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ABSTRACT

Bayesian Analysis of Transposon Mutagenesis Data. (May 2012)

Michael A. DeJesus, B.S., University of Puerto Rico at Mayagüez

Chair of Advisory Committee: Dr. Thomas R. Ioerger

Determining which genes are essential for growth of a bacterial organism is an

important question to answer as it is useful for the discovery of drugs that inhibit

critical biological functions of a pathogen. To evaluate essentiality, biologists often

use transposon mutagenesis to disrupt genomic regions within an organism, reveal-

ing which genes are able to withstand disruption and are therefore not required for

growth. The development of next-generation sequencing technology augments trans-

poson mutagenesis by providing high-resolution sequence data that identifies the exact

location of transposon insertions in the genome. Although this high-resolution infor-

mation has already been used to assess essentiality at a genome-wide scale, no formal

statistical model has been developed capable of quantifying significance. This thesis

presents a formal Bayesian framework for analyzing sequence information obtained

from transposon mutagenesis experiments. Our method assesses the statistical signif-

icance of gaps in transposon coverage that are indicative of essential regions through

a Gumbel distribution, and utilizes a Metropolis-Hastings sampling procedure to ob-

tain posterior estimates of the probability of essentiality for each gene. We apply our

method to libraries of M. tuberculosis transposon mutants, to identify genes essential

for growth in vitro, and show concordance with previous essentiality results based

on hybridization. Furthermore, we show how our method is capable of identifying

essential domains within genes, by detecting significant sub-regions of open-reading

frames unable to withstand disruption. We show that several genes involved in PG

biosynthesis have essential domains.
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CHAPTER I

INTRODUCTION

A. Motivation

Determining what genes are essential for the survival of a given organism is of great

interest to biologists and researchers. Knowledge of essentiality information for an

organism enables the development of new drugs that inhibit essential genes, thus in-

terfering with growth of an infectious bacteria. Furthermore, understanding which

genes are essential allows scientists to have a better understanding of the evolutionary

origins of life, and to better understand the function these genes play in an organ-

ism. In order to identify essential genes, libraries of mutant organisms that have had

regions of their DNA disrupted by transposons have been created. New advances

in sequencing have allowed for the rapid sequencing of large number of such mu-

tants at the same time. By sequencing large libraries of these mutants, a new set of

high-resolution sequence data is now available capable of revealing which areas of the

genome are potentially disruptable and non-essential to the organism. Although this

high-resolution sequence data has the potential of providing a wealth of new infor-

mation about essentiality, this data also poses a new set of problems that make any

quantitative analysis of this data challenging. By sequencing libraries of mutants that

survived transposon insertion in their DNA, we can get an accurate picture of sites

within the genome that can tolerate interruption. However genomic regions lacking

insertions do not necessarily imply that the region is essential to the organism. These

areas may represent sites that were simply missed by chance during mutagenesis but

are otherwise non-essential to the organism. Furthermore, many essential genes are

The journal model is IEEE Transactions on Automatic Control.
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able to withstand some insertions within their coding regions. While transposon in-

sertions are supposed to disrupt the gene, in reality genes are often able to tolerate

insertion in the N- and C-terminus, as the protein may still be translated and able

to fulfill its biological function in spite of the insertion [1, 2]. Although at first one

may be tempted to determine essentiality based on whether a gene shows evidence of

insertions or not, these challenges (like the fact that some essential genes may with-

stand insertions) make this type of simplistic analysis impractical.

Fig. 1.: Diagram of Transposon Insertions in Essential and Non-Essential Genes

A more plausible analysis may be to use the proportion of insertions within a

gene to assess essentiality. With this point of view, one may label those genes with

a significantly lower number of insertions as essential and those with a significantly

larger number of insertions as non-essential. However this approach is flawed as well.

In reality, genes may code for multiple domains and some of these domains might
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be essential for growth while others not. For example in M. tuberculosis Rv3198c

(UvrD2) was shown to contain an essential N-terminal helicase domain (Pfam00580)

and a non-essential C-terminal HRDC domain (Pfam00570) [3]. These domains play

different roles within organism. While the role of the HRDC domain remains un-

known, Williams et. al. showed that it does not significantly affect ATPase or heli-

case activity, where as the ATPase activity of the helicase domain was shown to be

necessary for growth. Because this region sustains insertions, any attempt to model

essentiality solely on the proportion of insertions will have trouble picking out these

essential regions or essential domains.

Our approach to analyzing this sequence data is to examine at the maximum

consecutive sequence of non-insertions in a row within any given gene. Because

the Himar1 transposon used in these experiments is capable of inserting at any TA

dinucleotide site within the genome, we can identify sites where it is missing. By

using a Gumbel (Extreme Value) distribution, we can quantify the expected run

length of non-insertions in a consecutive sequence of TA sites and determine whether

an observed run length within a gene significantly deviates from our expectations.

Those genes with longer-than-expected runs of non-insertions are less likely to be

non-essential, since they imply the gaps of non-insertions are unlikely to be produced

by chance. We use a Bayesian framework based on this Gumbel model to formally

develop our analysis, estimating the parameters of our model by using Metropolis

Hastings sampling algorithm.

The following section provides an overview of the background necessary to un-

derstand the basis of this statistical analysis. Section 1 contains a brief explanation

of what is meant by an essential gene, and how this information is of use to biolo-

gists. Section 2 gives an overview of the transposon mutagenesis experiment and the

relevant biology behind the sequence data, as well as a brief review of the related
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literature surrounding these experiments and previous attempts to use this data to

determine gene essentiality. Finally Section 3 explains the statistical framework that

underlies our model.

B. Background

1. Essentiality

The purpose of transposon mutagenesis experiments is to identify which genes are

essential to an organism. An essential gene is defined as one whose loss is lethal to

the organism under a certain environmental condition. For example, genes that are

involved in core metabolism function, protein translation, or DNA replication, are

known to be essential in most organisms. The growth conditions of the organism are

an important factor in determining whether a gene is essential or not. While many

genes are essential to an organism in any given situation, some genes are only essential

if a particular function is necessary for the organism in its current environment (e.g.,

presence or absence of a particular nutrient). Furthermore, transposon mutagenesis

experiments can also be used to determine essential genes in vivo during infection in

animal models [4]. By making inferences about the essentiality of genes in a particular

growth condition, new insight is gained that shed lights on what roles and functions

those essential genes might play within the organism. With such information, new

drug candidates can be developed that are capable of inhibiting a certain protein or

disrupting its function, and therefore targeting infectious bacteria. For example, the

first-line anti-tuberculosis medication is isoniazid, which inhibits a key enzyme (enoyl-

ACP reductase) necessary for biosynthesis of the mycolic acid required in the cell wall

that is essential for M. tuberculosis [5]. Furthermore, essentiality information can

make a more thorough understanding the evolutionary history of bacteria possible;
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by analyzing this data we can get a picture of the minimum set of genes needed for

a bacterial organism [6].

2. Transposon Mutagenesis

One of the most important techniques available to answer the question of essential-

ity is transposon mutagenesis. Transposons are small fragments of DNA (typically

1-2kb long) that can insert within the chromosomes of an organism [7]. Although

transposons occur naturally in most bacteria, transposon insertions can also be medi-

ated in-vitro, forcing new insertions to take place within the organism. The Mariner

family of transposons are of particular interest as they have been shown to insert at

random sites within the genome of bacterial organisms [8, 9]. The Himar1 transpo-

son, for example, has shown specificity for arbitrary TA dinucleotides [10, 11]. This

characteristic enables the construction of large libraries of mutants that have random

regions of their DNA disrupted by the transposon insertions. It is these libraries of

mutants that can help provide a better understanding of the the essential genes within

an organism. Once a library of mutants is created, these mutants are then cultured

and grown under an environmental condition of interest. Any transposon insertion

within the coding region of a gene should interrupt the translation of its protein,

usually destroying its function (see Figure 2). Therefore, those mutants capable of

growing under specific conditions are those with insertions in genes that did not play

any essential function for growth in this environment.

Once a library of mutants is created, it is necessary to identify the precise loca-

tion where insertions took place to identify those regions that are not essential for

growth. What follows is a brief review of the methods that have been developed to

identify where these disruptions took place, and the previous attempts to determine

essentiality from transposon mutagenesis experiments. This will hopefully put our
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Fig. 2.: Visual Depiction of Transposon Mutagenesis. An essential gene codes for a protein
which is translated by the organism. If a transposon disrupts the coding region of the
essential gene, no functional product is created and the absence of this functioning protein
prevents growth.

contributions into context, and show both the usefulness of new sequence technology

as well as the importance of the statistical analysis we have developed.

a. TraSH

In 2001 Sassetti et. al [12] introduced a method called Transposon Site-Hybridization

(TraSH) to identify essential genes within mycobacteria. Although there had been

earlier ways of determining the survival of transposon mutants, these methods were

far more labor intensive and generally unable to handle large libraries of mutants or a

large number of genes at the same time. TraSH overcame these limitations by using

micro-array hybridization to determine what genes in the mutant libraries where being

expressed and which ones where not. Primer extension was used to amplify from the

regions at the ends of the transposon out into the surrounding genomic regions, and

these products where then identified by hybridization to gene-specific probes. After
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hybridization takes place, micro-arrays detect the fluorescence signals from the probes

and quantify the ratio of hybridization for the genes, which is subject to considerable

noise in the read-out. Using this approach, genes necessary for optimal growth in

a variety of organisms have been identified (e.g., M. tuberculosis, H. influenza, and

B. anthracis [13, 14, 4]). In M. tuberculosis 614 out of 3,989 genes were initially

identified as essential using TraSH [14]. However one substantial limitation of TraSH

experiments was that it was incapable of identifying the exact coordinate where the

transposon insertion took place. Although TraSH revealed what genes were being

disrupted, it did not provide the high-resolution data (i.e., coordinates of insertions)

necessary to interpret the effect at a molecular level.

b. High Density Mutagenesis and Deep-Sequencing

Traditional sequence methods can be used to overcome the problem of low-resolution

information, and pin-point the exact coordinates in the genome where the insertions

took place. However traditional sequencing was impractical for analyzing the large

and complex libraries of transposon mutants that were available at the time. With

the development of high-throughput sequencing and deep-sequencing, large libraries

of mutants can be sequenced at the same time, providing high-resolution information

about the location of the insertions.

High-density mutagenesis coupled with deep-sequencing (for example, using next-

generation sequencers from Illumina or Roche) is the latest method used to determine

the essentiality of genes, and has been used successfully to determine essentiality

in a number of different organisms and growth conditions [15, 16, 17]. Although

these sequencing techniques have been used for several years, no standard method

for analyzing the output data exists. Previous methods for analyzing the data have

relied on ad-hoc criteria. Gawronski et. al. [15] for example, required the exclusion
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of insertions in the first and last 5-20% of the coding region of a gene so as to remove

spurious insertions in essential genes.

In this thesis we introduce a novel approach to identifying essential genes by mod-

eling the insertions at TA dinucleotides sites within each gene as a set of Bernoulli

trials (implicitly assuming independence between sites), and then detecting statisti-

cally significant gaps of non-insertions within the genes [17]. This new way of ana-

lyzing high-resolution sequence data is developed into a Bayesian statistical analysis,

allowing rigorous probabilistic estimates of essentiality from this data.

3. Statistical Framework for Analyzing Essentiality

In order to understand how sequence data from transposon mutagenesis experiments

can be used to estimate the essentiality of genes, observations of insertions at TA

sites are compared by analogy to coin-tossing. In a regular coin tossing scenario,

we are confronted with a finite number of coin tosses resulting from a coin with a

certain probability of heads and tails. In such a domain, we are often interested

in knowing the probability of heads or tails, or the likelihood of observing a given

pattern of insertions. Furthermore, by knowing the pattern of insertions, we can make

inferences on the weight of the coin that is likely responsible for the observations.

With this analogy in mind, we can simplify the information contained within the

sequence data that results from sequencing libraries of transposon mutants. Because

the Mariner transposon inserts at random TA dinucleotides sites within the genome,

there is a finite number of places where insertions can take place. Using the coin

analogy, we can model the presence of insertions as independent coin tosses, with

each gene containing a finite set of tosses depending on the number of TA dinucleotide

sites that exist within it. If a TA site happens to have an insertion, we can say the

outcome of that toss was that of “heads”. If it does not have an insertion, we can
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say that the outcome for that toss was that of “tails”. By using this analogy, we

can turn the sequence data into a set of Bernoulli trials from which we can gather

important statistics that help us gain an understanding about essentiality. We can

estimate the probability of insertion (i.e., probability of heads) and the probability

of non-insertion (i.e., probability of tails) in essential and non-essential genes, and

calculate the likelihood of observing the pattern of insertions.

In particular, by using this analogy we can determine the maximum run of non-

insertions (i.e., biggest run of tails in a row) within a given gene, and use that to

calculate how unexpected this observation was. Other types of information can also

be obtained from these insertion patterns. For instance, we could characterize the

proportion TA sites where insertions where observed by using a Binomial distribution,

or we could identify those genes that are completely devoid of insertions. However, we

believe that the run of non-insertions is more indicative of essentiality. For instance,

because some genes have multiple domains with different functions, both of these

alternative approaches would have trouble correctly evaluating their essentiality. A

Binomial model may characterize a gene as non-essential based on the proportion of

insertions in a non-essential domain, and completely miss a large run of non-insertions

indicative of an essential domain, which the Gumbel model is able to detect.
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CHAPTER II

METHODS

A. Overview

From the sequence data of a transposon mutant library, we obtain reads mapping

to TA dinucleotide sites (TA sites) throughout the genome. Using this set of reads

we create a list of all the TA sites within the the genome, and the number of reads

that mapped to each individual site (read counts). Since our analysis depends on the

transposon insertions that took place within a given gene, we adopt a binary repre-

sentation of the data and represent those locations containing transposon insertions

with “1”, and those locations lacking insertions with ”0”.

By parsing the data in this manner, we can represent the TA sites within a given

gene as a set of Bernoulli trials, with success and failure representing observations

of insertion and non-insertion (i.e., 1 or 0 ) at any given TA site. Using Bernoulli

trials allows us to model the insertions at different sites as independent from each

other. Given a sequence of Bernoulli trials corresponding to each gene, we can then

characterize the longest run of non-insertions in a row with a Gumbel (Extreme Value)

distribution and determine if this run is significantly longer than expected.

Genes within this framework are represented as a mixture of two assignments:

non-essential genes (assigned a value of 0) and essential genes (assigned a value of 1).

Another possible category of genes could be those genes for which a disruption causes

a growth-defect in the organism, however we do not make that distinction in our

analysis. Section B describes this mixture model in a Bayesian framework. Section C

presents the sampling methodology used to estimate the parameters of the Gumbel

model, as well as the essentiality assignments.
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B. Bayesian Mixture Model

1. Likelihood

Let Yi = {ri, ni} represent our observations for the i-th gene for i = 1...G, where ri

and ni represent the total number of TA sites and the largest run of non-insertions

observed in each gene. The essentiality assignments for all genes is represented by

the unknown variable Z, with the individual assignment for i-th gene represented

by the boolean vector Zi which accepts binary values of 0 and 1 for non-essential

and essential. These two classes of genes represent the two categories found in the

mixture model. The mixture coefficient representing the prevalence of the category in

the mixture is given by ω = {ω1, ω0}. Finally, we assume a global non-insertion prob-

ability, φ0, that governs probability of non-insertions across all non-essential genes.

This is 1 minus the insertion density observed at non-essential genes.

We wish to estimate a complete joint probability density, p(Z, Y, φ0), from which

we can derive posterior estimates of essentiality of each gene, conditional on the

data p(Z|Y, φ0). To accomplish this we rewrite this joint probability in terms of the

likelihood of the data and our prior expectations: p(Y |Z, φ0) ∗ p(Z) ∗ p(φ0). We

assume independence among genes, so our likelihood can be written as a product of

our individual observations: p(Y |Z, φ0 ∝
∏

i p(Yi|Z, φ0). We use sampling methods

to derive estimates of these posterior probabilities.

a. Non-Essential Genes

Our model depends on characterizing the expected length of the longest run of non-

insertions within non-essential genes. To accomplish this, we use the Gumbel (Ex-

treme Value) distribution. The Gumbel distribution models the distribution of ex-

treme or maximum values obtained from a finite set of independent and identically
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distributed samples. By maximizing over repeated samples of values, the shape of the

Gumbel distribution is skewed to the right, producing a “fatter” tail in the right side

of the distribution, allowing for extreme values to have a higher probability than being

observed than they normally would with the underlying distribution. The Gumbel

distribution has the following form:

Gumbel(x;µ, σ) :=
1

σ
e−z−e

−z

z =
x− µ
σ

(2.1)

where µ and σ are the parameters of the underlying distribution which govern the

location and scale of the function, which can be any function belonging to the ex-

ponential family of distributions. In analogy to coin-tossing, these parameters are

functions of the probability of non-insertion, φ0, and of the total number of trials, n

[18]:

µ = log 1
φ0

(n(1− φ0))

σ =
1

log 1
φ0

(2.2)

Figure 3 shows distributions of the longest runs of heads in a series of coin tosses,

and the expected run, for different values of n and different values of φ0. The expected

maximum run scales up logarithmically in n and 1− φ0 as n.

Because the Gumbel distribution depends on φ0, we must estimate its value

from our data. Previously [17] we estimated the φ0 parameter in an ad-hoc manner

by averaging the frequency of insertions within non-essential genes, removing those

genes we pre-determined as essential (based on TraSH analysis done by Sassetti et al.

[14]). In this formal Bayesian framework, we treat φ0 as a Bayesian parameter and
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(a) n=200 (b) n=500 (c) n=1000

(d) φ0=0.5 (e) φ0=0.7 (f) φ0=0.9

Fig. 3.: Gumbel Distributions with Different Values of φ0 and n. The vertical bar shows
the expected maximum run according to the Gumbel distribution.

estimate it by sampling from its conditional density. Using this Gumbel model, the

likelihood for a given non-essential gene based on the maximum number of consecutive

TA sites without insertions, r, is:

p(Y |φ0) =
1

σ
e

(
−x−µ

σ
−e(−

x−µ
σ )

)
(2.3)

with µ and σ parameters as defined in formula (2.2).

b. Essential Genes

We use a relatively simple uniform distribution for essential genes. The rational

behind this choice of distribution is that our model is designed so that essential genes

are defined in contrast to non-essential genes. Those genes which have an unusually
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long run of non-insertions according to the Gumbel distribution will get classified as

essential by contrast. By choosing an uniform distribution for essential genes, we

can make use of the naturally small likelihood of large runs of non-insertions being

explained by our model of non-essential genes.

p(Y |φ0, Zi = 1) = U(r) = u (2.4)

We use u = 10−2 for all genes except for those with very small maximum runs

of non-insertions (i.e. max run less than 5), where u = 0. The rationale for this is

that those genes with a very small run of non-insertions would never be considered

essential through an analysis of insertions.

c. Complete Data Likelihood

By making an independence assumption, the complete data likelihood of our model

can be expressed as the product of independent likelihoods for all genes G. We can

further decompose this likelihood into a product over all the non-essential genes times

the product over all the essential genes:

p(Yobs|φ0, Z) =
G∏
i

p(Yi|φ0, Zi)

=
∏
Zi=0

Gumbel(ri, µ1, σ1)×
∏
Zi=0

U(ri)

=
∏
Zi=0

 1

σ
e

(
− ri−µi

σi
−e(−

ri−µi
σi )

)× ∏
Zi=1

[U(ri)]

(2.5)
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2. Prior Probabilities

a. Prior Probability of φ0

Our model depends on estimating the posterior probability of non-insertion at non-

essential genes, φ0, which is used in our Gumbel model. To quantify our prior expec-

tations of this parameter, we use a Beta distribution as our prior:

π(φ0) = Beta(φ0;α0, β0) =
Γ(α0 + β0)

Γ(α0)Γ(β0)
φα0−1
0 (1− φ0)

β0−1 (2.6)

where α0 and β0 are hyper-parameters that capture our expectations for φ0. The

Beta distribution is often used as a prior distribution for continuous variables like

probabilities or percentages (i.e., variables bounded from 0 to 1), since the Beta

distribution is conjugate with a number of different distributions (e.g., Binomial),

which simplifies some calculations.

b. Prior Probability of Z

The prior probability of a complete essentiality assignment, Z, is given by a Binomial

distribution:

π(Z) = Binomial(ω1;G,Kz) =

(
G

Kz

)
ωKz1 (1− ω1)

G−Kz (2.7)

where ω1 is the mixing coefficient for “essential” genes, G is the total number of genes,

and Kz is the sum of the binary vector if essentiality assignments (i.e., Kz = ΣZi ).

3. Full and Conditional Distributions

In order to estimate values of the missing data, Z, and parameter φ0, we need to

derive the conditional densities of these variables to sample from. Given our likelihood
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formulas and our prior expectations, we can write the full joint probability formula

for our model as:

p(Y, Z, φ0) = p(Y |φ0, Z)× π(φ0)× π(Z)

=
G∏
i

p(Yi|φ0, Zi)× π(φ0)× π(Z)

=

[∏
Zi=0

Gumbel(ri, µ1, σ1)×
∏
Zi=1

U(ri)

]
× π(φ0)× π(Z)

(2.8)

Having derived the complete joint distribution (2.5) we can then derive condi-

tional distributions for the missing data, Z, and parameter φ0 which we can then use

to compute posterior estimates of these values.

a. Conditional Distribution for φ0

In order to derive our posterior distribution for the φ0 parameter, we make use of

proportionality to cancel out any constants within the conditional distribution.

p(φ0|Y, Z) ∝ p(Y |φ0, Z)× π(φ0)× π(Z)

∝ p(Y |φ0, Z)× π(φ0)

∝

[∏
Zi=0

Gumbel(ri, µ1, σ1)×
∏
Zi=1

U(ri)

]
×Beta(φ0;α0, β0)

(2.9)

b. Conditional Distribution for Zi

Finally, in order to sample essentiality assignment for all genes, we must also derive

the posterior distribution for each individual Zi (i.e., essentiality assignment of each

gene):
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p(Zi|Y, Z{−i}, φ0) ∝ p(Y |φ0, Z{−i})× π(Zi)× π(Z{−i})

= p(Yi|φ0, Z{−i})× π(Zi)

=
[
Gumbel(ri, µ1, σ1)

1−Zi × U(ri)
Zi
]
× π(Zi)

(2.10)

where Z{−i} is the vector of essentiality, Z, minus the i-th essentiality assignment,

and π(Zi) is equal to the mixing coefficient for the category of gene specified by Zi

(i.e., ω1 for Zi = 1 and ω0 for Zi = 0).

C. Sampling

Once we have our conditional distributions for the missing data, Z, and our prob-

ability of non-insertion in non-essential genes, we wish to generate a sample that

would represent the joint distribution. By obtaining a sample of values taken from

this distribution, we can find estimates of the posterior probabilities for these pa-

rameters. Although ultimately we are interested in estimating the essentiality of all

genes, the challenge is obtaining these estimates without knowing the probability of

non-insertion, φ0, beforehand. By sampling from the conditional density of parame-

ter φ0 at the same time as we sample Z, we can obtain estimates of the individual

essentiality assignment without having to know or guess parameter φ0. Since the pos-

terior distributions or our model do not have known forms, we must utilize a sampling

procedure that allows us to sample from arbitrary distributions. For our method, we

use a Metropolis-Hastings algorithm (MH) to sample from the posterior distribution

of φ0 (2.9), and take a Gibbs Sampling step at each iteration to sample from the

posterior distributions of Zi (2.10).
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1. Gibbs Sampling

Gibbs sampling is one of the most popular Markov-Chain Monte-Carlo (MCMC) sam-

pling procedures used in Bayesian inference. The general idea behind Gibbs sampling

is that, while a full joint density may be difficult or impossible to sample from, if

the joint density can be reduced to conditionals with known forms, we can effectively

sample from the series of conditional probabilities and generate a sequence of MCMC

estimates that closely approximate the full joint density of interest [19]. The general

Gibbs sampling procedure is explained in Algorithm 1. By splitting the joint den-

sity into conditional probabilities from which we can easily sample, we can arrive at

a MCMC sample from the entire conditional probability density. We sample from

these conditional probabilities in a iterative fashion, using the most recently sampled

value of the previous parameter in the conditional probability of the parameter that

is to be sampled next.

Result: MCMC Sample of Joint Density p(θ1,θ2,θ3...θk)

Assign random starting values, S, to the vector of parameters Θj=0, and set

j=0;

while j < Desired Sample Size do

set j = j + 1;

Sample p(θj1 | θ
j−1
2 , θj−13 ... θj−1k ) ;

Sample p(θj2 | θ
j
1, θ

j−1
3 ... θj−1k ) ;

Sample p(θj3 | θ
j
1, θ

j
2... θ

j−1
k ) ;

...;

Sample p(θjk | θ
j
1, θ

j
2, θ

j
3... θ

j−1
k−1 ) ;

end

Algorithm 1: General Gibbs Sampling Algorithm
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In order to easily sample values of the posterior distribution of Zi, we calculate

the posterior distribution for both values of Zi, p(Zi = 0|Y, Z{−i}, φ0) and p(Zi =

1|Y, Z{−i}, φ0) and sample from them as Bernoulli trial with probability proportional

to their posterior density:

z
(j)
i ∼ Bernoulli(p1) (2.11)

p1 =
p(Zi = 1|Y, Z{−i}, φ0)× π(Zi = 1)

p(Zi = 1|Y, Z{−i}, φ0)× π(Zi = 1) + p(Zi = 0|Y, Z{−i}, φ0)× π(Zi = 0)

p1 =
Gumbel(ri|Zi = 1, Z{−i}, φ0)× ω1

Gumbel(ri|Zi = 1, Z{−i}, φ0)× ω1 + U(ri|Zi = 1, Z{−i}, φ0)× ω0

2. Metropolis Hastings

Although Gibbs sampling works well when conditional probabilities have a known

distribution that is easy to sample from, it does not work when a form of the condi-

tional probability we need to sample from is unknown. To sample from the posterior

distribution for φ0 we use the Metropolis-Hastings (MH) algorithm. While there

are other methods capable of sampling from arbitrary distributions (e.g., rejection

sampling, inversion sampling), these methods have drawbacks such as inefficiency or

intractable analytical derivations. Rejection sampling, for example, requires one to

find an function that envelopes the target distribution, and this often not an easy

task if one does not know the shape of the target distribution, or the domain of the

function is infinite. Furthermore, rejection sampling often requires rejecting many

samples before accepting a variable as coming from the desired distribution making
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the method impractical.

The MH algorithm circumvents these problems by using a proposal distribution

that generates perturbed new candidate values to accept or reject. For example, a

Gaussian distribution centered around the last accepted value, θj−1, and a small vari-

ance can be used. The values drawn from this proposal distribution are then accepted

or rejected probabilistically; accepting if f(θt) > f(θt−1) or with probability propor-

tional to f(θt

f(θt−1)
if f(θt) < f(θt−1), where f(θ) is the conditional probability density of

parameter θ [19]. While this may appear similar to rejection sampling, the proposal

function does not have to envelope the target function. This effectively performs

a random walk around the distribution of interest, with the parameter θ migrating

around those regions within the distribution that are most likely given the data. By

using the MH algorithm, we can sample from the likelihood function for non-essential

genes and get an update of the φ0 parameter and the essentiality assignment of all

genes, Z. Algorithm 2 shows the random-walk MH algorithm, which uses a normal

distribution with µ = θj−1 and σ2 = v to propose new candidates, as it applies to our

domain.
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Result: MCMC Samples of density p(Z|Y, φ0) and p(φ0|Y, Z)

Assign starting values to φj=0
0 , and Z, and set j = 0;

while j < Desired Sample Size do

set j = j + 1;

Draw candidate parameter φc0 from normal distribution Gaussian(φj−10 ,

0.001);

Compute ratio R =
p(φc0|Y,Z)
p(φj−1

0 |Y,Z)
;

Draw u ∼ U(0,1) ;

if R > u then

Set φ
(j)
0 = φc0;

else

Set φ
(j)
0 = φj−10 ;

end

ω
(j)
1 = Beta(αw +Kz, βw +G−Kz) ω

(j)
0 = 1− ω(j)

1

for i← 1 to G do

p1 =
Gumbel(ri|Zi=1,Z{−i},φ0)×ω1

Gumbel(ri|Zi=1,Z{−i},φ0)×ω1+U(ri|Zi=1,Z{−i},φ0)×ω0
Z

(j)
i ∼ Bernoulli(p1)

;

end

end

Algorithm 2: Random-Walk Metropolis-Hastings Algorithm for Sampling φ0 and

Z
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CHAPTER III

RESULTS

In this chapter we evaluate our model by applying it to deep-sequence data from

several transposon mutant libraries, focusing on growth of M. tuberculosis in vitro.

We compare those genes identified as essential to previous essentiality results in TB,

as well as show how our method can be used to identify essential domains within

genes. In addition, we perform a differential analysis of genes essential for growth

on cholesterol, which is needed by TB within a host during infection. Lastly, we

examine the convergence of the sampling procedure used to estimate the parameters

and estimates of essentiality for our model.

A. Essentiality Analysis of M. tuberculosis

We applied our Bayesian analysis on deep-sequencing data obtained libraries of M.

tuberculosis (TB) Himar1 transposon mutants grown in minimal media and 0.1%

glycerol (library constructed by J. Griffin) [17]. The TB genome is 4,411,654bp long

and contains a total of 3,989 open reading frames (ORFs) [20]. TB contains a total of

74,605 TA sites within its genome, with 62,847 of them occurring in coding regions.

Although the average number of TA sites within an ORF is 15.9 TA sites per gene,

41 ORFs do not contain any TA dinucleotides within them. We utilized reads from

two independent libraries, which we summed together in order to get higher sampling

of the TA sites. The libraries were sequenced with an Illumina GAII sequencer, and

a read length of 36bp (6-8 million reads per library). Of the total TA sites in the

genome, 44,350 had reads mapping to them showing evidence of a transposon insertion

at those locations, 31,715 of which were at TA sites within the ORFs. We assume

that sites with a small amount of reads (i.e., less than 5) represent spurious reads
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possibly due to sequencing errors, and therefore those sites were treated as lacking

any insertions (i.e. “0”).

The sampling process was run for 50,000 iterations, providing essentiality es-

timates for all genes, as well as the parameter φ0. Parameters were initialized as

follows:

• φ0: The probability of non-insertion for non-essential genes was initially set as

φ0 = 0.5, meaning a 50% chance of non-insertion.

• αw, βw: The hyper-parameters for our mixing coefficient were set to αw = 600,

βw = 3400, to quantify our expectation that roughly 15% of the genome should

be essential.

• Z: The vector of essentiality assignments, Z, was initialized according to the

assignments found by Griffin et al. [17].

• v: The variance parameter for the proposal distribution of the MH sampling

procedure is set to v = 0.001.

To ensure that the algorithm mixes well and the samples obtained are uncorre-

lated, the first 1,000 samples are treated as a “burn-in” period and discarded, and

then only every 20th sample is kept there forward. Convergence of the Metropolis

Hastings sampling procedure is examined in Section C.

Once the final trimmed sample is obtained, the estimate for the probability of

non-insertions at non-essential genes, φ0, and the posterior probabilities of essentiality,

Zi, are estimated by averaging the sampled obtained:

p(Zi|Y ) =
1

n
ΣtZ

(t)
i
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Figure 4 shows the trajectory of the φ0 parameter and the percentage of genes

labeled as essential after the first 1,000 iterations. obtained. The mean value of φ0

across the sample was φ0 = 0.344±0.005. This parameter represents the probability of

non-insertion at non-essential genes, hence 66% of the TA sites had insertions in non-

essential genes (i.e., relatively high density). To verify that our result makes sense,

we can calculate the frequency of non-insertions across those genes that our method

ultimately infers to be non-essential as the proportion of sites without insertions

divided by the total number of sites within those genes. This empirical estimate had

a value of φemp = 0.358, very similar to the value estimated by the model.

Fig. 4.: Trajectory of φ0 and Percent of Essentials Genes During Sampling. The blue
line shows values for the first 1,000 samples of the φ0 parameter. The red line shows the
proportion of genes labeled as essential for the first 1,000 iterations.
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B. Essentiality Results and Comparisons

Because our method depends on identifying unusually long runs of non-insertions

within the set of TA sites of a given gene, we expect our statistical analysis to predict

those genes with larger runs of non-insertions relative to the entire set of TA sites

to be essential with higher probability. Figure 5 shows a plot of TA count, n, and

maximum run of non-insertions, r, for essential and non-essential genes. Essential

genes generally lie along the diagonal, as these are genes where the maximum run of

sites without insertions equals the total number of TAs within the gene.

Fig. 5.: Plot of Maximum Run Length vs Number of TA Sites for Each Gene. The
maximum run of non-insertions is plotted against the number of TA sites within the gene.
The color gradient represents the posterior probability, Zi, for the genes.

Figure 6 shows a cumulative plot of the posterior probabilities for all genes (i.e.,

Zi). Of all the genes, 2933 have a posterior probability of essentiality less than
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0.05 (i.e., Zi < 0.05 “non-essential”) and 531 which have a posterior probability of

essentiality greater than 0.95 (i.e., Zi > 0.95). These genes represent those which

we are confident of the essentiality inferred by our method. This leaves a total of

482 which have a posterior probability between 0.05 and 0.95 (i.e., 0.05 < Zi < 0.95

“essential”), which are those genes for which the essentiality estimate may be less

reliable. In general these genes are those for which the run of non-insertions is not

strongly indicative of either category given the total number of TA sites within the

gene.

Table I contains some statistics for these classes of genes. As expected, the

average length of the maximum run for essential genes (19.68) was significantly higher

than that of non-essential genes (1.80). Non-Essential genes contained a significantly

higher amount of insertions (10.04) compared to other categories, however the average

number of insertions within essential genes (2.16) was greater than zero, confirming

that our method is not sensitive to a small amount of insertions within essential genes.

Finally, essential genes were larger on average than non-essential genes (average of

499.32 amino acids and 24.58 TA sites, compared to 304.93 amino acids and 14.16

TA sites). This difference in average size may be due to the fact that shorter genes

are unlikely to contain sufficient TA sites to produce significant run of non-insertions,

generally lowering the average size of non-essential genes.

To determine whether our Bayesian analysis produces results compatible with

what is known about the essentiality of individual genes within M. tuberculosis, we

compared our predictions with a list of genes whose essentiality has been previously

determined. Genes that are involved in core biological functions (e.g., DNA repli-

cation, metabolism) are well-known in the literature as essential to sustain bacterial

life. Table II shows a list of some of these genes, along with some known to be non-

essential, their biological function, and the essentiality assignments inferred from our
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Fig. 6.: Cumulative Posterior Probability Estimates for All Genes. Genes with confident
essentiality predictions are found on top (essential) and bottom (non-essential) of the curve,
with those for which we are less confident in the middle of the curve. The blue lines represent
the thresholds for essential (Zi > 0.95) and non-essential (Zi < 0.05) genes.

statistical analysis. For example, inhA and gyrA are both known to be essential for

survival; the former is responsible for producing an enzyme necessary for biosynthesis

of mycolic acids used in the cell wall [5], and the latter is needed to unwind DNA

during replication [21]. InhA is the target of isoniazid a first line drug for treatment of

tuberculosis, and GyrA is the target of fluoroquinolones, a family of broad-spectrum

antibiotics used as second line treatments for tuberculosis. Examples of non-essential

genes are the family of PGRS genes, and genes involved in PDIM biosynthesis. The

PGRS family of genes have an unknown role in mycobacteria, however they are known

to be mostly unnecessary for growth [11]; we find only 2 out of 67 (i.e., PE PGRS57

and PE PGRS54) to be essential in TB and this could be due to poor sequencing

in GC-rich regions. PDIM ( phenol phthiocerol dimycolate) is a surface polyketide
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Table I.: Statistics for Essentials, Non-Essentials and Uncertain Genes.

Total Average

Genes Length (amino-acids) # TA sites # Insertions Max run

Non-Essentials (<0.0.5) 2933 304.93 14.16 10.04 1.80

Intermediate (0.05 − 0.95) 482 352.28 16.98 5.68 6.98

Essentials (>0.95) 531 499.32 24.58 2.16 19.68

necessary for infection in-vivo, but not for growth in in-vitro [22].

1. Comparison to Other Essentiality Results

a. Sassetti et. al. 2003

Sassetti et. al. had previously used the TraSH method to identify those genes nec-

essary for optimal growth of TB in-vitro[14]. They identified 614 genes essential

for growth in-vitro, by culturing a library of mutants on 0.2% glucose + 7H10 (rich

media). In order to compare against this dataset, we classify our genes as essential

so long as their posterior probability is greater than 0.5 (i.e., p(Zi|Y ) > 0.5), thus

forcing the set of intermediate genes to be classified as their most probable cate-

gory. In addition to determining which genes are essential or non-essential, Sassetti

et.al. were also capable of quantifying the growth rate of mutants by determining the

hybridization ratio of individual genes to the TraSH probes. This allowed them to

characterize a third category of genes, those whose disruption causes a growth defect

in the organism. However, they were unable to determine essentiality for 813 genes

for which they could not obtain hybridization ratios. On the other hand, sequencing

is able to provide data on all genes so long as they contain at least one TA site.

Table III outlines the agreement between our predictions and the TraSH results.
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Table II.: Predictions on Genes with Experimentally Determined Essentiality. n is the
number of TA sites, r is the length of the maximum run of non-insertions, and p is the
posterior probability of essentiality calculated by the Bayesian method.

Orf Gene Name n r p
Experimental

Essentiality
Function References

Rv0001 dnaA 32 31 1.00 Essential DNA replication Greendyke et al. [23]

Rv0006 gyrA 46 44 1.00 Essential DNA replication Von Groll et al. [21]

Rv0014c pknB 24 24 1.00 Essential Signaling Lougheed et al. [24]

Rv0046c ino1 17 17 1.00 Essential Inositol synthesis Movahedzadeh et al. [25]

Rv0189c ilvD 23 23 1.00 Essential Amino acid biosynthesis Singh et al. [26]

Rv0236c aftD 40 39 1.00 Essential Cell wall synthesis Skovierova et al. [27]

Rv0334 rmlA 19 19 1.00 Essential Cell wall synthesis Qu et al. [28]

Rv0486 mshA 13 10 0.91 Essential Mycothiol synthesis Buchmeier and Fahey [29]

Rv0757 phoP 12 9 0.78 Essential Signaling Goyal et al. [30]

Rv0902c prrB 15 13 0.99 Essential Membrane transporters Haydel et al. [31]

Rv0903c prrA 10 9 0.79 Essential Membrane transporters Haydel et al. [31]

Rv1018c glmU 24 24 1.00 Essential Cell wall biosynthesis Zhang et al. [32]

Rv1483 fabG1 13 13 0.99 Essential Mycolic acid synthesis Gurvitz [33]

Rv1484 inhA 10 10 0.92 Essential Mycolic acid synthesis Molle et al. [34]

Rv1485 hemZ 25 25 1.00 Essential Heme biosynthesis Parish et al. [35]

Rv2130c mshC 25 24 1.00 Essential Mycothiol biosynthesis Buchmeier and Fahey [29]

Rv0242c fabG 11 6 0.15 Non-Essential Fatty acid synthesis Gurvitz [33]

Rv0980c PE PGRS18 13 1 0.00 Non-Essential Unknown Banu et al. [36]

Rv1067c PE PGRS19 13 4 0.00 Non-Essential Unknown Banu et al. [36]

Rv1068c PE PGRS20 12 5 0.05 Non-Essential Unknown Banu et al. [36]

Rv2930 fadD26 40 8 0.28 Non-Essential PDIM biosynthesis Domenech and Reed [22]

Rv2931 ppsA 81 2 0.00 Non-Essential PDIM biosynthesis Domenech and Reed [22]

Rv2940c mas 82 2 0.00 Non-Essential PDIM biosynthesis Domenech and Reed [22]

Rv2941 fadD28 47 4 0.00 Non-Essential Fatty acid degradation Cole et al. [20]

Rv2942 mmpL7 42 3 0.00 Non-Essential Membrane transport Domenech et al. [37]
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In general the results of the Bayesian method match those of Sassetti et. al., agreeing

on 69% of essentials, and 98% of non-essentials. The results are also consistent with

the non-essential genes identified in the DeADMAn experiments (with our results

matching 1,750 of the 1,925 - 90.9% - of the non-essential genes reported) [38] .

However there are a few disagreements. For example, Sassetti et. al. found that

PPE34, PPE35, mmpL2, mmpL12 were non-essential while our method predicts them

to be essential due to significant gaps of transposon insertions within them. MmpL

genes are membrane transporters, and only mmpL3 is thought to be essential [37].

On the other hand, Sassetti et. al. predict a number of genes to be essential which

our method predicts to be non-essential, like hycP and hycQ (putative hydrogenases).

These differences may be due to different growth conditions between our libraries, as

the library from created by Sassetti et. al. were grown in rich-media in the presence

of glucose, while the libraries utilized in this analysis were grown in minimal-media

in the presence of glycerol.

Two genes that the Bayesian method predicts to be essential that were indicated

as non-essential by Sassetti. et. al are glcB and fecB. Insertion patterns shown in

Figure 7 clearly indicate that these genes are unable to withstand insertions. GlcB

encodes for malate synthase in TB, which was originally thought to be necessary only

for growth on fatty-acids as part of a glyoxylate shunt [39], but has recently been

shown to be essential on other carbon sources like dextrose (Sacchettini lab, submit-

ted). Our data confirms this by showing GlcB is necessary for growth on glycerol as

well. FecB is involved in iron transport (ferric dicitrate) and is not expected to be

essential in minimal media due to redundancy with other iron acquisition mechanisms

like mycobactin [40], yet shows only one insertion at the C-terminus out of 20 total

TA sites.
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(a) Rv1837c - GlcB

(b) Rv3044 - FecB

Fig. 7.: Examples Classified as Non-Essential by Sassetti 2003
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Table III.: Comparison of Essentiality Predictions with TraSH analysis. We compare the
results obtained by Sassetti. et. al with those obtained with our Bayesian method for all
3989 genes in M. tuberculosis, with genes divided into the four categories of essentiality
considered.

Bayesian Method

Essential Non-Essential No-Data Total

Sassetti-03

Essentials 427 186 1 614

Non-Essential 114 2400 6 2520

Growth-Defect 11 31 0 42

No-Data 151 626 36 813

Total 703 3243 43 3989

b. Binomial Model

In addition to previous essentiality assignments, we also compare our results with

an alternative model based on the Binomial distribution. The Binomial model infers

essentiality based on the proportion of insertions observed within genes regardless of

their order, while our model determines essentiality based on significant consecutive

TA sites lacking insertions. To make inferences about essentiality, we model the gene

categories as a mixture of Binomial distributions, with different parameters θ0 and

θ1 representing the probability of insertion at non-essential genes and essential genes

respectively. These distributions express the probability of observing the amount of

insertions within a gene. In specific, the probability of observing ki out of ni insertions

within a given gene i, is given by the following likelihood:
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p(Yi|θ, Z) = Binomial(θ; ki, ni)

=

(
ni
ki

)
θki(1− θ)ni−ki

Our prior expectations for parameter θ our described by a beta distribution:

π(θ) = Beta(θ;α, β)

with hyper-parameters α and β. Because the Beta distribution is conjugate with the

Binomial distribution, our conditional probability for the parameter θ becomes a new

Beta distribution, with updated parameters:

p(θ|Y, Z) =
G∏
i=1

Binomial(θ; ki, ni)×Beta(θ;α, β)

= Beta(θ;α + Σki, β + Σni − Σki)

Using Gibbs sampling, we obtain samples of parameters θ0 and θ1 as well as

the essentiality assignments Zi, which are used to estimate posterior probabilities of

essentiality as in the Bayesian method. After running a Gibbs sampling procedure

for 50,000 iterations, estimates for the parameters were as follows: θ0 = 0.660±0.002

and θ1 = 0.088±0.002, implying 66% insertion density in non-essential genes (similar

to the Gumbel estimate) and 8.8% in essential genes.

Table IV compares our results to the Binomial model. Although both methods

seem to agree in general, the Binomial model predicts a significantly larger number of

essential genes, inferring that 24.05% of genes in TB are essential. This discrepancy in

the amount of essential genes predicted, may suggest that the proportion of insertions

within genes is a not as good an indicator of essentiality as large gaps of insertions.
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A Binomial model of essentiality may infer a gene is essential because it contains

less insertions than expected, yet ignore that these insertions covered all areas of the

gene exhibiting the small runs of insertions characteristic of non-essential genes (e.g.,

Rv2148c, Rv2382c, Rv1698, Rv0241c, Rv1548c).

Table IV.: Comparison with the Binomial Model. Results obtained by a Binomial model
of essentiality compared with those obtained by our Bayesian (Gumbel) method for all 3989
genes in M. tuberculosis.

Bayesian Method

Essential Non-Essential No-Data Total

Binomial Model

Essentials 668 291 0 959

Non-Essential 36 2952 0 2520

No-Data 0 0 43 43

Total 704 3243 43 3989

Figure 8 shows the insertion patterns of some example genes to highlight the

cases where the two methods disagree. TreX (Rv1564) is predicted by the Binomial

model to be non-essential due to its large portion of insertions (i.e., 34%), however

our Bayesian model predicts this gene to be essential due to the large stretch of non-

insertions at the C-terminus of the gene (i.e., run of 14 TA sites in a row without

insertions); this large gap may represent a significant essential region that the Bino-

mial model is not capable of identifying. TreX is involved in glycogen degradation

and trehalose synthesis and this pathway is thought to be essential [41, 42]. TreX has

three domains, with a gap corresponding to the C-terminal domain [43] (Zi = 0.995).

Domain analysis is discussed in the next section. Another example of a gene predicted
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(a) Rv1564 - TreX

(b) Rv3124

Fig. 8.: Examples of Disagreement With Binomial Model. Gene treX is predicted to be
essential due to a run of 14 non-insertions in a row in the C-terminus. (8b) Gene Rv3124
is predicted to be essential due to its run of 16 non-insertions in a row in the middle of the
gene.

to be non-essential by the Binomial model is gene Rv3124, a transcriptional regulator

of molybdopterin biosynthesis [44]. Although Rv3124 shows a high a proportion of

insertions near the N- and C- terminus of the gene, it also contains a significant gap

(i.e. run of 16 non-insertions in a row, with Zi = 0.999) in the middle of the gene

suggestive of an essential region.
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2. Essential Domains

To test our hypothesis that this Bayesian method is capable of capturing information

about putative essential domains within genes, we obtained domain predictions from

the Pfam database and compared them to the regions devoid of insertions within

essential genes. Pfam predictions are based on Hidden Markov models for known

protein families, and are used for predicting domains by analyzing amino-acid se-

quences and matching them to manually curated database of proteins [45]. Although

protein structures of individual genes can be experimentally determined and are a

much more reliable source of information, the majority of genes in M. tuberculosis

have no known structure with only 8.5% of the ORFs in TB having their structure

solved (deposited in PDB) [46]. Pfam predictions, however, allow us to obtain poten-

tial domain information on nearly all genes. After obtaining the domain predictions

from Pfam, they were matched to our predicted essential genes. Table V contains

some statistics for our results. The analysis was limited to those genes predicted to

be essential by the Bayesian method, as these represent those genes which contain the

significant stretches of non-insertions that are suggestive of essential regions. Of the

704 genes we predicted as essential, 687 of these had at least one domain prediction in

the Pfam database. Of these 687 genes, 320 completely lacked insertions suggesting

the entire gene is essential. This left 367 genes with a potential to contain both es-

sential and non-essential domains. Since the domain predictions obtained from Pfam

may not actually coincide with these gaps, the start and end of the domains within

all 367 genes were matched with start and end of the runs of non-insertions in these

genes. Only 276 genes contained domains that fell completely within the span of the

largest run of non-insertions observed, hence showing no evidence of insertion for the

region spanned by the domain. After obtaining this subset of genes we calculated the
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span of TA sites contained within the domain, and focused on those which accounted

for a significant gap of non-insertions given our model. We identified 117 genes with

significant stretches of non-insertions that correlated with predicted domains.

Table V.: Statistics of Domains Within Essential Genes. The 704 essential genes obtained
by our Bayesian Method are analyzed in order to identify those which contain Pfam domain
predictions that coincide with meaningful gaps of non-insertions.

Essentials Completely Contain Non-Essential Domain Matches Significant Run

with Domains Essential Regions Longest Run Within Domain

687 320 367 276 117

Figure 9 contains some examples of those genes with significant runs of non-

insertions coinciding with the domain predictions from Pfam. Rv3190 encodes for

two C-terminal protein domains (sugar-binding and extracellular domains) and a

N-terminal, MviN-like, domain which regulates peptidoglycan biosynthesis and has

been shown to be essential for growth in mycobacteria. This protein is actually a

flippase of lipid-II and is regulated by interaction with FhaA (Rv0020c), which is

phosporylated by PknB [47]. Insertions in Rv3910 are found only in the C-terminal

domains, but not the N-terminal membrane domain, implying it alone is necessary

for growth. Rv2051c (Ppm1) is involved in cell-wall glycolipid synthesis, an essential

role within mycobacteria, and shows evidence of an essential domain (Pfam family:

- PF0535.21) within its C-terminus which matches previous analyses of this gene

[48]. Rv0018c (serine/threonine phosphatase) contains an essential catalytic domain

within its N-terminus, and has been shown to dephosphorylate Rv0020 (FhaA) coun-



38

teracting phosphorylation by PknB [49]. Transposon insertions are only observed in

the extracellular domain of unknown function.

3. Low Density Dataset

To evaluate our method on other datasets with different insertion density (prepared

by J. Zhang), we ran our analysis a different library of M. tuberculosis mutants

grown on glycerol, but with a much lower proportion of insertions. This dataset

contained significantly fewer transposon insertions in coding regions (i.e., 23,399 -

36.3% - compared to 31,715 - 50.4% in our first glycerol dataset), and therefore the

set of TA sites in the genome were under-sampled, providing a more difficult challenge

for estimating essentiality. Under-sampled datasets will likely contain longer stretches

of non-insertions as TA sites in these libraries are much more likely to be missed by

the sparse transposon insertions. Table VI contains a comparison of results for both

datasets.

Table VI.: Comparison of Under-sampled Dataset and Regular Dataset.

Undersampled Normal

Essentials: 304 704

Non-Essentials: 3679 3243

Total: 3983 3947

Our method finds a significantly smaller number of essentials in the under-

sampled dataset. The probability of non-insertions estimated for the under-sampled
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(a) Rv3910 (-)

(b) Rv2051c (ppm1)

(c) Rv0018c (ppp)

(d) Rv0505c (serB1)

Fig. 9.: Example Genes with Essential Domains. Essential domains are indicated in red,
and non-essential domains are indicated in yellow.
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dataset was φ0 = 0.592, which is significantly higher than the probability estimated

in the original glycerol dataset, φ0 = 0.344. Because of this higher probability of non-

insertion, all genes in the under-sampled dataset will be expected to have longer runs

of non-insertions, even those which can withstand disruption. However, the Bayesian

model is able to compensate for the lower insertion frequency, and does not predict

an excess of essential genes. It is conservative in its predictions given the sparsity of

the data. By increasing the expected maximum run, fewer genes will be predicted

to be essential due to the fact that the total number of TA sites they contain is not

large enough to produce significant runs according to the Gumbel model, given such

a high probability of non-insertion.

4. Glycerol vs. Cholesterol

To test our analysis on mutants grown in different environmental conditions, we an-

alyzed sequencing results for three independent libraries of TB mutants grown in

minimal media and 0.01% cholesterol [17]. Cholesterol is thought to be a significant

carbon source in macrophages, and thus mimics environmental conditions found dur-

ing infection [50]. Like we did for the glycerol sequence data, we also summed the

reads across all three independent libraries of cholesterol. This allowed us to have a

denser dataset with a higher probability of all TA sites being sampled.

Table VII shows a list of the top genes our Bayesian method predicts to be es-

sential for growth in cholesterol, and non-essential for growth in glycerol. All of these

genes have previously been shown to be associated with cholesterol catabolism and/or

fatty-acid degradation [17, 51]. For example, HsaD has been shown to catalyze the

hydrolytic cleavage of a carbon - carbon bond in cholesterol ring degradation, and

therefore is essential for growth in cholesterol media but not glycerol [52]. Interest-

ingly, ChoD, a gene annotated as cholesterol oxidase, turns out to be non-essential as
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Table VII.: Genes Differentially Essential for Growth on Cholesterol But Not Glycerol.
28 genes were selected that have a posterior probability of essentiality > 0.9 for cholesterol
and < 0.1 for glycerol. This subset was enriched for genes known to be associated with
cholesterol catabolism (8 out of 28, shown).

Posterior Probability

of Essentiality

Gene Name Glycerol Cholesterol Function

Rv3556c fadA6 0.091 0.996 acetyl-CoA acetyltransferase

Rv3543c fadE29 0.029 0.999 acyl-CoA dehydrogenase

Rv3562 fadE31 0.000 0.952 acyl-CoA dehydrogenase

Rv3526 kshA 0.000 1.000 ketosteroid hydroxolase

Rv3540c ltp2 0.000 0.999 ketoacyl-CoA thiolase

Rv3544c fadE28 0.000 0.999 acyl-CoA dehydrogenase

Rv3568c hsaC 0.000 0.998 dienoate hydrolase

Rv3569c hsaD 0.000 0.991 dienoate hydrolase
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shown by laboratory experiments [17]. Conversely, we also find genes that are non-

essential for growth in cholesterol, yet necessary for growth in glycerol. For instance,

GlpK (glycerol kinase) is essential for glycerol metabolism [53], and is predicted by

our method to be essential for growth in glycerol but not for growth in cholesterol.

C. Convergence of Sampling Procedure

Our statistical analysis depends on obtaining an MCMC sample of the φ0 param-

eter (i.e., probability of non-insertion in non-essential genes) to estimate posterior

probabilities of essentiality. We obtain estimates of φ0 by sampling its conditional

probability given the data through the MH algorithm. Since the MH algorithm sam-

ples from the conditional distribution of a parameter given the rest, one after another,

one potential concern is that these distributions might not mix well; that is, that they

might not adequately explore the space of the distribution of interest. Parameters

may get “stuck” sampling one area of the distribution, and influence the sampling of

the other parameters. For these reasons, we eliminate the first 1,000 samples of the

φ0 parameter to ensure that the MH algorithm reaches a point where it is mixing

well. This is referred to as the “burn-in” period [19]. In order to validate our final

sample of the φ0 parameter, Figure 10 presents the trajectory of the sample, which

shows its values across the remaining iterations. Note that, while there is variation,

a stable trend has been established.

A potential problem with MCMC samplers is that sampled values might be

correlated with each other. By generating a Markov-Chain for sampling, any value

at time t may actually be correlated with previous samples at time t − k. If the

algorithm is producing results that are highly-correlated, then the sampler may not
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Fig. 10.: MCMC Sample of the φ0 Parameter. The sampling procedure reaches “conver-
gence”, correctly sampling the φ0 density.

Fig. 11.: Auto-Correlation of MCMC Sample of the φ0 Parameter. Low auto-correlation
values with lag greater than zero show the samples are uncorrelated with each other at
subsequent time steps, a potential problem for MCMC sampling procedures.
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be truly exploring the distribution of interest in a random manner. To test whether

our MCMC scheme was producing correlated values, we calculated the autocorrelation

coefficient to a maximum lag of 50. Figure 11 shows a plot of the auto-correlation

of the MCMC sample for the φ0 parameter. The low values show that samples at

∆t ≥ 1 apart are effectively uncorrelated.
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CHAPTER IV

DISCUSSION AND CONCLUSION

Which genes are essential to the survival of a bacterial organism is an important

question scientists wish to answer as it allows scientists discover potential new drug

targets, and learn more about an organism’s evolution. By using transposon muta-

genesis experiments, researchers can create libraries of mutant organisms that have

had portions of their DNA interrupted. Using these libraries, scientists can extract

information about which genes can sustain insertions without affecting an organisms

survival, and therefore which genes are essential and non-essential to the organism.

Using next-generation sequencing, scientists are able to determine precisely where

these transposon insertions took place, providing with high-resolution information on

non-essential regions in the genome.

The addition of this new sequence data necessitates a new method to analyze it

that can exploit the high-resolution information to determine essentiality. We devel-

oped a Bayesian statistical analysis method to analyze this data and make rigorous

predictions about the essentiality of individual genes. Using this method we have

analyzed sequence data from a library of mutants of M. tuberculosis bacteria, and

improved our understanding of essentiality within this organism.

The key insight in our model is the use of the Gumbel distribution to model the

expected length of the maximum run of non-insertions within genes. This allows our

analysis to determine whether the largest run of non-insertions in a particular gene

is statistically significant, and therefore suggestive of a region that cannot withstand

insertions. By modeling non-essential genes in this manner, our method is then able to

pick out those genes that contain significantly longer runs of non-insertions than what

we would normally expect, without being sensitive to a small number of insertions at
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the N- or C- terminus of a gene. Furthermore, by using Metropolis-Hastings sampling

we are able to obtain estimates of posterior probabilities of essentiality for all genes

that quantify the confidence we have on our predictions.

Using this method, we get results that are 89% consistent with previous anal-

ysis of TraSH data. Many of these genes were expected to be essential given their

indispensable role within bacterial organisms (e.g., GyrA, DnaA, InhA). However,

our Bayesian analysis also identified some new essential genes required for growth in

glycerol (e.g., GlcB). The main sources for disagreements between the findings of this

Bayesian analysis and Sassetti et. al. are likely due to the differences in growth media

used when creating both libraries, our method’s ability to identify essential domains

within genes that may otherwise be characterized as non-essential, as well as the fact

that sequencing provides high-resolution coordinates of individual insertions which

was not possible with hybridization. Utilizing our Bayesian method, we performed a

differential analysis between transposon mutants grown on glycerol and those grown

on cholesterol, where we obtained results which coincided with other analyses that

have compared both of these growth media.

Because our model is based on an analysis of long stretches of the genome lack-

ing any evidence of disruption, our method is capable of highlighting domains within

genes that may be essential. Genes can code for multiple domains, and these domains

may play different biological roles within the organism. If a gene contains an essen-

tial domain within its coding region, then that domain will be unable to withstand

any insertions. By highlighting those areas that have unusually large gaps in inser-

tions, our method is capable of picking out genes that contain evidence suggestive of

essential regions. Although previous analyses have used data from deep-sequencing

to determine essentiality, those methods used ad-hoc criteria or assumptions about

parameters and do not produce rigorous statistical scores. Our method may be one
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possible way of using transposon mutagenesis experiments to suggest potential new

essential domains within genes whose protein structure is unknown, by estimating

posterior probabilities. For example, using our method we found genes with essential

domains (e.g. Rv0018c, Rv3910) that match Pfam predictions of domains, and whose

essentiality is supported in the literature.

The Gumbel distribution depends on an estimate of the probability of non-

insertion within non-essential genes as an internal (unobservable) parameter. How-

ever, by using a Bayesian statistical framework, we can estimate this parameter by

sampling from its probability density function and thus effectively integrate over this

parameter. Using this framework, we do not require an a priori estimate of this pa-

rameter to determine essentiality, but instead let our analysis find the distribution of

this parameter that is suggested by the data. Previously, we used an approximation

based on the frequency of insertions at TA sites within genes that are “probable-

essentials” (i.e., containing insertions at 20% or more their TA sites). By not requir-

ing assumptions or ad-hoc estimates of this parameter, we can apply our analysis

to different datasets where this parameter may be significantly different or difficult

to estimate without a formal framework. For example, we can use this method to

determine essentiality within libraries of transposon mutants that have been under-

sampled. Under-sampled libraries contain fewer transposon insertions, therefore the

probability of non-insertions will be artificially high due to a lack of insertion cover-

age; however, by estimating this parameter based on the data, our Gumbel model is

capable of adjusting and picking out stretches of non-insertion that are statistically

significant, even for a high probability of non-insertion.

Another important feature of our method is its ability of estimating the confi-

dence we have about our essentiality results. By generating samples from the posterior

densities of essentiality, we get a measure of how likely it is that a gene be essential
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while exploring the distribution of the parameters and missing data in our model.

This allows us to assign high confidence to those predictions within genes that have

consistently been inferred to be essential, and lower confidence to those genes for

which our model can infer essentiality in both ways.

Finally, because our method depends on consecutive sequences of TA sites lacking

insertions, and not on the simple presence or absence of insertions within a gene, our

method is not sensitive to insertions at the N- or C- terminus of a gene, which essential

genes have been shown to tolerate occasionally [2, 1].

Although our method has several strengths, it also has some potential limita-

tions that would be useful to consider as future improvements. While our method

can successfully determine areas in the sequence information that contains unusually

long gaps lacking any reads, it is does so by taking a binary approach to the sequence

information: if there are reads mapping to a TA site, we consider it as an insertion

(1), if there are no reads we consider that site lacking any insertions (0). By doing so,

however, we lose any potential information that the magnitude of reads or read counts

mapping to that particular site would have given us. In reality, this information may

contain useful information about essentiality. For instance, Sassetti et al. [14] were

able to characterize those genes which may cause growth-defects in the organism once

interrupted by quantifying their ratio of hybridization to the hybridization probes.

Similarly, one may be able to identify this other category of genes by taking into

consideration the counts of reads mapping to their given insertion sites, which may

be significantly lower than expected from an average non-essential gene. On the other

hand, read-counts might not accurately represent the prevalence of these insertions in

the mutants sequenced. Read-counts can be subject to “PCR-bias” when amplifica-

tion is not equally efficient across the templates used [54]. This may lead to artifacts

that may render read-counts difficult to interpret.
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Another limitation of our model is that it does not take into account the distance

between TA sites. By treating TA sites as a sequence of independent Bernoulli trials,

our model loses any meaningful information that might be contained in the distance

between two TA sites. For example, if two TA sites are too far apart from each other,

then observations at these TA sites may not accurately represent the essentiality of the

genomic region between them. The model could be extended to take this information

into account when assessing statistical significance.
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