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ABSTRACT 

 

Algorithms for Incorporation of Dynamic Recovery in Estimating Frequency of Critical 

Station Blackout. (May 2012) 

Paul J. Rodi, B.S., Virginia Commonwealth University 

Chair of Advisory Committee: Dr. Paul Nelson Jr. 

 

 

This thesis involves exploring enhancement of estimating the probability of a 

critical station blackout in nuclear power plant operations by the use of direct numerical 

evaluation of multidimensional nonrecovery integrals. This requires development of 

computational methods with data provided from South Texas Project Nuclear Operating 

Company (STPNOC). Several methods that are currently used in the industry to estimate 

such probabilities often overestimate the value substantially. The computational integral 

method developed in the thesis will reduce excess conservatism while maintaining plant 

safety standards. This computational integral is calculated using a MATLAB research 

code referred to generally as ―STP-TAMIL‖ which is for South Texas Project – Texas 

A&M Improved LOOP. The code itself (along with the user manual) was developed in 

conjunction with this Thesis. STP-TAMIL is successful in reducing the estimated 

probability of critical station blackout by a significant amount (about 88.47%) with the 

incorporation of recovery of offsite and onsite power for South Texas Project‘s nuclear 

plants, and results were verified. This thesis also describes an asymptotic justification for 

to the non-recovery integral used. Applications to the industry, or STPNOC, which will 

use the ―TAMIL‖ code are addressed. Some assumptions used throughout the problem 

suggest that if more dynamic rates or distributions are used then more recovery can be 

obtained, which will decrease the probability of critical station blackout. Methodology 

developed in this thesis will be used in future work to develop this STP-TAMIL research 

code into a model used industry wide in commercial nuclear power plants.   
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DC   Direct Current 
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CHAPTER I  

INTRODUCTION 

 
This chapter will discuss the significance of the elimination of excessive 

conservatism in critical station blackout, reasons for studying it, and the driving forces 

behind it as well as an outline of the goals that this thesis intends to achieve. This chapter 

will also contain a brief overview of the methods and techniques utilized to obtain the 

results. This chapter will be broken into three sections, Objective  (Section 1.1), 

Background  (Section 1.2), and Overview (Section 1.3). 

 

Section 1.1 – Objective 

 
The objective of this thesis is to develop, test, and document a MATLAB

a
 research 

code that incorporates and enhances a novel methodology to eliminate excessive 

conservatism in the evaluation of probability of critical station blackout in a nuclear 

power plant. The methodology employed involves direct numerical evaluation of 

multidimensional nonrecovery integrals, as developed in detail in work previously 

reported [1]. This approach will require development, verification and application of 

efficient computational methods for evaluation of multidimensional integrals, as will be 

documented in the thesis. Existing approaches used, or developed for use; in the industry 

involve various approximations to this approach. These estimations are generally 

excessively conservative.  The code documented in this thesis provides the capability also 

to generate some of these previous overly conservative approximations to the probability 

of critical station blackout, thereby facilitating a comparison of results to those obtained 

via numerical evaluation of the multidimensional recovery integral.  

 

 

 

                                                 

This thesis follows the style of Safety Science.  

 
a
  MATLAB is a registered trademark of The MathWorks, Inc.; cf. MathWorks - Trademarks 
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Section 1.2 – Background 

 

This section is divided into two subsections.  In Subsection 1.2.a the event and 

importance of critical station blackout to a nuclear power plant (NPP) is summarized.  In 

Subsection 1.2.b the present status of methods used in the nuclear industry to estimate the 

probability of critical station blackout is reviewed.  This latter subsection serves as a 

baseline that any proposed new methodology must seek to improve upon from the current 

methodologies. 

 

Subsection 1.2.a – Significance of Critical Station Blackout 

 

As of 2012, there are 104 operating commercial nuclear power plants in the 

United States [2]. All of these are required by 10 CFR 50.69 [3] to develop and employ 

plant-specific probabilistic risk assessments (PRAs) to estimate the (typically very low) 

probability of a plant accident involving damage to the nuclear core.  The event tree 

approach to PRA models begins with various initiating events (IEs). As analyzed by 

South Texas Project Nuclear Operating Company (STPNOC), 25% of the total core 

damage frequency comes from an initiating event known as a Loss of Offsite Power 

(LOOP). This LOOP IE leads the plant to lose all external power feeding into the plant 

from the electrical switchyard.  

A nuclear power plant has several emergency safety systems that require power 

for full operation to work. U.S. plants have pumps to provide water to the reactor core 

even after it has been shut down; this makes up the emergency core cooling system. 

Cooling is necessary due to the build-up of decay heat, which immediately after reactor 

shutdown typically is about six to seven percent of total reactor power. The cooling 

systems can include different types of safety pumps and spray systems.  High head and 

low head safety injection pumps help cool down the unit by injecting water straight into 

the reactor coolant system from the refueling water storage tank [4]. The containment 

spray pumps located at the top of the containment area spray down the reactor vessel with 

water into a sump area below where this water is recovered and reintroduced into the 

system. This not only cools down the reactor coolant system but also depressurizes it [4]. 
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In case of a LOOP event, needed AC power can be restored using Emergency 

Diesel Generators (EDGs).  Such generators normally provide the first line of defense 

against damage to the reactor core from the decay heat.  There is some possibility that 

these generators could themselves fail. Failure causes could include, among others, a 

failure to start, failure to run, failure to load and run, or generator maintenance 

(preventive or corrective). If there is a common reason underlying failure of two or more 

of the EDGs, this is known as a common-cause failure. This could be due to multiple 

factors. One instance is a flood in the diesel generator room, which could cause a failure 

to start in both generators, thus increasing the core damage frequency (CDF) from the 

same accident scenario.  Common-cause failures strike at the heart of the ―defense in 

depth‖ philosophy that underlies the engineered approach to safety in NPPs, so must be 

carefully considered in PRA analyses for NPPs.    

Operators also need lights, gauges, and computers, which normally run on offsite 

AC power, for instrumentation and control to help better understand and respond to plant 

events. With no AC power, a battery system can be used as a coping mechanism, but it 

only lasts for a short amount of time. [5] 

As described in CR-6890 [6], power systems are divided into three separate 

classes. These include systems powered by offsite power (normal AC power), systems 

powered by Emergency Power Systems (EPS) that provide onsite AC power (such as the 

EDGs), and Station Blackout (SBO) coping systems that do not depend on electrical 

power trains (such as the decay-heat steam-turbine driven pump). Each case has an 

associated risk for core damage but if even one is still operating then the others can fail 

while the plant will be in a safe mode to shut down.  

LOOP initiating events and PRA model are not specific to STPNOC, but rather 

are an important generic issue to US and international NPPs.  In this regard, a recent 

United States Nuclear Regulatory Commission (NRC) report states that: 

―… risk analyses performed for NPPs (nuclear power plants) indicate that the loss  

of all AC power can be a significant contributor to the risk associated with plant 

operation, contributing more than 70 percent of the overall risk at some plants. Therefore, 

a loss of offsite power (LOOP) and its subsequent restoration are important inputs to 

plant risk models, and these inputs must reflect current industry performance in order for 
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plant risk models to accurately estimate the risk associated with LOOP-initiated 

scenarios.‖
 
[6] 

The critical station blackout (CSBO) probability is defined as the probability that 

during a LOOP IE, within some mission time (typically ~ 24 hours), the plant will 

experience a loss of all emergency power for a time exceeding some critical time. 

Mission time is an upper limit on the amount of time that it takes to restore outside 

power, which effectively ends the loss of the offsite power event. The critical time is the 

maximum amount of time that a component can be offline before damage to the core is 

inevitable.  It is generally assumed that within 24 hours, workers can bring in another 

component that will replace that component; therefore, disregarding the failure of the 

original components effect on the CDF.  In the recent developments at Fukushima Dai-

ichi, this expected 24 hour value used as a mission time did not adequately address the 

situation. No access by road and lack of infrastructure worsened the critical incident post 

tsunami and prevented protective actions from being taken. The use of 24 hours as a 

mission time needs to be addressed by the industry; and until that is done, a logical value 

will be placed in this report.  The Fukushima accident also was the driving force behind a 

NRC task force that looked at ways to enhance nuclear reactor safety. One 

recommendation given was that the NRC should require emergency plans to address SBO 

and multiunit events [7]. If implemented, this recommendation could have a great effect 

on how station black outs are evaluated by type and associated mission time.   

 

Subsection 1.2.b – Existing Methods for Estimating Probability of  

                   CSBO 

 

As discussed in more detail in Rodgers et al. [1], CSBO means the following events 

have occurred: 

1. A LOOP event occurs at some initial time, which typically is taken as t = 0.  

2. Offsite power is not recovered within a subsequent time equal to the mission time, 

denoted as T. 
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3. At some time within this same mission time, all emergency diesel generators 

(EDGs) (or other sources of emergency power) become unavailable, and remain 

so within a subsequent elapsed time equal to the designated critical time. 

Data related to frequency of occurrence of LOOP events [5], to rate of recovery of 

offsite power [8], to various sources of unavailability for diesel generators [9]
 
 and to 

expected repair rate for EDGs [10]
 
 are available.  Therefore, it is possible, at least in 

principle, to calculate the frequency (probability per unit time) for occurrence of CSBO. 

A digression is appropriate here to note that equivalence of CSBO to the conjunction 

of the preceding list of events invokes a weak form of the rare events approximation, to 

the effect that it ignores the possibility of CSBO occurring through events that involve 

any single EDG failing, being repaired, and subsequently failing again, within the 

designated mission time.  Should at some point mission times become sufficiently large, 

it will be necessary to evaluate this assumption more critically; but for the present work, 

it is assumed to be valid.  

To return to the main thread, varieties of approximations that conservatively 

overestimate probability of CSBO are conceivable.  These are discussed in this 

subsection, beginning with the most obvious, which tend to be grossly overconservative, 

and ending with more complex schemes that are currently applied in the industry.  All of 

these achieve conservatism by either ignoring or underestimating the impact of recovery, 

either of offsite power or of onsite power (i.e., repair of EDGs), or both. 

The most obvious overconservative approximation is simply to ignore the effect of 

recovery, of either offsite or onsite power.  Today, this approach is seldom used in the 

industry, but it is nonetheless useful as a measure of gains attained by employing 

improved methods of estimation that nonetheless remain conservative.   

For more complex (and therefore realistic) approaches, note that probability of 

recovery (of either offsite power or a failed EDG) is a function of elapsed time since 

failure and, for onsite power, of the repair doctrine at the particular plant. 

The most commonly used way to determine risk in a plant is by the use of fault-trees, 

which are logic trees for a way systems can fail, and event trees, which are logic trees for 

the paths to core damage. This systematic approach sums up every possible cut set along 

with a path of probable scenarios that would lead to core damage within the plant to 
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create a total core damage probability. These cut sets include the initiating event 

probability along with each failure probability of a component and human error that 

would lead to core damage. This method insured that failure events are independent of 

each other but does not explicitly address time dependencies, and therefore recovery or 

repair is not fully addressed [11]. Time sequencing is considered in the present approach 

via recovery integrals or in other approaches to ―dynamic reliability‖ [12].  

In the ―convolution integral‖ approach pioneered by Lloyd and Anoba [11], the 

offsite and emergency power train ―nonrecovery factors‖ are given constant values, 

independent of the duration from time of failure of the particular system to onset of 

CSBO. In this method, the different cut sets are examined and each cut set has a specific 

sequence of events. The time during the mission for which the component might fail 

because of a ―type-2‖ event (dependent of mission time) [11] is reduced by the time it 

takes for the prior component in the sequence to fail. For example, assuming a loss of 

offsite power and a single diesel generator failure, the two cut sets could be a possibility. 

In case one, the second emergency diesel generator would fail. Then the turbine driven 

pump, running off decay heat from the plant, would fail. In case two, the turbine driven 

pump would fail first, and then the second EDG would fail. Therefore, in case one the 

time is reduced for the turbine drive pump to fail by the time it took for the EDG to fail 

and vice versa in case 2 [11].  

The general solution for the convolution integral provides the point values to the 

nonrecovery events consistent with the point-estimate of probabilities that underlies fault-

tree analysis. In other words, core damage frequency that is calculated by the Lloyd and 

Anoba approach will be assumed to be close to that from a fault-tree approach. [11] 

The values for nonrecovery of offsite power defined by Lloyd and Anoba and the 

fault-tree method used are overconservative. Lloyd and Anoba, themselves, note the 

following in regard to the offsite nonrecovery term: 

―.. it must be supplied by the analyst. If the term has a mission-time dependence, 

establishing a probability value for the term may be difficult. As a result, this 

value may be significantly overconservative.‖ [11] 
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One way of approaching this issue would be to take as the nonrecovery factor that 

corresponds to the critical time as the elapsed time between failure and core damage.  

One always has at least that much time to recover either offsite or onsite power. 

Lloyd [8] later demonstrated how to incorporate the dynamic variation in offsite 

recovery into the solution. The solution assumes a constancy of the nonrecovery factors 

only for the emergency power trains. 

  An alternative method developed by Read and Fleming [14] is conservative in 

that the approach does not take into account any repair work on any of the emergency 

trains until all trains have failed. This conservatism is somewhat reduced due to the 

parallel ―infinite workforce‖ assumption that once repairs start, the repairs start on all 

trains simultaneously with equal effectiveness [15].
 
With Lloyd and Anoba this repair 

conservatism is negated somewhat by the use of the nonrecovery time distribution that 

―applies to situations involving a high urgency for diesel generator repairs‖ [15]. 

The Read-Fleming method is equivalent to taking the (onsite) recovery factor in 

the Lloyd-Anoba approach equal to that at the critical time.  This relatively simple fact 

does not seem to have previously been explicitly noted in the literature. 

An alternative method using the Markov chain model has also been proposed by 

STPNOC for finding the CSBO [5]. The Markov model addressed by STPNOC was used 

only as a tool to see how different conservatisms would respond which could determine 

how the CSBO probabilities differed but not give exact solutions as it was not intended of 

having that degree of realism. It was determined that the approach could take into 

account both the failure and repair factors of the EDGs as compared to the convolution 

integral method that assumes that once an EDG fails it could not be repaired. This also 

shows that if the diesel repair rate is determined by the time of diesel failure, then only 

the offsite power recovery factor is a function of calendar time. This is due to repair time 

being a function of time required for workers to arrive at the scene and effect repairs.  

However, due to this clock only really being determined by standard clock, the diesel 

repair rate is set to a constant rate [5].  
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Section 1.3 – Overview 

 

Current models for LOOP recovery are very conservative because of the limited 

credit taken for the various possible forms of recovery of different previously failed 

sources of power.  The models in existence today also take into account static reliability 

as opposed to a more dynamic approach for recovery. The approach implemented in the 

MATLAB research code that will be described in the proposed thesis seeks to remove 

this excess conservatism by taking full credit for any recovery of (onsite or offsite) power 

that occurs following onset of the hypothesized LOOP event, but prior to a time period 

equal to the critical time elapsing following loss of all forms of power – that is, prior to 

CSBO. The MATLAB code will be referred to generally as ―STP-TAMIL‖ which is for 

South Texas Project – Texas A&M Improved LOOP. Use of this approach could permit 

plant resources to be directed toward more realistic safety concerns while maintaining a 

low core damage probability needed for operation of a nuclear power plant. 

This full credit for recovery will be implemented by numerical evaluation of the 

―nonrecovery integral‖ found in Equation (1.1). 

 

 

Here CSBOF  is the cumulative density function (cdf) for the occurrence of critical 

station blackout, F is the cdf for independent failure of the EDGs, F12 is the cdf for 2/3 

common-cause failures of the first and second EDGs, F3 is the cdf for 3/3 common-cause 

failure of the EDGs, G is the cdf for recovery of offsite power, R is the cdf for repair of 
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an EDG, T is the critical time; the value under currently applicable U.S. regulations is 24 

hours, Tc is the critical time, nominally about one hour, i  is dummy variable 

representing the (stochastic) time of failure of the ith EDG, 12  is a dummy variable 

representing the (stochastic) time of common-cause failure of the first and second EDGs, 

123 is a dummy variable representing the (stochastic) time of failure of the ith EDG. 

The actual evaluation of Equation (1.1) will be made in the code using numerical 

methods to evaluate the ―nonrecovery integral‖ that is the last line of this equation. A 

significant element of the research component of this report will be determining the 

computational effort and technology appropriate in evaluation of this multidimensional 

nonrecovery integral. 

The functions in the integrand of the integral, Equation (1.1), will be obtained 

from a combination of different sources. Some functions will come from data analyzed 

by all of the commercial nuclear power plants during loss of offsite power events which 

will come from Nuclear Regulatory Commission Condition Report 6890 [6] or other 

industry sources. Other data in this integrand will come from STPNOC, which in turn 

comes from operating licenses, experimental data, and analytical calculations. The 

functions, which are not directly called for, i.e. mission time, will have to come from 

engineering judgment, experience and adding in conservatisms as no definitive standards 

are available. 

All of the functions used in the nonrecovery integral along with associated 

meanings and sources are compiled in Table 1.1. 
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Table 1.1 

Nonrecovery Integral Functions. 

Function (meaning) Data Source Reference 

G (cdf for offsite recovery) Section III, esp. Tables 3-1 and 3-2, of 

NUREG/CR-6890, Vol. 2. 

[5] 

F  (cdf for independent failure 

of the EDGs) 

Section III, esp. Table 3-3 of 

NUREG/CR-6890, Vol. 2. 

[8] 

R (cdf for repair of the EDGs) Page 31 of NUREG/CR-6890, Vol. 2. [5] 

f (pdf for failure of the 

EDGs)* 

Tables 4-2, of NUREG/CR-6890, Vol. 2. [10] 

* Not directly shown in Equation (1.1) but used in its asymptotic justification  

 

 

 

The structural plan for this thesis is to include the following chapters.  This 

introductory chapter, Chapter I, will discuss significance of project, reasons for studying 

it, and the driving forces behind it as well as an outline of the goals that the thesis 

achieves. This chapter will also contain a brief overview of the methods and techniques 

utilized to obtain the results. Chapter II will be a user manual for the STP-TAMIL code. 

This will act to serve as a readme for setting up the program, how to use the program and 

associated input file, and what limitations are found in the program. Chapter III, theory, 

will include a formal statement of the problem, and an asymptotic approach for the 

derivation of the nonrecovery integral as an approximate solution to that problem.  

Chapter IV, applications, will discuss special cases that cause deviations in results which 

will be discussed along with the use of different equations to determine results. The 

differences can included but are not limited to how many safety trains are used, what type 

of repair is executed, and what recovery methods are implemented, what time in the 

accident repairs begin, and how much man power is needed for the repairs. Common-

cause failure implementation will also be discussed in the Chapter IV. Chapter V, 

benchmarking results, will outline the results and there will be a discussion of how these 

results are realistic, meaningful, and useable. This chapter will involve benchmarking to 

provide verification of results. An implementation chapter, Chapter VI, will then be used 
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to discuss how this could be implemented into the PRA models at STPNOC as well as 

around the nation. The final chapter, Chapter VII, will summarize the project and give 

suggestions for improvement. In this concluding chapter, the significance of the problem 

and suggestions for resolution will be evaluated along with a plan for future action. 

 The Appendixes listed will include the code itself (Appendix A) and an example 

of the input deck used to execute the program in its final version (Appendix B). Appendix 

C will contain a letter from STPNOC discussing confidentially of results as well as rights 

to use the differences observed by the results.   
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CHAPTER II   

STP-TAMIL USER MANUAL 

 

This chapter is intended to serve as the user manual for the STP-TAMIL code. 

The general information in this user manual is written as a standalone document from this 

thesis, and therefore is presented as such in this chapter. However, for advanced users 

there are pointers to the thesis for more information. 

This manual acts to: 

a. serve as a readme for setting up the program,  

b. describe how to use the program and associated input file,  

c. describe what limitations are found in the program, and  

d. explain how to read the output file.  

 

Section 2.1 refers to version information and distribution rights control. Section 

2.2 talks about the description of the code while Section 2.3 discusses the development of 

the code. Section 2.4 discusses the set-up and installation of STP-TAMIL. Section 2.5 

talks about how to build the input deck or ―RunFile.xlsx‖ for the program. This also has 

subsections that discuss the types of distributions that can be used as well as how to set 

up a custom distribution program. Section 2.6 explains how to run the code itself from 

inside the MATLAB environment, while Section 2.7 discusses for to read the results or 

output file generated from the code. End notes for the code are found in Section 2.8.  

 

Section 2.1 – Version Information 

 

This user manual is for version 1.0 of STP-TAMIL developed during the Spring 

of 2012. 

The distribution and usage rights of this code belong to Dr. Paul Nelson and Paul 

Rodi of Texas A&M University. Please contact Dr. Nelson at ―p-nelson@tamu.edu‖ for 

questions on rights access. Technical questions for general use of the software can be 

directed towards Paul Rodi at ―rodipj@vcu.edu‖. 
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Section 2.2 – Description 

 

This code is used to help eliminate excessive conservatism in the evaluation of the 

probability of critical station blackout in a commercial nuclear power plant.   

The code has been written in the MATLAB language for use in the MATLAB 

(Version 7.10.0 R 2010a) environment. This is required for running the code correctly, as 

it is intended. However, the Excel input file can be sent to a MATLAB computer and an 

output file will be generated in excel, which could be sent back to the originator. 

The MATLAB code will be referred to as ―STP-TAMIL‖ which stands for South 

Texas Project Nuclear Operating Company – Texas A&M Improved LOOP. LOOP refers 

to Loss Of Offsite Power at a nuclear power plant.  

  

Section 2.3 – Development 

 

STP-TAMIL was developed for use by Texas A&M University under contract to 

the South Texas Project Nuclear Operating Company. The theory, methodology, and 

verification studies are documented in the graduate thesis work entitled ―Algorithms for 

Incorporation of Dynamic Recovery in Estimating Frequency of Critical Station 

Blackout‖ by Paul Rodi. This thesis also includes this User Manual as Chapter II.   

During development of the software, the term 3-way common-cause and 2-way 

common-cause failure were used to describe 3/3 common-cause failures or 2/3 common-

cause failures, respectively. A 3/3 common-cause failure may also be referred to as a 

common-cause triplet (3CCF) and a 2/3 common-cause failure may be referred to as a 

common-cause doublet (2CCF). A 1/3 common-cause failure would be known as a 

independent failure and is not really a common-cause failure at all. Therefore, the codes 

titles, variable names, and comment sections may refer to anyone of these naming 

conventions. 

 

Section 2.4 – Installation  

 

The following Software must exist for STP-TAMIL to function properly: 
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1) Microsoft Windows XP/2000/7 – Other Operating Systems are not tested 

2) MATLAB Version 7.10.0 R 2010a – Newer/Previous Versions have not 

been tested 

3) Microsoft Excel 2010 – Files need to be saved in ―.xlsx‖ format 

            Create a folder called ―STP-TAMIL‖ directly in the ―C:‖ or for advanced users in 

the directory of one‘s choosing. 

      Put all of the following files in the STP-TAMIL folder (for Version 1.0): 

1) STPQUAD3CCF.m 

2) FTR6890.m 

3) FTR6890inv.m 

4) FTR6890pdf.m 

5) INTEGRAND2way.m 

6) INTEGRAND3way.m 

7) INTEGRANDv1pt0.m 

8) RunFile.xlsx – Excel file to be filled in the next step ―Building the Input  

 Deck‖ 

9) OutputFile.xlsx – Intentionally left blank excel file 

Note: Other Previous Versions of STP-TAMIL, ―STPQUAD2‖ and 

―STPQUAD3‖ code packages or suites, shown used in Chapter V are not listed above, as 

they are not needed to run the current software. However, they are included in the 

Appendix of this thesis.  

 

Section 2.5 – Building the Input Deck 

 

The Microsoft Excel file ―RunFile.xlsx‖ serves as the input to the MATLAB 

code. This may be referred to as RunFile, input deck, or as the run file throughout this 

user manual. Therefore, RunFile.xlsx should be updated with values before running the 

software. 

Figure 2.1 is a picture of what RunFile should look like when opened. Note filler 

values are used and may not be the same for all cases. 
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Figure 2.1 -  Example of RunFile with Generic Data Used 

 

 

 

 

Data in Row 1, according to Excel‘s format, should not be edited. This contains 

the titles of each variable being ―called‖ from the MATLAB script.  

One should delete all data under each title, so that only a banner of titles remains. 

Then one should add the first row of data. Under each Title in (Excel Row 2) put the 

input data. It should be also noted that when inputting data, all numbers should be entered 

numerically.  

The Titles used are displayed in Tables 2.1-2.6 
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Table 2.1 

First Part of Title Names and Descriptions for RunFile. 

 

Title Description 

Data Row 

This is the number of data rows that are entered in by the user. 

Note: it should start with 1 and increase by 1 with each row 

after. For example, if Excel Row 3 had data in it, then Data 

Row for that row would be 3. 

Number of Trains 

This is the number of safety trains used in the analysis. For 

STP, the number will likely be 3. Note, that if it is less than 3 

then only the variables up to the number will be used. For 

Example, if 2 trains are input, then 2 Train Variables will be 

read as well as 1-Train variables but 3-Train Variables will 

not. Therefore, a value like P (FTS Train 3) would not be 

entered into the system. Also, any number of trains entered 

above 3 will cause an error.  

Mission Time 

This is the time is the amount of time assumed taken to restore 

outside power, which effectively ends the loss of the offsite 

power event (typically 24 hours). 

Critical Time 
This is the maximum amount of time that a component can be 

offline before damage to the core is inevitable. 

Recovery of Offsite Power 

Alpha Parameter of G This is the Alpha parameter for the cdf of offsite recovery. 

Recovery of Offsite Power 

Beta Parameter of G This is the Beta parameter for the cdf of offsite recovery. 

Recovery of Offsite Power 

Gamma Parameter of G This is the Gamma parameter for the cdf of offsite recovery. 

Recovery of Offsite Power 

Delta Parameter of G This is the Delta parameter for the cdf of offsite recovery. 

Probability of Failure to 

Start (3CCF) 
This is the probability of a Failure to Start in a common-cause 

triplet event. 
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Table 2.2 

Second Part of Title Names and Descriptions for RunFile. 

Title Description 

Probability of Failure to 

Load and Run (3CCF) 

This is the probability of a Failure to Load and Run (fails to 

operate for at least 1 hour after the initiating event) in a common-

cause triplet event. 

Error Tolerance for 

Single Integral to 

Compute CC Triplet 

Failure Probability 

This is user defined error tolerance used for the single integral 

(QUAD) for the common-cause triplet failure portion of 

probability of critical station blackout.  

Alpha Parameter for CC 

Triplet 

This is the Code‘s Alpha Parameter for the CC Triplet cdf related 

to the three Trains. This is generally the CC Triplet mean time to 

failure, up to the Beta Parameter. 

Beta Parameter for CC 

Triplet 
This is the Code‘s Beta Parameter for the CC Triplet cdf related to  

the three Trains. This is the CC Triplet cutoff time or critical time. 

Gamma Parameter for 

CC Triplet 

This is the Code‘s Gamma Parameter for the CC Triplet cdf 

related to the three Trains. This is generally the CC Triplet mean 

time to failure, during the rest of the mission time after the first 

hour. 

Delta Parameter for CC 

Triplet 
This is the Code‘s Delta Parameter for the CC Triplet cdf related 

to the three Trains.  

Probability of CC 

Doublet Failure to Start 

(2CCF) 

 

This is the Probability of a Common-Cause Doublet Failure 

to Start for a pair of trains. 

Probability of CC 

Doublet Failure to Load 

and Run (2CCF) 

 

This is the Probability of a Common-Cause Doublet Failure 

to Load and Run (fails to operate for at least 1 hour after the 

initiating event) for a pair of trains. 

Error Tolerance for 

Double Integral to 

Compute CC Doublet 

Failure Probability 

This is user defined error tolerance used for the double integral 

(DBLQUAD) for the Common-Cause Doublet failure portion of 

probability of critical station blackout. 

Alpha Parameter for CC 

Doublet 

This is the Code‘s Alpha Parameter for the CC Doublet cdf related 

to the two Trains. For most distributions, this is generally the 

mean time to failure, up to the Beta Parameter. 
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Table 2.3 

Third Part of Title Names and Descriptions for RunFile.  

 

 

Title Description 

Beta Parameter for CC 

Doublet 

This is the Code‘s Beta Parameter for the CC Doublet cdf related 

to the two Trains. This is the cutoff time or critical time. 

Gamma Parameter for 

CC Doublet 

This is the Code‘s Gamma Parameter for the CC Doublet cdf 

related to the two Trains. This is generally the mean time to 

failure, during the rest of the mission time after the first hour. 

Delta Parameter for CC 

Doublet 
This is the Code‘s Delta Parameter for the CC Doublet cdf related 

to the two Trains.  

Probability of 

Independent Failure to 

Start (Ind.) 

This is the Probability that an Independent Failures Start will 

occur for any given train.  

Probability of 

Independent Failure to 

Load and Run (Ind.) 

This is the Probability that an Independent Failures to Load and 

Run (fails to operate for at least 1 hour after the initiating event) 

will occur for any given train.  

Error Tolerance for 

Triple Integral to 

Compute Independent 

Failure Probability 

This is user defined error tolerance used for the triple integral 

(TRIPLEQUAD) for the Independent failure portion of 

probability of critical station blackout.  

Alpha Parameter for 

Independent  

This is the Code‘s Alpha Parameter for the Independent cdf 

related to the single Train. For most distributions, this is the mean 

time to failure, up to the Beta Parameter.  

Beta Parameter for 

Independent  

This is the Code‘s Beta Parameter for the Independent cdf related 

to the single Train. For most distributions, This is the cutoff time 

or critical time. 
Gamma Parameter for 

Independent  

This is the Code‘s Gamma Parameter for the Independent cdf 

related to the single Train. This is generally the mean time to 

failure, during the rest of the mission time after the first hour. 

Delta Parameter for 

Independent 
This is the Code‘s Delta Parameter for the Independent cdf 

related to the single Train.  

Recovery of Train 1 

Alpha Parameter for R{1} 
This is the Code‘s Alpha Parameter for the Onsite Recovery Rate 

related to Train 1. 

Recovery of Train 1 Beta 

Parameter for R{1} 
This is the Code‘s Beta Parameter for the Onsite Recovery Rate 

related to Train 1. 
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Table 2.4 

Fourth Part of Title Names and Descriptions for RunFile.  

 

Title Description 

Recovery of Train 1 Gamma 

Parameter for R{1} 
This is the Code‘s Gamma Parameter for the  Onsite Recovery 

Rate related to Train 1. 

Recovery of Train 1 Delta 

Parameter for R{1} 
This is the Code‘s Delta Parameter for the Onsite Recovery 

Rate related to Train 1. 

Recovery of Train 2 Alpha 

Parameter for R{2} 

This is the Code‘s Alpha Parameter for the Onsite Recovery 

Rate related to Train 2. 

Recovery of Train 2 Beta 

Parameter for R{2} 
This is the Code‘s Beta Parameter for the Onsite Recovery 

Rate related to Train 2. 

Recovery of Train 2 Gamma 

Parameter for R{2} 
This is the Code‘s Gamma Parameter for the  Onsite Recovery 

Rate related to Train 2. 

Recovery of Train 2 Delta 

Parameter for R{2} 
This is the Code‘s Delta Parameter for the Onsite Recovery 

Rate related to Train 2. 

Recovery of Train 3 Alpha 

Parameter for R{3} 
This is the Code‘s Alpha Parameter for the Onsite Recovery 

Rate related to Train 3. 

Recovery of Train 3 Beta 

Parameter for R{3} 
This is the Code‘s Beta Parameter for the  Onsite Recovery 

Rate related to Train 3. 

Recovery of Train 3 Gamma 

Parameter for R{3} 
This is the Code‘s Gamma Parameter for the Onsite Recovery 

Rate related to Train 3. 

Recovery of Train 3 Delta 

Parameter for R{3} 
This is the Code‘s Delta Parameter for the Onsite Recovery 

Rate related to Train 3. 

Type of Repair for 3CCF: Enter 

a number 1-4 (1 for No Credit 

(offsite/onsite), 2 for Offsite 

Credit Only, 3 for Offsite + 

Onsite Repair only after Full 

Failure, 4 for Full Recovery 

(NORMALLY/DEFAULT) 

 

This is for the Type of Repair for Common-Cause Triplet 

events that the user would like to use. One enters a whole 

integer value of ―1‖ through ―4‖. ―1‖  leads to No Credit for 

Offsite or Onsite Power, ―2‖ takes Credit for Offsite power 

Only, ―3‖ takes Credit for Offsite and Onsite only after Full 

Failure has Occurred, ―4‖ takes Credit for Full Recovery 

(Onsite + Offsite). Note: It is ―4‖ by default and if an error 

value is placed in this cell.  These Cases are described more 

fully in Chapter IV.   
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Table 2.5 

Fifth Part of Title Names and Descriptions for RunFile. 

 

 

 

Title Description 

Type of Repair for 2CCF: Enter a 

number 1-4 (1 for No Credit 

(offsite/onsite), 2 for Offsite Credit 

Only, 3 for Offsite + Onsite 

Repair only after Full Failure,      

4 for Full Recovery 

(NORMALLY/DEFAULT) 

 

This is for the Type of Repair for Common-Cause 

Doublet events that the user would like to use. One 

enters a whole integer value of ―1‖ through ―4‖. ―1‖  

leads to No Credit for Offsite or Onsite Power, ―2‖ 

takes Credit for Offsite power Only, ―3‖ takes Credit 

for Offsite and Onsite only after Full Failure has 

Occurred, ―4‖ takes Credit for Full Recovery (Onsite + 

Offsite). Note: It is ―4‖ by default and if a error value is 

placed in this cell. These Cases are described more 

fully in Chapter IV.   

Type of Repair for Independent: 

Enter a number 1-4 (1 for No 

Credit (offsite/onsite), 2 for Offsite 

Credit Only, 3 for Offsite + Onsite 

Repair only after Full Failure,  4 

for Full Recovery 

(NORMALLY/DEFAULT) 

 

This is for the Type of Repair for Independent events 

that the user would like to use. One enters a whole 

integer value of ―1‖ through ―4‖. ―1‖  leads to No 

Credit for Offsite or Onsite Power, ―2‖ takes Credit for 

Offsite power Only, ―3‖ takes Credit for Offsite and 

Onsite only after Full Failure has Occurred, ―4‖ takes 

Credit for Full Recovery (Onsite + Offsite). Note: It is 

―4‖ by default and if an error value is placed in this 

cell.  These Cases are described more fully in Chapter  

IV.   

Type of Distribution for G, cdf in 

time for recovery of offsite power 

This is MATLAB function handler for the type of 

distribution for G, which is the cdf for the time of 

recovery of offsite power. Details of inputs in 

Subsection 2.5.a. 

Type of Distribution for R, cdf in 

time for repair for the ith train 

This is MATLAB function handler for the type of 

distribution for R, which is the cdf in time for repair of 

a train 1. Details of inputs in Subsection 2.5.a. 

Type of Distribution for Failure to 

Load and Run cdf in time of ith 

train 

This is MATLAB function handler for the type of 

distribution used for Failure to Load and Run which is 

computed in the custom distribution files defined in the 

next cells or created by the user. FTR6890 and 

FTR6890inv is an example of these files. Details of 

inputs in Subsection 2.5.a. 

File Used for CC Triplet Failure 

to Load and Run  cdf 

 

MATLAB ―.m‖ File Written for use to find the cdf of a 

Failure to Load and Run for a Common-Cause Triplet 

event. Details in Subsection 2.5.e. FTR6890 is an 

example and default for this file. 
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Table 2.6 

Sixth Part of Title Names and Descriptions for RunFile. 

 

 

 

Note the parameters or input parameters (alpha, beta, gamma, and delta) 

mentioned in the various preceding tables all have specific meanings based on the type of 

distribution employed.  The parameters are defined and described for each type of 

distribution in Tables 2.7-2.8. The parameters for the common-cause triplet, common-

cause doublet, and independent events are clarified better in subsequent paragraphs.  

For common-cause triplet failure events defined by an exponential distribution, 

the alpha parameter is the mean time to failure up to time defined by the beta parameter, 

which is the cutoff time in hours. The beta parameter is a user input in the spreadsheet 

where as the alpha parameter is based on the user input of both the probability of a 3CC 

failure to start event and the probability of a 3CC failure to load and run. The gamma 

parameter is the subsequent exponential mean time (hours) conditional on reaching the 

cutoff time (beta parameter). This is based upon the probability of a 3CC Failure to run as 

Title Description 

File Used for CC Triplet Failure 

to Load and Run inverse cdf 

MATLAB ―.m‖ File Written for use to find the inverse 

cdf of a Failure to Load and Run  for a Common-Cause 

Triplet event. Details in Subsection 2.5.e. FTR6890inv is 

an example and default for this file. 

File Used for CC Doublet 

Failure to Load and Run cdf  

MATLAB ―.m‖ File Written for use to find the cdf of a 

Failure for to Load and Run  a Common-Cause Doublet 

event. Details in Subsection 2.5.e. FTR6890 is an 

example and default for this file. 

File Used for CC Doublet 

Failure to Load and Run  

inverse cdf 

MATLAB ―.m‖ File Written for use to find the inverse 

cdf of a Failure to Load and Run for a Common-Cause 

Doublet event. Details in Subsection 2.5.e. FTR6890inv 

is an example and default for this file. 

File Used for Independent 

Failure to Load and Run cdf  

MATLAB ―.m‖ File Written for use to find the cdf of a 

Failure for Independent events. Details in Subsection 

2.5.e. FTR6890 is an example and default for this file. 

File Used for Independent 

Failure to Load and Run inverse 

cdf  

MATLAB ―.m‖ File Written for use to find the inverse 

cdf of a Failure to Load and Run for Independent events.  

Details in Subsection 2.5.e. FTR6890inv is an example 

and default for this file. 
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well as the probabilities defined previously in the code by alpha parameter automatically. 

The delta function is meant to be empty, left as a ―0‖ value, unless using a more 

advanced type of distribution. The description of how the parameters relate to each other 

is described fully in subsection 5.3.a. 

For common-cause doublet failure events, the alpha parameter is the exponential 

mean up to time defined by the beta parameter, which is the cutoff time in hours. The 

beta parameter is a user input in the spreadsheet. For the two-regime exponential, the 

alpha parameter is based on of the user input of both the probability of a single 

independent failure to run in conjunction with the probability of 2CC failure to start and 

the probability of a single independent failure to run in conjunction with the probability 

of 2CC failure to load and run. The gamma parameter is the subsequent exponential mean 

conditional on reaching the cutoff time (beta parameter). This is based on the probability 

of a single independent failure to run in conjunction with a CC doublet failure to run as 

well as the probabilities defined previously in the code by alpha parameter automatically. 

The delta function is meant to be empty, left as a ―0‖ value, unless using a more 

advanced type of distribution. The description of how the parameters relate to each other 

is shown in subsection 5.3.b. 

For independent failure events, the alpha parameter is the exponential mean up to 

time defined by the beta parameter, which is the cutoff time in hours. The beta parameter 

is a user input in the spreadsheet where as the alpha parameter is based off of the user 

input of both the probability of a three independent failure to load and run event and the 

probability of single independent failure to start in conjunction with two independent load 

and run failures. The gamma parameter is the subsequent exponential mean conditional 

on reaching the cutoff time (beta parameter). The gamma parameter is based upon the 

probability of an independent failure to run as well as the probabilities defined previously 

in the code by alpha parameter automatically. The delta function is meant to be empty, 

left as a ―0‖ value, unless using a more advanced type of distribution. The description of 

how the parameters relate to each other is described in subsection 5.3.c. 

Once all the data for a row is entered into the run file, then either one can choose 

to have that be the only case run by the program or one can choose to add another row of 

data. To achieve this, start at the new row and enter all data again, repeating steps in this 
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subsection.  Call the data row by a different number to distinguish it from the output file. 

Running multiple cases, or data rows, can be used as a comparison or as a way to test 

different scenarios.  

All entered data should be rechecked for accuracy. Generally, all of the trains 

within one case, or data row, will have the same values for the same types of rates for 

failure and recovery. Additionally, it is important to make sure there are no blanks in the 

row, as it will return an error in the code.  

It is important to note that if any cell is left blank it will be filled in automatically 

with a default value so the code can still run. These default values are described in more 

detail in Section 2.6.  

An example of a full input deck is shown in Appendix B for a better reference. 

Note that that RunFile entered correctly are the values for the industrial average case 

from Chapter V of the thesis. This means that the output will also be the same as data 

presented in Chapter V. It can also be noted that the default values are the same values 

that appear in ―Data Row‖ 1 of Appendix B.  

The file should be saved under the title ―RunFile.xlsx‖ in the folder STP-TAMIL 

or the folder in which the MATLAB environment is running.  

 

Subsection 2.5.a – Details for Types of Distributions  

 

The spreadsheet contains many cells that should contain specification of a 

function handler for the type of distribution desired. These input cells are compiled and 

shown in the Tables 2.1-2.6 found earlier in this section.  

It is important to note that the exact text (as entered) into those cells will be used 

as a function in the MATLAB script. Therefore, it is imperative to remove any extra 

spaces or any difference from what would appear in MATLAB. It is also important to 

make sure the alpha, beta, gamma, and delta parameters that are being passed into the 

computer code using the certain distribution are used correctly.  

From the MATLAB Documentation [16], the types of distributions for cdf, 

inverse cdf, and pdf that can be used are shown in Tables 2.7 and2.8. 
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Table 2.7 

First Part of Function Names and Parameters for Type of Distributions for CDF. 

 

Distribution 

Type 

Function 

Name 

Input 

Parameter   

Alpha 

(cdf,inv,pdf) 

Input 

Parameter   

Beta 

Input 

Parameter   

Gamma 

Input 

Parameter   

Delta 

Beta beta 
(X,P,X) 

a b — 

Binomial bino 
(X,P,X) 

n: number of 

trials 

p: probability of 

success for each 

trial 

— 

Chi-Square chi2 
(X,P,X) 

ν: degrees of 

freedom 
— — 

Exponential exp 
(X,P,X) 

µ: mean — — 

Extreme Value ev 
(X,P,X) 

µ: location 

parameter 

ζ: scale  

parameter 
— 

F f 
(X,P,X) 

ν1: numerator 

degrees of 

freedom 

ν2: denominator 

degrees of 

freedom 

— 

Gamma gam 
(X,P,X) 

a: shape 

parameter 

b: scale 

parameter 
— 

Generalized 

Extreme Value 
gev 

(X,P,X) 

k: shape 

parameter 

ζ: scale 

parameter 

µ: location 

parameter 

Generalized 

Pareto 
gp 

(X,P,X) 

k: tail index 

(shape) 

parameter 

ζ: scale 

parameter 

µ: threshold 

(location) 

parameter 

Geometric geo 
(X,P,X) 

p: probability 

parameter 
— — 

Hypergeometric hyge 
(X,P,X) 

M: size of the 

population 

K: number of 

items with the 

desired 

characteristic in 

the population 

n: number 

of samples 

drawn 
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Table 2.8 

Second Part of Function Names and Parameters for Type of Distributions for CDF. 

 

Distribution 

Type 

Function 

Name 

Input 

Parameter   

Alpha 

(cdf,inv,pdf) 

Input 

Parameter   

Beta 

Input Parameter   

Gamma 

Input 

Parameter   

Delta 

Lognormal logn 
(X,P,X) 

µ ζ — 

Negative 

Binomial 
nbin 

(X,P,X) 

r: number of 

successes 

p: probability of 

success in a single 

trial 

— 

Noncentral F ncf 
(X,P,X) 

ν1: numerator 

degrees of 

freedom 

ν2: denominator 

degrees of 

freedom 

δ: noncentrality 

parameter 

Noncentral t nct 
(X,P,X) 

ν: degrees of 

freedom 

δ: noncentrality 

parameter 
— 

Noncentral 

Chi-Square 

ncx2 
(X,P,X) 

ν: degrees of 

freedom 

δ: noncentrality 

parameter 
— 

Normal norm 
(X,P,X) 

µ: mean 
ζ: standard 

deviation 
— 

Poisson 

Distribution 
poiss 

(X,P,X) 
λ: mean — — 

Rayleigh rayl 
(X,P,X) 

b: scale 

parameter 
— — 

Student‘s t t 
(X,P,X) 

ν: degrees of 

freedom 
— — 

Uniform 

(Continuous) 
unif 

(X,P,X) 

a: lower 

endpoint 

(minimum) 

b: upper endpoint 

(maximum) 
— 

Uniform 

(Discrete) 
unid 

(X,P,X) 

N: maximum 

observable 

value 

— — 

Weibull wbl 
(X,P,X) 

a: scale 

parameter 
b: shape parameter — 
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For the alpha parameter for the cdf and pdf, the X variable represents numeric 

arrays of values where one would evaluate the cdf or pdf, respectively. For example in 

FTR6890, it represent mission time. For the alpha parameter for inverse cdf, P is a 

probability so it would be a numeric array of values from 0 to 1 where one would 

evaluate the inverse cdf.  In FTR6890inv, this parameter would be represented by the 

ratio of the difference between the current time step failure probability initial probability 

of failure of the ith train by the difference between one and the same initial failure 

probability. However, in the current version of the code the alpha parameter used only 

requires input for cdf as the inverse cdf automatically converts the parameters used as 

well as holding the distribution constant.  

 

Subsection 2.5.b – Entering a cdf Type of Distribution 

 

Enter into the desired cell of the spreadsheet ―RunFile‖ the function name 

followed by ―cdf‖ without quotes.  

For example, if a Log-Normal Distribution was required then one would enter 

―logncdf‖ without quotes into the cell, where ―logn‖ is found in the Tables in this section 

under Function Handler. The ―cdf‖ is the cumulative distribution function.  

Note that the input parameters are entered as per the definitions of the 

distributions following the input parameter definitions in Tables 2.8-2.9. If a certain 

distribution does not contain a certain parameter, then in the preceding tables the input 

parameter will be shown as a ―—‖.  A ―0‖ value is then placed in the associated cell in the 

run file without quotes in the cell.  

 

Subsection 2.5.c – Entering an Inverse cdf Type of Distribution 

 

Enter into the desired cell of the spreadsheet ―RunFile‖ the function name 

followed by ―inv‖ without quotes.  

For example, if a Log-Normal Distribution was required then one would enter 

―logninv‖ without quotes into the cell, where ―logn‖ is found in Tables 2.1-2.7 in this 
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section under Function Handler. The ―inv‖ is the inverse cumulative distribution 

function.  

Note that the input parameters must also be entered as per the definitions of the 

distributions following the input parameter definitions in Tables 2.8-2.9. If a certain 

distribution does not contain a certain parameter, then in the preceding tables the input 

parameter will be shown as a ―—‖.  A ―0‖ value is then placed in the associated cell in the 

run file without quotes in the cell. 

 

Subsection 2.5.d – Entering a pdf Type of Distribution 

 

Enter into the desired cell of the spreadsheet ―RunFile‖ the function name 

followed by ―pdf‖ without quotes.  

For example, if a Log-Normal Distribution was required then one would enter 

―lognpdf‖ without quotes into the cell, where ―logn‖ is found in Tables 2.1-2.7 found in 

this section under Function Handler. The ―pdf‖ is the probability density function.  

Note that the input parameters must also be entered as per the definitions of the 

distributions following the input parameter definitions in Tables 2.8-2.9. If a certain 

distribution does not contain a certain parameter, then in the preceding tables the input 

parameter will be shown as a ―—‖.  A ―0‖ value is then placed in the associated cell in the 

run file without quotes in the cell. 

It can be noted, in the current version of the code, that the pdf type distributions 

planned use in the code were replaced by using inverse cdf distributions as they are 

related.  

 

Subsection 2.5.e – Creating a New MATLAB “.m” File for Distributions 

 

This subsection is for advanced users. The input run file allows the capability of 

one to build a new MATLAB file. These files will have the extension ―.m‖ (also known 

as m-files). Please note that if the file does not work, STP-TAMIL will also no longer 

function if one entered data in that file‘s input cells. 
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This m-file can be used to create a new type of cdf, inverse cdf, or pdf that does 

not appear in the Tables 2.8-2.9. It can be noted that by default, STP-TAMIL has a set of 

codes that consist of ―FTR6890.m‖, ―FTR6890inv.m‖, and ―FTR6890pdf.m‖ which 

generate cdf, inverse cdf, and pdf respectively. Also by default, ―FTR6890pdf.m‖ is not 

used within the code.   

These codes all use four parameters (alpha, beta, gamma, and delta) to work 

correctly just as the other distributions found in MATLAB. Inside of STPQUAD3CCF.m, 

the alpha and gamma parameters for common-cause triplet, common-cause doublet, and 

independent failures to load and run are calculated. If the user decides to make a new 

distribution type, then the user can change the alpha and gamma parameters to the desired 

values. The code will use the values that appear in the input deck instead of the values 

based off of equations seen in Chapter V for those specific parameters.  

After the code is created, save the code in the STP-TAMIL folder as the name the 

user would choose to call the file. Make certain to save the file with a ―.m‖ extension. 

Then inside the run file, set the parameters, or parameters, then go to the specific columns 

where the user wants to run this new distribution. Put the name of the file inside the box 

exactly as it appears as saved without the ―.m‖ part of the name. The system may require 

that the file name be entered in multiple locations in the run file.  Check Section 2.4 to 

identify all places that this entry is required.   

 

Section 2.6 – Running STP-TAMIL 

 

After completion of the input file, the code can be run in MATLAB. However, 

this does require a MATLAB license. If one is not available, after meeting proper 

requirements and receiving approval from Dr. Paul Nelson (―p-nelson@tamu.edu‖), the 

file may be run and outputs sent back to the originator. After approval, this involves 

emailing the ―RunFile.xlsx‖ file and then the originator may receive the 

―OutputFile.xlsx‖ file in response.  

At this point, it is necessary to save the file in that computer‘s STP-TAMIL folder 

where all ―.m‖ files listed in the Installation section are housed. 
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To run the code, Open the folder STP-TAMIL, and then double click on the file 

STPQUAD3CCF.m.  

This will open MATLAB automatically (showing the command window); and the 

window editor will open. The MATLAB main window must show under ―current folder‖ 

the correct folder, directory and files as shown in Installation as shown in Section 2.4.  If 

all is correct then click the green button in the Editor Window as shown in Figure 2.2. 

It is important at this point to have both the input and output Excel files closed 

during the programs execution or MATLAB will return an error.  

 

 

 

 
 

Figure 2.2 – Example of How to Run MATLAB from the Editor Window 

 

 

 

 

 

If a window pops up at anytime prompting the user that STPQUAD3CCF.m does 

not exist within the current path/folder. This indicates that MATLAB is pointing to the 

wrong folder so the button labeled ―Change Folder‖ or ―Change Path‖ must be clicked. 

An example of this error is shown in Figure  2.3.  
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Figure 2.3 – Example of Change Folder Prompt in MATLAB 

 

 

 

 

Once that is done, the program will take a few minutes to execute. A screenshot 

of the executed program is shown following in Figure 2.4. 
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Figure 2.4 – Example of Program Working and Running the Code 

 

  

 

If there is an error, check the input deck for problems or the folder to ensure all 

files required are indeed in the correct place. Advanced errors may need to be diagnosed 

further.  

The code then will determine if any cells were left blank when the input Excel file 

was created.  This will prompt a message that is shown in Figure 2.5 if there were blanks 

in the input deck and Figure 2.6 if there were no blanks in the input deck. When this 

prompt from Figure 2.5 is occurring, ―RunFile.xlsx‖ is being written to and the empty 

cells are replaced with the default values. These default values come from the industrial 

average method shown in Chapter V and are also shown in the Data Row of Appendix B.  

In this particular case, cells ―D2‖, ―E2‖, ―F2‖, ―P2‖ and ―Q2‖ were filled in with default 

values.  
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Figure 2.5 – Example of Filling Default Cells Prompt in MATLAB 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 – Example of No Empty Cells Prompt in MATLAB 

 

 

 

After the program finishes correctly, the code will print out several probability of 

critical station blackout scenarios. ―P_CSBO1‖ is the probably of critical station blackout 

for only independent failures, ―P_CSBO2‖ is the probably of critical station blackout 

considering common-cause doublet failures, ―P_CSBO3‖ is the probably of critical 

station blackout considering common-cause triplet failures, and ―P_CSBO‖ is this total 

probability of critical station blackout. ―P_CSBO‖ should be the sum of ―P_CSBO1‖, 

―P_CSBO2‖, and ―P_CSBO3‖.  Multiple ―P_CSBO‖ may be printed out. The output is a 

result of how many data rows one inputted into the RunFile.xlsx file. See Figure 2.7 for 
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an example of one row of data run through STP-TAMIL that has values filled in on the 

excel file.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 – Example of Code Working and Finishing Showing ―P_CSBO‖ 
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Figure 2.8 shows an example of the code after multiple cases are entered into the 

data rows of the run file.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 – Example of Code Working and Finishing Showing Multiple ―P_CSBO‖s 

 

 

 

Note that there are multiple data rows, four in this example, input into the 

RunFile.xlsx file, so there are multiple ―P_CSBO‖ values that are generated and 

outputted to the Output.xlsx file. See Section 2.7 on how to read the output file. When the 
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program finishes correctly, there will be an ―END OF PROGRAM‖ message and the 

program will terminate.   

 

Section 2.7 – Output File 

 

There are two ways to read the output of this file. The first way is to read it 

straight off of the command window from MATLAB. The ―P_CSBO‖ values will print 

out in order from the lowest numbered Data Row to the highest.  

The second way, the preferred way, is that the MATLAB script after execution 

will create an Microsoft Excel file that will store all the values. This file will be in the 

same folder ―STP-TAMIL‖ and will be initially titled, ―OutputFile.xlsx‖. After running 

the code, save the program created under a new file name to avoid overwriting the 

original programming. It can also be noted that the Excel file will show more digits on 

the answer than the MATLAB command window. This could be useful for comparison or 

for future work.  

It is also important to note that only the amount of data rows that are input will be 

overwritten in the output. If one ran a case of three data rows and later ran a case with 

only two data rows, then only the first two data rows would be overwritten in the output 

file. However, the output file would still show the third data row values. Therefore, it is 

important to delete everything in the output file before each code execution. The output 

file itself can also be deleted as well; and it will create a new one the next time the code is 

executed.  

The OutputFile.xlsx can later be sent to the originator of the input file, probably 

South Texas Project, by email or any other form of data transfer.  

An Example of ―OutputFile‖ is shown in Figure 2.9. It also shows one of the cells 

highlighted, showing the degree of precision that variables hold in the output file. It can 

be noted that this is the output file generated from the case of Figure 2.8, which had four 

input data rows.  
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Figure 2.9 – Example of OutputFile After Code is Executed 

 

 

 

It might be interesting to note that the only thing switched between each data row 

was the type of recovery used. Where column ―B‖  leads to No Credit for Offsite or 

Onsite Power, column ―C‖ takes Credit for Offsite power Only, column ―D‖ takes Credit 

for Offsite and Onsite only after Full Failure has Occurred, column ―E‖ takes Credit for 

Full Recovery (Onsite + Offsite). These Cases are described further in Chapter IV.   

 

Section 2.8 – End Notes 

 

It is always a good idea to keep a backup of a working copy of the program if one 

chooses to edit it. Should a problem arise with the program not listed in this user manual, 

one could first check the MATLAB documentation [12]. If this does not help, then with 

proper rights one should contact Dr. Paul Nelson or Paul Rodi and attempt to get a new 

copy or seek assistance. Contact information is listed earlier in this chapter.  
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CHAPTER III 

THEORY 

 

This chapter will include a formal statement of the CSBO problem for simplified 

Markov models, and a derivation of the nonrecovery integral as an approximate solution 

to that problem. This derivation employs the methodology of asymptotic analysis.  

The main purpose of this thesis is to develop an algorithm that will compute the 

probability of critical station blackout after a loss of offsite power (LOOP) has occurred. 

This is done through the non-recovery integral; therefore, it is critical to fully explain the 

parts that contribute to that integral.  

Section 3.1 will discuss setting up the problem for the non-recovery integral as 

well as introduce the Markov models for both a two-EDG system and the three-EDG 

system. This section will also include a subsection that contains a list of variable names 

and definitions used throughout this chapter. Section 3.2 goes into the two-EDG case and 

shows the state-transition equations while Section 3.3 describes the asymptotic solution 

method employed throughout the next few sections. This solution is broken up into 

different order solutions described in this section and shown in multiple subsections. 

After the solution is determined, a subsection discusses how this result leads to the non-

recovery integral. Section 3.5 discusses how common-cause failures contribute to this 

model. Section 3.6 gives a general form of the non-recovery integral and Section 3.7 

gives adds a third EDG to this two-EDG model and shows how the new non-recovery 

equation would look as well as describing what the various terms entail. Section 3.8 goes 

back to the three-EDG Markov Model and shows the initial conditions and the state-

transition differential equations that could be used to solve this more simplified approach.   

 

Section 3.1 – Setting Up the Problem 

  

 This chapter treats two different models. The first is a two-EDG simplified model 

and in that model the non-recovery integral is fully developed, which includes common-

cause failures. This model is described in Subsection 3.1 and the associated asymptotic 
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analysis is described in Sections 3.2 through 3.7. The code developed for this thesis, STP-

TAMIL version 1.0, uses the non-recovery integral justified in these sections.   

The second model is similar, but incorporates a three EDGs. This model may be 

referred to as the advanced three EDG model. It is described in Subsection 3.1.b and the 

associated asymptotic analysis approach is mentioned in Section 3.8.  The code in this 

thesis does not fully represent the result, but even description of the model highlights 

some important issues.  

Both models provide useful insights into capabilities and limitations of the non-

recovery integral. The difference should lie in the simplicity of the integration forms and 

the usage of known constants. 

This section also contains a table for the list of variables used throughout the 

thesis as a reference. This should be used as a quick reference but not as an absolute 

reference as variables are used multiple times so the specific section of the thesis should 

be reviewed before assuming a meaning for a variable.  

 

Subsection 3.1.a – Simplified Two-EDG Markov Model 

 

The first step to deriving the nonrecovery integral will be to start with a simple 

two emergency-diesel-generator case and work on from there. The main purpose of this is 

to show the development as well as show how to go from the model developed in 

previous work [1], and incorporate common-cause failure.  

To incorporate either i) failure or repair that are governed by statistical 

distributions, or ii) positive critical times, will require reentry time models as found in 

Nelson and Wang [17]. This will require future development, so for now only a simple 

case for the system is considered. As seen in Figure 3.1, the system consists of two EDGs 

connected by an OR gate, as an event tree, or as an AND gate, as a fault tree. The idea for 

this methodology comes from previous work done by Texas A&M and South Texas 

Project [1]. 
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Figure 3.1 – State-Transition Diagram for the Two-EDG Markov Model 

 

 

 

The two emergency diesel generators are labeled as ―0‖ and ―1‖. A system 

blackout (SBO) or the system failing could occur if the two EDGs fail independently (in 

either order) or by both failing simultaneously while running. The latter is known 

generally as a common-cause failure. These failures can occur at either start-up, classified 

as a failure on demand, or while in operation, known as a failure to run (FTR). 

Independent failures of the ith EDG are distributed exponentially with a constant rate i  

(mean time to failure, 1/ i ) and common-cause failures are distributed exponentially 

with a constant rate 01 . It is assumed that if only one EDG has failed then the other one 

can still operate, and the plant would not enter a station black out. It is also assumed that 

the one that failed has a chance to be repaired. Repairs of EDG i are taken as distributed 

exponentially in time, with a constant rate i , for EDG i. When both EDGs have failed 

simultaneously and the station has entered its blackout scenario, the model assumes that 

repair is not possible. 

Common cause events are classified as x/n type events where x is the number of 

failures out of n, the total amount that could fail. For example, if two EDGs fail out of a 

possibility of three EDGs, then this scenario would be a 2/3 common cause event. 
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In Figure 3.1, the system is presented and the binary index of a state is to be 

interpreted as follows. If the mth bit, as read from the right starting at m=0, is zero then 

the mth EDG is operating in that state, and if it is zero then that EDG is failed in that 

particular state. The failure rates (lambdas [λs]) and repair rates (mus [μs]) are indexed 

according to the EDG, zero or one, respectively it fails or it is repaired to effect the 

transition. The 2/2 common cause failure rate, from the system modeled, is then indexed 

―01‖ because both EDGs would fail, if they were in operation, from any such event. Note 

that common-cause failures contribute to the transitions from states from which only one 

EDG has failed, either states ―01‖ or ―10‖, to the station blackout state 3. This is because 

any such common-cause event would cause station blackout, even if one of the two 

EDGs had already failed.   

The idea of the use of epsilon, ε, is to reflect the belief that the independent failure 

rates are relatively small compared to reciprocal of the mission time (1/T). The failure 

rates can be an order of small parameter epsilon, ( )O  , or, for the common-cause failure 

rates, an order of extremely small parameter epsilon
2( )O  . In this description, ―small‖ is 

used as more of a relative term, so it is necessary to specify what the basis of the 

comparison is for these values. In this case it is the repair rates. The basis for comparison 

represents terms (mean times to repair) that are conventionally taken as order of unity, 

(1)O . Therefore, there is no epsilon associated with the repair rates.   

The assumption here is that the independent and 1/2 failure rates are small relative 

to the repair rates. The 2/2 common-cause failure rate is also to be much smaller as 

compared to independent and 1/2 failure rates; therefore, common-cause is assumed to be 

extremely small compared to the repair rate. These are in practice reasonable 

assumptions. For example, as shown in the Results and Benchmarking section (Chapter 

V), the failure rates were taken as about 1.0e-3 per hour, mean time to failure is then 

about 1000 hour. This is about one and a half orders of magnitude smaller than the repair 

rate of 0.065 per hour, mean time to repair is about 15.5 hours, corresponding to Weibull 

distribution (α=0.739, β=15.50 hours) that was used for the distribution of repairs.  

Common-cause failures typically occur with about 1% of the frequency of 

independent and 1/n failures [18, 19]. Common-cause failure frequencies are about two 

orders of magnitude smaller than the O(ε) independent and 1/m failure rates; since ε was 
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already established as about 1.0e-1.5 then that is very consistent with 012  is about equal 

to 
2( )O  .  

Note that the typical mission time of 24 hours, when expressed as a frequency 

(1/24 per hour or 0.04 inverse hours) is an (1)O quantity. (1)O represents an order of one 

value. This will be important in the following developments described in the next 

sections.  

 

Subsection 3.1.b – Advanced Three-EDG Markov Model 

 

The idea in this subsection is to describe a simplified three-EDG model to be used 

as a basis for development of the non-recovery integrals. For this advanced three-EDG 

case, the figure and equations become more complex. An example of how it would 

appear can be seen in Figure 3.2. 

The state numbers are defined by the binary number defined by the specific EDGs 

that have failed. For example, if EDG 1 and EDG 3 have failed, then it would be in state 

5 due to the failure of the EDGs represented in binary as ―101‖. 
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Figure 3.2 – State-Transition Diagram for the Three-EDG Markov Model 

 

 

 

It can be noted that the repair rates, mus (μs), are constant throughout the model. 

If two EDGs are failed and one is still in operation, then either of the EDGs have a 

chance for repair. However, both cannot be repaired at the exact same time. The model 

assumes that one EDGs has the chance to be repaired, and then the other one has a chance 
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to be repaired. For example, in Figure 3.2 if EDGs were to be repaired, State 4, which has 

a failure of EDGs 1 and 2, can either repair EDG 1 and go to state 2, where EDG 2 is still 

failed, or repair EDG 2 and go to state 1, where EDG 1 is still failed. Therefore, the 

model still assumes no common-cause repair rate. 

For the three-EDG state-transition differential equation, this methodology no 

longer looks to set up in the exact same non-recovery integral found in the Rodgers et al. 

[1]. Therefore, there are a few assumptions that can be made. The first is that all of the 

single failure rates, , are the same,  and therefore does not depend on a specific EDG, 

defined as 1 . This is the same case for all double common cause, now defined as 2 , and 

triple common cause failure rates, now defined as 3 . In addition, the repair rates are 

constant throughout the model, defined by .  

Note that this assumption of constant rates is not necessarily valid during cut sets 

that requires one or multiple EDGs to be offline due to maintenance. This would vary the 

repair rates as well as the failure rates. This requires further research to develop the 

dynamic repair rate.  

 

Subsection 3.1.c – List of Variables  

 

Table 3.1-3.2 shows the variables and definitions that will be used in this chapter/thesis. 
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Table 3.1 

First Part of Variables and Definitions for the Derivation of the Non-Recovery Integral.  

Variable Definition 

if  
Probability density function for failure of jth backup train 

(0)iF
 

Probability of failure to start for ith backup generator 

G  Cumulative distribution function for recovery of offsite power 

Rj
jR
 

Cumulative distribution function for repair of jth generator 

T  Mission time 

cT
 

Critical time 

CSBOT
 

Time of critical station blackout 

  Time of failure of last train (same as 
CSBOT ) 

'

j  
Time of failure of jth train    

iP
 

Probability that the system is in state i 

iP
 

Regarded as a known constant for a system in state i 

n *order 

( )nP  Probability of order n 

  Repair Rate 

i  
Repair Rate of ith backup generator 

  Failure Rate 

i  
*Failure Rate of ith backup generator  

ij  
*Failure Rate of ith and jth backup generator (two-way) 

ijk
 

*Failure Rate of ith, jth and kth backup generator (three-way) 

1  
*Failure Rate of Indepent Failures 

2  
*Failure Rate of common cause doublet Failures 

3  
*Failure Rate of common cause triplet Failures 

* Certain variables might be used multiple times with different meaning. See assosciated  

section to make sure correct variable meaning is used.   



   45 

 

Table 3.2 

Second Part of Variables and Definitions for the Derivation of the Non-Recovery 

Integral.  

Variable Definition 


 

Small parameter for order of failure rates 

( )O 
 

Order of epsilon 

 i ip 
 

Net rate at which EDG i is failing at time i . Where  is defined as 

the probability density function for independent failures while the 

ith EDG is operating.  

 

i  
Time of failure of EDG i 

ij
 

Time of common-cause doublet failure of EDG i and j 

ijk
 

Time of common-cause doublet failure of EDG i, j and k 

ip
 

Probability density function for independent failures while the ith 

EDG is operating.  

ijp
 

Probability density function for common-cause doublet failure of 

EDG i and j with both are operating 

ijkp
 

Probability density function for common-cause triplet failure of 

EDG i, j and k with both are operating 

H  Non-Recovery Function 

* Certain variables might be used multiple times with different meaning. See assosciated 

section to make sure correct variable meaning is used.   

 

 

 

Section 3.2 – State-Transition Equations for Two-EDG Case 

 

From Figure 3.1, the state-transition differential equations are shown in Equations (3.1) 

though (3.4). 

 

20

0 0 1 0 01 0 0 1 1 2 
dP

P P P P P
dt

           (3.1) 
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21

0 1 1 1 01 1 0 0 
dP

P P P P
dt

         (3.2) 

22

1 2 0 2 01 2 1 0 
dP

P P P P
dt

         (3.3) 

2 2 22

1 1 01 1 0 2 01 2 01 0   
dP

P P P P P
dt

             (3.4) 

 

Here ( )i iP P t  is the probability that the system is in state i at time t. 

Manipulations of these equations would allow this system of four first order differential 

equations (ODEs) in four unknowns to be written more compactly. It is more convenient 

to leave it in this form for the manipulation following.  

The accompanying initial conditions for this system are shown in Equations (3.5) 

though (3.8). 

 

  (1) (1) 2 (2)

0 1 2 30 1P P P P       (3.5) 

  (1)

1 10P P  (3.6) 

  (1)

2 20P P  (3.7) 

  2 (2)

3 30   P P  (3.8) 

 

For the moment the quantities (1)

1P , (1)

2P , and (2)

3P are to be regarded merely as 

known constants; however, the parenthetical superscripts have been judiciously selected 

to provide a comfortable fit into the notational framework to be introduced shortly. Also, 

the epsilons reflect the assumption that a given EDG is available but the other either is 

unavailable (e.g., for maintenance) or fails to start at time of the initiation LOOP event is 

small ( ( )O  ) and that the probability that each is either unavailable or fails to start is 

even smaller yet (
2( )O  ).  

 

Section 3.3 – Asymptotic Solution for Two-EDG Case 

 

It is rather trivial to solve the initial Equations ((3.1)-(3.8)) numerically; however, 

the calculation of the contribution to the time-dependent probability of station blackout, 
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3( )P t , from the minimum possible number of EDG failures that could cause a blackout, 

two in this model, is needed. While that computation could be carried out analytically, by 

evaluating all of the integrals that would arise, it is intended to leave those integrals 

unevaluated. This is to arrive at a result having the form of the nonrecovery integral 

found in Rodgers et al. [1], except for the inclusion of common-cause contributions 

associated with the rate constant 12 . The hope is that the form of this common-cause 

contribution will suggest how common-cause failures should be incorporated into the 

nonrecovery integral in the more general setting.  

The parameter ε introduced in the state-transition equations will be indispensable 

to this calculation, which will require the use of an asymptotic expansion process. The 

solution should be in the form of Equation (3.9). 

 

         (0) (1) 2 (2) ( )

0

  ,    0,..,3n n

i i i i i

n

P t P t P t P t P t i  




      (3.9) 

 

For all values of n up to the smallest,  ( )n

iP t is not identically zero. The 

anticipated value of this index is n=2, but this needs more proof. The procedure by which 

the solution will be obtained is to substitute the asymptotic expansions (3.9) into the 

initial value problem (3.1)-(3.8) and systematically equate the coefficients of terms of 

like order n in ε, for first n=0, then n=1 and etc. At a given value of n, this will give a 

determined initial value problem in the four unknowns  )

0

(nP t ,  )

1

(nP t ,  )

2

(nP t , 

and  )

3

(nP t . The hope is for the initial value problems to be sufficiently simpler than 

state-transition equations to permit them to be solved analytically, at least up to the value 

of interest n, assumed as a value of two.  

There is an interpretation of the asymptotic solution to order n that can serve as a 

useful check on the computations done in MATLAB. The asymptotic solution up to order 

n should agree with the solution that would prevail if a maximum of n failure occurs. 

This is where single-point failures, independent and one-way common-cause failures as 

incorporated in the failure rates i  are counted as single failures which is with multiplicity 
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of one. By contrast, common-cause doublet failures, as incorporated in the failure rate 

01 , are counted with multiplicity of two.  

 

Subsection 3.3.a – For the n=0 Case for Two-EDG Case 

 

The results of carrying out the preceding procedure at order zero, equating 

coefficients of 0 ) in the state-transition equations lead to the equations seen in Equations 

(3.10)-(3.13). The initial conditions for the previous set of equations can be seen in (3.14) 

through (3.17).  

 

(0)

(0) (0)0

0 1 0 2 
dP

P P
dt

    (3.10) 

(0)

(0)1

0 1  
dP

P
dt

 
   

 (3.11) 

(0)

(0)2

1 2   
dP

P
dt

   (3.12) 

(0)

3   0
dP

dt
  (3.13) 

   0

0 0 1P   (3.14) 

   0

1 0 0P   (3.15) 

   0

2 0 0P   (3.16) 

   0

3 0 0P   (3.17) 

 

This system can easily be solved. The solution of Equations (3.13) and (3.17) is 

obvious to see as it is zero throughout, or 
   0

3 0P t  .  The solutions from Equations 

(3.11) and (3.12) can then be readily solved and shown as 
   0

1 0P t  and 
   0

2 0P t  , 

respectively. After, that these can be input into Equation (3.10) and the solution can be 

seen as
   0

0 1P t  . Therefore, for the lowest order in ε, the emergency AC system 

analyzed performs perfectly. That is in agreement with the interpretation suggested above 

of the order n as the maximum number of failures allowed for, counting number by 
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multiplicities as described in the first part of Section 3.3. At present that order is zero, 

meaning zero failures. However, if there are no failures, then the initial conditions shown 

in Equations (3.5) though (3.8) assert that the system initially is in state 0, both EDGs 

running, with certainty, probability of one, and if there are no subsequent failures, then 

that certainty persist for an indefinite time. The results obtained are comforting but used 

as mostly a check on our assumptions and analysis. The interpretation suggested for the 

solution of order n is also checked by the result; although, that is hardly surprising.   

 

Subsection 3.3.b – For the n=1 Case for Two-EDG Case 

 

For the lower order case n=0, it is expected that the solution of the differential 

equation for (1)

3P  to be the catalyst that permits analytic solution of the remainder of the 

first-order system of ODEs. If the first order terms in Equation (3.4) were equated with 

the initial conditions, the result would be Equations (3.18) and (3.19) which is where this 

methodology would start.  

 

(1)

(0) (0)3

1 1 0 2   
dP

P P
dt

   (3.18) 

   1

3 0 0P   (3.19) 

 

Except from the results from the n=0 case, it is known that (0)

1 2

(0)( ) ( ) 0P Pt t  , 

so these equations can simplify to Equation (3.20). 

 

(1)

3    0
dP

dt
  (3.20) 

 

This equation still using Equation (3.19) as the initial condition and the solution is 

)

3

(1 ( ) 0P t  , is expected. This result already shows that no ―single-point failures‖, i.e. no 

failure of a single EDG, where failures are counted with multiplicities as indicated 

previously, will lead to station blackout, which is a design criterion.  
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Similarly, the first-order counterpart of Equation (3.3) and of the associated initial 

conditions result in Equations (3.21) and (3.22).  

 

(1)

(1) (0) (0)2

1 2 0 2 1 0   
dP

P P P
dt

       (3.21) 

   1 (1)

2 20P P  (3.22) 

 

From the results at order n=0, it is known that )

2

(0 ( ) 0P t  and )

0

(0 ( ) 1P t  , and 

from preceding computation we know that )

3

(1 ( ) 0P t  . Therefore, Equation (3.21) 

becomes Equation (3.23) which still uses Equation (3.22) as the initial value.  

 

(1)

(1)2

1 2 1   
dP

P
dt

     (3.23) 

 

The solution of this linear first order initial value problem, Equation (3.23), is 

then Equation (3.24).  

 

     1 01 1 1
1 ( )(1) (1) 1

2 2 1 1 0 2

10

  1

t

tt t tP t e e d P e eP
   

 


    
     

 
  (3.24) 

 

Similarly, the first-order contribution to )

1

(1 ( )P t is seen in Equation (3.25). 

 

     0 0 0 0 01 ( )(1) (1) 0
1 1 0 0 1

00

  1

t

t t t t
P t e e d P eP e

    
 



     
     

 
  (3.25) 

 

The rightmost forms of Equations (3.24) and (3.25) show the fully analytic forms 

for the probabilities, as a function of time, of the states having a signal failed EDG. The 

intermediate forms, in terms of the definite integrals, will be most convenient for the 

purposes of reproducing the lowest nonzero order of )

3

(nP  in the form of the nonrecovery 

integral in Rodgers et al. [1].  
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The first-order differential Equation (3.1) for (1)

0P  and associated initial condition 

are shown in Equation (3.26).  

 

0 0 01

(1)
(1) (1)0

1 0 0 2 1 1  
t t tt

P P
dP

e e e e
dt

       
     (3.26) 

 

The results from the n=0 order case give )

0

(0 1P  , and the prior results from the 

current first order case give the expressions for )

1

(1P  and )

2

(1P  are found in Equations 

(3.24) and (3.25) respectively. Substituting these previously listed equations, (3.24) and 

(3.25), into Equation (3.26) one can solve for Equations (3.27) and (3.28) 

 

   0 0 1 1

(1)
(1) (1)0 0 1

0 1 0 1 1 2

0 1

     1 1
t t t tdP

e e P e
dt

P e
    

   
 

   
         

              
        

 

(3.27) 

   1 (1) (1)

0 1 20 P PP     (3.28) 

 

Algebraically Equation (3.27) simplifies to Equation (3.29).  

0 0 1 1

(1)
(1) (1)0

1 0 0 2 1 1  
t t t t

P P
dP

e e e e
dt

         
     (3.29) 

 

The initial value problem is an evaluation of a definite integral so the solution to 

Equation (3.29) can be seen in Equation (3.30). 

 

    0 1
1 (1) (1)0 01 1

0 1 2

0 1 0 1

       
t tP t P e P e

   

   

    
        

  
 (3.30) 

 

This is simplified as shown in Equation (3.31).  

 

       0 0 1 1
1 (1) (1)0 1

0 1 2

0 1

  1   1
t t t tP t P e e P e e

    

 

      
        

  
 (3.31) 
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Equation (3.31) can be written in terms of Equations (3.24) and (3.25). This is 

shown in Equation (3.32).  

 

           1 1 1

0 1 2 P t P t P t   (3.32) 

 

With 
   1

3 0P t  , this implies that the net sum of all the first order probabilities is 

zero. It would be of some interest to note whether this is true for the probabilities of all 

finite orders, other than the zero case for which the net sum would be equal to one. If this 

is the case, then the total net sum of all probabilities up to any finite order is unity. This 

exercise should be considered for future work.  

This is not our primary interest that is to obtain the analytic expression for  2

3P , 

which will not require knowledge of  1

0P to obtain.  

 

Subsection 3.3.c– For the n=2 Case for Two-EDG Case 

 

As for the n=1 order case, the appropriate order initial-value problem 3P  for 

[Equations (3.33) and (3.34)] is started with and subsequent developments ensue.  

 

(2)
(1) (0) (1) (0) (0)3

1 1 01 1 0 2 01 2 01 0   
dP

P P P P P
dt

            (3.33) 

   2 (2)

3 30  PP   (3.34) 

 

With the knowledge of the results from the previous two subsections, the results 

from Equations (3.25),
 

   0

1 0P t  , (3.24), 
   0

2 0P t  , and (3.33),
   0

0 1P t  , this 

becomes Equation (3.35) . 
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(2)

(1)3 0 0 0
1 1 0 0

(1) 1 1 1
0 2 1 1 01

( )
    

0

( )
   

0

tdP t t
e e d

dt

tt t
P e e d

P
  

  

  
   

    
    

  

    
   

  

 

 

(3.35) 

 

 

If Equation (3.35) is integrated from 0 to the time constant t, the result can be 

evaluated for (2)

3 ( )P t  as seen in Equation (3.36).  

 

   2 (2) (1) 0 1
3 3 1 1 1

1
0 1 0

1 0 0 1

(1) 1 0
2 0 0

1
1 0 1

0 1 1 0 01 01

   

0

( )

0 0

0

( )

0 0 0

t
P t e d

t
e d d

t
e d

t t

P P

e d d d

P

 
 


  

   

 
 


  

     


  

 
  


 

 
   

 

 

(3.36) 

 

 

The various integrals on the right-hand side of Equation (3.36) can be evaluated 

analytically; however, for the purposes of this thesis, this form is preferred because 

integrands have a probabilistic interpretation that connects to a possible general form of a 

non-recovery integral. Using that interpretation, it is left open to future work if the 

integrals need to be evaluated further.  

 

Section 3.4 – Interpretation as a Nonrecovery Integral for Two-EDG  

                       Case 

 

The contributions of the right hand side of Equation (3.36) can be rearranged and 

rewritten in a form that groups together terms of similar interpretations. If it is written for 

some specific mission time T, the result can be written as Equation (3.37).  
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    0 1 1 02 (2) (1) (1)

3 3 1 1 1 2 0 0

0 0

ˆ( )

1 0 0 1 01 01

0 0 0

     

T T

T T T

P T e d P e d

e d d d

P P
   

  

   

     

 

 

  

 

 

 

 (3.37) 

 

In Equation (3.37),  0 1
ˆ max ,   ,  0 1min ,   , and i  , whenever 

i   for the ith electrical train or EDG. The double integral in Equation (3.37) is 

comprised of two integrated integrals in Equation (3.36). This resulted from noticing that 

the first of the iterated integrals in Equation (3.36) is over the portion of the square 

defined by   0 1 0 1, | 0 ,0t t        such that 0 1  , which is to refer to above the 

diagonal defined by 0 1   in the 0 1   plane. Above that diagonal the model relates 

to 1   0  , and 0   . Therefore, in this region, the integrand in the first of the 

iterated integrals in Equation (3.36) is the same as that of the double integral found in 

Equation (3.37). Similarly, the region of integration in the second iterated integral in 

Equation (3.36) is the same part of the square above the diagonal in the 0 1   plane, and in 

that region the integrand in that iterated integral is the same as that double integral found 

in Equation (3.37). The sum of the two iterated integrals from Equation (3.36) is then the 

same thing as the double integral found in Equation (3.37).  

Further interpretation of Equation (3.37) as the nonrecovery integral, with 

common-cause failure contribution included, it is useful to consider what the form of this 

equation would be without common-cause failures. The difference between these two 

equations would then show the attributions of common-cause failure. This would 

represent what must be added to the nonrecovery integral from Rodgers et al. [1] in order 

to incorporate common-cause failure.  

In the absence of common-cause failures, 12 0  , therefore, the last term in 

Equation (3.37) would disappear. Further it is noted that 
3 0

(2) (1) (1)

1
ˆP̂P P , where (1)

1P̂  is 

the  O  probability that EDG i initially is unavailable, independently of the status of the 
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other EDG. Note that the P  variables are indexed to a particular EDG. This is logical but 

can be somewhat confusing as the remaining singly subscripted variants of P are indexed 

to Markov states. Additionally, in the present case (1) (1)ˆ
i iP P , for i equals 1 or 2, is the 

independent probability that respectively  EDG 0 or 1 initially unavailable. With these 

parameters taken into account, the equation for the absence of common-cause failures 

becomes Equation (3.38).  

 

    0 1 1 02 (1) (1) (1) (1)

3 0 1 0 1 1 1 0 0

0 0

ˆ( )
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T T

P T P P P e d P e d

e d d
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   

 

 

  



 



 

 

(3.38) 

 

 

As specialized to the present case, the corresponding expanded form of the 

nonrecovery integral as presented in Rodgers et al. [1] is shown in Equation (3.39). 
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

  

  

  


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(3.39) 

 

 

The asymptotic order parameter, , has temporarily been reinserted adjacent to 

the term it is associated with in order to allow the following observation: To the leading 

order of 2 , the terms (1)ˆ
iP  in the two single integrals of Equation (3.39) are negligible. 

Therefore, to this order, and with the deletion of the asymptotic order parameter, 

Equation (3.39) becomes equivalent to Equation (3.38). Then the leading order of the 

nonrecovery integral reported by Rodgers et al. [1], with critical time set to zero, agrees 

with the leading order approximation of the probability of station blackout as determined 

from the current asymptotic expansion.  

However, both of these results ignore contributions from common-cause failures. 

It is now important to look at the difference between Equations (3.38) and (3.37), the 

latter of which does contain contributions from common-cause failures. The idea is to 
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look at the interpretation of the differences in terms of common-cause failures. The hope 

is that this interpretation will suggest an appropriate form for the nonrecovery integral, 

with common-cause failures included, with more general failure and repair distributions 

uses and with a larger number of EDGs (at least three).  

 

Section 3.5– Common-Cause Failure Contributions for Two-EDG Case 

 

Equation (3.37) can be written as Equation (3.40).  
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    

  

 

 

 

 (3.40) 

 

The first four terms in the right hand side of Equation (3.40) are exactly the same 

as those found in Equation (3.38). These terms exist due to the contribution of the 

probability of station blackout, within some mission time T, caused by independent 

failures of the two EDGS. Then the contributions from common-cause events must be the 

other four terms of Equation (3.40).  

More specifically Equation (3.41) shows the difference between the total 

probability that both of the EDGS are initially unavailable and the probability of the two 

EDGs being initially unavailable due to independent random events.  

 

(2) (2) (1) (1)

01 3 0 1
ˆ  ˆP P P P   (3.41) 

 

Therefore, it must be the probability of both being unavailable due to a common-

cause event.  

Similarly, Equation (3.42) has the interpretation of the probability that EDG 0 

initially is unavailable because of common-cause event shock that caused it to fail, but 
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not EDG 1. As a result, EDG 1 would still be in operation. Note that a shock is a 

common-cause event that causes a system to fail. EDG A fails which in turn causes EDG 

B to fail so B would fail by result of a shock. 

 

(1) (1) (1)

0 1 0
ˆ P P P   (3.42) 

 

Correspondingly, Equation (3.43) is the probability that EDG 0 is available at the 

time of the LOOP but EDG 1 is not, even though a common-cause event occurred that 

had the potential to cause both to be unavailable.  

 

(1) (1) (1)

1 2 1
ˆP P P   (3.43) 

 

Finally, the last term of the right hand side of Equation (3.40) is, to second order 

in epsilon, the probability at the end of the mission time that the station blackout has 

occurred. Both EDGs initially were available but became unavailable during the mission 

time because of the same common-cause basic event. This knowledge leads Equation 

(3.40) to become Equation (3.44).  
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(3.44) 

 

It should be noted that both terms on the right hand side of Equation (3.41) are of 

order epsilon squared, 
2( )O  so their difference has the order of 2  or higher. A better 

understanding of how to approach this problem would be to write the initial condition for 

state 3 as Equation (3.45). 

 

2 (1) (1) ( )

3 0 1 01( ˆ0 ˆ) n nP PP P    (3.45) 

 

The terms on the right hand side have the same interpretation as the preceding 

discussion above, but with the asymptotic order of the common-cause doublet failure 

chosen as appropriate to the problem at hand. For three EDGs, n=2 probably, although 

ideal use would require n=3, similar remarks apply to Equations (3.42) and (3.43). These 

would also apply to Equation (3.46). 
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(1) 2 (2)

0 0 0
ˆ      (3.46) 

 

In Equation (3.46), the first term on the right hand side refers to independent 

failure (hazard) rate and the second is the one-way common-cause failure rate for EDG 0.  

 

Section 3.6– The General Form for the Two-EDG Case 

 

In the first and second lines of Equation (3.44), the identification shown in 

Equation (3.47) is made.  
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Similarly, Equation (3.48) can be determined and written.  
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Note that  i ip  , via the defining expression, is the net rate at which EDG i is 

failing at time i . This ip  is defined as the probability density function for independent 

failures while the ith EDG is operating.  

Similarly, Equation (3.49) used the fact that i  itself is order of epsilon,  O  .  

 

     3

0 1 0 0 1 1p p O       (3.49) 

 

Likewise, in the last four terms in Equation (3.44) on the right hand side, 

identification needs to be made which is shown in Equation (3.50). Note that 01p  is the 

pdf for common-cause doublet failures.  
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        (0) 3 3

01 01 01 0 01 01 0 01:p P P O O            (3.50) 

  

The net result of substituting the identifications into Equation (3.44) results in 

Equation (3.51).  
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 (3.51) 

 

If the  3O   correction is neglected, then the result from Equation (3.47) is the 

two-EDG case in the form of the non-recovery integral with common-cause failures 

incorporated.  

 

Section 3.7– For the Three-EDG Case 

 

For the three emergency diesel generator case, the conjectured form of the 

probability of a station blackout occurring within the mission time, while also allocating 

an addition critical time cT  for recovery following SBO before coping systems must be 

involved in Equation (3.52). 
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(3.52) 

 

Here in Equation (3.52), (1)

iP  is the probability that EDG i is unavailable at the 

onset of LOOP, from either independent or a one-way common-cause event;  ' "i i is the 

smaller (larger) of the two indices {0,1,2} different from i; ˆ
ijP  is the probability EDGs i 
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and j initially are unavailable because of a 2CCF; 
012P̂ is the probability that all three 

EDGs initially are unavailable because of a three-way CCF;  3 1 2 3, ,H T T T  is the 

probability that none of the three EDGs recovers after respective (co-terminating) 

durations of iT  from failure of the ith EDG; ip  is the probability density function for 

independent or one-way common-cause failures of EDG i while running; ( )ijp i j  is the 

probability density function for common-cause doublet failures of EDGs i and j; and 

012p is the probability density function for common-cause triplet failures.  

Equation (3.52) can be derived in detail as follows. First, the six different types of 

events that would cause failure of an emergency diesel generator, which are labeled 

respectively and in order as S3, R3, S2, R2, S1, and R1, are distinguished. S3 and R3 

represent common-cause triplet failures to respectively start or run, S2 and R2 represent 

common-cause doublet failures to respectively start or run, and S1 and R1 represent one-

way common-cause and independent failures to respectively start or run. A minimal cut 

set then corresponds to any unordered string formed from these symbols that represents 

failure of all three EDGs. Such a deletion of any individual symbol from that string 

cannot represent failure of all three EDGs. By convention, we then list the symbols in any 

individual string in the order of the above list. In this lexicographic order defined by this 

convention there are then the following 13 classes of minimal cut sets shown in Table 

3.3. These thirteen classes of cut sets defined in Table 3.3, are represented by the ten 

terms in Equation (3.52) as also shown in the second column of Table 3.3. Note that the 

other three terms that appear in Table 3.1 as ―*N/A‖ are labeled in this way due to the 

following reason. If independent and one-way common-cause failures are assumed to be 

 O  , then the lowest-order contributions to the right-hand side of Equation (3.52) are 

 2O  ; however, if common-cause doublet failures are  3O  , then the contributions 

from events of any of the classes 2S2, S2R2, or 2R2 would be are  4O  , and therefore 

higher-order. Situations for which either of these order assumptions is invalid seem 

unlikely, but if such arise then Equation (3.52) could easily, but tediously, be modified to 

incorporate appropriate contributions from any or all of these three classes of system 

failures.  
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Table 3.3 

List of the Minimal Cut Sets. 

*See note in paragraph preceeding Table 3.3 

Definition Represented from Equation (3.52) as 
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From Equation (3.52), one can simplify it assuming that all of non-recovery 

integral repairs and offsite recovery are assumed to be mutually exclusive as opposed to 

independent, which was originally presumed. It is also assumed that the failure and repair 

rates for each trains are the exact same as they are identical components. Therefore, 

Equation (3.53) can be determined which is also displayed as Equation (1.1) earlier in 

Chapter I.  

 

 

Here CSBOF  is the cumulative density function (cdf) for the occurrence of critical 

station blackout, F is the cdf for independent failure of the EDGs, F12 is the cdf for 2/3 

common-cause failures of the first and second EDGs, F3 is the cdf for 3/3 common-cause 

failure of the EDGs, G is the cdf for recovery of offsite power, R is the cdf for repair of 

an EDG, T is the critical time; the value under currently applicable U.S. regulations is 24 

hours, Tc is the critical time, nominally about one hour, i  is dummy variable 

representing the (stochastic) time of failure of the ith EDG, 12  is a dummy variable 

representing the (stochastic) time of common-cause failure of the first and second EDGs, 

123 is a dummy variable representing the (stochastic) time of failure of the ith EDG. 

Equation (3.53) is the final result for the solution that is required to code the 

algorithm in MATLAB. It contains all pathways to critical station that does not require 

more than three independent failures or more than one common-cause failure. It also 

should not require one common-cause failure and more than one impendent failure. If 

independent failures scale as order of epsilon or higher, than the common-cause failures 

will be an order of epsilon squared or higher. This will cause Equation (3.53) to contain 

at least all contributions to the probability of CSBO during the mission time up to order 
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of epsilon squared. Depending upon further details of the particular scaling employed, 

Equation (3.53) may contain contributions of even high order but it should not miss any 

contributions of order three or lower for this analysis.  

 

Section 3.8 – Advanced Three-EDG State-Transition Differential  

                       Equations 

 

The state-transition differential equations for Figure 3.2 are shown in Equations 

(3.54) though (3.61). It can be noted that the placement of equations of state 4 and 3 are 

switched from chronological order. This is because these states are in binary order 

defined earlier in this chapter. State 4 is on the same order and almost equivalent to states 

1 and 2 where as state 3 is on the same order and almost equivalent to states 5 and 6.   
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Here      ti iP P  is the probability that the system is in state i at time t. 

Manipulations of these equations would allow this system of eight first order differential 

equations (ODEs) in eight unknowns to be written more compactly; but it is more 

convenient to leave it in this form for the manipulation following.  

The accompanying initial conditions for this system are shown in Equations 

(3.61) though (3.69). 
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The quantities (1)

1P , (1)

2P , 1)

4

(P
,

(2)

3P
,

2)

5

(P
,

2)

6

(P  and 3)

7

(P are to be regarded merely as 

known constants.  The asymptotic solution for the Three-EDG case is left to future work 

to develop as well as check against the current non-recovery integral currently used 

within the MATLAB code. It is also left to see if the epsilon squared or epsilon cubed is a 

better representation for the third order parameter used within the Markov model.  
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CHAPTER IV 

APPLICATIONS 

 

This chapter will serve to the applications that the code can compute. It will talk 

about special cases that cause deviations in expected results, which will be discussed 

along with the use of different equations to determine results. The differences will likely 

be caused by how many safety trains are used, what type of repair is executed, and what 

recovery methods are implemented, what time in the accident repairs begin, and how 

much manpower is available for the repairs. Common-cause failure implementation will 

also be discussed. 

The normal application of the code is to generate a value for the probability of 

critical station blackout; however, there are many factors that can affect that probability. 

Section 4.1 discusses Types of Recovery along with the various forms of repair are 

represented in Subsections 4.1.a-4.1.d. The deviation in the number of emergency trains, 

mission and critical times, and common-cause inclusions are discussed in Sections 4.2, 

4.3, and 4.4, respectively.  Section 4.5 discusses the use of different distribution types for 

the cdf. Section 4.6 talks about repair and how it could better be handled in future work 

which would later cause a deviation from results. It can also be noted that the specific 

libraries used in MATLAB may also have a slight effect on the overall probability of 

CSBO which is explained in Section 4.7. 

The actual results from the code suite are shown in Chapter V, but the idea of this 

chapter was to serve as an introduction to those various small changes that can occur in 

the code through the use of the input file.  

 

Section 4.1 – Types of Recovery 

 

This section will outline the different types of recovery that are capable inside the 

STP-TAMIL code. These are selectable via the input file. Further details are discussed in 

Chapter II, the user manual.  
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Subsection 4.1.a – No Credit (1) 

 

The first type of recovery is not having any recovery at all. This assumes that 

offsite power will not come back within the mission time. This could make sense if the 

grid has suffered sufficient damage, which was the case in Fukishima Dai-ichi [20]. The 

case assumes that the emergency design generators cannot be repaired within the mission 

time. This was also the case for that disaster as the EDGs flooded out and swept out to 

sea [20]; therefore, there was no chance for any type of normal recovery. This is the most 

conservative case used in the model, which is the most common justification for its use in 

the industry.  

 

Subsection 4.1.b – Offsite Only Credit (2) 

 

The second type of recovery assumes only offsite power can be restored. That is, 

there is a probability that offsite power will come back within the mission time. It also 

assumes that the emergency design generators cannot be repaired within the mission 

time. This could make sense if the EDGs have suffered sufficient damage or have a fuel 

problem. This is a likely case if it‘s a normal LOOP event that does not last an extended 

period of time, but the EDGs have failed for some reason, again the most common 

justification for the assumption is conservatism.  

 

Subsection 4.1.c – Offsite Credit and Onsite Only After Full Failure (3) 

 

The third type of assumption regarding recovery and repair is that both offsite and 

onsite power can be restored, but onsite repairs are not initiated until all power has failed 

(SBO has occurred). This assumes that there is a probability that offsite power will come 

back within the mission time. It also assumes that the emergency design generators have 

a probability of repair within the mission time, but only after all of the EDGs have failed. 

This scenario would indicate that the repairs did not start until all failed or there existed a 

common cause triplet event. This method therefore also adds in additional conservatism.  
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Subsection 4.1.d – Full Credit of Offsite and Onsite Failure (4) 

 

The fourth type of recovery is assuming both offsite and onsite power can be 

recovered. This assumes that there is a probability that offsite power will come back 

within the mission time. It also assumes that the emergency design generators have a 

probability to be repaired within the mission time. This takes into account repair as soon 

as something fails. This is the most generous case in term of likelihood of core damage. It 

also is the most realistic case as repairs would generally start right after initial failure or 

as soon as possible. 

 

Section 4.2 – Number of Trains 

 

This section discusses the impact that different number of trains can have on the 

result of the problem. For STP, three independent EDG trains are used for each of the two 

units. Many other plants only have two trains of EDGs, so they cannot afford to lose as 

many generators as STP and still be able to run their safety systems.  The input deck for 

the program allows the user to enter any number of trains (one through three) for the 

plant. The idea is that one could see the benefit of adding a third EDG, if a plant only has 

two, based solely on probability of critical station blackout. South Texas Project could 

also use the program to see what the probability of having only two trains if they ever had 

one under maintenance or if they were considering a change in their design certification 

document. This code could also be used to determine the probability of CSBO if an 

independent train is operating for a short period while having the two other diesels 

brought offline.  

Currently, the code only fully supports three trains. However, it can work with 

two or one emergency trains but it is not fully verified, unlike the three train version. 

Also, the code version cannot handle any more than three trains as this would introduce a 

common-cause quadruplet term among others.  
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Section 4.3 – Mission and Critical Times 

 

This section discusses that using different mission and critical times can change 

the results of the problem. Normally, most PRA estimates have been using a 24-hour 

mission time. Yet, as discussed in Chapter I, the post-Fukushima-Daiichi nuclear industry 

may change mission time to a longer period of time. This would mean that there would 

be a larger failure probability because of the increased time to fail of a particular system.  

The capability of this program can also be used if there is a split mission time. For 

example, one could use a mission time of 24 hours with certain values and then on a 

different data row use the new values with the extended mission time. However, it should 

be noted that if there is a split mission time, then the fail to load and run probability will 

not work properly for the second mission time. This is due to the fact that the parameters, 

load and run, come from starting and operating for the first hour. After that hour has 

passed, the probability of a failure would then be zero as it would be impossible to have it 

fail in the first hour. There are still a few things to consider. If the mission time split is 

less than 1 hour then one would need to split the mission time again to have it last for the 

rest of the hour at a decreased probability of failure to load and run. The other split would 

then be after the first hour with a zero probability of failure to load and run. This might 

occur in a real world scenario if one had to prove that the plant did not enter a certain 

level risk finding during an event and one knew the different mission times led to 

different probabilities. A split mission time could also occur if you exceed the allotted 

mission time and assume that the failure probabilities for devices have know changed 

after day one, assuming a twenty four hour mission time.    

One can also change the critical time, which is normally one hour. One can try a 

various amounts of scenarios where the plant may be without emergency systems 

following a LOOP-IE for a certain amount of time. This could also be the case if the plant 

had a feature that let critical time be increased. This could be due to passive cooling or 

from capabilities that arise from the fuel itself, like a pebble-bed reactor. It is 

hypothesized that a pebble-bed reactor will not melt down in the absence of cooling [21].  

This would mean that no core damage would ever occur, or that it could happen within 
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some extended critical time. That would decrease the probability of critical station 

blackout.  

 

Section 4.4 – CC Triplet, CC Doublet, and Independent Failures 

 

This section describes how common-cause and independent failures can change 

the result of the program. The program already breaks up the total probability of critical 

station blackout into three parameters, corresponding to common-cause triplet, common-

cause doublet, and independent failures. One can also determine which probabilities that 

the code should compute and mix and match which ones can be added together from the 

output file. This also gives a representation of how the total failure is broken up and 

divided amongst the three types of failures. However, the program does not do only CC 

doublet failures with three trains. This is because there is the third generator would not, 

most realistically, cause full station blackout without independent failures considered. 

This assumption does not take into account the repair of one of the two units, followed by 

a CC doublet failure of the last two EDG‘s in operation.   

 

Section 4.5 – Distribution Types 

 

 Section 2.5 describes how to use different distribution types within the software 

along with how to create an m-file corresponding to a new distribution that is not listed in 

the MATLAB generic libraries.  

 These could change results slightly as each distribution is different; however, 

results should stay relatively close to each other, provided the distribution paraneters are 

determined from the same (or similar) data. This relative closeness is due to the 

distributions using mostly the same input values and just manipulating them a little 

differently to lead to a more ―accurate‖ answer in terms of that distribution.    
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Section 4.6 – Repair  

 

 The type of repair is also a factor in changing the result. If repair does not start 

until after all the trains have failed, then the probability of critical station blackout would 

be higher because there would be less time to repair the EDGs. Also, the repair rates 

themselves can be increased or decreased which will then inversely affect the probability 

of critical station blackout. 

The test of the current code, in Chapter V, uses an average (aggregate) repair 

rate.  A better approach would be to divide basic events into repairable and nonrepairable, 

and employ an aggregate repair rate only for the former.  This would involve data 

collection and analysis (for the division, and the determination of a suitable repair 

distribution for repairable basic events).  It also would require extension of the current 

coding.  For example, there now would be four classes of SBOs associated to three 

independent failures:   

i) all failures repairable, 

ii) two repairable and one nonrepairable, 

iii) one repairable and two nonrepairable, and 

iv) all three nonrepairable. 

Repair rates could also be changed for each type of failure, common-cause shock 

events versus independent type failure events. This could have an advantage in getting a 

more realistic repair for common-cause but would not affect independent, as that is how 

it is currently computed. The repair rate for common-cause could be much simpiliar then 

the repair of each one individually on average. An example would be a common-cause 

triplet caused by lack of fuel. This is easily repaired for all three by adding fuel to the 

diesel tank which would be vastly different then a mechanical breakdown of each EDG 

independently.     

Another factor is number of persons performing repairs.  If more people are 

repairing failures, then repair rate may be higher/faster. Other factors affecting repair 

time, may be type of damage done to cause the initial problem and continuing damage 

from outside sources (aftershocks, flooding, etc.).  Repair rates that are more dynamic 

could be more adequately addressed in future work. 
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Section 4.7 – Equations Types  

 

The certain equations used or not used my change the result. The advanced three-

EDG model seen in Chapter III may lead to the use of a single integral equation which 

could change the values slightly. Also the use of the QUAD, DBLQUAD and 

TRIPLEQUAD MATLAB libraries against other known integration MATLAB libraries 

may have a slight, almost negligible effect. Also, as seen in Chapter V, the other methods 

employed will get different results which are used as a more simple form or parts of the 

non-recovery integral to better verify the program.  
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CHAPTER V 

RESULTS AND BENCHMARKING 

 

This chapter will outline the results and there will be a discussion of how these 

results are realistic, meaningful, and useable. This chapter will involve a benchmarking 

section to provide verification of results. 

The code suite is broken up into many different suites. The ―STPQUAD2.m‖ code 

suite, or STPQUAD2, looks at the model with only two EDGs failing independently. It 

was useful to first benchmark and then verify the results from this program before the 

code was advanced to three EDGs. The verification of ―STPQUAD2.m‖ appears in 

Section 5.1. ―STPQUAD3.m‖ looked at the three-EDG case, for only independent failure 

considered. It is important to note that before adding full common-cause effects into the 

program, it was verified from expected results. The verification for ―STPQUAD3.m‖ is 

shown in Section 5.2. Subsections in both Sections 5.1 and 5.2 discuss various types of 

recovery and how the probability of critical station blackout is affected numerically. 

These subsections also contain a comparison of the different methods employed. The 

common-cause contribution, three EDG case, as well as the finalized code is verified in 

Section 5.3. This final program is entitled ―STPQUAD3CCF.m‖ and was used as the 

basis for development of STP-TAMIL. STP-TAMIL version 1.0 is the 

―STPQUAD3CCF.m‖ code suite. It is verified using two different methods. The first, 

shown in Subsections 5.3.a through 5.3.c, is by STP data, shown in Appendix C. This 

assumes values based off of the STP PRA system notebook and is kept confidential other 

than the reduction in CSBO probability. Subsections 5.3.d through 5.3.f discusses how 

the code is verified using the industry average data in combination with the alpha factor 

method. This method is also discussed within the presented text. Section 5.4 then 

summarizes the data, compares the two verifications, and discusses results.  
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Section 5.1 – Verification of STPQUAD2 

 

This section describes the verification of the code ―STPQUAD2.m‖. The code 

itself as described in Appendix A.1. The results are shown in Table 5.1 and the process is 

described within the rest of this section. As a broad overview, this version of the code 

takes into account the use of only two independent electrical trains (or two EDGs) in the 

model as well as assuming only independent type failures. Therefore, this version ignores 

common-cause failures.  

Case G, the last row of Table 5.1, contains the results from the full two EDG 

version of the code (―STPQUAD2.m‖). The rows containing Case A, Case C, and Case E 

show results from slightly modified versions of STPQUAD2 that carry out the same 

numerical integration of a two-dimensional recovery integral. However, these cases use a 

slightly modified integrand that either are computed en route to the full integrand (Case A 

and Case C) or can be computed (Case E) from the last-line modification of the 

subroutine used to compute the full integrand. This last-line modification refers to 

commenting out a line of code for a different type of repair within the specific m-file. 

These types are covered in Chapter II and Chapter IV.  
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Table 5.1 

Results for STPQUAD2. 

 

 

 

 It can be noted that Case E‘s method refers to the last part of the INTEGRAND 

code. This refers to the type of non-recovery involved in the code itself. In this code the 

Case Method Probability of Critical Station 

Blackout (PCSBO) 

Case A No credit for recovery (offsite or onsite), 

from STPQUAD2 (default absolute error 

tolerance = 1.0e‐5, default relative error 

tolerance per MATLAB documentation for 

the subroutine quad2d) 

1.074439162179359e‐3 

Case B No credit for recovery (offsite or onsite), per 

hand calculation (see below) 
1.074439162179330e‐3 

Case C Credit for offsite recovery only, computed 

dynamically via STPQUAD2 double 

integration (default error tolerances), but 

with partial integrand for nonrecovery 

integral that is computed en route to full 

integrand in subroutine INTEGRAND 

2.206757664289611e‐4 

Case D Credit for offsite recovery only, from 

separate code, computed numerically (and 

―dynamically‖) as a single integral (per 

―dynamic‖ method of Lloyd [13]) 

2.195427574125606e‐4 

Case E Computed dynamically via STPQUAD2 

double integration, with integrand for 

nonrecovery integral that is fully dynamic 

for offsite recovery but incorporates onsite 

repair only after full failure of onsite power, 

per integrand computed via slight 

modification at last part of INTEGRAND 

code 

1.867979788131047e‐4 

Case F Dynamic credit for offsite recovery, plus 

credit for onsite repair only after full failure 

of onsite power, computed numerically as a 

single integral (per ―dynamic‖ method of 

Lloyd [13]) 

1.858389319818259e‐4 

Case G Full credit for recovery of offsite and onsite 

power, double integral evaluated per 

STPQUAD2 

1.70e‐4 
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part has a very different non-recovery factors (H) which are determined different ways 

based on the type of recovery and when repair starts. These lines are uncommented or 

commented when certain types of recovery happen.  

The reason for including these partial results (Cases A, C and E) is that they can 

be obtained by independent methodologies that have already been developed. Therefore, 

these partial cases make a good comparison between the case created by the code and the 

cases shown by the prior method in a hand calculation. The calculations are compared 

and the new result is shown directly underneath each associated case in Table 5.1. These 

prior method hand calculations are shown as Cases B, D, and F.  Therefore, Case A is 

compared to the Case B, Case C to Case D, and Case E to Case F. In Table 5.1 it can be 

noted that the underlined digits are the first three digits that do not agree with the value of 

the digits immediately above when comparing these Cases that were just outlined. Thus, 

a good comparison between each new Case to the prior method case results should give 

greater confidence in the version of STPQUAD2 ability to create results. As obtaining the 

prior method case results are a majority of the actual write-up of the program itself in 

STPQUAD2, this will verify if the code is written correctly in the vast majority of 

STPQUAD2.  

The base problem used here to verify the scheme behind the code is from previous 

work developed for ICONE17 [22]. In more detail, an emergency power system 

consisting of two EDGs is contemplated, and the various functions appearing in the 

integrand of the non-recovery integral are shown in Table 5.2.  
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Table 5.2 

Data Employed in [22], as Used Here for STPQUAD2 Verification.  

 

 

 

The results, for the data of Table 5.2, compared are values obtained by various 

methodologies, show in Table 5.1, for the probability of critical station blackout that will 

occur within a mission time of 24 hours subsequent to a LOOP event. For this initial 

verification problem no differentiation is made between the various sources of types of 

loss of offsite power, as ultimately will be necessary. Some of these differences could 

include the LOOP being caused by weather, the grid, or the switchyard failure [23].  

The results from the various methods not employing STPQUAD2 (i.e. Cases B, 

D, and F) are shown in subsections 5.1.a, 5.1.b, and 5.1.c.  

 

Subsection 5.1.a – No Credit for Recovery (Offsite or Onsite) for               

                                STPQUAD2 

 

This subsection will describe the methodology used to receive results for Case B 

of the STPQUAD 2 verification. This method involves not using any credit for any time 

of recovery (whether onsite or offsite). This is the most conservative approach to the 

problem that is defined by critical station blackout. In the case, PCSBO = 2P , where P is 

the probability that an EDF will fail during the mission time.  With the mission time and 

failures probabilities given in Table 5.2 one can create Equation (5.1).  

Name Description Value 

G  cdf for offsite recovery Exponentially distributed 

recT  Mean time to Recovery 4 hours 

 0iF  Probability of Failure of 

ith EDG to start 

0.0132 

if  pdf for failure of ith 

EDG to run, conditional 

upon starting 

Exponentially distributed, with mean 

time to failure of about 1/8.35e-4 hours 

or about1200 hours 

iR  cdf for repair of ith EDG Exponentially distributed 

Trep  Mean time to Repair 12 hours 
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 (5.1) 

 

In this equation, (5.1), T is the mission time of 24 hours. Therefore PCSBO= P^2 = 

0.001091676877914 = 1.0917e-3 to five figures of accuracy. The value initially 

computed by double numerical integration, Case A, shows a discrepancy, relative to this 

―exact result‖, of 0.018e-3 or about 2e-5. This is certainly conceivably due to the error in 

the numerical integration of the two-dimensional nonrecovery integral. This error appears 

to be controlled by the default value of 1.0e-5 for the absolute error tolerance MATLAB 

code QUAD2D that was used to execute this numerical integration. If so, then 

confirmation should be found by varying this absolute error tolerance. However, this 

value of the nonrecovery integral appears to be invariant, to 16 significant figures and at 

1.074439162179359e-3, to the value used for this absolute error tolerance. The value had 

an exact value of 1.0e-15 for absolute error tolerance of 1.0. However, this value was not 

expected based on the result from the MATLAB result shown in Case A of Table 5.1, so 

the equation was changed to diagnose the error. This meant changing the terms from 

independent to mutually exclusive. The new equation can be seen in Equation (5.2).    

 

           
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0 1 0 0 1 0
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tT T e
P F F f t dt F F dt

i i i i i

TF F e e
i i
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




      

 
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 
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

 
(5.2) 

 

The corresponding value of PCSBO = 2P is then equal to 0.00107074439162179330 

= 1.0707e-3 as shown in the Case B of Table 5.1 and calculated in Equation (5.2). This 
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value differs from that of Case A, the numerical integration method through MATLAB, 

by only about 3e-13. This exact result has a very high degree of agreement with that from 

numerical quadrature.  

However, it is still important to show why the value is invariant to the absolute 

error tolerance. From on-line documentation from MATLAD for quad2 [16], the error 

tolerance in quad2 is max{AbsTol,RelTol*|Q|} where Q is the value of the integral, 

AbsTol is the absolute error tolerance, and RelTol is the relative error tolerance. Also the 

RelTol minimum value, and default for MATLAB, is 100*eps(class(Q)). In the usage of 

quad2d in STPQUAD2, Q is of class ―single precision‖ and 100*(2^-23)*1.0e-3 which is 

about equal to 1.0e-8. This is several orders of magnitudes greater than the actual error 

attained at the default error tolerances; therefore, no further changes of trying to reduce 

the error should be expected from decreasing the absolute error tolerance further. The 

result did not change even when AbsTol increased by several orders of magnitude. As 

determined later, it turns out that the MATLAB code starts to ignore the error tolerance 

because the integral code starts coming up with values based on a certain result and it 

believe this result to be correct so it just repeats those the entire time. The code is 

basically taking an integration of a constant value so that a change in error tolerance will 

have no effect. 

 

Subsection 5.1.b – Dynamic Credit for Offsite Recovery (Only) for    

                                STPQUAD2 

 

This subsection will describe the methodology explored to receive results for 

Case D of the STPQUAD 2 verification. It uses the method of taking dynamic credit for 

offsite recovery, not onsite repair, using a single-integral method outlined by Lloyd [13] 

and described on the top of page 8 of Rodgers et al. [1]. Equation (5.3) shows this single-

integral method equation relating to the specific problem at hand.   
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(5.3) 

 

Note that the variables used in Equation (5.3) are summarized in Table 3.2 of this 

Thesis. It also important to note that the following corrections of the equation listed on 

the top of page 8 of Rodgers et al. [1] are used in Equation (5.3). These corrections 

include: i) the replacing of ˆ (0)iF
 
due to an error of the use of ―^‖ in the wrong place with 

(0)iF , and ii) the insertion of a sum over I with the factor ( )if T   inclusions in line 3. 

Also, ˆ
iR =1 is the non recovery factor for onsite repair that is appropriate to the current 

conservative approximation of no credit for onsite recovery. By contrast, this is the best 

estimate approach to taking credit for offsite recovery. Computationally, this estimate is 

shown in Equation (5.4).  
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(5.4) 

 

A MATLAB code (―Lloyd.m‖) was written to evaluate Equation (5.4), with the 

integration carried out numerically using the existing (one-dimensional numerical 

integration) MATLAB QUAD, with the integrand evaluated by means of a second 

written MATLAB code ―INTEGRAND1.m‖. The result, with the integration effected at 

the default error tolerance for QUAD (absolute error tolerance of 1.0e-6), as shown in 

Case D of Table 5.1.  

The difference between the two computer values of PCSBO in the Case C and Case 

D of Table 5.1 is about 1.0e-6. This is smaller than the absolute error tolerance of 1.0e-5 

used for in STPQUAD2 for the numerical integration that resulted in the value of Case B. 

This tolerance is the same as the absolute error tolerance used in ―Lloyd‖ for the 

numerical integration giving the value in Case C.  If the difference were due to numerical 

integration, one would therefore expect that the value from STPQUAD2 is less accurate, 

but that the results from the two codes would tend to agree to increasingly more digits as 

the error tolerances decrease. This behavior is indeed observed in Table 5.3, which 
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confirms the hypothesis that the difference is entirely due to the inevitable error arising in 

the numerical integrations as opposed to a mathematical or programming error.  

 

 

 

Table 5.3 

PCSBO Values While Varying Absolute Error Tolerances with Case C vs Case D 

(STPQUAD2). 

Absolute Error Tolerance STPQUAD2  PCSBO Lloyd  PCSBO 

1.0e‐5 2.206757664289611e‐4 2.195427574125606e‐4 

1.0e‐6 2.207338404320751e‐4 2.195427574125606e‐4 

1.0e‐7 2.196012454513116e‐4 2.195427574125606e‐4 

1.0e‐8 2.195441635112097e‐4 2.195427574125606e‐4 

1.0e‐9 2.195427744571024e‐4 2.195424291367534e‐4 

1.0e‐10 2.195426380224189e‐4 2.195424186377920e‐4 

1.0e‐11 2.195426264491898e‐4 2.195424213673031e‐4 

1.0e‐12 2.195426250034820e‐4 2.195424212590672e‐4 

1.0e‐13 2.195426249851043e‐4* 2.195424212811546e‐4 

1.0e‐14 2.195426249851043e‐4# 2.195424212816738e‐4 

1.0e‐15 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 2.195424212816448e‐4 

1.0e‐16 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 2.195424212816491e‐4 

1.0e‐17 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 2.195424212816491e‐4 

1.0e‐18 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 2.195424212816491e‐4 

1.0e‐20 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 2.195424212816492e‐4 

1.0e‐22 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 2.195424212816492e‐4 

1.0e‐23 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 2.195424213102547e‐4 

1.0e‐25 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 2.195429103006130e‐4 

* - MATLAB reported: ―Warning: Reached the maximum number of function 

evaluations (2000). The results passes the global error test.‖ Obtainng this result required 

minutes of computational time.  

# - MATLAB reported: ―Warning: Reached the maximum number of function 

evaluations (2000). The results fails the global error test.‖ Obtainng this result required 

minutes of computational time.  

 

 

 

The results in Table 5.3 contain much more detail than needed to reach a 

satisfactory conclusion to show that STPQUAD2 can be verified with Lloyd, which was 

the immediate objective. However, some of the detail could be useful subsequently, for 
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presently unforeseen purposes and should be left to future work. For example, the results 

could be used to verify subsequent significantly revised versions of STPQUAD2. The 

underlined digits are the first two digits that do not agree with the value immediately 

above that cell in Table 5.3. Reduction of the absolute error tolerance was terminated 

when the values reported by ―Lloyd‖ began to display the classic mathematical symptoms 

of round off error.  

 

Subsection 5.1.c- Dynamic Offsite Recovery, Onsite Repair Post Failure  

                              (STPQUAD2) 

 
The subsection will describe the methodology explored to receive results for Case 

F of the STPQUAD 2 verification. It uses the method of taking dynamic credit for offsite 

recovery, using a single-integral method outlined by Lloyd [13] and described on the top 

of page 8 of Rodgers et al. [1]. It also credits repair only after a full failure of onsite 

power. In this case the probability of critical station black out is given by Equation (5.4), 

but now with the repair term defined in Equation (5.5).  

 

/ 12 1/12ˆ 1 ( ) 0.920044146292230c
c

T
R R T e e

i i

       (5.5) 

 

The corresponding result shown in Equation (5.5), as obtained by Lloyd with the 

default error tolerance appears in Case F of Table 5.1.  

The difference, like in the previous subsection, between the computer value for 

the probability of critical station blackout from STPQUAD2, Case E, and that from 

Lloyd, Case F, is about 1.0e-6. The hypothesis is that the difference is still due to the 

inevitable integration error, primarily from STPQUAD2. The results in Table 5.4, which 

is an abbreviated version of Table 5.3, are consistent with that hypothesis. The underlined 

digits are the first two digits that do not agree with the value immediately above that cell 

in Table 5.4. 
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Table 5.4 

PCSBO Values While Varying Absolute Error Tolerances with Case E vs Case F 

(STPQUAD2). 

Absolute Error Tolerance STPQUAD2  PCSBO Lloyd  PCSBO 

1.0e‐5 1.867979788131047e‐4 1.858389319818259e‐4 

1.0e‐6 1.868471619906726e‐4 1.858389319818259e‐4 

1.0e‐8 1.858404483442557e‐4 1.858389319818259e‐4 

1.0e‐10 1.858388331469148e‐4 1.858386452151755e‐4 

1.0e‐12 1.858388199254640e‐4 1.858386474340370e‐4 

1.0e‐13 1.858388198844045e‐4*
 1.858386474527336e‐4 

1.0e‐14 1.858388198800244e‐4#
 1.858386474531731e‐4 

1.0e‐15 1.858388198802952e‐4@
 1.858386474531485e‐4 

1.0e‐16 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 1.858386474531522e‐4 

*
MATLAB reported: ―Warning: Reached the maximum number of function evaluations 

(2000). The results passes the global error test.‖ Obtaining this result required minutes of 

computational time.  

#
MATLAB reported: ―Warning: Reached the maximum number of function evaluations 

(2000). The results fails the global error test.‖ Obtaining this result required minutes of 

computational time.  

@
MatLab reported: ―Warning: Reached the maximum number of function evaluations 

(2000). The result fails the global error test.‖ Obtaining this result required minutes of 

computational time.  

 

 

 

Subsection 5.1.d – Comparison of  Methods (STPQUAD2) 

 

This section has focused on verification of the MATLAB research code 

STPQUAD2, which was indeed the primary purpose. However, the results also provide a 

basis for comparing the relative accuracy of various methods that were developed for 

estimating probability of critical station blackout. The results are relevant to this 

objective and displayed in Table 5.5. 
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Table 5.5 

Comparison of Estimates of PCSBO from Various Methods (STPQUAD2). 

Method PCSBO 

No credit for recovery (from Table 5.1) 1.07e‐3 

Credit for recovery (onsite and offsite) only following SBO (i.e., 
Read‐Fleming [14] variant of Lloyd‐Anoba method [11]), 

computed using code Lloyd, with default error tolerance for 
integration 

7.08e‐4 

Dynamic offsite recovery, credit for onsite recovery only 
following SBO (i.e., approach of Lloyd [13]), from Table 5.1 

1.86e‐4 

Best estimate, with fully dynamic treatment of both onsite and 
offsite recovery (from Table 5.1) 

1.70e‐4 

 

 

 

In this case, the big improvement in the estimate of probability of critical station 

blackout seemed to arise from taking credit for offsite recovery, even after SBO occurs. 

That is from Case B to Case C. it is perhaps a little surprising that dynamic onsite 

recovery, or repair of one EDG while the other is operating, contributes only about a 10% 

further reduction. It remains to be seen how general this is and could be something to 

look into for future work.  

 

Section 5.2 – Verification of STPQUAD3 (Without Common-Cause) 

 

This section describes verification of the code ―STPQUAD3.m‖. The code itself 

can be seen in Appendix A.2. The results are shown in Table 5.6 and the process is 

described within the rest of this section.  
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Table 5.6 

Results for STPQUAD3. 

 * - Default error tolerance for numerical integrations, TOL=1.0e‐6.  

# - More stringent error tolerance for numerical integration, TOL=1.0e‐10.  

@ - Default error tolerance for numerical integrations, TOL=1.0e‐6, QUADL (rather than 

QUAD) as numerical integrator  

$ - More stringent error tolerance for numerical integrations, TOL=1.0e‐10, QUADL 

(rather than QUAD) as numerical integrator 

 

Case Method Probability of Critical Station 

Blackout (PCSBO) 

Case A No credit for recovery (offsite or onsite), from 

STPQUAD3 (default absolute error tolerance 

= 1.0e‐5, default relative error tolerance per 

MATLAB documentation for the subroutine 

quad2d). 

4.068467294820226e‐5 

Case B No credit for recovery (offsite or onsite), per 

hand calculation (see below) 
4.068467294820230e‐5 

Case C Credit for offsite recovery only, computed 

dynamically via STPQUAD3 triple integration 

(default error tolerances), but with partial 

integrand for nonrecovery integral that is 

computed en route to full integrand in 

subroutine INTEGRANDv1pt0 

3.517725266608635e‐6* 

(3.447045307250793e‐6)# 

Case D Credit for offsite recovery only, from separate 

code (Lloyd3), computed numerically (and 

―dynamically‖) as a single integral (per 

―dynamic‖ method of Lloyd [13]) 

2.760537818226182e‐6* 

(3.435769452659052e‐6)# 

Case E Computed dynamically via STPQUAD3 triple 

integration, with integrand for nonrecovery 

integral that is fully dynamic for offsite 

recovery but incorporates onsite repair only 

after full failure of onsite power, per integrand 

computed via slight modification at last part of 

INTEGRANDv1pt0 code 

2.367947043525971e‐6* 

(2.320369049126797e‐6) 

Case F Dynamic credit for offsite recovery, plus credit 

for onsite repair only after full failure of onsite 

power, computed numerically (code Lloyd3) 

as a single integral (per ―dynamic‖ method of 

Lloyd [13]) 

1.829911359629647e‐6@ 

(2.319879832241328e‐6)$ 

Case G Full credit for recovery of offsite and onsite 

power, triple integral evaluated per 

STPQUAD3 

2.040433328944350e‐6* 

(1.967858943170821e‐6)# 
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Case G, the last row of Table 5.6, contains the results from the full three EDG 

version of the code (―STPQUAD3.m‖). The rows containing Case A, Case C, and Case E 

show results from slightly modified versions of STPQUAD3 that carry out the same 

numerical integration of a two-dimensional recovery integral. However, these cases use a 

slightly modified integrand that either are computed en route to the full integrand (Case A 

and Case C) or can be computed (Case E) from the last-line modification of the 

subroutine used to compute the full integrand. Where two values are given, the topmost 

result was obtained using the default error tolerance of TOL=1.0e-6, whereas the second 

(parenthetical) value was obtained using a more stringent tolerance of 1.0e-10. The rest 

of this section will contain a further discussion of the impact of the choice of error 

tolerance.  

It can be noted that Case E‘s method refers to the last part of the 

INTEGRANDv1pt0code. This refers to the type of non-recovery involved in the code 

itself. In this code the part has a very different non-recovery factors (H) which are 

determined different ways based on the type of recovery and when repair starts. These 

lines are uncommented or commented when certain types of recovery or repair happen.  

The idea behind including these partial results (Cases A, C and E), as in the 

preceding section, is that they can be obtained by independent methodologies that have 

already been developed. Therefore, they make a good comparison between the case 

created by the code and the cases shown by the prior method in a hand calculation. These 

values are compared and both are displayed with one on top of the other in Table 5.6. 

These prior method hand calculations are shown as Cases B, D, and F.  Therefore, Case 

A should be compared to the Case B, Case C to Case D, and Case E to Case F. In Table 

5.6 it can be noted that the underlined digits are the first two digits that do not agree with 

the value of the digits immediately above when comparing the cases that were just 

outlined. Thus, a good comparison between each new Case to the prior method case 

results should give greater confidence in the version of STPQUAD3 ability to create 

results. As obtaining the prior method case results are a majority of the actual write-up of 

the program itself in STPQUAD3, this will also verify if the code is written correctly in 

the vast majority of STPQUAD3.  
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The base problem used here to verify the scheme behind the code is from previous 

work developed for ICONE17 [22]. In more detail, an emergency power system 

consisting of three EDGs is contemplated, and the various functions appearing in the 

integrand of the non-recovery integral are shown in Table 5.7.  

 
 
 
Table 5.7 

Data Employed in [22], as Used Here for STPQUAD3 Verification.  

 

 

Name Description Value 

G  cdf for offsite recovery Lognormal Cumulative Distribution 

( , , )G t    cdf for offsite recovery =  

  Error function  

t Time in hours  

μ Mean time to Recovery 0.300 (Table 4-1 from [6]) 

ζ Sigma Deviation 1.064 (Table 4-1 from [6]) 

 0iF  Probability of Failure of 

ith EDG to start 

1.4e-2 (sum of mean values of FTS (failure to 

start) and UA (unavailability) per Table 4-2 from 

[6]) 

if  pdf for failure of ith EDG 

to run, conditional upon 

starting 

Exponentially distributed, with λ1 and λ2 

1  Failure Rate during first 

hours (mean value of 

FTLR, failure to load and 

run, failure rate) 

2.5e-3 per hour (Table 4-2 of [6]) 

2  Failure Rate during hour 

thereafter the first hour 

(mean value of FTLR, 

failure to load and run, 

failure rate) 

8.0e-4 per hour (Table 4-2 of [6]) 

iR  cdf for repair of ith EDG Weibull cdf 

α Alpha function 0.739 

β Beta Function 15.50 hours 



   90 

 

The results from Cases A, C, E and F from Table 5.6 were obtained using the 

default error tolerance in the MATLAB triple integration code TRIPLEQUAD. 1.0e-6 is 

set as the default error tolerance. MATLAB documentation does not specify whether that 

value is an absolute or relative error tolerance or rather some combination of the two.  

The results, from Table 5.7, compared are values obtained by various 

methodologies, shown in Table 5.6, for the probability of critical station blackout that 

will occur within a mission time of 24 hours subsequent to a LOOP event. For this 

second verification problem again no differentiation is made between the various sources 

of loss of offsite power [23], as ultimately will be necessary for the full development of 

the STPQUAD3 code suite. The distribution of offsite recovery times differs depending 

upon the nature of the loss of offsite power whether the cause is weather related, grid 

related, or related to some other factor that would shut down power that supplies the 

station. (Chapter IV of [6]).  

The results from the various methods not employing STPQUAD3 (i.e. Cases B, 

D, and F) are shown in subsections 5.2.a, 5.2.b, and 5.2.c.  

 

Subsection 5.2.a – No Credit for Recovery (Offsite or Onsite) for  

                                STPQUAD3 

 

This subsection will describe the methodology explored to receive results for 

Case B of the STPQUAD 2 verification. This method involves not using any credit for 

any time of recovery (onsite or offsite). This is the most conservative approach to the 

problem of critical station black out. In this case, PCSBO = 3P . P is the probability that an 

EDG will fail during the mission time.  With the mission time and failure probabilities 

given in Table 5.7, one can create Equation (5.6). It can be noted that in Equation (5.6), T 

is the mission time denoted as 24 hours where the rate of failure for the first hour and the 

time thereafter are different and need to be split up in the equation.  
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 (5.6) 

 

The corresponding value of PCSBO = 3P  is then equal to 4.068467294820230e-5 , 

to sixteen significant figures as shown in the Case B of Table 5.6 and calculated in (5.6). 

This value agrees with that of Case A, the numerical integration method through 

MATLAB, up to fifteen significant figures.   

 

Subsection 5.2.b – Dynamic Credit for Offsite Recovery (Only) for  

                                 STPQUAD3 

 

This subsection will describe the methodology explored to receive results for 

Case D of the STPQUAD3 verification. It uses the method of taking dynamic credit for 

offsite recovery, not onsite, using a single integral method outlined by Lloyd [13] and 

described on the top of page 8 of Rodgers et al. [1]. The equation for this Lloyd 

approximation is shown as Equation (5.7).  
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It is important to note that Equation (5.3) and Equation (5.7) are identical; 

however, different values of n are used in the previous section. Therefore, it is also 

important to note that the variables used in Equation (5.7) are summarized in Table 3.1 

and Table 3.2. Equation (5.7) also has the same corrections shown for Equation (5.3) 

which are listed as: i) the replacing of ˆ (0)iF to (0)iF , and ii) the insertion of a sum over I 

with the factor ( )if T   inclusions in line 3. Also ˆ
iR =1 is the non-recovery factor for onsite 

repair that is appropriate to the current conservative approximation of no credit for onsite 

recovery. By contrast, this is the best estimate approach to taking credit for offsite 

recovery. Computationally, this new recovery-based failure probabilities of critical 

station blackout is shown in Equation (5.8) where 
if  

and 
iF  are respectively the pdf for 

failure to run and the cdf for failure of any one of the generators.  
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The pdf and cdf terms are shown more explicitly in Table 5.8. 

 

 

 

Table 5.8 

pdf and cdf terms (STPQUAD3). 

Term Equation Bound 

( ')if T
  = 

(2.5 3) '(1 0.014)(2.5 3) e Te e    for 0 T' 1   

( ')iF T
 = 

(2.5 3) '0.014 (1 0.014)(1 )e Te     for 0 T' 1   

( ')if T
= 

(2.5 3) (8.0 4)( ' 1)(1 0.014) (8.0 4)e e Te e e      for T' 1  

( ')iF T
 = 

(2.5 3) (8.0 4)( ' 1)(1 0.014) (1 )e e Te e      for T' 1  
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A MATLAB code (―Lloyd3.m‖) was written to evaluate (5.8), with the 

integration carried out numerically using the existing (one-dimensional numerical 

integration) MATLAB QUAD, with the integrand evaluated by means of a second 

written MATLAB code ―INTEGRAND3.m‖. The result, with the integration effected at 

the default error tolerance for QUAD (absolute error tolerance of 1.0e-6), is shown in the 

first value of Case D of Table 5.6. This value is about 30% lower than the corresponding 

value from STPQUAD3, which is the first value of Case C of Table 5.6. The two 

corresponding results, those immediately below the values in Table 5.6, are for a more 

stringent error tolerance for the numerical integration. These values have a discrepancy in 

reality due to an inadequately converged numerical error in the respective numerical 

integrations, especially for ―Lloyd3‖.  

This lack of convergence at the default error tolerance of TOL=1.0e-6 should not 

be totally unexpected as the value for PCSBO itself is of the same order. But this does 

suggest the error tolerance is absolute, rather than relative. Therefore, if anything, the 

impact of the error tolerance for the numerical integration appears even more significant 

than in the previously studied two emergency diesel generator cases. This error tolerance 

may be even more crucial due to the triple integration within the STPQUAD3 script that 

sometimes required a noticeable amount of time for computation. Just as in the 2-EDG 

case, it seems worthwhile to digress briefly for a systematic study of the impact of error 

tolerance in the respective numerical integrations.  

Table 5.9 displays the values of PCSBO as obtained from both STPQUAD3 and 

Lloyd3 with various values of the error tolerance used for their respective numerical 

integration codes. . The results in Table 5.9 contain much more detail than required to 

reach a satisfactory conclusion. As in the preceding section, some of the detail could be 

useful later for presently unforeseen purposes and should be left to future research. For 

example, the results could be used to verify subsequent significantly revised versions of 

STPQUAD3. The underlined digit is the first digit that does not agree with the value 

immediately above that cell in Table 5.9 when both values are rounded. Reduction of the 

absolute error tolerance was terminated when STPQUAD3, with use of TRIPLEQUAD, 

began to require an excessive time to compute.  
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Table 5.9 

PCSBO Values While Varying Absolute Error Tolerances with Case C vs Case D 

(STPQUAD3). 

Absolute 

Error 

Tolerance 

STPQUAD3  PCSBO Computational 

Time 

Lloyd3  PCSBO 

1.0e‐5 3.511717430419162e‐6 Negligible 2.760537818226182e‐6 

1.0e‐6 3.517725266608635e‐6 Negligible 2.760537818226182e‐6 

1.0e‐7 3.484986939479499e‐6 Negligible 2.760537818226182e‐6 

1.0e‐8 3.475247269638392e‐6 Negligible 2.671103400838021e‐6 

1.0e‐9 3.450868292445484e‐6 a few seconds 3.390520692122483e‐6 

1.0e‐10 3.447045307250793e‐6 ~ 20 seconds 3.435769452659052e‐6 

1.0e‐11 3.446884257000039e‐6 ~80 seconds 3.441698096826442e‐6 

1.0e‐12 3.446885343382636e‐6 ~2 minutes 30 

seconds 
3.446668725886406e‐6 

1.0e‐13 3.446887508231133e‐6 ~6 minutes 50 

seconds 
3.446825680272363e‐6 

1.0e‐14 3.446889053301027e‐6 ~27 minutes 40 

seconds 
3.446886944545614e‐6 

 

 

 

Based upon the results shown in Table 5.9, it appears that STPQUAD3 requires 

an error tolerance on the order of 1.0e-8 or less to obtain even two digits of accuracy in 

the resulting estimate for PCSBO. On the other hand, tolerances much less than 1.0e-10 

seem to require significant amounts of time. For TRIPLEQUAD, as employed within 

STPQUAD3, it is recommended that 1.0e-10 is used as the standard error tolerance. For a 

similar analysis of systems with more than three onsite AC generators, the low 

probabilities corresponding to such a high level of defense would require such high levels 

of absolute accuracy in the numerical integration that the time required for that 

integration could become a significant issue.  

STPQUAD3 ultimately achieves six digits of accuracy, albeit at the cost of 

considerable integration time. In contrast, Lloyd3 converges more slowly as the error 

tolerance decreases, and never achieves more than four digits of accuracy, even at the 

smallest error tolerance displayed in Table 5.9. The MATLAB documentation says of 

QUAD, the numerical single-integration employed within Lloyd3 to obtain the results of 

Table 5.9, ―QUAD may be most efficient for low accuracies with nonsmooth integrands‖ 
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[16]. The integrand occurring in Lloyd3 is relatively smooth, but high absolute accuracy 

is required because of the small value of the integrand. This suggests the use of one of the 

alternative single-integration codes available within MATLAB might be more 

appropriate within Lloyd3.  

Table 5.10, displays the corresponding results, with the MATLAB single-

integration code QUADL employed for the numerical integration within Lloyd3, rather 

than QUAD. The QUADL documentation in MATLAB claims that it ―may be more 

efficient than QUAD at high accuracies with smooth integrands‖ [16]. 

 

 

 

Table 5.10 

PCSBO Values Varying Absolute Error Tolerances with Case C vs Case D with QUADL 

(STPQUAD3). 

Absolute 

Error 

Tolerance 

STPQUAD3  PCSBO Computational 

Time 

Lloyd3 w/QUADL 

PCSBO 

1.0e‐5 3.511717430419162e‐6 Negligible 2.760537818226182e‐6 

1.0e‐6 3.517725266608635e‐6 Negligible 2.760537818226182e‐6 

1.0e‐7 3.484986939479499e‐6 Negligible 2.760537818226182e‐6 

1.0e‐8 3.475247269638392e‐6 Negligible 2.671103400838021e‐6 

1.0e‐9 3.450868292445484e‐6 a few seconds 3.390520692122483e‐6 

1.0e‐10 3.447045307250793e‐6 ~ 20 seconds 3.435769452659052e‐6 

1.0e‐11 3.446884257000039e‐6 ~80 seconds 3.441698096826442e‐6 

1.0e‐12 3.446885343382636e‐6 ~2 minutes 30 

seconds 
3.446668725886406e‐6 

1.0e‐13 3.446887508231133e‐6 ~6 minutes 50 

seconds 
3.446825680272363e‐6 

1.0e‐14 3.446889053301027e‐6 ~27 minutes 40 

seconds 
3.446886944545614e‐6 

 

 

 

The Lloyd3 results in Table 5.10 are somewhat better converged (six digits) than 

the corresponding results in Table 5.9, (four digits). More importantly for present 

purposes, the most highly converged Lloyd3 results in Table 5.9 agree with the 

corresponding results from STPQUAD3 to seven digits of accuracy rounded. These along 
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with the similar seven digits of agreement in Table 5.9 are taken as the further 

verification of STPQUAD3.  

 

Subsection 5.2.c - Dynamic Offsite Recovery, Onsite Repair Post Failure  

                               (STPQUAD3) 

 

This subsection will describe the methodology explored to receive results for 

Case F of the STPQUAD3 verification. Case F uses the method of taking dynamic credit 

for offsite recovery, using a single integral method outlined by Lloyd [13] and described 

on the top of page 8 of Rodgers et al. [1]. It also credits repair only after a full failure of 

onsite power. In this case, the probability of critical station blackout is given by Equation 

(5.8) but now with the repair term defined in (5.9).  

 

ˆ 1 ( ) 1 (1;0.739,15.50) 0.8764019916337390R R T W
i i c
      (5.9) 

 

The corresponding result shown in (5.9), as obtained by Lloyd3 with the default 

error tolerance of 1.0e-6 and the recommended more stringent error tolerance of 1.0e-10, 

are shown in Case F of Table 5.7  

If the default error tolerances of 1.0e-6 are used in the upper values of Table 5.7 

for Case E and F, the difference between the computed values (as in the previous 

subsection, between the computer value for the probability of critical station blackout 

from STPQUAD3, Case E, and that from Lloyd, Case F) is about 0.5e-6. This is 

comparable to the reported values of PCSBO. The hypothesis is that the difference is still 

due to the inevitable integration error, primarily from STPQUAD3, but perhaps mostly in 

Lloyd3. The bottommost (―parenthetical‖) entries in Table 5.7 for these Cases, which are 

obtained using a more stringent error tolerance of 1.0e-10, show a difference of only 

about 0.4e-9.  This seems to provide a strong enough support to justify the formulated 

hypothesis. It is left to future work to look more closely into the impact of the error 

tolerance for this application as analogous to Table 5.5 of the previous section.   
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Subsection 5.2.d – Comparison of  Methods (STPQUAD3) 

 

This subsection is focused on verification of the MATLAB research code 

STPQUAD3 in showing the overall comparison between methods.  

Following the events of Fukushima Dai-ichi many a Near-team Task Force was 

created to review the current fleet of commercial nuclear power plants in the United 

States. This task force was made up of NRC officials and representatives for the utilities 

as well as expects in the field of nuclear energy. Recommendation number nine of the 

recent Near-Term Task Force review reads as follows: 

―The Task Force recommends that the NRC require that facility emergency plans 

address prolonged station blackout and multiunit events.‖ [7] 

This suggests applying STPQUAD3 to investigate the sensitivity of the predicted 

values of PCSBO to the chosen mission time. The results displayed in Table 5.11 indicate 

a very high degree of insensitivity. In effect, the various estimates of the probability of 

critical station blackout are fully converged at a mission time of 24 hours. In the present 

context, the 24-hour timeframe is an excellent approximation to infinity for the 

probability of critical station blackout.  
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Table 5.11 

Comparison of Esitmates of PCSBO from Various Methods (STPQUAD3). 

Method PCSBO 

T = 24 

hours 

PCSBO 

T = 48 hours 

PCSBO 

T =1 week 

No credit for recovery 4.07e‐5 1.47e‐4 2.71e‐3 

Credit for recovery (onsite and offsite) 

only following SBO (i.e., Read‐Fleming 

[14] variant of Lloyd‐Anoba method), 

computed using STPQUAD3, with 

integration error tolerance of 1.0e‐10 for 

integration 

3.45e‐6 3.56e‐6 3.62e‐6 

Dynamic offsite recovery, credit for 

onsite recovery only following SBO, 

computed using STPQUAD3, with 

integration error tolerance of 1.0e‐10 for 

integration 

2.32e‐6 2.39e‐6 2.44e‐6 

Best estimate, with fully dynamic 

treatment of both onsite and offsite 

recovery, computed using STPQUAD3, 

with integration error tolerance of 

1.0e‐10 for integration 

1.97e‐6 1.98e‐6 1.98e‐6 

  

 

 

However, the results from Table 5.11 seem largely associated with the use of a 

lognormal distribution for offsite recovery, which provides a distribution function that 

dies away very rapidly with duration of the hypothesized event seen in Figure 5.1. 
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Figure 5.1 – Complemented Cumulative Distribution Function for One Month (30 Days), 

for the Lognormal Distribution Employed Here for Offsite Recovery 

 

 

 

It seems unlikely that the tacitly imbedded hypothesis in this distribution that the 

probability of a LOOP event extending beyond a duration of 30 days is less than one in 

ten million which is supported by data. A quick estimate suggests that the lognormal 

distribution describing non-recovery of offsite power behaves asymptotically in duration 

(t) as in Equation (5.10). 

 

1

ln( )t
t

 
 

(5.10) 

 

This solution converges more slowly than any exponential decay, but faster than 

any power law. A more conservative, ―heavy-tailed‖, fit to the data and one that seems to 

have some support in data for various sorts of catastrophic events, would be a power law.  
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Section 5.3 – Verification of STPQUAD3CCF (with Common-Cause) 

 

This section describes the attempted verification of the code 

―STPQUAD3CCF.m‖. The code itself is listed in Appendix A.3. One big change for the 

STPQUAD3CCF is the required input file described  more in Chapter II. This run file is 

provided as an example, screen shots from Microsoft Excel, shown in Appendix B. This 

code suite, fully displayed in Appendix A, is the final version of the STP-TAMIL code 

suite to date. It is benchmarked a few different ways which include verification against 

STPNOC specific values that are kept confidential (see Appendix C) and against average 

PRA industry numbers [18, 19, 24]. Subsections 5.3.a-5.3.c cover the STPNOC case; and 

Subsections 5.3.d-5.3.g cover the methodology and the use of the industrial average.  

STP-TAMIL uses a dynamic stochastic model of events occurring during a Loss 

of Offsite Power (LOOP) event to compute nonrecovery integrals, which include: 

a. no recovery (which is generally done in a typical ―static‖ PRAs); 

b. dynamic credit only for recovery of offsite power (Lloyd-Anoba [11, 13]);  

c. credit for recovery of offsite power and for repair following onset of Station 

Blackout (SBO) (Read-Fleming [14]); and, 

d. credit for recovery of offsite power and for repair of any EDG train occurring at 

any time following its failure 

Previous sections in this chapter, describe verification studies carried out under 

the assumption of only independent failure, and two and three EDG trains. The version 

verified in this section considered three EDG trains as well as common-cause failures for 

2/3 (two of three) and 3/3 (three of three) trains. Here 2/3 train common-cause failures 

are failures that lead two EDG trains to fail simultaneously for the same reason. To reach 

station blackout, the last EDG would fail independently. The 3/3 train common cause 

failures are failures that would cause three EDG trains to fail instantaneously for the same 

reason. Therefore, the station would enter blackout simultaneous with failure.  

As written, STP-TAMIL allows arbitrary user-specified distributions in time of 

failures of EDG trains (independent, 2/3 and 3/3 failures), of recoveries of offsite power 

and of repair of the EDG trains. Therefore, a verification or validation requires some 

specific choice of those various distributions. For recovery of offsite power and repair, 
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the same specific distributions previously documented in the versified studies are 

employed. For the failure distributions, the same two-regime exponential distribution 

likewise documented was employed. However, the probabilities of all types of failure to 

start and rates of failure to load and run (failures during the first hour following a LOOP 

event), and of failures to run (during the subsequent 23 hours of a presumed 24 hour 

mission time) were inferred from cut sets developed for the EDG cases using the STP 

PRA model (see Appendix C). The manner of these inferences will be discussed in more 

detail in the rest of this section. 

 

Subsection 5.3.a – 3/3 Common-Cause Failures 

 

The four most important minimal cut sets in the STPNOC PRA model, see 

Appendix C, are all examples of 3/3 common-cause failures. They are shown in Table 

5.12. They were, with associated values of probabilities over the 24-hour mission time, 

conditional on a LOOP occurring. 

 

 

 

Table 5.12 

Top Four Cut Sets in the STP PRA Model. 

 
Cut set Description Variable 

1 Probability of 3/3 failure to Run of EDGs P3FTR 

2 Probability of 3/3 failure to Start of EDGs P3FTSEDG 

3 Probability of 3/3 failure to Load and Run 

of EDGs 

P3FTLR 

4 Probability of 3/3 failure to Start of Fans P3FTSFans 

2+4 Probability of 3/3 failure to Start (Total) P3FTS 
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Note that cut set ―2+4‖ in Table 5.12 acts to serve as a total failure to start  

probability combining, both the EDGs and the associated fans that are generally used for 

cooling of the EDGs.  

If 1  is the failure rate during the first hour, then the probability of failure during 

that hour, i.e. failure to start and run for one hour, is conditional upon start occurring 

shown in Equation (5.11). 

 

11 e


  
(5.11) 

 

Then the total probability of failure to load and run is expressed in Equation 

(5.12).  
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PNORMAL is equal to about 0.99159 [23], the probability (fraction of time) that 

the system is in normal alignment. This can also be solved for 1  as shown in Equation 

(5.13). 
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 The parameter required as an input to the code is the associated mean, 1 , which 

is found in (5.14). 

 

 

1 1

3

3

1
1 /

ln 1
1

FTLR

FTS

P

P

   
 
   

 
 (5.14) 

 



   104 

 

Similarly, fail to run probability can also be determined by the same approach that 

was previously used to calculate fail to start probability. This assumes that 2 is the rate 

of failure during the final 23 hours of the mission time. Then the probability of a 

common-cause triplet failure to run is shown in Equation (5.15).  

 

   223
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Equation (5.15) can be solved for the corresponding mean time to failure 

(conditional upon the first hour being reached without failure), 2 , as shown in Equation 

(5.16) 
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(5.16) 

 

All of the minimal cut sets considered fall above this value, within the normal 

alignment. Within the dynamic framework, unavailability due to maintenance, is to be 

treated as a failure to start. Thus verification against some class of minimal cut sets, 

including some deriving from other than normal alignment, would require that all of the 

probabilities and rates be re-determined, with the corresponding value of P3FTS 

including maintenance-related failures to start. For the current common-cause triplet 

failure, considerations would involve only very rare events in which all three generators 

are unavailable due to maintenance. However, for the independent failures, these 

considerations would be more common as one emergency diesel generator could briefly 

go offline and be under preventative maintenance without causing big safety concerns; in 

fact with enchantment of safety, over a long period.  

The results for common-cause triplet failures are shown in Table 5.13; underlying 

the process is described within the rest of this subsection. Due to confidentiality, the 

results are shown as some constant probability X, or some other variable and the change 

in results are presented as X times some delta constant. For example, if the results for 

Case A‘s probability were actually 1.0E-4, then X would equal 1.0E-4. Therefore, if 
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another case claims the probability is ―=X*20%‖, then the probability for that particular 

case would be 2E-5. This would mean that this case would have an 80% reduction due to 

recovery from Case A which has no recovery.   

 

 

 

Table 5.13 

Probability of Critical Station Blackout from a Common-cause Triplet Failure of EDGs 

or Associated Fans, Given a LOOP Initiating Event has Occurred. 

 

 

 

Case Method Probability of 

Critical Station 

Blackout 

(PCSBO3) 

Case A No credit for recovery (offsite or onsite), from 

STPQUAD3CCF (with failure probabilities and rates 

inferred from  STP PRA Model, see Appendix C, as 

described previously in this subsection.  

X 

Case B PRA result from STP PRA Model using four most 

significant minimal cut sets, see Appendix C.  
X*1.0 

Case C Credit for offsite recovery only, computed dynamically 

via STPQUAD3CCF single integration (default error 

tolerance), but with partial integrand for nonrecovery 

integral that is computed en route to full integrand in 

subroutine INTEGRANDv1pt0 (Lloyd-Anoba [11]) 

= X*0.17976 

 

Case D Computed dynamically via STPQUAD3CCF single 

integration, with integrand for nonrecovery integral that 

is fully dynamic for offsite recovery but incorporates 

onsite repair only after full failure of onsite power, per 

integrand computed via slight modification at last part of 

INTEGRANDv1pt0 code (H) (READ-FLEMING [14]) 

= X*0.12101 

Case E Full dynamic credit for recovery of offsite and onsite 

power, single integral evaluated per STPQUAD3CCF 
= X*0.12101 
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Case A of Table 5.13 shows that STP-TAMIL reports the value of PCSBO3, with 

only common-cause triplet failures of the EDGs and fans considered, as X. All results 

have been considered using five significant figures, which is the maximum warranted. 

This level of significant figures is used because the probabilities from the model, see 

Appendix C, that were used to extract probabilities and rates of failure only contained 

few significant figures. Case B shows that this is exactly the value from the 

corresponding, most probable four, minimal cut sets of the STPNOC PRA model. See 

Appendix C. Preliminary calculations as above, to extract the CC triplet failure 

probabilities and rates, employed the approximation shown in (5.17).  

 

1 te t    (5.17) 

 

The corresponding result from STP-TAMIL was X*1.0, which differed by a 

significant figure in the fifth place digits.  

With credit for restoration of offsite power, Case C, the reported value of critical 

station blackout becomes PCSBO3 = X*0.17976. This is a reduction of about 82.024% of 

Case A, which takes no credit for recovery. With additional credit for repair of the EDG 

systems, PCSBO3 becomes = X*0.12101. The reported values in Case D and Case E agree 

and are identical.  Both are a reduction of Case A of about 87.8989%. In both cases, all 

EDGs fail simultaneously in a common-cause triplet shock event, so that time of initial 

failure of a train is the same as time of failure of all three trains. Therefore, there is no 

distinction between repair beginning at the time of initial failure of a train and repair 

beginning at the time that the third train fails.  

It can be noted that Case D‘s method refers to the last part of the 

INTEGRANDv1pt0code. This refers to the type of non-recovery involved in the code 

itself. In this code the part has a very different non-recovery factors (H) which are 

determined different ways based on the type of recovery and when repair starts. This idea 

of recovery is true for all versions of the code These lines are uncommented or 

commented when certain types of recovery or repair happen based on the input deck.  
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Subsection 5.3.b– Inclusion of Independent Failures 

 

The next logical step is to extract the failure probabilities and rates for 

independent failures of the EDGs, then verify STP-TAMIL results against the PRA 

results for the minimal cut sets that involve both common-cause triplet and independent 

failures. These cut sets with descriptions are shown in Table 5.14.  

 

 

 

Table 5.14 

Important Cut Sets for Independent Failure Based on the Industry Average 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cut set Description Variable 

52 Probability Independent Failure to Load 

and Run of all three EDGs 

3

IFTLFRP  

3 52  Probability of a Single Independent 

failure to load and run (contingent upon 

start occurring which includes the 

particular EDG being available) 

IFTLRP  

81-83 Probability of Independent failure to start 

of some particular EDG, accompanied by 

independent failures to load and run of 

the two remaining EDGs. ( 2

IFTS IFTLFRP P ) 

1 2IFTS IFTLRP  

N/A 2

1 2 /IFTS IFTS FTLR IFTLFRP P P  IFTSP  

5 Probability all three EDG trains fail to 

run independently 
3IFTRP  

3 5  Probability of a Single Independent 

failure to run (contingent upon start 

occurring which includes the particular 

EDG being available) 

IFTRP  
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Note that IFTLRP can be written as a function of the independent failure to load and 

run over the first hour rate, 1 , as shown in Equation (5.18) which can then be solved as 

shown in Equation (5.19). 

 

  11 1IFTLR IFTSP P e


    (5.18) 

1 ln 1
1

IFTLR

IFTS

P

P


 
   

 
 (5.19) 

 

The parameter required as an input for the code is the associated mean, 1 , and 

can now be solved and shown in Equation (5.20).  
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(5.20) 

 

Note that 
3IFTRP can be written as a function of the independent failure run over the 

final 23 hours of operation following a LOOP (considering a 24 hour mission time) rate, 

2 , as shown in Equation (5.21) which can then be solved as shown in Equation (5.22). 

Note that 2 is contingent upon starting and loading/running for the first hour.  
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The parameter required as an input for the code is the associated mean, 2 , and 

can now be solved and shown in Equation (5.23).  
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(5.23) 

 

Table 5.15 contains results with the inclusion of independent failures, in addition 

to the common-cause triplet failures considered in the earlier in this section. The results 

largely reflect the trends that were seen in Table 5.13. Note: That X, Y, and T are the 

probabilities held confidential from STPNOC, see Appendix C. The description above 

Table 5.13 describes more fully how these constants are used.  

Table 5.15 differs in two senses from the trends from Table 5.13, which both 

warrant further dialogue and are discussed below.  

First, the value of probability of critical station blackout due to independent 

failures only, P_CSBOI, and with no credit for recovery, was found from 

STPQUAD3CCF to be Y. By contrast, the value found by summing the probabilities of 

the corresponding minimal cut sets in the 100 most probable minimal cut sets was found 

to be =Y*0.9930. It is reasonable to assume that the discrepancy was due to some 

relevant minimal cut sets not being among the ―top 100.‖ On further inquiry, those not 

included were: 

i) the three minimal cut sets corresponding to independent failure of some 

EDG to load and run, and independent failure of the other two to start; 

and 

ii)  the minimal cut set corresponding to independent failure of all three 

EDGs to start.  
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Table 5.15  

Probabilities of Critical Station Blackout from Common-cause Triplet Failure of EDGs or 

Associated Fans, and from Independent Failures of the EDGs, Given a LOOP Event.  

Case Method PCSBO3 PCSBOI 

PCSBO=PCSBO3+ 

PCSBOI 

A 

No credit for recovery (offsite or 

onsite), from STPQUAD3CCF, with 

failure probabilities and rates 

inferred from STP system notebook, 

shown in Appendix C, as described 

in above text. 

X Y W 

B 

PRA result, from STP system 

notebook (relevant minimal cut sets 

among the 100 most probable). See 

Appendix C. 

X*1.0 =Y*0.9930
a 

=W*0.99930 

C 

Credit for offsite recovery only, 

computed dynamically via 

STPQUAD3ccf integration, with 

partial integrand for nonrecovery 

integral that is computed en route to 

full integrand in subroutine 

INTEGRANDv1pt0 and 

INTEGRAND3way (Lloyd-Anoba 

[11]) 

=X*0.17976 =Y*0.03219 =W*0.1649 

D 

Computed dynamically via 

STPQUAD3CCF single integration, 

with integrand for nonrecovery 

integral that is fully dynamic for 

offsite recovery but incorporates 

onsite repair only after full failure of 

onsite power, per integrand 

computed via slight modification at 

last part of relevant INTEGRAND 

codes (Read-Fleming [14]) 

=X*0.12101 =Y*0.02167 =W*0.11103 

E 

Full dynamic credit for recovery of 

offsite and onsite power, single 

integral evaluated per 

STPQUAD3CCF 

=X*0.12101 =Y*0.01476 =W*0.11033 

a 
If all relevant minimal cut sets are included, as opposed to just those in the top 100, see 

Appendix C, then this value becomes =Y*1.000014, which agrees with the value from 

STPQUAD3CCF to within one digit in the fifth place.  See text for further related discussion. 



   111 

 

These minimal cut sets were identified respectively as numbers 105-107 and 174 

in an expanded STP PRA Model, see Appendix C, incorporating a list of the top 250 

most probable minimal cut sets. Their respective probabilities were determined from the 

expanded system notebook to be Y*0.00203, for each of the minimal cut sets of class i) 

above, and Y*9.1786E-4 for that in class ii). When these probabilities were added to that 

associated with minimal cut sets of the relevant type that were among the top 100, the 

associated probability was found to be Y*1.000014, which agrees with the value from 

STPQUAD3CCF to within one in the fifth to last digit. The probabilities and rates were 

determined above and used as input to STPQAD3CCF, with only five digits of accuracy. 

This level of discrepancy could well be due to round off error. We therefore take these 

results as confirmatory of the hypothesis described earlier in this paragraph.  

Second, if one compares Cases B and C of Table 5.15, then it is clear that the 

probability of critical station blackout due to three independent failures is reduced by 

about a factor of 30 by taking credit for offsite recovery. The corresponding reduction for 

common-cause triplet failures is approximately a factor of five. This is accounted for by 

the fact that a much higher proportion of the putative SBOs associated to three 

independent failures would occur within the mission time. These would be absent of any 

kind of recovery and occur late in the mission time, as compared to such putative SBOs 

associated to common-cause triplet failures. This is illustrated in Figure 5.2, where the 

blue and the red curves correspond to SBOs (more precisely, putative SBOs, absent 

recovery) associated to respectively common-cause triplet failures of the EDGs or three 

independent failures. The solid lines are the corresponding cdfs for the respective types of 

SBOs, conditional upon such an SBO occurring during a (24-hour) mission time, absent 

recovery. The dotted lines are the cdfs for the SBOs occurring and not being prevented by 

recovery of offsite power. This is conditioned upon occurrence of failure during the 

mission time, absent of any form of recovery. The crucial point is that the dotted red line 

(SBOs due to three independent EDG failures not prevented by recovery) is much lower 

than all of the other curves (and constant, to the eye, except very near the initial 

occurrence of LOOP). Almost all of these unrecovered SBOs associated to three 

independent failures stem from failures to start. The vast majority of the other such 

putative SBOs would occur after the first hour, and hence are precluded because offsite 
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recovery is highly likely (65% chance) by the end of two hours. After 3 and 4 hours the 

corresponding likelihoods are 77% and 85%, respectively.  

 

 

 

 

Figure 5.2 – Various cdfs for Time of SBO, Conditional Upon SBO Associated 

to Specific Types of EDG Failures Occurring During a 24-Hour Mission Time 

 

 

 

Finally, this effect of unrecovered SBOs associated to three independent failures 

to state, was not seen as clearly in the results presented in the work reported in the 

previous section. This is because of differences in the independent failure data used there, 

notably a probability of failure to start that was about an order of magnitude larger than 

that employed in the present note. This failure to start cdf is shown in the green curves in 

Figure 5.2. The difference is largely accounted for by industry data in Section 5.2, noting 

one EDG being unavailable (under scheduled maintenance) while actual plant data in the 

present verification study did not reflect this conclusion, see Appendix C.   
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Subsection 5.3.c – 2/3 Common Cause Failures 

 

The next step is to incorporate failures consisting of a 2/3 common-cause failures, 

plus an independent failure of the third EDG. The probabilities and rates for the 

independent failures (as inferred from the STP PRA model, see Appendix C) already 

were developed in the preceding section. The additional information needed here is the 

corresponding probabilities and rates for 2/3 common-cause failures. 

 These cut sets with descriptions are shown in Table 5.16. It can be known from 

Table 5.16 that 2FTLRP can be written as a function of the common cause doublet failure to 

load and run over the first hour rate, 1 , as shown in Equation (5.24) which can then be 

solved as shown in Equation (5.25). 
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Table 5.16 

Important Cut Sets for CC Doublet Failure Based on the Industry Average 

 

 

Cut set(s) Description Variable 

34-36 Probability of two-way independent failure of 

the EDGs to start and an independent failure to 

run.   

=    2FTS IFTRP P  

1 2IFTR FTSP  

N/A Probability of a 2CC failure to start 

= 1 2IFTR FTS

IFTR

P

P

 
 
 

 

2FTSP  

3 5  Probability of a Single Independent failure to 

run (contingent upon start occurring which 

includes the particular EDG being available). 

IFTRP  

19-21 Probability of two-way failure to run of some 

pair of EDGs accompanied by independent 

failure to load and run on the third.   

=    2IFTR FTLRP P  

1 2IFTR FTLRP  

N/A Probability of a 2CC failure to load and run 

= 1 2IFTR FTLR

IFTR

P

P

 
 
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2FTLRP  

9-11 Probability of a common-cause doublet failure 

to run of a pair of EDGs plus an independent 

failure to run of the third.  

=   2IFTR FTRP P  

2 1FTR IFTRP  

N/A Probability of a  common-cause doublet failure 

to run of a designated pair of EDGs  

= 1 2IFTR FTR

IFTR

P

P

 
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 

 

2FTRP  
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The parameter required as an input for the code is the associated mean for two-

way, 1  , and can now be solved and shown in Equation (5.26).  
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(5.26) 

 

Note that 2FTRP can be written as a function of the failure run over the final 23 

hours of operation following a LOOP (considering a 24 hour mission time) rate, 2 , as 

shown in Equation (5.27) which can then be solved as shown in Equation (5.28). Note 

that 2 is contingent upon starting and loading/running for the first hour.  
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The parameter required as an input for the code is the associated mean, 2 , and 

can now be solved and shown in Equation (5.29).  
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(5.29) 

 

Table 5.17 contains results with the inclusion of common cause doublet events 

with single independent failures, in addition to the common-cause triplet failures and 

normal independent failures considered in the earlier in this section. The results largely 

reflect the trends that were seen in Table 5.13.  
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Table 5.17 

Probabilities of CSBO from Common-cause Triplet, CC Doublet or Independent Failures 

of EDGs Along with the Total, Given a LOOP Event.  

Case Method PCSBO3 PCSBO2 PCSBOI 

PCSBO= 

PCSBO3+ 

PCSBO2+ 

PCSBOI 

A 

No credit for recovery (offsite or 

onsite), from STPQUAD3CCF, with 

failure probabilities and rates 

inferred from STP system notebook, 

see Appendix C. 

X Z Y T 

B 

PRA result, from STP system 

notebook (relevant minimal cut sets 

among the 100 most probable), see 

Appendix C. 

 X*1.0 =Z*0.99005
a
 =Y*0.9930

b
 =T*0.9988

c
 

C 

Credit for offsite recovery only, 

computed dynamically via 

STPQUAD3CCF integration, with 

partial integrand for nonrecovery 

integral that is computed en route to 

full integrand in subroutine 

INTEGRANDv1pt0 and 

INTEGRAND3way (Lloyd-Anoba 

[11]) 

=X*0.17976 =Z*0.19182 =Y*0.03219  =T*0.16636 

D 

Computed dynamically via 

STPQUAD3CCF single integration, 

with integrand for nonrecovery 

integral that is fully dynamic for 

offsite recovery but incorporates 

onsite repair only after full failure of 

onsite power, per integrand 

computed via slight modification at 

last part of relevant INTEGRAND 

codes (Read-Fleming [14]) 

=X*0.12101 =Z*0.14733 =Y*0.02167  =T*0.11294 

E 

Full dynamic credit for recovery of 

offsite and onsite power, single 

integral evaluated per 

STPQUAD3CCF 

=X*0.12101 =Z*0.13766 =Y*0.01476  =T*.11178 

a 
The 100 most probable minimal cut sets excludes SBO associated with a common-cause doublet failure to 

start accompanied by an independent failure to start of the third EDG.  These are the 114
th

 through 116
th

 

most probable minimal cut sets, in the top 250 list.  If their probabilities are added, the resulting probability 

is  Z*1.0, which agrees to all five displayed digits with the results from STPQUAD3CCF. 

b 
If all relevant minimal cut sets are included, as opposed to just those in the top 100, then this becomes 

=Y*1.000014, which agrees with the value from STPQUAD3CCF to within one digit in the fifth place.  

See subsection for further related discussion. 

c  
=T*1.000013 if the additional minimal cut sets indicated in footnotes a and b are accounted for. 
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The results for this particular CSBO are shown in the PCSBO2 column of Table 

5.17. These results are presented in the green curves of Figure 5.2 in the previous 

subsection. Qualitatively, they are more similar in nature to the common-cause triplet 

case than to the three independent failures. This reflects the fact that the distribution in 

time of the presently considered 2+1 SBOs is more nearly similar to that of the common-

cause triplet SBOs than to the three independent-failure SBOs. That is, the shape of the 

black curves in Figure 5.2 is more nearly similar to that of the blue curves, which are the 

cdf assuming SBO occurring during a 24-hour mission time absent of recovery for 

common-cause triplet failures. In comparison, the blue curves are not close in shape to 

the red curves, which are the cdf, assuming SBO occurs during a 24-hour mission time 

absent of recovery for independent failures. In other words, the black and blue curves 

differ primarily in scale, which is not true for the black and red curves.  

 

Subsection 5.3.d– Industrial Average Benchmark  

 

The industrial average benchmarked example uses the technique known as the 

alpha factor method to convert compiled industry failure data into functional data within 

a model.  

Failure data is collected for the specific components and separated by type of 

component failure. In the EDG case, these include failure to load and run, failure to start, 

and failure to run events.  These failure distributions as shown in NUREG 6928 [24] as 

the mean of these distributions were used as our generic value for the EDG of a specific 

type of failure. Before moving on it is imperative to fully discuss the alpha factor method 

which is discussed in Subsection 5.3.e.  

 

Subsection 5.3.e– Alpha Factor Method  

 

The alpha factor method, as described here, was adapted from NUREG 4780, 

Volume I, Section 3.3 [25] and Volume II [26], specifically pages C-4 through C-6 and 

C-9 through C-11. 



   118 

 

A ―basic event‘ is considered to be a failure of some set of k components based on 

an m-component common-cause group. The symbol, k, is a integer values based on the 

current component composed inside of the set 1 k m  . The symbol, m, is the total 

number of components for that particular cut set. In the STPNOC case for looking at 

EDG failure, m would be equal to three as there are three EDGs. Basic events may also 

be referred briefly as ―k-way (common-cause) failure‖, except that the case k=1 shall 

often be termed as an ―independent failure‖. The probability (for demand-based failure) 

or frequency (for time-based failure) of a k-way common-cause failure of some specific 

set of k components, and only those k components, is designated as ( )m

kQ . To simplify the 

language, this section will use probabilities, but the discussion applies equally to 

frequencies, with slight changes of language.  

These probabilities of basic events involving failure of a specified set of 

components, and only those components, are the basic parameters of any system model, 

in that system (or subsystem) failure that can be expressed in terms of them. For example, 

the subsystem of interest in this case is an emergency AC power system comprised of 

three identical Emergency Diesel Generators. Therefore, the minimal cut sets for a 3-out-

of-three, all EDGs have to fail; a success logic gate based of a failure of the system can 

be seen in Equation (5.30).  

 

 

   

 

: , ,

2 / 3 : , , ,

3 / 3 :

I I I

AB I AC I BC I

ABC

IndependentFs A B C

CCFs c C c B c A

CCFs c







 
(5.30) 

  

In Equation (5.30), the symbols , ,I IA B and IC represent independent failures 

(―IndependentFs‖) of components (EDGs) one (―A‖) through three (―C‖), respectively. 

The variables ABc , ACc and BCc  represent a common-cause doublet failure (―2/3CCFs‖) 

for component A and B, A and C, and B and C, respectively. The variable ABCc  

represents a common-cause triplet failure (―3/3CCFs‖) for component A, B, and C. 

 Therefore the probability of each type of failure can then be determined which are 

shown in Equation (5.31). 
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(3)

1

(3)

2

(3)

3

( ) ( ) ( )

( ) ( ) ( )

( )

I I I

AB AC BC

ABC

Q P A P B P C

Q P c P c P c

Q P c

  

  



 (5.31) 

 

The total probability of the system, ( )P s , and then be determined based on the 

probabilities and the cut sets which is shown in Equation (5.32) 

 

( ) ( ) * ( ) * ( )

( ) ( ) * ( ) ( ) * ( ) ( )

( )

I I I

AB I AC I BC I

ABC

P s P A P B P C

P c P C P c P B P c P A

P c

 

  (5.32) 

 

 Applying Equation (5.31), the system failure probabilities can be altered, resulting 

in Equation (5.33).  

 

 
3

(3) (3) (3) (3)

1 2 1 33SQ Q Q Q Q    (5.33) 

 

  The three terms on the right in Equation (5.33) represent respectively: system 

failures of each of the three EDG trains independently, failures due to a common-cause 

doublet failure of one of the (three) pairs of EDGs accompanied by an independent 

failure of the third, and failures caused by a single common-cause triplet failure. 

 Other types of failure events are conceivable, but commonly are not considered. 

An example would be two common-cause doublet failures. This can give rise to 

inconsistencies in system models. For our purposes, the system model is Equation (5.33). 

The only types of basic failure events considered are those whose probabilities (or 

frequencies) appear here, and these basic events are considered mutually exclusive.  See 

page C-2 of NUREG 4780 [26] for further discussion on this matter.  

 For reference, the need is now to define several additional quantities and express 

them in terms of probabilities of combinations of basic events. The probability of a k-way 

failure that leads to some specific component failure is represented by ( )m

kQ times the 

number of ways one can select a set of k-1 components from among the m-1 remaining 
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once the required component has been selected. The probability of k-way failure that 

includes some specific component is shown in Equation (5.34). 

 

( )
1

1

m

k

m
Q

k

 
 

 
 (5.34) 

 

Equation (5.34) uses the combination rule of statistics. This rule is shown as the 

binomial coefficient, which is displayed as Equation (5.35).  

 

!

!( )!

m m

k k m k

 
 

 
 (5.35) 

 

 Similarly, the probability of some k-way basic event is shown in Equation (5.36).  

 

( )m

k

m
Q

k

 
 
 

 (5.36) 

 

 From Equation (5.34), the quantity defined in Equation (5.37) is the probability of 

some k-way basic event that includes failure of some specified component.  

 

( )

1

1
:  

1

m
m

t k

k

m
Q Q

k

 
  

 
  (5.37) 

 

Using the previous Equations (5.36) and (5.37), one can determine an ―alpha 

factor‖ shown in (5.38). This alpha factor is defined as the probability of some k-way 

basic event occurring over the probability of some basic event occurring; i.e., the 

probability of a k-way basic event occurs, given that a basic event occurred.  

 

( )

( )

( )

1

:

 

m

k

m

k m
m

k

i

m
Q

k

m
Q

k





 
 
 


 
 
 


 (5.38) 
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 Equation (5.38) uses Equation (5.36) and the fact that every basic event involves 

some positive number of component failures. Therefore, it can be noted that Equation 

(5.38) also represents the probability of some k-way basic event given that some basic 

event occurs. 

 Equation (3.39) represents an expected number of component failures given that 

some basic event occurs designated by
t . 

 

( )

1

.
m

m

t k

k

k 


  (5.39) 

 

An algebraic manipulation of Equations (5.39) and (5.37) can be performed to get 

a better interpretation of t . To start this approach, Equation (5.39) can be written in the 

form of Equation (5.40). 

 

( ) ( ) ( )
1

 
1

m
m m m

k k k

i k

m mk
Q Q

k km




     
    

    
  (5.40) 

 

 To understand Equation (5.40) is important to solve for t  as shown in Equation 

(5.41). This represents the size of common-cause component group multiplied by the 

probability of some k-way basic event that includes failure of some specified component 

over the probability of some basic event occurring.  

 

( ) ( )

1 1

( ) ( )

1 1

1
  

1

  

m m
m m

i k

k k

t m m
m m

i k

i k

m m
k Q Q

k k
m

m m
Q Q

k k


 

 

   
   

    
   
   
   

 

 
 (5.41) 

If the sum of each side of Equation (5.41) is taken from k=1 to m (
1

 
m

k

k


 ), 

Equation (5.40) can lead to Equation (5.42).  
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( ) ( ) ( )

1 1 1

11
   

1

m m m
m m m

k k k

k k k

m m
Q k Q

k km


  

     
    

    
    (5.42) 

 

Equation (5.42) can then be simplified into Equation (5.43) using the definition 

shown in Equation (5.39).  

 

( )

1

 
m

m

k t

k t

m m
Q Q

k 

 
 

 
  (5.43) 

 

To better understand, the Equation (5.43) is split into two parts as demonstrated in 

Equation (5.44) using the definition shown in Equation (5.38).  

 

 

( )
( )

/

m
mk

t k

t

m
Q Q

km





 
  
 

 (5.44) 

 

The right side of Equation (5.44) can be defined as the probability of some k-way 

basic event. The left side of Equation (5.44) is then defined as the probability of some k-

way basic event over the probability of some basic event; multiplied by, the probability 

of some k-way basic event that includes failure of some specified component; divided by, 

the probability of some k-way basic event that includes failure of some specified 

component over the probability of some basic event.  

Equation (5.44) can then be solved for the probability ( )m

kQ . The result is 

displayed in Equation (5.45). 

 

( )
( )

m
m k

k t

t

m
Q Q

m

k





 
 
 

 
(5.45) 

 



   123 

 

 In any application of PRA it is the ( )m

kQ  that are ultimately required, for the 

insertion into some system failure equation, such as Equation (5.33). In the alpha factor 

method it is the ( )m

k and tQ  that are supplied to the analyst from industrial averages [18, 

19, 24]. These data values then permit the computation of ( )m

kQ as seen in Equation (5.45).  

The result is Equation (C.23) from NUREG-4780 Volume II [26].  

Equation (5.45) can be written out in a more simple form which is shown 

Equation (5.46) as it appears identical to this particular equation shown in Table C-1 of 

the NUREG 4780 [26]. 

 

( )

( 1)!

( )!( 1)!

m k
k t

t

k
Q Q

m

m k k





 
  
     
   

 (5.46) 

 

Therefore, the example of three EDGs, the specific failure probabilities for 

independent, common-cause doublet, and common-cause triplet based off the alpha 

factors, are shown in Equations (5.47) through (5.48), respectively. 

 

(3) 1 1
1

1

(3 1)!

(3 1)!(1 1)!

t t

t t

Q Q Q
 

 

 
    
         
   

 (5.47) 

(3) 2 2
2

2

(3 1)!

(3 2)!(2 1)!

t t

t t

Q Q Q
 

 

 
    
         
   

 (5.48) 

(3) 3 3
3

3
3

(3 1)!

(3 3)!(3 1)!

t t

t t

Q Q Q
 

 

 
    
         
   

 (5.49) 

 

In terms of alpha factors for this case, t can be represented as shown in (5.50)  
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1 2 32 3t       (5.50) 

 

Plugging in these values found in Equations (5.47)-(5.50) into Equation (5.33) 

will reveal the formula shown in (5.51).  

 

3

3 2 31 2 13( ) 3s t t t

t t t t

Q Q Q Q
  

   

      
        
      

 (5.51) 

 

Equation (5.51), like in Equation (5.33), has the three terms on the right-hand side. These 

terms still represent respectively system failures of each of the three EDG trains, failures 

due to a common-cause doublet failure of one of the (three) pairs of EDGs accompanied 

by an independent failure of the third, and failures caused by a single common-cause 

triplet failure. 

 

Subsection 5.3.f – Values Used in Industrial Average Case   

 

The values presented from NUREG 6928 [24] show the industry-average failure 

probability or rate distribution for each type of component failure. The three component 

types that are included along with the associated mean failure, description, and 

designation between probability or rate is shown in Table 5.18.  
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Table 5.18 

NUREG-6929 Component Type Failure Averages [24]. 

Component Failure 

Mode 

Description 

 

Designation 

 

Mean Value 

 

EDG STBY FTLR 

Emergency Diesel 

Generator (Standby) Fail 

to Load and Run during 

the first hour of 

operation 

Probability (
t FTLRQ 

) 2.90E-3 

EDG STBY 

FTR>1H 

Emergency Diesel 

Generator (Standby) Fail 

to Run after the first 

hour of operation 

Rate ( FTR ) 8.48E-4 

EDG STBY FTS 
Emergency Diesel 

Generator (Standby) Fail 

to Start 

Probability ( t FTSQ  ) 4.53E-3 

 

 

 

The alpha factors are presented in Table 5.19 and acquired from the common-

cause component group database [18, 19] based on a common-cause component group of 

three. It can be noted that the mean was used for the value of the alpha factor in this 

analysis. The t  factors based off Equation (5.50) are also displayed within Table 5.19.   
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Table 5.19 

Common-Cause Component Database Alpha Factors (CCCG=3) [18, 19]. 

Alpha Factors EDG FLTR 

 

EDG FTR 

 

EDG FTS 

 
1  0.989441 0.990122 0.988584 

 
2  8.91E-3 6.36E-03 

 

7.40E-03 

 
3  1.65E-5 3.52E-03 

 

4.01E-03 

t  1.012211 

 

1.013402 

 

1.015414 

  

 

 

After the values are extracted from [24] and [18, 19], then they can be used within 

Equation (5.51). Each term in Equation (5.51) can be used with a specific sequence of 

failures that will make up a cut set. For an example, a two way common-cause failure to 

load and run of the first two EDGS combined with a independent failure to run of the last 

EDG will have a certain probability, 2 1FTLR IFTRQ  , associated with it is taken and is 

calculated using Equations (5.52) through (5.54). Please note that a complex example is 

used to show how the values and equations relate to each other. Equation (5.52) displays 

this basic definition of the 2 1FTLR IFTRQ   example using the variables found in Tables 5.19 

and 5.20. The fail to run mean value in [24] displays a rate so it has to be converted to a 

probability. This exponential relationship is previously presented in Equation (5.21).  

 

 1

2 1 2

*( )*/

3*(( / ))

* 1* FTR FTR t FTR

FTLR IFTR FTLR t FTLR

t

t FTLR

Q

Q e
  

 

 

  








 (5.52) 

 

As one may note from Equation (5.52), the code employed in this verification 

uses the mutually exclusive version of the non-recovery integral seen in Equation (1.1). 

This differs from STPQUAD2 and STPQUAD3 verifications. However, these do not 

change the results significantly, more than the fifth digit.  
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As one can see the first line of Equation (5.52) relates to the common-cause-

failure-doublet-to-load-and-run term, where the second line relates to the independent 

failure to run term. These probabilities used in the second line of Equation (5.52) can also 

be solved for using Tables 5.19 and 5.20 data. This turns Equation (5.52) into Equation 

(5.53). 

 

  1*( ) *

2 1 2

/
3*(( / ))* 1* FTR FTR t FTR t

FTLR IFTR FTLR t FTLR t FTLRQ Q e
  

   

      (5.53) 

 

Values can then be substituted into Equation (5.53).  It can be solved as shown in 

Equation (5.54).  Note this model assumes a 24 hour mission time so a failure to run after 

one hour will make t=23 in this analysis.  

 

 
  

2 1

0.000848*(0.9901 /1.01340222 *23

8.91 3

2.90 3 1

3*(

2.170915E 0

( /1.012211))

* *

7

FTLR IFTRQ E

E e





 

 

 

 (5.54) 

 

This is repeated for every cut set within the model.  Table 5.20 shows the cut sets used 

for this verification along with their associated values.  The cut sets are grouped together 

by type of failure that could have occurred.  The summation total of the cut sets is the 

―model‘s‖ CDF.  In addition, this total CDF (displayed in yellow, the cell entitled 

―TOTAL CUT SETS‖ and the cell directly right of this particular cell) is divided to show 

the CDF (displayed in green, cells entitled ―Total CC Triplet Cut Sets‖, ―Total CC 

Doublet Cut Sets‖, and ―Total Independent Cut Sets‖ along with the cells directly to the 

right of each) from independent, common-cause doublet, and common-cause triplet 

failures.  The cut set numbers have no particular significance.  The number is simply a 

naming convention or label system.  These values displayed in Table 5.20 also commonly 

referred to in this document as the Pseudo-PRA model or analysis. The red cells, entitled 

―CC Triplet Failures‖, ―CC Doublet Failures‖, and ―Independent Failures‖, refer to a new 

section of cutsets to differentiate between CC triplets, CC doublets, and independent 

failures, respectively.  
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Table 5.20 

Cut Set Probabilities and Totals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cut set Cases CC Triplet Failures Probability 

12 3FTSQ   5.3669E-05 

2 3FTRQ  2.0322E-04 

3 3FTLRQ  1.4182E-05 

 
Total CC Triplet Cut Sets =2.7107E-04 

 
   CC Doublet Failures   

4 2 1FTS IFTRQ   1.8694E-06 

5 2 1FTS IFTSQ   4.3679E-07 

6 2 1FTS IFTLRQ   2.8075E-07 

7 2 1FTR IFTRQ   6.9310E-06 

8 2 1FTR IFTLRQ   1.0409E-06 

9 2 1FTR IFTSQ   1.6194E-06 

10 2 1FTLR IFTRQ   1.4455E-06 

11 2 1FTLR IFTLRQ   2.1709E-07 

12 2 1FTLR IFTSQ   3.3775E-07 

 
Total CC Doublet Cut Sets =1.4179E-05 

 
  Independent Failures   

13 1 1 1IFTS IFTR IFTLRQ    1.4159E-06 

14 3IFTLRQ  2.2780E-08 

15 3IFTSQ  8.5784E-08 

16 3IFTRQ  6.7251E-06 

17 2 1IFTLR IFTSQ   1.0632E-07 

18 2 1IFTLR IFTRQ   4.5504E-07 

19 2 1IFTS IFTRQ   1.1014E-06 

20 2 1IFTS IFTLRQ   1.6542E-07 

21 2 1IFTR IFTSQ   4.7140E-06 

22 2 1IFTR IFTLRQ   3.0300E-06 

 
Total Independent Cut Sets =1.7822E-05 

 
  TOTAL CUT SETS =3.0307E-04 
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Using the numbers from this industrial average in the code itself leads to the 

results as shown in Table 5.21. This table displays the summations found from Table 5.20 

along with the difference in results.  

  

 

 

Table 5.21 

Difference Between Pseudo-PRA and Code Results. 

 

 

 

The small difference between the Pseudo-PRA and the MATLAB code results 

indicates that the Pseudo-PRA results are fine for those cut sets. However, there is some 

deviation which could be due to error tolerance. It could also be round off error from 

inputs to the code or from the PPRA. Therefore, the program was able to benchmark 

against site-specific numbers and industrial average values. There is some debate 

suggesting that the Pseudo-PRA values might be underestimating the value or there may 

be an error in calculations. Therefore, it may be advantageous to add in some 

conservatism to the final result. In practice, conservatisms are left in the model due to 

unknown requirements in the future, human error and uncertainties. These variations 

might be due to uncertainties in instruments used for measurement, lack of failure events 

or too small a sample size for the distribution, misclassified failure events, or even in the 

calculation itself.  

Probability of Critical 

Station Blackout 

Pseudo-PRA 

Results 
Code Results Difference 

Total CC Triplet Cut Sets 
=2.7107E-04 

 

=2.7107E-04 

 

=4.0658E-17 

 
Total CC Doublet Cut Sets 

=1.4179E-05 

 

=1.4179E-05 

 

=1.0503E-18 

 
Total Independent Cut Sets 

=1.7822E-05 

 

=1.7822E-05 

 

=4.6079E-19 

 TOTAL CUT SETS 
=3.0307E-04 

 

=3.0307E-04 

 

=4.0224E-17 
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The code can then be run with these results considering the different types of 

recovery and the results are shown in Table 5.22. Notice the cases are the same as Table 

5.17 with the exception of Case B which is the Pseudo-PRA model results.  

 

 

 

Table 5.22 

Probabilities of CSBO from the Code Using the Industrial Average and Pseudo-PRA 

Model.  

Case Method PCSBO3 PCSBO2 PCSBOI 

PCSBO= 

PCSBO3+ 

PCSBO2+ 

PCSBOI 

A 

No credit for recovery (offsite or 

onsite), from STPQUAD3CCF, 

with failure probabilities and 

rates inferred from industrial 

average. ([18, 19, 24]) 

2.7107E-4 1.4179E-5 1.7822E-5 3.0307E-4 

B 
Pseudo-PRA Model totals from 

cutset summations. ([18, 19, 24]) 
2.7107E-4 1.4179E-5 1.7822E-5 3.0307E-4 

C 

Credit for offsite recovery only, 

computed dynamically via 

STPQUAD3ccf integration, with 

partial integrand for nonrecovery 

integral that is computed en 

route to full integrand in 

subroutine INTEGRANDv1pt0 

and INTEGRAND3way (Lloyd-

Anoba [11]) 

4.8724E-5 2.6495E-6 5.0312E-7 5.1876E-5 

D 

Computed dynamically via 

STPQUAD3CCF single 

integration, with integrand for 

nonrecovery integral that is fully 

dynamic for offsite recovery but 

incorporates onsite repair only 

after full failure of onsite power, 

per integrand computed via 

slight modification at last part of 

relevant INTEGRAND codes 

(Read-Fleming [14]) 

3.2798E-5 2.0350E-6 3.3867E-7 3.5172E-5 

E 

Full dynamic credit for recovery 

of offsite and onsite power, 

single integral evaluated per 

STPQUAD3CCF 

3.2798E-5 1.9154E-6 2.2552E-7 3.4939E-5 
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The results clearly show that the credit for offsite recovery still vastly decreases 

the probability of critical station blackout when considering the industrial average (alpha 

method) case. From the original value to take credit for offsite recovery is about 82.88%. 

This is where the main reduction comes into play in recovery. If the systems now 

incorporate onsite repair only after full failure of onsite power, then the system will have 

an 88.39% reduction in probability of critical station blackout. Finally, if full dynamic 

recovery of offsite and onsite power is accounted for in the model, then the reduction is 

about 88.47% of the total. This small change between Case D and Case E does not seem 

substantial when looking at the total due it it only being an additional reduction of about 

0.08%. The is due to CC Triplet failures making up a majority of the total risk and, as 

previously mentioned earlier in this chapter, a 3CCF shock will not matter if repair starts 

after all three have failed or after the first one failed. This is because in a 3CCF shock all 

of the EDGs/Trains fail immediately. This is partially the case in a 2CCF case; however, 

these results change slightly due to one independent failure that has to go along side of 

the common-cause doublet failure. Therefore, if the independent happens first, then there 

is some repair time before the 2CCF shock failure.  One would expect independent 

failures to be affected the most by the time sequencing of repairs. If one looks at the 

reduction from Case D to Case F only looking at independent failures, then a notable 

reduction of 33.41% is noted. This could play more of a role in the overall probability of 

CSBO in two emergency train power plants as those would have a higher probabilistic 

risk based on independent failures.   

This reduction satisfies the requirement of reducing the probability of critical 

station blackout in the model.  

 

Section 5.4 –Summary of Verified Results 

 

 The last column of Table 5.17, PCSBO, is the fully developed STP-TAMIL code 

results and is verified throughout this section. The code for each section is attached in 

Appendix A.3. Case E should be used as the most realistic result if recovery is assumed. 

Case A is the case most conservative when using the STP-TAMIL code. Case E reflects a 
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reduction of the total probability of critical station blackout of about 88.822%. This meets 

expectations and can greatly assist nuclear plants to predict potential outcomes.  

 For the industrial average case, the numbers were almost exactly as expected for 

no credit recovery or repair. Additionally, all of the cases went to probability levels that 

were expected, or decreased from adding recovery very similar to the STP-PRA Case. 

Case E for this model dropped the initial value by about 88.47%. This was not as large a 

decrease as in the site specific model but it was very close. This small variation is likely 

due to how that difference is calculated. The difference is the reduction of PCBO divided 

by the total PCSBO for no credit recovery (Case A). That means that if the numbers for 

Case A are different then it makes sense that a percentage change or reduction from those 

numbers would be slightly different. However, this exact change is not shown due to 

confidentially agreement with South Texas Project, see Appendix C.  
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CHAPTER VI 

IMPLEMENTATION 
 

This chapter will discuss how this research code could be implemented into the 

PRA models at STPNOC (Section 6.1) as well as other nuclear power plants around the 

nation. (Section 6.2). 

 

Section 6.1 –STPNOC 

 

South Texas Project Nuclear Operating Company had supplied Texas A&M 

University with the associated values needed for the input deck of the STP-TAMIL code. 

The code was run and verified against STP‘s PRA Fault/Event-Tree model. With the 

result of the probability of critical station blackout that STPNOC chose, they can include 

it in their analysis by making it a factor of their CDF, core damage frequency. As the 

probability of a critical station blackout decreases, so does the CDF. This in turn leads to 

a lower overall risk for the probability of core damage during a LOOP initiating event.  

This process could be used to update their model for LOOP recovery with a more 

accurate way of quantifying the uncertainty and removing some of the unnecessary 

conservatism improving STPNOC‘s PRA model.   

 

Section 6.2 –Other Commercial Nuclear Operators 

 

Other commercial nuclear operators could also use this ―TAMIL‖ code. It would 

not be difficult to update the input deck to make it site specific for a different nuclear 

plant. A few obvious changes may be number of trains, probabilities and factors used. 

This would involve optimizing the code for two trains. Once updated, it would be 

important to check and verify the results against the new plant‘s PRA Fault/Event-Tree 

model if possible. Nuclear plants with less than three trains of EDGs can also figure out 

how much recovery is gained in terms of the probability of critical station blackout by 

adding a third EDG to determine if it is reasonable and cost-effective to do. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

 

The final chapter will summarize the project (Section 7.1), discuss the 

significance of the problem (Section 7.2), and give suggestions for improvement (Section 

7.3). Section 7.3 will also discuss suggestions for resolution of potential obstacles along 

with a plan for future action. 

 

Section 7.1 –Summary 

 

A MATLAB
b
 research code was developed and tested that incorporates and 

enhances a novel methodology to eliminate excessive conservatism in the evaluation of 

probability of critical station blackout in a nuclear power plant. The methodology 

employed involved direct numerical evaluation of multidimensional nonrecovery 

integrals using efficient computational algorithms. The results of the MATLAB research 

code was successfully verified against a traditional site-specific PRA analysis to about 

0.12% accuracy. Furthermore this analysis confirmed that traditional PRA methods 

produced a probability of critical station blackout that was overly conservative by just 

over 88% assuming full recovery of offsite and onsite power. 

This thesis provides an algorithm in the computer code ―STP-TAMIL‖ that will 

compute the probability of critical station blackout following a loss of an offsite power 

initiating event. The concept was introduced in Chapter I as were differences in current 

versus new methods of using the non-recovery integral. The theory of forming the non-

recovery integral along with what the specific parts represent was shown in Chapter III. 

The theory involved approaching the non-recovery integral in terms of two asymptotic 

methods. The first was successful in leading to the non-recovery integral and the other 

was left to future work. Chapter V provides verifications to prove that the non-recovery 

integral was representative of the current methods within the industry as well as to show  

                                                 

b
  MATLAB is a registered trademark of The MathWorks, Inc.; cf. MathWorks - Trademarks 
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the improvements. Chapter V also has a verification of the results of STP-TAMIL against 

an industry average.  This verification shows the results in the final form of STP-TAMIL 

and gives the fully developed probability of critical station blackout based upon industry 

average numbers and the specific input deck used. Chapter IV displayed how values 

obtained from STP-TAMIL may differ depending on what inputs were used and what 

assumptions were made. Chapter II is intended to be a stand-alone user manual for STP-

TAMIL operation. The manual is meant to cover installation, creating an input deck, 

creating new files or distributions, running the code, and reading the output file. Chapter 

VI describes how commercial nuclear power plant operators can benefit from an 

improved estimation of core damage risk during a loss of offsite power. It also serves to 

describe how this program can be implemented at other plants and how to make the code 

site specific.   

 

Section 7.2 –Significance 

  

This work proves that there is a large reduction in probability of critical station 

blackout using different types of recovery. For a three EDG model, if one just assumes 

dynamic offsite power repair is possible, then there is about an 82.88% drop in 

probability off industry averages. From that assuming that repair of the EDGs can start 

after all have failed, the probability drops by an additional 5.51% making it a total of a 

88.39% drop. Assuming that repair can start on those EDGs when each one fails, the total 

probability of critical station blackout drops another 0.08%. This makes the total drop in 

probability of critical station blackout of about 88.47% assuming full recovery is taken 

into account. In the verification of STPQUAD2 case, the drop from ―Case D‖ to ―Case F‖ 

(referred to later in Chapter V) was much more significant and was around about 10%. 

However, this is due to common-cause shock events not being taken into account as 

different between Case D and Case F, which is correct. However, the difference in 

independent events between these two cases is about 33.4% so there is a decent 

reduction, which will have a bigger impact on overall risk in a two emergency train 

nuclear power plants.   
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This large reduction of probability of critical station blackout shows that there is a 

significant over conservatism built into current models that can be adjusted for increased 

accuracy. This will provide more meaningful results in PRA models and can better prove 

engineering assumptions of the current fleet of commercial nuclear power plants. The 

NRC may change the assumed amount of critical time allowable or the mission time for 

the specific initiating event. This code can be used to plot how changing these times will 

affect the probability of critical station blackout.  

There is a large push in the industry to have more of a production code that can be 

used throughout the fleet. It is hoped that with more verification and validation, this can 

be done.    

 

Section 7.3 –Future Work 

 

Additional common-cause data (e.g., site-specific industry data), independent of 

those extracted from the plant-specific STP PRA estimates, should be used for validation. 

If the dynamic reliability methodology developed in the present study is to be used going 

forward, the recommendation is that further development of such data should be a high 

priority. A more intensive two-EDG model could also be used for the development of the 

asymptotic approach.  There are opportunities to expand the usage of the equations in 

Chapter III, which could be the focus of further research. The is most notable in the 

advanced three-EDG Markov model that is mentioned in Chapter III. Future work is also 

needed in small impacts of error tolerance and in determining expanded integral usage. 

For the verification problems, no differentiation is made between the various sources of 

types of loss of offsite power, as ultimately will be necessary. Some of these differences 

could include the LOOP being caused by weather, the grid, or the switchyard failure [23] 

which will have to be addressed in future work.  

Fully dynamic repair rates based on factors that might affect the specific type of 

repair of an individual component may be developed through new research. This may 

lead to improvement in STP-TAMIL.  The values presented in Chapter V can be used in 

other applications that are unforeseen by the author; therefore, a large number of 

significant figures have been left for use in future calculations.  It may also be interesting 
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to see how dynamic onsite recovery or repair of one EDG while the other remains 

operating, applies to other nuclear plants. This could be open to future work to see if fully 

dynamic recovery can be better at other types of plants.   

The impact of various repair policies may merit some additional study.  To some 

extent that could be done using the present code; although that would give  a ―feel‖ for 

the impact of different repair policies, but the  results may not be accepted by regulatory 

authorities.  Also, a systematic approach to truncation in PRAs could be developed, on 

the basis of the ―Asymptotic Analysis‖ from Chapter III.  The conservatism built into the 

industrial average will also have to be accounted for and therefore will require the need 

for future analysis and research.  

With continued work, the code may eventually evolve into a production version 

for commercial nuclear industry applications. This may involve adding new methods for 

looking at distributions for specific plants. Provisions for expansion have been built into 

the code as covered in Chapter II. After updates, the code should eventually lead to more 

versions that fully benchmark to PRA models used at the nuclear sites.  
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APPENDIX A  

 STP-TAMIL CODE 

 

The MATLAB code is broken up into a series of M-Files that make it easier for 

the programmer. These are further broken up to the specific verification study that the 

code relates too. For verification 1 seen in Section 5.1 for STPQAD2 suite, the specific 

M-file, description, and page number are summarized in Table I.1. For verification 2 seen 

in Section 5.2 for STPQUAD3 suite, the specific M-file, description, and page number 

are summarized in Table I.2. For the final code or verification for STPQUAD3CCF, seen 

in Section 5.3, the specific M-file, description, and page number are summarized in Table 

I.3. Note that the STPQUAD3CCF suite of programs is STP-TAMIL version 1.0.   

 

 

 

Table I.1 

M-File Names and Descriptions for STPQUAD2 Suite Verification 

M-File Description Page 

STPQUAD2 Main Program, used to run the code, See 

comments in code for a more thorough 

description. 

144 

Lloyd Code used to Verify Lloyd 

Approximation [13] 

145 

INTEGRAND Used in STPQUAD2 to run the non-

recovery integral 

146 

INTEGRAND1 Used in Lloyd to run the Lloyd 

approximation to nonrecovery integral 

147 
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Table I.2 

M-File Names and Descriptions for STPQUAD3 Verification. 

M-File Description Page 

STPQUAD3 Main Program, used to run the code, See 

comments in code for a more thorough 

description. 

148 

Lloyd3 Code used to Verify the Lloyd 

Approximation [13] 

150 

INTEGRANDv1pt0 Used in STPQUAD3 to run the non-

recovery integral 

152 

INTEGRAND3 Used in Lloyd3 to run the Lloyd 

approximation to nonrecovery integral 

153 

FTR6890 Custom Distribution Type made up of a 

cdf and an inverse cdf to calculate the cdf 

for a specific train for a failure to load 

and run 

154 

FTR6890inv Custom Distribution Type made up of a 

cdf and an inverse cdf to calculate the 

inverse cdf for a specific train for a 

failure to load and run 

154 

FTR6890pdf Custom Distribution Type made up of a 

cdf and an inverse cdf to calculate the 

inverse cdf for a specific train for a 

failure to load and run. (Not used) 

155 
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Table I.3 

M-File Names and Descriptions for STP-TAMIL* (STPQUAD3CCF Verification). 

M-File Description Page 

STPQUAD3CCF Main Program, used to run the code, See 

comments in code for a more thorough 

description. 

155 

INTEGRANDv1pt0 Used in STPQUAD3 to run the non-

recovery integral 

182 

INTEGRAND2way Used in STPQUAD3CCF to run the 

integrals for common-cause doublet 

failures as well as repairs 

184 

INTEGRAND3way Used in STPQUAD3CCF to run the 

integrals for common-cause triplet 

failures as well as repairs 

187 

FTR6890 Custom Distribution Type made up of a 

cdf and an inverse cdf to calculate the cdf 

for a specific train for a failure to load 

and run 

190 

FTR6890inv Custom Distribution Type made up of a 

cdf and an inverse cdf to calculate the 

inverse cdf for a specific train for a 

failure to load and run 

191 

FTR6890pdf Custom Distribution Type made up of a 

cdf and an inverse cdf to calculate the 

inverse cdf for a specific train for a 

failure to load and run. (Not used) 

193 

* For STP-TAMIL to work in this work an associated RunFile and Output File must be 

created in addition to the m-files as described in Chapter II. 

 

 

 

Appendix A.1 – STPQUAD2 Package Code 

 

The MATLAB code title is in bold and everything following is the actual code 

that can be used in a MATLAB environment. Each specific code is broken up by these 

bold titles.  
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“STPQUAD2.m”:  

 
%% Begin input 
clear all 
global F_0 F Finv alphaF betaF gammaF n T_c G alphaG betaG gammaG R tau 

alphaR betaR gammaR 
n=2; % number of safety trains; 
F=cell(1,n); 
Finv=cell(1,n); 
R=cell(1,n); 
T=24; % mission time, in hours 
T_c=1; % critical time, in hours 
G=@expcdf; % cdf in time (hours) for recovery of offsite power 
alphaG=4; betaG=0; gammaG=0; % parameters for G, here mean time to 

recovery (hours) for 
% expcdf as in ICONE18 paper 
%G=@logncdf; % cdf in time (hours) for recovery of offsite power, taken 

here as lognormal, 
% in consonance with recommendation of Chapter 4 of Vol. 1 of NUREG 

6890, 2005  
%alphaG=0.793; betaG=1.982; gammaG=0; % parameters for G, here mean 

time to recovery (hours) for 
% lognormalcdf as in Table 4-1 of NUREG 6890, ibid. 
%  
F_0(1)=.0132; % probability of initial failure to start of train i, 

from ICONE18 paper 
F{1}=@expcdf; % cdf for failure of train 1; here the exponential cdf, 

per the ICONE18 paper 
Finv{1}=@expinv; % the corresponding inverse cdf for failure of train 

1; here again the inverse  
% of the exponential cdf,per the ICONE18 paper 
alphaF(1)=1/8.35e-4; betaF(1)=0; gammaF(1)=0; % parameters for failure 

cdf and its inverse, for  
% train 1, here mean time to failure = 1/8.35e-4 hours for expcdf as in 

ICONE18 paper  
R{1}=@expcdf; % cdf in time (hours) for recovery (repair) of train i 
alphaR(1)=12; betaR(1)=0; gammaR(1)=0; % parameters for recovery cdf 

for train 1, here the mean time to 
% recovery = 12 hours for expcdf as in ICONE18 paper 
F_0(2)=.0132; % probability of initial failure to start of train i, 

from ICONE18 paper 
F{2}=@expcdf; % cdf for failure of train 2; here the exponential cdf, 

per the ICONE18 paper 
Finv{2}=@expinv; % the corresponding inverse cdf for failure of train 

1; hereagain the inverse  
% of the exponential cdf,per the ICONE18 paper 
alphaF(2)=1/8.35e-4; betaF(2)=0; gammaF(2)=0; % parameters for failure 

cdf and its inverse, for  
% train 2, here mean time to failure = 1/8.35e-4 hours for expcdf as in 

ICONE18 paper 
R{2}=@expcdf; % cdf in time (hours) for recovery (repair) of train 2 
alphaR(2)=12; betaR(2)=0; gammaR(2)=0; % parameters for recovery cdf 

for train 2, here the mean time to 
% recovery = 12 hours for expcdf as in ICONE18 paper 
%% 
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%% Computation of nonrecovery integral 
% Convert Riemann-Stieltjes double nonrecovery integral to ordinary 

Riemann 
% integral 
A=0; 
B=F_0(1)+(1-F_0(1))*feval(F{1},T,alphaF(1),betaF(1),gammaF(1)); 
C=0; 
D=F_0(2)+(1-F_0(2))*feval(F{2},T,alphaF(2),betaF(2),gammaF(2)); 
P_CSBO=quad2d(@INTEGRAND,A,B,C,D) 
%P_CSBO=quad2d(@INTEGRAND,A,B,C,D,'AbsTol',1.0e-13) 
%P_CSBO=quad2d(@INTEGRAND,A,B,C,D,'AbsTol',1.0e-15,'MaxFunEvals',20000) 

 

“Lloyd.m”:  

 
%% Begin input 
clear all 
global f F_0 F alphaF betaF gammaF n T_c G alphaG betaG gammaG Rhat 
n=2; % number of safety trains; 
f=cell(1,n); 
F=cell(1,n); 
R=cell(1,n); 
T=24; % mission time, in hours 
T_c=1; % critical time, in hours 
G=@expcdf; % cdf in time (hours) for recovery of offsite power 
alphaG=4; betaG=0; gammaG=0; % parameters for G, here mean time to 

recovery (hours) for 
% expcdf as in ICONE18 paper 
%  
F_0(1)=.0132; % probability of initial failure to start of train i, 

from ICONE18 paper 
f{1}=@exppdf; % pdf for failure of train 1; here the exponential pdf, 

per the ICONE18 paper 
F{1}=@expcdf; % cdf for failure of train 1; here the exponential cdf, 

per the ICONE18 paper 
alphaF(1)=1/8.35e-4; betaF(1)=0; gammaF(1)=0; % parameters for failure 

pdf, cdf and its inverse, for  
% train 1, here mean time to failure = 1/8.35e-4 hours for expcdf as in 
% ICONE18 paper  
%Rhat(1)=1.0; % nonrecovery factor for train 1; here no credit taken 

for onsite recovery 
R{1}=@expcdf;  
alphaR(1)=12; betaR(1)=0; gammaR(1)=0; % parameters for recovery cdf 

for train 1, here the mean time to 
% recovery = 12 hours for expcdf as in ICONE18 paper 
Rhat(1)=1-feval(R{1},T_c,alphaR(1),betaR(1),gammaR(1)); %nonrecovery 

factor for train 1;  
% here as appropriate to exponential cdf in the Read-fleming version of 

the 
% Lloyd-Anoba approach 
F_0(2)=.0132; % probability of initial failure to start of train i, 

from ICONE18 paper 
f{2}=@exppdf; % pdf for failure of train 2; here the exponential pdf, 

per the ICONE18 paper 
F{2}=@expcdf; % cdf for failure of train 2; here the exponential cdf, 

per the ICONE18 paper 
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alphaF(2)=1/8.35e-4; betaF(2)=0; gammaF(2)=0; % parameters for failure 

pdf, cdf and its inverse, for  
% train 2, here mean time to failure = 1/8.35e-4 hours for expcdf as in 

ICONE18 paper 
%Rhat(2)=1.0; % nonrecovery factor for train 2; here no credit taken 

for onsite recovery 
R{2}=@expcdf;  
alphaR(2)=12; betaR(2)=0; gammaR(2)=0; % parameters for recovery cdf 

for train 1, here the mean time to 
% recovery = 12 hours for expcdf as in ICONE18 paper 
Rhat(2)=1-feval(R{2},T_c,alphaR(2),betaR(2),gammaR(2)); %nonrecovery 

factor for train 2;  
% here as appropriate to exponential cdf in the Read-fleming version of 

the 
% Lloyd-Anoba approach 
%% 

  
%% Computation of Lloyd approximation to nonrecovery integral 
startpart=(1-G(T_c,alphaG,betaG,gammaG))*F_0(1)*F_0(2); 
runpart=quad(@INTEGRAND1,0,T,1.0e-16); 
%runpart=quad(@INTEGRAND1,0,T) 
% Following assumes identical EDGs 
P_CSBO=Rhat(1)*Rhat(2)*(startpart+runpart) 

 

 

“INTEGRAND.m”: 

 
function H=INTEGRAND(F1,F2) 
global F_0 F Finv alphaF betaF gammaF n G T_c G alphaG betaG gammaG R 

tau alphaR betaR gammaR 
tau=cell(1,n); 

  
%% 
% Identify corresponding times, tau1, tau2 
C1=F1<F_0(1); 
[m1 n1]=size(F1); 
for i=1:m1 
    for j=1:n1 
        if C1(i,j)==1 
            tau{1}(i,j)=0; 
        else 
            tau{1}(i,j)=feval(Finv{1,1},((F1(i,j)-F_0(1))./(1-

F_0(1))),alphaF(1),betaF(1),gammaF(1)); 
        end 
    end 
end 
C2=F2<F_0(2); 
[m2 n2]=size(F2); 
for i=1:m2 
    for j=1:n2 
        if C2(i,j)==1 
            tau{2}(i,j)=0; 
        else 
            tau{2}(i,j)=feval(Finv{1,2},((F2(i,j)-F_0(2))./(1-

F_0(2))),alphaF(2),betaF(2),gammaF(2)); 
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        end 
    end 
end 
H=ones(m1,n1); % Correct if credit taken only for nonfailure of 

emergency  
% trains, as in approach of the 'multiple trains, no recovery" section 

of  
% the Rio paper. Looks o.k. for F = exponential integral, but need to  
% compare to ICONE18 paper and to Rio paper 

  
%% 
% Determine taumax 
taumax=tau{1}; 
for i=2:n 
    taumax=max(taumax,tau{i}); 
end 
% Now take credit for recovery of offsite power, as in Section 3.4 of 

Rio paper 
H=H.*(1-feval(G,taumax+T_c,alphaG,betaG,gammaG));   
% Now take credit for recovery of emergency power trains 
for i=1:n 
% Take full credit for recovery of emergency power trains 
    H=H.*(1-feval(R{i},taumax+T_c-

tau{i},alphaR(i),betaR(i),gammaR(i))); 
% Alternately take only credit for recovery of emergency power trains 

that 
% comes from repair work following full failure of onsite power (per 
% Lloyd-Anoba, for the case coincident with Read-Fleming) 
    %H=H.*(1-feval(R{i},T_c,alphaR(i),betaR(i),gammaR(i))); 
end 

  

 

“INTEGRAND1.m”: 

 
function H=INTEGRAND1(taumax) 
global f F_0 F alphaF betaF gammaF n G T_c G alphaG betaG gammaG Rhat 

  
[m1 n1]=size(taumax); 
H=ones(m1,n1); % Correct if credit taken only for nonfailure of 

emergency  
% trains, as in approach of the 'multiple trains, no recovery" section 

of  
% the Rio paper.  

  
% Credit for offsite recovery only following SBO  
H=H.*(1-feval(G,T_c,alphaG,betaG,gammaG)); 
% Now take credit for dynamic recovery of offsite power, as in Section 

3.4 of Rio paper 
%H=H.*(1-feval(G,taumax+T_c,alphaG,betaG,gammaG));   

  
% Now probability others failed previously 
%Hsum=feval(f{1},taumax,alphaF(1),betaF(1),gammaF(1)).*feval(F{2},tauma

x,alphaF(2),betaF(2),gammaF(2)); 
Hsum1=(1-F_0(1)).*feval(f{1},taumax,alphaF(1)); 
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Hsum1=Hsum1.*(F_0(2).*ones(m1,n1)+(1-

F_0(2)).*feval(F{2},taumax,alphaF(2),betaF(2),gammaF(2))); 
%Hsum=Hsum+feval(f{2},taumax,alphaF(2),betaF(2),gammaF(2)).*feval(F{1},

taumax,alphaF(1),betaF(1),gammaF(1)); 
Hsum2=(1-F_0(2)).*feval(f{2},taumax,alphaF(2)); 
Hsum2=Hsum2.*(F_0(1)*ones(m1,n1)+(1-

F_0(1)).*feval(F{1},taumax,alphaF(1),betaF(1),gammaF(1))); 
Hsum=Hsum1+Hsum2; 
H=H.*Hsum; 

  

 

Appendix A.2 – STPQUAD3 Package Code 

 

The MATLAB code title is in bold and everything following is the actual code 

that can be used in a MATLAB environment. Each specific code is broken up by these 

bold titles.  

 

“STPQUAD3.m”: 

 
%% Begin input 
clear all 
global F_0 F Finv alphaF betaF gammaF n T_c G alphaG betaG gammaG R tau 

alphaR betaR gammaR 
n=3; % number of safety trains; 
F=cell(1,n); 
Finv=cell(1,n); 
R=cell(1,n); 
T=24; % mission time, in hours 
T_c=1; % critical time, in hours 

  
G=@logncdf; % cdf in time (hours) for recovery of offsite power, here 

taken as lognormal cdf 
% per Word document "Verification 2" 
alphaG=0.300; betaG=1.064; gammaG=0; % parameters for G, here 

respectively mean time to  
% recovery (hours) and standard deviation for the associated normal 

distribution, as in  
% the Word document "Verification 2" 

  
F_0(1)=.014; % probability of initial failure to start of train i, per 

"Verification 2". 
F{1}=@FTR6890; % cdf for failure of train 1 to start and load; here a 

piecewise  
% exponential cdf, per "Verification 2" 
Finv{1}=@FTR6890inv; % the corresponding inverse cdf for failure of 

train 1 to start and load; here  
% the inverse of the piecewise exponential function coded into FTR6890, 

per 
% "Verification 2" 
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alphaF(1)=400; betaF(1)=1; gammaF(1)=1250; % parameters for cdf for 

failure to run, here  
% alphaF = mu1 = exponential mean up to time betaF = cutoff time, and 

gammaF = subsequent 
% exponential mean conditional on reaching the cutoff time, numerical 
% values per "Verification 2" 
R{1}=@wblcdf; % cdf in time (hours) for recovery (repair) of train 1.  

Here the Weibull 
% cdf, per "Verification 2" 
alphaR(1)=15.5; betaR(1)=0.739; gammaR(1)=0; % parameters for recovery 

cdf for train 1, here  
% the respective values of the scale and shape parameters for a Weibull 
% distribution, as detailed in "Verification 2" (alphaR in hours) 

  
F_0(2)=.014; % probability of initial failure to start of train 2, per 

"Verification 2". 
F{2}=@FTR6890; % cdf for failure of train 2 to start and load; here a 

piecewise  
% exponential cdf, per "Verification 2" 
Finv{2}=@FTR6890inv; % the corresponding inverse cdf for failure of 

train 2 to start and load; here  
% the inverse of the piecewise exponential function coded into FTR6890, 

per 
% "Verification 2" 
alphaF(2)=400; betaF(2)=1; gammaF(2)=1250; % parameters for cdf for 

failure to run, here  
% alphaF = mu1 = exponential mean up to time betaF = cutoff time, and 

gammaF = subsequent 
% exponential mean conditional on reaching the cutoff time, numerical 
% values per "Verification 2" 
R{2}=@wblcdf; % cdf in time (hours) for recovery (repair) of train 2.  

Here the Weibull 
% cdf, per "Verification 2" 
alphaR(2)=15.5; betaR(2)=0.739; gammaR(2)=0; % parameters for recovery 

cdf for train 2, here  
% the respective values of the scale and shape parameters for a Weibull 
% distribution, as detailed in "Verification 2" (alphaR in hours) 

  
F_0(3)=.014; % probability of initial failure to start of train 3, per 

"Verification 2". 
F{3}=@FTR6890; % cdf for failure of train 3 to start and load; here a 

piecewise  
% exponential cdf, per "Verification 2" 
Finv{3}=@FTR6890inv; % the corresponding inverse cdf for failure of 

train 3 to start and load; here  
% the inverse of the piecewise exponential function coded into FTR6890, 

per 
% "Verification 2" 
alphaF(3)=400; betaF(3)=1; gammaF(3)=1250; % parameters for cdf for 

failure to run, here  
% alphaF = mu1 = exponential mean up to time betaF = cutoff time, and 

gammaF = subsequent 
% exponential mean conditional on reaching the cutoff time, numerical 
% values per "Verification 2" 
R{3}=@wblcdf; % cdf in time (hours) for recovery (repair) of train 3.  

Here the Weibull 
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% cdf, per "Verification 2" 
alphaR(3)=15.5; betaR(3)=0.739; gammaR(3)=0; % parameters for recovery 

cdf for train 3, here  
% the respective values of the scale and shape parameters for a Weibull 
% distribution, as detailed in "Verification 2" (alphaR in hours) 
%% 

  
% 
%% Computation of nonrecovery integral 
% Convert Riemann-Stieltjes triple nonrecovery integral to ordinary 

Riemann 
% integral 
A=0; 
B=F_0(1)+(1-F_0(1))*feval(F{1},T,alphaF(1),betaF(1),gammaF(1)); 
C=0; 
D=F_0(2)+(1-F_0(2))*feval(F{2},T,alphaF(2),betaF(2),gammaF(2)); 
E=0; 
F=F_0(3)+(1-F_0(3))*feval(F{3},T,alphaF(3),betaF(3),gammaF(3)); 
P_CSBO=triplequad(@INTEGRANDv1pt0,A,B,C,D,E,F,1.0e-10) % Recommended 

absolute error tolerance 
% is 1.0e-10.  See "Verification 2" for the basis for this 

recommendation. 

 

“Lloyd3.m”: 

 
%% Begin input 
clear all 
global f F_0 F alphaF betaF gammaF n T_c G alphaG betaG gammaG Rhat 
n=2; % number of safety trains; 
f=cell(1,n); 
F=cell(1,n); 
R=cell(1,n); 
T=24; % mission time, in hours 
T_c=1; % critical time, in hours 
%G=@Gzero; % Set G=0; no credit for offsite recovery; aid in debugging 
G=@logncdf; % cdf in time (hours) for recovery of offsite power 
alphaG=0.300; betaG=1.064; gammaG=0; % parameters for G, here mean and 

standard deviation 
% (natural log hours) of associated normal distribution 
% 

  
F_0(1)=.014; % probability of initial failure to start of train i, from  
% Table 4.2 (p. 24) of Vol. 2 of NUREG/CR-6890 
%% 
f{1}=@FTR6890pdf; % pdf for failure of train 1; here the two-regime  
% exponential pdf, per "Verification 2" 
F{1}=@FTR6890; % cdf for failure of train 1; here the two-regime  
% exponential pdf, per "Verification 2" 
alphaF(1)=1/2.5e-3; betaF(1)=1; gammaF(1)=1/8.0e-4; % parameters for 

failure pdf, cdf and its inverse, for  
% train 1, here mean time to failure prior to cutoff, cutoff (hours) 

and mean time to failure 
% after cutoff, as in "Verification 2," all times in hours 
%% 
%Rhat(1)=1.0; % nonrecovery factor for train 1; here no credit taken 

for onsite recovery 
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R{1}=@wblcdf; % cdf in time (hours) for recovery (repair) of train 1.  

Here the Weibull 
% cdf, per "Verification 2" 
alphaR(1)=15.5; betaR(1)=0.739; gammaR(1)=0; 
% parameters for recovery cdf for train 1, here  
% the respective values of the scale and shape parameters for a Weibull 
% distribution, as detailed in "Verification 2" (alphaR in hours) 
Rhat(1)=1-feval(R{1},T_c,alphaR(1),betaR(1),gammaR(1)); %nonrecovery 

factor for train 1;  
% here as appropriate to Weibull cdf in the Read-Fleming version of the 
% Lloyd-Anoba approach 
%% 
F_0(2)=.014; % probability of initial failure to start of train i, from  
% Table 4.2 (p. 24) of Vol. 2 of NUREG/CR-6890 
f{2}=@FTR6890pdf; % pdf for failure of train 1; here the two-regime  
% exponential pdf, per "Verification 2" 
F{2}=@FTR6890; % cdf for failure of train 1; here the two-regime  
% exponential pdf, per "Verification 2" 
alphaF(2)=1/2.5e-3; betaF(2)=1; gammaF(2)=1/8.0e-4; % parameters for 

failure pdf, cdf and its inverse, for  
% train 1, here mean time to failure prior to cutoff, cutoff (hours) 

and mean time to failure 
% after cutoff, as in "Verification 2," all times in hours 
%% 
%Rhat(2)=1.0; % nonrecovery factor for train 1; here no credit taken 

for onsite recovery 
R{2}=@wblcdf; % cdf in time (hours) for recovery (repair) of train 1.  

Here the Weibull 
% cdf, per "Verification 2" 
alphaR(2)=15.5; betaR(2)=0.739; gammaR(2)=0; 
% parameters for recovery cdf for train 2, here  
% the respective values of the scale and shape parameters for a Weibull 
% distribution, as detailed in "Verification 2" (alphaR in hours) 
Rhat(2)=1-feval(R{2},T_c,alphaR(2),betaR(2),gammaR(2)); %nonrecovery 

factor for train 1;  
% here as appropriate to Weibull cdf in the Read-Fleming version of the 
% Lloyd-Anoba approach 
%% 
F_0(3)=.014; % probability of initial failure to start of train i, from  
% Table 4.2 (p. 24) of Vol. 2 of NUREG/CR-6890 
f{3}=@FTR6890pdf; % pdf for failure of train 1; here the two-regime  
% exponential pdf, per "Verification 2" 
F{3}=@FTR6890; % cdf for failure of train 1; here the two-regime  
% exponential pdf, per "Verification 2" 
alphaF(3)=1/2.5e-3; betaF(3)=1; gammaF(3)=1/8.0e-4; % parameters for 

failure pdf, cdf and its inverse, for  
% train 1, here mean time to failure prior to cutoff, cutoff (hours) 

and mean time to failure 
% after cutoff, as in "Verification 2," all times in hours 
% HERE; must change Rhat as below but with new recovery in order to 

take 
% full credit for on-site recovery 
%Rhat(3)=1.0; % nonrecovery factor for train 3; here no credit taken 

for onsite recovery 
R{3}=@wblcdf; % cdf in time (hours) for recovery (repair) of train 1.  

Here the Weibull 
% cdf, per "Verification 2" 
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alphaR(3)=15.5; betaR(3)=0.739; gammaR(3)=0; 
% parameters for recovery cdf for train 2, here  
% the respective values of the scale and shape parameters for a Weibull 
% distribution, as detailed in "Verification 2" (alphaR in hours) 
Rhat(3)=1-feval(R{3},T_c,alphaR(3),betaR(3),gammaR(3)); %nonrecovery 

factor for train 1;  
% here as appropriate to Weibull cdf in the Read-Fleming version of the 
% Lloyd-Anoba approach 
%% 
% Computation of Lloyd approximation to nonrecovery integral 
startpart=(1-G(T_c,alphaG,betaG,gammaG))*F_0(1)*F_0(2)*F_0(3); 
%runpart=quadl(@INTEGRAND3,0,T); 
runpart=quadl(@INTEGRAND3,0,T,1.0e-10); % tolerance of 1.0e-10 
%recommended 
%runpart=quad(@INTEGRAND3,0,T,1.0e-14); 
%runpart=quad(@INTEGRAND3,0,T); 
% Following assumes identical EDGs ??Why 
P_CSBO=Rhat(1)*Rhat(2)*Rhat(3)*(startpart+runpart) 

 

 

“INTEGRANDv1pt0.m”: 

function H=INTEGRANDv1pt0(F1,F2,F3) 
global F_0 F Finv alphaF betaF gammaF n G T_c G alphaG betaG gammaG R 

tau alphaR betaR gammaR 
tau=cell(1,n); 

  
%% 
% Identify corresponding times, tau1, tau2, tau3 
C1=F1<F_0(1); 
[m1 n1]=size(F1); 
for i=1:m1 
    for j=1:n1 
        if C1(i,j)==1 
            tau{1}(i,j)=0; 
        else 
            tau{1}(i,j)=feval(Finv{1,1},((F1(i,j)-F_0(1))./(1-

F_0(1))),alphaF(1),betaF(1),gammaF(1)); 
        end 
    end 
end 
C2=F2<F_0(2); 
[m2 n2]=size(F2); 
for i=1:m2 
    for j=1:n2 
        if C2(i,j)==1 
            tau{2}(i,j)=0; 
        else 
            tau{2}(i,j)=feval(Finv{1,2},((F2(i,j)-F_0(2))./(1-

F_0(2))),alphaF(2),betaF(2),gammaF(2)); 
        end 
    end 
end 
C3=F3<F_0(3); 
[m3 n3]=size(F3); 
for i=1:m3 
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    for j=1:n3 
        if C3(i,j)==1 
            tau{3}(i,j)=0; 
        else 
            tau{3}(i,j)=feval(Finv{1,3},((F3(i,j)-F_0(2))./(1-

F_0(3))),alphaF(2),betaF(2),gammaF(2)); 
        end 
    end 
end 

  
H=ones(m1,n1); % Correct if credit taken only for nonfailure of 

emergency 
% trains, as in approach of the 'multiple trains, no recovery" section 

of  
% the Rio paper. Looks o.k. for F = exponential integral, but need to  
% compare to ICONE18 paper and to Rio paper 

  
%% 
% Determine taumax 
taumax=tau{1}; 
for i=2:n 
    taumax=max(taumax,tau{i}); 
end 
% Now take credit for recovery of offsite power, as in Section 3.4 of 

Rio paper 
H=H.*(1-feval(G,taumax+T_c,alphaG,betaG,gammaG));   
% Now take credit for recovery of emergency power trains 
for i=1:n 
    H=H.*(1-feval(R{i},taumax+T_c-

tau{i},alphaR(i),betaR(i),gammaR(i))); 
    % Alternately take only credit for recovery of emergency power 

trains that 
    % comes from repair work following full failure of onsite power 

(per 
    % Lloyd-Anoba, for the case coincident with Read-Fleming) 
    %H=H.*(1-feval(R{i},T_c,alphaR(i),betaR(i),gammaR(i))); 
end 

 

 

“INTEGRAND3.m”: 

function H=INTEGRAND3(taumax) 
global f F_0 F alphaF betaF gammaF n G T_c G alphaG betaG gammaG Rhat 

  
[m1 n1]=size(taumax); 
H=ones(m1,n1); % Correct if credit taken only for nonfailure of 

emergency  
% trains, as in approach of the "multiple trains, no recovery" section 

of  
% the Rio paper.  

  
% Credit for offsite recovery only following SBO  
% H=H.*(1-feval(G,T_c,alphaG,betaG,gammaG)); 
% Now take credit for dynamic recovery of offsite power, as in Section 

3.4 of Rio paper 
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H=H.*(1-feval(G,taumax+T_c,alphaG,betaG,gammaG));   

  
% Now probability others failed previously 
Hsum1=(1-F_0(1)).*feval(f{1},taumax,alphaF(1),betaF(1),gammaF(1)); % 

EDG 1 is last to fail (to run) 
Hsum1=Hsum1.*(F_0(2).*ones(m1,n1)+(1-

F_0(2)).*feval(F{2},taumax,alphaF(2),betaF(2),gammaF(2)));  
% EDG 2 fails earlier, either to start or to run 
Hsum1=Hsum1.*(F_0(3).*ones(m1,n1)+(1-

F_0(3)).*feval(F{3},taumax,alphaF(3),betaF(3),gammaF(3))); 
% EDG 3 fails earlier, either to start or to run 
Hsum2=(1-F_0(2)).*feval(f{2},taumax,alphaF(2),betaF(2),gammaF(2)); % 

EDG 2 is last to fail (to run) 
Hsum2=Hsum2.*(F_0(1).*ones(m1,n1)+(1-

F_0(1)).*feval(F{1},taumax,alphaF(1),betaF(1),gammaF(1))); 
% EDG 1 fails earlier, either to start or to run  
Hsum2=Hsum2.*(F_0(3).*ones(m1,n1)+(1-

F_0(3)).*feval(F{3},taumax,alphaF(3),betaF(3),gammaF(3))); 
% EDG 3 fails earlier, either to start or to run 
Hsum3=(1-F_0(3)).*feval(f{3},taumax,alphaF(3),betaF(3),gammaF(3)); % 

EDG 3 is last to fail (to run) 
Hsum3=Hsum3.*(F_0(1).*ones(m1,n1)+(1-

F_0(1)).*feval(F{1},taumax,alphaF(1),betaF(1),gammaF(1))); 
% EDG 1 fails earlier, either to start or to run 
Hsum3=Hsum3.*(F_0(2).*ones(m1,n1)+(1-

F_0(2)).*feval(F{2},taumax,alphaF(2),betaF(2),gammaF(2)));  
% EDG 2 fails earlier, either to start or to run 
Hsum=Hsum1+Hsum2+Hsum3; 
H=H.*Hsum; 

 

“FTR6890.m”: 

 
function P=FTR6890(t,mu1,cutpoint,mu2) 
%cdf for a rv distributed exponentially with mean mu1 for times t <= 
%cutpoint, and distributed afterward, conditionally upon exceeding 

cutpoint, 
%exponentially with mean mu2 

  
if t<= cutpoint 
    P=expcdf(t,mu1); 
else 
    P1=expcdf(cutpoint,mu1); 
    P=P1+(1-P1)*expcdf(t-cutpoint,mu2); 
end 

  

 

“FTR6890inv.m”: 

 
function t=FTR6890inv(P,mu1,cutpoint,mu2) 
%CDF for a rv distributed exponentially with mean mu1 for times t <= 
%cutpoint, and distributed afterward, conditioally upon exceeding 

cutpoint, 
%exponentially with mean mu2 
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Pcut=expcdf(cutpoint,mu1); 
if P<=Pcut  
    t=expinv(P,mu1); 
else 
    Pcut=expcdf(cutpoint,mu1); 
    Pexcess=(P-Pcut)/(1-Pcut); 
    t=cutpoint+expinv(Pexcess,mu2); 
end 

  

 

“FTR6890pdf.m”: 

 
function P=FTR6890pdf(t,mu1,cutpoint,mu2) 
%pdf for a rv distributed exponentially with mean mu1 for times t <= 
%cutpoint, and distributed afterward, conditionally upon exceeding 

cutpoint, 
%exponentially with mean mu2 

  
if t<= cutpoint 
    P=exppdf(t,mu1); 
else 
    P1=expcdf(cutpoint,mu1); 
    P=(1-P1)*exppdf(t-cutpoint,mu2); 
end 

 

 

Appendix A.3 – STP-TAMIL (STPQUAD3CCF) Package Code 

 

The MATLAB code title is in bold and everything following is the actual code 

that can be used in a MATLAB environment. Each specific code is broken up by these 

bold titles. It also has to be noted that this file also needs the ―RunFile.xlsx‖ file to work.  

 

“STPQUAD3CCF.m”: 

 
%%*********************** STP-TAMIL VERSION 1.0 *******************  

%%Begin input 

clear all 

clc 

global outputP F_0 F Finv alphaF betaF gammaF deltaF n T_c G alphaG 

betaG gammaG deltaG R tau alphaR betaR gammaR deltaR 

global cFTSLDisType1 cFTSLDisType2 cFTSLDisType3 invFTSLDisType1 

invFTSLDisType2 invFTSLDisType3 pdfFTSLDisType1 pdfFTSLDisType2 

pdfFTSLDisType3 

global traincounter 

global FTS3way FTR3way FTR3wayinv alpha3way beta3way gamma3way 

delta3way 

global FTS2way FTR2way FTR2wayinv alpha2way beta2way gamma2way 

delta2way 

global RecoveryType RecoveryType2 RecoveryType3 
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global numAMFcdf3 textAMFcdf3 AMFcdf3 numAMFinvcdf3 textAMFinvcdf3 

AMFinvcdf3 numAMFpdf3 textAMFpdf3 AMFpdf3 

global numAMFcdf2 textAMFcdf2 AMFcdf2 numAMFinvcdf2 textAMFinvcdf2 

AMFinvcdf2 numAMFpdf2 textAMFpdf2 AMFpdf2 

global numAMFcdf textAMFcdf AMFcdf numAMFinvcdf textAMFinvcdf AMFinvcdf 

numAMFpdf textAMFpdf AMFpdf 

global numAMFT textAMFT AMFT numAMFTinv textAMFTinv AMFTinv numAMFTpdf 

textAMFTpdf AMFTpdf 

global numAMFT2 textAMFT2 AMFT2 numAMFT2inv textAMFT2inv AMFT2inv 

numAMFT2pdf textAMFT2pdf AMFT2pdf 

global numAMFT3 textAMFT3 AMFT3 numAMFT3inv textAMFT3inv AMFT3inv 

numAMFT3pdf textAMFT3pdf AMFT3pdf 

global nummalpha3 textmalpha3 malpha3 nummgamma3 textmgamma3 mgamma3 

nummalpha2 textmalpha2 malpha2 

global nummgamma2 textmgamma2 mgamma2 nummalpha textmalpha malpha 

nummgamma textmgamma mgamma 

  

format long 

%Sets the current train in question 

traincounter=1; 

  

%Execution Statement (Meant as a user pause statement) 

sprintf('Executing STP-TAMIL  Please Wait...') 

  

%defines i as 2 as 1 is the title cell row so data would begin in the 

2nd row 

i=2; 

  

%While loop to Run until Data Row is empty 

while (i>0) 

    

     

    %Sets the Current Row for Excel 

    rows = xlsread('RunFile.xlsx', 1, sprintf('A%d', i));   

  

% Number of safety trains 

n = xlsread('RunFile.xlsx', 1, sprintf('B%d', i));   

  

%Is the row empty? Is this the end of the Input Deck for Excel 

if (isempty(rows)) 

    %If true, then write a statement to exit the loop on next through 

        i=-1; 

        n=0; 

else 

    %If no then run the code (and data) like usual 

  

%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^     

% All the Read inputs from the Run File except for ones previously 

called 

%----------------New MATLAB-Files (added M File)-----------------------

--- 

%3-way  

%Cdf File 

[numAMFcdf3, textAMFcdf3, AMFcdf3] =  xlsread('RunFile.xlsx', 1, 

sprintf('AV%d', i)); 

%invCdf File 
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[numAMFinvcdf3, textAMFinvcdf3, AMFinvcdf3] =  xlsread('RunFile.xlsx', 

1, sprintf('AW%d', i)); 

%pdf File (not used left for exapandability) 

%[numAMFpdf3, textAMFpdf3, AMFpdf3] =  xlsread('RunFile.xlsx', 1, 

sprintf('BH%d', i)); 

  

%2way 

%Cdf File 

[numAMFcdf2, textAMFcdf2, AMFcdf2] =  xlsread('RunFile.xlsx', 1, 

sprintf('AX%d', i)); 

%invCdf File 

[numAMFinvcdf2, textAMFinvcdf2, AMFinvcdf2] =  xlsread('RunFile.xlsx', 

1, sprintf('AY%d', i)); 

%pdf File (not used left for exapandability) 

%[numAMFpdf2, textAMFpdf2, AMFpdf2] =  xlsread('RunFile.xlsx', 1, 

sprintf('BK%d', i)); 

  

%Independent  

%Cdf File 

[numAMFcdf, textAMFcdf, AMFcdf] =  xlsread('RunFile.xlsx', 1, 

sprintf('AZ%d', i)); 

%invCdf File 

[numAMFinvcdf, textAMFinvcdf, AMFinvcdf] =  xlsread('RunFile.xlsx', 1, 

sprintf('BA%d', i)); 

%pdf File (not used left for exapandability) 

%[numAMFpdf, textAMFpdf, AMFpdf] =  xlsread('RunFile.xlsx', 1, 

sprintf('BN%d', i)); 

  

%----------------New MATLAB-Files Failure of ith Train Files(added M 

File Factors)------------ 

% This section is for if there is a different distribution files wanted 

for 

% each train 

%Failure Train 1 

%Cdf File 

[numAMFT, textAMFT, AMFT] =  xlsread('RunFile.xlsx', 1, sprintf('AZ%d', 

i)); 

%invCdf File 

[numAMFTinv, textAMFTinv, AMFTinv] =  xlsread('RunFile.xlsx', 1, 

sprintf('BA%d', i)); 

%pdf File (not used left for exapandability) 

%[numAMFTpdf, textAMFTpdf, AMFTpdf] =  xlsread('RunFile.xlsx', 1, 

sprintf('BQ%d', i)); 

  

%Failure Train 2 

%Cdf File 

[numAMFT2, textAMFT2, AMFT2] =  xlsread('RunFile.xlsx', 1, 

sprintf('AZ%d', i)); 

%invCdf File 

[numAMFT2inv, textAMFT2inv, AMFT2inv] =  xlsread('RunFile.xlsx', 1, 

sprintf('BA%d', i)); 

%pdf File (not used left for exapandability) 

%[numAMFT2pdf, textAMFT2pdf, AMFT2pdf] =  xlsread('RunFile.xlsx', 1, 

sprintf('BT%d', i)); 

  

%Failure Train 3 

%Cdf File 
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[numAMFT3, textAMFT3, AMFT3] =  xlsread('RunFile.xlsx', 1, 

sprintf('AZ%d', i)); 

%invCdf File 

[numAMFT3inv, textAMFT3inv, AMFT3inv] =  xlsread('RunFile.xlsx', 1, 

sprintf('BA%d', i)); 

%pdf File (not used left for exapandability) 

%[numAMFT3pdf, textAMFT3pdf, AMFT3pdf] =  xlsread('RunFile.xlsx', 1, 

sprintf('BW%d', i)); 

  

%----------------New MATLAB-Files Factors (added M File Factors)-------

----- 

% This section is for if there is a different distribution wanted for 

each 

% way (3/3, 2/3, 1/3) of failure 

%3way 

%Alpha 

%[nummalpha3, textmalpha3, malpha3]= xlsread('RunFile.xlsx', 1, 

sprintf('L%d', i)); %Type of Distribution for Cdf of Recovery of train 

i (1-Weibull, 2-Lognormal, 3-Exponential)  

 %Gamma 

%[nummgamma3, textmgamma3, mgamma3]= xlsread('RunFile.xlsx', 1, 

sprintf('N%d', i)); %Type of Distribution for Cdf of Recovery of train 

i (1-Weibull, 2-Lognormal, 3-Exponential)  

  

%2way 

%Alpha 

%[nummalpha2, textmalpha2, malpha2]= xlsread('RunFile.xlsx', 1, 

sprintf('S%d', i)); %Type of Distribution for Cdf of Recovery of train 

i (1-Weibull, 2-Lognormal, 3-Exponential)  

 %Gamma 

%[nummgamma2, textmgamma2, mgamma2]= xlsread('RunFile.xlsx', 1, 

sprintf('U%d', i)); %Type of Distribution for Cdf of Recovery of train 

i (1-Weibull, 2-Lognormal, 3-Exponential)  

  

%Independent 

%Alpha 

%[nummalpha, textmalpha, malpha]= xlsread('RunFile.xlsx', 1, 

sprintf('Z%d', i)); %Type of Distribution for Cdf of Recovery of train 

i (1-Weibull, 2-Lognormal, 3-Exponential)  

 %Gamma 

%[nummgamma, textmgamma, mgamma]= xlsread('RunFile.xlsx', 1, 

sprintf('AB%d', i)); %Type of Distribution for Cdf of Recovery of train 

i (1-Weibull, 2-Lognormal, 3-Exponential)  

  

%----------Distribution Types------------------------------------------

----- 

%cdf for recovery of Train i type (R) 

[numRDT1, textRDT1, RecDisType1]= xlsread('RunFile.xlsx', 1, 

sprintf('AT%d', i)); %Type of Distribution for Cdf of Recovery of train 

i (1-Weibull, 2-Lognormal, 3-Exponential)  

[numRDT2, textRDT2, RecDisType2]= xlsread('RunFile.xlsx', 1, 

sprintf('AT%d', i)); %Type of Distribution for Cdf of Recovery of train 

i (1-Weibull, 2-Lognormal, 3-Exponential)  

[numRDT3, textRDT3, RecDisType3]= xlsread('RunFile.xlsx', 1, 

sprintf('AT%d', i)); %Type of Distribution for Cdf of Recovery of train 

i (1-Weibull, 2-Lognormal, 3-Exponential)  
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%cdf for FTSL of Train i type 

[numcFTSL1, textcFTSL1, cFTSLDisType1]= xlsread('RunFile.xlsx', 1, 

sprintf('AU%d', i)); %Type of Distribution for Cdf of FTSL of train i 

(1-Weibull, 2-Lognormal, 3-Exponential)  

[numcFTSL2, textcFTSL2, cFTSLDisType2]= xlsread('RunFile.xlsx', 1, 

sprintf('AU%d', i)); %Type of Distribution for Cdf of FTSL of train i 

(1-Weibull, 2-Lognormal, 3-Exponential)  

[numcFTSL3, textcFTSL3, cFTSLDisType3]= xlsread('RunFile.xlsx', 1, 

sprintf('AU%d', i)); %Type of Distribution for Cdf of FTSL of train i 

(1-Weibull, 2-Lognormal, 3-Exponential)  

  

%invcdf for FTSL of Train i type (Points to same as cdf left in for 

%expandability) 

[numinvFTSL1, textinvFTSL1, invFTSLDisType1]= xlsread('RunFile.xlsx', 

1, sprintf('AU%d', i)); %Type of Distribution for invCdf of FTSL of 

train i (1-Weibull, 2-Lognormal, 3-Exponential)  

[numinvFTSL2, textinvFTSL2, invFTSLDisType2]= xlsread('RunFile.xlsx', 

1, sprintf('AU%d', i)); %Type of Distribution for invCdf of FTSL of 

train i (1-Weibull, 2-Lognormal, 3-Exponential)  

[numinvFTSL3, textinvFTSL3, invFTSLDisType3]= xlsread('RunFile.xlsx', 

1, sprintf('AU%d', i)); %Type of Distribution for invCdf of FTSL of 

train i (1-Weibull, 2-Lognormal, 3-Exponential)  

%Deleted cdf from input and added inv so FTR6890inv would still work 

%properly 

if (isempty(numinvFTSL1)) else 

%Removes cdf and adds inv due to Custom Distribution Code for Train 1 

invFTSLDisType1= strtok(invFTSLDisType1, 'cdf'); 

invFTSLDisType1= strcat(invFTSLDisType1, 'inv'); 

end 

if (isempty(numinvFTSL2)) else 

%Removes cdf and adds inv due to Custom Distribution Code for Train 2 

invFTSLDisType2= strtok(invFTSLDisType2, 'cdf'); 

invFTSLDisType2= strcat(invFTSLDisType2, 'inv'); 

end 

if (isempty(numinvFTSL3))  else 

%Removes cdf and adds inv due to Custom Distribution Code for Train 3 

invFTSLDisType3= strtok(invFTSLDisType3, 'cdf'); 

invFTSLDisType3= strcat(invFTSLDisType3, 'inv'); 

end 

  

%pdf for FTSL of Train i type (not used left for expandability) 

%[numpFTSL1, textpFTSL1, pdfFTSLDisType1]= xlsread('RunFile.xlsx', 1, 

sprintf('BC%d', i)); %Type of Distribution for pdf of FTSL of train i 

(1-Weibull, 2-Lognormal, 3-Exponential)  

%[numpFTSL2, textpFTSL2, pdfFTSLDisType2]= xlsread('RunFile.xlsx', 1, 

sprintf('BD%d', i)); %Type of Distribution for pdf of FTSL of train i 

(1-Weibull, 2-Lognormal, 3-Exponential)  

%[numpFTSL3, textpFTSL3, pdfFTSLDisType3]= xlsread('RunFile.xlsx', 1, 

sprintf('BE%d', i)); %Type of Distribution for pdf of FTSL of train i 

(1-Weibull, 2-Lognormal, 3-Exponential)  

  

%Type of Distribution for Cdf of offsite recovery (G) 

[numODT, textODT, rawdataODT] =  xlsread('RunFile.xlsx', 1, 

sprintf('AS%d', i)); 

%----------------------------------------------------------------------

---- 
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%----------Recovery Types----------------------------------------------

- 

%1 for No Credit (offsite/onsite), 

%2 for Offsite Credit Only, 

%3 for Offsite + Onsite Repair only after Full Failure, 

%4 for Full Recovery (NORMALLY/DEFAULT)  

  

%-----------For 3-way 

RecoveryType3= xlsread('RunFile.xlsx', 1, sprintf('AP%d', i)); 

%-----------For 2-way 

RecoveryType2= xlsread('RunFile.xlsx', 1, sprintf('AQ%d', i)); 

%-----------For Ind 

RecoveryType= xlsread('RunFile.xlsx', 1, sprintf('AR%d', i)); 

  

%----------------------------------------------------------------------

---- 

  

% Mission Time, in hours 

T=xlsread('RunFile.xlsx', 1, sprintf('C%d', i));  

  

% Critical Time, in hours 

T_c=xlsread('RunFile.xlsx', 1, sprintf('D%d', i));  

  

alphaG=xlsread('RunFile.xlsx', 1, sprintf('E%d', i)); 

betaG=xlsread('RunFile.xlsx', 1, sprintf('F%d', i)); 

gammaG=xlsread('RunFile.xlsx', 1, sprintf('G%d', i)); 

deltaG=xlsread('RunFile.xlsx', 1, sprintf('H%d', i)); 

% parameters for G, here respectively mean time to  

% recovery (hours) and standard deviation for the associated normal 

distribution, as in  

% the Word document "Verification 2" 

% STP System Notebook as forwarded by Shawn Rodgers on 9/22/11 

  

%----------------------3-WAY-------------------------------------------

-- 

  

if (n==3) 

     

%% Input data for three-way common-cause failures  

%FTS3way=xlsread('RunFile.xlsx', 1, sprintf('I%d', i));   

%% Probability of common-cause failure of all three EDGs to start, here 

% from second and fourth minimal cutsets in STP System Notebook (fan 

failures 

% assumed all to be failures to start) 

FTS3way=xlsread('RunFile.xlsx', 1, sprintf('I%d', i));   

P3FTLR = xlsread('RunFile.xlsx', 1, sprintf('J%d', i)); 

ETol3way =xlsread('RunFile.xlsx', 1, sprintf('K%d', i)); %Error 

Tolerance of Single Integral 

%P3FTLR=xlsread('RunFile.xlsx', 1, sprintf('J%d', i)); 

% Probability of 3-way Failure to Load and Run for one hour, per third 

% minimal cutset in system notebood 

  

%P3FTR =xlsread('RunFile.xlsx', 1, sprintf('K%d', i)); 

% 3-way Failure to Run between hours 1 and 24, per first minimal cutset 

% in system notebook 

  

% % This for 1-exp(-time*rate)  
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% ~= time*rate, or 1-exp(-lambda*t) ~= lambda*t 

% Next without that approximation 

beta3way=xlsread('RunFile.xlsx', 1, sprintf('M%d', i)); 

delta3way=xlsread('RunFile.xlsx', 1, sprintf('O%d', i)); 

  

%if (malpha3 == 'CodeRun') 

   % alpha3way = -1/(log(1-P3FTLR/(1-FTS3way))); 

 % alpha3way = -1/(log(1-P3FTLR)); 

    %Uses alpha defined above 

%else 

    %otherwise uses new alpha 

    alpha3way =xlsread('RunFile.xlsx', 1, sprintf('L%d', i)); 

%end 

%if (mgamma3 == 'CodeRun') 

  %  gamma3way = -23/(log(1-P3FTR/((1-FTS3way)*(1-P3FTLR)))); 

  % gamma3way = 1/(3*(log(1-P3FTR/((1-FTS3way)*(1-P3FTLR)))); 

    %Uses gamma defined above 

%else 

    %otherwise uses new gamma 

    gamma3way =xlsread('RunFile.xlsx', 1, sprintf('N%d', i)); 

%end 

% parameters for cdf for 

% 3-way CC failure to run, here alpha3way = mu1 = exponential mean up 

to time beta3way = cutoff time,  

% and gamma3way = subsequent exponential mean conditional on reaching 

the cutoff time, numerical 

% values per first and third top minimal cutsets in STP system notebook 

end 

%------------------INDEPENDENT-----------------------------------------

---- 

  

%% Input data for independent failures 

%P3IFTLR=xlsread('RunFile.xlsx', 1, sprintf('W%d', i)); % From 52nd 

minimal cutset 

  

%PIFTLR=P3IFTLR^(1/3); % Independent failure to load and run 

  

%P1IFTS2IFTLR=xlsread('RunFile.xlsx', 1, sprintf('X%d', i)); % 

Independent failures of one specified EDG to start and other two to 

load 

% and run, per 81st-83rd minimal cutsets in system notebook 

  

%PIFTS=P1IFTS2IFTLR/(PIFTLR)^2; % Independent failure to start 

%lambda1=-log(1-PIFTLR/(1-PIFTS)); % Independent failure rate during 

first hour  

  

%P3IFTR=xlsread('RunFile.xlsx', 1, sprintf('Y%d', i)); 

% From fifth most important cutset in the system notebook 

  

%PIFTR=(P3IFTR)^(1/3); 

%lambda2=-log(1-PIFTR/((1-PIFTS)*(1-PIFTLR)))/23; 

  

PIFTS=xlsread('RunFile.xlsx', 1, sprintf('W%d', i)); % Independent 

failure to start 

PIFTLR=xlsread('RunFile.xlsx', 1, sprintf('X%d', i));% Probability of 

independent failure to load and run 
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EtolInd=xlsread('RunFile.xlsx', 1, sprintf('Y%d', i));% Error Tolerance 

of Triple Integral 

  

betaind=xlsread('RunFile.xlsx', 1, sprintf('AA%d', i)); 

deltaind=xlsread('RunFile.xlsx', 1, sprintf('AC%d', i)); 

  

%if (malpha == 'CodeRun') 

%  alphaind=1/lambda1; % Mean time to independent failure, during first 

hour 

    %Uses alpha defined above 

%else 

    %otherwise uses new alpha 

    alphaind=xlsread('RunFile.xlsx', 1, sprintf('Z%d', i)); 

%end 

%if (mgamma == 'CodeRun') 

%      gammaind = 1/lambda2; 

    %Uses gamma defined above 

%else 

    %otherwise uses new gamma 

    gammaind =xlsread('RunFile.xlsx', 1, sprintf('AB%d', i)); 

%end 

% parameters for cdf for  

% failure to run, here alphaind = mu1 = exponential mean up to time 

betaind = cutoff time (hours),  

% and gammaind = subsequent exponential mean conditional on reaching 

the 

% cutoff time 

  

%----------------------2-WAY-------------------------------------------

-- 

if (n==2) || (n==3) 

%% Input data for two-way common-cause failures  

%P1IFTR2FTS=xlsread('RunFile.xlsx', 1, sprintf('P%d', i)); 

% Probability of common-cause failure of 2/3 EDGs to start,  

% and third to fail to run, here from 34th-36th minimal cutsets 

  

%P1FTR2FTLR=xlsread('RunFile.xlsx', 1, sprintf('Q%d', i)); 

%Probability of 2-way common-cause failure of two designated EDGs 

% to load and run, and of the third to fail independently to run, per 

minimal cutsets 

% 19-21 

  

%P1FTR2FTR=xlsread('RunFile.xlsx', 1, sprintf('R%d', i)); 

%% Probability of 2-way common-cause failure of two designated EDGs 

% to run, and of the third to fail independently to run, per minimal 

cutsets 

% 9-11 

  

  

%P2FTS=P1IFTR2FTS/PIFTR; 

%P2FTLR=P1FTR2FTLR/PIFTR; 

  

%lambda1=-log(1-P2FTLR/(1-P2FTS)); % Independent failure rate during 

first 

%hour 

  

%P2FTR=P1FTR2FTR/PIFTR; 
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%lambda2=-log(1-P2FTR/((1-P2FTS)*(1-P2FTLR)))/23; 

  

P2FTS=xlsread('RunFile.xlsx', 1, sprintf('P%d', i)); 

P2FTLR=xlsread('RunFile.xlsx', 1, sprintf('Q%d', i)); 

Etol2way =xlsread('RunFile.xlsx', 1, sprintf('R%d', i)); 

beta2way=xlsread('RunFile.xlsx', 1, sprintf('T%d', i)); 

delta2way=xlsread('RunFile.xlsx', 1, sprintf('V%d', i)); 

%if (malpha2 == 'CodeRun') 

%   alpha2way=1/lambda1; % Mean time to independent failure, during 

first hour 

    %Uses alpha defined above 

%else 

    %otherwise uses new alpha 

    alpha2way=xlsread('RunFile.xlsx', 1, sprintf('S%d', i)); 

%end 

%if (mgamma2 == 'CodeRun') 

%gamma2way=1/lambda2; 

    %Uses gamma defined above 

%else 

    %otherwise uses new gamma 

    gamma2way =xlsread('RunFile.xlsx', 1, sprintf('U%d', i)); 

%end 

  

% parameters for cdf for  

% failure to run, here alphaind = mu1 = exponential mean up to time 

betaind = cutoff time (hours),  

% and gammaind = subsequent exponential mean conditional on reaching 

the 

% cutoff time 

end  

  

  

% Below are place holder Variables for alphaR(1),betaR(1),gammaR(1),and 

deltaR(1) 

% used to make sure Default Values would work if needed 

ph1=xlsread('RunFile.xlsx', 1, sprintf('AD%d', i)); 

ph2=xlsread('RunFile.xlsx', 1, sprintf('AE%d', i)); 

ph3=xlsread('RunFile.xlsx', 1, sprintf('AF%d', i)); 

ph4=xlsread('RunFile.xlsx', 1, sprintf('AG%d', i)); 

alphaR(1)=ph1; 

betaR(1)=ph2; 

gammaR(1)=ph3; 

deltaR(1)=ph4; 

% parameters for recovery cdf for train 1, here  

% the respective values of the scale and shape parameters for a Weibull 

% distribution, as detailed in "Verification 2" (alphaR in hours) 

  

if (n==2) || (n==3) 

  

% Below are place holder Variables for alphaR(2),betaR(2),gammaR(2),and 

deltaR(2) 

% used to make sure Default Values would work if needed 

ph5=xlsread('RunFile.xlsx', 1, sprintf('AH%d', i)); 

ph6=xlsread('RunFile.xlsx', 1, sprintf('AI%d', i)); 

ph7=xlsread('RunFile.xlsx', 1, sprintf('AJ%d', i)); 

ph8=xlsread('RunFile.xlsx', 1, sprintf('AK%d', i)); 

alphaR(2)=ph5; 
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betaR(2)=ph6; 

gammaR(2)=ph7; 

deltaR(2)=ph8; 

% parameters for recovery cdf for train 2, here  

% the respective values of the scale and shape parameters for a Weibull 

% distribution, as detailed in "Verification 2" (alphaR in hours) 

  

if (n==3) 

% Below are place holder Variables for alphaR(3),betaR(3),gammaR(3),and 

deltaR(3) 

% used to make sure Default Values would work if needed 

ph9=xlsread('RunFile.xlsx', 1, sprintf('AL%d', i)); 

ph10=xlsread('RunFile.xlsx', 1, sprintf('AM%d', i)); 

ph11=xlsread('RunFile.xlsx', 1, sprintf('AN%d', i)); 

ph12=xlsread('RunFile.xlsx', 1, sprintf('AO%d', i)); 

alphaR(3)=ph9; 

betaR(3)=ph10; 

gammaR(3)=ph11; 

deltaR(3)=ph12; 

% parameters for recovery cdf for train 3, here  

% the respective values of the scale and shape parameters for a Weibull 

% distribution, as detailed in "Verification 2" (alphaR in hours) 

  

end 

end 

  

%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

^^^ 

  

%888888888888888888888888888DEFAULT VALUES88888888888888888888888888 

%This not only sets default values but it also rewrites blank cells in 

the 

%Runfile 

strn=1; 

%i=i-1; 

%j=i+1; 

dvalstr{strn} =fprintf('The following cells were left blank: '); 

    strn=strn+1; 

dvalstr{strn} = fprintf('\n'); 

if (isempty(n)) 

       xlswrite('RunFile.xlsx', 3, 1, sprintf('B%d', i)); 

    n = xlsread('RunFile.xlsx', 1, sprintf('B%d', i)); 

    strn=strn+1; 

    dvalstr{strn} = fprintf('B%d', i); 

dvalstr{strn} = fprintf('\n'); 

     

end 

  

if (isempty(T)) 

     xlswrite('RunFile.xlsx', 24, 1, sprintf('C%d', i)); 

    T=xlsread('RunFile.xlsx', 1, sprintf('C%d', i));  

  strn=strn+1;   

      dvalstr{strn} = fprintf('C%d', i); 

dvalstr{strn} = fprintf('\n'); 

     

end 
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if (isempty(T_c)) 

    %If true, then write a statement to exit the loop on next through 

        xlswrite('RunFile.xlsx', 1, 1, sprintf('D%d', i)); 

        T_c=xlsread('RunFile.xlsx', 1, sprintf('D%d', i));  

  strn=strn+1;       

              dvalstr{strn} = fprintf('D%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

  

  

if (isempty(alphaG)) 

    %If true, then write a statement to exit the loop on next through 

        alphaG=0.3; 

                xlswrite('RunFile.xlsx',  alphaG, 1, sprintf('E%d', 

i)); 

        alphaG=xlsread('RunFile.xlsx', 1, sprintf('E%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('E%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

  

if (isempty(betaG)) 

    %If true, then write a statement to exit the loop on next through 

        betaG=1.064; 

       xlswrite('RunFile.xlsx', betaG, 1, sprintf('F%d', i)); 

betaG=xlsread('RunFile.xlsx', 1, sprintf('F%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('F%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

  

if (isempty(gammaG)) 

    %If true, then write a statement to exit the loop on next through 

        gammaG=0; 

      xlswrite('RunFile.xlsx',   gammaG, 1, sprintf('G%d', i)); 

      gammaG=xlsread('RunFile.xlsx', 1, sprintf('G%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('G%d', i); 

dvalstr{strn} = fprintf('\n'); 

  

end 

  

if (isempty(deltaG)) 

    %If true, then write a statement to exit the loop on next through 

        deltaG=0; 

        xlswrite('RunFile.xlsx',  deltaG, 1, sprintf('H%d', i)); 

  deltaG=xlsread('RunFile.xlsx', 1, sprintf('H%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('H%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

  

if (n==3) 

if (isempty(FTS3way)) 

    %If true, then write a statement to exit the loop on next through 

       FTS3way=0.0000536686514072092; 

       xlswrite('RunFile.xlsx',  FTS3way, 1, sprintf('I%d', i)); 
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       FTS3way=xlsread('RunFile.xlsx', 1, sprintf('I%d', i));   

strn=strn+1; 

      dvalstr{strn} = fprintf('I%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

if (isempty(P3FTLR)) 

    %If true, then write a statement to exit the loop on next through 

       P3FTLR=0.000014181825726059; 

       xlswrite('RunFile.xlsx',  P3FTLR, 1, sprintf('J%d', i)); 

       P3FTLR = xlsread('RunFile.xlsx', 1, sprintf('J%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('J%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

if (isempty(ETol3way)) 

    %If true, then write a statement to exit the loop on next through 

        ETol3way=0.0000000001; 

        xlswrite('RunFile.xlsx',  ETol3way, 1, sprintf('K%d', i)); 

        ETol3way =xlsread('RunFile.xlsx', 1, sprintf('K%d', i)); %Error 

Tolerance of Single Integral 

strn=strn+1; 

      dvalstr{strn} = fprintf('K%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

if (isempty(alpha3way)) 

    %If true, then write a statement to exit the loop on next through 

        alpha3way=70512.2830010499; 

        xlswrite('RunFile.xlsx',  alpha3way, 1, sprintf('L%d', i)); 

            alpha3way =xlsread('RunFile.xlsx', 1, sprintf('L%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('L%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

if (isempty(beta3way)) 

    %If true, then write a statement to exit the loop on next through 

        beta3way=1; 

        xlswrite('RunFile.xlsx',  beta3way, 1, sprintf('M%d', i)); 

        beta3way=xlsread('RunFile.xlsx', 1, sprintf('M%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('M%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

if (isempty(gamma3way)) 

    %If true, then write a statement to exit the loop on next through 

        gamma3way=113167.568967981; 

        xlswrite('RunFile.xlsx',  gamma3way, 1, sprintf('N%d', i)); 

            gamma3way =xlsread('RunFile.xlsx', 1, sprintf('N%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('N%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

if (isempty(delta3way)) 

    %If true, then write a statement to exit the loop on next through 

        delta3way=0; 

        xlswrite('RunFile.xlsx', delta3way, 1, sprintf('O%d', i)); 

        delta3way=xlsread('RunFile.xlsx', 1, sprintf('O%d', i)); 

strn=strn+1; 
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      dvalstr{strn} = fprintf('O%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

end 

if (n==3) || (n==2) 

if (isempty(P2FTS)) 

    %If true, then write a statement to exit the loop on next through 

       P2FTS=0.0000330131355289566; 

       xlswrite('RunFile.xlsx',  P2FTS, 1, sprintf('P%d', i)); 

       P2FTS=xlsread('RunFile.xlsx', 1, sprintf('P%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('P%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

if (isempty(P2FTLR)) 

    %If true, then write a statement to exit the loop on next through 

       P2FTLR=0.0000255272863069063; 

       xlswrite('RunFile.xlsx',  P2FTLR, 1, sprintf('Q%d', i)); 

       P2FTLR=xlsread('RunFile.xlsx', 1, sprintf('Q%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('Q%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

if (isempty(Etol2way)) 

    %If true, then write a statement to exit the loop on next through 

        Etol2way=0.0000000001; 

        xlswrite('RunFile.xlsx',  Etol2way, 1, sprintf('R%d', i)); 

        Etol2way =xlsread('RunFile.xlsx', 1, sprintf('R%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('R%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

if (isempty(alpha2way)) 

    %If true, then write a statement to exit the loop on next through 

        alpha2way=39173.2683325821; 

        xlswrite('RunFile.xlsx',  alpha2way, 1, sprintf('S%d', i)); 

    alpha2way=xlsread('RunFile.xlsx', 1, sprintf('S%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('S%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

if (isempty(beta2way)) 

    %If true, then write a statement to exit the loop on next through 

        beta2way=1; 

        xlswrite('RunFile.xlsx', beta2way, 1, sprintf('T%d', i)); 

        beta2way=xlsread('RunFile.xlsx', 1, sprintf('T%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('T%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

if (isempty(gamma2way)) 

    %If true, then write a statement to exit the loop on next through 

        gamma2way=187900.869229856; 

        xlswrite('RunFile.xlsx', gamma2way, 1, sprintf('U%d', i)); 

           gamma2way =xlsread('RunFile.xlsx', 1, sprintf('U%d', i)); 

 strn=strn+1; 

      dvalstr{strn} = fprintf('U%d', i); 



   168 

 

dvalstr{strn} = fprintf('\n'); 

end 

if (isempty(delta2way)) 

    %If true, then write a statement to exit the loop on next through 

        delta2way=0; 

        xlswrite('RunFile.xlsx',  delta2way, 1, sprintf('V%d', i)); 

        delta2way=xlsread('RunFile.xlsx', 1, sprintf('V%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('V%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

end 

  

if (isempty(PIFTS)) 

    %If true, then write a statement to exit the loop on next through 

       PIFTS=0.004410305077535; 

       xlswrite('RunFile.xlsx',  PIFTS, 1, sprintf('W%d', i)); 

       PIFTS=xlsread('RunFile.xlsx', 1, sprintf('W%d', i)); % 

Independent failure to start 

strn=strn+1; 

      dvalstr{strn} = fprintf('W%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

if (isempty(PIFTLR)) 

    %If true, then write a statement to exit the loop on next through 

       PIFTLR=0.000014181825726059; 

       xlswrite('RunFile.xlsx',  PIFTLR, 1, sprintf('X%d', i)); 

       PIFTLR=xlsread('RunFile.xlsx', 1, sprintf('X%d', i));% 

Probability of independent failure to load and run 

strn=strn+1; 

      dvalstr{strn} = fprintf('X%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

if (isempty(EtolInd)) 

    %If true, then write a statement to exit the loop on next through 

        EtolInd=0.0000000001; 

        xlswrite('RunFile.xlsx',  EtolInd, 1, sprintf('Y%d', i)); 

        EtolInd=xlsread('RunFile.xlsx', 1, sprintf('Y%d', i));% Error 

Tolerance of Triple Integral 

strn=strn+1; 

      dvalstr{strn} = fprintf('Y%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

if (isempty(alphaind)) 

    %If true, then write a statement to exit the loop on next through 

        alphaind=352.262864884551; 

        xlswrite('RunFile.xlsx', alphaind, 1, sprintf('Z%d', i)); 

            alphaind=xlsread('RunFile.xlsx', 1, sprintf('Z%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('Z%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

if (isempty(betaind)) 

    %If true, then write a statement to exit the loop on next through 

        betaind=1; 

        xlswrite('RunFile.xlsx', betaind, 1, sprintf('AA%d', i)); 

        betaind=xlsread('RunFile.xlsx', 1, sprintf('AA%d', i)); 
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strn=strn+1; 

      dvalstr{strn} = fprintf('AA%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

if (isempty(gammaind)) 

    %If true, then write a statement to exit the loop on next through 

        gammaind=1206.97199769511; 

        xlswrite('RunFile.xlsx',  gammaind, 1, sprintf('AB%d', i)); 

            gammaind =xlsread('RunFile.xlsx', 1, sprintf('AB%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('AB%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

if (isempty(deltaind)) 

    %If true, then write a statement to exit the loop on next through 

        deltaind=0; 

        xlswrite('RunFile.xlsx',  deltaind, 1, sprintf('AC%d', i)); 

        deltaind=xlsread('RunFile.xlsx', 1, sprintf('AC%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('AC%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

  

if (isempty(ph1)) 

    %If true, then write a statement to exit the loop on next through 

        ph1=15.5; 

        xlswrite('RunFile.xlsx',  ph1, 1, sprintf('AD%d', i)); 

       alphaR(1)=xlsread('RunFile.xlsx', 1, sprintf('AD%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('AD%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

if (isempty(ph2)) 

    %If true, then write a statement to exit the loop on next through 

        ph2=0.739; 

       xlswrite('RunFile.xlsx',  ph2, 1, sprintf('AE%d', i)); 

  

betaR(1)=xlsread('RunFile.xlsx', 1, sprintf('AE%d', i)); 

 strn=strn+1; 

      dvalstr{strn} = fprintf('AE%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

if (isempty(ph3)) 

    %If true, then write a statement to exit the loop on next through 

        ph3=0; 

         xlswrite('RunFile.xlsx',  ph3, 1, sprintf('AF%d', i)); 

gammaR(1)=xlsread('RunFile.xlsx', 1, sprintf('AF%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('AF%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

if (isempty(ph4)) 

    %If true, then write a statement to exit the loop on next through 

        ph4=0; 

         xlswrite('RunFile.xlsx',  ph4, 1, sprintf('AG%d', i)); 

deltaR(1)=xlsread('RunFile.xlsx', 1, sprintf('AG%d', i)); 

strn=strn+1; 
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      dvalstr{strn} = fprintf('AG%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

  

if (n==2) || (n==3) 

     

if (isempty(ph5)) 

    %If true, then write a statement to exit the loop on next through 

        ph5=15.5; 

         xlswrite('RunFile.xlsx',  ph5, 1, sprintf('AH%d', i)); 

      alphaR(2)=xlsread('RunFile.xlsx', 1, sprintf('AH%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('AH%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

if (isempty(ph6)) 

    %If true, then write a statement to exit the loop on next through 

        ph6=0.739; 

         xlswrite('RunFile.xlsx',  ph6, 1, sprintf('AI%d', i)); 

betaR(2)=xlsread('RunFile.xlsx', 1, sprintf('AI%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('AI%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

if (isempty(ph7)) 

    %If true, then write a statement to exit the loop on next through 

        ph7=0; 

         xlswrite('RunFile.xlsx',  ph7, 1, sprintf('AJ%d', i)); 

gammaR(2)=xlsread('RunFile.xlsx', 1, sprintf('AJ%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('AJ%d', i); 

      dvalstr{strn} = fprintf('\n'); 

  

end 

if (isempty(ph8)) 

    %If true, then write a statement to exit the loop on next through 

        ph8=0; 

         xlswrite('RunFile.xlsx',  ph8, 1, sprintf('AK%d', i)); 

deltaR(2)=xlsread('RunFile.xlsx', 1, sprintf('AK%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('AK%d', i); 

      dvalstr{strn} = fprintf('\n'); 

  

end 

end 

  

if (n==3) 

if (isempty(ph9)) 

    %If true, then write a statement to exit the loop on next through 

        ph9=15.5; 

         xlswrite('RunFile.xlsx',  ph9, 1, sprintf('AL%d', i)); 

     alphaR(3)=xlsread('RunFile.xlsx', 1, sprintf('AL%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('AL%d', i); 

      dvalstr{strn} = fprintf('\n'); 

  

end 
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if (isempty(ph10)) 

    %If true, then write a statement to exit the loop on next through 

        ph10=0.739; 

         xlswrite('RunFile.xlsx',  ph10, 1, sprintf('AM%d', i)); 

betaR(3)=xlsread('RunFile.xlsx', 1, sprintf('AM%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('AM%d', i); 

      dvalstr{strn} = fprintf('\n'); 

  

end 

if (isempty(ph11)) 

    %If true, then write a statement to exit the loop on next through 

        ph11=0; 

         xlswrite('RunFile.xlsx',  ph11, 1, sprintf('AN%d', i)); 

gammaR(3)=xlsread('RunFile.xlsx', 1, sprintf('AN%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('AN%d', i); 

      dvalstr{strn} = fprintf('\n'); 

  

end 

if (isempty(ph12)) 

    %If true, then write a statement to exit the loop on next through 

        ph12=0; 

         xlswrite('RunFile.xlsx',   ph12, 1, sprintf('AO%d', i)); 

deltaR(3)=xlsread('RunFile.xlsx', 1, sprintf('AO%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('AO%d', i); 

      dvalstr{strn} = fprintf('\n'); 

  

end 

  

if (isempty(RecoveryType3)) 

    %If true, then write a statement to exit the loop on next through 

        RecoveryType3=1; 

          xlswrite('RunFile.xlsx', RecoveryType3, 1, sprintf('AP%d', 

i)); 

RecoveryType3= xlsread('RunFile.xlsx', 1, sprintf('AP%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('AP%d', i); 

dvalstr{strn} = fprintf('\n'); 

  

end 

end 

if (n==2) || (n==3) 

     

if (isempty(RecoveryType2)) 

    %If true, then write a statement to exit the loop on next through 

        RecoveryType2=1; 

        xlswrite('RunFile.xlsx', RecoveryType2, 1, sprintf('AQ%d', i)); 

        RecoveryType2= xlsread('RunFile.xlsx', 1, sprintf('AQ%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('AQ%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

end 

if (isempty(RecoveryType)) 

    %If true, then write a statement to exit the loop on next through 
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        RecoveryType=1; 

        xlswrite('RunFile.xlsx', RecoveryType, 1, sprintf('AR%d', i)); 

        RecoveryType= xlsread('RunFile.xlsx', 1, sprintf('AR%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('AR%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

  

if (isempty(textODT)) 

    %If true, then write a statement to exit the loop on next through 

     

        xlswrite('RunFile.xlsx',  {'logncdf'}, 1, sprintf('AS%d', i)); 

        [numODT, textODT, rawdataODT] =  xlsread('RunFile.xlsx', 1, 

sprintf('AS%d', i)); 

  

strn=strn+1; 

      dvalstr{strn} = fprintf('AS%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

  

  

if (isempty(textRDT1)) 

    %If true, then write a statement to exit the loop on next through 

        

        xlswrite('RunFile.xlsx',  {'wblcdf'}, 1, sprintf('AT%d', i)); 

[numRDT1, textRDT1, RecDisType1]= xlsread('RunFile.xlsx', 1, 

sprintf('AT%d', i)); %Type of Distribution for Cdf of Recovery of train 

i (1-Weibull, 2-Lognormal, 3-Exponential)  

strn=strn+1; 

      dvalstr{strn} = fprintf('AT%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

  

  

if (isempty(textRDT2)) 

    %If true, then write a statement to exit the loop on next through 

         

        xlswrite('RunFile.xlsx',  {'wblcdf'}, 1, sprintf('AT%d', i)); 

[numRDT2, textRDT2, RecDisType2]= xlsread('RunFile.xlsx', 1, 

sprintf('AT%d', i)); %Type of Distribution for Cdf of Recovery of train 

i (1-Weibull, 2-Lognormal, 3-Exponential)  

  

end 

  

if (isempty(textRDT3)) 

    %If true, then write a statement to exit the loop on next through 

         

        xlswrite('RunFile.xlsx', {'wblcdf'}, 1, sprintf('AT%d', i)); 

[numRDT3, textRDT3, RecDisType3]= xlsread('RunFile.xlsx', 1, 

sprintf('AT%d', i)); %Type of Distribution for Cdf of Recovery of train 

i (1-Weibull, 2-Lognormal, 3-Exponential)  

  

end 

  

if (isempty(textcFTSL1)) 

    %If true, then write a statement to exit the loop on next through 

      



   173 

 

        xlswrite('RunFile.xlsx', {'expcdf'}, 1, sprintf('AU%d', i)); 

[numcFTSL1, textcFTSL1, cFTSLDisType1]= xlsread('RunFile.xlsx', 1, 

sprintf('AU%d', i)); %Type of Distribution for Cdf of FTSL of train i 

(1-Weibull, 2-Lognormal, 3-Exponential)  

strn=strn+1; 

      dvalstr{strn} = fprintf('AU%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

if ((n==2)||(n==3)) 

if (isempty(textcFTSL2)) 

    %If true, then write a statement to exit the loop on next through 

        

        xlswrite('RunFile.xlsx',  {'expcdf'}, 1, sprintf('AU%d', i)); 

[numcFTSL2, textcFTSL2, cFTSLDisType2]= xlsread('RunFile.xlsx', 1, 

sprintf('AU%d', i)); %Type of Distribution for Cdf of FTSL of train i 

(1-Weibull, 2-Lognormal, 3-Exponential)  

  

end 

if (n==3) 

if (isempty(textcFTSL3)) 

    %If true, then write a statement to exit the loop on next through 

     

        xlswrite('RunFile.xlsx', {'expcdf'}, 1, sprintf('AU%d', i)); 

[numcFTSL3, textcFTSL3, cFTSLDisType3]= xlsread('RunFile.xlsx', 1, 

sprintf('AU%d', i)); %Type of Distribution for Cdf of FTSL of train i 

(1-Weibull, 2-Lognormal, 3-Exponential)  

  

end 

end 

end 

if (isempty(textinvFTSL1)) 

    %If true, then write a statement to exit the loop on next through 

        

        xlswrite('RunFile.xlsx', {'expcdf'}, 1, sprintf('AU%d', i)); 

[numinvFTSL1, textinvFTSL1, invFTSLDisType1]= xlsread('RunFile.xlsx', 

1, sprintf('AU%d', i)); %Type of Distribution for invCdf of FTSL of 

train i (1-Weibull, 2-Lognormal, 3-Exponential)  

invFTSLDisType1= strtok(invFTSLDisType1, 'cdf'); 

invFTSLDisType1= strcat(invFTSLDisType1, 'inv'); 

  

else 

invFTSLDisType1= strtok(invFTSLDisType1, 'cdf'); 

invFTSLDisType1= strcat(invFTSLDisType1, 'inv'); 

end 

if (n==2)||(n==3) 

  

if (isempty(textinvFTSL2)) 

    %If true, then write a statement to exit the loop on next through 

      

        xlswrite('RunFile.xlsx',  {'expcdf'}, 1, sprintf('AU%d', i)); 

[numinvFTSL2, textinvFTSL2, invFTSLDisType2]= xlsread('RunFile.xlsx', 

1, sprintf('AU%d', i)); %Type of Distribution for invCdf of FTSL of 

train i (1-Weibull, 2-Lognormal, 3-Exponential)  

invFTSLDisType2= strtok(invFTSLDisType2, 'cdf'); 

invFTSLDisType2= strcat(invFTSLDisType2, 'inv'); 

  

else 
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invFTSLDisType2= strtok(invFTSLDisType2, 'cdf'); 

invFTSLDisType2= strcat(invFTSLDisType2, 'inv'); 

end 

if (n==3) 

if (isempty(textinvFTSL3)) 

    %If true, then write a statement to exit the loop on next through 

     

        xlswrite('RunFile.xlsx',  {'expcdf'}, 1, sprintf('AU%d', i)); 

[numinvFTSL3, textinvFTSL3, invFTSLDisType3]= xlsread('RunFile.xlsx', 

1, sprintf('AU%d', i)); %Type of Distribution for invCdf of FTSL of 

train i (1-Weibull, 2-Lognormal, 3-Exponential)  

    invFTSLDisType3= strtok(invFTSLDisType3, 'cdf'); 

invFTSLDisType3= strcat(invFTSLDisType3, 'inv'); 

strn=strn+1; 

  

else  

    invFTSLDisType3= strtok(invFTSLDisType3, 'cdf'); 

invFTSLDisType3= strcat(invFTSLDisType3, 'inv'); 

end 

  

  

if (isempty(textAMFcdf3)) 

    %If true, then write a statement to exit the loop on next through 

       xlswrite('RunFile.xlsx', {'FTR6890'}, 1, sprintf('AV%d', i)); 

 [numAMFcdf3, textAMFcdf3, AMFcdf3] =  xlsread('RunFile.xlsx', 1, 

sprintf('AV%d', i)); 

 strn=strn+1; 

       dvalstr{strn} = fprintf('AV%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

  

  

if (isempty(textAMFinvcdf3)) 

    %If true, then write a statement to exit the loop on next through 

       

      xlswrite('RunFile.xlsx',  {'FTR6890inv'}, 1, sprintf('AW%d', i)); 

      [numAMFinvcdf3, textAMFinvcdf3, AMFinvcdf3] =  

xlsread('RunFile.xlsx', 1, sprintf('AW%d', i));    

strn=strn+1; 

      dvalstr{strn} = fprintf('AW%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

end 

if (isempty(textAMFcdf2)) 

    %If true, then write a statement to exit the loop on next through 

              xlswrite('RunFile.xlsx', {'FTR6890'}, 1, sprintf('AX%d', 

i)); 

 [numAMFcdf2, textAMFcdf2, AMFcdf2] =  xlsread('RunFile.xlsx', 1, 

sprintf('AX%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('AX%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

  

if (isempty(textAMFinvcdf2)) 

      %If true, then write a statement to exit the loop on next through 
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      xlswrite('RunFile.xlsx',  {'FTR6890inv'}, 1, sprintf('AY%d', i)); 

      [numAMFinvcdf2, textAMFinvcdf2, AMFinvcdf2] =  

xlsread('RunFile.xlsx', 1, sprintf('AY%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('AY%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

end 

if (isempty(textAMFcdf)) 

    %If true, then write a statement to exit the loop on next through 

         

                xlswrite('RunFile.xlsx', {'FTR6890'}, 1, 

sprintf('AZ%d', i)); 

 [numAMFcdf, textAMFcdf, AMFcdf] =  xlsread('RunFile.xlsx', 1, 

sprintf('AZ%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('AZ%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

  

if (isempty(textAMFinvcdf)) 

      %If true, then write a statement to exit the loop on next through 

         

      xlswrite('RunFile.xlsx',  {'FTR6890inv'}, 1, sprintf('BA%d', i)); 

      [numAMFinvcdf, textAMFinvcdf, AMFinvcdf] =  

xlsread('RunFile.xlsx', 1, sprintf('BA%d', i)); 

strn=strn+1; 

      dvalstr{strn} = fprintf('BA%d', i); 

dvalstr{strn} = fprintf('\n'); 

end 

  

if (isempty(textAMFT)) 

    %If true, then write a statement to exit the loop on next through 

       

                xlswrite('RunFile.xlsx', {'FTR6890'}, 1, 

sprintf('AZ%d', i)); 

 [numAMFT, textAMFT, AMFT] =  xlsread('RunFile.xlsx', 1, 

sprintf('AZ%d', i)); 

  

end 

  

if (isempty(textAMFTinv)) 

      %If true, then write a statement to exit the loop on next through 

       

      xlswrite('RunFile.xlsx',  {'FTR6890inv'}, 1, sprintf('BA%d', i)); 

      [numAMFTinv, textAMFTinv, AMFTinv] =  xlsread('RunFile.xlsx', 1, 

sprintf('BA%d', i)); 

  

end 

if (n==2)||(n==3) 

  

if (isempty(textAMFT2)) 

    %If true, then write a statement to exit the loop on next through 

      

                xlswrite('RunFile.xlsx', {'FTR6890'}, 1, 

sprintf('AZ%d', i)); 
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 [numAMFT2, textAMFT2, AMFT2] =  xlsread('RunFile.xlsx', 1, 

sprintf('AZ%d', i)); 

  

end 

  

if (isempty(textAMFT2inv)) 

      %If true, then write a statement to exit the loop on next through 

        

      xlswrite('RunFile.xlsx',  {'FTR6890inv'}, 1, sprintf('BA%d', i)); 

      [numAMFT2inv, textAMFT2inv, AMFT2inv] =  xlsread('RunFile.xlsx', 

1, sprintf('BA%d', i)); 

  

end 

if (n==3) 

if (isempty(textAMFT3)) 

    %If true, then write a statement to exit the loop on next through 

          

                xlswrite('RunFile.xlsx', {'FTR6890'}, 1, 

sprintf('AZ%d', i)); 

 [numAMFT3, textAMFT3, AMFT3] =  xlsread('RunFile.xlsx', 1, 

sprintf('AZ%d', i)); 

  

end 

  

if (isempty(textAMFT3inv)) 

      %If true, then write a statement to exit the loop on next through 

       

      xlswrite('RunFile.xlsx',  {'FTR6890inv'}, 1, sprintf('BA%d', i)); 

      [numAMFT3inv, textAMFT3inv, AMFT3inv] =  xlsread('RunFile.xlsx', 

1, sprintf('BA%d', i)); 

  

end 

  

end 

end 

strn=strn+1; 

dvalstr{strn} = fprintf('\n'); 

%i=i+1; 

strn=strn+1; 

if (strn<5) 

        dvalstr{strn} = fprintf('No cells were left blank.'); 

else  

        dvalstr{strn} = fprintf('Note: Default values were added to 

"RunFile.xlsx"'); 

  

end 

strn=strn+1; 

dvalstr{strn} = fprintf('\n'); 

dvalstr{strn} = fprintf('\n'); 

  

strn=strn+1; 

 dvalstr{strn} = fprintf('The Code calculated:'); 

 strn=strn+1; 

 dvalstr{strn} = fprintf('\n'); 

  

 if ((n==3)||(n==2)) 
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     if (n==3) 

  

%8888888888888888888888888888888888888888888888888888888888888888888888

888 

%Changes Recovery to Full if invalid number is entered 

if (RecoveryType3 ~= 1 && RecoveryType3 ~= 2 && RecoveryType3 ~= 3 && 

RecoveryType3 ~= 4) 

   RecoveryType3 = 4; 

end 

     end 

%-----------For 2-way 

  

%Changes Recovery to Full if invalid number is entered 

if (RecoveryType2 ~= 1 && RecoveryType2 ~= 2 && RecoveryType2 ~= 3 && 

RecoveryType2 ~= 4) 

   RecoveryType2 = 4; 

end 

 end 

%-----------For Independent 

  

%Changes Recovery to Full if invalid number is entered 

if (RecoveryType ~= 1 && RecoveryType ~= 2 && RecoveryType ~= 3 && 

RecoveryType ~= 4) 

   RecoveryType = 4; 

end 

  

  

  

R=cell(1,n); 

  

G=str2func(rawdataODT); 

%Normally G=@logncdf; % cdf in time (hours) for recovery of offsite 

power, here taken as lognormal cdf 

% per Word document "Verification 2" 

  

if (n==3) 

FTR3way=str2func(AMFcdf3); 

%FTR3way=@FTR6890; % cdf for 3-way common-cause failure of EDGs to load 

and run, 

% conditional on starting; here a two-regime exponential cdf, per 

"Verification 2" 

FTR3wayinv=str2func(AMFinvcdf3); 

%FTR3wayinv=@FTR6890inv; % the corresponding inverse cdf for 3-way 

common-cause failures to run 

% of the three EDGs; here the inverse of the piecewise exponential 

function coded into FTR6890, per 

% "Verification 2" 

  

end 

  

FTRind=str2func(AMFcdf); 

%FTRind=@FTR6890; % cdf for independent failure of EDGs to load and 

run, conditional on 

% starting; here a piecewise exponential cdf, per "Verification 2" 

FTRindinv=str2func(AMFinvcdf); 

%FTRindinv=@FTR6890inv; % the corresponding inverse cdf for independent 

failures to run 
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% of the three EDGs; here the inverse of the piecewise exponential 

function coded into FTR6890, per 

% "Verification 2" 

  

if ((n==3)||(n==2)) 

FTR2way=str2func(AMFcdf2); 

%FTR2way=@FTR6890; % cdf for 2-way common-cause failure of EDGs to load 

and run, 

% conditional on starting; here a two-regime exponential cdf, per 

"Verification 2" 

FTR2wayinv=str2func(AMFinvcdf2); 

%FTR2wayinv=@FTR6890inv; % the corresponding inverse cdf for 2-way 

common-cause failures to run 

% of the three EDGs; here the inverse of the piecewise exponential 

function coded into FTR6890, per 

% "Verification 2" 

end 

% probability of initial failure to start of train 1, per 

%"Verification 2". 

F_0(1)=PIFTS; % Same, for same initial failure to start for all trains 

  

F{1}=str2func(AMFT); 

%F{1}=@FTR6890; % cdf for failure of train 1 to start and load; here a 

piecewise  

% exponential cdf, per "Verification 2" 

Finv{1}=str2func(AMFTinv); 

%Finv{1}=@FTR6890inv; % the corresponding inverse cdf for failure of 

train 1 to start and load; here  

% the inverse of the piecewise exponential function coded into FTR6890, 

per 

% "Verification 2" 

  

% parameters for cdf for failure to run, here  

% alphaF = mu1 = exponential mean up to time betaF = cutoff time, and 

gammaF = subsequent 

% exponential mean conditional on reaching the cutoff time, numerical 

% values per "Verification 2" 

alphaF(1)=alphaind;  

betaF(1)=betaind;  

gammaF(1)=gammaind; 

deltaF(1)=deltaind; 

  

R{1} = str2func(RecDisType1); 

% cdf in time (hours) for recovery (repair) of train 1.  Here the 

Weibull 

% cdf, per "Verification 2" 

  

if ((n==3)||(n==2)) 

% probability of initial failure to start of train 2, per "Verification 

2". 

F_0(2)=PIFTS; % Same, for same initial failure to start for all trains 

  

F{2}=str2func(AMFT2); 

%F{2}=@FTR6890; % cdf for failure of train 2 to start and load; here a 

piecewise  

% exponential cdf, per "Verification 2" 
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Finv{2}=str2func(AMFT2inv); 

%Finv{2}=@FTR6890inv; % the corresponding inverse cdf for failure of 

train 2 to start and load; here  

% the inverse of the piecewise exponential function coded into FTR6890, 

per 

% "Verification 2" 

  

% parameters for cdf for failure to run, here  

% alphaF = mu1 = exponential mean up to time betaF = cutoff time, and 

gammaF = subsequent 

% exponential mean conditional on reaching the cutoff time, numerical 

% values per "Verification 2" 

alphaF(2)=alphaind; 

betaF(2)=betaind;  

gammaF(2)=gammaind; 

deltaF(2)=deltaind; 

  

R{2} = str2func(RecDisType2); 

%R{2}=@wblcdf; % cdf in time (hours) for recovery (repair) of train 2.  

Here the Weibull 

% cdf, per "Verification 2" 

  

if (n==3) 

% probability of initial failure to start of train 3, per "Verification 

2". 

F_0(3)=PIFTS; % Same, for same initial failure to start for all trains 

  

F{3}=str2func(AMFT3); 

%F{3}=@FTR6890; % cdf for failure of train 3 to start and load; here a 

piecewise  

% exponential cdf, per "Verification 2" 

  

Finv{3}=str2func(AMFT3inv); 

%Finv{3}=@FTR6890inv; % the corresponding inverse cdf for failure of 

train 3 to start and load; here  

% the inverse of the piecewise exponential function coded into FTR6890, 

per 

% "Verification 2" 

  

% parameters for cdf for failure to run, here  

% alphaF = mu1 = exponential mean up to time betaF = cutoff time, and 

gammaF = subsequent 

% exponential mean conditional on reaching the cutoff time, numerical 

% values per "Verification 2" 

alphaF(3)=alphaind; 

betaF(3)=betaind; 

gammaF(3)=gammaind; 

deltaF(3)=deltaind; 

  

  

  

R{3} = str2func(RecDisType3); % cdf in time (hours) for recovery 

(repair) of train 3.  Here the Weibull 

% cdf, per "Verification 2" 

  

end 

end 
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%% 

  

%**********************Calculation************************************ 

% Convert Riemann-Stieltjes triple nonrecovery integral to ordinary 

Riemann 

% integral 

A=0; 

traincounter=1; 

%B=F_0(1)+(1-F_0(1))*feval(F{1},T,alphaF(1),betaF(1),gammaF(1)); % 

Basic events independent 

B=F_0(1)+feval(F{1},T,alphaF(1),betaF(1),gammaF(1)); % Basic events 

mutually exclusive 

C=0; 

if (n==2)||(n==3) 

traincounter=2; 

% D=F_0(2)+(1-F_0(2))*feval(F{2},T,alphaF(2),betaF(2),gammaF(2)); % 

Independent 

D=F_0(2)+feval(F{2},T,alphaF(2),betaF(2),gammaF(2)); % Exclusive 

E=0; 

if (n==3) 

traincounter=3; 

% Fupper=F_0(3)+(1-F_0(3))*feval(F{3},T,alphaF(3),betaF(3),gammaF(3)); 

% Independent 

PIFTR2=feval(F{3},T,alphaF(3),betaF(3),gammaF(3))-

feval(F{3},betaF(3),alphaF(3),betaF(3),gammaF(3)); 

Fupper=F_0(3)+feval(F{3},T,alphaF(3),betaF(3),gammaF(3)); % Exclusive 

% P_CSBO1=triplequad(@INTEGRANDv1pt0,A,B,C,D,E,F) % Default absolute 

error 

%tolerance of 1.0e-6 

else 

    PIFTR2=0 

    Fupper=0 

end 

else 

    D=0 

    E=0 

      PIFTR2=0 

    Fupper=0 

end 

    P_CSBO1=triplequad(@INTEGRANDv1pt0,A,B,C,D,E,Fupper,EtolInd) % 

Recommended absolute error tolerance 

% is 1.0e-10.  See "Verification 2" for the basis for this 

recommendation. 

  

if (n==2)||(n==3) 

%% Next, 2-way common-cause failure plus an independent failure 

% P_CSBO2=0 % Stub 

% Convert Riemann-Stieltjes double nonrecovery integral to ordinary 

Riemann 

% integral 

A=0; 

% B=F_0(1)+(1-F_0(1))*feval(F{1},T,alphaF(1),betaF(1),gammaF(1)); %BEs 

Independent 

B=F_0(1)+feval(F{1},T,alphaF(1),betaF(1),gammaF(1)); %BEs Exclusive 

C=0; 

% D=P2FTS+(1-P2FTS)*feval(FTR2way,T,alpha2way,beta2way,gamma2way); % 

Independent 
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D=P2FTS+feval(FTR2way,T,alpha2way,beta2way,gamma2way); % Exclusive 

P_CSBO2=3.0*dblquad(@INTEGRAND2way,A,B,C,D,Etol2way) % Recommended 

absolute error tolerance 

% is 1.0e-10.  See "Verification 2" for the basis for this 

recommendation. 

% Three for multiplicity 

end 

%% Finally, with 3-way Common-Cause Failures 

  

if (n==3) 

% 3-Way failure to start and to run. In the terminology of the 

asymptotic development  

% this includes the S3 and R3 classes of failure. 

A=0; 

% B=FTS3way+(1-FTS3way)*feval(FTR3way,T,alpha3way,beta3way,gamma3way); 

%Indpendent 

B=FTS3way+feval(FTR3way,T,alpha3way,beta3way,gamma3way); %Mutually 

exclusive 

P_CSBO3=quad(@INTEGRAND3way,A,B,ETol3way) 

end 

  

if (n==1) 

   P_CSBO2=0; 

   P_CSBO3=0; 

else if (n==2) 

        P_CSBO3=0 

    else if(n>3) 

   ERROR_N = fprintf('Too many Trains to compute with this code, the 

Maximum is 3'); 

        end 

    end 

end 

%% Total 

P_CSBO=P_CSBO1 + P_CSBO2 + P_CSBO3 

  

%**********************************************************************

**** 

  

%Creates an Array of P_CSBO values for the output file 

outputP(i)= P_CSBO;  

outputP1(i)= P_CSBO1;  

outputP2(i)= P_CSBO2;  

outputP3(i)= P_CSBO3;  

  

%Variable to go to display the correct data row in the Output File 

i2=i-1; 

%Array that defines the Title Cells for the Output File 

stringout = {'Data Row', 'P_CSBO', 'P_CSBO1', 'P_CSBO2','P_CSBO3'}; 

%Fills the Title Cells in the Output File  

xlswrite('OutputFile.xlsx', stringout, 1, 'A1'); 

%Fills the Data Row column with the specific data row number 

xlswrite('OutputFile.xlsx', i2, 1, sprintf('A%d', i)); 

%Fills the P_CSBO Column with values in the output file 

xlswrite('OutputFile.xlsx', outputP(i), 1, sprintf('B%d', i)); 

%Fills the P_CSBO1 Column with values in the output file 

xlswrite('OutputFile.xlsx', outputP1(i), 1, sprintf('C%d', i)); 

%Fills the P_CSBO2 Column with values in the output file 
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xlswrite('OutputFile.xlsx', outputP2(i), 1, sprintf('D%d', i)); 

%Fills the P_CSBO3 Column with values in the output file 

xlswrite('OutputFile.xlsx', outputP3(i), 1, sprintf('E%d', i)); 

  

end 

i = i+1; 

end 

% End of Program Message  

disp('END OF PROGRAM       WHOOP!'); 

 

 

“INTEGRANDv1pt0.m”: 

 
function H=INTEGRANDv1pt0(F1,F2,F3) 
global F_0 F Finv alphaF betaF gammaF deltaF n G T_c G alphaG betaG 

gammaG deltaG R tau alphaR betaR gammaR deltaR 
global RecoveryType 

  
tau=cell(1,n); 

  
%% Line 5 
% Identify corresponding times, tau1, tau2, tau3 
C1=F1<F_0(1); 
[m1 n1]=size(F1); 
for i=1:m1 
    for j=1:n1 
        if C1(i,j)==1 
            tau{1}(i,j)=0; 
        else 
            tau{1}(i,j)=feval(Finv{1,1},((F1(i,j)-F_0(1))./(1-

F_0(1))),alphaF(1),betaF(1),gammaF(1),deltaF(1)); 
        end 
    end 
end 
C2=F2<F_0(2); 
[m2 n2]=size(F2); 
for i=1:m2 
    for j=1:n2 
        if C2(i,j)==1 
            tau{2}(i,j)=0; 
        else 
            tau{2}(i,j)=feval(Finv{1,2},((F2(i,j)-F_0(2))./(1-

F_0(2))),alphaF(2),betaF(2),gammaF(2),deltaF(2)); 
        end 
    end 
end 
C3=F3<F_0(3); 
[m3 n3]=size(F3); 
for i=1:m3 
    for j=1:n3 
        if C3(i,j)==1 
            tau{3}(i,j)=0; 
        else 
            tau{3}(i,j)=feval(Finv{1,3},((F3(i,j)-F_0(2))./(1-

F_0(3))),alphaF(3),betaF(3),gammaF(3),deltaF(3)); 
        end 
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    end 
end 

  

     
H=ones(m1,n1); % Correct if credit taken only for nonfailure of 

emergency 
% trains, as in approach of the 'multiple trains, no recovery" section 

of  
% the Rio paper. Looks o.k. for F = exponential integral, but need to  
% compare to ICONE18 paper and to Rio paper 

  
if (RecoveryType==1) 

     
%% 
% Determine taumax 
taumax=tau{1}; 
for i=2:n 
    taumax=max(taumax,tau{i}); 
end 
% Now take credit for recovery of offsite power, as in Section 3.4 of 

Rio 
% paper 
%H=H.*(1-feval(G,taumax+T_c,alphaG,betaG,gammaG,deltaG));  
% Now take credit for recovery of emergency power trains 
for i=1:n 
 %   H=H.*(1-feval(R{i},taumax+T_c-

tau{i},alphaR(i),betaR(i),gammaR(i),deltaR(i))); 
    % Alternately take only credit for recovery of emergency power 

trains that 
    % comes from repair work following full failure of onsite power 

(per 
    % Lloyd-Anoba, for the case coincident with Read-Fleming) 
    % H=H.*(1-feval(R{i},T_c,alphaR(i),betaR(i),gammaR(i),deltaR(i))); 
end 
else if (RecoveryType==2) 

     
%% 
% Determine taumax 
taumax=tau{1}; 
for i=2:n 
    taumax=max(taumax,tau{i}); 
end 
% Now take credit for recovery of offsite power, as in Section 3.4 of 

Rio 
% paper 
H=H.*(1-feval(G,taumax+T_c,alphaG,betaG,gammaG,deltaG));  
% Now take credit for recovery of emergency power trains 
for i=1:n 
   % H=H.*(1-feval(R{i},taumax+T_c-

tau{i},alphaR(i),betaR(i),gammaR(i),deltaR(i))); 
    % Alternately take only credit for recovery of emergency power 

trains that 
    % comes from repair work following full failure of onsite power 

(per 
    % Lloyd-Anoba, for the case coincident with Read-Fleming) 
    % H=H.*(1-feval(R{i},T_c,alphaR(i),betaR(i),gammaR(i),deltaR(i))); 
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end 
    else if (RecoveryType==3) 
% Determine taumax 
taumax=tau{1}; 
for i=2:n 
    taumax=max(taumax,tau{i}); 
end 
% Now take credit for recovery of offsite power, as in Section 3.4 of 

Rio 
% paper 
H=H.*(1-feval(G,taumax+T_c,alphaG,betaG,gammaG,deltaG));  
% Now take credit for recovery of emergency power trains 
for i=1:n 
   % H=H.*(1-feval(R{i},taumax+T_c-

tau{i},alphaR(i),betaR(i),gammaR(i),deltaR(i))); 
    % Alternately take only credit for recovery of emergency power 

trains that 
    % comes from repair work following full failure of onsite power 

(per 
    % Lloyd-Anoba, for the case coincident with Read-Fleming) 
    H=H.*(1-feval(R{i},T_c,alphaR(i),betaR(i),gammaR(i),deltaR(i))); 
end 
        else if (RecoveryType==4) 

     
%% 
% Determine taumax 
taumax=tau{1}; 
for i=2:n 
    taumax=max(taumax,tau{i}); 
end 
% Now take credit for recovery of offsite power, as in Section 3.4 of 

Rio 
% paper 
H=H.*(1-feval(G,taumax+T_c,alphaG,betaG,gammaG,deltaG));  
% Now take credit for recovery of emergency power trains 
for i=1:n 
    H=H.*(1-feval(R{i},taumax+T_c-

tau{i},alphaR(i),betaR(i),gammaR(i),deltaR(i))); 
    % Alternately take only credit for recovery of emergency power 

trains that 
    % comes from repair work following full failure of onsite power 

(per 
    % Lloyd-Anoba, for the case coincident with Read-Fleming) 
    % H=H.*(1-feval(R{i},T_c,alphaR(i),betaR(i),gammaR(i),deltaR(i))); 
end 
end 
end 
    end 
end 

  

 

“INTEGRAND2way.m”: 

 
function H=INTEGRAND2way(F1,F2) 
global outputP F_0 F Finv alphaF betaF gammaF deltaF n T_c G alphaG 

betaG gammaG deltaG R tau alphaR betaR gammaR deltaR 
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global RecoveryType2 

  
tau=cell(1,n); 

  
%% 
% Identify corresponding times, tau1, tau2 
C1=F1<F_0(1); 
[m1 n1]=size(F1); 
for i=1:m1 
    for j=1:n1 
        if C1(i,j)==1 
            tau{1}(i,j)=0; 
        else 
            tau{1}(i,j)=feval(Finv{1,1},((F1(i,j)-F_0(1))./(1-

F_0(1))),alphaF(1),betaF(1),gammaF(1),deltaF(1)); 
        end 
    end 
end 
C2=F2<F_0(2); 
[m2 n2]=size(F2); 
for i=1:m2 
    for j=1:n2 
        if C2(i,j)==1 
            tau{2}(i,j)=0; 
        else 
            tau{2}(i,j)=feval(Finv{1,2},((F2(i,j)-F_0(2))./(1-

F_0(2))),alphaF(2),betaF(2),gammaF(2),deltaF(2)); 
        end 
    end 
end 

  
%*********************CREDIT FOR 

RECOVERY********************************* 

  
if (RecoveryType2==1) 

  
H=ones(m1,n1); % Correct if credit taken only for nonfailure of 

emergency 
% trains, as in approach of the 'multiple trains, no recovery" section 

of  
% the Rio paper. Looks o.k. for F = exponential integral, but need to  
% compare to ICONE18 paper and to Rio paper 

  
%% 
% Determine taumax 
taumax=tau{1}; 
taumax=max(taumax,tau{i}); 

  
% Now take credit for recovery of offsite power, as in Section 3.4 of 

Rio 
% paper 
%H=H.*(1-feval(G,taumax+T_c,alphaG,betaG,gammaG,deltaG));   
% Now take credit for recovery of emergency power trains 
%for i=1:2 
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  %  H=H.*(1-feval(R{i},taumax+T_c-

tau{i},alphaR(i),betaR(i),gammaR(i),deltaR(i))); 
    % Alternately take only credit for recovery of emergency power 

trains that 
    % comes from repair work following full failure of onsite power 

(per 
    % Lloyd-Anoba, for the case coincident with Read-Fleming) 
    % H=H.*(1-feval(R{i},T_c,alphaR(i),betaR(i),gammaR(i),deltaR(i))); 
%end 
else if (RecoveryType2==2) 

  

  
H=ones(m1,n1); % Correct if credit taken only for nonfailure of 

emergency 
% trains, as in approach of the 'multiple trains, no recovery" section 

of  
% the Rio paper. Looks o.k. for F = exponential integral, but need to  
% compare to ICONE18 paper and to Rio paper 

  
%% 
% Determine taumax 
taumax=tau{1}; 
taumax=max(taumax,tau{i}); 

  
% Now take credit for recovery of offsite power, as in Section 3.4 of 

Rio 
% paper 
H=H.*(1-feval(G,taumax+T_c,alphaG,betaG,gammaG,deltaG));   
% Now take credit for recovery of emergency power trains 
for i=1:2 
  %  H=H.*(1-feval(R{i},taumax+T_c-

tau{i},alphaR(i),betaR(i),gammaR(i),deltaR(i))); 
    % Alternately take only credit for recovery of emergency power 

trains that 
    % comes from repair work following full failure of onsite power 

(per 
    % Lloyd-Anoba, for the case coincident with Read-Fleming) 
    % H=H.*(1-feval(R{i},T_c,alphaR(i),betaR(i),gammaR(i),deltaR(i))); 
end 

     
else if (RecoveryType2==3) 

  

  
H=ones(m1,n1); % Correct if credit taken only for nonfailure of 

emergency 
% trains, as in approach of the 'multiple trains, no recovery" section 

of  
% the Rio paper. Looks o.k. for F = exponential integral, but need to  
% compare to ICONE18 paper and to Rio paper 

  
%% 
% Determine taumax 
taumax=tau{1}; 
taumax=max(taumax,tau{i}); 
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% Now take credit for recovery of offsite power, as in Section 3.4 of 

Rio 
% paper 
H=H.*(1-feval(G,taumax+T_c,alphaG,betaG,gammaG,deltaG));   
% Now take credit for recovery of emergency power trains 
for i=1:2 
   % H=H.*(1-feval(R{i},taumax+T_c-

tau{i},alphaR(i),betaR(i),gammaR(i),deltaR(i))); 
    % Alternately take only credit for recovery of emergency power 

trains that 
    % comes from repair work following full failure of onsite power 

(per 
    % Lloyd-Anoba, for the case coincident with Read-Fleming) 
     H=H.*(1-feval(R{i},T_c,alphaR(i),betaR(i),gammaR(i),deltaR(i))); 
end 
else if (RecoveryType2==4) 

  
H=ones(m1,n1); % Correct if credit taken only for nonfailure of 

emergency 
% trains, as in approach of the 'multiple trains, no recovery" section 

of  
% the Rio paper. Looks o.k. for F = exponential integral, but need to  
% compare to ICONE18 paper and to Rio paper 

  
%% 
% Determine taumax 
taumax=tau{1}; 
taumax=max(taumax,tau{i}); 

  
% Now take credit for recovery of offsite power, as in Section 3.4 of 

Rio 
% paper 
H=H.*(1-feval(G,taumax+T_c,alphaG,betaG,gammaG,deltaG));   
% Now take credit for recovery of emergency power trains 
for i=1:2 
    H=H.*(1-feval(R{i},taumax+T_c-

tau{i},alphaR(i),betaR(i),gammaR(i),deltaR(i))); 
    % Alternately take only credit for recovery of emergency power 

trains that 
    % comes from repair work following full failure of onsite power 

(per 
    % Lloyd-Anoba, for the case coincident with Read-Fleming) 
    % H=H.*(1-feval(R{i},T_c,alphaR(i),betaR(i),gammaR(i),deltaR(i))); 
end 
    end 
    end 
end 
end 

 

“INTEGRAND3way.m”: 

function H=INTEGRAND3way(F3way) 
global outputP F_0 F Finv alphaF betaF gammaF deltaF n T_c G alphaG 

betaG gammaG deltaG R tau alphaR betaR gammaR deltaR 
global FTS3way FTR3way FTR3wayinv alpha3way beta3way gamma3way 

delta3way 
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global RecoveryType3 

  
tau=cell(1,n); %?? 

  
%% 
% Identify corresponding times, tau3way 
C3way=F3way<FTS3way; 
[m3way n3way]=size(F3way); 
tau3way=zeros(m3way,n3way); 
for j=1:n3way 
   if C3way(1,j)==1 
      tau3way(1,j)=0; 
   else 
       tau3way(1,j)=feval(FTR3wayinv,(F3way(1,j)-FTS3way)/(1-

FTS3way),alpha3way,beta3way,gamma3way,delta3way); 
      % HERE Above assignment is giving empty matrix rather than a 

scalar 
      % value 
   end 
end 

  

  
if (RecoveryType3==1) 

  
H=ones(m3way,n3way); % Correct if credit taken only for nonfailure of 

emergency 
% trains, as in approach of the 'multiple trains, no recovery" section 

of  
% the Rio paper. Looks o.k. for F = exponential integral, but need to  
% compare to ICONE18 paper and to Rio paper 

  
%% 

  
% Now take credit for recovery of offsite power, as in Section 3.4 of 

Rio paper 
%H=H.*(1-feval(G,tau3way+T_c,alphaG,betaG,gammaG,deltaG));   
% Now take credit for recovery of emergency power trains 
for i=1:n 
    % Recovery function 
   % H=H.*(1-feval(R{i},T_c,alphaR(i),betaR(i),gammaR(i),deltaR(i))); 
    % Alternately take only credit for recovery of emergency power 

trains that 
    % comes from repair work following full failure of onsite power 

(per 
    % Lloyd-Anoba, for the case coincident with Read-Fleming; for the 

present 3-way CCF 
    % case this Lloyd-Anoba treatment is no different from full credit 

for repair, because 
    % all (30 trains fail at the same time) 
    % H=H.*(1-feval(R{i},T_c,alphaR(i),betaR(i),gammaR(i))); 
end 
else if (RecoveryType3==2) 

  
H=ones(m3way,n3way); % Correct if credit taken only for nonfailure of 

emergency 
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% trains, as in approach of the 'multiple trains, no recovery" section 

of  
% the Rio paper. Looks o.k. for F = exponential integral, but need to  
% compare to ICONE18 paper and to Rio paper 

  
%% 

  
% Now take credit for recovery of offsite power, as in Section 3.4 of 

Rio paper 
H=H.*(1-feval(G,tau3way+T_c,alphaG,betaG,gammaG,deltaG));   
% Now take credit for recovery of emergency power trains 
for i=1:n 
    % Recovery function 
    %H=H.*(1-feval(R{i},T_c,alphaR(i),betaR(i),gammaR(i),deltaR(i))); 
    % Alternately take only credit for recovery of emergency power 

trains that 
    % comes from repair work following full failure of onsite power 

(per 
    % Lloyd-Anoba, for the case coincident with Read-Fleming; for the 

present 3-way CCF 
    % case this Lloyd-Anoba treatment is no different from full credit 

for repair, because 
    % all (30 trains fail at the same time) 
    % H=H.*(1-feval(R{i},T_c,alphaR(i),betaR(i),gammaR(i))); 
end 
    else if (RecoveryType3==3) 

  
H=ones(m3way,n3way); % Correct if credit taken only for nonfailure of 

emergency 
% trains, as in approach of the 'multiple trains, no recovery" section 

of  
% the Rio paper. Looks o.k. for F = exponential integral, but need to  
% compare to ICONE18 paper and to Rio paper 

  
%% 

  
% Now take credit for recovery of offsite power, as in Section 3.4 of 

Rio paper 
H=H.*(1-feval(G,tau3way+T_c,alphaG,betaG,gammaG,deltaG));   
% Now take credit for recovery of emergency power trains 
for i=1:n 
    % Recovery function 
    %H=H.*(1-feval(R{i},T_c,alphaR(i),betaR(i),gammaR(i),deltaR(i))); 
    % Alternately take only credit for recovery of emergency power 

trains that 
    % comes from repair work following full failure of onsite power 

(per 
    % Lloyd-Anoba, for the case coincident with Read-Fleming; for the 

present 3-way CCF 
    % case this Lloyd-Anoba treatment is no different from full credit 

for repair, because 
    % all (30 trains fail at the same time) 
     H=H.*(1-feval(R{i},T_c,alphaR(i),betaR(i),gammaR(i))); 
end 
        else if (RecoveryType3==4) 
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H=ones(m3way,n3way); % Correct if credit taken only for nonfailure of 

emergency 
% trains, as in approach of the 'multiple trains, no recovery" section 

of  
% the Rio paper. Looks o.k. for F = exponential integral, but need to  
% compare to ICONE18 paper and to Rio paper 

  
%% 

  
% Now take credit for recovery of offsite power, as in Section 3.4 of 

Rio paper 
H=H.*(1-feval(G,tau3way+T_c,alphaG,betaG,gammaG,deltaG));   
% Now take credit for recovery of emergency power trains 
for i=1:n 
    % Recovery function 
    H=H.*(1-feval(R{i},T_c,alphaR(i),betaR(i),gammaR(i),deltaR(i))); 
    % Alternately take only credit for recovery of emergency power 

trains that 
    % comes from repair work following full failure of onsite power 

(per 
    % Lloyd-Anoba, for the case coincident with Read-Fleming; for the 

present 3-way CCF 
    % case this Lloyd-Anoba treatment is no different from full credit 

for repair, because 
    % all (30 trains fail at the same time) 
    % H=H.*(1-feval(R{i},T_c,alphaR(i),betaR(i),gammaR(i))); 
end 
            end 
        end 
    end 
end 

 

“FTR6890.m”: 

 
function P=FTR6890(t,mu1,cutpoint,mu2,sigma) 
%cdf for a rv distributed exponentially with mean mu1 for times t <= 
%cutpoint, and distributed afterward, conditionally upon exceeding 

cutpoint, 
%exponentially with mean mu2 
global cFTSLDisType1 cFTSLDisType2 cFTSLDisType3  
global traincounter 

  
%For Train 1's Distribution Type  
if (traincounter == 1) 
    %If time is less than or equal to the defined cutoff point 
   if t<= cutpoint 
       %converts the input string (From runfile) into a function 
   Pfun=str2func(cFTSLDisType1); 
   %Calls the distribution Type that is defined by the function 
    P=feval(Pfun,t,mu1); 
   else 
              %converts the input string (From runfile) into a function 

             
     P1fun=str2func(cFTSLDisType1); 
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        %Calls the distribution Type that is defined by the function 

using 
        %cutoff point 

         
    P1=feval(P1fun,cutpoint,mu1); 

     
      %Add the previous one minus the previous times to the cdf that  
      % uses the distribution Type that is defined by the function 
      % using time minus the cutoff point 
    P=P1+feval(P1fun,t-cutpoint,mu2); 
   end 

  
else 
    %For Train 2 (Same comments as above but for Train 2) 
if (traincounter == 2) 
   if t<= cutpoint 
   Pfun=str2func(cFTSLDisType3); 
    P=feval(Pfun,t,mu1); 
   else 
    P1fun=str2func(cFTSLDisType3); 
    P1=feval(P1fun,cutpoint,mu1); 
    P=P1+feval(P1fun,t-cutpoint,mu2); 
   end 
else 
        %For Train 3 (Same comments as above but for Train 3) 
   if t<= cutpoint 
   Pfun=str2func(cFTSLDisType3); 
    P=feval(Pfun,t,mu1); 
   else 
     P1fun=str2func(cFTSLDisType3); 
    P1=feval(P1fun,cutpoint,mu1); 
    P=P1+feval(P1fun,t-cutpoint,mu2); 
end 
end 
end 

 

“FTR6890inv.m”: 

 
function t=FTR6890inv(P,mu1,cutpoint,mu2,sigma) 
%CDF for a rv distributed exponentially with mean mu1 for times t <= 
%cutpoint, and distributed afterward, conditioally upon exceeding 

cutpoint, 
%exponentially with mean mu2 
% 
global invFTSLDisType1 invFTSLDisType2 invFTSLDisType3 cFTSLDisType1 

cFTSLDisType2 cFTSLDisType3 
global traincounter 

  
%----------------------------------------------------------- 
%This is so one can enter only one distribution type for this entire 

code  
%For example, If its logninv then logncdf is also used within this 

script 

  



   192 

 

%Removes Inverse and adds Cdf due to Custom Distribution Code for Train 

1 
rinv1= strtok(invFTSLDisType1, 'inv'); 
adcdf1= strcat(rinv1, 'cdf'); 

  
%Removes Inverse and adds Cdf due to Custom Distribution Code for Train 

2 
rinv2= strtok(invFTSLDisType2, 'inv'); 
adcdf2= strcat(rinv2, 'cdf'); 

  
%Removes Inverse and adds Cdf due to Custom Distribution Code for Train 

3 
rinv3= strtok(invFTSLDisType3, 'inv'); 
adcdf3= strcat(rinv3, 'cdf'); 
%----------------------------------------------------------- 

  
%For Train 1 
if (traincounter == 1) 
                  %converts the input string (From runfile) into a 

function 
       Pcutfun=str2func(adcdf1); 
       %Calls the distribution Type that is defined by the function 

using 
        %cutoff point and creates a new P cutoff 
       Pcut=feval(Pcutfun,cutpoint,mu1); 
       %If Input P is less than P cut off 
if P<=Pcut  
              %converts the input string (From runfile) into a function 
    tfun = str2func(invFTSLDisType1); 
     %Calls the distribution Type that is defined by the function using 
        %the Probability parameter point 
    t=feval(tfun,P,mu1); 
else 
    %converts the input string (From runfile) into a function 
     Pcutfun=str2func(adcdf1); 
         %Pcut off distribution run again 
    Pcut=feval(Pcutfun,cutpoint,mu1); 
    %Creates a new P based off the difference and 1-Pcut 
    Pexcess=(P-Pcut); 
        %converts the input string (From runfile) into a function 
     tfun = str2func(invFTSLDisType1); 
         %takes cutpoint and adds the tfun distribution type with mu2 
         %parameter 
    t=cutpoint+feval(tfun,Pexcess,mu2); 
end  

  
else if (traincounter == 2)      %For Train 2 (Same comments as above 

but for Train 2) 
       Pcutfun=str2func(adcdf2); 
    Pcut=feval(Pcutfun,cutpoint,mu1); 
if P<=Pcut  
    tfun = str2func(invFTSLDisType2); 
    t=feval(tfun,P,mu1); 

  
else 
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    Pcutfun=str2func(adcdf2); 
    Pcut=feval(Pcutfun,cutpoint,mu1); 
    Pexcess=(P-Pcut); 
     tfun = str2func(invFTSLDisType2); 
    t=cutpoint+feval(tfun,Pexcess,mu2); 
end 
    else  %For Train 3 (Same comments as above but for Train 3) 
    Pcutfun=str2func(adcdf3); 
    Pcut=feval(Pcutfun,cutpoint,mu1); 
if P<=Pcut  
    tfun = str2func(invFTSLDisType3); 
    t=feval(tfun,P,mu1); 
else 
     Pcutfun=str2func(adcdf3); 
    Pcut=feval(Pcutfun,cutpoint,mu1); 
    Pexcess=(P-Pcut); 
     tfun = str2func(invFTSLDisType3); 
    t=cutpoint+feval(tfun,Pexcess,mu2); 
end 
    end 
end 

  

 

“FTR6890pdf.m”: 

 
function P=FTR6890pdf(t,mu1,cutpoint,mu2,mu3) 
%pdf for a rv distributed exponentially with mean mu1 for times t <= 
%cutpoint, and distributed afterward, conditionally upon exceeding 

cutpoint, 
%exponentially with mean mu2 
global  pdfFTSLDisType1  pdfFTSLDisType2  pdfFTSLDisType3 
global traincounter 

  
%This code is not really used and is left as an example of what one can 

do 
%with it.  

  
%For Train 1's Distribution Type  
if (traincounter == 1) 
        %If time is less than or equal to the defined cutoff point 
if t<= cutpoint 
           %converts the input string (From runfile) into a function 
      Pfun=str2func(pdfFTSLDisType1);   
         %Calls the distribution Type that is defined by the function 
      P=feval(Pfun,t,mu1); 
else 
     %converts the input string (From runfile) into a function 
     P1fun=str2func(pdfFTSLDisType1)          
     %Calls the distribution Type that is defined by the function using 
        %cutoff point 
    P1=feval(P1fun,cutpoint,mu1); 
    %1 minus the previous times the cdf that uses the distribution Type 

that is 
      %defined by the function using time minus the cutoff point 
      P=(1-P1)*feval(P1fun,t-cutpoint,mu2); 
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end 
    %For Train 2 (Same comments as above but for Train 2) 
else if (traincounter == 2) 
if t<= cutpoint 
      Pfun2=str2func(pdfFTSLDisType2);   
      P=feval(Pfun2,t,mu1); 
else 

     
     P2fun=str2func(pdfFTSLDisType2)          
    P2=feval(P2fun,cutpoint,mu1); 
      P=(1-P2)*feval(P2fun,t-cutpoint,mu2); 
end 
else         %For Train 3 (Same comments as above but for Train 3) 
if t<= cutpoint 
      Pfun3=str2func(pdfFTSLDisType3);   
      P=feval(Pfun3,t,mu1); 
else 

     
     P3fun=str2func(pdfFTSLDisType3)          
    P3=feval(P3fun,cutpoint,mu1); 
      P=(1-P3)*feval(P3fun,t-cutpoint,mu2); 
end 

  
    end 
end 
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APPENDIX B 

RUN-FILE EXAMPLE 

 

 Appendix B will display a full example of the Microsoft Excel file ―RunFile.xlsx‖ 

that can be built in Excel that will be used as the input deck of STP-TAMIL. It is shown 

in Figures B.1-B.13. This is one of the examples used to determine the industrial average 

for three-EDGs. Note that the three cases change by the type of recovery: 

i. Data Row 1 refers to No Credit,  

ii. Data Row 2 refers to offsite only,  

iii. Data Row 3 refers to offsite  plus onsite after full failure, and 

iv. Data Row 4 refers to full dynamic recovery of onsite and offsite power. 

 

 

 

 

Figure B.1 - First Part of RunFile example 
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Figure B.2 - Second Part of RunFile example 

 

 

 

 

 

Figure B.3 - Third Part of RunFile example 
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Figure B.4 - Fourth Part of RunFile example 

 

 

 

 

 

Figure B.5 - Fifth Part of RunFile example 
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Figure B.6 - Sixth Part of RunFile example 

 

 

 

 

 

Figure B.7 - Seventh Part of RunFile example 
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Figure B.8 - Eighth Part of RunFile example 

 

 

 

 

 

Figure B.9 - Ninth Part of RunFile example 

 

 



   200 

 

 

Figure B.10 - Tenth Part of RunFile example 

 

 

 

 

 

Figure B.11 - Eleventh Part of RunFile example 
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Figure B.12 - Twelfth Part of RunFile example 

 

 

 

 

Figure B.13 - Thirteenth Part of RunFile example 
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APPENDIX C  

 LETTER FROM STPNOC 

 

 Appendix C is a letter from South Texas Project Nuclear Operating Company 

describing the confidentiality notice. It also shows that STP verified that the results 

obtained from the code were based off STP data and that the code verified correctly. The 

rest of this page is intentionally left blank as the letter appears on the next page.  
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