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ABSTRACT

Clustering and Inconsistent Information: A Kernelization Approach. (May 2012)

Yixin Cao, B.E., Harbin Engineering University; M.S., Beijing University of

Aeronautics and Astronautics

Chair of Advisory Committee: Dr. Jianer Chen

Clustering is the unsupervised classification of patterns into groups, which is

easy provided the data of patterns are consistent. However, real data are almost

always tempered with inconsistencies, which make it a hard problem, and actually,

the most widely studied formulations, correlation clustering and hierarchical clus-

tering, are both NP-hard. In the graph representation of data, inconsistencies also

frequently present themselves as cycles, also called deadlocks, and to break cycles by

removing vertices is the objective of the classical feedback vertex set (FVS) problem.

This dissertation studies the three problems, correlation clustering, hierarchical

clustering, and disjoint-FVS (a variation of FVS), from a kernelization approach. A

kernelization algorithm in polynomial time reduces a problem instance provably to

speed up the further processing with other approaches. For each of the problems

studied, an efficient kernelization algorithm of linear or sub-quadratic running time

is presented. All the kernels obtained in this dissertation have linear size with very

small constants. Better parameterized algorithms are also designed based on the

kernels for the last two problems.

Finally, some concluding remarks on possible directions for future research are

briefly mentioned.
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1. INTRODUCTION

In a time dubbed as “information age”, to handle information (data) is one of

the most important tasks of human life, and can be roughly divided into two stages:

“data collection” and “data analysis”. Given that in real life there are no perfect

methods to collect data, the data we are going to analyze are always supposed to

be tempered with errors, and then one immediate problem is, how to retrieve the

valuable information from the raw data by removing errors and inconsistencies.

One rich field where data keep spraying in a speed of gigabytes per day is the

computational biology and life science. Every species in nature is complex, and

even the DNA of a single-celled microorganism is complicated enough to carry large

quantities of data, not to mention complex lifes or even human being. Thanks to

remarkable efforts of generations of biologists, more and more raw genome sequences

have been accumulated via experimental methods. From these collected data, with

possible errors present, computational biologists try to, among others, classify the

species , e.g. to identify similar genome sequences. The classification task has many

different formulations that are, from the computational aspect, collectively called

clustering problems. They turn out to be universal and can be found in many

disciplines.

Not equipped with answer checkers, a challenge presents itself at the beginning

and has to be answered before anything else is, what is a solution? Various models

have been formulated on coping with inconsistencies, under different assumptions.

Among them the most widely taken one should be that the erroneous data are very

limited compared to the whole data set, so solutions with the minimum amount of

inconsistencies are looked after. In other words, it is assumed that the solutions

This dissertation follows the style of SIAM Journal on Computing.
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with the fewest errors are the most plausible. Computational problems formulated

under this stipulation are all, unfortunately, NP-complete, and therefore unlikely

have efficient algorithms runnable in polynomial time. In this case, people turn to

other options. One is to sacrifice the optimality, trying to find a “reasonably good”

solution in polynomial time. According to whether quality of the solution is guaran-

teed or not, algorithms in this category can be further labeled with approximation

and heuristic. The other option is to allow “moderately exponential runtime”, while

the solution must be optimal. As a complement to both options, before losing the

optimality and starting the exponential time process, we can pre-process the problem

first, by significantly reducing it, and then relay it to other approaches. This step is

known as kernelization, and should be conducted efficiently, usually in polynomial

time. The outcome of kernelization, the reduced problem, is called a kernel.

This dissertation, as indicated in its title, takes the kernelization approach. It

starts from searching the limit that the kernelization step can reach on the problems

under investigation, and then turns to the application of the obtained kernels in later

approaches. The remainder of this section is a short introduction to the theoretical

framework as well as the problems studied in this dissertation. All technical details

will be deferred to later chapters, in the hope that this chapter can be kept as simple

as possible.

1.1 Parameterized Computation

By definition, all NP-complete problems are equivalent in the sense of poly-

nomial time solubility, while under some complexity hypotheses, their exponential

solubility is disparate. Some problems, e.g. SAT, never witness an algorithm faster
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than O(2n)1, — such one, if exists, will be a breakthrough [167] — while some have

far better algorithms, e.g. subexponential or pseudo-polynomial. Under the widely

accepted assumption P 6= NP, some exponential explosion is inevitable in the time

complexity of any algorithm for an NP-hard problem. On this ground, people turned

to algorithms with moderately exponential runtime that, though still exponential, in-

creases far slower than O(2n).

This is a road on which many people have set foot. One notable candidate

for moderately exponential functions is cn (c < 1). Normally, for an exponential

function f(n) = cn, any small decrement of the base c will significantly decrease the

value when n is large. Nevertheless, even c is as small as 1.1, and n is not too large

(say n = 1000), cn is still prohibitive. See Table 1.1 for a comparison (note that

1.414 = 21/2 and 1.260 = 21/3).

Table 1.1
The comparison of cn for c = 2, 1.414, 1.260, 1.1

n 10 20 30 40 50 100 1000

2n 1024 1048576 1.1 · 109 1.1 · 1012 1.1 · 1015 1.3 · 1030 1.1 · 10301

1.414n 32 1024 32768 1048576 3.4 · 107 1.1 · 1015 3.3 · 10150

1.260n 10.08 101.59 1024 10321 104032 1.1 · 1010 2.2 · 10100

1.1n 2.59 6.73 17.45 45.26 117.40 13780 2.5 · 1041

In spite of their hardness, problems have to be solved, and heuristic is the tag

most frequently seen on the weapons used to fight such problems in practice. Those

heuristic methods, used independently or in combination with others, take advantage

of the special characteristics of the inputs from the real applications, and disregard

1Although there are no mathematical proofs, it is believed that NP-complete problems are solvable
in O(2n), and for all natural NP-complete problems we do have such algorithms.
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most artificial worst cases. Among those benign characteristics, the following two

are the most frequently observed:

• only solutions of a small size are meaningful, while a solution of a size exceeding

a problem-specific threshold is useless, and always disregarded;

• special structures always exist in real applications, such as (when formulated

graph-theoretically): the maximum degree of vertices in the graph is upper

bounded by a constant independent of the number of vertices; the graph is

very sparse (or dense); it is easily decomposable into connected components

(there are small separators).

Employing these inspiring facts, numerous efficient algorithms have been developed.

In other words, although the problems are hard in general, the hardness can be (par-

tially) relieved when some structural conditions are satisfied. This property turned

out to be very general and observed in many problems, on which systematized stud-

ies have been conducted, resulting in a new area on algorithmic study, parameterized

computation.

The main idea in the core of such algorithms is the same: to identify some

parameter of small size (k) independent of the problem size (n) which catches the

hardness of the problem at hand (solution sizes, structural measures, etc.), and then

restrict the exponential explosion of time complexity only to this parameter. The

outcome then is another type of super-polynomial functions (note we cannot do away

with it totally assuming P 6= NP) of the form f(k) ·nc, where f is a computable

function2 dependent only on k and c is a constant independent of k. Since the

parameter k is far smaller compared to the input size n, this time complexity is

arguably better than any exponential function on n. More importantly, when k is

2If the phrase “computable function” means nothing to you, just ignore it.
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not large, such algorithms can be implemented and executed in modern computers,

which makes this direction very promising.

Albeit rooted from the similar observations of de facto favor, parameterized

computation, built on a rigorous theoretic framework, deviates from the heuristic ap-

proach significantly. This well-defined theory classifies problems in a two-dimensional

way (compared to the one-dimensional classification of traditional complexity the-

ory), and suggests that only fixed-parameter tractable problems admit such algo-

rithms. Two informal comparisons might reveal some intuitions of the demarcations:

1. most NP-complete problems admit O(2n) time algorithms, trivial or not; 2. if the

solution size is k, many problems can be solved in O(nk) time by enumerating all

subsets with size no more than k. The latter one, O(nk), is polynomial if k is a fixed

constant, however, it is still not practical even if k is as small as 10. Informally and

roughly, we can say O(f(k) ·nc) < O(nk) < O(2n), where the symbol “<” should be

interpreted as “better than”.

1.2 Kernelization

Facing a problem hard to be solved directly, people would usually try splitting

and/or reducing it, and see what is going on. This technique, in its intuitive sense,

is so natural that people can master it without any learning. As examples for its

occurrences in algorithms:

• when solving the SAT problem, one comes to single-literal clauses first;

• when solving the independent set problem, one only needs to work on the

connected components separately.
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This list can be very long, and indeed, such steps exist in almost all non-trivial com-

puter programs. Neverthelss, they seldom, if ever, appear in literature on theoretical

algorithms (heuristic algorithms are exceptions). The awkward discrepancy can be

explained by the rigorous nature of worst-case time complexity analyses in theoretical

algorithms, and the fact that above steps were believed to be not applicable for worst

cases. This situation changed within the framework of parameterized computation,

where the irreducible worst cases normally come with big solution sizes, and thus

not interest us. As a matter of fact, the study of kernelization algorithms, previously

called “preprocessing and data reduction”, can be somehow viewed as a systematic

study of such preprocessing steps, complemented by bounding techniques.

Kernelization algorithms, given an instance x and an integer k, in time polyno-

mial to (x+ k), produce an equivalent and reduced instance x ′ and a smaller integer

k ′ such that the size of the x ′ (|x ′|) is bounded by a function of k ′. Here by equiv-

alent we mean the original instance x has a solution with size no more than k if

and only if the reduced instance x ′ has a solution with size no more than k ′. The

reduced instance is called the kernel because we assume it is the really hard part of

this problem, and for any algorithmic attack running in polynomial time there must

be some kernels not surrendering, unless the polynomial hierarchy collapses. Note

that the kernel size |x ′| is not necessarily bounded by a polynomial function of k ′,

and when it does, we call it a polynomial kernel.

It is trivial that a problem is in FPT if it has a kernel, because after the kernel

is obtained, whatever algorithms you apply to it, the time is only related to k, and

the total time is f(k) ·nc. The other direction, albeit not so obvious, also holds true.

In other words, a problem is fixed parameter tractable if and only if it admits a

kernel. This theorem connects these two concepts in principle, and then only the

existence of polynomial kernels is of its own interest. This dissertation will only
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be concerned with polynomial kernels, and unless explicitly specified otherwise, all

kernels mentioned in this dissertation are polynomial ones.

In literature, a traditional algorithm is described in three parts: first the pro-

cedure of the algorithm, second a proof of its correctness, and finally an analysis of

its time complexity. A kernelization algorithm is a little special, in this sense that it

involves one more part, the analysis of the kernel size. This is always the focus, and

usually the only non-trivial part, of a kernelization algorithm. This feature is mainly

due to its heuristic nature: the procedures of most kernelization algorithms can be

explained with one or two sentences; their time complexity analyses are trivial; and

the correctness of many works is straightforward (exceptions exist, some latest results

do involve complicated arguments).

Historically, kernelization algorithms originated from the study of parameter-

ized computation, and were seen in almost all such algorithms ever published. Later,

their applicability was found outside of parameterized computation, and they began

receiving interests out of parameterized computation community. This transforma-

tion escalated after more parameter-independent results, and nowadays, it ripens to

call the study of kernelization algorithms as an independent research area. Other

than designing kernelization algorithms for concrete problems, this dissertation will

also study the several aspects of the nascent theorization of kernelization.

1.3 Clustering

One of the most common tasks in data analyses is to classify a (usually large)

set of elements based on their relevance (the data collected). This is called clustering,

and informally defined By Jain, Murty and Flynn [131] as “the unsupervised classi-

fication of patterns into groups (clusters)”. Clustering has incarnations in so many
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disciplines, including biology, archaeology, geology, geography, business management,

and social sciences, and has been approached by statisticians, mathematicians, com-

puter scientists as well as industrial engineers.

To construct such a classification is not hard, provided the given data are perfect,

or consistent. The requirement of a data set to be consistent is simple: if element a

is determined to be similar to element b, and b is similar to element c, then a must

be also similar to c. Unfortunately, there are seldom, if any, data collection methods

which can exclude possibilities of errors and inconsistencies. As a consequence, real

data always come with errors and in the computational sense, to remove those noise

(incorrect information) is equivalent to do the classification.

To exacerbate the situation, we do not have a answer checker, and thus can never

know how far our answers are from the reality. Various models have been proposed

to measure the solutions, of which the most popular one is “minimum number of

modifications”, whose basic idea is that the ratio of errors is low in most cases. On

one hand, we assume the data to be almost consistent, and this is really the case for

most modern experiments where instruments and methods have been improved so

much. On the other hand, if some data contain too many errors, it does not make

sense to use them at all, and we have to repeat the data collection.

Corresponding to make the data consistent with the least amount of modifica-

tions, a graph-theoretical formulation of the problem is called correlation clustering

that seeks a collection of edge insertions/deletions with the minimum number (or cost

when it is weighted) that transforms a given graph into a disjoint union of clusters

(cliques).

The correlation clustering model has a flat structure, which is simply a parti-

tion where each object belongs to exactly one cluster. Thanks to its simplicity and

theoretical beauty, this model has been widely used and intensively studied. How-
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Fig. 1.1. An example of hierarchical clustering

ever, this simplicity comes with cost, and there are many applications whose rich

structural information does not fit into a one-level classification. For an instance, to

classify six animals: cat, tiger, dog, wolf, frog and toad, we can use three clusters,

i.e. (cat, tiger), (dog, wolf) and (frog, toad). This classification is meaningful, but

not sufficient, and it is easy to see that the first two classes are closer compared to

the last one, which is impossible to be represented in a flat structure. In this case, a

two-level structure should be more appropriate, i.e. (((cat,tiger),(dog, wolf)), (frog,

toad)). When more species have to be considered, more levels might be needed, and

the obtained result should be a structure similar to Figure 1.13.

Usually, the relevance between each pair of elements is measured by their dis-

tance, and the smaller the more similar. Inspired by above discussion, we also con-

sider the hierarchical structure, such that the data are arranged into a tree structure.

All objects are the leaves at level 0, and each non-leaf vertices are at levels between

1 and M + 1, such that the distance between two objects is the level of their first

3excerpted from http://en.wikipedia.org/wiki/Hierarchical clustering
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common ancestor. By definition the root node is at level M+1. Such a tree is called

the M-hierachical clustering tree.

The M-hierachical clustering, very similar to correlation clustering, asks for

the minimum number of total modifications to make the given data set into an M-

hierachical clustering tree.

1.4 Feedback Set Problems

Feedback sets problems are a collection of problems, whose objective, as the

name suggests, is to break all cycles in the given (di)graphs by removing vertices or

edges/arcs. There are several incarnations based on the type of the input (di)graphs,

and the specified operations. The graphs can be an undirected graph, a digraph, or

a tournament, which is a special digraph4.

Table 1.2
Variations of feedback set problems.

vertices edges/arcs

Undirected FVS maximum spanning tree

Directed directed FVS FAS

Tournament FVS in tournaments FAS in tournaments

This gives six variations, enlisted in Table 1.2, of which five are NP-hard. The

only exception is maximum spanning tree, which is equivalent to the famous min-

imum spanning tree problem. Thanks to their theoretical importance and wide

applications, FVS, DFVS, and FAST are all very popular research topics, where the

other two, FAS and FVST, receive only marginal consideration. Particularly, FVS

and FAST will be studied in this dissertation.

4Think about the result of a tournament which does not allow draws.
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In operating systems, DFVS play a prominent role in the study of deadlock re-

covery. In the wait-for graph of an operating system, each directed cycle corresponds

to a deadlock situation. In order to resolve all deadlocks, some blocked processes

have to be aborted. A minimum DFVS in this graph corresponds to a minimum

number of processes that one needs to abort. They can also be found in database

system, genome assembly, and VLSI chip design.

The feedback arc set in tournaments (FAST) is the FAS problem restricted to

tournament. Thanks to increasing interest on data mining, search engine, as well as

artificial intelligence, this problem has becomes a hot topic in theoretical computer

science, and its identity of NP-completeness was finally settled recently.

Interestingly, the FAST problem is also closely related to correlation clustering

problem. They are both. Some techniques are applicable to both, among which

the most important ones are linear program and modular decomposition, and in

particular, they can be formulated into exactly same linear program.

1.5 A Big Map

As usual, the best way to understand some topics is to put them into a big map,

where the related topics and especially their relations present, even most of them

are not of direct interest. To understand the problems studied here from algorithmic

aspect, the big map comprising the major problems currently under parameterized

study, is depicted in Figure 1.2. These problems are listed by increasing hardness

(informally and intuitively) from bottom to up, and beside each problem its best

approximation ratio is algo given. All of these problem have been shown to be in

FPT, however, for most of them no polynomial kernel is known. The five problems

listed here which have not been mentioned above are: 1. Vertex Cover (VC) asks for
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vc fast Correlation-C

MultiWay-Cut fvs

dfvs fas

Hierarchical-C

other variations
of clustering
and generaliza-
tions

Subset-FVS

Multi-Cut Fuzzy-C

2 1 + ε 2.5

2 2

O(logn log logn)

M+ 2

8

O(log k)† O(logn)

A B means that problems A and B are computationally equivalent.
A B means that problem A is a special case of problem B.
A B means that problems A and B bear striking resemblance,

but are not equivalent.
A B and the dashed box mean that problem B and their relation

are not clear yet.
2 is the best known approximation ratio of this problem.

†: k is the number of pairs of requirements.

Fig. 1.2. The major problems under parameterized study

a minimum set of vertices which are incident to all edges. 2. MultiWay-Cut asks for

a minimum set of vertices (or edges, then also called MultiTerminal-Cut) whose

removal breaks all path between any pair of vertices from a given set of terminals.

3. Subset-FVS asks for a minimum set of vertices whose removal breaks all cycles

through a given subset of vertices. 4. Multi-Cut asks for a minimum set of vertices

(or edges) whose removal breaks all path between each pair of vertices as given.

5. Fuzzy-Clustering asks for a minimum number of edge addition/deletion to make

a graph into disjoint union of cliques, where some pairs bear no cost.
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1.6 Outline of This Dissertation

This dissertation starts from a comprehensive survey and literature review in

Chapter 2, which also contains the formal definitions of the problems studied, as well

as the general notations on graph theory, algorithms, and complexity theory. After

that, the concrete results are presented in order.

Chapter 3 studies the correlation clustering problem, and develops the first ker-

nelization algorithm for its weighted version, which in sub-quadratic time produces

a 2k-vertex kernel. The algorithm (Section 3.2) is not the only contribution of this

chapter, and is preceded by a series of cutting lemmas (Section 3.1), which is a re-

sult of a thorough study of the structural specialties of this problem by relating it

with graph edge-cuts. Following from a simple observation: a densely connected

subgraph with very sparse connection to outside vertices should make a cluster, the

reduction steps used to obtain the kernel are extremely simple. The only structure

involved in the reduction is the closed neighborhood of each vertex, on which the

applicability can be efficiently checked, based on its internal density and external con-

nectivity. With quantitative measures defined to measure the density and sparsity,

the condition and correctness of the reduction immediately follow from the cutting

lemmas, and some elementary counting. The kernel size analysis is even simple. In

the reduced instance, by the reduction condition, each vertex not participating in

any edited pair will force a large amount of editions in its closed neighborhood, and

thus on average, each vertex shares at least one half of editing number (each editing

involves exactly two vertices). More interestingly, my approach also works for the

unweighted version of this problem, —noting that unlike traditional algorithms, a

kernelization algorithm for a weighted problem does can not directly apply for its

unweighted variation, see 2 for explanation— which also substantially differentiates
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itself to previous ones. A result that matches the best kernel bound for the un-

weighted version is described in Section 3.4, which also considers the more general

real-weighted version of the problem. On this case, my techniques are still applicable,

and lead to a simple kernelization algorithm that constructs a kernel of at most 4k

vertices. As an intensively studied problems by many researchers, many techniques

have been applied on this problem, especially the crown reduction and modular de-

composition. Compared to previous work in literature, my work outperforms not

only in the kernel size, but more importantly in efficiency and conceptual simplicity.

Chapter 4 turns to the hierarchical clustering problem, a famous generalization

of correlation clustering. The lens used in this dissertation to view this problem is

ostensibly different with that used by previous work in literature, namely, it is based

on the distance matrix, from which multiple weighted graphs are defined, and thus

a graph-theoretic approach can be applied. Details of the formulation are presented

in Section 4.1, where the cutting lemmas are also translated into the new language.

At the outset (Section 4.2) of the kernelization algorithm, as a demonstration of

the power of the cutting lemmas, a 4k-element kernel is derived by translating the

reduction rules and analysis used in Chapter 3. This result substantially improves

previous M ·k kernel, replacing the multiplicative factor M by a constant 4. Noting

that the hierarchical clustering problem contains the correlation clustering problem

as a special and simplified case, so the former has been widely believed to be “harder”

than the latter in the intuitive sense, and particularly, an M factor was taken for

granted. Inspired by this new evidence, which casts doubt on the base under the

hardness claim, its parameterized complexity is studied, ending with a non-standard

but interesting outcome. Instead of a concrete algorithm, Section 4.3 shows that

any branch-and-search based parameterized algorithm for the correlation clustering

problem can be adapted to the hierarchical clustering problem, with the same time
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complexity up to a polynomial factor. In addition to the concrete results themselves,

one important contribution of this dissertation on this problem is: the hierarchical

clustering is not necessarily harder than cluster editing, at least from the aspect of

parameterized (exact) computation.

Chapter 5 establishes a comprehensive study on the parameterized complexity

of the feedback vertex set problem (FVS) on undirected graphs. In particular, a

variation of the problem, the disjoint feedback vertex set problem (disjoint-FVS), to

which the FVS can be easily reduced, is examined. The formal definition and details

are given in Section 5.1, where a 4k kernel is presented. While in principle, the

reductions rules presented here to obtain the kernel are only a generalization of what

have been previously known and used in literature, a brand-new technique is proposed

to analyze the size of the reduced instance, and the new bound for kernel size ensues.

Then Section 5.2 is focused on instances having a special topological structure that

is closely related to the maximum genus of the graph, and manages to design a

polynomial time algorithm to solve such instances. Afterward, Section 5.3 proposes

a new branch-and-search process on disjoint-FVS, which effectively reduces a given

graph to a graph with the special structure. To precisely evaluates the efficiency of

the branch-and-search process, it also introduces a new branch-and-search measure.

These algorithmic, combinatorial, and topological structural studies finally bring an

O∗(3.83k)-time parameterized algorithm for the general FVS problem, improving the

previous best algorithm of time O∗(5k) for the problem.

Finally, after a brief summary in Section 6.1, this dissertation closes with possible

directions for future work in Section 6.2. Set around the problems enlisted in Figure

1.2, several possible projects are mentioned, among which the emphasis is placed on

two important projects: “kernelization of Multiway Cut (MultiTerminal Cut)” and
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“2-approximation of correlation clustering ”. Possible applications of new techniques

reported in this dissertation are also introduced there.
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2. LITERATURE REVIEW AND DEFINITIONS

The purpose of this chapter is twofold: to formally define the framework as

well as the problems studied in this dissertation; and to provide a comprehensive

literature review of them1.

2.1 General References and Notations

The general references include: Bondy and Murty [32] and Diestel [77] for graph

theory; Bang-Jensen and Gutin [17] for digraph theory; Cormen et al. [59] and Klein-

berg and Tardos [144] for algorithmic techniques; Schrijver [177] for combinatorial

optimization; Arora and Barak [14] for PCP theory and complexity theory; Garey

and Johnson [107] for NP-completeness and a list of NP-complete problems, from

which my notations will follow. The only monograph devoted to tournaments was

Moon [159], which is a little bit obsolete, and its notations will not be used here.

For any setA, denote by |A| the cardinality of the set. Unless specified otherwise,

graphs are always assumed to be undirected and simple. A graph G = (V ,E) is

represented as the pair of vertex set V and edge set E, whose sizes are denoted by

n = |V | and m = |E| respectively. A graph is a complete graph if each pair of vertices

1When a paper is available in both conference and journal formats, I will consistently refer the
journal version. On one hand, to fully explain a deep algorithmic technique as well as provide
proofs with the standard of mathematical rigor, a theoretical paper is usually very long and dense.
On the other hand, all conferences proceedings impose hard limits on pages (e.g. 12 pages of LNCS
or 10 pages of ACM proceedings), which seldom accommodate full details. Moreover, the technical
bugs have far larger probability to escape the one-round reviews of conference papers than the
thorough refereeing procedures of journals.
However, each coin has two sides. A journal version might be prepared and submitted many years
after the conference version has been reported, especially when significant extensions are required,
e.g. [61] and [149]. The notoriously long reviewing periods of journals also impede the appearance
time, e.g. [175]. As a result, the date of the publications do not necessarily reflect when the results
are actually obtained, and it is not uncommon for an algorithm published this year has been
supplanted by others publicized a couple of years ago. The readers should keep this fact in mind
when reading through the references.
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are connected by an edge. A clique in a graph G is a subgraph G ′ of G such that G ′

is a complete graph. By definition, a clique of h vertices contains
(
h
2

)
= h(h− 1)/2

edges. If two vertices v and w are not adjacent, then we say that the edge [v,w]

is missing, and call the pair {v,w} an anti-edge. The total number of anti-edges in

a graph of n vertices and m edges is n(n − 1)/2 −m. The subgraph of the graph

G induced by a vertex subset X is denoted by G[X]. For a vertex v in a graph

G = (V ,E), denote by N(v) the set of neighbors of v, and let N[v] = N(v) ∪ {v}

be the closed neighborhood of v. For a vertex subset X, N[X] =
⋃
v∈XN[v], and

N(X) = N[X]\X. The number of neighbors of a vertex v in the graph G is called

its degree, and denoted by dG(v) = |N(v)|, where the subscript G is usually omitted

when it is clear from the context which graph is being referred to.

For a graph G and an edge subset E ′ in G, denote by G− E ′ the graph G with

the edges in E ′ removed (the end vertices of these edges are not removed). Similarly,

denote by G+ E ′ the graph G with the edges in E ′ ⊆ V2 inserted.

Following the recent convention in the literature in exact and parameterized

algorithms, I will denote by O∗(f(k)) the complexity O(f(k)nO(1)) for a super-

polynomial function f.

2.2 Parameterized (Exact) Computation

In computation, a decision problem is defined as a subset of language L∗ for

some finite alphabet L. A problem is parameterized when an integer parameter k is

attached to it, that is, a parameterized problem is a subset of L∗×N. A parameterized

problem Q ⊆ L∗ ×N is classified as fixed-parameter tractable (FPT) if there exists a

deterministic algorithm A, such that for any given instance (x,k) ∈ L∗×N, A can in

time O(f(k) ·p(|x|)) determine whether (x,k) ∈ Q or not, where p is a polynomial
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function, and f : N → N is any computable function. Such an algorithm A will be

called an FPT algorithm.

Searching for better exact algorithms for NP-hard problems (than the trivial

exhaustive search) has attracted interests from researchers even before the definition

of NP-completeness was given. The most notable example is Bellman’s O(2n) time

algorithm for traveling salesman problem [20]. Albeit parameterized approximation

algorithms began to receive more and more interests recently, parameterized com-

putation is widely considered a new approach of exact algorithms, and most known

results are exact, — exceptions exist, such as [33,157].

Overview. Only a couple of independent parameterized algorithms were known

before 1990s. Afterward this line of research was boosted by development of more

and more powerful computers, which made algorithms with moderately exponential

running time practical. The study of parameterized computation was systematized

by Downey and Fellows and their colleagues in a series of important papers [1, 39,

79–84] published in 1990s. Finally, in 1999 they collected those material into a

groundbreaking monograph [85]. Parameterized algorithms are also closely related

to (non-parameterized) exact algorithms, e.g. [96, 98]. Woeginger surveyed earlier

results in two papers [189,190], and recently Fomin and Kratsch wrote a textbook [99]

on this topic.

With the theoretic framework built, further studies had a solid base and can

go easily. Parameterized computation has forked into two branches, parameterized

complexity theory and parameterized algorithms. The first branch was focused on

further characterizing the complexity classes, and especially connecting them with

traditional complexity classes. One notable success was achieved when the fixed-

parameter tractability was studied by relating to the approximability of the prob-
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lems [38, 53]. The second branch took the positive direction, designing algorithmic

techniques and applying them to solve more problems. In 2006, two comprehensive

surveys on these two directions were published by Flum and Grohe [95] and Nieder-

meier [164] respectively. The dissertation is only concerned with the second direction,

and particularly new techniques for algorithmic design and their applications. The

remainder of this section will be a short overview of the progress of parameterized

algorithms.

Branch-and-bound. As mentioned in Section 1.2, a kernel directly implies an

FPT algorithm, by applying any trivial brute-force search algorithm on it. For in-

stance, the only known parameterized algorithm for the edge clique cover problem

was obtained by applying brute-force search on a 2k kernel [109], similarly is the

first O∗(ck) time algorithm2 for the FVS problem [64]. On the on hand, the algo-

rithms are not restricted to trivial ones, and in most cases, they perform far better.

Branch-and-bound is the most universal technique for exact algorithms. For many

NP-hard problems, the first algorithms better than the trivial O(2n) bound were

attributed to this technique. The basic idea of branch-and-bound is to simulate each

nondeterministic decision with a branching, while discard (pruning) a branch as soon

as it is determined to be not optimal, by bounding. This idea naturally fits into the

framework of parameterized computation. With the extra parameter k at our dis-

posal, we can always prune a branch at the moment it uses up its quota, k, and then

the depth of a branch can be bounded in some way. Such results (characterized as

branch-on-kernel mode) are too voluminous to be enlisted comprehensively, there-

fore I only give two representative examples on vertex cover problem by Chen and

colleagues [49, 54], and refer interested readers to Niedermeier [164] and references

2see Section 2.5 for details.
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therein, which devotes a whole chapter (in the name “Depth-Bounded Search Trees”,

naturally) to this topic. As a final remark, results of this type, i.e. algorithms purely

based on branch-on-kernel, are not popular anymore and seldom found in modern

literature, however, it is still a important technique and usually works as a step of a

more complicated and involved algorithm.

The time analysis of a branch-and-bound algorithm is not as simple as its proce-

dure. Most of the search tree sizes are computed using recurrence equations, which

is a classic method in algorithm analysis [110], and the 72-page paper by Kull-

mann [146] can be considered as a treatise on it. With more and more branching

and bounding rules introduced, such analyses turned to be extremely involved. Some

papers were totally devoted to the analyses, e.g. [55]. Results of this type usually

had strange numbers as the base, such as O(1.2852k) for vertex cover by Chen et

al. [54], and O(2.6494k) for set splitting by Lokshtanov and Sloper [154]. Actually,

with the increase of complication of branching, the overhead soonly dominates, and

thus algorithms exploiting this technique, e.g. [56], are of only theoretical merit.

As a new way to conduct and analyze branch-and-bound algorithms, the tech-

nique measure and conquer was first proposed for non-parameterized algorithms by

Fomin et al., resulting in some breakthroughs for notoriously hard problems like in-

dependent set and domination [97,98]. It was immediately adpoted by parameterized

computation community and is a part of many important results, such as [51,57,187].

As a tentative exploration, van Rooij and Bodlaender even tried to automatically

generate new measures [186].

Iterative compression. As suggested by the name, this technique tries to con-

struct a smaller solution out of a known feasible solution, if such one exists. Originally

designed by Reed et al. to give the first FPT algorithm for the odd cycle transversal
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problem [170], this was later shown to be extremely powerful. Indeed, immediately

after its apprearance, dozens of papers were published simply applying iterative com-

pression to new problems, as surveyed by Guo et al. [116]. The earliest applications

of this technique contain no more than trivial adaption, while later results, usually

combining iterative compression with other non-trivial techniques, did bring deep

and wide influence. The most notable example should be the Chen et al.’s algorithm

for the directed feedback vertex set problem [57], which settled one of the longest

open problems in parameterized computation in a positive way. As a remark, Chen

et al.’s algorithm also involved measure and conquer.

Other parameters. Other than the solution size, the second most used parameter

is tree-width (branch-width, clique-width, etc.). These concepts were formulated and

studied as a part of the seminal project “graph minors” by Robertson and Seymour,

and scattered in the series of papers [172–174]. The basic idea is very similar to the

Lipton-Tarjan separator theorem [151, 152], which finds a small set of vertices wich

separates the graph into two balanced parts, as well its follower, Baker’s outplanar

decomposition [16]. This line of study turned to be most successfully in sparse

graphs, on which it provides a general way to design subexponential parameterized

algorithms and also polynomial-time approximation schemas, such as O(215.13
√
k) for

dominating set [7,102,136], and O(24.5
√
k) for vertex cover problem [10,101], both on

planar graphs. This work was generalized into graphs excluding fixed minor. Finally,

this study of algorithmic graph minor theory is now widely know as bidimensionaltiy

theory [68–76].

Very recently, some efforts have been paid on the utilization of other parameters.

One scheme is directly inspired by the trivial n/4 lower bound of independent set and

n/2 of MAX-SAT. This direction, called parameter above a tight lower bound,, was
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investigate widely by Gutin and Yeo and their colleagues, and has resulted in many

results [12,60,121–126]. The other direction went even farther, that is, it looked for a

set of parameters, instead of a single one. This line of research is called multivariate

parameters, and Niedermeier recently surveyed the latest progress [165].

2.3 Kernelization Algorithms

Albeit the word “algorithm” appear in the name, a kernelization algorithm does

not solve a problem by returning a solution, as a regular algorithm would do. Given

a parameterized problem (x,k) ∈ Q ⊆ L∗ × N, a kernelization algorithm A in time

p(|x|+k) transforms (x,k) into another instance (x ′,k ′) of the same problem, where

p and q are both polynomial functions, such that

k ′ 6 k, |x ′| 6 q(k ′)

and x and x ′ are equivalent. Here by equivalent we mean (x,k) ∈ Q iff (x ′,k ′) ∈ Q,

and the optimal solutions of x and x ′ can be traceable to each other. The new

instance (x ′,k ′) is called the kernel, and q(k ′) is the size of the kernel3.

There is a very important and subtle point on the definition of kernelization

algorithms that has been widely and undeservedly ignored. Conventionally, given an

instance, an algorithm returns a solution to this instance. Thus, we can always feed

an unweighted instance into a algorithm designed for its weighted version, by triv-

ially assigning weights (most time uniform unit weights will suffice). This practice,

although inefficient, is guaranteed to work in principle and a corrected solution can

always be expected. In this sense kernelization algorithms, whose return are reduced

3This definition is different from that in literature, by restricting the kernel size q() to be polynomial.
See below for the explanation.



24

instances instead of final results, are distinct from others. The instance returned by a

kernelization algorithm for a weighted problem is normally weighted, even the input

instance is unweighted. In other words, the input and output instances are different

and thus it violates the definition of kernelization algorithms. Thus far there are

only very few studies on the kernelization algorithm on weighted problems, not to

mention that algorithms applicable for both unweighted and weighted versions for

the same problem.

(Pre-)History. The earlist work on data reduction can be traced back to the

1950’s, when Quine [168] considered the simplification of truth functions.

It is both natural and easy to do reduction, especially for prohibitively hard

problems. The satisfiability (sat) problems asks whether or not there is an assignment

to a formula in conjunctive normal form (CNF-formula) such that it returns true,

i.e. is it satisfiable. This requires each clause to be satisfied, and hence there is

no choice for the unit-literal clauses which has only one satisfactory assignment.

More specifically, the literal in a unit-literal clause must be assigned accordingly.

The other observation is that if all occurrences of a variable are in the same form,

all positive or all negative, assigning “true”or “false” to it will satisfy all clauses

containing it without sacrificing possibilities of satisfying other clauses. The two

reductions described here are only a tip of the iceberg, and there are large amount of

similar reductions proposed and applied only for sat problem, which show significant

improvement in practice. There are similar results for other problems, and actually,

all heuristic algorithms have such reduction steps in essence.

Kernelization algorithms are more than reductions. Above operations might

reduce the instances, nevertheless, they are not kernelization algorithms. They do not

satisfy the definition of kernelization algorithms by one imporant element missing,
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which is, a provable bound on the kernel size. The study of data reductions in

the systematics sense, that is, kernelization algorithms, was first carried out after

the introduction and development of parameterized computation. In this sense,

the history of study of kernelization started from 1990’s. For more details on the

evolution of kernelization, refer to the textbook of Niedermeier [164], as well as the

surveys by Guo and Niedermeier [117] and Bodlaender [27], and also the references

therein.

Relation to parameterized algorithms. If we drop the condition for the kernel

size to be polynomial, a problem has such a kernel if and only if it is fixed-parameter

tractable. This well-known equivalence was established by Cai et al. [40]. This theo-

rem, though of theoretical importance and a fundamental position in the theory, has

no any practical merit, as no kernel of exponential size derived from a parameterized

algorithm (the proof in [40] is constructive!) is interesting. On this ground, the study

of super-polynomial kernels is not of its own interest. This explains the requirement

of kenels to be of polynomial size in the definition given at the beginning of this

section.

The connections between kernelization algorithms and parameterized algorithms

are not limited to the theoretical sense. Indeed, they are frequently used together

to obtain the best speed-up, as the general method proposed by Niedermeier and

Rossmanith [166]. However, a kernelization algorithm also has overhead, and if it

is invoked too frequently, the overhead will overshadow its benefit. This situation

is very similar with the branch-and-bound algorithms. Thus, how to adjust the

invocations of kernelization algorithms in a parameterized algorithms is a practical

problem, which should be investigated with an experimental approach, and in real
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applications a flexible way might be the best. Some preliminary results on this

include [8, 115].

Concrete results. Since most parameterized algorithms contain kernelization as

a step, there are numerous results on variant problems. Here I trace the development

of two of the most important problems, vertex cover and FVS.

As the best studied problem, vertex cover has attracted most attention from

the beginning, and the first kernel was reported by Buss and Goldsmith in 1993 [37].

Their quadratic kernel was obtained by reductions on vertices of degree 1 and degree

> k, which are justified by two very simple observations: For a 1-degree vertex, its

neighbor is always a better option; While for a (> k)-degree vertex, there is no other

choice other than putting it into the solution. I remark similar observations are able

to give polynomial kernels for many problems, as surveyed in [164].

Above reductions are of a local feature, that is, they can be applied locally, and

therefore are very easy to be implemented. Whereas to further improve the kernel

size, local techniques seem to not work, and global structures have to be considered,

which obviously take more time. Inspired by a famous theorem of Nemhauser and

Trotter [162], Chen et al. [54] presented the first 2k kernel, which, however, is not

efficient enough for some instances [48]. Later, Fellows applied the crown reduction

to obtain a 3k kernel [92], which turned to be very efficient in experiments [2]. These

two approaches, originally considered orthogonal, were later shown to be closely

connected by Chleb́ık and Chleb́ıková [58], and now it is well known that the NT

thoerem is really equivalent to the strong crown reduction.

FVS is harder than vertex cover in all measures, including kernelization. The

first polynomial kernel, reported by Burrage et al. [36], has a degree as large as
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11! This was improved by Bodlaender into cubic [25], and further to quaratic by

Thomassé [185].

The early results on kernelization algorithms were surveyed by Guo and Nieder-

meier [117].

Attacks on planar graphs. Once a problem is shown to be fixed-parameter in-

tractable, it is meaningless to search for kernelization algorithms. Thus, dominating

set problem, known to be W[2]-hard [85], is not expected to have kernels in general

graphs. Fortunately, this hardness does not carry to its planar version, while the

NP-hardness does [107]. Alber, et al. managed to give a linear kernel for planar

dominating set problem [9], and shortly after its appearance the kernel size 335k was

improved to 67k by Chen et al. via more careful analysis [50]. Compared to the

result itself, the technique, adapted by other researchers and shown to be extremely

general, turned out to be far more important. Basically, it consists of two steps:

First construct reduction rules based on the properties of dominating set problem;

Second analyze the kernel size with help of topological strucutre of planar graphs.

As expected, the analyses technique in the second step is the essence of this

work. The two steps are well separated: The first step is specialized for dominating

set problem, without any properties of planarity; While the second step mainly uses

topological properties of planar graphs. This separability enables it work also for

other planar problems. To give such a kernel, one only needs to design reduction

rules with the properties of the specific problem. Within this framework, numerous

problems were shown to admit linear kernels on planar graphs, including connected

dominating set [153], induced matching [135], full-degree spanning tree [119], cycle

packing [31]. There was also an immature attempt to formalize this technique [118],

which, unfortunately, heavily relies on intuition at several critical places, therefore,
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a systematic theory on this technique satisfying the standard of mathematical rigor

is still at large.

Generalization. On one hand, earlier attempts for general technique did not end

with success, on the other hand, more and more concrete results kept being proposed.

For years people became more and more eager for such a theory. This thirst was

only quenched by a couple of positive results published in 2009 and thereafter. Thus

far we have three major results in this category, while more are expected.

The first success was Kratsch’s proof of existence of polynomial kernels for

problems in some complexity classes4 [145]. Such classes were orginally defined in the

study of approximation algorithms, while later Cai and Chen [38] built connection

between them and FPT by showing problems in them are always FPT.

The scecond result seems more interesting. Bodlaender et al. showed polyno-

mial kernels for problems satisfying certain conditions [29]. More specifically, it set

two set of conditions, for which linear kernels and quadratic kernels follow directly.

Their results were not limited to planar graphs, instead, it considered all graphs em-

beddable into fixed surfaces whose genuses are bounded. Moreover, the conditions

were related to Courcelle’s logical formulation and Robertson and Seymour’s Minor

theory.

The third result, very close to the second one, should also be stamped in 2009.

In the framework of bidimensionaltiy theory, Fomin et al. [100] studied the graphs

which avoid a fixed minor, and showed many bidimensional problems have small

kernels on those graphs. Bidimensionality theory has been extensively studied and its

applications on parameterized algorithms and approximation algorithms have been

very well-known for a long time, whereas, for a long time, it have no applications

4MIN F+Π1 and MAX NP
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in kernelization algorithms found. Given that they three categories are so closely

related, Demaine et al. conjectured such applications [70]. [100] actually confirmed

this conjecture, and consequently made bidimensionality theory more complete..

Thus far, this line of research, still at its incipient stage, has not provided any

benefit for the design of concrete kernelization algorithms. In this sense, it becomes

interesting on how to make connections between the theoretical results and those

concrete ones. The reader is referred to the excellent survey by Bodlaender [27] .

Lower bounds. Common sense holds that for studies on algorithms, the negative

direction is always (far) harder than the positive one. This general principle also

holds for kernelization algorithms. Therefore, it is not strange that such studies are

left behind the algorithmic techniques. Here the negative results are only concerned

with the existence of polynomial kernels, or more concrete bound (note that the

existence of kernels is equivalent to the identity of FPT, and therefore is not of

independent interest).

Again, lower bounds of kernelization can be related to the study of approxima-

tion, or more specifically, (in)approximibility. If a problem admits a linear kernel5 of

size ck, this kernel can be returned directly as an approximation solution with ratio

c. Thus, directly following the inapproximability results in literature, we have lower

bound for kernel size. The most famous result of this type is again on vertex cover

problem, which can be approximated with any constant ratio bettern than 2 [143],

assuming Unique Game Conjecture [142]. Thus, the 2k kernel given above is already

optimal and cannot be improved.

There is another way to provide lower bounds in a problem-specific manner,

which is based on the duality relations between problems. The duality relations

5the definition and controvesies of linear kernels are explained later.
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have been well-known in algorithmic study for a long time, and directly involved

in several important algorithms, among which the most famous one should be the

duality of linear programming [62, 163, 176]. Chen et al. [50] defined “parametric

duality”, which is a parametric version of the duality relation, such that there is a

linear relation between the sizes of the solutions of the problems. Based on this,

they proposed a new approach for lower bounds of kernelization. Note that for any

NP-hard problem Q, and any given kernelization algorithm A of it, there must be

some instance I which A cannot handle, unless P=NP. Moreover, if two problems

are parametric duals of each other and both have kernelization algorithms, we can

try both algorithms on an instance of one problem, for it is also an instance of its

dual problem. This means there must be instances which can resist the attacks from

both kernelization algorithms, that is, there must be a gap between two sides. Then

any kernelization algorithm for a problem gives a lower bound for its dual problem.

One important concrete result is the 4/3 ·k bound for planar vertex cover problem

(note the 2k bound for vertex cover given above does not carry to its planar version).

A more promising result was only recently proposed by Bodlaender [28]. They

showed problems and/or-compositional and satisfying specific conditions have no

polynomial kernels. This result was based on a recent result in complexity theory of

Fortnow and Santhaman [103].

Kernel size analysis. The proof of the ratio of an approximation algorithm is

usually very invovled, and it becomes more prohibitive if the tight analysis is asked.

Some approximation algorithm was later proved to be of better bound, among which

the most famous one was given by Chen et al. [52], which improved the analysis

and showed a tight ratio for Johnson’s approximation algorithm for MAX SAT [132].

There are still many approximation algorithms whose tight analyses are still open,
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e.g. shortest superstring problem [21]. This situation is very similar for the kernel-

ization algorithms, where the analysis of the kernel size is normally the hardest in

such an algorithm. Only few kernels came with a tight examples.

The analysis of Fellows’ algorithm on vertex cover problem based on crown re-

duction might receive most attention. The original bound given was 3k [92], however,

after opened for a long time, which was fianlly settled to be 2k [58].

Mathematical tools specialized for kernel size analyses might also be interesting,

while no such results available yet.

2.4 Clustering

Classifying objects is one of the innate abilities of us, and also one of the most

important activities in human life. Simply speaking, a cluster is a set of entities

which are alike, and entities from different clusters are not alike [90]. In applica-

tions, some prior knowledge on the final results might or might not be available,

and accordingly, they are called supervised and unsupervised classifications. Both

of which are well studied, while this dissertation will be concerned only the second

one, that is, unsupervised classifications without any prior knowledge. which is also

widely known as clustering.

This clustering and related problems are really universal, and can be found in

literature of almost all discplines. To indicate how popular the stuies on clustering

are, one only need to search for the venues where papers titling “cluster analysis” were

published. The number of journals is at least 3000. The classic textbook dedicated to

clustering was by Everitt et al. [90]. and a comprehensive algorithmic-biased survey

of earlier work on clustering can be found in Jain, Murty and Flynn [131]. More

recent progress are concluded in several textbooks and treatises [106,148,156].
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Background. As just mentioned, this problem arose naturally in almost every-

where, and therefore has been studied in many different research communities. At

the beginning, the communications between them were very scarce, and in such

an “unsupervised” time, it was not uncommon for one work conducted by several

groups independently and published in different journals without knowing each other

for many years. With the same reason, they named it differently, such as numerical

taxonomy in biology and ecology [181–183], unsupervised learning in artificial intelli-

gence and machine learning [86], segmentation in computer vision and medical image

processing [191,192]. Somehow surprisingly, efforts from totally different background

brought very similar outcomes. Moreover, nowadays, people have realized the exis-

tence of each other, and want to have further studies coordinated, and as a result, a

new research area specialized on clustering problem has emerged.

The earliest efforts were on the formulations. Note that given any two solutions

for a clustering problem, there are no ways to deterministically tell which solution is

the better. Thus the first task must be deciding a criterion, such that algorithms can

be designed and judged according to such a criterion. Indeed, severl criteria have

been proposed, each with its merit as well as weakness, and it is believed that there

is no a best one in them [137].

In literature, according to the structure of resulted clusters, clustering is gener-

ally classified as partitional and hierarchical [131].

Correlation clustering. Basically, the partitional clustering asks for partition

given objects, such that some conditions are satisfied [193]. One notable model of

partitional clustering is the the correlation clustering problem, whose objective is to

minimize the dissimilarities between objects in the same group, and the similarities

between objects of different groups. The formal definition is:
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correlation clustering: Given (G,k), where G = (V ,E) is an undirected

graph and k is an integer, is it possible to transform G into a union of

disjoint cliques by edge deletions and/or edge insertions such that the

total number of the inserted edges and deleted edges is bounded by k?

The strucutre of an objective graph consists of disjoint union of cliques, and in

this sense, this is a very well-structured problem. Thanks to its extreme simplicity,

it received most interests, and many algorithms were reported [131,180,193].

Hierarchical clustering. Unlike correlation clustering, the results of hierarchical

clustering is a hierarchical tree6, such that all objects are the leaves at level 0, and

two objects with distance d first meet at the level d [90,131,193]. Since the distances

are usually given in the form of a matrix, where i-row j-column element Dij is the

distance between object i and j. Such a matrix is called proximity matrix or distance

matrix, this problem is usually formulated with language of matrix:

hierachical clustering: Given (X,D,k), where X is a set of n elements,

D is a n × n integer matrix with values between 0 and M + 1, and

k is an integer, is there an ultrametric distance matrix D ′ such that

d(D,D ′) 6 k?

where ultrametric meansDij 6 max(Dil,Djl) for all triples i, j, l ∈ X and d(D,D ′) =∑
16i<j6n |Dij − D

′
ij|. It is easy to see that correlation clustering problem is the

special case of hierachical clustering problem, when M = 1.

Naturally, there are two directions to solve the problem, i.e. top-down and

bottom-up. Agglomerative hierarchical clustering starts from the bottom, and itera-

6Some variations of hierarchical clustering have another requirement, the hierarchical tree be binary
[120].
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tively conducts merging operations. At the beginning of an agglomerative hierarchi-

cal clustering algorithm, there are n clusters, each of which consists of a single object.

They correspond to the 0-level of the hierarchical tree. Before the i-th iteration, all

clusters at and below i-level have been settled, and the algorithm merges clusters

at i-level into clusters of (i + 1)-level. Consequently, the whole hierarchical tree is

constructed after M iterations. Algorithms in this category include single linkage

algorithm [90, 131, 161], “BIRCH (Balanced Iterative Reducing and Clustering us-

ing Hierarchiies)” of Zhang et al. [194], “CURE (Clustering using Representatives)”

of Guha et al. [112], and “ROCK (Clustering using Representatives)” of Guha et

al. [111].

On the opposite way, divisive hierarchical clustering starts from the top, and it-

eratively conducts operations of division. One example is “DIANA (Divisiave ANAl-

ysis)” of Kaufman and Rousseeuw [141]. Note that algorithms for the correlation

clustering problem can be used for the iterative step of divisive hierarchical clustering

algorithms.

All above algorithms are of heuristic nature, and only very recently, the system-

atic studies of hierarchical clustering, including approximation and exact algorithms,

were started by some computer scientists.

Complexity and approximation. The hardness of hierarchical clustering prob-

lem has been known for a long time. Specifically, it was shown to be NP-hard by

Křivánek and Morávek in 1986 [147], and APX-hard by Agarwala et al. in 1999 [3].

Comparatively, the hardness results of correlation clustering turned to be far

more complicated (note that any hardness result on correlation clustering problem,

as a special case of the hierarchical clustering problem, directly applies for the later).

The NP-hardness of correlation clustering was only settled in 2004 by two groups
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from different areas [18,179]. This is also a concrete example of how this problem was

studied by researchers by different background without knowing each other. Immedi-

ately, the APX-hardness was also settled, by Charikar, Guruswami, and Wirth [45].

For polynomial-time approximation algorithms of correlation clustering, The

best result is a randomized approximation algorithm of expected approximation ra-

tio 3 by Ailon, Charikar, and Newman [6]. Ailon and Charikar then generalized

their approach in [6] to hierarchical clustering problem, ending with a randomized

approximation algorithm of expected approximation ratio M+2 [5]. Both were later

derandomized by van Zuylen and Williamson [188], with the same approximation

guarantees.

Parameterized and kernelization algorithms. The parameterized study on

unweighted correlation clustering7 was first taken by Gramm et al. [108], whose

results included an O(2.27k + n3) algorithm and a kernel of O(k2) vertices. This

result was immediately improved by a successive sequence of studies on kernelization

algorithms that produce kernels of size 24k by Fellows et al. [93], and of size 4k by Guo

et al. [113]. For the weighted version of this problem, to my best knowledge, the only

work was done by Böcker et al. [23], in which an O(1.82k) was given. Böcker et al. [23]

also porposed a “quadratic kernel”, which, however, satisfied neither the definition

of this dissertation (given in Section 2.3) nor any previous literature, because there

is no guarantee that the kernel is still an instance of weighted correlation clustering

problem, instead, it becomes a far harder problem. Based on these algorithms,

experimental studies were also carried out, such as [24,65].

7In parameterized computation community, this name cluster editing is preferred and more widely
used. Since this dissertation is studying this problem as a variant of clustering problems, the
terminology of clustering community suits better.
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Only recently, Guo et al. [115] reported the first kernel of O(M ·k) objects

for hierarchical clustering, by generalizing their kernelization algorithm in [113]. In

the same paper, they also provided an O(3k) parameterized algorithm based on

trivial branching. However, their kernelization algorithm suffers from the high time

complexity and therefore, in the experiments they conducted, they had to use another

kernelization algotihm with kernel size O(k2) rather than the O(M ·k) one (note that,

naturally, k�M in any non-trivial instances).

Known results on these two clustering problems are summarized as in Table 2.1.

Table 2.1
Previous results for the correlation clustering and M-hierarchical
clustering problems

Approaches correlation clustering hierarchical clustering

approximation 2.5† [6] M+2† [5]
ratio 2.5 [188] M+2 [188]
exact O∗(1.62k) [22] O∗(3k) [115]
kernelization 4k [113] (2M+4)k [115]

†: randomized approximation

2.5 Feedback Sets

The general definition for this family of problems is: Given a (directed or undi-

rected, or with further restriction) graph, find the minimum number of vertices (arcs)

whose removal leaves the graph acyclic.

Background of FVS. The origin of these problems was on the study of operating

systems, within which the first formulation, DFVS, was proposed in 1960’s. Later,

similar applications in database and VLSI design were reported, and its undirected
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counterpart FVS was also considered. Although lots of efforts were put, the algorith-

mic study did not go well at the beginning. These two problem were in the Karp’s

list of NP-hard problems [139], and since it is at least as hard as vertex cover [139],

it is APX-hard [78]. Earlier results were concluded in a comprehensive survey by

Festa et al. [94].

Unlike other famous problems, there are no trivial approximation algorithms for

FVS. For FVS, the first approximation algorithms appeared only in 1999, when two

independent results were reported by Bafna, Berman, and Fujito [15] and Even et

al. [89]. Both results have the same approximation ratio of 2, which is the best one can

expect assuming Unique Gmae Conjecture as well as Khot’s inapproximability result

on vertex cover [142, 143]. For DFVS, this is even worse. The best approximation

obtained ratio was O(log k log log k), independently reported by Seymour [178], and

Even et al. [88].

Parameterized algorithms of FVS. The FPT theory shed some light, and the

situation drastically changed thereafter. Downey and Fellows first showed its fixed-

parameter tractability. Albeit the time complexity of their algorithm is terrible

(O(17(k4)!nO(1))), it triggered an explosive studies on this topic, as enlisted in Table

2.2.

Unfortunately, on the directed side, the study of parameterized computation

was stucked, and for two decades, it withstood vehement attacks and no algorithmic

techniques applied for DFVS. Only in 2008, it was finnaly shown to be in FPT by

two groups [57]. Given that this algorithm is not satisfactory in pactice, work is still

in progress to further improve it.

The study on kernelization algorithms of FVS is also fruitful, starting from the

first polynomial kernel of size O(k11) by Burrage et al. [36], O(k3) by Bodlaender [25],
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Table 2.2
The history of deterministic parameterized algorithms for FVS

Authors Complexity Year

Downey and Fellows [80] O(17(k4)!nO(1)) 1992
Bodlaender [26] 1994
Downey and Fellows [85] O((2k+ 1)kn2) 1999
Raman et al. [169] O(max{12k, (4 log k)k}n2.376) 2002
Kanj et al. [134] O((2 log k+ 2 log log k+ 18)kn2) 2004
Raman et al. [169] O((12 log k/ log log k+ 6)kn2.376) 2006
Guo et al. [114] O((37.7)kn2) 2006
Dehne et al. [64] O((10.6)kn3) 2005
Chen et al. [51] O(5kkn2) 2008

and finally 4k2 by Thomassé [185]. The quadratic result is tight somehow, for Dell

and van Melkebeek recently showed that it is unlikely for FVS admits a kernel with

less than O(k2) edges [27,66]. It is still open for the existence of polynomial kernels

for DFVS.

There were also studies on randomized parameterized algorithms and exact

(non-parameterized) algorithms. Becker, Bar-Yehuda, and Geiger reported an O(4k)

randomized algorithm [19]. Since the complement of an FVS is a forest, and then

the removal of FVS corresponds a maximum induced forest. With this observation,

Fomin et al. proposed an O(1.7548n) exact algorithm by growing the forest [96].

FAST. In spite of the trivial fact that the FAST problem was a special case of FAS

problem, FAST was formulated in totally different . Historically, since it is defined on

tournament, it was briefly studied from the combinatorial aspect by Moon [159,160],

who spent the whole professinoal life on tournaments and related problems.

The algorithmic study was first mdad by Dwork et al., as a formulation for

their revolutionary concept meth-search engine [87]. Their work actually successfully
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popularized this topic, and started a exponentially increasing number of publications

[6, 13,91,140,188].

Relation of FAST to correlation clustering. The objective of both problems

is ask for minimum number of adjustment to a graph/digraph to make it transitive.

Moreover, for both problems, the forbidden structures are the (directed) triangles,

such that a graph satisfy the specified condition if and only if it contains no such

triangles. This relation was reflected in the “one stone two birds” approximation

algorithm for both FAST and correlation clustering of Ailon et al [6].

For the weighted version, if the weights are arbitrary, or more specifically, 0

is allowed, both problems become far harder. Actually, FAS is the FAST with 0-

weight arcs, and was notoriously hard, whose identity of FPT was recently solved

[57]. Similarly, when 0-weight edges are allowed, correlation clustering becomes

fuzzy clustering (also called correlation clustering with “no care” edges), which is

computationally equivalent to the multi-cut problem, which was also shown to be in

FPT very recently [34,158].
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3. CORRELATION CLUSTERING?

The main result of the this chapter is a general kernelization algorithm for the

correlation clustering problem, working for both unweighted and weighted versions.

This algorithm not only significantly simplifies and improves previous result on un-

weighted version, but more importantly, gives the first polynomial kernel for the

weighted correlation clustering problem 1:

Theorem 3.1. There is a polynomial-time kernelization algorithm for the (weighted)

correlation clustering problem that produces a kernel that contains at most 2k vertices.

To make this chapter self-contained, we recall some definitions here. Let G =

(V ,E) be an undirected graph, and let V2 be the set of all unordered pairs of vertices

in G (thus, for two vertices v and w, {v,w} and {w, v} are regarded as the same pair).

Let wt : V2 → N∪ {+∞} be a weight function, where N is the set of positive integers.

The weight of an edge [v,w] in G is defined to be wt(v,w). If vertices v and w

are not adjacent, and we add an edge between v and w, then we say that we insert

an edge [v,w] of weight wt(v,w). The weighted correlation clustering problem is

formally defined as follows:

Weighted correlation clustering: Given (G,wt,k), where G = (V ,E) is

an undirected graph, wt : V2 → N ∪ {+∞} is a weight function, and k is

an integer, is it possible to transform G into a union of disjoint cliques

by edge deletions and/or edge insertions such that the weight sum of the

inserted edges and deleted edges is bounded by k?

? Reprinted with permission from Cluster editing: kernelization based on edge cuts by Y. Cao and
J. Chen, 2011, Algorithmica, doi:10.1007/s00453-011-9595-1, Copyright 2011 by Springer-Verlag.

1Böcker et al. reported a quadratic (vertex) kernel in [23], however, it does not satisfy the defini-
tion of Section 2.3, or any other accepted definitions. In particular, their kernelization algorithm
introduces “no-care” edges, and the output of it does not remain an valid instance of weighted
correlation clustering problem, instead, it becomes a far harder problem.
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And the unweighted version can be treated as wt({v,w}) = 1 for each pair of vertices

v,w ∈ V .

A more general version of the weighted correlation clustering problem is defined

with real weights, that is, the weight function wt takes values in R>1 ∪ {+∞}, where

R>1 is the set of all real numbers larger than or equal to 1, and correspondingly the

parameter k is a positive real number. Our techniques are also applicable for this

more general version and yield a polynomial-time kernelization algorithm for this

version with a kernel of at most 4k vertices.

We would like to remark on the techniques we have used in this research:

1. the cutting lemmas are of potential use for future work on kernelizations and

algorithms;

2. both the idea and process are very simple with efficient implementations. In-

deed, there is a single reducible condition on which a series of reduction steps

are applied in order. The reducible condition and the reduction steps are ap-

plicable to both weighted and unweighted versions;

3. the reduction process to obtain the above kernel results is independent of the

parameter k, and therefore is more general and applicable;

4. compared to the approach based on critical cliques (i.e., simple series modules),

our approach has the following advantages:

(a) our approach is applicable to the weighted versions of the problem, while

it seems quite difficult to generalize the techniques based on modular decom-

position to handle weights; and

(b) our approach has a single-pass reduction while the methods based on mod-

ular decomposition require iterations and re-constructions.
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3.1 Cutting Lemmas

Let G = (V ,E) be a graph, and let S ⊆ V2. Denote by G4S the graph obtained

from G as follows: for each pair {v,w} in S, if [v,w] is an edge in G, then remove

the edge [v,w] in the graph, while if {v,w} is an anti-edge, then insert the edge

[v,w] into the graph. The set S is a solution to the graph G if the graph G4S is

a union of disjoint cliques. The weight of a set S ⊆ V2 of vertex pairs is defined as

wt(S) =
∑

{v,w}∈Swt(v,w). In particular, a set E ′ of edges in G defines a set of

vertex pairs in a natural way, so the weight of the edge set E ′ is defined as wt(E ′) =∑
[v,w]∈E ′ wt(v,w). For an instance (G,wt,k) of the correlation clustering problem,

denote by opt(G) the weight of an optimal (i.e., minimum weighted) solution to the

graph G.

For two vertex subsets X and Y, denote by P(X, Y) the set of all vertex pairs

{v,w} where v ∈ X and w ∈ Y, by PE(X, Y) the set of edges [v,w] where v ∈ X

and w ∈ Y, and by PA(X, Y) the set of anti-edges {v,w} where v ∈ X and w ∈ Y.

For a vertex subset X, define X = V\X, and the edge set PE(X,X) is called the cut

of X. The weight of the cut of X is denoted by γ(X) = wt(PE(X,X)). Obviously,

γ(X) = γ(X). As a shorthand, S(X, Y) = S∩ P(X, Y) is the set of pairs in S in which

one vertex is in X and the other vertex is in Y.

Behind all of the following lemmas is a very simple observation: as a hereditary

property, any induced subgraph in a cluster graph is also a cluster graph. Therefore,

a solution S to the graph G restricted to an induced subgraph G ′ of G (i.e., the pairs

of S in which both vertices are in G ′) is also a solution to the subgraph G ′.

Lemma 3.2. Let P = {V1,V2, . . . ,Vp} be a vertex partition of a graph G, and let

EP be the set of edges in G whose two ends belong to two different parts in P. Then∑p
i=1 opt(G[Vi]) 6 opt(G) 6 wt(EP) +

∑p
i=1 opt(G[Vi]).
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Proof. Let S be an optimal solution to the graph G. For 1 6 i 6 p, let Si be the

subset of S such that each pair in Si has both its vertices in Vi. As noted above, the

set Si is a solution to the graph G[Vi], which implies opt(G[Vi]) 6 wt(Si). Thus,

p∑
i=1

opt(G[Vi]) 6
p∑
i=1

wt(Si) 6 wt(S) = opt(G).

Moreover, if we remove all edges in EP then apply an optimal solution S ′i to each

induced subgraph G[Vi], we will obviously end up with a union of disjoint cliques.

Therefore, these operations make a solution to the original graph G whose weight is

wt(EP) +

p∑
i=1

wt(S ′i) = wt(EP) +

p∑
i=1

opt(G[Vi]).

This gives immediately opt(G) 6 wt(EP) +
∑p
i=1 opt(G[Vi]).

Lemma 3.2 directly implies the following corollaries. First, if there is no edge

between two different parts in the vertex partition P, then Lemma 3.2 gives

Corollary 3.3. Let G be a graph with connected components G1, . . . , Gp, then

opt(G) =
∑p
i=1 opt(Gi), and every optimal solution to the graph G is a union of

optimal solutions to the subgraphs G1, . . ., Gp.

When p = 2, i.e., P = {X,X} happens to be a bipartition, the edge set EP

becomes the cut PE(X,X), and wt(PE(X,X)) = γ(X). Lemma 3.2 gives

Corollary 3.4. Let X ⊆ V be a vertex subset, then

opt(G[X]) + opt(G[X]) 6 opt(G) 6 opt(G[X]) + opt(G[X]) + γ(X).

Corollary 3.4 enables us to derive a lower bound for the weight of a cut in a

graph in terms of an optimal solution to the graph, as shown in the following lemma.
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Lemma 3.5. Let G be a graph, and let S be an optimal solution to G. For any

subset X of vertices in G, if we let S(X,X) be the subset of S in which each vertex

pair contains exactly one vertex in X, then wt(S(X,X)) 6 γ(X).

Proof. The optimal solution S can be divided into three disjoint parts: the subset

S(X) of pairs in which both vertices are in X, the subset S(X) of pairs in which both

vertices are in X, and the subset S(X,X) of pairs in which exactly one vertex is in X.

By Corollary 3.4,

opt(G) = wt(S(X))+wt(S(X))+wt(S(X,X)) 6 opt(G[X])+opt(G[X])+γ(X). (3.1)

Again, since S(X) is a solution to the induced subgraph G[X] and S(X) is a solution

to the induced subgraph G[X], we have wt(S(X)) > opt(G[X]) and wt(S(X)) >

opt(G[X]), which combined with (3.1) gives immediately wt(S(X,X)) 6 γ(X).

Similarly we have the following lemmas.

Lemma 3.6. Let X be a subset of vertices in a graph G = (V ,E), and let S be any

optimal solution to G. Let S(V ,X) be the set of pairs in S in which at least one vertex

is in X. Then opt(G) > opt(G[X]) +wt(S(V ,X)).

Proof. The optimal solution S is divided into two disjoint parts: the subset S(X) of

pairs in which both vertices are in X, and the subset S(V ,X) of pairs in which at

least one vertex is in X. The set S(X) is a solution to the induced subgraph G[X].

Therefore, wt(S(X)) > opt(G[X]). This gives

opt(G) = wt(S) = wt(S(X)) +wt(S(V ,X)) > opt(G[X]) +wt(S(V ,X)),

which proves the lemma.
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Lemma 3.7. Let X be a subset of vertices in a graph G, and let BX be the set

of vertices in X that are adjacent to vertices in X. For any optimal solution S to

G, if we let S(BX) be the set of pairs in S in which both vertices are in BX, then

opt(G) +wt(S(BX)) > opt(G[X]) + opt(G[X ∪ BX]).

Proof. The optimal solution S can be divided into three disjoint parts: the subset

S(X) of pairs in which both vertices are in X, the subset S(X) of pairs in which both

vertices are in X, and the subset S(X,X) of pairs in which one vertex is in X and the

other vertex is in X. We also denote by S(BX,X) the subset of pairs in S in which one

vertex is in BX and the other vertex is in X. Since S(X) is a solution to the induced

subgraph G[X], we have

opt(G) +wt(S(BX)) = wt(S(X)) +wt(S(X)) +wt(S(X,X)) +wt(S(BX))

> opt(G[X]) +wt(S(X)) +wt(S(X,X)) +wt(S(BX))

> opt(G[X]) +wt(S(X)) +wt(S(BX,X)) +wt(S(BX)).

The last inequality holds true because BX ⊆ X, so S(BX,X) ⊆ S(X,X). Since S ′ =

S(X) ∪ S(BX,X) ∪ S(BX) is the subset of pairs in S in which both vertices are in the

induced subgraph G[X ∪ BX], S ′ is a solution to the induced subgraph G[X ∪ BX].

This gives

wt(S ′) = wt(S(X)) +wt(S(BX,X)) +wt(S(BX)) > opt(G[X ∪ BX]),

which implies the lemma immediately.

The above results that reveal the relations between the structures of the corre-

lation clustering problem and graph edge-cuts not only form the basis for our ker-
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nelization results presented in this dissertation, but also are of their own importance

and interests.

3.2 The Reduction Steps

Obviously, the number of distinct vertices included in the vertex pairs in a

solution S of k pairs is upper bounded by 2k. Thus, if we can also bound the number

of vertices that are not included in S, we get a kernel. For such a vertex v, the clique

containing v in G4S must be G[N[v]]. Inspired by this observation, our approach is

to check the neighborhood N[v] for each vertex v in the input graph G.

Intuitively, if an induced subgraph is very “dense inherently”, while is also

“loosely connected to outside” (i.e. there are relatively fewer edges in the cut of this

subgraph), then the subgraph might be cut off and solved separately. By the cutting

lemmas, the cost of a solution obtained as such should not be too far away from that

of an optimal solution. Actually, we will figure out the conditions under which they

are equal.

The subgraph we are considering is G[N[v]] for some vertex v. In terms of

the density, a simple fact is that the fewer edges are missing from a subgraph, the

denser it is. Therefore, to measure the density of G[N[v]], we introduce the deficiency

δ(v) of N[v] as the total weight of anti-edges in G[N[v]], which is formally defined as

δ(v) = wt({{x,y} | x,y ∈ N(v), [x,y] 6∈ E}). For the connection ofN[v] to outside, the

most natural measurement should be the weight γ(N[v]) of the cut PE(N[v],N[v]).

Suppose that N[v] exclusively forms a clique, i.e. v is stable. Then anti-edges

of total weight δ(v) have to be inserted to make N[v] a clique, and edges of total

weight γ(N[v]) have to be deleted to make N[v] disjoint. Note that each inserted
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edge involves two distinct vertices in N[v], while each deleted edge touches only one.

Based on this observation, we introduce the following important definition.

Definition The stable cost of a vertex v is defined as ρ(v) = 2δ(v) + γ(N[v]). The

neighborhood N[v] is reducible if ρ(v) < |N[v]|.

We now describe three reduction rules on the neighborhood N[v] of a vertex v

such that N[v] is reducible. In fact, the reducibility of N[v] is the only reduction

condition we need on which the three reduction rules are applied in order.

Lemma 3.8. For any vertex v such that N[v] is reducible, there is an optimal solution

S∗ to G such that the vertex set N[v] is entirely contained in a single clique in the

graph G4S∗.

Proof. Let S be an optimal solution to the graph G, and here we only consider the

case where N[v] is not entirely contained in a single clique in G4S. Take any clique

C intersecting N[v], let X = C ∩ N[v] and Y = N[v] − X. Then X 6= ∅ and Y 6= ∅.

Note that we do not assume that Y is in a single clique in G4S.

Inserting all missing edges in G[N[v]] will transform it into a clique. Therefore,

opt(G[N[v]]) 6 δ(v). Combining this with Corollary 3.4, we get

opt(G) 6 opt(G[N[v]]) + opt(G[N[v]]) + γ(N[v])

6 δ(v) + opt(G[N[v]]) + γ(N[v]) (3.2)

= opt(G[N[v]]) + ρ(v) − δ(v).

Obviously, wt(S(V ,N[v])) > wt(S(X, Y)) because X ⊆ V and Y ⊆ N[v]. Since

the solution S places the sets X and Y in different cliques, all edges between X and
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Y must be deleted, which means S(X, Y) = P(X, Y). Finally, by the definition of δ(v)

and fact that both X and Y are subsets of N[v], the weight sum of all anti-edges

between X and Y is at most δ(v). Thus, we have wt(S(X, Y)) + δ(v) > wt(P(X, Y)).

Now by Lemma 3.6,

opt(G) > opt(G[N[v]]) +wt(S(V ,N[v]))

> opt(G[N[v]]) +wt(S(X, Y)) (3.3)

> opt(G[N[v]]) +wt(P(X, Y)) − δ(v).

Combining (3.2) and (3.3), and noting that N[v] is reducible and that the weight

of each vertex pair is at least 1, we get

|X| · |Y| 6 wt(P(X, Y)) 6 ρ(v) < |N[v]| = |X|+ |Y|. (3.4)

This can hold true only when |X| = 1 or |Y| = 1. In both cases, we have |X| · |Y| =

|X|+ |Y|−1. Combining this with (3.4), and noting that all the quantities are integers,

we must have

wt(P(X, Y)) = ρ(v),

which, when combined with (3.2) and (3.3), gives

opt(G) = opt(G[N[v]]) + ρ(v) − δ(v) = opt(G[N[v]]) + γ(N[v]) + δ(v). (3.5)

Note that γ(N[v]) + δ(v) is the minimum cost to insert edges into and delete edges

from the graph G to make N[v] a disjoint clique. Therefore, Equality (3.5) shows

that if we first apply edge insert/delete operations of minimum weight to make N[v]

a disjoint clique, then apply an optimal solution to the induced subgraph G[N[v]],
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then we have an optimal solution S∗ to the graph G. This completes the proof of the

lemma because the optimal solution S∗ has the vertex set N[v] entirely contained in

a single clique in the graph G4S∗.

By Lemma 3.8, the optimal solution S∗ inserts a collection E0 of edges of total

weight δ(v) for anti-edges in the subgraph G[N[v]] to make it a clique. Therefore,

the remaining vertex pairs in S∗−E0 make an optimal solution to the resulting graph

G4E0. This gives the rule for our first reduction step:

Rule 3.1. For a vertex v such that N[v] is reducible, insert an edge for each anti-edge

in G[N[v]] to make G[N[v]] a clique, and decrease the parameter k by δ(v).

Remark. If N[v] is reducible, then after applying Rule 1, N[v] remains reducible.

After Rule 3.1 inserted edges to make the induced subgraph G[N[v]] a clique, we

use the following rule to remove the vertices in N(N[v]) that are loosely connected

to N[v].

Rule 3.2. Let v be a vertex such that N[v] is reducible on which Rule 1 has been

applied. For each vertex x in N(N[v]), if wt(PE(x,N[v])) 6 wt(PA(x,N[v])), then

delete all edges in PE(x,N[v]) and decrease the parameter k by wt(PE(x,N[v])).

Remark. Similar to Rule 1, it is easy to verify that if N[v] is reducible, then after

applying Rule 2, N[v] remains reducible.

Lemma 3.9. Rule 3.2 is safe.

Proof. By Lemma 3.8, there is an optimal solution S to the graph G such that N[v]

is entirely contained in a single clique C in the graph G4S. We first prove, by

contradiction, that the clique C containing N[v] in the graph G4S contains at most

one vertex not in N[v]. Suppose, on the contrary, that there are r (> 2) vertices
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u1, . . . , ur not in N[v] that are in C. For 1 6 i 6 r, let ci = wt(PE(ui,N[v])) and

c ′i = wt(P(ui,N[v])). Note that c ′i > |N[v]| and
∑r
i=1 ci 6 γ(N[v]). Then in the

optimal solution S to G, the total weight of the edges inserted between N[v] and

N[v] is at least

r∑
i=1

(c ′i − ci) >
r∑
i=1

(|N[v]|− ci)

= r|N[v]|−

r∑
i=1

ci

> r|N[v]|− γ(N[v])

> 2|N[v]|− γ(N[v])

> 2|N[v]|− |N[v]|

= |N[v]|

> γ(N[v]).

Herein, we have used the fact |N[v]| > γ(N[v]) (this is because by the conditions of

the rule, ρ(v) = 2δ(v) + γ(N[v]) < |N[v]|). But this contradicts Lemma 3.5.

Therefore, for the optimal solution S, there is at most one vertex x that is not

in N[v] but in the clique C containing N[v] in the graph G4S. We can assume that

the vertex x satisfies the condition wt(PE(x,N[v])) > wt(PA(x,N[v])): otherwise,

instead of inserting edges for all anti-edges in PA(x,N[v]) to make N[v] ∪ {x} a

clique, we delete all edges in PE(x,N[v]) and will get another optimal solution S ′

that makes the subgraph G[N[v]] a separated clique in the objective graph G4S ′.

In consequence, for a vertex x in N(N[v]) with wt(PE(x,N[v])) 6 wt(PA(x,N[v])),

we can always assume that x is not in the clique containing N[v] in the graph G4S

for the optimal solution S. In particular, deleting all edges in PE(x,N[v]) for such a

vertex x is always safe.
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After Rules 1-2 are applied, the subgraph N[v] has a very simple structure,

which is characterized by the following lemma:

Lemma 3.10. Let v be a vertex such that N[v] is reducible on which Rules 1-2 have

been applied. Then there is at most one vertex x that was originally in N(N[v]) and

now is still adjacent to N[v].

Proof. By the condition in Rule 2, any vertex x in N(N[v]) that is still adjacent to

N[v] after the application of Rule 2 must satisfy wt(PE(x,N[v])) > wt(PA(x,N[v])).

Since wt(v,w) > 1 for all vertex pairs {v,w},

|N[v]| 6 wt(P(x,N[v])) = wt(PE(x,N[v])) +wt(PA(x,N[v])).

Thus, the vertex x satisfies the condition wt(PE(x,N[v])) > |N[v]|/2.

To prove the lemma, suppose on the contrary that there are two vertices x1 and

x2 that were originally in N(N[v]) and are still adjacent to N[v] after the application

of Rules 1-2. By the above discussion, we have wt(PE(x1,N[v])) > |N[v]|/2 and

wt(PE(x2,N[v])) > |N[v]|/2. This gives

γ(N[v]) > wt(PE(x1,N[v])) +wt(PE(x2,N[v])) > |N[v]|.

But this contradicts the assumption that N[v] is reducible, that is, ρ(v) = 2δ(v) +

γ(N[v]) < |N[v]|.

By Lemma 3.10, after Rules 1-2 are applied, the structure of the subgraph

G[N[v]] must be in one of the following two cases: (1) no vertex in N(N[v]) is

adjacent to N[v]. In this case, G[N[v]] is a separated clique – by Corollary 3.3, we

can simply remove the clique and work on the rest of the graph; and (2) there is
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one vertex x in N(N[v]) that is still adjacent to N[v] – this case will be handled

by the following reduction step (note that Rules 1-2 do not change the values of

wt(PE(x,N[v])) and wt(PA(x,N[v]))).

Rule 3.3. Let v be a vertex such that N[v] is reducible on which Rules 1-2 have

been applied. If there is a vertex x in N(N[v]) that is still adjacent to N[v], then

contract N[v] into a single vertex v ′, add an edge [v ′, x] of weight wt(PE(x,N[v])) −

wt(PA(x,N[v])), set the weight of each anti-edge {v ′,u}, where u 6= x, to +∞, and

decrease the parameter k by wt(PA(x,N[v])).

Lemma 3.11. Rule 3.3 is safe.

Proof. Let G ′ be the graph obtained by applying Rule 3.3 on a graph G. First note

that because of Rule 2, we must have wt(PE(x,N[v])) > wt(PA(x,N[v])). There-

fore, the new edge [v ′, x] in the graph G ′ has a valid weight wt(PE(x,N[v])) −

wt(PA(x,N[v])) > 1.

From the proofs of Lemmas 3.9-3.10, we can assume that there is an optimal

solution S to the graph G such that either N[v] or N[v] ∪ {x} is a separated clique

in the graph G4S. To prove the safeness of Rule 3.3, we only need to verify that

the optimal solution S to the graph G has a weight bounded by k if and only if the

reduced graph G ′ has a solution of weight bounded by k−wt(PA(x,N[v])).

If N[v] ∪ {x} becomes a separated clique in G4S, then the solution S must

consist of a set Ix of edge insertions of total weight wt(PA(x,N[v])) to the anti-

edges between x and N[v], plus the set S \ Ix of other vertex pairs. Because the

induced subgraph G[N[v]] has already become a clique before Rule 3 is applied, no

vertex pair in the set S \ Ix contains vertices in N[v]. Thus, each vertex pair in

S \ Ix contains at most one vertex (i.e., the vertex x) in N[v] ∪ {x}. This implies

that the set S \ Ix will make the graph G ′4(S \ Ix) a union of disjoint cliques,
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which is equal to the graph G4S minus the clique made by N[v] ∪ {x} and plus

the edge [v ′, x]. Therefore, if the optimal solution S to the graph G has a weight

wt(S) bounded by k, then the graph G ′ has a solution S \ Ix of weight bounded by

wt(S \ Ix) = wt(S) −wt(Ix) 6 k−wt(PA(x,N[v])).

Similarly, if N[v] becomes a separated clique in G4S, then the solution S must

consist of a set Dx of edge deletions of total weight wt(PE(x,N[v])) to separate x and

N[v], plus the set S\Dx of other vertex pairs of total weight wt(S)−wt(PE(x,N[v])).

The collection S \Dx plus deleting the edge [v ′, x] is a solution S ′ to the graph G ′

such that G ′4S ′ is the graph G4S minus the clique made by N[v] and plus the

isolated vertex v ′. The weight of the collection S ′ is equal to

wt(S \Dx) +wt(v
′, x)

= [wt(S) −wt(PE(x,N[v]))] + [wt(PE(x,N[v])) −wt(PA(x,N[v]))]

= wt(S) −wt(PA(x,N[v])).

This again proves that if the optimal solution S to the graph G has a weight

wt(S) bounded by k, then the graph G ′ has a solution S ′ of weight bounded by

k−wt(PA(x,N[v])).

For the proof for the other direction, suppose that the graph G ′ has a solution

S ′ of weight bounded by k−wt(PA(x,N[v])). Since wt(v ′,w) = +∞ for all vertices

w 6= x, the graph G ′4S ′ must either have the single vertex v ′ as a separated clique

or have the edge [v ′, x] as a separated clique. Now the rest of the proof for this

direction proceeds in a way similar to that for the other direction. If G ′4S ′ has the

vertex v ′ as a separated clique, then S ′ minus the edge deletion [v ′, x] and plus the
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edge deletions for the edges between x and N[v] makes a solution to the graph G,

whose weight is bounded by

[k−wt(PA(x,N[v])] − [wt(PE(x,N[v])) −wt(PA(x,N[v]))] +wt(PE(x,N[v])) = k.

On the other hand, if G ′4S ′ has the edge [v ′, x] as a separated clique, then S ′ plus

the edge insertions for the anti-edges between x and N[v] makes a solution to the

graph G, whose weight is bounded by

[k−wt(PA(x,N[v])] +wt(PA(x,N[v])) = k.

This completes the proof for the direction that if the graph G ′ has a solution of

weight bounded by k −wt(PA(x,N[v])), then the graph G has a solution of weight

bounded by k.

In summary, Rule 3 is safe and the lemma is proved.

3.3 The Kernelization Algorithm

Now we are ready to describe our kernelization algorithm, which is simply an

application of the three reduction rules Rule 1, Rule 2, and Rule 3 in order.

The Kernelization Algorithm. For each vertex v such that N[v] is reducible

1. insert edges to make G[N[v]] a clique and decrease k by δ(v);

2. for each vertex u in N(N[v]) with wt(PE(u,N[v])) 6 wt(PA(u,N[v])), delete

all edges in PE(u,N[v]) and decrease k by wt(PE(u,N[v]));

3. if N[v] becomes a separated clique, then remove the clique; otherwise let

x be the unique vertex in N(N[v]) that is still adjacent to N[v], contract
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N[v] into a single vertex v ′, make an edge [v ′, x] of weight wt(PE(x,N[v])) −

wt(PA(x,N[v])), set the weight of each anti-edge {v ′,u}, where u 6= x, to +∞,

and decrease k by wt(PA(x,N[v])).

Note the reduction condition in the Kernelization Algorithm does not depend

on the parameter k. The analysis of time complexity is omitted here, and it can be

easily verified this algorithm has its running time bounded by O(n3). The following

theorem implies our main Theorem 3.1 directly.

Theorem 3.12. Let (G,wt,k) be an instance of the weighted correlation clustering

problem such that no vertex v in G has a reducible neighborhood N[v]. If the graph

G has more than 2k vertices, then no solution to the graph G has its weight bounded

by k.

Proof. Let S be an optimal solution to the graph G = (V ,E). For each vertex pair

{v,w} in S, we divide the cost wt(v,w) into two halves and distribute them evenly to

the two vertices v and w. By this procedure, each vertex v gets a “cost” cost(v) =

1
2

∑
{v,w}∈Swt(v,w). Obviously, the total weight of S is equal to

∑
v∈V cost(v).

For a vertex v not contained in any pair in the solution S, the neighborhood

N[v] becomes a separated clique in the graph G4S. Note that for any two vertices v

and w of distance 2 (i.e., the vertices v and w are not adjacent but have a common

neighbor), at most one of v and w is not contained in any pair in the solution S:

otherwise v and w would have to belong to the same clique in G4S because of their

common neighbor but the edge [v,w] would be missing.

Let ZS = {v1, v2, . . . , vr} be the set of vertices in the graph G that are not

contained in any pair in the solution S. Then, for any two vertices vi and vj in

ZS, either vi and vj are adjacent or the distance between vi and vj is larger than

2. If the distance between vi and vj is larger than 2, then the two neighborhoods
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N[vi] and N[vj] have no common vertex. If the vertices vi and vj are adjacent,

then vi ∈ N[vj] and vj ∈ N[vi], and both N[vi] and N[vj] will become separated

cliques in the graph G4S. Therefore, in this case, we must have N[vi] = N[vj]. As

a result, any two of the neighborhoods in the collection {N[v1],N[v2], . . . ,N[vr]} are

either the same or mutually disjoint. Thus, without loss of generality, we can assume

that all neighborhoods in {N[v1],N[v2], . . . ,N[vr]} are pairwise disjoint (otherwise,

we can simply remove duplicated copies of the neighborhoods in the collection). Let

NS = N[v1] ∪N[v2] ∪ · · · ∪N[vr].

The total cost in the solution S to make a neighborhood N[vi] a separated clique

is δ(vi) + γ(N[vi]), where the cost δ(vi) is on the anti-edges in G[N[vi]] that have

both ends in N[vi], and the cost γ(N[vi]) is on the edges in PE(N[vi],N[vi]) that

have one end in N[vi] and the other end not in N[vi]. Therefore, if we count the

cost assigned to the vertices in N[vi], then the total cost of the vertices in N[vi] is

δ(vi) + γ(N[vi])/2 = ρ(vi)/2, which is at least |N[vi]|/2 because the neighborhood

N[vi] is not reducible. From this analysis, we get

∑
v∈NS

cost(v) =

r∑
i=1

∑
v∈N[vi]

cost(v) >
r∑
i=1

|N[vi]|/2 = |NS|/2. (3.6)

On the other hand, each w of the vertices not in the set NS is contained in at

least one pair in the solution S and therefore bears cost at least 1/2. This gives

∑
v∈V−NS

cost(v) > |V −NS|/2. (3.7)
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Combining (3.6) and (3.7), we conclude that the total cost of the optimal solu-

tion S is

∑
v∈V

cost(v) =
∑
v∈NS

cost(v) +
∑

v∈V−NS

cost(v) > |NS|/2 + |V −NS|/2 = |V |/2.

Therefore, if |V | > 2k, then the graph G has no solution of weight bounded by k.

3.4 On Unweighted and Real-Weighted Versions

We now show how to adapt the Kernelization Algorithm in the previous section

to handle the unweighted and real-weighted versions of the correlation clustering

problem. Only relatively minor modifications are needed, and we will be focused on

the discussions of these modifications.

The unweighted version. The unweighted version of the correlation clustering

problem is equivalent to the weighed version when we assume wt(v,w) ≡ 1 for all

pairs {v,w} of vertices in the graph G. Since the weight function wt also takes

positive integral values, most results for the weighted version also hold true for the

unweighted version. In particular, the results in Section 2 and Lemmas 3.8-3.10 all

remain valid. However, Rule 3.3 is no longer valid, which may introduce an edge

[v ′, x] of weight wt(PE(x,N[v])) −wt(PA(x,N[v])) that is larger than 1. Thus, Rule

3 may transform an instance for the unweighted version into an instance that is not

valid for the unweighted version.

This can be easily circumvented, by replacing Rule 3.3 by the following new rule:

Rule 3.3 (U). Let v be a vertex such that N[v] is reducible on which Rules 1-2

have been applied. If a vertex x in N(N[v]) is still adjacent to N[v], then let e =
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|PE(x,N[v])| and a = |PA(x,N[v])|, replace N[v] by a complete graph Ke−a in which

all vertices are adjacent to x, and decrease k by a.

The correctness of Rule 3 (U) can be proved by an argument similar to that

in the proof of Lemma 3.11. In particular, it can be proved that the original graph

has a solution that consists of no more than k edge operations if and only if the

reduced graph has a solution that consists of no more than k − a edge operations.

Therefore, Rule 3 (U) is safe for the unweighted version of the correlation clus-

tering problem. Moreover, with the new rule, the proof of Theorem 3.12 can be

applied without any change to the unweighted version. Therefore, the Kernelization

Algorithm presented in Section 4, with Step 3 replaced by Rule 3 (U), constructs a

kernel of at most 2k vertices for the unweighted version of the correlation clustering

problem.

The real-weighted version. Further care is required when we extend our algo-

rithm to the real-weighted version of the correlation clustering problem. The first

problem is that, with non-integral values, the relations given in (3.4) no longer imply

the equalities in (3.5). In particular, ρ(v) < |N[v]| no longer implies ρ(v) 6 |N[v]|−1.

This can be fixed by changing the definition of the reducible neighborhood N[v] as

follows.

Definition [Reducible Neighborhood for the Real-Weighted Version] The neighbor-

hood N[v] of a vertex v is reducible if ρ(v) 6 |N[v]|− 1.

Then the relations in (3.4) become

|X| · |Y| 6 wt(P(X, Y)) 6 ρ(v) 6 |N[v]|− 1 = |X|+ |Y|− 1. (3.8)
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This again gives |X| · |Y| = |X| + |Y| − 1 (note that |X| and |Y| are positive integers),

so wt(P(X, Y)) = ρ(v) and the equalities in (3.5) become true. As a consequence,

for the real-weighted version of the problem under the new definition of reducible

neighborhood, Lemma 3.8 is valid, and Rule 1 is safe .

Rule 2, Lemma 3.9, and Lemma 3.10 remain valid for the real-weighted version.

Now consider Rule 3. By the conditions of Rule 3, we have wt(PE(x,N[v])) >

wt(PA(x,N[v])). However, the value wt(PE(x,N[v])) − wt(PA(x,N[v])) can be

smaller than 1 for the real-weighted version thus it may not be a valid weight value

to be assigned to the edge [v ′x] (recall that we require all weights be at least 1 for

the weight function wt). This can be fixed by the following modification:

Rule 3.3 (R). Let v be a vertex such that N[v] is reducible on which Rules 1-2

have been applied. If a vertex x in N(N[v]) is still adjacent to N[v], then let we =

wt(PE(x,N[v])), wa = wt(PA(x,N[v])), and

• if we −wa > 1, then contract N[v] into a single vertex v ′, add an edge [v ′, x]

of weight we − wa, set the weight of each anti-edge {v ′,u}, where u 6= x, to

+∞, and decrease k by wa;

• if we−wa < 1, then replace N[v] by two vertices v ′ and v ′′, add an edge [v ′, x]

of weight 2, and an edge [v ′, v ′′] of weight 2−(we−wa), set the weight of each

of the anti-edges {v ′,u}, where u 6= x, v ′′, and {v ′′,w}, where w 6= v ′, to +∞,

and decrease k by we − 2.

Note that we must have we > 2: otherwise, from wa < we < 2, and by the

requirement that the weight of each vertex pair be at least 1, the neighborhood

N[v] must consist of exactly two vertices v and w such that wt(x,w) = we and

wt(x, v) = wa. This would imply δ(v) = 0 and γ(N[v]) = we. As a consequence,

ρ(v) = we > 1 = |N[v]| − 1, which would contradict the assumption that N[v]
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is reducible (recall that applying Rules 1-2 to a reducible N[v] cannot make N[v]

non-reducible). Therefore, in any case, Rule 3 (R) does not increase the value of

the parameter k. Moreover, it can be easily verified that the new weight function

has value at least 1 on each vertex pair in the reduced graph. Therefore, on an

instance (G,wt,k) of the real-weighted version, Rule 3 (R) produces a valid instance

(G ′,wt ′,k ′) for the real-weighted version with k ′ 6 k.

To verify that Rule 3 (R) is safe for the real-weighted version, we need to prove

that the graph G has a solution of weight bounded by k if and only if the graph G ′

has a solution of weight bounded by k ′. The proof is identical to that of Lemma

3.11 when we −wa > 1. For the case we −wa < 1, note that because of the way

we assigned weights to the new vertex pairs in the reduced graph G ′, in an optimal

solution to the graph G ′, either the edge [x, v ′] or the edge [v ′, v ′′] must make a

separated clique. Now following a similar idea as that given in the proof of Lemma

3.11, we can prove that the original graph G has a solution of weight bounded by k

if and only if the reduced graph G ′ has a solution of weight bounded by k−(we−2).

More specifically, we can verify that (1) the original graph G has an optimal solution

of weight bounded by k in which N[v]∪ {x} makes a separated clique if and only if the

new graph G ′ has an optimal solution of weight bounded by k − (we − 2) in which

the edge [x, v ′] makes a separated clique, and (2) the original graph G has an optimal

solution of weight bounded by k in which N[v] makes a separated clique if and only

if the new graph G ′ has an optimal solution of weight bounded by k − (we − 2) in

which the edge [v ′, v ′′] makes a separated clique.

Finally, a result for the real-weighted version similar to Theorem 3.12 for the

integral-weighted version can be proved similarly. For the completeness, we present

the detailed proof for this result as follows.
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Theorem 3.13. Let (G,wt,k) be an instance for the real-weighted version of the

correlation clustering problem such that no vertex v in G has a reducible neighborhood

N[v]. If the graph G has at least 4k vertices, then G has no solution of weight bounded

by k.

Proof. Let S be an optimal solution to the graph G, and let ZS = {v1, v2, . . . , vr} be

the set of all vertices in G that do not appear in any pair in S. As we proved in

Theorem 3.12, for two vertices vi and vj in ZS, either N[vi] ∩N[vj] = ∅, or N[vi] =

N[vj]. Therefore, without loss of generality, we can assume that N[vi]∩N[vj] = ∅ for

all i 6= j. The set N[v1]∪N[v2]∪ · · · ∪N[vr] contains all vertices that do not appear

in any pair in the solution S (plus perhaps some vertices that appear in pairs in S).

Again, we divide the weight of each vertex pair {v,w} in the solution S into

two halves and distribute them equally to the vertices v and w, and then count the

costs on all vertices. For each vertex vi in ZS, since N[vi] will make a separated

clique in the graph G4S, the sum of the costs on the vertices in N[vi] is equal to

δ(v)+γ(N[vi])/2 = ρ(vi)/2. Since the neighborhood N[vi] is not reducible, we have

ρ(vi) > |N[vi]|− 1. Therefore, the sum of the costs on the vertices in N[vi] is larger

than (|N[vi]|−1)/2. In consequence, the average cost on each vertex in N[vi] is larger

than (|N[vi]| − 1)/(2|N[vi]|). Since |N[vi]| > 2 (otherwise vi would be an isolated

vertex and N[vi] would be reducible), we conclude that the average cost on each

vertex in N[vi] is larger than 1/4. Extending this to all neighborhoods, we conclude

that the average cost on each vertex in the set N[v1] ∪N[v2] ∪ · · · ∪N[vr] is larger

than 1/4.

For each vertex w not in the set N[v1] ∪ N[v2] ∪ · · · ∪ N[vr], w appears in at

least one pair in the solution S. Therefore, the cost on the vertex w is at least 1/2.

Combining this fact with the above analysis, we derive immediately that the weight
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of the solution S is larger than n/4, where n is the number of vertices in the graph

G. Therefore, if n > 4k, then the graph G has no solution of weight bounded by

k.

Corollary 3.14. There is a polynomial-time kernelization algorithm for the real-

weighted version of the correlation clustering problem that produces a kernel that

contains at most 4k− 1 vertices.

3.5 Discussion

An interesting observation is that for the unweighted version, by the definition

of simple series modules [63], all of the following are exactly the same:

N[u] = N[M], δ(u) = δ(M), and γ(N[u]) = γ(N[M]),

where M is the simple series module containing the vertex u, and δ(M) is a natural

generalization of the definition δ(v). Therefore, it does not matter if we use the

module or any vertex in the module: every vertex in a simple series module is a full

representative for the module. This observation shows that previous kernelization

algorithms can be significantly simplified by avoiding modular decompositions. More

importantly, this enables our approach to handle the weighted versions.

The kernel size analysis is tight, and there are graphs with 2k vertices whose

optimal solutions have size exactly k. For any integer k > 1, we can take a cycle of

2k vertices, where each of the 2k edges has unit weight, and it is easy to verify the

only optimal solution is to remove half of the edges.

As a final remark, I also would like to compare this result with the 2-approximation

algorithm for vertex cover problem. Albeit there had been long known how to obtain
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such an algorithm for the unweighted version (greedy, or from a maximum match-

ing, say), they enjoyed only very limited applications. Situations only changed after

Hochbaum developed the first algorithm for the weighted version based on linear pro-

gram [127] (See also [128]). Contrary to previous specialized techniques, Hochbaum’s

algorithm not only works for both unweighted and weighted versions of vertex cover,

but is later shown to be easily generalized to variations of vertex cover, including

partial vertex cover, capacitated vertex cover, and other generalizations, and conse-

quently brings numerous results [127,129,130].
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4. HIERARCHICAL CLUSTERING

It is natural to try to apply techniques presented in Chapter 3 to other clustering

problems. This chapter is devoted to the famous hierarchical clustering problem.

Following the same basic reasoning, but with more complicated reduction rules, I

obtain a 4k element kernel.

Theorem 4.1. There is an O(M ·n3) time kernelization algorithm for the hierar-

chical clustering problem that produces a kernel with at most 4k elements.

The second result here is a direct generalization of the currently best parame-

terized algorithm for correlation clustering to hierarchical clustering with the same

time complexity up to a polynomial factor. These two results together tell us from

the aspect of parameterized (exact) computation., the hierarchical clustering is not

necessarily harder than correlation clustering.

Theorem 4.2. There is an O∗(1.62k) time parameterized algorithm for hierarchical

clustering problem, which either returns a solution with cost at most k, or correctly

reports no such solution exists.

These techniques are also general enough to be applied for other clustering

problems, e.g. the clustering aggregation problem, the details are omitted here.

4.1 Preliminaries

A nonnegative square matrix D of order n is called ultrametric if for any triplet

1 6 i, j,k 6 n, of the three pairwise distances, either all are the same, or two are the
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same while the other is strictly smaller. This can be concisely characterized by Dij 6

max(Dik,Djk). Immediately following from the definition are two observations:

Dik = max(Dij,Djk) if Dij 6= Djk, (4.1)

and Dik 6 Dij if Dij = Djk. (4.2)

It is also common to characterize ultrametric matrices as conflict triples free, here

by a conflict triple I mean three elements 1 6 i < j < k 6 n which satisfies

Dij 6 Dik < Djk. Let S be an n × n matrix whose elements are integers from

[−M,M], and D+S is the normal addition of matrices.1 S is a solution to matrix D

if D+ S is ultrametric, and by definition, the cost of S is cost(S) =
∑

16i<j6n |Sij|.

For a matrix D, denote by opt(D) the cost of an optimal solution to D, i.e. the

minimum cost of a solution over all solutions to D.

Denote by [n] the set of positive integers {1, 2, . . . ,n}. Given any pair of index

subsets I, J ⊆ [n], D|I,J is the |I| × |J| submatrix of D determined by the row index

set I and column index set J, and particularly, I write D|I as a shorthand for D|I,I

whose rows and columns are both indexed by I. By definition of ultrametric, in the

objective matrix D ′ = D + S, the submatrix D ′|I for any subset I ⊆ [n] is also

ultrametric. In terms of this hereditary property, the submatrix D|I for each index

set I can be viewed as an instance of hierarchical clustering (on which opt(D|I) is

defined naturally). Moreover, the submatrix S|I of a solution matrix S to D is also

a solution to D|I, nevertheless the optimality does not transfer in general.

As previously mentioned, the hierarchical clustering problem degenerates to the

correlation clustering problem when M = 1. It may help to understand the relation

1In this dissertation I directly use the distance matrix as the base of our operation, instead the
n(n− 1)/2 vector by previous authors, because this will make our description easier. Observe that
when counting the cost, only the upper-triangle of the (symmetric) solution matrix is counted.
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between these two problems by observing that the hierarchical clustering problem

does not admit a weight function in a natural way, and its special case of M = 1

corresponds to the unweighted version of correlation clustering (i.e. wt(∗) = 1,

recall the definition in Chapter 3). To save us from repetitive exclusions of trivial

case M = 1, in the following I will always assume M > 1.

The first challenge that presents itself here is how to formulate distance matrices

into graphs. Previous work on the correlation clustering problem is (almost) always

conducted via a graph-theoretic approach. Unfortunately, in general we are not able

to define one natural graph out of the distance matrix D, preserving the information

in D. Known theoretical studies on this problem, unanimously making use of results

of the correlation clustering problem, have to jettison some information to make an

instance of correlation clustering, which consequently induces a loss of M factor.

As an example, by defining a graph GD from D where vertices are those elements,

and an edge is present between a pair of vertices if their distance is at most M,

and then applying a kernelization algorithm for the correlation clustering problem

on GD, a kernel of O(M ·k) elements can be easily derived. Information discarded

in this formulation is the distances smaller than M+ 1, which are indistinguishably

represented as edges, and therefor it introduces a multiplicative factor M, which can

be informally considered as an integrality gap due to relaxation..

As it turns out, this sacrifice is not really necessary, and the fundamental ob-

servation sparing us from this loss is: There are M natural graphs defined on the

same vertex set V , one for each level, where an edge is present between a pair of

elements if and only if their distance is below that level. More specifically, for the

ground distance matrix D and any positive integer t ∈ [M], the graph GtD = (V ,EtD)

at level t is defined as follows: EtD = {(u, v) |Duv 6 t}. The subscript D will be

omitted when it is clear from the context which distance matrix is being referred
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to, so is the superscript t if it happens to be M. One can check that the M = 1

case stated above is the graph for t = M = 1. Moreover, the graphs considered in

this paper are weighted such that the values of difference are respected, that is, to

graphs from a distance matrix D, I assign weight to each pair of edges/anti-edges to

represent their distance. Now for each t ∈ [M], I define the weight function wtt for

Gt as follows: for each pair of elements u, v ∈ V (not necessarily adjacent in Gt),

wtt(uv) =


t+ 1 −Duv if Duv 6 t,

Duv − t otherwise.

(*)

I remark the weight function is well defined: It is easy to check that wtt always gives

positive integers, and its range is actually [M]. The two cases correspond to edges

and anti-edges respectively. In particular, for the GM, an edge is present between

each pair of elements of distance d 6 M, with weight M + 1 − d, and no edge

between distance-(M+ 1) pairs, with weight 1 ((M+ 1) −M). The final remark on

the graph formulation is: instead of statically fixing a graph fixed at the beginning,

I will dynamically maintain graphs with the algorithmic procedure that evolves the

matrix. With this definition at hand, I can immediately have:

Observation 1. Let D be a distance matrix, each of the M graphs defined as above

consists of a disjoint union of cliques if and only if D is ultrametric.

Thus, a solution to a hierarchical clustering instance, corresponds toM solutions

to correlation clustering instances, each from a graph Gt (t ∈ [M]). Gt will also be

called the t-perspective graph, on which some definitions are given as follows, which

are natural generalizations of standard terminologies from graph theory. A t-clique

is a subset of elements which are pairwise connected in Gt, i.e. the distance between

each pair of elements in them is at most t. Now Observation 1 can be rephrased as:
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A distance matrix D is ultrametric, iff for each t ∈ [M], the t-perspective graph GtD

consists of a disjoint union of t-cliques. To t-split two disjoint subsets of elements

X and Y is to increase the distance between each pair of elements in different parts

to at least t + 1, and more specifically, for each pair of x ∈ X and y ∈ Y such that

Dxy 6 t, set it to t+ 1, while keep others unchanged. Similarly, to t-merge a subset

V of elements is to decrease the distance between each pair of elements in V to lower

than t, and more specifically, if Dxy > t where x,y ∈ V , set it to t. A cut in a

graph is defined by a subset X of vertices, and its weight is the total weight of all

edges lying between X and X. In different perspective graphs, the same subset X

have different cuts, and I denote by γt(X) the cut of X in the t-perspective graph

Gt, that is

γt(X) =
∑

u∈X,v6∈X
uv∈Et

π(uv) =
∑

u∈X,v 6∈X
Duv6t

(t+ 1 −Duw), (4.3)

In the remainder of this section, I will only work on the M-perspective graph,

where the weight of a missing edge is always 1. For the simplicity, wherever not

specified otherwise, the clique, split and merge are always M-clique, M-split and

M-merge.

Lemma 4.3. Let D be the distance matrix on element set V, P = {V1,V2, . . . ,Vp}

be a partition of V, and let EP be the set of edges in G whose two ends belong to two

different parts in P. Then
∑p
i=1 opt(D|Vi) 6 opt(D) 6 wt(EP) +

∑p
i=1 opt(D|Vi).

Proof. Let S be an optimal solution to D. As noted above, for 1 6 i 6 p, S|Vi is a

solution to the submatrix D|Vi , which implies opt(D|Vi) 6 cost(S|Vi). Thus

p∑
i=1

opt(D|Vi) 6
p∑
i=1

cost(S|Vi) 6 cost(S) = opt(D).
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Moreover, if I increase all inter-part distances to M+1, that is, split all parts by

removing all edges in EP from G, then apply an optimal solution S ′i to each submatrix

D|Vi , I will end up with a solution. Therefore, these operations make a solution to

the original distance matrix D whose cost is

wt(EP) +

p∑
i=1

cost(S ′i) = wt(EP) +

p∑
i=1

opt(D|Vi),

which is no less than opt(D). Now both inequalities are verified.

Lemma 4.3 directly implies the following corollaries. First, if there is a partition

such that all inter-part pairs have distance M+ 1, then wt(EP) = 0 and Lemma 4.3

gives

Corollary 4.4. Let D be the distance matrix on element set V, P = {V1,V2, . . . ,Vp}

be a partition of V. If Duv = M + 1 for all pairs of u and v which are in different

parts of P, then opt(D) =
∑p
i=1 opt(D|Vi), and every optimal solution to D is a

union of optimal solutions to the submatrices D|V1
, . . . ,D|Vp.

When p = 2, i.e. the element partition is P = {X,X}, the edge set EP has weight

γ(X). Lemma 4.3 gives

Corollary 4.5. Let X ⊂ V be a subset of elements, then

opt(D|X) + opt(D|X) 6 opt(D) 6 opt(D|X) + opt(D|X) + γ(X).

This corollary suggests a lower bound for the cost of an optimal solution in some

bordering parts, as shown in the following lemma.

Lemma 4.6. . Let S be an optimal solution to distance matrix D. For any subset

of elements X, cost(S|X,X) 6 γ(X).
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Proof. The optimal solution S can be divided into three disjoint parts: S|X, S|X, and

S|X,X. By Corollary 4.5,

opt(D) = cost(S|X) + cost(S|X) + cost(S|X,X) 6 opt(D|X) + opt(D|X) + γ(X).(4.4)

Again, since S|X is a solution to the submatrix D|X and S|X is a solution to the

submatrix D|X, I have cost(S|X) > opt(D|X) and cost(S|X) > opt(D|X), which

combined with (4.4) give immediately cost(S|X,X) 6 γ(X).

In a matrix with largest distance d, it does not make sense to increase any

distance to higher than d. This observation can be formalized as the following

lemma.

Lemma 4.7. In the objective matrix D ′ = D + S for any optimal solution S, all

distances of D ′ are no more than d = max16i<j6nDij, that is, the largest distance

in D.

Proof. I prove by contradiction. Assume d ′ = max16i<j6nD
′
ij > d, then I claim the

following is a better solution:

S ′ij =


Sij if D ′ij < d

′,

Sij − 1 if D ′ij = d
′.

Obviously cost(S ′) < cost(S), as the only modifications happen on positive num-

bers, and I decrease them each by 1.

Now it remains to verify that S ′ is also a solution toD. Applying solutions S and

S ′ to D, I get two different matrices. From each matrix, I can define M perspective

graphs, and by the above construction, the only levels at which two perspective

graphs are different are (d ′−1) and d ′. By Observation ??, I only need to verify the



71

(d ′− 1)- and d ′-perspective graphs for D+S ′ are both disjoint unions of cliques. At

level d ′, the whole set V becomes a single d ′-clique. At level d ′ − 1, all components

are either d ′ − 1-cliques in D+ S, or d ′-cliques.

With the help of Lemma 4.7, I can generalize Corollary 4.4 into the cases where

the largest distance is not M+ 1.

Lemma 4.8. Let D be the distance matrix on element set V, P = {V1,V2, . . . ,Vp}

be a partition of V. If for each pair of elements u and v which are in different parts

of P, their distance Duv is the maximum over the whole matrix D, then opt(D) =∑p
i=1 opt(D|Vi), and every optimal solution to D is a union of optimal solutions to

the submatrices D|V1
, . . . ,D|Vp.

Based on this corollary, if the largest distance M ′ = max16i<j6nDij of D is

less than M+ 1, I can treat it as an instance of M ′ − 1 hierarchical clustering, and

then solve it. Thus, in this paper, without loss of generality, I always assume there

exists at least one pair of i and j such that Dij =M+ 1.

4.2 The Kernelization Algorithm

For element v ∈ V , denote by Nt[v] = {u | Duv 6 t} those elements with

distance to v upper bounded by t (recall that v itself is implicitly included because

Dvv = 0), which form the closed neighborhood of v in Gt. In particular, NM[v] =

{u | Duv 6M} = {u | Duv 6=M+ 1}.

A trivially simple but important fact about a solution S of cost 6 k to D is: at

most 2k different elements have some of their distances to other elements changed.

As a consequence, if I am also able to bound the number of elements that are not

affected by S, I get a kernel. For such an unaffected element v, the v-th row of S
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consists of only 0’s, then in the ultrametric matrix D ′ = D + S, for any neighbor

u ∈ N[v] and another different element w, the distance D ′uw has to satisfy

D ′uw


6 max(Dvu,Dvw) 6M if u,w ∈ N[v];

= max(Dvu,Dvw) =M+ 1 if u ∈ N[v],w 6∈ N[v].

(4.5)

This is necessary (but not sufficient) conditions for the element v to be immune

to a solution S, and if (4.5) is not satisfied by D, then D|N[v] has to be modified by

S. To measure the cost of required modification, in addition to previously defined

γt(N[v]), I define

δt(v) =
∑

Duv,Dvw6t
Duw>t

(Duw − t), (4.6)

and ρt(v) = 2δt(v) + γt(N[v]). Nt[v] is said to be reducible (at level t) if ρt(v) <

|Nt[v]|. Again, the superscript t is dropped when t =M.

The proofs in this section, although many non-trivial calculations involved, fol-

low from a very simple observation, that is, by explicitly constructing a solution S,

I can exclude all possibilities ending with solutions of a cost higher than cost(S).

I describe two reduction rules on the neighborhood N[v] of an element v such that

N[v] is reducible. In fact, the reducibility of N[v] is the only reduction condition I

need on which the three reduction rules are applied in order. The first one tells that

an reducible neighborhood can be put into a single M-clique.

Lemma 4.9. For any element v such that N[v] is reducible, there is an optimal

solution S∗ to D such that the maximum distance in (D+ S∗)|N[v] is upper bounded

by M.

Proof. Let S be an optimal solution to D, and D ′ = D+ S. Since the neighborhood

N[v] is reducible, I have ρ(v) < |N[v]|. Suppose that N[v] does not form a single
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clique in GD ′ , then it can be divided into disjoint subsets such that each is contained

in different M-cliques, let them be N[v] = C1 ∪ C2 ∪ · · · ∪ Cr, where Ci 6= ∅ for

1 6 i 6 r. Note that Ci (1 6 i 6 r) itself does not induce a clique in GD ′ , instead,

it is the intersection of such a clique and N[v].

Our first step is to construct a solution to the instance induced by submatrix

D|N[v], and I obtain it by modifying the known solution S|N[v]:

S ′uw =


Suw if ∃i,u,w ∈ Ci,

Suw − 1 otherwise.

(4.7)

That is, values of S ′ are the same as those of S only with the exception of inter-part

pairs. In particular, all inter-part pairs have distance M+ 1 in (D+ S)|N[v], and M

in D|N[v] + S
′ (note S ′ is a |N[v]|× |N[v]| matrix).

Claim 1. S ′ is a solution to D|N[v], with cost at most cost(S|N[v])−
∑

16i<j6r |Ci||Cj|+

2δ(v).

Proof of Claim 1. ObserveN[v] forms aM-clique inM-perspective graph ofD|N[v]+

S ′. For each part Ci, D|Ci + S
′|Ci = D|Ci + S|Ci , which is upper bounded by M by

the partition of N[v] defined above; and all inter-part distance is exactly M by (4.7).

Thus N[v] forms a single M-clique. Furthermore, by Lemma 4.8, and noting all

inter-part distances are M, each Ci can be solved spearately, for which I simply use

S ′|Ci . Thus, S ′ is a solution to D|N[v].

To calculate the cost of S ′, I only need to care about those positions different

from S, that is, those inter-part ones. Let δ1 be the number of those inter-part pairs
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with distances M+ 1 in D|N[v], which is obviously a subset of pairs defined in δ(v),

and therefore δ1 6 δ(v), then

cost(S ′) = cost(S|N[v]) − (
∑

16i<j6r

|Ci||Cj|− δ1) + δ1

= cost(S|N[v]) −
∑

16i<j6r

|Ci||Cj|+ 2δ1 (4.8)

6 cost(S|N[v]) −
∑

16i<j6r

|Ci||Cj|+ 2δ(v).

This completes the proof of Claim 1.

According to Corollary 4.5, opt(D) 6 opt(D|N[v])+ opt(D|N[v])+γ(N[v]), and

noting opt(D|N[v]) 6 cost(S ′), I have

opt(D) 6 cost(S ′) + opt(D|N[v]) + γ(N[v])

6 cost(S|N[v]) −
∑

16i<j6r

|Ci||Cj|+ 2δ(v) + opt(D|N[v]) + γ(N[v])(4.9)

= cost(S|N[v]) + opt(D|N[v]) + ρ(v) −
∑

16i<j6r

|Ci||Cj|.

On the other hand, opt(D) = cost(S) by the optimality of S, I have

opt(D) > cost(S|N[v]) + cost(S|N[v]) > opt(D|N[v]) + cost(S|N[v]). (4.10)

Combining (4.9) and (4.10), and noting that N[v] is reducible, I get

∑
16i<j6r

|Ci||Cj| 6 ρ(v) < |N[v]| =
∑

16i6r

|Ci|. (4.11)
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This can hold true only when r = 2, and one of |C1|, |C2| is 1. In both cases, I

have |C1| · |C2| = |C1|+ |C2|− 1. Combining this with (4.11), and noting that all the

quantities are integers, it must be ρ(v) =
∑

16i<j6r |Ci||Cj| = |N[v]|− 1, and

opt(D) = cost(S ′) + opt(D|N[v]) + γ(N[v]). (4.12)

Therefore (4.12) shows that if I first M-split V into N[v] and N[v] with cost

γ(N[v]), apply S ′ to N[v] with S ′, and then apply an optimal solution to the sub-

matrix indexed by N[v], then I have an optimal solution S∗ to the whole matrix

D. This completes the proof of the lemma because the optimal solution S∗ has the

element set N[v] entirely contained in a single M-clique in the M-perspective graph

of D+ S∗.

By Lemma 4.9, the optimal solution S∗ merges N[v] into a M-clique by de-

creasing all distance M + 1 in D|N[v] to M, with a total cost δ(v). Therefore, the

remaining pairs in S∗ make an optimal solution to the resulting matrix. This gives

the rule for our first reduction rule:

Rule 4.1. For an element v such that N[v] is reducible, decrease D|N[v] to at most

M, and decrease the parameter k by δ(v).

After Rule 4.1, no distance in D|N[v] is M+1, and therefore δ(v) = 0 and ρ(v) =

γ(N[v]). Now I turn to D|N[v],N[v]. Particularly, I am interested in those elements

whose distance to N[v] is mostly M + 1. Note that the definition of reducibility

guarantees that almost all elements in N[v] have to fall into this category.

Rule 4.2. Let v be an element such that N[v] is reducible on which Rule 4.1 has

been applied. For each element x 6∈ N[v], if
∑
u∈N[v](M+ 1−Dxu) 6 |N[v]|/2, then

M-split x from N[v] and decrease k accordingly.
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Lemma 4.10. Rule 4.2 is safe.

Proof. By Lemma 4.9, there is an optimal solution S to D such that N[v] is entirely

contained in a single M-clique C in D ′ = D+ S. I first prove, by contradiction, that

C containing N[v] in GD ′ contains at most one element not in N[v]. Suppose, on

the contrary, that there are r elements u1, . . . , ur not in N[v] that are in C, where

r > 2. For 1 6 i 6 r, let ci be the total cost of M-splitting ui from N[v]; and

let mi be the total cost of M-merging ui to N[v]. Note that ci +mi > |N[v]| and∑r
i=1 ci 6 γ(N[v]). Then in the optimal solution S to D, the total cost on decreasing

distance between pairs of N[v] and {u1, . . . , ur} is at least

r∑
i=1

mi =

r∑
i=1

(ci +mi − ci) =

r∑
i=1

(ci +mi) −

r∑
i=1

ci

>
r∑
i=1

|N[v]|− γ(N[v]) = r|N[v]|− γ(N[v])

> 2|N[v]|− |N[v]| = |N[v]|

> γ(N[v]).

Herein, I have used the fact |N[v]| > γ(N[v]) (this is because by the conditions of

the rule, ρ(v) = 2δ(v) + γ(N[v]) < |N[v]|). But this contradicts Corollary 4.6.

Therefore, there is at most one element x out of N[v] that is in the M-clique

C containing N[v] in D+ S. I can assume that the element x satisfies the condition∑
u∈N[v](M+1−Dxu) > |N[v]|/2: otherwise, instead of decreasing D|x,N[v] to M to

make N[v] ∪ x a M-clique, I increase all distances in D|x,N[v] to M + 1 and will get

another optimal solution S ′ that makes the subset of elements N[v] a separated M-

clique in D+S ′. In consequence, for an element x not in N[v] with
∑
u∈N[v](M+1−

Dxu) 6 |N[v]|/2, I can always assume that x is not in the M-clique containing N[v]



77

in D+ S for the optimal solution S. In particular, increasing the distance between x

and N[v] to M+ 1 for such an element x is always safe.

After Rule 4.1-4.2 are applied, the D|N[v],N[v] has a very simple structure, which

is characterized by the following lemma:

Lemma 4.11. Let v be an element such that N[v] is reducible on which Rules 4.1-4.2

have been applied. Then there is at most one element x ∈ N[v] such that D|N[v],x

have values not M+ 1.

Proof. By the condition of Rule 4.2, any element x not in N[v] that still has distance

smaller than M+ 1 to some elements of N[v] after the application of Rule 4.2 must

satisfy
∑
u∈N[v](M + 1 − Dxu) > |N[v]|/2. To prove the lemma, suppose on the

contrary that there are two such elements, let them be x and y, then I have

γ(N[v]) >
∑
u∈N[v]

(M+ 1 −Dxu)+ >
∑
u∈N[v]

(M+ 1 −Dyu) > |N[v]|.

But this contradicts the assumption that N[v] is reducible, that is, ρ(v) = 2δ(v) +

γ(N[v]) < |N[v]|.

Hereafter I will call this only element x as the pendent element w.r.t. v. Now

it is ready to describe our kernelization algorithm, which is simply an application of

the above-mentioned rules in order.

The kernelization algorithm. For each element v such that N[v] is reducible

1. decrease value M+ 1 in D|N[v] to M and decrease k accordingly;

2. for each element x 6∈ N[v] such that
∑
u∈N[v](M+ 1−Dxu) 6 |N[v]|/2, set all

values in D|N[v],x to M+ 1 and decrease k accordingly;
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Note that: 1) there is only one condition for the rules of the whole Algorithm,

and it is only checked once; and 2) the reduction condition does not depend on the

parameter k.

This kernelization algorithm is applied in an iterative way, that is, I start from

the highest level M, and then for each isolated element set split in last run, re-apply

it at the level M− 1, and so on, until there is no more isolation operation and stop.

Therefore, the kernel consists of some isolated element sets which each forms an

independent instance of hierarchical clustering problem with a different value of M.

To analyze the size of the final kernel, I simply count the relation between each set

and the cost of the modifications required to make the matrix ultrametric. Because

our counting will not dependent on the value of M, this ratio holds for all subsets

which form independent instances, and therefore to the whole set.

Lemma 4.12. Let (V ,D,k) be an instance of the hierarchical clustering problem on

which our kernelization algorithm has been applied. If V has more than 4k elements,

then no solution to D has its cost upper bounded by 6 k.

Proof. Let matrix S be an optimal solution to the distance matrix D. For each

element pair {v,w} in V , I divide the cost |Svw| into two halves and distribute them

evenly to the two elements v and w. By this procedure, each element v gets a “cost”

cost(v) = 1
2

∑
u∈V−v |Suv|. Obviously the total cost of S is equal to

∑
v∈V cost(v).

In this proof the costs are counted on each elements, and particular interest will be

paid to those elements with 0 cost.

For any two elements u, v with distance Duv = M + 1, if there exists another

element w such that both Duw 6 M and Dvw 6 M, then at most one of u, v can

has 0 cost: to make u, v, and w ultrametric, at least one of u and v has to share

some cost. Let ZS = {v1, v2, . . . , vr} be the set of elements with 0 cost in S. Then
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for each two elements vi and vj in ZS, either their distance is M + 1 and any other

element has distance M + 1 to at least one of them; or their distance is 6 M and

any other element has distance M + 1 to vi if and only if it has distance M + 1 to

vj. As a result, any two of the neighborhood {N[v1],N[v2], . . . ,N[vr]} in G are either

the same or mutually disjoint. Thus, without loss of generality, it can be assumed

that all neighborhoods in {N[v1],N[v2], . . . ,N[vr]} are pairwise disjoint (otherwise,

I can simply remove duplicated copies of the neighborhoods in the collection). Let

NS = N[v1] ∪N[v2] ∪ · · · ∪N[vr].

Without changing any value in the column indexed by vi, a solution S has

to decrease distance M + 1 between any pair of elements in N[v1] to 6 M, and

increase distance 6 M between any element in N[v1] and N[v1] to M + 1. These

operations induce cost at least δ(vi) + γ(vi), and counted on elements, it is in total

δ(vi)+γ(vi)/2 = ρ(v)/2. If N[vi] is not reducible, then the cost is at least |N[vi]|/2.

If N[vi] is reducible, then by Lemma 4.11 there can be at most one element x whose

distances to N[vi] are not all M + 1. According to Rule 4.2, in this case I have

ρ(vi) > |N[vi]|/2, and thus the cost is strictly larger than |N[vi]|/4. From this

analysis, I get

∑
v∈NS

cost(v) =

r∑
i=1

∑
v∈N[vi]

cost(v) >
r∑
i=1

|N[vi]|/4 = |NS|/4. (4.13)

On the other hand, each w of the elements not in the set NS has cost at least

one non-zero value in the column S|V−w,w, and therefore bears cost at least 1/2.

This gives

∑
v∈V−NS

cost(v) > |V −NS|/2. (4.14)
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Putting (4.13) and (4.14) together, it can be concluded the total cost of the

optimal solution S is

∑
v∈V

cost(v) =
∑
v∈Ns

cost(v) +
∑

v∈V−NS

cost(v) > |Ns|/4 + |V −NS|/2 > |V |/4.

Therefore, if |V | > 4k, then D has no solution of cost bounded by k.

4.3 The Parameterized Algorithm

An example. Inspired by the formulation and usage of perspective graphs in last

section, one might want to solve the hierarchical clustering problem in a level-by-

level way, that is, given an algorithm A for the correlation clustering problem, it

is applied to the M-perspective graph GM, and then on each sub-instances of level

M − 1 it makes, and continue till level 1. However, this greedy approach does not

work, as shown in the following counter-example (Figure 4.1). This graph is actually

a K5×K1, where the K5 (at the bottom) has pairwise distance 1, while the K1 vertex

x (at the top) is connected to three vertices of the K5 with edges of distance M+ 1

(red edges), while the others two with M (blue edge) and 1 (black edge) respectively.

It is easy to verify that the (only) optimal solution should be increasing both

the black edge and the blue edge to M+1, with total cost M+1. On the other hand,

it is even clearer that the G, where the three red edges are missed and the black edge

has weight M, has only one optimal solution which adds the three missed edges back,

with cost 3. Now in the resulted distance matrix, x has distance M to four elements

in the K5, and distance 1 to the other element. When M is large enough, the optimal

cost of this new instance is M−1 (still increasing the distance of the black edge M),

which is a lower bound for the cost of any solution further obtained. Hence, the
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x

M+1
M+1
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Fig. 4.1. An instance of hierarchical clustering that cannot be solved greedily

solution returned by this level-by-level approach has cost > 3 + (M − 1) = M + 2,

which is strictly larger than the optimal cost M + 1 this instance admits. In other

words, we lose the chance of obtaining optimality with the first step.

This counter-example does not rule out the possibility of using algorithms for the

correlation clustering problem to the hierarchical clustering problem. One common-

ality between the correlation clustering problem and hierarchical clustering problem

is both of them can be characterized as being conflict-triple/triangle free. Recall

that a conflict triple is a triple of elements whose three pairwise distances satisfy

d1 6 d2 < d3. To make a distance matrix ultrametric, we have to break each

conflict triple, which can only be done by modifying at least one of the three dis-

tances. Following from this observation, it is a good exercise to design an O∗(3k)

FPT algorithm. From the viewpoint of t-perspective graphs, there is exactly one

edge missed (between the pair of elements with the largest distance d3) from Gt

for each d2 6 t < d3. This strucutre, two edges present and one edge missed in

an subgraph induced by three vertices, is exactly the conflict-triangle widely used

in the studies of correlation clustering problem. Here the objective is to break each

conflict-triangle, which can only be done by reversing at least one of the three pairs.
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For correlation clustering problem, there have been several improved results

published, all of which follow the same basic observation, that is, branching on the

conflict-triangles. With the help of more careful branching steps and more compli-

cated analysis techniques, the best published algorithm for the correlation clustering

problem takes time O∗(1.62k) [22]. On the other hand, there has been no non-trivial

FPT algorithm proposed for the hierarchical clustering problem.

Instead of adapting one particular algorithm for the correlation clustering prob-

lem to the hierarchical clustering problem, I go one step further, that is, I show

any FPT algorithm for the correlation clustering problem, provided it is based on

branching on breaking conflict-triangles, can be adapted to the hierarchical clustering

problem, with the same time complexity as far as the exponential part is concerned!

Indeed, what I will show is a meta algorithm, which takes, in addition to an instance

IH = (V ,D,k) of the hierarchical clustering problem, an algorithm for the correlation

clustering problem, and returns an optimal solution to IH.

The meta algorithm is described in Figure 4.2. To be qualified as the main

ingredient in this meta-algorithm, the algorithm A has to satisfy some stipulations.

A A can be described as a searching tree T, whose leaves correspond to all so-

lutions (many-to-one), while internal nodes correspode to partial solutions.

Here by a partial solution, we mean a set of irreversible edge insertions and/or

deletions each breaks some conflict-triangle, and is set to be permament (its

subnodes cannot insert a deleted edge back or delete an inserted edge).

B A transverses T by following every branch of T, and stops only when it reaches

a leaf, or a partial solution whose cost already exceeds k.

C The running time of A is measured by the number of nodes it transverses.
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Algorithm Meta-HC(V,D,k,A)
input: A set of elements V, |V |× |V | distance matrix D, integer k,

and algorithm A for correlation clustering problem
output: An |V |× |V | matrix S such that D+S is ultrametic and cost(S) 6 k, if such
a matrix exists.
0 M = max16i<j6n(Dij) − 1;
1 construct the M-perspective graph GM as well as the weight function wtM as
defined in Section 4.1;
2 for each solution S returned by A(GM,wtM,k) do
3 if M == 1 then return S;
4 D ′ = D+ S, k ′ = k− cost(S);
5 for each pair of i and j in 1..n do
6 if D ′ij =M+ 1 then set D ′ij =M

†;
7 return S+ Meta-HC(V,D ′,k ′,A).

†: This (tricky) step is used to simplify the presentation of this algorithm. In par-
ticular, after each iteration, we do not break it into pieces of subintances and solve
them independently, instead, we still treat it as a single instance. Note that if there
is no conflict triangle at level M+ 1, edges with distance M+ 1 totally partition the
elements. By uniformally decreasing them to M, they still induce a total partition,
and thus will not make new triangle conflicts. Indeed, the instance remains equivalent
according to Lemma 4.4.

Fig. 4.2. A meta-algorithm for hierarchical clustering

With the meta-algorithm and stipulations, we are ready to present the main

result of this section:

Theorem 4.13. Let A be an algorithm on weighted correlation clustering problem

that is based on breaking conflict triangles and satisfies all the three stipulations stated

above. Then the algorithm Meta-HC using the algorithm A solves the hierarchical

clustering problem with the same time complexity as A, up to a polynomial factor.

Proof. I first show the correctness of Algorithm Meta-HC, that is, given an instance

IH of the hierarchical clustering problem, if it admits solutions with cost no more

than k, Meta-HC can always find one. Denote by S the set of solutions to IH with

cost no more than k.
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The first observation is, for any solution S ∈ S, it has to break all conflict

triangles in Gt at each level t, and as an example, we start from the M-perspective

graph G. Note that the distance between a pair of elements is changed to break

the conflict triangle(s) in G only if Duv 6 M and Duv + Suv > M, or vice versa.

Hence any pair of elements u and v such that Suv = 0 is not counted, neither are

those with Duv 6 M and Duv + Suv 6 M. For those pairs which are counted, if

Suv > 0 and Duv + Suv =M + 1, we count Suv; while Suv < 0 and Duv =M + 1,

we count 1. By this way, we get the cost paid by S to break all conflict triangles in

G, and which is obviously 6 cost(S) 6 k. By Stipulation B, this node must be

transversed by A. Now that level M is conflict triangle free, we can turn to each

submatrix, and similarly distribute cost of S to them, level by level. The total costs

of the whole procedure is exactly cost(S), if and only if there is no counteracting

operations on any pair. By counteracting operations on a pair of elements u and v

we mean decreasing Duv at some step and later increasing it, or the inverse. Assume

such counteracting operations, “decrease-then-increase”, have been applied on Duv.

If t is the level it gets last decreased, then by above distribution, its new value must

be t, and thus it cannot be increased by later operations conducted at levels lower

than t. Similarly for the counteracting operations “increase-then-decrease”, if t is

the level it gets increased, then after that u and v will be in different subinstances

in lower levels, and thus no operations can be applied to them.

Now it remains to show the time complexity, for which we will only concern us

with the exponential part. This directly following from the fact that we transverse

the same tree and same number of nodes, as well as the Stipulation C. Therefore,

Meta-HC takes the same time as A up to a polynomial factor.
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Particularly, the algorithm given in [22] is such a branching algorithm of running

time O(1.62k), and thus can be used in my meta algorithm. Now Theorem 4.2 comes

as a direct corollary of Theorem 4.13 and Theorem 7 in [23].

4.4 Discussion

Inspired by the results presented above, one immediate question is: How about

the approximation? Currently, the best approximation ratio of approximation algo-

rithms for the hierarchical clustering problem is M+ 2 [5,188], while the correlation

clustering problem admits a 2.5 approximation algorithm [6, 188]. Rooted from the

same idea, these two algorithms follow the same greedy procedure, where the M

inevitably make its role similar as a weight. As illustrated in the following example

(a similar tight example for the correlation clustering problem can be found in the

first author’s dissertation [4]):

a (n − 2)-clique with distance 1 for each pair, and two other vertices

x,y such that the distances between x to the clique are 1; the distances

between y to the clique are M, while d(x,y) =M+ 1,

the approximation ratio (M + 2) in Ailon and Charikar’s algorithm2 is (asymptoti-

cally) tight, and thus to achieve a better approximation ratio new algorithm has to

be designed. Now the question is: Can it be designed in a way that the levels play

a role more obedient, and therefore the hierarchical structure is also compressed in

the analysis.

2I remark here that the analysis of [5] is very subtle and involved. Indeed, the original analysis
given in the conference version (FOCS 2005) contains a flaw, which is later fixed in the full version.
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5. FEEDBACK VERTEX SET?

The main thrust of this chapter is an improved parameterized algorithm for the

feedback vertex set (FVS) problem, based on a small kernel for a variation of it.

Recall that an FVS in a graph is a set of vertices whose removal breaks all cycles.

My approach, as some of the previous ones, is to study a variation of the FVS

problem, the disjoint feedback vertex set problem (disjoint-FVS), which asks for an

FVS in a graph G that has no overlap with a given FVS. This is a natural step to

solve the FVS problem in the framework of iterative compression. First I show that

disjoint-FVS admits a small kernel (Theorem 5.1), and can be solved in polynomial

time when the graph has a special topological structure that is closely related to the

maximum genus of the graph. I then propose a simple branch-and-bound process

on disjoint-FVS, and introduce a new branch-and-bound measure. The branch-and-

bound process effectively reduces a given graph to a graph with the special structure,

and the new measure more precisely evaluates the efficiency of the branch-and-bound

process. These algorithmic, combinatorial, and topological structural studies enable

an O∗(3.83k)-time parameterized algorithm for the general FVS problem, improving

the previous best algorithm of time O∗(5k) for the problem.

Theorem 5.1. There is a polynomial-time kernelization algorithm for the disjoint-

FVS problem that produces a kernel that contains at most 4k vertices.

Theorem 5.2. The FVS problem is solvable in time O∗(3.83k).

? Reprinted with permission from On feedback vertex set: New measure and new structures, by Y.
Cao, J. Chen, and Y. Liu, 2010, Algorithm Theory-SWAT 2010, pp. 93-104, Copyright 2010 by
Springer-Verlag.
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5.1 Disjoint-FVS and Its Kernel

Let me start with a precise definition of the first problem.

disjoint-FVS. Given a graph G = (V ,E), an FVS F in G, and a parameter

k, either construct an FVS F ′ of size k in G such that F ′∩F = ∅, or report

that no such an FVS F ′ exists.

It has to be “no” if the subgraph induced by F contains a cycle, and thus I

can always assume F induces a forest. Let V1 = V \ F, which, by definition, also

induces a forest, and denote an FVS entirely contained in V1 by V1-FVS. Therefore,

an instance of disjoint-FVS can be written as (G;V1,V2;k), where (V1,V2 = F) is

a partition of the vertex set of the graph G both inducing forests, and looks for a

V1-FVS of size k in the graph G. Recall that dG(v) (dG[V1](v) resp.) is the degree

of the vertex v in the original graph G (the induced subgraph G[V1] resp.).

Given an instance (G;V1,V2;k), apply the following two simple rules:

Rule 5.1. Remove all vertices v with dG(v) 6 1;

Rule 5.2. For a vertex v in V1 with dG(v) = 2,

• if the two neighbors of v are in the same connected component of G[V2], then

include v into the objective V1-FVS, G = G− v, and k = k− 1;

• otherwise, move v from V1 to V2: V1 = V1 \ {v}, V2 = V2 ∪ {v}.1

Note that the second case in Rule 5.2 includes the case where one or both

neighbors of v are not in V2.

1Readers who are familiar with previous algorithms for this problem may be curious about the way
I handle degree-2 vertices here. When a vertex v is excluded from the objective FVS, most previous
works (e.g., [51, 64]) “smoothen” v (i.e., replacing v and the two edges incident to v with a new
edge connecting the two neighbors of v). The difference here is that I am focused on kernelization
that bounds the number of vertices in V1. During the kernelization process, new degree-2 vertices
can be created in the set V1 but cannot be ignored when counting the number of vertices in V1.
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The correctness of Rule 5.1 is trivial: no degree-0 or degree-1 vertices can be

contained in any cycle. On the other hand, although Rule 5.2 is also easy to verify for

the unrestricted FVS problem [51] (because any cycle containing a degree-2 vertex v

must also contain the two neighbors of v), it is much less obvious for the disjoint-FVS

problem – the two neighbors of the degree-2 vertex v may not be in V1 and cannot

be included in the objective V1-FVS. For this, I have the following lemma.

Lemma 5.3. Rule 5.2 is safe. In particular, for any degree-2 vertex v in the set V1

whose two neighbors are not in the same connected component of G[V2], there is a

minimum V1-FVS that does not contain v.

Proof. In the first case, v and some vertices in V2 form a cycle. Therefore, in order

to break this cycle, the vertex v must be contained in the objective V1-FVS.

For the second case, it suffices to show that if the graph G has a V1-FVS F ′ ,

then G has a V1-FVS of size at most |F ′| that does not contain v. If one u1 of the

neighbors of v is in V1, then the set (F ′ \ {v}) ∪ {u1} will be such a V1-FVS. Thus,

I can assume that the two neighbors u1 and u2 of v are in two different connected

components in G[V2]. Since G\F ′ is acyclic, there is either no path or a unique path

in G \ F ′ between u1 and u2. If there is no path, then adding v to G \ F ′ does not

create any cycle, and hence the set F ′ \ {v} is a V1-FVS of size |F ′|− 1 that does not

contain v. If there is a unique path P, then it must contain at least one vertex w in

V1 (since u1 and u2 are in different connected components in G[V2]). Removing w

will break this unique path, and the situation becomes the same as above, and thus

the set (F ′ \ {v})∪ {w} is a V1-FVS of the same size as F ′ but does not contain v.

As a caveat, the second case of Rule 5.2 cannot be applied simultaneously on

more than one vertex in V1. For example, let v1 and v2 be two degree-2 vertices in

V1 that are both adjacent to two vertices u1 and u2 in V2. Then it is obvious that



89

one cannot move both v1 and v2 to V2. In fact, if I first apply the second case of

Rule 5.2 on v1, then the first case of Rule 5.2 will become applicable on v2.

Definition An instance (G;V1,V2;k) of the disjoint-FVS problem is V1-irreducible

if none of the Rules 5.1-5.2 can be applied on vertices in the set V1 (as a result, all

vertices in V1 must have degree larger than 2). An instance (G;V1,V2;k) is nearly

V1-irreducible if in the set V1 there is at most one vertex of degree 2 and all other

vertices in V1 are of degree larger than 2.

For an instance (G;V1,V2;k) that is (nearly) V1-irreducible, in case there is no

ambiguity, I will simply say that the graph G is (nearly) V1-irreducible, respectively.

In the following, I show that a nearly V1-irreducible instance necessarily has a small

size.

I start with a simple branch-and-bound algorithm FindFVS for nearly V1-

irreducible instances of the disjoint-FVS problem, as given in Figure 5.1. The al-

gorithm is similar to the one presented in [51], but gives degree-2 vertices a higher

priority when selecting a vertex for branching. The basic step of the algorithm is

to pick a vertex v in V1 and branch on either including or excluding v in the objec-

tive V1-FVS F. Note that in certain situations, the algorithm directly takes one of

the two actions in the branching (see the footnotes in the algorithm). The correct-

ness of these actions are ensured by Lemma 5.3, which, in consequence, ensures the

correctness of the algorithm.

Note that since I will use this algorithm to count the number of vertices in the

set V1, Rules 5.1-5.2 are not applied on vertices of degree less than 3 in the set V1

that are generated during the process of the algorithm – I only assume that the input

instance (G;V1,V2,k) is nearly V1-irreducible.
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Algorithm FindFVS
input: a nearly V1-irreducible instance (G;V1,V2;k) of disjoint-FVS.
output: a V1-FVS F of size 6 k in G, or report that no such V1-FVS exists.

1. F = ∅;
2. while |V1| > 0 and k > 0 do
3. if there are vertices in V1 that have degree 2 in G
4. then let v be such a vertex
5. else let v be a vertex in V1 that has degree 6 1 in the induced subgraph G[V1]
6. branching
7. case 1: \\ v is in the objective V1-FVS F.
8. † add v to F and delete v from G; k = k− 1;
9. case 2: \\ v is not in the objective V1-FVS F.
10. ‡ move v from V1 to V2;
11. if |V1| = 0 then return F else return “no V1-FVS of size 6 k”.

† this action will not be taken if dG(v) = 2 and the two neighbors of v are
not in the same connected component of G[V2].

‡ this action will not be taken if two neighbors of v are in the same connected
component of G[V2].

Fig. 5.1. A simple branch-and-bound algorithm for disjoint-FVS

Lemma 5.4. Each execution of steps 6-10 of the algorithm FindFVS results in a

nearly V1-irreducible instance.

Proof. Since the input instance is nearly V1-irreducible, it suffices to prove that on a

nearly V1-irreducible instance, the execution of steps 6-10 of the algorithm produces

a nearly V1-irreducible instance.

Steps 6-10 either delete the vertex v from the graph (case 1) or move v from set

V1 to set V2 (case 2). Moving v from V1 to V2 does not change the degree of any

vertex remaining in the set V1. Therefore, if the branching action of steps 6-10 is to

move v from V1 to V2, then the resulting instance is also nearly V1-irreducible. Note

that by the second footnote in the algorithm, the action of steps 9-10 will not be taken

if two neighbors of v are in the same connected component in the induced subgraph
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G[V2]. This ensures that steps 9-10 produces a valid instance of the disjoint-FVS

problem.

Now consider the action of steps 7-8 in the algorithm that deletes the vertex v

from the graph. If dG(v) = 2 and the two neighbors of v are in the same connected

component of G[V2], or if v has degree 0 in G[V1] (i.e., dG[V1](v) = 0), then deleting

v does not affect the degree of any vertex remaining in the set V1. Therefore, in

these cases the action of steps 7-8 in the algorithm produces a nearly V1-irreducible

instance. Note that by the first footnote in the algorithm, if dG(v) = 2 and the two

neighbors of v are not in the same connected component of G[V2], then the action

of steps 7-8 of the algorithm will not be taken. Therefore, the only remaining case I

need to examine is that dG(v) > 3 and dG[V1](v) > 1. By step 5 of the algorithm, in

this case, I must have dG[V1] = 1. Let w be the unique neighbor of v in G[V1]. By

the way I picked the vertex v and the assumption dG(v) > 3, no vertex in V1 has

degree 2 in G. In particular, dG(w) > 3. Therefore, deleting the vertex v can result

in at most one degree-2 vertex in V1 (i.e., w) and will keep all other vertices in V1

with degree at least 3. Thus, in this case the action of steps 7-8 of the algorithm

again produces a nearly V1-irreducible instance.

Now I am ready for the main result in this section. A computational path of

the algorithm FindFVS is a sequence of in-order executions of the algorithm that

in steps 6-10 executes the action of either case 1 or case 2 (but not both).

Theorem 5.5. Let (G;V1,V2;k) be a nearly V1-irreducible instance of the disjoint-

FVS problem, and let τ1 and τ2 be the number of connected components in the induced

subgraphs G[V1] and G[V2], respectively. Let δ2 be the number of vertices in V1 that

have degree 2 in G. If |V1| > δ2 + 2k + τ2 − τ1 − 1, then there is no V1-FVS of size

bounded by k in the graph G.
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Table 5.1
Moving the vertex v from V1 to V2

degree of v neighbors of v δ ′2 k ′ τ ′1 τ ′2 V ′1
dG(v) = 2 w1,w2 ∈ V1 δ2 − 1 k τ1 + 1 τ2 + 1 V1 − {v}

with neighbors w1,w2 ∈ V2 δ2 − 1 k τ1 − 1 τ2 − 1 V1 − {v}

w1 and w2 w1 ∈ V1, w2 ∈ V2 δ2 − 1 k τ1 τ2 V1 − {v}

dG(v) > 3 |N(v) ∩ V1| = 0 δ2 k τ1 − 1 6 τ2 − 2 V1 − {v}

dG(v) > 3 |N(v) ∩ V1| = 1 δ2 k τ1 6 τ2 − 1 V1 − {v}

Table 5.2
Deleting the vertex v from G

degree of v neighbors of v δ ′2 k ′ τ ′1 τ ′2 V ′1
dG(v) = 2 w1,w2 ∈ V1

with neighbors w1,w2 ∈ V2 δ2 − 1 k− 1 τ1 − 1 τ2 V1 − {v}

w1 and w2 w1 ∈ V1, w2 ∈ V2

dG(v) > 3 |N(v) ∩ V1| = 0 δ2 k− 1 τ1 − 1 τ2 V1 − {v}

dG(v) > 3 |N(v) ∩ V1| = 1 6 δ2 + 1 k− 1 τ1 τ2 V1 − {v}

Proof. I prove the theorem by induction on the number |V1| of vertices in the set V1.

The initial case |V1| = 1 is easy to verify and thus omitted (in this case τ1 = 1 must

hold true, and then the condition |V1| > δ2+2k+τ2−τ1−1 implies δ2+2k+τ2 6 2).

For the general case of |V1| > 1, let (G;V1,V2;k) be a nearly V1-irreducible

instance of disjoint-FVS and suppose that the graph G has a V1-FVS of size bounded

by k. Since the algorithm FindFVS solves the disjoint-FVS problem correctly,

there is a computational path P of the algorithm that returns a V1-FVS F with

|F| 6 k. Consider how the path P changes the values of an instance when it executes

(correctly) the action of one of the cases in steps 6-10 in the algorithm. Let |V1|, δ2,

k, τ1, and τ2 be the values before the execution of steps 6-10, and let |V ′1|, δ
′
2, k

′, τ ′1,

and τ ′2 be the corresponding values after the execution of steps 6-10. The relations
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between these values are summarized in Tables 5.1 and 5.2, where many are obvious.

Given below are explanations for some less obvious ones in the figure.

First consider the case where the computational path P takes the action of case

2 in the algorithm, i.e., moving the vertex v from V1 to V2. See Table 5.1.

If dG(v) = 2 and both neighbors w1 and w2 of v are in V2, and if v is moved

from V1 to V2 (see the 3rd line in Table 5.1), then by the second footnote in the

algorithm, w1 and w2 must belong to two different connected components of the

induced subgraph G[V2]. Therefore, moving v from V1 to V2 must decrease τ1 by

1 (because v by itself makes a connected component in G[V1]) and merge the two

connected components of G[V2] into one (i.e., τ ′2 = τ2 − 1).

If dG(v) > 3 and v has no neighbor in V1, and if v is moved from V1 to V2 (see

the 5th line in Table 5.1), then all neighbors of v (there are at least 3) are in different

connected component of G[V2]. Therefore, moving v from V1 to V2 decreases the

value τ1 by 1 (i.e., τ ′1 = τ1 − 1) and merges at least three connected components of

G[V2] into one (i.e., τ ′2 6 τ2 − 2).

If dG(v) > 3 and |N(v)∩V1| = 1, and v is moved from V1 to V2 (see the 6th line

in Table 5.1), then the value τ1 is unchanged (i.e., τ ′1 = τ1), and again by the second

footnote in the algorithm, the value τ2 is decreased by at least 1 (i.e., τ ′2 6 τ2 − 1).

Now consider the case where the computational path P takes the action of case

1 in the algorithm, i.e., deleting the vertex v from the graph G. See Table 5.2. First

note that by the first footnote in the algorithm, if the vertex v has degree 2 and if

the two neighbors of v do not belong to the same connected component of G[V2],

then the action of case 1 in the algorithm is not taken. In particular, the action of

case 1 in the algorithm is not applicable under the conditions of the 2nd line and the

4th line in Table 5.2.
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If dG(v) > 3 and if v has no neighbors in V1 (see the 5th line in Table 5.2), then

deleting v only decreases the value τ1 by 1 (i.e., τ ′1 = τ1 − 1).

Finally, if dG(v) > 3 and |N(v) ∪ V1| = 1 (see the 6th line in Table 5.2). Let w

be the unique neighbor of v in V1. Then, deleting v may create at most one degree-2

vertex (i.e., w) in the set V1 (i.e., δ ′2 6 δ2 + 1), while unchanging the values of τ1

and τ2.

This verifies all relations in Tables 5.1 and 5.2.

Let (G ′;V ′1,V
′
2;k
′) be the instance produced by the computational path P on

the nearly V1-irreducible instance (G;V1,V2;k). By the assumption, the graph G

has a V1-FVS of size bounded by k. Since we also assume that the computational

path P is correct, the graph G ′ must have a V ′1-FVS of size bounded by k ′. Since

|V ′1| = |V1|−1 and by Lemma 5.4, the instance (G ′;V ′1,V
′
2;k
′) is nearly V ′1-irreducible,

we can apply the induction hypothesis on the instance (G ′;V ′1,V
′
2;k
′), which gives

|V ′1| 6 δ
′
2 + 2k ′ + τ ′2 − τ

′
1 − 1. This gives

|V1| = |V ′1|+ 1 6 δ ′2 + 2k ′ + τ ′2 − τ
′
1 − 1 + 1.

Using this inequality to examine each situation in Tables 5.1 and 5.2, we can easily

verify that the inequality

|V1| 6 δ2 + 2k+ τ2 − τ1 − 1

holds true. Therefore, if |V1| > δ2+2k+τ2−τ1−1, then the graph G has no V1-FVS

of size bounded by k.

Since a V1-irreducible instance is also nearly V1-irreducible in which δ2 = 0, we

get immediately
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Corollary 5.6. Let (G; ,V1,V2;k) be a V1-irreducible instance of the disjoint-FVS

problem. If |V1| > 2k+ τ2 − τ1 − 1, then there is no V1-FVS of size bounded by k in

the graph G.

Note that for disjoint-FVS instances that have been considered in the literature,

e.g., [51,64], it is always assumed that |V2| = k+1. By the simple fact that τ2 6 |V2|

and τ1 > 0, we have 2k+τ2−τ1−1 6 3k−1. Therefore, in this case, a V1-irreducible

instance (G;V1,V2;k) will have no desired V1-FVS unless the set V1 contains no

more than 3k − 1 vertices, and the vertices in the whole graph is upper bounded

by (3k − 1) + (k + 1) = 4k, which implies the Theorem 5.1. This improves the

previous best upper bound of 4k on the size of V1, as presented in [64]. In fact,

the bound given in Corollary 5.6 is tight, which can be seen as follows. Consider

the graph G in Figure 5.2, which consists of 2k + 1 vertices w1, w2, v1, v2, . . .,

v2k−1, where k > 2 is an arbitrary positive integer. The vertices of G are partitioned

into two sets V1 = {v1, v2, . . . , v2k−1} and V2 = {w1,w2}, and (G;V1,V2;k) is a V1-

irreducible instance of the disjoint-FVS problem. Note that τ1 = τ2 = 1. We have

|V1| = 2k − 1 = 2k + τ2 − τ1 − 1, while the graph G has a V1-FVS F of k vertices:

F = {v1, v3, v5, . . . , v2k−1}.
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Fig. 5.2. An example showing the tightness of Corollary 5.6

Finally, I remark that my kernelization result was obtained based on a branch-

and-bound algorithm, i.e., FindFVS, for the problem, instead of on the analysis of
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the resulting structures after applications of reduction rules. This technique, to my

best knowledge, had not been used in the literature of kernelization.

5.2 A Polynomial-Time Solvable Case for Disjoint-FVS

This section examines a special class of instances for the disjoint-FVS prob-

lem. This approach is closely related to the classical study on graph maximum genus

embeddings [47, 104]. However, the study on graph maximum genus embeddings

that is related to my approach is based on general spanning trees of a graph, while

my approach must be restricted to only spanning trees that are constrained by the

vertex partition (V1,V2) of an instance (G;V1,V2;k) of disjoint-FVS.

Since the induced subgraph G[V2] is a forest, there exists a spanning tree T of

the graph G that contains G[V2]
2. Such a spanning tree will be called a TG[V2]-tree.

By the construction, every edge in E(G)−E(T) has at least one end in V1. Two edges

in E(G) − E(T) are V1-adjacent if they have a common end in V1. A V1-adjacency

matching in E(G)−E(T) is a partition of the edges in E(G)−E(T) into groups of one

or two edges, called 1-groups and 2-groups, respectively, such that two edges in the

same 2-group are V1-adjacent. A maximum V1-adjacency matching in E(G) − E(T)

is a V1-adjacency matching in E(G) − E(T) that maximizes the number of 2-groups,

and equivalently minimize the total number of groups.

Definition Let (G;V1,V2;k) be an instance of the disjoint-FVS problem. The V1-

adjacency matching number µ(G, T) of a TG[V2]-tree T in G is the number of 2-groups

in a maximum V1-adjacency matching in E(G) − E(T). The V1-adjacency matching

2Actually, by slightly adapting Kruskal’s algorithm, this can be constructed in time O(mα(n)),
where α(n) is the inverse of Ackermann function [46,184].
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number µ(G) of the graph G is the largest µ(G, T) over all TG[V2]-trees T in it.

An instance (G;V1,V2;k) of disjoint-FVS is 3-regularV1
if every vertex in the

set V1 has degree exactly 3. Let fV1
(G) be the size of a minimum V1-FVS for G. Let

β(G) be the Betti number of G that is the total number of edges in E(G) − E(T) for

any spanning tree T in G. Note that the edge set E(G) − E(T) forms a basis of the

fundamental cycles for the graph G such that every cycle in G contains at least one

edge in E(G) −E(T). In this sense, β(G) is the number of fundamental cycles in the

graph G [104]. The following lemma is a nontrivial generalization of a result in [150]

(the result in [150] is a special case for Lemma 5.7 in which all vertices in the set V2

have degree 2).

Lemma 5.7. For any 3-regularV1
instance (G;V1,V2;k) of the disjoint-FVS problem,

we have fV1
(G) = β(G) − µ(G). Moreover, a minimum V1-FVS of the graph G can

be constructed in linear time from a TG[V2]-tree whose V1-adjacency matching number

is µ(G).

Proof. First note that a maximum V1-adjacency matching in E(G)−E(T) for a TG[V2]-

tree T can be constructed in linear time, as follows. Let GT be the graph induced by

the edge set E(G) − E(T) (i.e., the vertex set of GT consists of the ends of the edges

in E(G) − E(T), and the edge set of GT is E(G) − E(T)). Since each vertex in V1 has

degree 3 and T is a spanning tree in G, each vertex in GT has degree bounded by

2. Thus, each connected component of GT is either a simple path or a simple cycle.

Therefore, a maximum V1-adjacency matching in E(G) − E(T) can be constructed

trivially by maximally pairing the edges in each connected component of GT .

Let T be a TG[V2]-tree such that there is a V1-adjacency matching M in E(G) −

E(T) that contains µ(G) 2-groups. Let U be the set of edges that are in the 1-groups
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in M. We construct a V1-FVS F as follows: (1) for each edge e in U, arbitrarily

pick an end of e that is in V1 and include it in F; and (2) for each 2-group of two

V1-adjacent edges e1 and e1 in M, pick the vertex in V1 that is a common end of e1

and e2 and include it in F. Note that every cycle in the graph G contains at least one

edge in E(G) −E(T), while now every edge in E(G) −E(T) has at least one end in F.

Therefore, F is an FVS. By the above construction, F is a V1-FVS. The number of

vertices in F is equal to |U|+µ(G). Since |U| = |E(G)−E(T)|−2µ(G) = β(G)−2µ(G),

we have |F| = β(G) − µ(G). This concludes that

fV1
(G) 6 β(G) − µ(G). (5.1)

Now consider the other direction. Let F be a minimum V1-FVS for the graph

G = (V ,E), i.e., |F| = fV1
(G). Let F = V \ F, then the induced subgraph G[F] is a

forest, and thus, there is a spanning tree T in G that contains the entire subgraph

G[F]. We construct a V1-adjacency matching in E(G)−E(T) and show that it contains

at least β(G) − |F| 2-groups. Since T contains G[F], each edge in E(G) − E(T) has at

least one end in F. Let E2 be the set of edges in E(G) − E(T) that have their both

ends in F, and let E1 be the set of edges in E(G)−E(T) that have exactly one end in

F.

Claim. Each end of an edge in E2 is shared by exactly one edge in E1.

In particular, no two edges in E2 share a common end.

To prove the above claim, first note that since T is a spanning tree in G, each

vertex in F ⊆ V1, which has degree 3 in G, can be incident to at most two edges in

E(G) − E(T) = E1 ∪ E2. In particular, if u is an end of an edge [u, v] in E2 (i.e.,

u, v ∈ F), then there is at most one other edge in E1 ∪ E2 that is incident to u. Now

assume to the contrary of the claim that the vertex u is not shared by an edge in
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E1. Then for the other two edges e1 and e2 in G that are incident to u, either both

e1 and e2 are in T or exactly one of e1 and e2 is in E2. If both e1 and e2 are in

T , then every edge in E(G) − E(T) (including [u, v]) has at least one end in F \ {u}.

Similarly, if exactly one [u,w] of the edges e1 and e2 is in E2, where w is also in F,

then again every edge in E(G)−E(T) (including [u, v] and [u,w]) has at least one end

in F \ {u}. Thus, in either case, F \ {u} would make a smaller V1-FVS, contradicting

the assumption that F is a minimum V1-FVS. This proves the claim.

Suppose that there are m2 vertices in F that are incident to two edges in E(G)−

E(T). Thus, each of the rest |F|−m2 vertices in F is incident to at most one edge in

E(G) − E(T). By counting the total number of incidencies between the vertices in F

and the edges in E(G) − E(T), we get

2|E2|+ |E1| = 2|E2|+ (β(G) − |E2|) 6 2m2 + (|F|−m2),

or equivalently,

m2 − |E2| > β(G) − |F|. (5.2)

Now we construct a V1-adjacency matching in E(G)−E(T), as follows. For each

edge e in E2, by the above claim, we can make a 2-group that consists of e and an

edge in E1 that shares an end in V1 with e (note that this grouping will not put an

edge in E1 in two different 2-groups because if the edge e in E2 shares an end with

an edge e ′ in E1, then e ′ cannot share an end with any other edges in E2). Besides

the ends of the edges in E2, there are m2 − 2|E2| vertices in F that are incident to

two edges in E1. For each v of these vertices, we make a 2-group that consists of the

two edges in E1 that are incident to v. Note that this construction of 2-groups never

re-uses any edges in E(G) − E(T) more than once. Therefore, the construction gives
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|E2|+(m2−2|E2|) = m2− |E2| disjoint 2-groups. We then make each of the rest edges

in E(G) − E(T) a 1-group. This gives a V1-adjacency matching in E(G) − E(T) that

has m2 − |E2| 2-groups. By Inequality (5.2) and by definition, we have

µ(G) > µ(G, T) > m2 − |E2| > β(G) − |F| = β(G) − fV1
(G). (5.3)

Combining (5.1) and (5.3), we conclude with fV1(G) = β(G) − µ(G).

By Lemma 5.7, in order to construct a minimum V1-FVS for a 3-regularV1
in-

stance (G;V1,V2,k) of disjoint-FVS, we only need to construct a TG[V2]-tree in the

graph G whose V1-adjacency matching number is µ(G). The construction of an un-

constrained maximum adjacency matching in terms of general spanning trees has

been considered by Furst, Gross and McGeoch in their study of graph maximum

genus embeddings [104]. I follow a similar approach, based on cographic matroid

parity, to construct a TG[V2]-tree in G whose V1-adjacency matching number is µ(G).

I start with a quick review on the related concepts in matroid theory. More detailed

discussion on matroid theory can be found in [155].

A matroid is a pair (E, =), where E is a finite set and = is a collection of subsets

of E that satisfies the following properties (note that the collection = may not be

explicitly given but is defined in terms of certain subset properties):

(1) If A ∈ = and B ⊆ A, then B ∈ =;

(2) If A,B ∈ = and |A| > |B|, then there is an element a ∈ A \ B such

that B ∪ {a} ∈ =.

The matroid parity problem is stated as follows: given a matroid (E, =) and a perfect

pairing {[a1,a1], [a2,a2], . . . , [an,an]} of the elements in the set E, find a largest
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subset M in = such that for all i, 1 6 i 6 n, either both ai and ai are in M, or

neither of ai and ai is in M.

Each connected graph G is associated with a cographic matroid (EG, =G), where

EG is the edge set of G, and an edge set S is in =G if and only if G− S is connected.

It is well-known that matroid parity problem for cographic matroids can be solved

in polynomial time [155]. The fastest known algorithm for cographic matroid parity

problem is by Gabow and Stallmann [105], which runs in time O(mn log6 n).

The following explains how to reduce the problem to the cographic matroid par-

ity problem. Let (G;V1,V2;k) be a 3-regularV1
instance of the disjoint-FVS problem.

Without loss of generality, we make the following assumptions: (1) the graph G is

connected (otherwise, we simply work on each connected component of G); and (2)

for each vertex v in V1, there is at most one edge from v to a connected component

in G[V2] (otherwise, we can directly include v in the objective V1-FVS).

Recall that two edges are V1-adjacent if they share a common end in V1. For

an edge e in G, denote by dV1
(e) the number of edges in G that are V1-adjacent to

e (note that an edge can be V1-adjacent to the edge e from either end of e).

The labeled subdivision G2 of the graph G is constructed as follows:

1. shrink each connected component of G[V2] into a single vertex; let the resulting

graph be G1;

2. assign each edge in G1 a distinguished label;

3. for each edge labeled e0 in G1, suppose the edges V1-adjacent to e0 are labeled

by e1, e2, . . ., ed (in arbitrary order), where d = dV1
(e0); subdivide e0 into d

segment edges by inserting d− 1 degree-2 vertices in e0, and label the segment

edges by (e0e1), (e0e2), . . ., (e0ed). Let the resulting graph be G2. The segment

edges (e0e1), (e0e2), . . ., (e0ed) in G2 are said to be from the edge e0 in G1.
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There are a number of interesting properties for the graphs constructed above.

First, each of the edges in the graph G1 corresponds uniquely to an edge in G that has

at least one end in V1. Thus, without creating any confusion, we will simply say that

the edge is in the graph G or in the graph G1. Second, because of the assumptions we

made on the graph G, the graph G1 is a simple and connected graph. In consequence,

the graph G2 is also a simple and connected graph. Finally, because each edge in

G1 corresponds to an edge in G that has at least one end in V1, and because each

vertex in V1 has degree 3, every edge in G1 is subdivided into at least two segment

edges in G2.

Now in the labeled subdivision graph G2, pair the segment edge labeled (e0ei)

with the segment edge labeled (eie0) for all segment edges (note that (e0ei) is a

segment edge from the edge e0 in G1 and that (eie0) is a segment edge from the edge

ei in G1). By the above remarks, this is a perfect pairing P of the edges in G2. Now

with this edge pairing P in G2, and with the cographic matroid (EG2
, =G2

) for the

graph G2, we call Gabow and Stallmann’s algorithm [105] for the cographic matroid

parity problem. The algorithm produces a maximum edge subset M in =G2
that, for

each segment edge (e0ei) in G2, either contains both (e0ei) and (eie0), or contains

neither of (e0ei) and (eie0).

Lemma 5.8. From the edge subset M in =G2
constructed above, a TG[V2]-tree for

the graph G with a V1-adjacency matching number µ(G) can be constructed in time

O(mα(n)), where n and m are the number of vertices and the number of edges,

respectively, of the original graph G.

Proof. Suppose that the edge subset M consists of the edge pairs {[(e1e
′
1), (e

′
1e1)],

. . . , [(ehe
′
h), (e

′
heh)]} in G2. Since M ∈ =G2

, G2 −M is connected. Thus, for each

edge ei in G1, there is at most one segment edge in M that is from ei. Therefore,
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the edge subset M corresponds to an edge subset M ′ of exactly 2h edges in G1 (thus

exactly 2h edges in G): M ′ = {e1, e
′
1; . . . , eh, e ′h}, where for 1 6 i 6 h, the edges

ei and e ′i are V1-adjacent. Since G2 −M is connected, it is easy to verify that the

graph G1−M
′ (thus the graph G−M ′) is also connected. Also note that the graph

G −M ′ contains the induced subgraph G[V2] because no edge in G1 has its both

ends in V2. Therefore, by we can construct, in time O(mα(n)), a TG[V2]-tree T1 for

the graph G−M ′, which is also a TG[V2]-tree for the graph G. Now if we make each

pair [ei, e
′
i] a 2-group for 1 6 i 6 h, and make each of the rest edges in E(G)−E(T1)

a 1-group, we get a V1-adjacency matching with h 2-groups in E(G) − E(T1).

To complete the proof of the lemma, we only need to show that h = µ(G). For

this, it suffices to show that no TG[V2]-tree can have a V1-adjacency matching with

more than h 2-groups. Let T2 be a TG[V2]-tree with q 2-groups [e1, e
′
1], . . ., [eq, e ′q]

in E(G) − E(T2). Since T2 is entirely contained in G − ∪qi=1{ei, e
′
i}, G − ∪qi=1{ei, e

′
i}

is connected. In consequence, the graph G1 − ∪qi=1{ei, e
′
i} is also connected. From

this, it is easy to verify that the graph G2 − ∪qi=1{(eie
′
i), (e

′
iei)} is also connected.

Therefore, the edge subset {(e1e
′
1), (e

′
1e1); . . . , (eqe

′
q), (e

′
qeq)} is in =G2

. Now sinceM

is the the solution of the matroid parity problem for the cographic matroid (EG2
, =G2

)

and since M consists of h edge pairs, we must have h > q. This completes the proof

of the lemma.

Now it is ready to present the main result in this section.

Theorem 5.9. There is an O(n2 log6 n)-time algorithm that on a 3-regularV1
in-

stance (G;V1,V2;k) of the disjoint-FVS problem, either constructs a V1-FVS of

size bounded by k, if such a V1-FVS exists, or reports correctly that no such a V1-FVS

exists.
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Proof. For the 3-regularV1 instance (G;V1,V2;k) of disjoint-FVS, we first con-

struct the graph G1 in linear time by shrinking each connected component of G[V2]

into a single vertex. Note that since each vertex in V1 has degree 3, the total

number of edges in G1 is bounded by 3|V1|. From the graph G1, we construct

the labeled subdivision graph G2. Again since each vertex in V1 has degree 3,

each edge in G1 is subdivided into at most 4 segment edges in G2. Therefore,

the number n2 of vertices and the number m2 of edges in G2 are both bounded

by O(|V1|) = O(n). From the graph G2, we apply Gabow and Stallmann’s algo-

rithm [105] on the cographic matroid (EG2
, =G2

) that produces the edge subset M

in =G2
in time O(m2n2 log6 n2) = O(n2 log6 n). By Lemma 5.8, from the edge sub-

set M, we can construct in time O(mα(n)) a TG[V2]-tree T for the graph G whose

V1-adjacency matching number is µ(G). Finally, by Lemma 5.7, from the TG[V2]-tree

T , we can construct a minimum V1-FVS F in linear time. Now the solution to the

3-regularV1
instance (G;V1,V2;k) of disjoint-FVS can be trivially derived by com-

paring the size of F and the parameter k. Summarizing all these steps gives the proof

of the theorem.

Theorem 5.9 and Lemma 5.3 together immediately imply

Corollary 5.10. There is a polynomial time algorithm that on an instance (G;V1,V2;

k) of disjoint-FVS where all vertices in V1 have degree bounded by 3, either constructs

a V1-FVS of size bounded by k, if such an FVS exists, or reports correctly that no

such a V1-FVS exists.

I remark that Corollary 5.10 is the best possible in terms of the maximum vertex

degree in the set V1. This can be reasoned as follows. Rizzi [171] proved that the

FVS problem on graphs of maximum vertex degree 4 is NP-hard (in fact, he proved

that the problem is APX-hard, but it is easy to verify that his reductions are also
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valid for the proof of NP-hardness of the problem). Given an instance G of the FVS

problem on graphs of maximum vertex degree 4, we add a degree-2 vertex to the

middle of each edge in G. Let the new graph be G ′. Let V1 be the set of vertices in

G ′ that correspond to the original vertices in G, and let V2 be the set of new degree-2

vertices in G ′. Now it is rather straightforward to see that a minimum V1-FVS in G ′

corresponds to a minimum FVS in the original graph G. Moreover, the maximum

vertex degree in the set V1 in G ′ is bounded by 4. This proves that the disjoint-FVS

problem is NP-hard even when restricted to graphs in which the maximum vertex

degree in the set V1 is 4.

5.3 An Improved Algorithm for Disjoint-FVS

Now come back to the general disjoint-FVS problem without degree restriction.

Before presenting the algorithm in Figure 5.3, I need to explain the terminologies

used in it. A vertex v in the set V1 is a nice V1-vertex if v is of degree 3 and all its

three neighbors belong to the set V2. I denote by p the number of nice V1-vertices in

V1, and, as before, by τ2 the number of connected components in G[V2]. As a slight

abuse of the set union operation in step 4, the union {w} ∪ Feedback(G − w,V1 \

{w},V2,k− 1) is interpreted as a ‘No’ when Feedback(G−w,V1 \ {w},V2,k− 1) is

‘No’. Step 5 simply applies the second case of the Rule 5.2 (note the first case does

not apply after step 4). Finally, in step 7, I assume that I have picked an (arbitrary)

vertex in each tree of G[V1] and designated it as the root of this tree so that each

tree is rooted, in which a lowest parent w is a vertex that has children and all its

children are leaves.

This section will be devoted to establish the correctness of this algorithm and

bound its running time. I start with the following lemma that, not only justifies
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Algorithm Feedback(G,V1,V2,k)
input: an instance (G;V1,V2;k) of disjoint-FVS.
output: a V1-FVS F of size 6 k in G if such a V1-FVS exists, or ‘No’ otherwise.

0. p = number of nice V1-vertices; τ2 = number of connected components in G[V2].
1. if (k < 0) or (k = 0 and G is not a forest) or (2p > 2k+ τ2) then return ‘No’;
2. if (k > 0 and G is a forest) or (p = |V1|) then solve it in polynomial time;
3. if a vertex w ∈ V1 has degree 6 1 then return Feedback(G−w,V1 \{w},V2,k);
4. if a vertex w ∈ V1 has two neighbors in the same connected component in G[V2]

then return {w} ∪ Feedback(G−w,V1 \ {w},V2,k− 1);
5. if a vertex w ∈ V1 has degree 2 then

return Feedback(G ′,V1 \ {w},V2,k); \\ add an edge between neighbors of w
6. if a non-nice V1-vertex w satisfies |N(w) ∩ V1| 6 1, and |N(w) ∩ V2| > 3 then
6.1 F1 = Feedback(G−w,V1 \ {w},V2,k− 1);
6.2 if F1 6= ‘No’ then return F1 ∪ {w}
6.3 else return Feedback(G,V1 \ {w},V2 ∪ {w},k);
7. pick a lowest parent w in any tree in G[V1] and let v be a child of w;
7.1 F1 = Feedback(G−w,V1 \ {w, v},V2 ∪ {v},k− 1);
7.2 if F1 6= ‘No’ then return F1 ∪ {w}
7.3 else return Feedback(G,V1 \ {w},V2 ∪ {w},k).

Fig. 5.3. An algorithm for disjoint-FVS

step 1, but also reveals the composite measure (solution size coupled with number

of connected components in G[V2],) I will be using to analyze the time complexity.

Lemma 5.11. If 2p > 2k+ τ2, then there is no V1-FVS of size bounded by k in G.

Proof. Suppose that F is a V1-FVS such that |F| = k ′ 6 k 6 p (k 6 p follows from

the condition). Let V ′1 ⊆ V1 \ F be the set of nice V1-vertices that are not in F, and

p ′ = |V ′1|, then p ′ > p−k ′. By definition of F, the subgraph G ′ = G[V2∪V ′1] induced

by the vertex set V2 ∪ V ′1 is a forest, which means

|V2|+ p
′ = |V(G ′)| > |E(G ′)| = |V2|− τ2 + 3p ′,

and 2k+ τ2 > 2k+ 2p ′ > 2k+ 2(p− k ′) > 2p, which contradicts the condition.
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Lemma 5.12. The algorithm Feedback solves the disjoint-FVS problem correctly.

Proof. Steps 1-2 serve as the exit conditions, whose correctness follows from Lemma

5.11, Corollary 5.10, and other trivial facts. Step 3-5 are simply paraphrase of the

reduction rules (Rules 5.1-5.2), and thus justified by Lemma 5.3.

Step 6 of the algorithm is correct because it simply branches on either including

or excluding the vertex w in the objective V1-FVS. Note that after passing steps

3-5, all vertices in the set V1 have degree at least 3, and after passing steps 3-6, each

vertex in the set V1 either is a nice V1-vertex or has at least one neighbor in V1. In

particular, after steps 3-6, if a leaf v in G[V1] is not a nice V1-vertex, then v has

exactly two neighbors in V2 that belong to two different connected components of

G[V2]. Now consider step 7. As remarked above (also noting step 2), at this point

there must be a tree with more than one vertex in the induced subgraph G[V1].

Therefore, we can always find a lowest parent w in a tree in G[V1]. Step 7 branches

on this lowest parent w. In case w is included in the objective V1-FVS, w is deleted

from the graph, and the parameter k is decreased by 1. Note that after the vertex w

is deleted, the child v of w becomes of degree 2 with its two neighbors in two different

connected components of G[V2]. By Lemma 5.3, the vertex v can be excluded from

the objective V1-FVS. Thus, it is safe to move the vertex v from V1 to V2. This

verifies the correctness of steps 7.1-7.2. Step 7.3 is simply to exclude the vertex w

from the objective V1-FVS.

Observe that before making recursive calls, each of the steps 3-7 decreases the

number of vertices in the set V1 by at least 1. Therefore, the algorithm must termi-

nate in a finite number of steps. Summarizing all the above discussion, we conclude

with the correctness of the algorithm Feedback(G,V1,V2,k).
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On the running time of the algorithm Feedback, I interpret the recursive exe-

cution of the algorithm as a search tree T, and analyze its complexity by counting the

number of leaves in it. The measure used in the analysis is defined as µ = 2(k−p)+τ2,

and let T(µ) be the number of leaves in the search tree T for the algorithm on the

input (G,V1,V2,k).

Theorem 5.13. The algorithm Feedback(G,V1,V2,k) correctly solves the disjoint-

FVS problem in time O∗(2k+τ2/2), where τ2 is the number of connected components

in the induced subgraph G[V2].

Proof. The correctness of the algorithm is given by Lemma 5.12. Therefore, it suffices

to analyze the complexity of the algorithm. In particular, we consider the value T(µ).

Each of the steps 1-5 of the algorithm proceeds without branching. However, we

must be careful to verify that these steps do not increase the value of the measure

µ. Step 3 does not change the values of k, p, and τ2, thus neither that of µ. Step 4

does not changes the value τ2, but decreases the value k by 1. Moreover, step 4 may

also decrease the value p by at most 1 (in case the vertex w is a nice V1-vertex).

Overall, step 4 does not increase the value µ = 2(k−p)+τ2. Step 5 does not change

the value of k. Moreover, it will never decrease the value of p or increase the value

of τ2. Note that step 5 may increase the value of p (e.g., a neighbor of w in V1 may

become a nice V1-vertex after smoothening w) or decrease the value of τ2 (e.g., when

the two neighbors of w are in two different connected components in G[V2]). In any

case, step 5 does not increase the value µ = 2(k− p) + τ2.

Now we study the branching steps. First consider step 6. The branch of steps

6.1-6.2 decreases the value k by 1 and does not change the value of τ2. Moreover,

the steps may increase the value of p (e.g., a neighbor of w in V1 may become a nice

V1-vertex after deleting w from the graph) but will never decrease the value of p.



109

Therefore, the branch of steps 6.1-6.2 will decrease the value µ = 2(k − p) + τ2 by

at least 2. On the other hand, because w has at least three neighbors in V2, step 6.3

will decrease the value of τ2 by at least 2, while neither changing the value of k nor

decreasing the value of p. Thus, step 6.3 also decreases the value µ = 2(k− p) + τ2

by at least 2. In summary, if step 6 is executed in the algorithm, then the function

T(µ) satisfies the recurrence relation T(µ) 6 2T(µ− 2).

Similarly, the branch of steps 7.1-7.2 deletes the vertex w from the graph and

decreases the value of k by 1. As aforementioned, since the algorithm has passes

steps 3-6, the leaf v has exactly three neighbors: one is w and the other two are in

two different connected components in G[V2]. Therefore, after deleting w from the

graph, moving the degree-2 vertex v from set V1 to set V2 decreases the value of τ2

by 1. Also note that in this branch, the value of p is not changed (because of step 6,

the vertex w cannot have a neighbor that is a leaf in G[V1] but has three neighbors

in V2). In summary, the branch of steps 7.1-7.2 decreases the value µ = 2(k−p)+τ2

by at least 3. Now consider step 7.3 that moves the vertex w from set V1 to set V2.

I break this case into two subcases:

Subcase 7.3.1. The vertex w has at least one neighbor in V2. Then moving

w from V1 to V2 neither changes the value of k nor increases the value of τ2. On

the other hand, it creates at least one new nice V1-vertex (i.e., the vertex v) thus

increases the value of p by at least 1. Therefore, in this subcase, step 7.3 increases

the value of µ = 2(k− p) + τ2 by at least 2.

Subcase 7.3.2. The vertex w has no neighbor in V2. Because the degree of w is

larger than 2 and w is a lowest parent in G[V1], w has at least two children in V1,

each is a leaf in G[V1] with exactly two neighbors that are in two different connected

components of G[V2]. Note that after moving w from V1 to V2, all children of w

in G[V1] will become nice V1-vertices. Therefore, moving w from V1 to V2 increases
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the value of τ2 by 1, and increases the value of p by at least 2, with the value of k

unchanged. Therefore, in this subcase, step 7.3 increases the value of µ = 2(k−p)+τ2

by at least 3.

The conclusion from the above discussion is: If step 7 is executed in the algo-

rithm, then the function T(µ) satisfies the recurrence relation T(µ) 6 T(µ − 2) +

T(µ− 3).

Therefore, the function T(µ), which is the number of leaves in the search tree T,

in the worst case satisfies the recurrence relation T(µ) 6 2T(µ − 2). Also note that

Lemma 5.11, if µ = 2(k−p)+τ2 6 0, then it can be concluded immediately without

branching that the input instance is a ‘No’. Therefore, T(µ) = 1 for µ 6 0. Now the

recurrence relation T(µ) 6 2T(µ − 2) with T(µ) = 1 for µ 6 0 can be solved using

the well-known techniques in parameterized computation (see, for example, [85]), as

follows. The characteristic polynomial for the recurrence relation T(µ) = 2T(µ − 2)

is x2−2, which has a unique positive root
√

2. From this, we derive T(µ) = (
√

2)µ =

2µ/2. Moreover, it is fairly easy to see that each computational path in the search tree

T has its time bounded by O(n2 log6 n), and µ/2 = k−p+τ2/2 6 k+τ2/2. Therefore,

the running time of the algorithm Feedback(G,V1,V2,k) is O(2k+τ2/2n2 log6 n)

5.4 Concluding Result: An Improved Algorithm for FVS

The results in previous sections lead to an improved algorithm for the general

FVS problem. Following the idea of iterative compression proposed by Reed et

al. [170], the following problem is formulated:

FVS reduction: given a graph G and an FVS F of size k+ 1 for G, either

construct an FVS of size bounded by k for G, or report that no such an

FVS exists.
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Lemma 5.14. The FVS reduction problem can be solved in time O∗(3.83k).

Proof. The proof goes similar to that for Lemma 2 in [3]. Let G = (V ,E) be a graph

and let Fk+1 be an FVS of size k + 1 in G. Suppose that the graph G has an FVS

F ′k of size k, and let the intersection Fk+1 ∩ F ′k be a set Fk−j of k − j vertices, for

some j, 0 6 j 6 k. Let Fj+1 = Fk+1 \ Fk−j and F ′j = F
′
k \ Fk−j. Construct the graph

G ′ = G − Fk−j. Note that both Fj+1 and F ′j are FVS for G ′, and that Fj+1 and F ′j

are disjoint. Thus, if we let V ′1 = V \ Fk+1 and V ′2 = Fj+1, then F ′j is a solution to

the instance (G ′,V ′1,V
′
2, j) of the disjoint-fvs problem. On the other hand, it is also

easy to see that any solution to the instance (G ′,V ′1,V
′
2, j) of disjoint-FVS plus the

subset Fk−j makes an FVS of no more than k vertices for the original graph G.

Therefore, to solve the instance (G, Fk+1) for the FVS reduction problem, it

suffices to find the subset Fk−j = Fk+1 ∩ F ′k of k− j vertices in Fk+1 for some integer

j, 0 6 j 6 k, then to solve the instance (G ′,V ′1,V
′
2, j) for the disjoint-FVS problem.

To find the subset Fk−j of Fk+1, we enumerate all subsets of k − j vertices in Fk+1

for all 0 6 j 6 k. To solve the corresponding instance (G ′,V ′1,V
′
2, j) for disjoint-FVS

derived from the subset Fk−j of Fk+1, we call the algorithm Feedback(G ′,V ′1,V
′
2, j).

By Theorem 5.13 (note that τ2 6 |V ′2| = j+1), the instance (G ′,V ′1,V
′
2, j) for disjoint-

FVS can be solved in time O∗(2j+(j+1)/2) = O∗(2.83j). Applying this procedure for

every integer j (0 6 j 6 k) and all subsets of size k− j in Fk+1 will successfully find

an FVS of size k in the graph G, if such an FVS exists. This algorithm solves the

FVS reduction problem in time
∑k
j=0

(
k+1
k−j

)
·O∗(2.83j) = O∗(3.83k).

Finally, by combining Lemma 5.14 with the iterative compression techniques

[51], I obtain the main result of this chapter.

Proof of Theorem 5.2. To determine if a given graph G = (V ,E) has an FVS of size

bounded by k, we start by applying the polynomial-time approximation algorithm
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of approximation ratio 2 for the minimum feedback vertex set problem [15].

This algorithm runs in O(n2) time, and either returns an FVS F ′ of size at most 2k,

or verifies that no FVS of size bounded by k exists. Thus, if no FVS is returned by

the algorithm, then no FVS of size bounded by k exists. In the case of the opposite

result, we use any subset V ′ of k vertices in F ′, and put V0 = V
′∪(V \F ′). Obviously,

the induced subgraph G[V0] has an FVS V ′ of size k. Let F ′\V ′ = {v1, v2, . . . , v|F ′|−k},

and let Vi = V0 ∪ {v1, . . . , vi} for i ∈ {0, 1, . . . , |F ′| − k}. Inductively, suppose that

we have constructed an FVS Fi for the graph G[Vi], where |Fi| = k. Then the set

F ′i+1 = Fi ∪ {vi+1} is an FVS for the graph G[Vi+1], and |F ′i+1| = k+ 1.

Now the pair (G[Vi+1], F
′
i+1) is an instance for the FVS reduction problem.

Therefore, in time O∗(3.83k), we can either construct an FVS Fi+1 of size k for the

graph G[Vi+1], or report that no such an FVS exists. Note that if the graph G[Vi+1]

does not have an FVS of size k, then the original graph G cannot have an FVS of

size k. In this case, we simply stop and claim the non-existence of an FVS of size

k for the original graph G. On the other hand, with an FVS Fi+1 of size k for the

graph G[Vi+1], my induction proceeds to the next graph G[Vi+1], until we reach the

graph G = G[V|F ′|−k]. This process runs in time k ·O∗(3.83k) = O∗(3.83k) since

|F ′|− k 6 k, and solves the FVS problem.

Theorem 5.2 significantly improves the previous best parameterized algorithm

whose running time is bounded by O∗(5k) for the FVS problem [51].
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6. SUMMARY AND FUTURE RESEARCH

This chapter concludes this dissertation and provide some hints on the future

work. My research will continue to be focused on the problems enlisted in Figure

1.2 on Page 12. There are two projects, among others, intriguing me the most.

The first one studies the parameterized complexity of the multiway cut problem,

emphasizing whether it admits a polynomial kernel or not, which is still open. The

second one is not about the kernelization, but the approximation algorithm, and aims

for an approximation algorithm for the correlation clustering problem with ratio 2.

Moreover, possible applications of new techniques reported in this dissertation, as

well as other related problems are also briefly discussed.

6.1 Dissertation Summary

This dissertation studies three problems from the families of clustering and

feedback set problems, and develops a very small kernel for each of the problems.

Deviating from previous work based on crown reduction and modular decompo-

sition, this dissertation starts from the relationship between my kernelization algo-

rithm for the correlation clustering problem and graph edge-cuts, which are natural

upper bounds for the editing costs on the borders. The only reduction rule is a for-

malization of an extremely simple observation: a densely connected subgraph with

loose connection to others should be a cluster. An easily verified condition, based on

edge-cuts, is given to identify such subgraphs. The conceptual simplicity not only

enables my algorithm to surpass all previous work theoretically, it also makes the

implementation extraordinarily easy.
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To reveal the power of the edge-cuts based approach, I further try it on the

hierarchical clustering problem, which generalizes the correlation clustering problem.

It immediately yields a 4k-element kernel, significantly improves previous work by

doing away with the multiplicative factor from the kernel size. Inspired by this result,

I also study the parameterized complexity of the hierarchical clustering problem, and

manage to show its equivalency with the correlation clustering problem.

Without new idea on reduction rules involved, though new insights are required

to show the applicability of previous rules designed for FVS problem, my 3k kernel

for disjoint-FVS problem is a result of a brand-new way to do kernel size analysis.

This approaches starts from an adapted branch-and-conquer algorithm, which is

followed by a extremely straightforward way to count the kernel size. When we

are designing a branch-and-conquer algorithm, it is always preferred to dispose of

as many elements (vertices and/or edges) as possible in each branching step. Here

in my adapted version, I manage to keep the influenced elements minimized, while

keeping some properties invariant during the branching steps. Now suppose that the

adapted algorithm can find all solution of size at most k in at most p(k) steps, while

at each step at most q(k) elements are manipulated, then I can easily say that to be

a “yes” instance, the instance cannot be larger than p(k)q(k). The algorithm implies

a polynomial kernel! For the disjoint-FVS problem, p(k) = 2k and p(k) = 1.5, which

gives the claimed bound. The another benefit of this approach to bound kernel sizes

is the kernel size should be tight, and actually, it is easily to derive a instance from

this algorithm such that it has exactly the size of the bound On the algorithm part,

other than presenting a polynomial time algorithm for the 3-regular special case, I

also give a proof on the NP-hardness of the cases whose maximum degree is 4. This

complexity dichotomy shows a clear picture and provides a base for further study.
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6.2 Parameterized Complexity of Multiway Cut

The edge version of the multiway cut problem, also called multiterminal cut, is

formally defined as:

given an undirected graph G = (V ,E), a weight function wt : E → N, a

set T ⊆ V of terminals and an nonnegative integer k, find a subset S of

edges with total weight at most k, such that after the removal of S, no

two terminals are in the same connected component.

The following fact was first observed by Ford and Fulkerson [133], as a corollary

of the classic max-flow-min-cut theorem, and later rediscovered several times by

different authors.

Lemma 6.1. Let G = (V ,E) be an edge-weighted graph, and s, t ∈ V be two distinct

vertices, there is a minimum s-t cut X such that all other minimum s-t cuts are

subsets of X.

Indeed, any algorithm for max-flow can locate such a cut as byproduct, and

therefore it is polynomially foundable (though the original algorithm given in [133] is

not polynomially bounded). In the following I will denote such a cut by max-volume

min-cut, where the volume means the number of vertices in X.

One main concept behind most previous work on this problem is the isolating

cut defined by Dahlhaus et al. [61], which is a cut separating a terminal from the

rest. To simplify the presentation, we will abbreviate an isolating cut for terminal

ti (the i-th terminal in T) as a ti cut, and similarly, a minimum weight isolating

cut for a terminal ti as a min ti cut. Note that, for a min ti cut, the vertex set

containing ti induces one single component, which will be used to represent this cut.

In general a ti cut is not required to separate any other pair of terminals, however,
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it is possible. For example, in the graph consisting of three vertices and two edges, if

all three vertices are terminals, the only isolating cut for the degree-2 vertex happens

to also separate the other two terminals.

The most important new concept here is the distance1 defined as follows:

Definition [Distance] The distance from a non-terminal vertex v to the terminal ti,

denote by di(v), is the increment of min t cut size after merging v into ti. That is

di(v) = γ(Xti⊕v) − γ(ti),

where Xti⊕v is the max-volume min ti cut after merging v into ti, which could be

equivalently seen as the max-volume min {ti, v}-T\ti cut.

Note that for any terminal ti, the distance function di( · ) is defined on all

non-terminal vertices, not limited to neighbors of ti, and di( · ) is always positive.

Obviously, the subgraph induced by Xti⊕v has to be connected when v is a neighbor of

ti. This is not true in general when v is adjacent to ti. The following lemma implies

that ti cannot be a cut point of subgraph induced by Xti⊕v, and more strongly, if it

is connected, it contains exactly two components, one being ti.

Lemma 6.2. the subgraph induced by Xti⊕v − ti is connected.

Proof. I prove by contradiction. Assume G[Xti⊕v−ti] is not connected, I can parition

X = Xti⊕v− ti into X1 and X2 such that 〈X1,X2〉 = ∅. Without loss of generality, let

v ∈ X1. Then X2 has to be connected to ti, otherwise (X1 + ti) is a {ti, v}-T \ ti cut,

whose edges is a proper subset of Xti⊕v, which contradicts the minimality of Xti⊕v.

1In spite the risk of confusion, I decide to use (redefine) the concept “distance”, and I believe this
will become clearer with the progress with our explanation. Moreover, please be noted that the
other (traditional graph-theoretic) meaning of “distance”, the length of the shortest path, is never
used in this section.
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Noting that ti is the only min ti cut, this facts implies γ(X2 + ti) > γ(ti). Since X1

and X2 are disconnected, I have

γ(Xti⊕v) − γ(ti) = γ(X1 + ti) − γ(ti) + γ(X2 + ti) − γ(ti) > γ(X1 + ti) − γ(ti),

which means (X1+ ti) is a smaller {ti, v}-T\ti cut than Xti⊕v, and is a contradiction.

Some other self-explanatory facts on the distances include:

Lemma 6.3. Let ti ∈ T be a terminal, and u, v ∈ V \T be two distinct vertices, then

I di(v) 6 di(u) for any v ∈ Xti⊕u − ti;

II if di(u) = minx∈V\T di(x), then di(u) = di(v) for any vertex v ∈ Xti⊕u − ti;

III Xti⊕u and Xti⊕v coincide only if di(u) = di(v).

IV Xti⊕u properly contatins Xti⊕v only if di(u) > di(v).

In particular, I show that those vertices with distance 1 to a terminal can be

grouped.

Lemma 6.4. Let (G,w, T ,k) be an instance of multiterminal cut problem where all

max-volume minimum weight isolating cuts have been shrinked. If the distance from

a vertex u to terminal ti is 1, then there exists an optimal solution which keeps

(Xti⊕u − ti) together.

With the lemma, the branching process can be redesigned to dispose of the ver-

tices of distance 1 in a different way, such that a better branching vector is obtained,

which immediately implies a improved algorithm:

Theorem 6.5. The multiterminal cut problem can be solved in time O(1.84k).
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which can be even better for small number of terminals, and in particular, for

the 3-terminal case:

Corollary 6.6. The 3-terminal cut problem can be solved in time O(1.3563k).

The observation sheds light on the kernelization is: similar to terminals, isolating

cuts can also be defined on non-terminal vertices, which separate a non-terminal

vertex to all terminals. Most properties of minimum isolating cuts also apply here,

and in particular:

Lemma 6.7. Let (G,w, T ,k) be an instance of multiterminal cut problem, and v ∈

V\T be a non-terminal vertex. Then there is an optimal solution S which keeps

max-volume min v-T cut X together.

6.3 Approximation of Correlation Clustering

I starts from two simple lemmas.

Lemma 6.8. There is an optimal solution to make a graph G into a single cluster,

if and only if each cut is non-sparse.

Lemma 6.9. Let S be an optimal solution, and V ′ be a clique in the objective graph

G4S, then diameter of G[V ′] is at most 2.

The equivalency between fuzzy clustering problem and edge multicut problem

has been observed and proved by Demaine et al. [67]. However, the proof presented

there is flawed. Specifically, the proof of Lemma 4.6 in [67] only showes that all

original erroneous cycles are broken, while this does not suffice for new erroneous

cycles might be introduced during operations. This can be easily explinaed as: any

superset of a multicut must be a feasible multicut, but this does not hold for clu-

tering. This bug is fixed as follows, and one should note a non-minimal solution
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of the multicut problem cannot be transformed back. (Reduction from correlation

clustering to multicut is omitted here, and interested reader is referred to [67] for the

details.)

Lemma 6.10. Let G be an instance of clustering problem, and G ′,P be the instance

of multict transfomed from G. If E is a solution to G ′,P, then there is a subset of

φ−1(E) which is a solution of G.

Proof. To show there is no erroneous cycle, it suffices to consider missed edges - either

original or introduced by removing edges - since each such a cycle must contain one

missed edge. Let uv is a missed edge in the resutled graph, and if it is also missed

in the original graph, then each path from u to v in the resulted graph must contain

an introduced edge originally non-existent. Let E1 be those added edges lying in the

paths from u to v, E− E1 is also a multicut.

On the linear program formulated in [67], when restricted to the correlation

clustering problem, I conjecture that there is always an optimal solution which assigns

only integral values (0 or 1) to missed edges, and half-integral values (0, 1/2, or 1)

to edges. Then an approximation algorithm of ratio 2 following immediately.

6.4 Other Possible Directions

There are several interesting questions related to the new approaches and the

problems studied in this dissertation: further study of this new approach, randomized

and algebraic algorithms, and kernelization.

Other applications of the new kernel size analysis technique. The main

new ingredient of my 4k kernel for the disjoint-FVS problem is the new technique

for analysis. As a matter of fact, my 2k-vertex kernel for the correlation clustering
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problem can also be analyzed with this technique. It should be interesting to ap-

ply this analysis technique to kernelization of other problems, with or without new

reduction rules introduced. The first should be those with good branch-and-search

algorithms.

Kernelization algorithms for correlation clustering. In Chapter 3, the sub-

graphs used in the kernelization algorithm are very special, which are only those

closed neighborhoods of vertices, however, the observation is general and applica-

ble for any densely connected subgraph. Therefore, it might be possible to build a

smaller kernel is trying some more complicated subgraphs. Its reducible condition

should be straightforward, while the trouble lies in how to identify them. The more

intriguing question is, can a kernel with ck edges be achieved, where c is some con-

stant. This is a linear kernel, which, if possible, should be the first result of this

kind. In my linear-vertex kernel, there can still be quadratic number of edges, and

this fact is also observed in the kernels of other edge modification problems.

Kernelization of generalizations of problems studied in this dissertation.

The problems studied in this dissertation are very important and have many varia-

tions and generalizations, which are usually “harder”2 than themselves. The most

widely studied ones include: the fuzzy clustering problems, and the DFVS problem,

which are a generalization of the correlation clustering problem and a variation of

the FVS problem respectively. After long time of research, both of them were shown

to be in FPT very recently, however, both are open for the existence of polynomial

kernels. As a final remark, the fuzzy clustering problem is known to be computa-

2In an informal and intuitive sense, and common evidences include known approximation lower
bounds and parameterized lower bounds.
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tionally equivalent to multicut problem [67], which includes the FVS problem as a

special case.
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abs/1010.5197 (2010).

[35] A. Buchsbaum, ed., Proceedings of the Sixteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2005, Vancouver, British Columbia,
Canada, January 23-25, 2005, SIAM, 2005.

[36] K. Burrage, V. Estivill-Castro, M. R. Fellows, M. A. Langston,
S. Mac, and F. A. Rosamond, The undirected feedback vertex set problem
has a Poly(k) kernel, in Bodlaender and Langston [30], pp. 192–202.

[37] J. F. Buss and J. Goldsmith, Nondeterminism within P, SIAM Journal on
Computing, 22 (1993), pp. 560–572.

[38] L. Cai and J. Chen, On fixed-parameter tractability and approximability
of NP optimization problems, Journal of Computer and System Sciences, 54
(1997), pp. 465–474.

[39] L. Cai, J. Chen, R. G. Downey, and M. R. Fellows, On the structure
of parameterized problems in NP, Information and Computation, 123 (1995),
pp. 38–49.

[40] , Advice classes of parameterized tractability, Annals of Pure and Applied
Logic, 84 (1997), pp. 119–138.

[41] Y. Cao and J. Chen, Cluster editing: Kernelization based on edge cuts, in
IPEC, V. Raman and S. Saurabh, eds., vol. 6478 of LNCS, Berlin Heidelberg,
2010, Springer-Verlag, pp. 60–71.



125

[42] , Cluster editing: kernelization based on edge cuts, Algorithmica, (2011).
doi: 10.1007/s00453-011-9595-1.

[43] Y. Cao, J. Chen, and Y. Liu, On feedback vertex set: New measure and
new structures, in 12th Scandinavian Symposium and Workshops on Algorithm
Theory, H. Kaplan, ed., vol. 6139 of LNCS, Berlin Heidelberg, 2010, Springer-
Verlag, pp. 93–104.

[44] M. Charikar, ed., Proceedings of the Twenty-First Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January
17-19, 2010, SIAM, 2010.

[45] M. Charikar, V. Guruswami, and A. Wirth, Clustering with qualitative
information, Journal of Computer and System Sciences, 71 (2005), pp. 360–383.

[46] B. Chazelle, A minimum spanning tree algorithm with inverse-ackermann
type complexity, Journal of the ACM, 47 (2000), pp. 1028–1047.

[47] J. Chen, Minimum and maximum imbeddings, in The Handbook of Graph
Theory, J. Gross and J. Yellen, eds., LNCS, CRC Press, 2003, pp. 625–641.

[48] , Vertex cover kernelization, in Kao [138].

[49] , Vertex cover search trees, in Kao [138].

[50] J. Chen, H. Fernau, I. A. Kanj, and G. Xia, Parametric duality and
kernelization: Lower bounds and upper bounds on kernel size, SIAM Journal
on Computing, 37 (2007), pp. 1077–1106.

[51] J. Chen, F. V. Fomin, Y. Liu, S. Lu, and Y. Villanger, Improved al-
gorithms for feedback vertex set problems, Journal of Computer and System
Sciences, 74 (2008), pp. 1188–1198.

[52] J. Chen, D. K. Friesen, and H. Zheng, Tight bound on Johnson’s algo-
rithm for Maximum Satisfiability, Journal of Computer and System Sciences,
58 (1999), pp. 622–640.

[53] J. Chen, X. Huang, I. A. Kanj, and G. Xia, Polynomial time approxi-
mation schemes and parameterized complexity, Discrete Applied Mathematics,
155 (2007), pp. 180–193.

[54] J. Chen, I. A. Kanj, and W. Jia, Vertex cover: Further observations and
further improvements, Journal of Algorithms, 41 (2001), pp. 280–301.

[55] J. Chen, I. A. Kanj, and G. Xia, Labeled search trees and amortized anal-
ysis: Improved upper bounds for NP-hard problems, Algorithmica, 43 (2005),
pp. 245–273.

[56] , Improved upper bounds for vertex cover, Theoretical Computer Science,
411 (2010), pp. 3736–3756.

[57] J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon, A fixed-parameter
algorithm for the directed feedback vertex set problem, Journal of the ACM, 55
(2008).



126

[58] M. Chleb́ık and J. Chleb́ıková, Crown reductions for the minimum
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