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ABSTRACT 

 

Design of Controllers for a Multiple Input 

Multiple Output System. (May 2012) 

Amanda Lynne Harris, B.S., The University of Kansas; 

MSc, The University of Edinburgh 

Chair of Advisory Committee: Dr. Shankar Bhattacharyya 

 

A method of controller design for multiple input multiple output (MIMO) system 

is needed that will not give the high order controllers of modern control theory but will 

be more systematic than the “ad hoc” method. The objective of this method of design for 

multiple input multiple output systems is to find a controller of fixed order with 

performance specifications taken into consideration. An inner approximation of the 

stabilizing set is found through the algorithm discussed in Keel and Bhattacharyya’s 

"Fixed order multivariable controller synthesis: A new algorithm." The set satisfying the 

performance is then approximated through one of two algorithms; a hybrid of two 

optimization algorithms or the grid algorithm found in Lampton’s "Reinforcement 

Learning of a Morphing Airfoil-Policy and Discrete Learning Analysis." The method is 

then applied to five models of four aircraft; Commander 700, X-29, X-38, and F-5A 

using controllers of first and second orders. The examples show that when the method 

finds a stabilizing set, it will also find the performance set if it exists. However, it is 

possible for the method to not find a stabilizing for a stabilizable system.  
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1 

 INTRODUCTION 

 

When adding controllers to a multiple input multiple output (MIMO) system, 

options are limited. Modern control theory gives an elegant controller, but often has too 

high of an order for practical use [1]. The modern control methods that use a dynamic 

compensator will always find a stabilizing controller but it will have the same order as 

the plant [2]. Most MIMO systems are of high order; a two input two output system with 

each transfer function having an order of just three will have a system order of twelve. 

This means that any stabilizing controller found using these methods will also be twelfth 

order. Alternatively, the "ad hoc" methods use a fixed order controller with a given 

number of variables. Instead of determining the values to set the variables through a 

controller design method, the controller is inserted into the system and the variables are 

changed until the system is stable and exhibits the desired performance. There are some 

tuning techniques so the user does not have to use guess and check. They involve putting 

a test input in the system and the response gives an idea where to start the tuning. These 

classical PID tuning methods are: the Ziegler-Nichols open-loop or recess reaction 

method, the Ziegler-Nichols closed-loop method, the Cohen-Coon Method, the Internal 

Model Control method, and the Auto Tune Variation [3]. As these methods involve 

inputting a signal to the system, the system can go unstable in the process. While it is 

advantageous that these methods don’t require knowledge of the system model, they do 

____________  

This dissertation follows the style of IEEE Control Systems. 



2 

require some insight about the system as they each work for specific types of systems 

[3]. Both the modern control theory and “ad hoc” methods have their uses, but each has 

issues. If the modern control theory result has a reasonable order or the order of the 

controller is not a limiting factor, that controller can be used. However, if it is of too 

high an order for use, the only other option is to try a different method [2]. The “ad hoc” 

method is useful because if the fixed order controller is of an order that can stabilize the 

system, eventually an acceptable response can be found. Unfortunately, it takes time and 

effort to run through a large set of values for each variable and if the tuning methods are 

used, the experimentation can still take time [3]. To resolve the issue, the fixed order 

controller should be used, and instead of using the “ad hoc” method to find the control 

variables, an alternative design method is needed.  

 In searching for recent work on fixed order controllers for MIMO systems, four 

methods were determined to be relevant. All four methods focused on H∞ controller 

design modified for a fixed order system. The simplest method to use was discussed in 

[4]. The HIFOO package for Matlab was the basis of the method as it is readily available 

and relatively easy to use. By using state space representation and addition constraints 

on the system, HIFOO was able to find controllers of a lower order than the plant while 

still having the advantages of H∞. However, the program gives an optimized result and 

therefore the designer is given only one controller instead of a range to choose from. In 

[5], a design method giving H∞ performance while achieving D-stability and reducing 

the coupling of the channels in the MIMO system is presented. LMIs are then used to 

optimize the controller. [6] proposes a similar method using matrix inequalities with a 
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free parameterization matrix which can be solved using a convergent iterative algorithm. 

These three methods require the plant model to be known. However, the design method 

in [7] can be used with the frequency response also known through data. The method is 

based on an approximation of the Generalized Nyquist Stablility criterion and results in 

convex constraints on the control variables. However, a known stabilizing controller is 

needed if the plant is unstable. Unlike the method in [4], the design methods developed 

in [5,6,7] are mathematically intensive.  

The objective of the proposed research is to develop a method of design for 

multiple input multiple output systems. The controller is of fixed order, and performance 

specifications should be taken into consideration. The starting point for such a design 

method would be to find the range of each control variable that would stabilize the 

system. Doing so would give the option of trying many different order controllers to 

determine the more practical option for a given system. In addition, having the range that 

stabilizes the system will allow the variables to be chosen so that they are not close to 

the edge of the range. Choosing the variables in such a way will reduce the chance of 

small errors in the model causing instability. However, the algorithm used needs to find 

an inner approximation for the stable range to ensure all points in the range are in fact 

stable. The next step is to determine any performance specifications and the set of 

controller values within the stabilizing range which satisfy the specifications given.  

The simplest, longest, and most computationally extensive method for finding 

both the stability range and the performance set would be to check every point within the 

possible range of controller values. When working with only two controller variables, 
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this is possible though still lengthy. Once more variables are added, this method 

becomes too extensive to be practical. Consequently, it is critical to find algorithms that 

will find the stable set and the performance set without checking every point in the range 

of controller values.  
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 METHODOLOGY 

 

 As stated before, the first step to develop a method for design is to find an 

algorithm that gives the stable range of a MIMO system. The robust positivity algorithm 

from [8] is essentially an extension of Kharitonov’s Theorem. It only requires the 

characteristic equation of a system to test for stability over a range of variables. 

However, this requirement means that any system for which the characteristic equation 

cannot be found, the design method will not work. The following explains this algorithm 

and how it will be used in the design method. 

 Bs,P  xx :)({ : P  (1) 

is a polynomial family where B is a box in the first orthant.  

 
 4

4

3

3

2

210 )s(a)s(a)s(a)s(a)(aP(s) xxxxx
 (2) 

 is a typical element of the family where ai(x)are polynomial functions of x for 

i=0,1,…,n ai(x)= ai+(x)- ai-(x). Assuming that an(x)≠0 for all Bx . In this application, 

P(s) is the characteristic polynomial of the system and the ai(x) are the k values ranging 

from 0 to positive infinity. For ease of calculations, the state space representation is used 

to find the characteristic equation as using the transfer function would require 

decomposition. Therefore the characteristic equation is found using  

 P(s)=det(sI-A). (3) 

Where  

  (4) 
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and 

 , , ,  (5) 

  are the minimal realization of the plant.  
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The family P is robustly Hurwitz stable if the following four fixed polynomials are 

Hurwitz stable. 
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Using the minimum and maximum of the ranges, find P1, P2, P3, and P4. If all four 

equations are stable, the entire range is stable but if any are not stable, nothing is known 

about the range. Otherwise, bisect the range along each variable and find P1, P2, P3, and 

P4 for each new block. Those that are stable are left alone and cut the remaining blocks. 

Repeat the cutting until either a minimum block size is reached or until all blocks are 

stable. The smaller the block size is allowed to be, the closer the stable range will be to 

the actual set of stabilizing values. However, the smaller the block size the longer the 

algorithm will take and the more memory will be used. Therefore it is a tradeoff on 

time/memory and precision. Before moving to the next step in the design method, it 

should be noted that this algorithm can be connected to a well-known theorem in control 

theory. This proof is taken straight from [8]. Consider the interval family of polynomials 

  (20) 

where 

  (21) 

Note that, using the previous notations, 

  (22) 



8 

  (23) 

  (24) 

  (25) 

  (26) 

and 

 

  (27) 

 

  (28) 

 

  (29) 

 

  (30) 

Therefore, 

 

  (31) 
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  (32) 

 

  (33) 

 

  (34) 

Therefore, Kharitonov’s theorem has been recovered from the algorithm. By this proof 

tying the positivity algorithm back to Kharitonov’s theorem, the confidence in the 

positivity algorithm is increased which is important as the work on it is only a few years 

old. 

The second step of the design technique is to find the set of points that satisfy 

given performance specifications. There are two methods included: a method using two 

optimization algorithms and a method using an adaptive grid. For both methods, define 

the limits for the performance parameters to be included in the optimization and decide 

which if any control variables will be set. These are determined by the designer. The 

application for which the system is to be used will aid in determining the performance 

specifications and the number of control variables allowed to vary should be either two 

or three as the sets are best viewed graphically. Those variables set will be chosen to fall 

within the stable range found in the first step. 

For the optimization method, obtain a random set of points within the stable 

range. Deciding how to choose the random points is an important step. If taken randomly 
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throughout the stable range, the full set of performance satisfying points will not be 

found as all the random points will move towards one optimum point. However, if each 

block within the stable range had a few of the random points and those points were 

optimized over that box only, the probability of obtaining the full performance set is 

much higher. Therefore, there will be at least three points in the smallest section of the 

stable range and as the section size increases so does the number of optimization points. 

Then, the performance of each point is determined for the parameters set. Separate the 

points into three sections: good, swarm, and genetics. The good section includes all 

points that satisfy the performance specifications. The swarm section is all the points 

that will use the swarm optimization technique [9]. The points are either within half the 

minimum or double the maximum for each parameter or for each parameter outside that 

range there is a parameter that is satisfied.  

The genetics section covers all other points in the random set and will use 

genetics optimization [10]. Each section is optimized separately. For those points in the 

good section, they are left alone. Those points in the swarm sections will be used by a 

type of swarm optimization to move these points towards the point in the good section 

with the best performance. However, if the new point is not in the stable range, the old 

point will be moved slightly instead of using the value found through swarm theory. The 

points in the genetic section have the worst performance and therefore genetic 

optimization is used to create new points to replace these points. If the new points are 

not in the stable range, the old point is modified slightly. After ten iterations, check 
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every point within a sphere of radius 10 around each point in the good section to obtain a 

more complete set.  

Next is the adaptive grid method [11]. A grid at a specific distance, i.e. 8, is 

created across the variable range. If a point is not in the stable range, throw it away. 

Then find the performance at each point. If it does satisfy the performance 

specifications, set the point to 1, if not -1. If the surrounding orthogonal points of a 1 

valued point are also 1, make the center point a 2. For all points still one, between the 

orthogonal surrounding points that are not 1 or 2, create a grid of 4. Once the small grids 

of distance 4 are created, repeat the process to find small areas to grid at distance 2 and 

then 1. The resulting sets are controller values that are stable and fulfill the performance 

specifications. 



12 

 EXAMPLES 

 

For ease of demonstration, the two input two output system shown in figure 1 is 

used for the following examples. PI controllers are at each input giving four control 

variables and G(s) is a given model of the plant  

 










)()(

)()(
)(

2221

1211

sGsG

sGsG
sG

 (35) 

Also for ease of demonstration, the range for each control value is given as 0-100. 

However, if a system is unstable at the origin, the range is changed to 1-100.  

 

 

 

 
Figure 1 Two input two output system used in all examples 

 

 

 

The first example is a single input single output (SISO) plant 

  (36) 

When in state space representation, the plant is  

    (37) 



13 

This results in an An matrix of 

  (38) 

giving a characteristic equation of 

  (39) 

Therefore 
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Finally 

  (48) 

  (49) 
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  (50) 

  (51) 

Figure 2 shows the stable range of the controllers when using the Routh method at each 

point. This method is inefficient because it checks each point in the range. It will only be 

used to show the corresponding results from the positivity method.  

Matlab was used for all the examples mostly because of previous knowledge of 

the program, but also for the built-in functions available for most of the performance 

parameters. A GUI was designed to make working with each example as quick and easy 

as possible. Half of this interface is shown in figure 3 and the other half in figure 4. As 

this interface was designed for the PI controller used in this section, the only inputs to 

find the stable range were the numerator and denominator of the plant and the desired 

threshold for the block size. The inputs for the graphs were merely values for one or two 

control variables and the performance inputs were the desired performance 

specifications and values for whichever control variables were to be set. From figure 3, 

the threshold is set at ten making the smallest bisection is just larger than six. Therefore, 

as the only sections of figure 3 that are not in the stable range contain the area not stable 

in figure 2, the method is shown to be accurate within the threshold. For the remainder 

of the figures, the blue boxes show the stability range and the red points are those 

satisfying the performance specifications. Figure 4 shows the points within the stable 

range that have an overshoot of 10 percent or less using the optimization method. 

Figures 5-8 show the grid method at each iteration of the grid: figure 5 shows the grid at 
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distance of 8, figure 6 shows the additional points at a distance of 4, figure 7 has a 

distance of 2, and figure 8 has a distance of 1.  
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Figure 2 Stable range using Routh method for the 

SISO example. 

 
Figure 3 Stable range using the design method for 

the SISO example. 
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Figure 4 Performance satisfying range using the 

optimization method for the SISO example. 

 
Figure 5 Performance satisfying range using the 

grid method at first iteration for the SISO 

example. 

 

 

 

 
Figure 6 Performance satisfying range using the 

adaptive grid method at second iteration for the 

SISO example. 

 
Figure 7 Performance satisfying range using the 

adaptive grid method at third iteration for the 

SISO example. 
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Figure 8 Performance satisfying range using the adaptive grid method at fourth iteration for the SISO 

example. 

 

 

 

The second example is the two input two output system 

  (52) 

which gives a state space representation of 

 , , 

 ,  (53) 

The An matrix is then 
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  (54) 

which gives a characteristic equation 

  (55) 

Figure 9 shows the stable range output of the system. The order of the outputs is the high 

then low values of kp1, kp2, ki1, ki2. Also, the larger blocks are shown first then the 

smaller. From this output, one or two control variables should be set. Figures 10 and 11 

show the optimization and grid methods when they have similar quality results. This size 

set is approximately the cutoff point for the two methods; if the set is larger the grid 

method should be used, if the set is smaller the optimization method should be used.  
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Figure 9 The stable range as seen in the command window for the second example. 

 

 

 

 
Figure 10 Performance satisfying range using the 

optimization method for the second example with a 

higher gain margin. 

 
Figure 11 Performance satisfying range using the 

adaptive grid method for the second example with a 

higher gain margin. 

 

 

 

The last example is a simple third order plant  

  (56) 



20 

which has a characteristic equation of  

(57) 
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Figure 12 shows the stable range and performance set using the grid method. A point to 

note, just because a set is disjointed does not mean an error has occurred. Figure 13 is a 

good example of this. Gaps can be found within a set because those points do not satisfy 

the performance specifications and these gaps become more common the more 

performance specifications there are. The optimization method is not included for the 3D 

images as the previous examples have shown it to be inferior to the grid method for three 

variables. Until this example, all the figures have shown the grid method to be superior 

to the optimization method. If this were the case in every example, the optimization 

method would be removed from the design method. In large sets, the optimization 

method has been shown to occasionally miss points since the set is comprised of 

spherical sets of points. While for these same examples, the grid method has 

demonstrated a complete outer edge of the set. The next four figures show sets that are 

fairly small. Figure 14 has no missing points even though it is the optimization method. 

Figure 15, however, does not have the complete edge that the previous examples have 

shown the grid method to have. One reason this occurred is because the original grid had 

a distance of eight and the edge is built around points where there is a change between it 

and its neighbors. Therefore, parts of the edge can be missed if the edge falls at a 

specific place on the grid. Figures 16 and 17 show another example of when the 

optimization method gives a more complete set than the grid method. If the set is narrow 

enough, it can be between points on the grid and remain undetected. For the most part, 

this happens with the portion of the set has a width less than eight and no part of the grid 

falls in the set.  
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Figure 12 Performance satisfying range using 

the adaptive grid method for example three with 

two performance specifications. 

 
Figure 13 Performance satisfying range using 

the adaptive grid method for example three with 

three performance specifications. 

 

 

 

 
Figure 14 Performance satisfying range using 

the optimization method for example three with 

two performance specifications. 

 
Figure 15 Performance satisfying range using 

the adaptive grid method for example three with 

two performance specifications. 
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Figure 16 Performance satisfying range using 

the optimization method for example three with 

two performance specifications and differing K 

values from figure 14. 

 
Figure 17 Performance satisfying range using 

the adaptive grid method for example three with 

two performance specifications and differing K 

values from figure 15. 
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 “REAL WORLD” EXAMPLES 

 

All the previous examples have been “made up” ones, but to show the design 

method works, “real world” examples are needed. The method is applied to five models 

of four aircraft; Commander 700, X-29, X-38, and F-5A. First is the longitudinal model 

of the X-38 as it is a SISO system. The system is given in state space as follows;  

 ,

 (58) 

However, the program needs the transfer function which is 

  (59) 

The PI controller from the previous examples is not of high enough order to stabilize the 

following MIMO systems. Therefore even though the PI controller could stabilize this 

SISO, the PID controller is used 

  (60) 

where T=1000. It has a state space representation of 
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 , ,

  (61) 

So, the characteristic equation for this SISO system is 
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 (62) 

All figures for these next examples use the grid method because all but figure 18 

is 3D and as previously stated the optimization method is not appropriate for those 

graphs. Figure 18 shows the resulting set when Kd1 is zero and the performance 

specifications are that the minimum gain and phase margins are 10 and 60° and the 

maximum overshoot, settling time, and rise time are 15%, 10 seconds, and 2 seconds. As 

the blue box shows, the stable range for this system is large. In fact for all the examples 

in this section, the stable range is -100 to 100 for all control variables. The reason for 

this occurring with the PID and not the PI is the large T variable in the PID controller. 

Figure 19 has the same performance specifications, but Kd1 is allowed to vary. A note 

about Figure 19 that will occur again, when the adaptive grid method is used for the 

three variable graphs, it becomes possible to run out of memory when most of the stable 

range is in the performance set. Therefore, the minimum grid size is 4 for this figure and 

this will be the case for the rest of the graphs that take up most of the stable range. 
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Figure 18 Performance satisfying range using 

the adaptive grid method for the X-38 with PID. 
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Figure 19 Performance satisfying range using 

the adaptive grid method at the second iteration 

for the X-38 with PID. 

 

 

 

The next system is also the X-38 but is the lateral/directional model. The state space 

representation is 

 

  (63) 

which results in a transfer function of 

  (64) 

The denominator of each term is the same because it was derived from the state space 

representation; this will be the case for the rest of the examples. Figure 20 shows the set 

when Kp1 = 50, Kp2 = 80, and Ki1 = 20 and the maximum overshoot, settling time, and 

rise time are 15%, 5 seconds, and 2 seconds. 
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Figure 20 Performance satisfying range using the adaptive grid method for the X-38 Lat/D with PID. 

 

 

 

Figures 21 and 22 are the performance set of the wing leveler model of the Commander 

700 aircraft which has a transfer function of 

  (65) 

The K variables are set such that Kp1 = -45, Kp2 = -5, and Ki1 = -90 and the 

performance specifications are that the minimum gain and phase margins are 10 and 60° 

and the maximum settling time and rise time are 10 and 2 seconds. The positive graph of 

figure 21 is included for completeness because Kd1 and Kd2 must be negative or zero. 

The next system is a model of the X-29 aircraft and has a transfer function of 

  (66) 

For figures 23 and 24, Ki2 = 75, Kd1 =25, and Kd2 = -25 while the minimum gain and 

phase margins are again 10 and 60° and the maximum overshoot, settling time, and rise 
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time is 15%, 5 seconds and 2 seconds. As with the previous example, figure 23 is only 

included for completeness because in this case Kp1 and Ki1 must be negative or zero. 
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Figure 21 Performance satisfying range using the 

adaptive grid method for the Commander 700. 
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Figure 22 Performance satisfying range using the 

adaptive grid method for the Commander 700, 

second iteration. 

 

 

 

 
Figure 23 Performance satisfying range using the 

adaptive grid method for the X-29. 

 
Figure 24 Performance satisfying range using the 

adaptive grid method for the X-29, second iteration. 

 

 

 

The final system is a lateral/directional linear model for the F-5A aircraft which 

has a transfer function of 
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  (67) 

For figures 25 and 26, Kp1 = 80, Ki1 = -40, and Kd1 = 20 and the maximum overshoot, 

settling time, and rise time are 15%, 10 seconds, and 2 seconds. This example would be 

a perfect case for the optimization method for performance when another control 

variable was set and the images were two dimensional.  
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Figure 25 Positive performance satisfying range 

using the adaptive grid method for the F-5A. 
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Figure 26 Negative performance satisfying 

range using the adaptive grid method for the F-

5A. 
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 CONCLUSIONS 

 

As shown in the previous examples, the design method can give a stabilizing 

range and performance satisfying set. However, when the method does not find a range 

or set, it does not mean a set does not exist. It merely means that the method could not 

find it at the threshold given or in the range specified. As shown with the PI examples, 

the smaller the threshold the more sections of the stable range can be found, but at the 

risk of running out of time or memory. In fact the sections can get down to a single point 

which destroys the point of the algorithm completely but would always find the full set 

within the given range. The PID examples do not show this because of the large T 

variable. The optimization method for performance is based on two optimization 

methods. Both methods search for a local maximum or minimum, which is why many 

points in a large set can be missed with this method. The adaptive grid method works 

well with large sets, but can miss points or the complete set if it is small enough to not 

fall on the grid. If the design method works, a stable range and performance set is found. 

In comparison to the methods discussed in the introduction, modern control theory will 

always find a stabilizing controller which this design method will not but this method is 

not restricted to the same order controller as the plant. Like the “ad hoc” method, this 

design method will find the stabilizing control values if they exist in the variable range. 

Though with this method, a set a variables is found instead of tuning to one that happens 

to work.  
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In relation to the recent work previously mentioned, the HIFOO method from [4] 

is the only method with less intensive mathematics though this is mainly because it uses 

a readily available program. Like the design method in this paper, the HIFOO method 

can have an issue with run-time but it has a parameter to control the run-time while the 

threshold of the stability range and the iterations of the performance determine the run-

time for the current method. The methods in [5] and [6] are similar in the complexity as 

well as the methodology. As they both use optimization, the likelihood of finding a 

stabilizing controller might be better than with the current method if the stable range is 

small. However, the optimization will result in a single controller result instead of the 

range of controllers given here. As mentioned before, the method in [7] is the only one 

to work without a model. Therefore for certain applications it is superior to the other 

methods discussed. However, the design method developed here gives ranges of stability 

which can help reduce the effect of modeling errors. And like the methods in [4,5,6], [7] 

also uses optimization resulting in one controller.  

For further work, there are two areas that should be improved. First, in this 

method, the variable range is set and the stable range found within it. It would be 

advantageous to work out from a set range and find an approximation of the entire set. 

However, it is difficult to do with the positivity algorithm as the block sizes can be very 

small so expanding isn’t always possible. A thought would be to only expand and bisect 

the outer boxes of the stable range. Also, the performance methods included give their 

information best in a graph form. A method that would give the performance in the same 

block style as the positivity algorithm would be helpful as a graph would not be needed 
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and all control variables could be included instead of a maximum of three. In conclusion, 

there are a few options when the design method doesn’t work. One, reduce the threshold 

and try again. Two, increase the order of the controller and try again. Lastly, try a 

different design method. 
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