 and 8 for maximum iterations,

� values of 0.15 and 0.075 and exa
t 
learan
e 
omputations.

di�erent � and maximum iteration values. We see that the MALP su

ess rate in-


reases with in
reasing iterations, as expe
ted. We see a similar trend in the in
reasing

size of the largest 
onne
ted 
omponent between MALP using rotate-at-s and normal

rotate-at-s as well. Figure 12(b) shows the size of the largest 
onne
ted 
omponent in-


reasing with in
reasing iteration 
ounts and � value. In Figure 12(
), we 
ompare the

number of 
ollision dete
tion 
alls between MALP and rotate-at-s and we see similar


omputational 
ost in
reases as we saw using SL as the base lo
al planner.
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3. Path and Roadmap Clearan
e

To demonstrate MALP and the e�e
ts of deforming paths to the medial axis, we use

a series of environments to build roadmaps and query them. We look at both query

path and roadmap 
learan
es by 
omparing roadmaps 
onne
ted using SL and MALP

and their query solutions.

a. Path Clearan
e

Path 
learan
e experiments were performed using 2D (Figure 9(
)) and 8D (8 link

version of Figure 9(f)) single homotopy 
lass environments. Path 
learan
e results are

reported in Table I. Table I entries one and two are the 2D experiment and three

and four the 8D experiment. In both 
ases, the query path extra
ted using MALP

had both higher 
learan
e and length than SL, showing us that the MALP paths are

further away from obsta
les and longer whi
h is expe
ted. Minimum and maximum

path 
learan
es are generally larger when using MALP as well.

Exploring multiple homotopy 
lasses, we look at a 2D environment with 3 homo-

topy 
lasses and the 3D 
lutter environment with multiple homotopy 
lasses. In the

2D results, we see from 
olumns 3 and 4 that MALP �nds a path with mu
h lower


learan
e and is shorter than SL path. Looking at Figure 9(d), we see the 
ause of this

is that MALP �nds a solution through the narrow passage where SL 
annot. MALP


an generate more 
onne
tions than SL, allowing for di�erent query solutions to be

found. We see the same result in the many homotopy 
lass 3D 
lutter environment

Figure 9(b) MALP 
an generate maps whi
h produ
e shorter medial axis paths than

the medial axis path that 
an be found by a SL solution. This shorter path does

not have any ensured in
rease or de
rease average 
learan
e, but for a path in that

homotopi
 group, it has maximal 
learan
e.



29

Table I. Statisti
s of di�erent query solution paths. The set of entries (�rst through

fourth) are for single homotopy 
lass environments, the se
ond set (�fth through

eigth) are for multiple homotopy 
lass environments. Paths are extra
ted from

roadmaps using the same set of 
on�gurations 
onne
ted using either MALP

or SL lo
al planner.

Homotopy

Classes

Lo
al

Planner

Query

Average

Clearan
e

Query

Length

Minimum

Clearan
e

Maximum

Clearan
e

1 (2D) SL 0.3916 4673 0.0021 0.9499

MALP 0.5246 5213 0.0039 1.0345

1 (8D) SL 0.0344 101 0.0032 0.0864

MALP 0.0466 120 0.0090 0.0857

3 SL 1.0255 3515 0.2202 1.3229

MALP 0.2370 2745 0.0024 0.9513

Many SL 3.6486 4667 0.0410 7.9096

MALP 4.5572 2584 0.0187 11.121

b. Roadmap Clearan
e

Roadmap 
learan
e experiments were performed on the the same environments as the

path 
learan
e experiments. The roadmap 
learan
e results are reported in Table II.

Roadmap 
learan
e (third 
olumn of Table II) is 
al
ulated as the average 
learan
e of

all 
on�gurations, both nodes and edges, of a roadmap. The roadmap length (fourth


olumn of Table II) is the sum of all the edge lengths in the roadmap. In our experi-

ments the number of intermediate 
on�gurations along an edge is 
onsidered the length.

Minimum and maximum 
learan
e values are over all edges in the roadmap and the

average minimum and maximum values are the averages of the minimums/maximums
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of all the edges.

Table II. Statisti
s of di�erent roadmaps generated using MALP and SL lo
al planner.

The set of entries (�rst through fourth) are for single homotopy 
lass environ-

ments, the se
ond set (�fth through eighth) are for multiple homotopy 
lass

environments.

Homo-

topy

Classes

Lo
al

Planner

Average

Roadmap

Clearan
e

Road-

map

Length

Minimum

Roadmap

Clearan
e

Maximum

Roadmap

Clearan
e

Average

Edge

Min

Average

Edge

Max

1 (2D) SL 0.6017 143052 0.0021 1.0324 0.4662 0.7096

MALP 0.6498 177334 0.0021 1.0415 0.4670 0.6831

1 (8D) SL 0.0474 7092 0.00016 0.0950 0.0304 0.0548

MALP 0.0485 9246 0.00002 0.0950 0.0485 0.0559

3 SL 1.0002 158358 0.0002 1.3402 0.9954 1.1207

MALP 0.9908 178122 0.0024 1.3517 0.9706 1.0800

Many SL 4.5031 100240 0.0410 12.1546 3.0351 6.7148

MALP 4.5385 254814 0.0048 12.0344 2.3678 7.0778

Looking at 
olumns 3 and 4, we see that MALP generates roadmaps generally

with higher average roadmap 
learan
e and always longer in length 
ompared to SL.

When looking at average minimum, we see that the single homotopy 
lass environ-

ments see and in
rease when looking at SL versus MALP, where as multiple homotopy


lass environments see a de
rease. We attribute this to the multiple homotopy 
lass

environments and the ability MALP has of �nding su

essful paths in tighter areas of

Cspa
e. MALP may �nd a path in these areas, but would redu
e the overall 
learan
e

of the roadmap.
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4. History Length

Here we explore the e�e
t of the number of rays used for approximation and the history

length on approximate medial axis retra
tion. We �rst generate medial axis samples in

the 2D environment seen in Figure 9(e) using various ray 
ount (5, 10, and 20) values

and history lengths (5, 10, 20, and 40) using approximate medial axis retra
tion. We

then measure the obsta
le 
learan
e of the sample and report the average 
learan
e of

the generated nodes in Figure 13. We would like to see the average 
learan
e in
rease

as we in
rease both history length and ray 
ount.

Fig. 13. Comparing the average distan
e away from the medial axis samples are using

di�erent history lengths (5, 10, 20, and 40) and ray 
ounts (5, 10, and 20) in

the 2D simple environment (Figure 9(e)).

From the Figure 13 we see that history length does impa
t retra
tion. As history

length in
reases, the average obsta
le 
learan
e in
reases with the same ray 
ount.

Higher ray 
ounts have better approximations sin
e there is not as mu
h noise to

signal the premature �nding of a peak. Thus, we 
on
lude that history length redu
es

the e�e
t of false positives 
aused by noisy approximate 
learan
e 
omputation and

this bene�t is greater with noisier approximations.
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5. MALP Using Approximate Retra
tion

a. MALP for 3 Degrees of Freedom

Figure 14 displays the same experiment seen in Figure 11, but using approximate

Cspa
e 
learan
e 
omputations instead of exa
t. Here, results for the MALP su

essful


onne
tion attempts, largest 
onne
ted 
omponent size and 
ollision dete
tion 
alls are

all normalized against MALP using exa
t 
learan
e 
omputation.

(a) Su

essful Conne
tion Attempts

(b) Size of Largest Conne
ted Component

(
) Number of Collision Dete
tion Calls

Fig. 14. Results from the 3D 
lutter environment (Figure 9(b)) using MALP with 1, 2,

4 and 8 iterations and approximate 
learan
e 
omputations using 5 and 10 rays

with a history length of 20. The results are normalized against the performan
e

of MALP using exa
t 
learan
e 
omputation.

In Figure 14(a) we plot the su

ess of MALP relative to SL versus di�erent ray
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ounts and maximum iteration values. We see that approximate 
al
ulations perform

almost as well as exa
t, with more 10 rays �nding more 
onne
tions than 5 rays, as

expe
ted. MALP using approximate 
learan
e 
omputation found generally %90 or

more of the 
onne
tions MALP using exa
t 
learan
e 
omputation found. We also see

in Figure 14(b) that in
reasing the number of rays (i.e., improving the approximation)

yields larger 
onne
ted 
omponents and are relative in size the the ones found using

MALP with exa
t 
learan
e 
omputation. Approximating Cspa
e is not 
heap and

the 
ost is 
ompounded by the retra
tion pro
ess, making approximate medial axis

retra
tion quite expensive, see Figure 14(
).

We note the 
ollision dete
tion 
alls relative to MALP exa
t de
rease as itera-

tions in
rease. We suspe
t this is attributed to the in
reased error using approximate


learan
e 
al
ulation in high 
learan
e regions. False positives 
an be found earlier if

initial 
on�gurations are already 
lose to the medial axis. This seems to only be an

artifa
t seen in the 
ollision dete
tion 
alls, 
onne
tivity does not seem to be e�e
ted.

As seen in Figure 14(b), approximate retra
tion does not degrade with higher maxi-

mum iterations 
ounts. Thought the 
ost may be expensive, in many 
ases, su
h as

in non-
onvex environments or high degree of freedom problems, some or all of the


learan
e 
omputations 
annot be 
omputed exa
tly and approximate methods must

be used.

b. MALP for Higher Degrees of Freedom

To analyze MALP in higher dimensions, we use an arti
ulated linkage robot with only

internal degrees of freedom. We 
onne
t nodes using MALP with approximate 
lear-

an
e 
omputation and 
ompare the performan
e to SL sin
e MALP with exa
t 
lear-

an
e 
omputation 
annot be used. Figure 15 shows the results whi
h are normalized

on SL performan
e.
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(a) Su

essful Conne
tion Attempts

(b) Size of Largest Conne
ted Component

(
) Number of Conne
ted Components

Fig. 15. Results from the 8D 
lutter environment (Figure 9(f)) using MALP with 1, 2,

4 and 8 iterations, and approximate 
learan
e 
omputations using 10 and 15

rays and a history length of 20.

We see in Figure 15(a) that MALP �nds more 
onne
tions as maximum iterations

in
reases and performs better with with more rays, as expe
ted. As with the other

experiments, we see a in
reasing trend in the size of the largest 
onne
ted 
omponent

as the number of iterations in
reases (Figure 15(b)). Again, we see the 
ost of using

MALP is expensive relative to SL as seen in Figure 15(
).

We see similar trends in the 16D results as we did in the 8D results lookin at

Figure 16. Conne
tion 
ounts in
rease, as seen in Figure 16(a), and largest 
onne
ted


omponent size in
reases, as seen in Figure 16(b), as the maximum number of iterations
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(a) Su

essful Conne
tion Attempts

(b) Size of Largest Conne
ted Component

(
) Number of Collision Dete
tion Calls

Fig. 16. Results from the 16D 
lutter environment (Figure 9(f)) using MALP with 1,

2, 4 and 8 iterations and approximate 
learan
e 
omputations using 10 and 15

rays and a history length of 20.

in
reases. Looking at all the approximate experiments, we 
an state that higher ray


ounts perform better than lower 
ounts due to the in
rease in a

ura
y. As we have

mentioned, approximating Cspa
e is not 
heap, as 
an be seen looking at Figure 16(
),

but still follows the general trends of MALP using exa
t 
learan
e 
omputation seen in

Figure 11(
). However, approximate 
learan
e 
omputation is the only way to 
al
ulate


learan
e in higher degrees of freedom. MALP is expensive, but we see bene�ts in

per
entage of su

essful attempts. In pra
ti
e MALP should be used in 
onjun
tion

with a 
heaper lo
al planner if there are no restri
tions on medial axis planning.
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CHAPTER V

CONCLUSION

In this work we introdu
e MALP, a new lo
al planner whi
h deforms lo
al planning

paths to the medial axis. MALP works by taking a path between two medial axis


on�guations and determines if that path is �-
lose to the medial axis. If the path

is �-
lose, a su

essful 
onne
tion is found. If not, the middle point of that path

is retra
ted to the medial axis and the 2 new paths, start to retra
ted middle and

retra
ted middle to end, are re
ursed upon up to a maximum number of iterations.

MALP, though 
ostly, guarantees that edges are �-
lose to the medial axis, thus greatly

improving the quality of roadmap edges by in
reasing their 
learan
e to obsta
les. We

have demonstrated MALP's use in 2D, 3D, 8D and 16D environments using both exa
t

and approximate 
learan
e 
omputations.

Our results show that MALP out-performs SL lo
al planning in terms of both


onne
tion su

ess rate and size of largest 
onne
ted 
omponent, and works in high

dimensional problems. MALP produ
es roadmaps that not only have in
reased 
lear-

an
es over SL, but also have improved 
onne
tivity, a major 
hallenge to PRMmethods.

The generality of MALP is reinfored by the de�nable base lo
al planner. We have also

shown that history length is a useful tool for improving the a

ura
y of approximate

medial axis retra
tion.

MALP is more expensive than naive te
hniques su
h as SL but is more su

essful

at 
onne
ting diÆ
ult to 
onne
t nodes and may in some 
ases �nd the key 
onne
tion

to bridge two 
onne
ted 
omponents together. In pra
ti
e MALP may be used in


onjun
tion with 
heaper lo
al planners, su
h as SL, when maximal 
onne
tivity is

priority.
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