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ABSTRACT 

 

Investigation on Nitric Oxide and Soot of Biodiesel and Conventional Diesel using a 

Medium Duty Diesel Engine. (May 2012) 

Hoseok Song, B.S., Inha University, South Korea; 

M.S., Kansas State University 

Chair of Advisory Committee: Dr. Timothy Jacobs 

 

Biodiesel has been suggested as an alternative fuel to the petroleum diesel fuel. It 

beneficially reduces regulated emission gases, but increases NOx (nitric oxide and 

nitrogen dioxide) Thus, the increase in NOx is the barrier for potential growth of the 

biodiesel fuel. In general, NOx formation is dominated by flame temperature. 

Interestingly, soot can play a role as a heat sink as well as a heat transfer media to high 

temperature gases. Thus, the cooling effect of soot may change the flame temperature 

and therefore, NOx emissions.  

In this study, emphasis is placed on the relationship between soot and NO (Nitric 

oxide) formation. For the experimental study, a metallic fuel additive is used since 

barium is known to be effective to suppress soot formation during combustion. The 

barium additive is applied to #2D (Number 2 diesel fuel) by volume basis: 0.1, 0.25 and 

0.5 %-v, and to the palm olein oil by 0.25 %-v. All the tests are carried out in a four-

cylinder medium duty diesel engine, 4045 DI diesel engine, manufactured by John 



iv 
 

Deere. For the analysis, an analytical model is used to estimate combustion temperature, 

NO concentration and soot emissivity. 

The results show that NO concentration does not have the expected trade-off 

relation with soot. Rather, NO concentration is found to be more strongly affected by 

ambient temperature and combustion characteristics than by soot. The results of the 

analytical model show the reasonable NO estimation and the improvement on 

temperature calculation. However, the model is not able to explain the detailed changes 

of soot emissivity by the different fuels since the emissivity correlation is developed 

empirically for diesel fuel.  
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NOMENCLATURE 

Symbols 

A  Surface area  

h Specific enthalpy 

hc Heat transfer coefficient 

im  Mass flow rate into the system. 

m  Mass of burned fuel-air mixture 

p Cylinder pressure 

Q  Heat transfer rate 

RQ  Radiation heat transfer 

R Gas constant 

br  Burned fuel mass fraction  

T Temperature 

RT  Radiation temperature 

WT  Wall temperature of a cylinder 

t Time 

u Specific internal energy 

Vc  Cylinder volume  

pv  Mean piston speed 

ε Emissivity 

σ Stefan-Boltzmann constant. 
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θ Crank angle 

ϕ Fuel/air equivalence ratio 

 

Subscripts 

a Air 

b Burned gas 

g Gas 

o Initial 

u Unburned 

rad Radiation 

 

Notation 

Δ Difference 

[ ] Concentration, moles/cm3 

%-v Volume percentage 

 

Abbreviations 

A/F Air/fuel ratio 

BA Barium additive 

B20 20%-v biodiesel with 80%-v diesel fuel 

B100 100%-v biodiesel 

CN Cetane number 
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FSN Filter smoke number 

ID Ignition delay 

MBT Maximum brake torque 

SOI Start of injection 

TDC, ATDC, BTDC Top dead center, after TDC, before TDC 

 

 

 

The nomenclature is made based on the work by Heywood [1]. 
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1 INTRODUCTION 

 

1.1 Motivation 

Global warming has emphasized the need to reduce greenhouse gases. Energy 

security in the United States has also become an imminent issue. In order to solve these 

problems, various alternative methods have been suggested, and one of these is biodiesel 

fuels. Since biodiesel fuels are produced from domestic natural sources through the 

transesterification process [2], the strong dependence on foreign countries can be 

reduced. Also, biodiesel, due to its participation in a carbon cycle and its use in ultra-

efficient diesel engines, is a type of alternative energy that contributes toward solving 

global warming and energy insecurity. The use of biodiesel fuels emits carbon dioxide 

(CO2) through combustion, and their feedstock sources absorb CO2 from the atmosphere 

through photosynthesis in a closed-loop CO2 cycle as shown in Figure 1, while the use 

of petroleum diesel fuels builds up CO2 in the atmosphere. Therefore, using biodiesel 

fuels can lead to reducing the accumulation of CO2 in the atmosphere [3]. Additionally, 

the use of biodiesel fuels is shown to reduce carbon monoxide (CO), hydrocarbon (HC) 

and particulate matter (PM) emissions compared to conventional diesel fuels. These 

reductions in pollutants are critical for also maintaining healthy air in the United States.  

 

____________ 
This dissertation follows the style of Journal of Engineering for Gas Turbines and Power. 
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Figure 1  Comparison of CO2 lifecycle between petroleum diesel and biodiesel 

fuels. (Source: biodieselprocessor.org) 

 

The use of biodiesel, however, has been reported to increase oxides of nitrogen, 

NOx, which could lead to increased tropospheric ozone formation, compared to the use 

of petroleum diesel fuel. The relative increase in NOx is believed to largely result from 

thermal formation mechanisms; that is, relatively higher post-flame gas temperatures 

with biodiesel are likely the dominant factor to causing relatively higher NOx formation 

[3], [4]. Correspondingly, post-flame gas temperature might be affected by the 
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concentration of soot that is normally formed during diesel combustion; higher soot 

concentrations increase radiation heat transfer, resulting in a reduction in flame 

temperature and thus in post-flame gas temperatures. Biodiesel, with its lower in-

cylinder soot formation, tends to have lower radiation heat transfer than petroleum diesel 

does. This lower radiation heat transfer may partially contribute to higher post-flame 

temperatures of biodiesel, and thus higher NOx emissions with biodiesel. However, this 

mechanism and the contribution of the radiation heat transfer to the biodiesel NOx are 

not completely understood [3]. 

Therefore, understanding the NOx emission in a diesel engine is essential to solve 

the problems in biodiesel combustions. The current study is focused on investigating the 

relationship between NOx emissions and soot radiation in a diesel engine. Also, it is 

expected to establish the basis of a better combustion diesel engine with lower NOx 

emissions.  
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1.2 Background Knowledge 

1.2.1 Diesel Engine Combustion 

Since the inception of the first diesel engine invented by Rudolf Diesel in the late 

19th century, diesel engines have been used in various sectors due to their higher fuel 

efficiency, durability, and longevity, compared to gasoline engines. The wide application 

of diesel engines includes passenger cars, trucks, construction machines, power 

generators, ships, locomotives, and airplanes.  

There are emission problems, however, that diesel engines produce more 

particulate matter because combustion takes place in heterogeneous air-fuel mixture. 

Soot is a primary component of particulate matter. Moreover, diesel engines may 

produce more NOx depending on engine operating condition, compared with gasoline 

engines. Interestingly, NOx versus particulate matter trade-off is well known [4]. Thus, it 

is difficult to control and decrease both NOx and particulate matter at the same time. 

As emission regulations become more stringent over the years, the regulations 

require combustion engines to produce less and less emission gases. So the future of 

diesel engines is strongly dependent on the regulations. Thus, many studies about 

particulate matter and NOx emissions from diesel engines have been carried out to meet 

these new regulations. 

 

1.2.2 Biodiesel 

Biodiesel has been suggested as an alternative fuel to the conventional diesel fuel 

and is considered to be renewable since its feedstock is produced through the 
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photosynthesis process with the energy from sunlight and carbon dioxide [2]. In addition 

to this benefit, biodiesel can be used in its pure form as well as a form blended with 

conventional diesel fuel without any engine modifications. 

In terms of air pollutions, biodiesel can benefit in decrease of the regulated 

emissions such as hydrocarbon (HC), carbon monoxide (CO), and particulate matter 

(PM) [2]. Also, biodiesel can relatively reduce life-cycle CO2 emissions because of the 

materials produced through the photosynthesis process. 

On the other hand, biodiesel can lead to the increase in NOx emissions [3], [5], 

[6]. Since NOx has the direct effects on human health and an important role in 

atmospheric chemistry [7], there have been many studies to understand the increase in 

NOx in biodiesel combustion. Thus, there are various explanations for NOx formation in 

biodiesel combustion, which can be summarized into 4 categories as following:  

 1. Biodiesel has 5 to 10 percentage higher bulk modulus than number 2 diesel 

(#2D) fuels [2]. The higher bulk modulus can cause faster pressure 

propagation in the fuel system of engines and eventually, lead to earlier 

injection. Advanced injection yields in turn earlier start of combustion and, 

thus, leads to longer residence time and higher in-cylinder temperature [8]. 

As a result, NOx emissions might be increased [1], [3]. However, the 

advanced injection is not observed in common rail fuel system [9]. 

 

 2. Biodiesel has higher cetane number than conventional diesel fuels, which 

causes earlier ignition [10]. This yields the combustion products to have a 
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longer residence time at high temperatures. Consequently, biodiesel 

combustion might be able to produce more NOx. 

 

  3. Biodiesel is an oxygenated fuel [2]. The presence of oxygen in fuel likely 

helps less production and more oxidation of soot [3], [10], and consequently 

reduces the radiation heat loss from the combustion flame to surroundings. 

Soot might change the flame temperature, which is estimated to be 50 to 60 K 

[4]. Thus, biodiesel may have higher flame temperature and can lead to 

increase in thermal NO, which is related to the radiation [8]. 

 

 4. The difference in fuel chemistry may have the prompt NO mechanism [2]. 

For this reason, biodiesel fuel might have different chemical kinetics 

pathways to form NOx.  

  

1.2.3 NO Formation  

NO is one of the regulated emission gases and is regulated with NO2 as NOx. The 

EPA (Environmental Protection Agency) standard for combined NOx and HC is 4.0 

g/kW·hr, which is applicable to Tier 3 non-road diesel engines with the rated power 

ranging from 130 to 225 kW. As mentioned previously, the standard becomes more 

stringent.  
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Among those emission gases, NO is of interest in this study. In general, there are 

three mechanisms of NO formation; 1) thermal NO formation, 2) prompt NO formation, 

and 3) NO formation from nitrogen in the fuel.  

First of all, NO formation from fuels is usually not considered in internal 

combustion studies [1], [11], since diesel and gasoline fuels contain little amount of 

nitrogen. 

Regarding the prompt mechanism, Fenimore [12] shows the faster and transient 

formation of NO in the primary reaction zone where hydrocarbon is burning. It is shown 

that the richer fuel-air mixture, the more NO in the primary zone. However, when the 

fuel-air mixture is lean, the NO formation in the primary zone is negligible. Even though 

rich heterogeneous pockets in the fuel-air mixture might support prompt mechanism, it is 

widely acknowledged that thermal mechanism is the dominant form of NO formation in 

diesel combustion. 

Since diesel combustions undertake at high temperatures, most of the NO 

formation is explained via the thermal mechanism, which is also called the extended 

Zeldovich mechanism summarized by Lavoie et al.[13]: 

 

2O N NO N    1.1 

2N O NO O    1.2 
N OH NO H    1.3 

 

The first reaction requires high energy and is strongly dependent on high 

temperature, since the N2 has triple bond. That is the reason, again, why this mechanism 
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is referred to as the thermal NO mechanism [14]. This thermal mechanism is usually 

unimportant under 1800 K [15]. 

Based on the thermal NO mechanism, NO concentration is generally calculated 

with an assumption that the reaction rates in a flame are so fast that the burned gases are 

almost in thermodynamic equilibrium. Thus, O, O2, H, OH, and N2 are calculated with N 

in quasi-steady state.  

 

1.2.4 Soot Production in Diesel Engines 

Diesel particulate matter (PM) is composed primarily of carbonaceous material 

(soot), whose fraction in particulates is higher than 50 % [1], [16]. The EPA standard for 

PM is 0.2 g/kW·hr, which is the limit to the current test engine. Soot is known to be 

inherent in diesel engines [17] due to their heterogeneous combustion. An average soot 

particle size of 25 nm diameter [18] and a certain amount of soot in exhaust gases causes 

a black smoke. The small size of soot is likely to be inhaled into, and deposited in human 

lungs. As a result, it may cause lung cancer [19]. Also, it is harmful to engines since the 

deposition of soot deteriorates engine performance. 

Soot is formed from unburned fuel in rich mixture regions at high temperature, 

and the formed soot is oxidized at the same time. Thus, the exhausted soot in diesel 

engines is the result of soot formation and oxidation. Soot is formed in the order of 

milliseconds, and the complex diesel combustion makes it difficult to understand the 

detailed processes of soot production [1]. However, soot production is routinely 

summarized into six processes: 1) pyrolysis, 2) nucleation, 3) surface growth, 4) 
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coalescence, 5) agglomeration, and 6) oxidation. In many literatures, these processes are 

explained similarly in detail as following. 

In fuel pyrolysis, fuels change their molecular structure at high temperature 

without oxidation [16]. Through the pyrolysis process, gas-phase precursors of soot are 

formed such as unsaturated hydrocarbons, and polycyclic aromatic hydrocarbons (PAH) 

[20]. Via nucleation, the gas-phase species condense to form the first recognizable soot 

particles, which are called soot nuclei. 

After the soot nuclei are formed, the particles grow in mass and volume through 

the following processes: surface growth, coalescence, and agglomeration. Through the 

surface growth process, the soot nuclei gain mass from receiving gas-phase 

hydrocarbons on their hot reactive surface [16]. This process increases soot mass, but the 

number of particles does not change. 

Coalescence is the process of combining soot particles. Spherical particles collide 

with each other and combine together into new spherical particles. Opposite to surface 

growth, the total mass of soot particles does not change, while the number of soot 

particles decreases. 

Like coalescence process, agglomeration is the process of combining particles to 

form soot agglomerates, which are called soot particles. They are usually in chain-like 

structure, but in some cases in cluster structure. However, the individual particles 

maintain their shape. 

While the five formation processes are occurring, soot is oxidized by the attack 

of oxidizing species such as O2 and OH radical. It is known that soot is oxidized mainly 
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by OH under fuel-rich and close-to-stoichiometric condition [1], while soot is oxidized 

by both O2 and OH [21] under lean condition. 

The soot from the competition between soot formation and oxidation plays an 

important role as the source of radiation heat flux in diesel combustion. The radiation 

heat transfer is observed to be on the same order of the convection heat transfer during 

diesel combustion, whose fraction of total heat transfer is about 40 % [22]. As 

mentioned above, the soot radiation likely reduces the flame temperature and, 

consequently, reduces the thermal NO formation. This relation is investigated in the 

current study. 

 

1.2.5 Additives 

In order to reduce soot emissions, there have been various attempts to decrease 

soot emission from diesel engines. One of these attempts uses metallic additives, 

predominantly, a barium additive. Barium is one of alkaline earth metals, which is 

known to be one of the most effective metals in reducing soot formation [23], [24]. 

Many studies show that barium suppresses soot emissions. Norman et al. [25] 

show that a barium additive reduces opacity up to 30 to 55 %, and that more cleanliness 

and less wear of most engine parts are caused by the barium additive. Similar 

experimental results are shown by Truex et al. [26] by using Lubrizol 556 barium 

additive. Fuels are treated with 0.25 %-v of the additive. The barium additive reduces 

exhaust opacity up to 30 to 40 % measured by a smoke meter. The opacity reduction 

does not correlate with total particulate mass because the added barium is emitted in 
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particulate emissions. The disagreement between the opacity and the particulate mass is 

observed by Draper et al. [27]. Thus, both studies suggest that the smoke suppression 

may be due to the change in chemical composition or size distribution of soot by the 

additive. Additionally, it is observed that the carbonaceous material is reduced to about 

30% in the mass of emission by using the barium additive. So it is reasonable that the 

reduction of carbon material is related to the reduction of opacity. In other words, the 

barium additive is effective to reduce carbon materials, and, consequently, to reduce 

opacity. 

Cotton et al. [23] suggest a chemical mechanism that, when the concentration of 

hydroxyl radical (OH) is below the equilibrium (diffusion flame), the additive catalyzes 

the dissociation of water and hydrogen to produce hydroxyl radicals, which cause the 

oxidation of soot. In an opposite situation (premixed flame zone), the additive catalyzes 

the recombination of radicals so that the concentration is reduced to equilibrium. It is 

shown that barium, NO, and SO (sulfur oxide) catalyze the dissociation of water and 

hydrogen to produce hydroxyl radicals in diffusion flames, so the number of barium, 

NO, and SO are decreased. 

Bluweicz et al. [24] shows the ionization effect that the ionization of the barium 

in the flame decreases the soot collection rate, the number of soot precursors, and the 

particle size. They conclude that the anti-soot effects of barium additive are caused by 

the higher ion level due to the additive compared to that of the natural flame. They 

suggested that adding the barium additive may reduce the number of hydrocarbon nuclei 

( n mC H  C H ), and this reduction causes the number of solid charged particles to be 
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reduced. Also, the increase of electron by adding barium interrupts the coagulation of 

ionized solid particles, and, thus, causes the particle size to become smaller. Thus, 

adding barium additive reduces the formation of soot, and also reduces the particle size. 

Haynes et al. [28] shows the both ionization and chemical mechanisms by using 

the barium additive. They show that the barium can produce sufficient ions to suppress 

the coagulation process of soot precursors. Also, it is shown that the barium additive 

increases OH which helps oxidation of soot, especially gaseous hydrocarbons, resulting 

in smaller soot particles. Thus, the barium additive affects both soot formation and 

oxidation during combustion. Also, it can be interpreted that the soot radiation might be 

reduced since the barium additive can shorten the presence time of soot during 

combustion.  

For above reasons, a barium additive is selected to control soot formation in the 

current study and to possibly investigate the relation between soot radiation and NO 

formation. 

 

1.2.6 Analytical Models 

In order to better understand combustion processes inside an internal combustion 

engine, a zero-dimensional simulation method is often used. This model does not have 

spatial resolution in simulation of combustion processes, so it is called a zero-

dimensional model [29]. Recently, multidimensional modeling has been dominant 

because it can simulate combustion phenomena visually and predict combustion results 

in three dimensions; so it requires high computer power due to its complexity.  
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A zero-dimensional model, however, is still selected in engine research because 

it is simple, but useful for parametric investigations on heat release and heat transfer 

rates with experimental data [29], [30], [31]. The zero-dimensional model to calculate 

heat release is a diagnostic, not a predictive, model; it needs input data such as in-

cylinder pressure. For simplicity, it is generally assumed that the contents in the cylinder 

chamber are uniform in pressure and temperature at any instant. This assumption 

facilitates calculations of the model to use the first law of thermodynamics, conservation 

of mass, and ideal gas law. 

One of the early works of the zero-dimensional models is accomplished by 

Krieger et al.[30]. The authors introduce a single zone model to analyze diesel engines. 

All the thermal properties of products and reactants are calculated by using the 

correlations based on JANAF Tables [32]. 

Krieger et al. [30] also suggest a two-zone model: burned and unburned zones. 

The authors estimate the initial flame temperature where the combustion process begins, 

by using the adiabatic flame temperature, which means that the enthalpies of the burned 

zone and unburned zones are equal. The results show the change of temperature, volume 

and burning fuel mass fraction for each zone. Similar studies of the two-zone model are 

carried out by others [33], [34], [35]. 

Based on the concept of the previous models, a two-stage model is developed by 

Szekely et al. [31]. It is composed of four zones: the unburned rich- and lean-zones, and 

the burned rich- and lean- zones. Compared to a single zone model, it estimates more 

realistic gas temperatures which allow the modeling of thermally formed NO and 
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radiation heat flux. Similar to the other zero-dimensional models, temperature gradient, 

pressure wave, and non-equilibrium gas composition are ignored in each zone. The 

authors also investigate radiation heat transfer by using the gas emissivity correlation 

suggested by Sitkei [36], and the soot emissivity correlation suggested by Kunitomo et 

al. [37].  

 

1.3 Objective 

As introduced above, the increase in NO emission with biodiesel combustion is 

barrier to its future as an alternative fuel. Of the possible explanations, the soot radiation 

effect seems to be the dominant factor in NO formation. Thus, it is essential to 

understand the NO increase in the biodiesel fuel combustion and the relation between 

NO and soot radiation. So the current study is carried out in majorly three parts: diesel 

fuel test, biodiesel test, and analytical modeling. 

In the first study, the diesel fuel is prepared and mixed with the barium additive. 

It is designed to investigate the soot effects on NO formation, since the additive is 

effective to reduce the soot concentration. Also, this study is to investigate the changes 

of soot and NO emissions with the various engine speeds and loads, which cause 

different combustion characteristics. 

The study with the biodiesel fuel is designed to verify the possible effects of the 

barium additive on NO emissions, possibly, excluding the soot effects. The biodiesel is 

selected for this study because it produces lower soot in general and, thus, weakens the 

soot effects on NO formation. 
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Biodiesel fuels are also used to study the trends of NO and soot emissions by 

varying the biodiesel concentration and also the engine operating conditions. This study 

is to understand what causes NO to increase among combustion characteristics, biodiesel 

fuel effects, and other possible factors.  

Along with the experimental work, the two-stage model is programed in 

FORTRAN to interpret the combustion processes in terms of combustion temperature, 

heat transfer rate, and apparent heat release rate. The priority of the two-stage model is 

to estimate the NO concentration, which would be used in a closed-loop control strategy 

for NO emission. However, it is possible that the temperature calculation does not 

capture the details of physical combustion processes since the calculation is manipulated 

with the heat transfer factor to match the combustion duration [31].Also, this study 

verifies the ability/inability of the analytical model to estimate soot emissivity, which 

cannot be measured through experiments. 

In summary, this research is carried out to show: 

1. The relation between soot and NO concentrations. 

2. The trend of NO with combustion characteristics. 

3. The causes for the biodiesel NO increase. 

4. NO and soot emissivity estimation through the two-stage model. 
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2 EXPERIMENTAL METHODOLOGY AND APPARATUS 

2.1 Test Engine 

The test engine for this study is a Tier 3 medium duty diesel engine, 4045 DI 

Diesel Engine, manufactured by John Deere. Detailed specifications of the engine are 

shown in Table 1.  

Engine torque is measured with a direct current (DC) dynamometer 

manufactured by General Electric. The engine is controlled by using a control unit 

developed by Drivven, San Antonio, Texas, enabling control of the amount of fuel 

injected, start and duration of injection, exhaust gas recirculation (EGR) level, and fuel 

injection pressure. 

Table 1  Specifications of the test engine. 

 Value 

Displacement 4.5 L 

Bore 106 mm 

Stroke 127 mm 

Compression Ratio 16.57 : 1 

Peak Power 115 kW at 2400 rev/min 

Peak Torque 575N·m at 1400 rev/min 

Number of Valves/Cylinder 4 

Fuel System High pressure common rail, direct injection 

Air System Variable geometry turbo-charger (VGT) 
with exhaust gas recirculation (EGR) 
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2.2 Test Fuels 

The test fuels are the commercially available #2 diesel (#2D) as a base fuel and 

the palm olein oil biodiesel. For the diesel fuel test, #2D is mixed with the barium 

additive (Lubrizol 565), which is provided by Lubrizol Corp., by volume basis: 0.0, 0.1, 

0.25, 0.5 %-v. The case of 0 % means the pure #2D without the barium additive. The 

fuel mixture is prepared based on the manufacturer’s recommended concentration, which 

is 0.25 %-v to a test fuel. 

For biodiesel tests, the palm olein biodiesel (Green Earth Fuels, Houston, Texas) 

is used as B100, which means 100 %-v biodiesel. The biodiesel is mixed with the #2D 

by 20 to 80 %-v to make B20 fuel. For the B100 case, 0.25 %-v of the barium additive is 

applied to study the possible effects of the barium additive on NO emission. 

 

Table 2  Summary of properties of diesel fuels. 

Property (Units) 
Value 

ASTM Method 
#2D 

#2D with 
0.1% BA 

#2D with 
0.25% BA 

IBP  (°C) 173.4 172.3 171.8 ASTM D86 
FBP  (°C) 340.5 340.1 339.6 ASTM D86 

Lower Heating Value 
(MJ/kg) 

43.008 42.999 42.979 ASTM D240N 

Density (g/L) 825.5 825.6 826.3 ASTM D4052s 
Viscosity (cSt) 2.247 2.256 2.259 ASTM D445 40c 
Carbon Weight 

(%-weight) 
85.81 86.09 86.0 ASTM D5291 

Hydrogen Weight 
(%-weight) 

13.41 13.53 13.4 ASTM D5291 

Sulfur (ppm) 5.3 7.6 11.0 ASTM D5453 
Cetane Number 51.3 50.8 48.9 ASTM D613 

Saturate Con.(%-vol) 74.2 71.2 73.1 ASTM D1319 
Olefin Con. (%-vol) 1.1 2.0 1.6 ASTM D1319 

Aromatic Con.(%-vol) 24.7 26.8 25.3 ASTM D1319 
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Table 3  Summary of properties of biodiesel fuels. 

Property (Units) 
Value 

ASTM Method 
B20 B100  

B100 with 
0.25% BA 

IBP  (°C) 174.7 329 - ASTM D86 
FBP  (°C) 343.9 357 - ASTM D86 

Lower Heating Value 
(MJ/kg) 

41.6 37.193 - 
ASTM D240N 

Density (g/L) 844.6 875.7 - ASTM D4052s 
Viscosity (cSt) 2.763 4.741 - ASTM D445 40c 
Carbon Weight 

(%-weight) 
84.06 76.18 - 

ASTM D5291 

Hydrogen Weight 
(%-weight) 

13.08 12.37 - 
ASTM D5291 

Sulfur (ppm) 5.8 2.4 - ASTM D5453 
Cetane Number 56.5 64.3 - ASTM D613 

Saturate Con.(%-vol) 76.8 - - ASTM D1319 
Olefin Con. (%-vol) 1.1 - - ASTM D1319 

Aromatic Con.(%-vol) 22.1 - - ASTM D1319 
 

The test fuels are analyzed using American Society of Testing and Materials 

(ASTM) standard procedures by the Southwest Research Institute. The fuel properties 

are tabulated in Table 2 and Table 3. The B100 with 0.25 % is not analyzed because the 

properties are likely to be similar to them of B100 like the #2D cases.  

 

2.3 Data Measurements 

All data acquisition and process control tasks are managed by a PC executing 

LabVIEW. The data acquisition system is composed of two parts: high and low speed 

systems.  

The high-speed system is for the crank angle-resolved measurements such as in-

cylinder pressure, needle lift profile, and injector current. The high-speed system is 

composed of NI (National Instruments) PXI-6123, PXI-PCI 8331, BNC-2090A 
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connector block, and the sensors. In general, the PC controls the PXI-6123 through PXI-

PCI 8331. All the data are collected through BNC-2090A and sent to PXI-6123 module, 

which converts analog to digital signals. 

The crank angle is measured using an optical encoder, which is mounted onto the 

front of the crankshaft. The encoder sends two channels to the high speed system. The 

first channel sends out a pulse for every 0.2 degree, and the second channel outputs one 

pulse for every rotation of the encoder, when the encoder is at 133 degrees before TDC. 

This offset is determined by using another hall-effect sensor carefully aligned with TDC. 

According to the crank angle measured by the encoder, the in-cylinder pressure 

measurement is carried out using a piezoelectric pressure transducer (model: Kistler 

6056A), which is mounted in #1 cylinder. A Kistler charge amplifier converts the small 

current output from the transducer to a voltage signal, which is recorded based on the 

crank angle resolution. Note that the in-cylinder pressure from #1 cylinder is used for 

data analysis, since the cylinder is most representative one out of 4 cylinders. This is 

justified through turning off one injector out of four at a time. The results show that the 

injector in #1 cylinder has the fuel amount closet to one quarter of the total fuel. The 

cylinder pressure data is the average of 300 engine cycles. 

The needle lift profile is measured using the needle lift senor based on the eddy 

current principle. The sensor produces a linear electrical signal proportional to the 

distance of the needle from it. Along with the needle lift profile, the injector current is 

also measured using a current clamp.  
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For the low-speed system, sensors are connected to two Measurement Computing 

Corporation DAS6031 model 16 channel data acquisition boards for “low-speed”, or 

time-resolved, measurements. The low speed system records the relatively slow 

changing data such as emission gases, temperatures, smoke numbers, air and fuel flow 

rate. The each measurement is explained in the following. 

Temperature of the intake manifold is measured by using a K-type thermocouple, 

which can measure temperatures up to 260 oC within an error of 2.2 oC. Temperatures of 

the exhaust manifold, post turbocharger, and pre compressor are measured by using high 

temperature thermocouples (model: T-26) manufactured by Temprel Inc. They can 

measure temperatures up to 900 oC with an error of 1.1 oC.  

Pressures of the intake manifold, exhaust manifold, post turbocharger, and pre 

compressor are measured by using strain gauge pressure transducers (model: PX309-

050A5V) manufactured by Omega Engineering, which have a pressure range from 0 to 

3.45 bar with an error of 0.25 %.  

The AVL 415S Smoke Meter used in this study is a filter-type smoke meter for 

measuring the soot content level in the exhaust gas from an internal combustion engine, 

which is passed through a filtered paper. Five samples are taken and averaged per engine 

condition for each exhaust smoke concentration. The smoke meter measures the 

reflectance of the paper filter as it is tuned for carbon black, and the result of the 

reflectance is displayed as Filter Smoke Number (FSN), which is a relative value and 

ranges from 0 to 10. 



21 
 

The emission gases are measured by using an automotive emission analyzer 

system, MEXA-7000 manufactured by HORIBA Inc., which measures the concentration 

of carbon monoxide (CO), carbon dioxide (CO2), nitric oxide (NO), oxygen (O2) and 

total hydrocarbon (THC) in exhaust gas from engines. Figure 2 shows the gas flow in the 

system. The raw emission samples from the exhaust pipe are filtered at 190 oC by the 

heated pre-filter and sent into the oven type heated analyzer (OVN) also at 190 oC, 

which is composed of THC and NO analyzers and is located separately from the system 

rack. 

 
 

Figure 2  Exhaust gas flow in the emission gas analyzer. 

 

The gas line for THC is maintained at about 190 oC to prevent condensation of 

heavy hydrocarbons and NOx because the boiling temperature of hydrocarbons ranges 

from 116 to 191oC. THC is measured by using the flame ionization method. The 

sampled gas is introduced into a hydrogen flame inside the analyzer. Then, the 

hydrocarbons in the sample produce ions when they react in the hydrogen flame. The 
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produced ions are detected by a metal collector, and resultant output voltage is 

measured, which is proportional to the concentration of the hydrocarbons. 

NO analyzers first converts water soluble NO2 to NO in a heated sample 

conversion module. This is done within the instrument, just prior to the reaction 

chamber. Then, NO is measured using the chemiluminescence detector, which is the 

industry standard method of measuring NO concentration. This method uses the reaction 

between NO and ozone (O3), which produces light. The emitted light is measured by a 

photo multiplier tube (PMT) and is proportional to NO. Thus, NO can be measured 

based on the chemiluminescence method. 

After measuring THC and NO, the sample gas is cooled down to condensate 

water at 5 oC by the sample handling unit (SHS) as shown in Figure 2. 

The dehumidified sample gas is transferred to the rack for non-heated analyzer 

module (ANR). This system is composed of CO/CO2 analyzer and O2 analyzer. The 

analyzer system measures the concentrations of CO/CO2 based on non-dispersive 

infrared detector (NDIR. The detector uses the infrared light absorption of CO/CO2. The 

analyzer shines an infrared beam through a sample cell and measures the amount of 

infrared absorbed by the sample at the necessary wavelength. Thus, the analyzer is able 

to measure the volumetric concentration of CO/CO2 in the sample gas. 

The concentration of O2 is measured by using magnetopneumatic method, which 

uses the magnetic characteristic of O2. The analyzer passes O2 to an uneven magnetic 

field, where the O2 is drawn to the stronger side of the field. The O2 causes the pressure 
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rise based on a non-magnetic gas (e.g., nitrogen) into the analyzer. The differential 

pressure between two gases is measured and is proportional to the concentration of O2. 

 

2.4 Methodology  

For this study, the maximum brake-torque (MBT) timings are searched by varying 

the start of injection timing with diesel #2 D at 1400 rev/min with 50 and 250 ft-lbs, and 

at 2400 rev/min with 150 ft-lbs. Based on the found MBT timings, all the tests are 

carried out.  

The diesel fuels are mixed with the barium additive to control the soot formation 

during combustion processes. This study is to change the soot amount by using the 

barium additive and to investigate the effects of soot on NO formation. Also, the 

changes in soot and NO are studied by varying the engine load and speed conditions, 

which cause different combustion characteristics. Note that the additive is just used as a 

research tool, so the barium additive cannot be a solution to soot emissions. 

In order to separate the possible effects of the barium additive on NO formation, 

B100 is used with the barium additive since the pure biodiesel produce less soot and 

weakens the soot effect on NO formation. 

Using the biodiesel fuels, various engine loads and speeds are tested to understand 

the changes in NO concentration since biodiesel generally produce more NO than the 

conventional diesel. It is expected to show what factor is dominant on NO formation. 
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The experimental data is analyzed and processed into heat release rate, heat 

transfer rate, temperature, and mass fraction. Soot emissivity is also estimated based on 

the calculated results.  
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3 THEORY OF ZONAL ANALYTICAL MODELS 

3.1 Single-Zone Model 

A single-zone model, which is introduced by Krieger et al.[30], is based on the 

first law of thermodynamics, the conservation of mass law, and the ideal gas law. It is 

assumed that the contents in a combustion chamber are in an open control volume, and 

that the control volume is in a thermodynamic equilibrium at any instant in time; thus 

there are no temperature and pressure gradients, non-equilibrium chemical composition, 

and fuel vaporization. The analytical model begins with the first law of thermodynamics, 

which is expressed as: 

 
 

i i
i

d m u dm du dV
u m p Q m h

d d d d   


           3.1 

where 
 d m u

d


 is the change of internal energy inside a cylinder. 

dV
p

d  
 is the mechanical work done on the surface. 

Q  is the heat transfer rate from the control volume surface to cylinder gases. 

i i
i

m h   is the flow energy through the control volume surface. 

im is mass flow rate into the system. 

m  is mass of burned fuel-air mixture. 

u  is internal energy. 

p  is instantaneous cylinder pressure. 

V  is instantaneous cylinder volume. 

  is crank angle degree. 

h  is enthalpy of fuel-air mixture. 
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The ideal gas law is also applied to the gases in a combustion chamber, which is 

written as:  

p V m R T     

dp dV dm dR dT
V p R T m T m R

d d d d d    
              3.2 

 

Since the composition of the gases continues to change in temperature and 

pressure, the ideal gas constant R is assumed to be a function of temperature T and 

pressure p (due to their effect on the species composition through dissociation) and 

equivalence ratio ϕ. Therefore, the differential of the ideal gas constant can be expressed 

as: 

dR R dT R dp R d

d T d p d d
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Similarly, the internal energy is also assumed to be a function of temperature, 

pressure, and equivalence ratio. Thus, the differential form of the internal energy is 

expressed as following: 

du u dT u dp u d

d T d P d d


    

  
     
  

   3.4 

 

Regarding the equivalence ratio, the equivalence ratio at any instant in time is 

given as [29],[30]: 
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where   is the equivalence ratio. 

0  is the initial equivalence ratio. 

m is the instantaneous mass in the control volume. 

Om  is the initial mass in the control volume. 

OFA  is the initial fuel/air ratio prior to fuel injection. 

SFA  is the stoichiometric fuel/air ratio. 

 
Using Equations 3.1 through 3.5, the energy balance equation is rearranged to 

calculate the change of mass, 
dm

d
 , shown as Equation 3.6. It is the mass flow rate, at 

which the fuel is inducted into a combustion chamber and immediately burned [29]. 

Thus, the instant change of mass can be treated as the mass burning rate with the 

assumption. If the fuel instantaneously reacted to equilibrium products right after 

entering the combustion chamber [29], the change of mass would imply the influence of 

in-cylinder pressure on the combustion in an engine with knowing the properties of the 

gases and the heat transfer rate inside the cylinder during combustion. The method to 

calculate the properties of the gases is introduced in section 3.4. The product of the mass 

flow rate and the lower heating value of a fuel is an apparent heat release rate, which can 

be approximated, but not be determined exactly [1]. 
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The partial derivatives of the internal energy, u, and the ideal gas constant, R, 

with respect to a temperature, pressure, and equivalence ratio are obtained from the 

chemical equilibrium program, which is developed by Olikara and Borman [38]  and is 

introduced in Appendix A. 

This approach is to solve the energy equation by using the ideal gas law and the 

first law of thermodynamics with additional assumptions and initial conditions as 

following [29], [30]: 

1. The initial temperature, pressure and volume. 

2. The experimental pressure and volume data of the cylinder. 

3. The expressions for the internal energy, enthalpy, and ideal gas constant of the 

combustion products and the reactants.  

4. A correlation equation for calculating heat transfer inside a combustion 

chamber. 

5. An estimated value of the temperature of a combustion chamber wall. 

6. The geometry of a combustion chamber. 
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3.2 Two-Stage Model 

The two-stage model assumes that the contents in a cylinder are in four control 

volumes [31]: unburned and burned stoichiometric-zones, and unburned and burned 

lean-zones. This model assumes that the combustion takes place at two stages. At each 

stage, only three out of four zones are active. At the first stage, the fuel in the unburned 

stoichiometric-zone transfers to the burned stoichiometric-zone through the combustion 

process, while the mixture of a fuel and air in the unburned lean-zone acts like ideal 

gases without exchanging mass to other zones as illustrated in Figure 3. 

At the second stage, combustion starts in the unburned lean-zone. The mass of 

the unburned lean-zone is transferred to the burned lean-zone as shown in Figure 4, 

while the burned gases in the burned stoichiometric-zone are assumed to act like ideal 

gases under the assumption of the equilibrium compositions.  

 
Unburned 
Stoichiometric 
Zone 

 
Burned 
Stoichiometric 
Zone 

 
Unburned 
Lean zone 

Figure 3  Conceptual figure at first stage of the two-stage model. 

 
 

Burned 
Stoichiometric 

Zone 

 
Burned 

Lean zone 

 
Unburned 
Lean zone 

Figure 4  Conceptual figure at the second stage of the two-stage model. 

Combustion
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The stoichiometric- and lean- zones are assumed to have, respectively, higher 

and lower equivalence ratios than the average value. The equivalence ratio of the 

stoichiometric-zone is decided regarding the auto-ignition and NO formation. The study 

by Morris et al. [39] shows that the auto-ignition occurs in the equivalence ratio ranging 

from 1 to 1.5. Additionally, the critical equivalence ratio for NO formation in high 

temperature and pressure burned gases is near stoichiometric [40]. It is critical period for 

NO formation when burned gas temperature is at maximum [1]. In the two-stage model, 

the maximum temperature and pressure are observed at the first stage in general. This is 

the reason why the equivalence ratio of the stoichiometric-zone is assumed to be at 1. 

The averaged equivalence ratio is determined experimentally based on the mass of the 

fuel-air mixture flow into the combustion chamber. The equivalence ratio of the lean-

zone is initially calculated by using a correlation suggested by Szekely et al. [31].  

 

avg1.035  0.0917l      3.7 

 
where l  is the equivalence ratio of the lean zone. 

avg is the averaged equivalence ratio. 
 

However, the equivalence ratio of the lean-zone is adjusted based on the 

experimental NO results, since the above correlation is formulated by using two single-

cylinder diesel engines: a 0.72 liter divided chamber engine and a 0.52 liter open 

chamber engine. Similar to the single-zone model, the thermodynamic properties are 

assumed to be a function of temperature, pressure, and equivalence ratio. Thus, the ideal 
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gas law can apply to this analytical model, and the ideal gas constant and internal energy 

of each zone can be expressed as:  

 

i i i i i i

i i

dR R R dT R ddp

d p d T d d
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The subscript indicator, i, is designated to be 1 for the burned stoichiometric-

zone, 2 for the unburned stoichiometric-zone, 3 for the burned lean-zone, and 4 for the 

unburned lean-zone. 

The ideal gas law of each zone can be written as: 

 

1 1 1 1 1i i i i

i i i i

dm dR dT dVdp

p d m d R d T d V d    
           3.10 

 
The conservation of energy of each zone can be expressed similarly as: 

 

 i i i i i i i i
i i i

i

d m u u u dT dm dV Q dmdp
m u p h

d p d T d d d d d


      
   

               
  3.11

 

 

With arranging equations including the above ones, the fuel mass burning rate 

can be calculated. The more detailed derivations of equations are introduced in 

Appendix B. 
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The fuel mass burning rate of the stoichiometric zone can be simplified as: 
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The fuel mass burning rate of the lean-zone is arranged as: 

3 31 4 4 1 1 1 4 4
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  3.13 

 

In the two-stage model, it is assumed that the combustion starts after the 

completion of injection to make the overall equivalence ratio constant, and that the 

combustion products at each zone do not mix with the other zone.  

 

3.3 Heat Transfer 

The heat transfer in a combustion chamber is classified into convection and 

radiation heat transfer. Due to the limit of the current experimental system, the 
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measurement of heat transfer inside cylinder cannot be carried out. Thus, well-known 

heat transfer correlations [41], [42] are employed to estimate the heat transfer and to 

understand its qualitative trend during combustion. 

The correlation developed by Hohenberg [42] is used to calculate the total heat 

transfer that includes the convection and radiation heat transfers. Hohenberg treats the 

convection and radiation heat transfers as a lump. The total heat transfer coefficient is 

derived, empirically, based on the bore diameter, pressure, temperature, and gas velocity 

inside a cylinder. The correlation equation is expressed as: 

 

 0.80.066 0.8 0.4
1 c 2h C V T Cc pvp    

 
 

where hc is heat transfer coefficient [W/m2·K] 

p and T are pressure [kPa] and temperature [K] of the working fluid 

Vc  is cylinder volume [m3] 

pv  is mean piston speed [m/sec] 

The constant 1C  is 130, and 2C  1.4. 

 
After the total heat transfer is calculated, the soot emissivity is calculated 

independently. In general, the radiation in a diesel engine is divided into two parts: the 

luminous (soot) and non-luminous (gaseous) radiation. The radiation heat transfer rate at 

any crank angle is described as: 
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4 4( )R
R W

Q
A T T

d

  


    
 

where σ is Stefan-Boltzmann constant. 

ε is total emissivity. 

RT  is radiation temperature. 

WT  is wall temperature of a cylinder. 

A  is surface area according to volume change of a combustion chamber.  

 

Regarding the emissivity of combustion gas and soot particles, the non-luminous 

radiation is mainly due to the carbon dioxide and water vapor while the other gases of 

the combustion product gases such as H2, O2, and N2 are relatively transparent to 

radiation and thus their radiation is negligible [1],[31]. However, the soot is more 

dominant compared to the non-luminous radiation during diesel combustions. Thus, the 

soot emissivity is calculated, which is the major factor to estimate the radiation heat flux, 

by using the correlation suggested by Morel et al. [43]:  

 
 1 exp 1575s v Rf T L         

where vf  is the soot volumetric fraction 

RT  is the radiation temperature 

L  is the radiation path length. 

 

The soot volumetric fraction is calculated as 

s
v

s b

m
f

V
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where sm is the mass of soot 

s  is the density of soot. 

2.4 bV
L

A
   

 
where bV is the volume of the burned zone 

A is its corresponding surface area. 

 
The mass of soot is calculated as the method introduced by Morel et al. [43]. The 

soot formation in the burned zone is obtained by using the following equation: 

 2
1 2exp / 1 4.76s

d

b

dm A
A m YO

dt T

 
     

 


 

 

where 
dm


 is the rate of burned fuel. 

bT is the temperature of the burned zone. 

2YO  is the mole fraction of 2O . 

The constant 1A  is 0.30, and 2A is 3000. 

 
The soot oxidation rate is calculated by using the following equation: 

1/22
1 2expso s

s s R

dm m B
B PO

dt d T
 

       
 

 
where s is soot density of 900 kg/m3. 

sd  is diameter of an elementary soot particle. 

2PO is the partial pressure of oxygen in the burned zone. 

The constant 1B  is 0.4, and 2B is 10000. 

The diameter of soot particles is assumed to be 0.16s avgd   . 
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Based on the study by Morel et al. [43], the radiation temperature is calculated to 

be 0.9 times the temperature of the burned gas until the burned gas temperature reaches 

its maximum value. After the burned gas temperature reaches the maximum, the 

radiation temperature is estimated as a function of the burned fraction, temperature, and 

maximum temperature of the burned gas. The suggested model is expressed as:  

 
0.9R bT T  ; Up to the maximum temperature 

  ,max0.9 1R b b b bT r T r T        ; After the maximum temperature 

 

where subscript, R, means radiation 

Subscript, b, means the burned zone 

Subscript, max, means the maximum value 

T is temperature 

br  is the burned fuel mass fraction  

 

3.4 Chemical Reaction 

Thermodynamic properties of the product gas mixture in a combustion chamber 

are assumed to be a function of temperature, pressure, and equivalence ratio. Through 

this approach, the properties of the product gas mixture, and their derivatives can be 

calculated. In this section, the basis of the chemical reactions is introduced and is based 

on the work by Olikara et al. [38].  
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In this approach, the combustion is assumed to take place with air and 

hydrocarbon fuel which contains C, H, O, and N atoms. It is assumed that the product 

species from combusting the air fuel mixture consist of 12 species: H, O, N, H2, OH, 

CO, NO, O2, H2O, CO2, N2 and Ar in gas phase. This gas mixture is assumed to be in an 

equilibrium state at any instant in time. For example, the combustion with a fuel, 

n m l kC H O N , and air at an equivalence ratio takes place and the combustion product gases 

stay in an equilibrium state.  

Olikara et al. [38] has developed a computational program to calculate the 

thermodynamic properties as the above equations are introduced. The computational 

program is introduced in Appendix A in detail. By using the computation program, the 

mole fraction of each product of 12 species can be calculated and is used to estimate the 

thermodynamic properties and the derivative of them in terms of a pressure, temperature, 

and equivalence ratio. 
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(a) 

 
(b) 

Figure 5  Mole fraction of equilibrium combustion products of isooctane-air 

mixtures as a function of equivalence ratio at 30 atmosphere and (a) 1750K; (b) 2250 K 

and (c) 2750 K [1]. 
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(c) 

Figure 5. Continued. 

 

For the thermodynamic properties and equilibrium composition, the 

computational program developed by Olikara and Borman [38] is adopted as a 

subroutine of the analytical model. To validate the program, the mole fractions of 

combustion products of isooctane-air mixtures are calculated and compared with the 

work by Heywood [1]. Figure 5 shows the mole fractions as a function of fuel/air 

equivalence ratio at 30 atmospheres and three different temperatures. The general trend 

of equilibrium mole fractions is the same as the reference [1]. 

The subroutine program for the thermodynamic properties is validated with the 

internal energy as a function of temperature and pressure. Figure 6 (a) shows the internal 

energy versus temperature for the unburned and burned gas mixtures of isooctane-air 

mixture. The circle symbols show the values from graphs by Heywood [1]. The figure 
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shows that the internal energy increases with pressure above 2000 K. Figure 6 (b) shows 

the internal energy of the unburned mixture with equivalence ratio. It shows that the 

internal energy of burned mixture of isooctane is increased with equivalence ratio as 

shown in [1]. From those validations, it is concluded that the two-stage model is 

reasonable enough to calculate the equilibrium mole fractions and thermodynamic 

properties.  

 

 

(a) 

Figure 6  Thermodynamic properties calculated by the subroutines of the two-stage 

model: (a) Internal energy of unburned and burned mixtures; (b) Internal energy of 

unburned gases at various equivalence ratios. 
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(b) 

Figure 6 Continued. 
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by their concentrations. Kinetic rate constants for NO formation mechanism are given by 

Dean et al. [44] as shown in Table 4. 

 

Table 4  Reaction rate expression for nitrogen. 

Reaction Rate constant 3 / seccm mol    

2O N NO N    
141.95 10 exp( 38660 / )T    

2N O NO O    
99.0 10 exp( 3270 / )T T     

N OH NO H    
141.1 10 exp( 565 / )T  

 

The calculation for NO concentration is compared with the study by Caton [14]. 

For the validation and caparison with work by Caton [14], a gasoline surrogate (C7H17) 

is used as a fuel, and both the pressure and the equivalence ratio are assumed as 

constants of 1000 kPa and 1.0, respectively. As the results are shown in Figure 7, the 

calculated NO reaches its equilibrium value gradually. For the case of 2600 K, it takes 

0.004 seconds to reach the equilibrium value. For the case of 2500 K, it is about 0.013 

seconds. For the lowest temperature of 2400 K, the actual NO amount increases slowly 

compared to the other cases, and it takes 0.053 seconds. It shows that the decrease of 

temperature causes the concentration of NO to be kinetically limited. Below a certain 

temperature, NO concentration becomes “frozen” regardless of what the associated 

equilibrium concentration should be at the lower temperature [14]. 
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Figure 7  Nitric oxide concentration as a function of time and three equilibrium 

temperatures at 1000 kPa and an equivalence ratio of 1.0. 
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incomprehensible and unusable heat release data. Thus, it is desirable that the noisy data 

be removed. Several studies emphasize the importance of filtering pressure data to 

remove the waves, because small oscillation in pressure data causes wild oscillation in 

the heat release calculation [29],[30],[46]. Usually, pressure data is averaged over many 

cycles, and then is smoothed to obtain a well behaved pressure data [29]. There are two 

general methods to smooth pressure data: a spline smoothing method and a low pass 

filtering method. A spline smoothing method is to interpolate pressure data and remove 

the ripples in the pressure data; while a low pass filtering removes ripples above a cutoff 

frequency because the ripples are generated by high frequency acoustic pressures. 

Theoblad et al. [45] shows that the spline is not effective in removing ripples, 

because the method changes heat release rate due to a large reduction in the value of 

peak pressure. On the other hand, the low pass filter is shown to be effective in 

smoothing pressure data. However, the low pass filtering method decreases the peak 

value of the heat release rate in premixed combustion phase with decreasing the cutoff 

frequency. Thus, a proper cutoff frequency might be the one that does not decrease the 

peak value of the heat release rate of premixed combustion. 

In this study, the low pass filtering method is selected over the spline smoothing 

method. A subroutine program of the Compaq Extended Math Library (CXML), 

sfilter_nonrec, is used, which provides the low pass filtering. In order to find a proper 

cutoff frequency, a set of pressure data is used, which is measured at an engine speed of 

1400 rev/min and a torque of 250 ft-lbs with petroleum diesel fuel. The pressure data is 

the average of about 300 cycles at a high load condition. By using the pressure data, the 
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mass burning rates are calculated and, then, used to judge the cutoff frequency of the low 

pass filtering. Figure 8 shows the mass burning rate according to cutoff frequency, which 

is normalized value. The mass burning rate calculated from the cycle-averaged and 

unfiltered pressure data shows ripples. The result with the cutoff frequency of 0.05 

shows the smoothed mass burning rate without ripples. However, the peak value of the 

premixed combustion is decreased as mentioned in the study [45]. It is observed that the 

peak value of the premixed combustion is increased with the cutoff frequency, while the 

peak value of the mixing-controlled combustion is not affected. However, the ripples 

start appearing above a certain cutoff frequency, which is 0.15 in this study. Therefore, 

the cutoff frequency needs to be selected in the range between 0.1 and 0.15. The 

frequency range might help to avoid a big reduction of the peak value in the premixed 

combustion phase, and to remove ripples in the rate of burning mass.  
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Figure 8  Mass burning rate from original and filtered pressure data. 
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4 RESULTS AND DISCUSSION OF #2 DIESEL TESTS 

 
#2D tests are carried out and analyzed by using the single-zone and, mainly, the 

two-stage model: four fuel cases at each engine operating condition with varying 

amounts of the barium additive by volume basis: 0, 0.1, 0.25 and 0.5%-v. In this section, 

the results from the experimental data and the analytical models are introduced.  

 

4.1 Maximum Brake Torque  

The first test is to find the maximum brake-torque (MBT) by sweeping the fuel 

injection timing. The engine loads are set at 50 and 250 ft-lbs with the engine speed of 

1400 rev/min. The other condition is at 150 ft-lbs and 2400 rev/min.  

As shown in Figure 9(a), the MBT for a given mass of fuel and air, which can 

give the torque about 50 ft-lbs at 1400 rev/min, is found when fuel is injected at around -

10° after top dead center (ATDC). The torque increases, reaches the peak value, and 

decreases with varying the injection timing. Regarding the scale of y-axis, the difference 

of torque is not significant near -10° ATDC as shown in Figure 9(a) since the fuel flow 

is kept almost constant. Thus, the start of injection (SOI) at 50 ft-lbs and 1400 rev/min is 

defined to be -10°. 

Similarly, the MBT at 1400 rev/min and 250 ft-lbs is found when the fuel 

injection is started at -15° ATDC as shown in Figure 9 (b). The SOI for the case of 2400 

rev/min and 150 ft-lbs is found to be -20° ATDC as shown in Figure 9(c). Both cases 

clearly show the maximum torque values. The found SOI is summarized in Table 5. 
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(a) 

 
(b) 

Figure 9  MBT at the engine running conditions with #2D: (a) 1400 rev/min and 50 

ft-lbs, (b) 1400 rev/min and 250 ft-lbs, and (c) 2400 rev/min and 150 ft-lbs. 
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(c) 

Figure 9  Continued. 

 

Table 5  Start of injection timing for each test condition. 

Test condition SOI (° ATDC) 

1400 rev/min and 50 ft-lbs -10 

1400 rev/min and 250 ft-lbs -15 

2400 rev/min and 150 ft-lbs -20 
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release rate result from the single-zone model. In general, the single-zone model shows 

that the heat release rate changes from negative to positive followed by fast increase near 

TDC [29]. The crank angle position for the zero heat release is defined as SOC. 

Figure 10 shows an example at 1400 rev/min and 50 ft-lbs. The figure shows the 

negative rate, which can be interpreted as the temperature and pressure decrease due to 

the fuel evaporation before the SOC [1]. Figure 11 and Figure 12 show the heat release 

rate at 250 ft-lbs and 1400 rev/min, and 150 ft-lbs and 2400 rev/min, respectively. 

Similarly, the figures show the negative heat release before the dramatic increase. 

 

Figure 10  Rate of heat release with #2D at 1400 rev/min and 50 ft-lbs by using the 

single-zone model. 
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Figure 11  Rate of heat release with #2D at 1400 rev/min and 250 ft-lbs by using the 

single-zone model. 

 
Figure 12  Rate of heat release with #2D at 2400 rev/min and 150 ft-lbs by using the 

single-zone model. 
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Table 6 shows the SOC of two different days under the identical fuel conditions, 

injection timing and engine operating condition. Each case has same or slightly different 

SOC for different days. Looking at the intake air temperature, generally higher intake air 

temperature causes earlier combustion except for several outliers as shown in Figure 13. 

In other words, if the ambient air temperature is higher, the SOC takes place earlier. 

Regarding the crank angle resolution of 0.2 °, the difference of SOC timing between two 

days is negligible. The fuels mixed with the barium additive are also tested, but there is 

no noticeable advance or retard of combustion caused by the barium additive as shown 

in Table 6. At the defined SOC timing, the adiabatic flame temperature is calculated for 

the two-stage model to take as an initial temperature, and the following calculations are 

carried out with the thermodynamics and simplified chemical reactions. In addition to 

the starting point of the two-stage model, its ending point is defined at the exhaust valve 

opening, which occurs at around 115 °ATDC. Thus, all the results from the two-stage 

model are calculated from the SOC to about 115 °ATDC in the following sections. 

 

Table 6  Start of combustion and ignition delay. 

Engine condition Barium (%) 
SOC (°ATDC) ID (°) 

Day 1 Day 2 Day 1 Day 2 

1400 rev/min & 
50ft-lbs 

0.0% 1.4 1.2 11.4 11.2 
0.1% 0.8 1.0 10.8 11.0 
0.25% 1.2 1.2 11.2 11.2 
0.5% 1.2 1.0 11.2 11.0 

1400 rev/min & 
250ft-lbs 

0.0% -7.2 -7.8 7.8 7.2 
0.1% -7.6 -7.8 7.4 7.2 
0.25% -7.4 -7.6 7.6 7.4 
0.5% -7.4 -7.6 7.6 7.4 

2400 rev/min & 
150ft-lbs 

0.0% -5.8 -6.2 14.2 13.8 
0.1% -6.2 -6.4 13.8 13.6 
0.25% -6.0 -6.0 14.0 14.0 
0.5% -6.2 -6.2 13.8 13.8 
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(a) 

 
(b) 

Figure 13  Daily change of intake temperature with #2D: (a) 1400 rev/min and 50 ft-
lbs, (b) 1400 rev/min and 250 ft-lbs and (c) 2400 rev/min and 150 ft-lbs. 
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(c) 

Figure 13  Continued. 
 

4.3 Apparent Rate of Heat Release 

With the definition of SOC based on the single-zone model, the apparent rates of 

heat release, which are named as heat release rate in the current study, are calculated by 

using the two-stage model.  

As the results at 1400 rev/min and 50 ft-lbs are shown in Figure 14, the SOC is 
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As shown in Figure 14, the heat release rate increases dramatically after the start 

of combustion and decreases after reaching the peak rate. High heat release rate is 

observed slightly ATDC, likely due to the dominant premixed combustion phase. It is 

difficult to observe the diffusion combustion phase, which is a typical observation for 

light load conditions. 

In this case, 90 % mass is burned by about 30 ° ATDC, and remaining 10% mass 

requires about another 85°. For engine purposes, the 90% mass fraction burn duration is 

of interest, which requires about 30° for this condition.  

 

 

Figure 14  Comparison of the rate of heat release and mass fraction burned at 1400 

rev/min and 50 ft-lbs with #2D. 
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Similarly, the heat release rate for the case at 1400 rev/min and 250 ft-lbs is 

illustrated in Figure 15. The injection timing of this case is set at -15° ATDC, and the 

SOC is calculated to be -7.8° to -7.2° ATDC. Again, the SOC is not definitively affected 

by the addition of the barium additive. The ignition delay is about 7.2° to 7.8° and is 

shorter than that of the previous case at 1400 rev/min and 50 ft-lbs. Lyn [47] describes 

that the increased ignition delay leads to higher maximum rate of heat release; based on 

this, it seems that the peak heat release rate for 50 ft-lbs is higher than for 250 ft-lbs 

since the lower load case has longer ignition delay.  

 

Figure 15  Comparison of the rate of heat release and mass fraction burned at 1400 

rev/min and 250 ft-lbs with #2D. 
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pressure (about 1bar). It means that the cylinder entrains more air, and that there is more 

air to mix with fuel during the ignition delay. Also, the higher intake manifold pressure 

may cause the in-cylinder pressure to increase, the in-cylinder temperature to reach the 

fuel’s combustible temperature earlier, and the ignition to advance, compared to the 

lower engine load case. As shown in Table 7, higher load case generally has higher 

intake air temperatures, which can advance the ignition. Thus, it may explain the shorter 

ignition delay for the higher load. 

In terms of injection pressure, the higher load case has higher injection pressure 

of 900 bar while the lower load case has the injection pressure of 816 bar. Higher 

injection pressure helps the air and fuel mix to the ignitable limit. Thus, it can also 

advance the ignition. 

However, it is difficult to compare the effect of injection timing on ignition delay 

since each SOI timing is defined based on the MBT tests. The higher load case has the 

advanced injection timing (15 ° BTDC) compared to the lower load case (10 ° BTDC). 

 

Table 7  Intake manifold pressure and temperature 

                    
 

Intake Manifold Pressure (bar) Intake temperature (oC) 

0 %BA 0.1 %BA 0.25 %BA 0.5 %BA 0 %BA 0.1 %BA 0.25 %BA 0.5 %BA 

50 ft-lbs 0.96 0.96 0.96 0.96 36.6 41.4 38.1 41.1 

250 ft-lbs 1.20 1.20 1.20 1.20 43.7 39.5 44.9 46.0 

 

Unlike the low load case, two combustion phases are observed at 1400 rev/min 

and 250 ft-lbs. The heat release rate is increased with SOC, and then decreased. This 
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phase of combustion is supposed to be the premixed combustion. After the premixed 

combustion phase, the diffusion mode is observed, which is controlled by the fuel-air 

mixing process [1], [48]. 90 % mass is burned by about 50 ° ATDC. While most of 

thermal energy is released during the premixed combustion phase at the lower load case, 

the majority of heat release is observed during the mixing-controlled phase at the higher 

load case. This difference is mainly caused by the amount of injected fuel. At the same 

speed, high load case needs more fuel to produce more torque. 

For the case at 2400 rev/min and 150 ft-lbs, Figure 16 shows the similar heat 

release rate trend as at 1400 rev/min and 250 ft-lbs case. The SOC is observed to be -

6.2° to -5.8° ATDC. Considering the SOI timing at -20° ATDC, the ignition delay is 

about 14 °. The 90 % fuel is burned by 40° ATDC. In this case, the stronger air motion 

lets more fuel-air mix to a combustible condition, so the premixed combustion phase 

occupies more portion of combustion duration in crank angle basis, and the width of the 

premixed combustion phase is a little bit wider compared to the case of 1400 rev/min 

and 250 ft-lbs. The figure also shows a smaller peak of the diffusion combustion phase 

mainly due to longer available time for premixed combustion than the previous case. 

Thus, the portion of the diffusion combustion phase is decreased. As shown in Figure 16, 

adding the barium additive causes little difference in the heat release rate. 



59 
 

 
Figure 16  Comparison of the rate of heat release and mass fraction burned at 2400 

rev/min and 150 ft-lbs with #2D. 
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diesel fuel, while the temperature of the lean-zone is close to that of single-zone model 

and below 1800 K. Thus, the two-stage model makes it possible to model the NO 

formation with overcoming the lower temperature results of the single-zone model. 

Figure 18 shows the temperature results for 1400 rev/min and 250 ft-lbs case. 

The results also show the comparison between the results of the two-stage model and the 

single-zone model. Temperatures of both the stoichiometric- and lean-zone are higher 

than that of the single-zone model as shown in the figure. According to the rate of heat 

release, most of the heat is released at the second stage, which corresponds to the lean-

zone burning, thus the results show that the lean-zone has higher temperature than the 

single-zone model. 

Figure 19 shows the calculated temperatures for the case of 2400 rev/min and 

150 ft-lbs. Like the previous case, the temperature for the lean zone is higher than the 

criteria temperature of 1800 K, partially. Thus, the effect of the lean zone on NO 

concentration is not negligible. In the following section, the calculated NO concentration 

from the two-stage model is introduced and compared to the experimentally measured 

NO. 
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Figure 17  Gas temperatures calculated with the single-zone and the two-stage 

models for 1400 rev/min and 50 ft-lbs with #2D. 

 

Figure 18  Gas temperatures calculated with the single-zone and the two-stage 

models for 1400 rev/min and 250 ft-lbs with #2D. 

Crank angle [o ATDC]

T
e

m
p

er
at

u
re

[K
]

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

3500
Single-zone model
Stoichiometric zone
Lean zoneThe stoichiometric zone starts burning.

The lean zone starts burning.

Crank angle [o ATDC]

T
e

m
p

er
at

u
re

[K
]

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

3500
Single-zone model
Stoichiometric zone
Lean zone

The stoichiometric zone starts burning.

The lean zone starts burning.



62 
 

 
Figure 19  Gas temperatures calculated with the single-zone and the two-stage 

models for 2400 rev/min and 150 ft-lbs with #2D. 
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3) The data for this study are for only one cylinder out of 4 cylinders, whereas 

the measured NO concentration is an engine average. 

4) A perfect match is unrealistic even though the final NO value from the 

calculation is close to the experimentally measured NO concentration. 

 

NO concentrations at 50 ft-lbs are shown in Figure 20. The figure shows the 

results of computed NO concentrations, temperatures of each zone, and the mass 

averaged NO concentration. The mass averaged NO is mainly affected by the 

stoichiometric-zone because the NO concentration in the lean-zone is too small to be 

shown due to the low temperature below 1800 K. The calculated NO concentration is 

486 ppm, while the measured one is 488 ppm. This result, again, shows the importance 

of temperature in the thermal mechanism of NO formation. Roughly, the temperature of 

the lean zone ranges close to that of the single zone model as shown in Figure 17, and 

the NO concentration is too small to be shown in Figure 20(a). Thus, it is difficult to 

model the NO formation by using the single-zone model.  
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(a) 

 
(b) 

Figure 20  NO concentration with #2D at 1400 rev/min and 50 ft-lbs: (a) Zonal NO 
and temperatures, (b) Averaged NO concentration. 
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In the case at 1400 rev/min and 250 ft-lbs, the temperature in the lean zone 

ranges partially over 1800 K. The computed NO concentration in the lean zone is no 

longer negligible, and the mass averaged NO concentration is not only affected by the 

stoichiometric zone, but also by the lean zone. The NO concentration is mainly affected 

by the stoichiometric zone by 40° ATDC when the NO concentration in the 

stoichiometric zone freezes as shown in Figure 21(a). After this crank angle position, the 

averaged NO concentration is dominated by the lean zone and increases gradually with 

increasing mass burned in the lean zone.  

For the last case at 2400 rev/min and 150 ft-lbs, Figure 22(a) and (b) show that 

the NO concentration is dominated by the stoichiometric zone, even though the lean 

zone produces some thermal NO. Considering the temperature of the lean zone, it is 

partially above the temperature limit of 1800 K, and causes the NO to form. The heat 

release rate shows the dominant combustion process in the premixed phase, but shows 

the small peak in the diffusion phase. So it is possible that at this operating condition, the 

second phase of combustion does not last long enough to produce substantial thermal 

NO.  
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(a) 

 
(b) 

Figure 21  NO concentration with #2D at 1400 rev/min and 250 ft-lbs: (a) Zonal NO 
and temperatures, (b) Averaged NO concentration. 
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(a) 

 
(b) 

Figure 22  NO concentration with #2D at 2400 rev/min and 150 ft-lbs: (a) Zonal NO 
and temperatures, (b) Averaged NO concentration. 
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Figure 23  Correlation for the equivalence ration of the lean zone with #2D. 
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The slope of the correlation is lower than that suggested by Szekely et al. [31] as 

shown in Figure 23. When applying the above correlation to the cases with #2D, the 

calculated NO concentrations are shown and compared with the measured values as 

shown in Table 8. There are some uncertainty, which ranges up to + 14 %. 

 

Table 8   Comparison between measured and calculated NO values with the 

correlation for #2D. 

Engine condition Fuel 
Measured 
NO (ppm) 

Calculated 
NO (ppm) 

Difference (%) 

1400 rev/min & 50ft-lbs #2D 488 465 -4.7 

1400 rev/min & 250ft-lbs #2D 2391 2296 -4.0 

2400 rev/min & 150ft-lbs #2D 1096 1251 14.1 

 

4.6 NO and FSN Results 

The test results for NO concentration and Filter Smoke Number (FSN) are 

introduced in this section. NO results are showing real concentrations, but FSN results 

are relative valued. There are some correlations to convert FSN values to mass 

concentrations, which are suggested by Alikdas [49] and Christian et al. [50]. In the 

section, FSN is not converted to the mass concentration of soot. However, it would be 

useful to know the rough actual soot concentration to FSN as shown in Figure 24. 

Regarding that the maximum FSN is about 1, the corresponding mass concentration of 

soot would be less than 25 mg/m3. 
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Figure 24  Mass concentration of soot calculated from FSN values. 
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As a matter of fact, the barium additive clearly reduces FSN, since barium is 

known to effectively suppress the smoke formation during combustion processes [23], 

[24],[25], [51]. If there is a significant effect of soot radiation on NO concentration, the 

NO concentration would show the opposite tendency according to the trade-off relation. 

However, there is not the expected tendency of NO concentrations with the barium 

additive.  

From this observation, two possible findings are offered. First, the soot radiation 

does not have as significant an influence on NO concentration as originally believed. 

However, the soot emissivity is estimated by using an analytical model suggested by 

Morel et al. [43] in the following section, since the analytical model would be able to 

capture the possible effect of soot that the experiment could miss. Second, there are 

other factors affecting NO concentration than soot radiation. Since NO is strongly 

dependent on thermal phenomena during combustion process, other factors can have 

more influence on NO concentration. 

In addition to the second finding, it can be realized that the large standard 

deviation is caused by averaging data from two different days, even though the control 

parameters at any given operating condition (e.g., engine speed and load condition) are 

basically the same. It means that averaging data might lead to overlooking other factors 

to NO concentration. In order to resolve this problem, the data for each day is analyzed 

separately. 
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Figure 25  Filter smoke number and NO concentration results at 1400 rev/min and 

50 ft-lbs with #2D. 

 

Figure 26  Filter smoke number and NO concentration results at 1400 rev/min and 

250 ft-lbs with #2D. 
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Figure 27  Filter smoke number and NO concentration results at 2400 rev/min and 

150 ft-lbs with #2D. 
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Day 2 (Point A in Figure 28(a)), the NO concentrations can be explained by using the 

intake temperature as shown in Figure 28(b). Point A has the latest start of combustion 

compared to other cases, which is defined using the 1% burned fuel fraction. Also it has 

the shortest period to burn 90 % fuel as shown in Figure 28(c). Thus, it shows the 

shortest combustion duration which is defined from 1 % to 90 % of the burned fuel 

fraction. It might mean that the fuel combustion occurs intensively in relatively short 

duration and causes high flame temperature. However, due to the early end of 

combustion, the expansion process could cool the product temperature lower than other 

cases. Thus, point A has higher NO concentrations possibly due to the higher 

temperature, but has lower exhaust temperature due to the early end of combustion. 

 

(a) 
Figure 28  1400 rev/min and 50 ft-lbs: (a) intake and exhaust temperature, (b) NO 

concentration and intake temperature with barium additive concentration , and (c) 1 % 

and 90 % mass fraction burned location.  
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(b) 

 
(c) 

Figure 28  Continued.  
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The case of 1400 rev/min and 250 ft-lbs shows the similar trends between 

temperatures such as ambient air temperature, intake manifold air temperature, and 

exhaust gas temperature as shown in Figure 29 (a). However, the points, which are 

named as ‘Point B’ and ‘Point C’ at 0.1% barium concentration show lower intake aer 

temperatures (nearly ambient temperature), but higher NO concentrations as shown in 

Figure 29 (b). In order to investigate possible causes of the higher NO concentrations 

with low intake temperature, the starts and ends of combustion are compared with 

others. Even with low intake temperature, the cases have the earlier start and end of 

combustion as shown in Figure 29 (c). Thus, the higher flame temperature can be 

expected from the early start of combustion and might cause the increase in NO; 

however, the exhaust temperature is lower due to the early end of combustion and also 

due to the lower ambient temperature. 

 
(a) 

Figure 29  1400 rev/min and 250 ft-lbs: (a) intake and exhaust temperature, (b) NO 
concentration and intake temperature with barium additive concentration, and (c) 1 % 
and 90 % mass fraction burned location.  

Barium Conc. (%-v)

In
ta

k
e

M
a

n
if

o
ld

T
e

m
p

e
ra

tu
re

(o
C

)

E
x

h
au

s
t

M
a

n
if

o
ld

T
e

m
p

e
ra

tu
re

(o
C

)

0 0.1 0.2 0.3 0.4 0.5
28

30

32

34

36

38

40

42

500

510

520

530

540

550

560

Exhaust temp., Day1
Intake temp., Day1
Exhaust temp., Day2
Intake temp., Day2

Point B

Point C



77 
 

 

 
(b) 

 
(c) 

Figure 29 Continued.  
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Unlike the previous cases, the case of 2400 rev/min and 150 ft-lbs shows the 

similar trends between temperatures as shown in Figure 30. Also, NO concentrations 

follow the temperature trends. Thus, NO concentrations are strongly affected by the 

temperature since each test just has a different fuel with keeping other parameters 

constant. 

Considering the effect of ambient temperature, the effect of soot may not have 

noticeable effect, even though it is decreased by the barium additive. It can be thought 

that the engine system does not have any equipment to control the ambient temperature. 

So the temperature of the system is changed by the ambient condition depending on the 

daily weather, even though there are several discrepancies possibly caused by the 

combustion characteristics. 

 

(a) 
Figure 30  2400 rev/min and 150 ft-lbs: (a) intake and exhaust temperature, (b) NO 

concentration and intake temperature with barium additive concentration 
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(b) 

Figure 30 Continued.  
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4.7 Soot Emissivity 

The effect of soot radiation on NO concentration is not found in the experimental 

results. However, it is necessary to estimate the soot emissivity in order to capture 

possible explanation for the trade-off relation. The soot emissivity is estimated by using 

the analytical model suggested by Morel et al. [43], which is empirically formulated only 

for diesel combustion. Thus, the correlation cannot consider the effects of the barium 

additive on soot radiation. In the present study, validation of the calculated soot 

emissivity cannot be performed as is done in [52], [53]. Regardless, the trend of 

emissivity with changing load in the references may be consistent with that shown in 

Figure 31. Since the correlation is related strongly to the in-cylinder pressure, it is 

reasonable to say that, if the soot radiation affects the combustion process and changes 

the combustion parameters such as in-cylinder pressure, the correlation is able to explain 

the difference of soot emissivity and, consequently, relate the soot radiation to NO 

concentration. 

Figure 31 shows the rapid increase in emissivity with the start of combustion in 

each zone. However, the change of emissivity caused by the barium additive could not 

be found. There is a small shift of the emissivity due to the different combustion process. 

The calculation results show that the higher load case has higher peak emissivity in the 

lean zone. However, the peak emissivity in the stoichiometric zone is above 0.9 for all 

the fuel cases. 

Thus, the emissivity calculation can show the general trend along with the 

combustion characteristic at each engine load condition, but cannot show the change of 
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soot emissivity that should exist during combustion since the experimental results shows 

the clear trend with the barium additive. In other words, the calculated emissivity cannot 

capture the influence of the barium additive on soot formation, while the FSN results 

clearly show the change of soot with the barium additive. 

A possible reason is that the analytical model does not have detailed chemical 

reactions along with the diesel combustion. Thus, it might be difficult for the correlation 

to explain the change of combustion products. Also, it is difficult to capture the change 

of soot emissivity in this study where the in-cylinder pressure does not change 

significantly with the barium additive, since the correlation is strongly related to in-

cylinder pressure. 

 

(a) 
Figure 31  Soot emissivity results with #2D: (a)1400 rev/min and 50 ft-lbs, (b) 1400 

rev/min and 250 ft-lbs, and (c) 2400 rev/min and 150 ft-lbs 
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(b) 

 
(c) 

Figure 31  Continued.  
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4.8 Discussion 

From the data analysis on each test day, it is shown that the NO concentration is 

affected by the ambient conditions rather than the soot concentration, which strongly 

affects the radiation during combustion. Since the current engine system does not have 

the air conditioning system, it breathes in unconditioned ambient air. It seems the effects 

of the ambient might be a big factor in this study, since other variable conditions do not 

change much except for the fuels with the barium additive. Adding the barium additive 

to #2D, however, does not noticeably change the fuel properties. Thus, the difference in 

NO concentration might be caused noticeably by the ambient condition such as intake air 

temperature. The analysis shows that the temperatures have the similar trends along with 

the ambient temperature except for a few points. The outliers (Points A, B, C) could be 

explained by applying the combustion characteristics such as the early start and end of 

combustion. The change in NO shows the similar trends as that in temperatures. Based 

on the thermal NO mechanisms, it is reasonable that when the combustion process could 

receive more thermal energy from the ambient conditions, it might have the higher flame 

temperature and produce more NO. Since the ambient temperature does not change 

dramatically daily, NO concentrations show the slight differences among the test 

conditions. 

The two-stage model could show the calculated results such as heat release rate, 

burned fuel mass fraction, and NO concentrations. Regarding the heat release rate, it 

could not show any noticeable difference in heat release rate caused by the barium 

additive, but show the general trend of combustion process. In other words, the in-
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cylinder pressure is not able to capture changes possibly caused by the barium additive. 

It would be the major reason why the soot emissivity correlation could not show any 

difference between different fuels.  

The analytical model could show the calculated NO concentrations. In general, 

the NO concentration increases drastically with the start of combustion, reaches a peak 

value and decreases slowly to a constant value with chemically frozen species. The 

results show negligible NO concentrations in the lean zone, when the temperature is 

below 1800K. The calculation results of NO concentrations are reasonably close to the 

measured ones. 

The soot emissivity results show the general trend with the engine load and 

speed. The specific change of soot emissivity caused by the barium additive, however, 

could not be captured. The first reason might be that the soot change by the barium could 

not be captured by the measured in-cylinder pressure; the empirical correlation for the 

soot emissivity is strongly related to in-cylinder pressure. If the experimental results 

could not capture the differences between fuel conditions, the soot emissivity correlation 

would not be able to explain the soot emissivity. The second possible cause is that the 

correlation itself is not able to capture the effects of the barium additive since the 

correlation is developed for standard diesel fuel, without regard to alternative fuels or 

additives. An improved “fuel-neutral” correlation could help the model to explain the 

soot emissivity. 
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5 RESULTS AND DISCUSSION OF BIODIESEL TESTS 

 

In this section, the test results with biodiesel are discussed. For the experiments, 

0.25 %-v of the barium additive is applied to the palm olein oil (B100) in order to study 

the possible impact of the barium additive on NO concentration excluding the biodiesel 

fuel effects.  

For NO formation with biodiesel, three fuel types are tested: 100% petroleum 

diesel (#2D), a 20%-v palm olein biodiesel mix with petroleum diesel (B20), and a 

100% palm olein biodiesel (B100. The engine operating conditions are the same as #2D 

tests: 1400 rev/min and 50 ft-lbs, 1400 rev/min and 250 ft-lbs, and 2400 rev/min and 150 

ft-lbs. Along with the experimental results, the two-stage model is also used to 

investigate NO concentration and FSN. 

 

5.1 The Effects of the Barium Additive on NO 

In diesel fuel test, the soot effects are studied by applying the barium additive, 

assuming that the barium additive affects the soot formation. However, it cannot be 

overlooked that NO may be affected directly by the barium additive. Thus, it is 

necessary to investigate the possible effects of the barium additive on NO formation. 

In order to exclude the fuel effects on NO formation, the pure biodiesel, B100, is 

used with and without the barium additive. B100 basically produces lower soot than the 

conventional diesel, so the possible effects of soot radiation on NO formation are 
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weakened by using biodiesel. Note that even with using biodiesel fuel, the soot cannot 

be removed completely due to the heterogeneous combustion. 

At 1400 rev/min and 50 ft-lbs, B100 case shows higher FSN, but lower NO 

results than one with 0.25%-v BA. The barium additive reduces FSN effectively, which 

ranges from 0.013 to 0.040. The test results from Day 1 and Day 2 are still small degree 

regarding the FSN resolution of 0.001 as shown in Table 9. 

NO concentration seems not to be affected by the barium additive at this 

condition as shown in Table 9. Rather, the intake air temperature seems to affect the NO 

concentration. The results of Day 1 show that the B100 case has the intake air 

temperature that is 4.7 oC lower than B100 with 0.25% BA. The corresponding NO 

concentration results show the proportional relation with the intake air temperature.  

The results from Day 2 show that both B100 and B100 with 0.25% BA have 

almost identical intake air temperatures as shown in Table 9. Also, NO concentrations 

seem to be identical and have the small difference of 2 ppm.  

Thus, the higher intake air temperature causes NO concentrations to increase 

since the higher intake air temperature can advance the start of combustion and make the 

available combustion duration longer enough for NO formation. Since B100 with 0.25% 

BA has a higher intake air temperature on Day1, it has a higher averaged NO value as 

shown in Figure 32(a). 

Since the two fuels are differed by adding 0.25 %-v BA, the original properties 

of B100 would not be changed noticeably. As a result, the in-cylinder pressure profiles 

are observed almost identical in Figure 32(b). The corresponding heat release rates show 
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the identical start of combustion, peak value, and burning rate in Figure 32(c). For these 

reasons, the calculated temperatures of the both cases are in a good agreement as shown 

in Figure 32(d).  

Since both cases show the similar temperature profiles, the calculated NO values 

based on the temperatures have the similar trends except for the small differences in the 

final NO value; NO is increased, reaches at the peak value, and is decreased smoothly to 

a constant value as shown in Figure 33. 

 

Table 9  Changes in NO and FSN at 1400 rev/min and 50 ft-lbs with B100. 

 
Fuel NO(ppm) FSN Intake temp.(oC) IMT(oC) 

Day 1 
B100 344.50 2.76E-02 30.13 34.87 

B100 w/ 0.25% 358.86 1.32E-02 34.82 38.82 

Day 2 
B100 367.48 3.96E-02 33.12 37.97 

B100 w/ 0.25% 364.23 1.54E-02 33.80 37.66 
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(a) 

 
(b) 

Figure 32  Experimental results at 1400 rev/min and 50ft-lbs with B100: (a) NO and 

FSN results, (b) in-cylinder pressure result, (c) heat release rate and mass fraction 

burned, and (d) average temperatures. 
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(c) 

 
(d) 

Figure 32  Continued. 
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(a) 

 
(b) 

Figure 33  NO concentration (a) for B100 and (b) for B100 with 0.25 % BA at 1400 

rev/min and 50 ft-lbs. 

 

Crank angle [oATDC]

N
O

[p
p

m
]

0 20 40 60 80 100 120
0

200

400

600

800

NOavg

NOexp

365 ppm

Measured NO: 344 ppm

Crank angle [oATDC]

N
O

[p
p

m
]

0 20 40 60 80 100 120
0

200

400

600

800

NOavg

NOexp

349 ppm

Measured NO: 358 ppm



91 
 

At 1400 rev/min and 250 ft-lbs, the trends of FSN and NO results are similar to 

the previous one: FSN is reduced by the barium additive, while NO is increased as 

shown in Table 10 and Figure 34(a). However, the change in NO is not as clear as that of 

the FSN caused by the barium additive. As taking a look at NO and intake air 

temperature, NO concentrations increase with the intake air temperature. From Day 2, 

both fuel cases have similar intake air temperature and they show similar NO 

concentrations. B100 with 0.25 %-v BA has higher intake air temperature and, thus, has 

higher NO concentrations. 

Table 10  Changes in NO and FSN at 1400 rev/min and 250 ft-lbs with B100. 

 
Fuel NO(ppm) FSN Intake temp.(oC) IMT(oC) 

Day 1 
B100 2786.70 3.21E-01 35.60 42.05 

B100 w/ 0.25% 2878.93 8.64E-02 39.44 45.86 

Day 2 
B100 2839.82 3.40E-01 37.06 44.86 

B100 w/ 0.25% 2861.05 8.90E-02 38.14 44.36 

 

Like the previous case, there are no noticeable differences in the in-cylinder 

pressures and heat release rates as presented in Figure 34 (b) and (c). B100 with 0.25 %-

v BA shows higher temperature profiles than B100 case in Figure 34 (d). Additionally, 

B100 with the additive has a higher intake air temperature, so it may have higher NO 

concentrations. 

Due to the difference in temperature, B100 case has the lower peak value as 

shown in Figure 35. However, the general trend of NO is similar to each other. The final 

values are close to the experimentally measured ones. 
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(a) 

  
(b) 

Figure 34  Experimental results at 1400 rev/min and 250ft-lbs with B100: (a) NO 

and FSN results, (b) in-cylinder pressure result, (c) heat release rate and mass fraction 

burned, and (d) average temperatures. 
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(c) 

 
(d) 

Figure 34  Continued. 
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(a) 

 

(b) 
Figure 35  NO concentration (a) for B100 and (b) for B100 with 0.25 % BA at 1400 

rev/min and 250 ft-lbs. 
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At 2400 rev/min and 150 ft-lbs, the similar trends of NO and FSN are observed. 

FSN is clearly decreased by the barium additive. Even with lower intake air temperature 

and identical start of combustion, B100 case show slightly higher in-cylinder pressure, 

heat release rates and calculated temperature profiles as shown in Figure 36. In terms of 

thermal NO mechanism, however, the differences do not seem to cause NO 

concentration to change because B100 case emits less NO than B100 with 0.25 %-v BA.  

From Day 1, B100 case has the lowest intake air temperature and NO 

concentration. As shown in Table 11 at Day 2, both fuel cases have almost identical 

intake air temperature, thus the only difference is the fuel condition changed by the 

barium additive. However, the results show a proportional increase in NO with the 

intake air temperature. Like the previous cases, the higher intake air temperature, the 

higher NO. Thus, it is concluded that the barium additive does not affect NO formation, 

but the ambient temperature seems to be the decisive factor on NO formation. 

NO concentration is estimated as shown in Figure 37. Even though B100 case 

has the higher peak value due to the higher temperature, the final NO value of B100 is 

lower than that with 0.25 %-v BA. 

 

Table 11  Changes in NO and FSN at 2400 rev/min and 150 ft-lbs with B100. 

 Fuel NO(ppm) FSN Intake 
temp.(oC) 

IMT(oC)

Day 1 
B100 1146.72 2.49E-01 33.17 38.67 

B100 w/ 0.25% 1209.80 6.20E-02 37.80 43.21 

Day 2 
B100 1216.10 2.98E-01 36.47 41.64 

B100 w/ 0.25% 1228.02 6.18E-02 36.79 42.31 
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(a) 

 
(b) 

Figure 36  Experimental results at 2400 rev/min and 150ft-lbs with B100: (a) NO 

and FSN results, (b) in-cylinder pressure result, (c) heat release rate and mass fraction 

burned, and (d) average temperatures. 
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(c) 

 
(d) 

Figure 36 Continued. 
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(a) 

 

(b) 
Figure 37  NO concentration (a) for B100 and (b) for B100 with 0.25 % BA at 2400 

rev/min and 150 ft-lbs. 
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In this section, the effects of the barium additive are investigated by using the 

pure biodiesel fuel (B100). Even by treating the fuel with a small amount of the barium 

additive, FSN results show a clear trend. In contrast, the trend of NO is observed to be 

unaffected directly by the additive. Rather, the ambient temperature is the dominant 

factor to the NO formation. Therefore, it can be concluded that the barium additive does 

not have any direct effects on NO formation. 

 

5.2 NO and FSN Results 

In order to study NO and FSN changes in biodiesel combustion, #2D, B20 and 

B100 are tested. Figure 38 shows that FSN is increased, but NO is reduced with the 

biodiesel percentage at 1400 rev/min and 50 ft-lbs. It is opposite to the general 

observations in other studies [54], [55], [56] that NO concentration is increased by the 

content of biodiesel to the baseline diesel fuel (#2D). FSN results show 20.7 and 51.4% 

increase by adding biodiesel as shown in Table 12.  

Figure 39 shows the in-cylinder pressure profiles at 1400 rev/min and 50 ft-lbs. 

The profiles are similar except for #2D case. B100 has the earliest pressure rise, and B20 

in turn has the slightly later one. While #2D case has the latest one, it has the highest 

peak pressure. 
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Figure 38  NO and FSN at 1400 rev/min and 50 ft-lbs with biodiesel fuels. 
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Figure 39  In-cylinder pressure at 1400 rev/min and 50 ft-lbs with biodiesel fuels. 
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Figure 40  Apparent rate of heat release at 1400 rev/min and 50 ft-lbs with biodiesel 
fuels. 
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slightly higher temperature profile than B100, so the B20 case has higher NO than B100 

as shown in Figure 43 and Figure 44. 

In addition to this, the temperature of the lean zone is lower than 1800 K, which 

is the temperature limit for the thermal NO formation. Thus, the calculated NO is so 

negligibly small in the lean zones that the calculated NO for the lean zone is not 

presented in Figure 42 through Figure 44. 

At the same time, the results raise the question, “Why does #2D have a higher 

peak and higher temperature profile?” Lyn et al. [47] suggests that longer ignition delay 

could cause higher peak in the premixed combustion. Since the #2D case shows the 

longest ignition delay, it might have highest peak heat release rate. As biodiesel has 

higher cetane number compared to #2D, B100 has the shortest ignition delay [1], [10]. 

This means that there is longer time for #2D and air to mix well together, so the #2D 

case might be able to convert more heat energy and consequently have higher 

temperature than biodiesel cases. In addition, shorter combustion timing means that the 

less time is available for NO formation before the reactions are quenched by expansion 

processes [57]. 

In terms of FSN, the shorter ignition delay (available time) seems to cause higher 

inhomogeneity in air-fuel mixture, which means poor combustion quality and high soot 

levels. Accordingly, Figure 38 shows that B100 and B20 have higher FSN than #2D, 

even though the differences in FSN are small since the combustion at this condition is 

dominated by the premixed combustion. 
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Figure 41  Average temperature calculated from the two-stage model at 1400 

rev/min and 50 ft-lbs with biodiesel fuels. 

 
(a) 

Figure 42  NO concentration for #2D at 1400 rev/min and 50 ft-lbs: (a) Zonal NO 
and temperatures, and (b) averaged NO concentration. 

Crank angle [oATDC]

T
em

p
er

a
tu

re
[K

]

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

3500

#2D
B20
B100

Stoichiometric zone

Lean zone

Crank angle [oATDC]

N
O

[p
p

m
]

C
al

cu
la

te
d

T
e

m
p

er
a

tu
re

[K
]

0 20 40 60 80 100 120
0

2000

4000

6000

8000

10000

500

1000

1500

2000

2500

3000

3500

NO_stoichiometric
NO_lean
Temp_stoichiometric
Temp_lean



105 
 

 
(b) 

Figure 42  Continued. 

 
(a) 

Figure 43  NO concentration for B20 at 1400 rev/min and 50 ft-lbs: (a) Zonal NO 
and temperatures, and (b) Averaged NO concentration. 
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(b) 

Figure 43  Continued. 

 
(a) 

Figure 44  NO concentration for B100 at 1400 rev/min and 50 ft-lbs: (a) Zonal NO 

and temperatures, and (b) Averaged NO concentration. 
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(b) 

Figure 44  Continued. 
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At 1400 rev/min and 250 ft-lbs, NO is increased with biodiesel percentage, 

whereas FSN is reduced as shown in Figure 45, opposite to those of the previous case at 

1400 rev/min and 50 ft-lbs. 

Figure 46 shows the in-cylinder pressure profiles, which has steeper rise and 

higher peak value than the case at 1400 rev/min and 50 ft-lbs. The figure shows that 

B100 has the earliest rise compared to other fuel cases; the general shape of the 

pressures is similar to one another.  

As shown in Figure 47, B100 has the advanced combustion phase, smaller 

portion of premixed combustion and broader diffusion combustion phase. Since the 

diffusion combustion phase is ideal for thermal NO condition [48], the larger portion of 

diffusion combustion can lead to higher NO concentrations.  

 
Figure 45  NO and FSN at 1400rev/min and 250 ft-lbs with biodiesel fuels. 
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Figure 46  In-cylinder pressure for 1400 rev/min and 250 ft-lbs with biodiesel fuels. 

 

 

Figure 47  Apparent rate of heat release at 1400 rev/min and 250 ft-lbs with 

biodiesel fuels. 
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Figure 48 shows the temperature profiles calculated from the two-stage model. 

#2D case has the highest temperature profile in the stoichiometric zone, while it has the 

lowest temperature profile in the lean zone. Even with the highest temperature in the 

stoichiometric zone, #2D case has the lowest NO concentration. It may mean that the 

portion of the diffusion combustion is more important factor when the temperature 

profile is similar.  

Unlike the previous cases at 1400 rev/min and 50 ft-lbs, the temperatures in the 

lean zone are higher than the thermal limit of 1800 K. B20 has the medium temperature, 

and B100 has the highest temperature profile in the lean zone. Based on the calculated 

temperature, the NO concentration is estimated by applying the Zeldovich thermal 

mechanism. Note that the two-stage model is to estimate the final engine-out NO 

concentration and may not be able to show the physical details of NO concentration 

during combustion.  

As shown in Figure 48, #2D and B20 cases have the higher temperature in the 

stoichiometric zone than B100. Corresponding to this fact, the overall NO concentrations 

of the two cases in the stoichiometric zone are higher than B100 case as shown in Figure 

48 through Figure 51.Similarly, #2D case has the lowest NO concentration in the lean 

zone, since it has the lowest temperature as shown in Figure 48.  
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Figure 48  Average temperature calculated from the two-stage model at 1400 

rev/min and 250 ft-lbs with biodiesel fuels. 
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(a) 

 
(b) 

Figure 49  NO concentration for #2D at 1400 rev/min and 250 ft-lbs: (a) Zonal NO 
and temperatures, and (b) averaged NO concentration. 
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(a) 

 
(b) 

Figure 50  NO concentration for B20 at 1400 rev/min and 250 ft-lbs: (a) Zonal NO 
and temperatures, and (b) averaged NO concentration. 
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(a) 

 

(b) 
 
Figure 51  NO concentration for B100 at 1400 rev/min and 250 ft-lbs: (a) Zonal NO 
and temperatures, and (b) averaged NO concentration. 

Crank angle [oATDC]

N
O

[p
p

m
]

C
al

cu
la

te
d

T
e

m
p

er
a

tu
re

[K
]

0 20 40 60 80 100 120
0

2000

4000

6000

8000

10000

500

1000

1500

2000

2500

3000

3500

NO_stoichiometric
NO_lean
Temp_stoichiometric
Temp_lean

Crank angle [oATDC]

N
O

[p
p

m
]

0 20 40 60 80 100 120
0

1000

2000

3000

4000
NOavg

NOexp

2748 ppm

Measured NO: 2786 ppm



115 
 

Like the previous case, the results at 2400 rev/min and 150 ft-lbs show that NO 

and FSN have the same trends qualitatively. The higher biodiesel concentration increase 

NO, but decrease FSN as shown in Figure 52. 

The in-cylinder pressures at 2400 rev/min and 150 ft-lbs are shown in Figure 53. 

As B100 has earlier pressure rise, it has the earliest start of combustion, but slowest 

reach peak value. In contrast, #2D has the latest start of combustion; however, it has the 

steepest pressure increase and fastest reaches at the peak value as shown in Figure 53. 

After the peak values, all the pressures decrease almost identically. According to the 

pressure rise, B100 case has the most advanced combustion phase and the broadest 

diffusion combustion phase as shown in Figure 54. Consequently, this case has the 

smallest portion of the premixed combustion. In contrast to B100 case, #2D case has the 

biggest portion of premixed combustion phase than other cases, while it has the smallest 

fraction of diffusion combustion phase. Noting that most thermal NO is formed during 

diffusion combustion phase, biodiesel fuel can have higher NO concentration since it has 

higher fraction of diffusion combustion. 

Also, the fuel effect of the biodiesel cannot be overlooked, even though it cannot 

be observed directly from the combustion chamber. Regarding the fuel effects, Mueller 

et al. [8] explains well about the importance of the equivalence ratio of the mixture in the 

auto-ignition zone. Biodiesel has the mixture closer to stoichiometric during the auto-

ignition due to the fuel bound oxygen. This would lead to higher temperatures, longer 

residence time at high temperature, and higher thermal NO. Also, Mueller et al. [8] 

explain that, if the amount of oxygen at the lift-off length is higher, biodiesel has 
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relatively less soot formation. For these reasons, biodiesel might have higher 

temperature, less radiation heat loss, and, consequently, higher thermal NO formation. 

For these reasons, biodiesel blends might have higher NO concentrations relative to 

conventional diesel. 

Figure 55 shows the temperature results. #2D has the higher temperature profile 

in the stoichiometric zone, while this case has the lower profile in the lean zone. Since 

the thermal NO is strongly dependent on temperature, #2D has higher peak NO 

concentration for the stoichiometric zone compared to other cases. Due to the lowest 

temperature profile in the lean zone, #2D case has the lowest NO profile compared to 

other cases.  

 

Figure 52  NO and FSN at 2400rev/min and 150 ft-lbs with biodiesel fuels. 
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Figure 53  In-cylinder pressure for 2400 rev/min and 150 ft-lbs with biodiesel fuels. 

 

Figure 54  Apparent rate of heat release at 2400 rev/min and 150 ft-lbs with 

biodiesel fuels. 
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Figure 55  Average temperature for 2400 rev/min and 150 ft-lbs calculated from the 

two-stage model with biodiesel fuels. 
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the combustion characteristics. Thus, FSN trend could be related to fuel effects of the 

biodiesel, since the presence of oxygen in the biodiesel tend to reduce soot 

concentrations [5], [58], [59]. The study by Tree et al. [16] show that 27 to 35 % of fuel 

oxygen content leads to soot free emission. The reduction in soot caused by the fuel 

bound oxygen is the results from soot formation and oxidation, since fuel bound oxygen 

provides more chance to react with carbon and replaces carbon which needs to be 

burned. Curran et al. [60] explain that carbon bonded to oxygen atoms in the fuel cannot 

produce soot precursors. Similarly, Cheng et al. [61] show that carbon bonded to oxygen 

participates less in soot formation. For these reasons, FSN might be affected also by the 

fuel contents, especially, oxygen in biodiesel combustion. 

 

(a) 
Figure 56  NO concentration for #2D at 2400 rev/min and 150 ft-lbs: (a) Zonal NO 
and temperatures, and (b) averaged NO concentration. 
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(b) 
 
Figure 56  Continued. 
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(a) 

 

(b) 
Figure 57  NO concentration for B20 at 2400 rev/min and 150 ft-lbs: (a) Zonal NO 
and temperatures, and (b) averaged NO concentration. 
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(a) 

 

(b) 
Figure 58  NO concentration for B100 at 2400 rev/min and 150 ft-lbs: (a) Zonal NO 
and temperatures, and (b) averaged NO concentration. 
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Figure 59  Correlation for the equivalence ration of the lean zone with biodiesel 
blends. 
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calculation results are shown in Table 13. There are some differences between the 

measured and calculated NO values, which range up to 21.8 %. 

 

Table 13  Comparison between measured and calculated NO values with the 

correlation for B100. 

Engine condition Fuel 
Measured 
NO (ppm) 

Calculated 
NO (ppm) 

Difference (%) 

1400 rev/min & 50ft-lbs B100 344 371 7.8 

1400 rev/min & 250ft-lbs B100 2786 2402 -13.8 

2400 rev/min & 150ft-lbs B100 1146 1396 21.8 

 

5.3 Soot Emissivity 

Soot emissivity calculation is to see if the two-stage model is able to predict 

changes in soot emissivity. The calculation is based on the analytical model suggested 

by Morel et al. [43]. 

Figure 60 shows the rapid increase in emissivity at the start of combustion in 

each zone. However, the change of emissivity caused by biodiesel concentration and the 

barium additive (at B100) could not be found. There are small shifts of the emissivity 

due to the different combustion phase. The calculation results show that the higher load 

case has a higher peak emissivity in the lean zone. However, the peak emissivity in the 

stoichiometric zone is above 0.9 for all the fuel cases. 

Thus, the emissivity calculation can show the general trend along with the 

combustion characteristic at each engine load condition, but cannot show the details of 

soot emissivity that should exist during combustion since the experimental results show 
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the clear trend with biodiesel and barium additive. In other words,FSN results prove that 

the calculated emissivity cannot capture the influence of the differences in fuel on soot 

formation, while the FSN results clearly show the change of soot. 

A possible reason is that the analytical model is lack of detailed chemical 

reactions explaining the combustion, thus the model is not able to explain the details of 

the soot emissivity.  

 
(a) 

Figure 60  Soot emissivity results: (a)1400 rev/min and 50 ft-lbs, (b)1400 rev/min 

and 250 ft-lbs, and (c) 2400 rev/min and 150 ft-lbs with biodiesel fuels. 
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(b) 

 
(c) 

Figure 60 Continued. 
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5.4 Discussion 

Regarding the effects of the barium additive on NO formation, B100 and 0.25 % 

BA are used. The results show that FSN is changed clearly by the barium additive, but 

NO concentration is not changed accordingly. Thus, the barium does not show any 

noticeable effects on NO formation. 

At 1400 rev/min and 50 ft-lbs, the results show that the low engine load 

condition has different trends of NO and FSN opposite to the general trend with the 

biodiesel volume concentration. The low load case is defined mainly by the premixed 

combustion phase. B100 and B20 show earlier ignition indicating that the ignition is 

advanced with increasing volume concentration of biodiesel. It could be caused mainly 

by the cetane number since biodiesel has higher cetane number than #2D. The advanced 

ignition relatively reduces the available time to mix fuel and air before the ignition. 

Thus, the shorter ignition delay means that the fuel and air mixture are not mixed well 

enough for as much premixed as is presented in #2D. As the heat release rate profiles 

show, #2D has higher and broader heat release rate, also higher peak average 

temperature even with its longer ignition delay. At this condition, most of the fuel is 

consumed in the premixed combustion. The degree of fuel-air mixing during the ignition 

delay would be the main factor to decide NO concentration.  

Based on the FSN, B100 and B20 cases, which have shorter ignition delay, show 

higher FSN may be caused by less complete combustion due to the fuel-air mixing. That 

is the reason why FSN is inversely proportional to the ignition delay.  
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At 1400 rev/min and 250 ft-lbs, and 2400 rev/min and 150 ft-lbs, NO and FSN 

follow the general trend with the biodiesel volume percentage. Unlike the previous case 

at 1400 rev/min and 50 ft-lbs, these are composed of both the premixed and diffusion 

combustion phases. The NO trend is explained by using the heat release rate results and 

the fuel effects. When a fuel case has earlier ignition and has a broader heat release 

profile during the diffusion combustion phase, the case has higher NO concentration. In 

addition to this, biodiesel has the mixture in the auto-ignition zone and at the lift-off 

length closer to stoichiometric relative to #2D. These characteristics might lead to higher 

NO formation. 

Regarding FSN results, B100 and B20 cases show lower FSN than #2D case. The 

presence of fuel bound oxygen in biodiesel blends might be the reason to explain the 

FSN trend. Biodiesel produces less soot since it has fuel bound oxygen. The less soot 

may lead to smaller radiative heat losses and, thus, higher flame temperature. However, 

the detailed change of soot radiation could not be carried out in this study. 

Soot radiation is also studied by using the emissivity calculation. The emissivity 

results could not show the details in emissivity by the biodiesel and also the barium 

additive, but the emissivity results show the general trend with the change of the load 

condition. 
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6 SUMMARY AND CONCLUSIONS 

6.1 Summary 

In the current study, the two-stage model is programmed based on the work by 

Szekely et al. [31]. It is used to calculate heat release rate, average temperature, and NO 

concentration. The two-stage model shows the general profiles of heat release according 

to the engine speeds and loads and improvements on temperature results. For this reason, 

Thermal NO modeling could be possible since the temperature is the most important 

factor to carry out the calculation. Compared to the experimental results, the calculated 

values show very reasonable estimations, but there are still small differences between 

experiment and calculation results. 

Along with the two-stage model, the engine tests are carried out. The first test is to 

find the injection timing which has the maximum brake torque at a given condition. At 

1400 rev/min and 50 ft-lbs, the injection timing is defined at -10 o ATDC. The cases at 

1400 rev/min and 150 ft-lbs, and 2400 rev/min and 250 ft-lbs, respectively, have the 

injection timing at -15 o and -20 o ATDC. 

Based on the defined injection timing, further engine tests are conducted by using 

#2D with the barium additive, which is known to suppress the soot formation during the 

combustion. The test results show that the soot concentration is reduced by the barium 

additive as shown in FSN results. However, the NO concentration is shown not to be 

affected by soot. Rather, the ambient temperature is a dominant factor to the change of 

NO. The expected soot change by the barium additive might not have a strong influence 

on NO formation during combustion. 
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Other than FSN, the soot emissivity is calculated by using the two-stage model. 

The calculated emissivity results show the general trends with the engine conditions. 

However, it could not capture the detailed changes by the barium additive. 

To check the possible effects of the barium additive on NO formation, the pure 

biodiesel, B100, is used with the barium additive since the biodiesel produces smaller 

amount of soot than #2D. This approach is expected to weaken the soot effect on NO 

formation and to separate the effects of the additive from the soot. The test results show 

that the barium additive does not have any direct influence on NO formation.  

Using the biodiesel fuel with #2D, the trends of NO and soot concentrations are 

studied. The results show the different trends at lower and higher load cases. At the 

lower load case, NO concentration is decreased with increasing the biodiesel volume 

percentage. #2D shows the later start of combustion, but higher peak of the heat release. 

Possibly, #2D case has better combustion process, since it shows lower FSN result 

compared to other biodiesel cases. 

At the higher load cases, NO concentration is increased with the biodiesel volume 

percentage and the diffusion combustion phase. Also, the presence of oxygen in the 

biodiesel fuels may help the soot oxidation and cause FSN to be decreased. 

In order to study the soot radiation, soot emissivity is estimated. The results show 

the general trend of soot emissivity with the engine load and speed, but cannot capture 

the detailed changes of soot caused by the barium additive and the biodiesel volume 

percentage due to the absence of the detailed chemical reactions for combustion 

processes. 



131 
 

6.2 Conclusions 

In this study, the two-stage model is used as an interpreting tool. The two-stage 

model shows the temperature improvement compared to the single-zone model. It helps 

the NO model to have the calculated NO values close to the experimental ones. 

However, the detailed change in NO concentration during combustion could not be 

verified. Using the two-stage model, the heat release rates are also calculated. All the 

calculated results are used to interpret the different fuel test results. 

In the diesel fuel tests, the soot effects on NO formation are investigated by using 

the barium additive. The test results show that the change in soot does not affect NO 

formation noticeably. Rather, the ambient temperature shows the dominant effect on the 

NO formation for this study. 

In the biodiesel tests, the effects of the barium additive on NO are studied. The 

results show that the barium additive does not have any direct effects on NO formation. 

Also, it is shown that the presence of oxygen in biodiesel fuel reduces the soot 

concentration and increases NO concentration at the higher load cases where both the 

premixed and diffusion combustion phases are observed. Also, wider diffusion 

combustion phase causes higher NO concentration. However, at the low load condition, 

the biodiesel case shows higher soot and lower NO concentration compared to #2D case 

due to the combustion characteristics. 

Using the two-stage model, the soot emissivity is estimated for both the diesel and 

biodiesel tests. The results show the general trends of the soot emissivity according to 
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the engine speeds and loads. However, the detailed changes in soot concentration cannot 

be observed due to the lack of the combustion modeling. 

Through this study, the relationship between soot and NO is verified. This 

understanding can be applied to develop strategies to remove soot and NO at the same 

time. Since their trade-off relation is not dominant, controlling both of them is thought to 

be possible. These findings can be used to decrease NO concentration in biodiesel 

combustion. 

Also, the two-stage model is expected to be used in an engine control loop for NO 

monitoring, since it shows results reasonably close to the experimental values. Also, the 

model is able to estimate NO concentration within a short time properly to the engine 

speed. For this soot emissivity, it needs more efforts to find or develop a soot emissivity 

model. 

Lastly, this engine research is hoped to be the basis in emission research, engine 

control research, and biodiesel research.  

 

6.3 Future Study 

Through this study, the relationship between NO and soot is investigated. The 

well-known trade-off relation is not observed in this study, but the ambient air 

temperature, premixed and diffusion phases (combustion characteristics), presence of 

oxygen (fuel effect) are found to be more dominant than the expected effect of soot. 

There are several things to recommend for the extended work of this research:  
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1. The ambient condition is observed to affect NO formation more than the 

attempted controlled change (i.e., in-cylinder soot formation via the use of 

barium additive). In order to find out possible factors, which might be hidden 

by the effect of the ambient condition, further research needs to be conducted 

with a control system for the ambient conditions.  

 2. The analytical model is not able to explain the detailed change of soot 

emissivity. In order to overcome this problem, the direct observation inside the 

cylinder is desirable to study the change of the soot during the combustion by 

the barium additive.  

3. As the analytical model is able to reasonably estimate the NO concentration, a 

NO control program with the two-stage model may be an interesting research.  
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APPENDIX A 

 

This section shows how to calculate the thermodynamic properties such as 

enthalpy, internal energy, and ideal gas constant, also their partial derivative with respect 

to temperature, pressure, and equivalence ratio. This appendix is nothing more than a 

summary of the work done by Olikara et al. [38] . 

Since their approach is introduced to compute the thermodynamic properties 

using a minimal number of critical equations, many researchers have used the idea for 

various combustion efforts. The predominant thought is that the gas mixture in a 

cylinder is in an equilibrium state at any instant, and that combustion proceeds with air 

and hydrocarbon fuel which contains C, H, O, and N atoms.  

One simple example can explain this approach easily step by step. The 

combustion with a fuel, n m l kC H O N , and air at equivalence ratio, ϕ, takes place and the 

products stays in an equilibrium state. The chemical reaction equation is expressed as: 

 

 13 2 2

1 2 3 4 2 5 6 7 8 2 9 2 10 2 11 2 12

/ 4 / 2
3.7224 0.044n m l k

n m l
x C H O N O N Ar

x H x O x N x H x OH x CO x NO x O x H O x CO x N x Ar


  

    
 
          

 A 1 

 
x1 through x12 are the mole fractions of the product species, and x13 is mole of a 

fuel which gives one mole of the summation of the products in combustion. It means that 

the summation of x1 through x12 is the value of one mole as: 

1
12

1


i

ix
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The left hand side of the above equation can be simplified in terms of the atoms 

as: 

 ArrNrrOmHnCx ''' 2213   
 

where 
1

/
4 2O

m
r n     

 
 

02

1
rr 

 

07374.3
2

' r
r

r 
 

00444.0'' rr   

 
 

In atom balance: 

C: 6 10 13x x nx   

H: 1 4 5 9 132 2x x x x mx     

O: 2 5 6 7 8 9 10 132 2 2x x x x x x x rx        

N: 3 7 11 132 2 'x x x r x    

Ar: 12 13"x r x  

 
 

In spite of combustion proceeding in a non-equilibrium fashion, some species are 

believed to exist in equilibrium concentrations. With this assumption, Olikara et al. [38] 

suggested that the equilibrium among the products can be expressed by the following 7 

non-redundant hypothetical reactions shown in Table A 1 The reference pressure is at 

1.0 atmosphere (atm). 
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Table A 1. 7 non-redundant hypothetical reactions 

Reaction Equilibrium  constant 

2

1

2
H H  

1/2
1

1 1/2
4

x p
K

x
  

2

1

2
O O  

1/2
2

2 1/2
8

x p
K

x
  

2

1

2
N N  

1/2
3

3 1/2
11

x p
K

x
  

2 2

1 1

2 2
H O OH   

2/1
8

2/1
4

5
5

xx

x
K   

2 2

1 1

2 2
O N NO   

2/1
11

2/1
8

7
7

xx

x
K   

2 2 2

1

2
H O H O   9

9 1/2 1/2
4 8

x
K

x x p
  

2 2

1

2
CO O CO   10

10 1/2 1/2
6 8

x
K

x x p
  

where pressure, p, is in units of atm.  
 

By using 4x , 6x , 8x   and 12x , other mole fractions of products can be rearranged 

as following: 

1/2
1 1 4x C x     1

1 1/2

K
C

P
  

1/2
2 2 8x C x     2

2 1/2

K
C

P
  

1/2
3 3 11x C x     3

3 1/2

K
C

P
  

1/2 1/2
5 5 4 8x C x x     5 5C K  

1/2 1/2
7 7 8 11x C x x     7 7C K  

1/2
9 9 4 8x C x x     1/2

9 9C K P  
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1/2
10 10 6 8x C x x     1/2

10 10C K P  

A.1. The independent mole fractions of products: x4, x6, x8 and x11 

Recall and rewrite the balance of atoms: 

1 4 5 9 6 102 2 ( ) 0
m

x x x x x x
n

       

2 5 6 7 8 9 10 6 10

2
2 2 ( ) 0

r
x x x x x x x x x

n
          

3 7 11 6 10

2
2 ( ) 0

r
x x x x x

n


      

By using the equations above, the summation of moles of products can be expressed as: 

12

1

1i
i

x


    
''11

6 10
1

1 0i
i

r
x x x

n

     

 
For simplification, define the symbols as 

1

m
d

n
 ,  2

2r
d

n
  

3

2r
d

n


 , 4

r
d

n


  

 
Let’s assign pseudo function for each equation as followings: 

 1/2 1/2 1/2 1/2 1/2
1 1 4 4 5 4 8 9 4 8 6 10 6 8

m
f c x 2x x x 2 x x x x x

n
c c c       

 1/2 1/2 1/2 1/2 1/2 1/2 1/2
2 2 8 5 4 8 6 7 8 11 8 9 4 8 6 10 6 8

2r
f  c x x x x x x 2x x x x x x

n
c c c c         

 1/2 1/2 1/2 1/2
3 3 11 7 8 11 11 6 10 6 8

2r
f  c x x x x x x x

n
c c
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f C x C x C x x C x x x C x x 2x C x x /

C x x / x x C x x / ‐1 

 

1 1 1 1 1 1 1
1/2 1/22 2 2 2 2 2 2

4 1 4 2 8 3 11 4 5 4 8 6 7 8 11 8 9 4 8 10 6 8

1/2
11 6 10 6 8

f  c x x x x x x x x x 2x x x x x

r
x x x x 1

n

c c c c c c

c

         


   

 
Since there are four equations ( 1f , 2f , 3f f  and 4f f ) and four unknowns ( 4x , 6x x , 8x

x  and 11x x ), it is easy to calculate the four unknowns by using the Newton-Rhapson 

method: 

j j j j
j 4 6 8 11

4 6 8 11

f f f f
f x x x x 0

x x x x

   
        
      j=1, 2, 3, 4 

 
The four equations needs to be solved to find 4x , 6x x , 8x x  and 11x . Then, the 

previous value can be improved as: 

 

(2) (1)
i i ix x x  x x ∆x   i=4, 6, 8 and 11 

 

Before solving the above equations, initial guesses should be estimated. Those guess 

values are the following: 

For 1.0  , 13

1
x

m
r r r

4


   

x ' '' 

For 1.0  , 13
' ''

1
x

m
n r r

2


  

x ' '' 
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Then substituting 13x into the following equation and then, solving the equation yields 

8x : 

1/2 1/2
10 8 9 8 8

1/2 1/2
10 8 9 8 13

2 nx n 0.5 mx 2x
2r 0

1 x 1 x x

c c

c c


   

 
 

 
By substituting 13x  and 8x  into the following equations, the independent variables can 

be estimated: 

13
6 1/2

10 8

nx
x

1 xc



 

 

13
4 1/2

9 8

0.5mx
x

1 xc



 

 

11 13x r x  

 

A.2. Partial derivatives of the mole fraction 

 The four functions and the four mole fractions are dependent on temperature, 

pressure and equivalence ratio. Partial derivatives with respect to temperature: 

 1/2 1/2 1/2 1/2 1/21
1 4 4 5 4 8 9 4 8 6 10 6 82 2 0

df d m
c x x c x x c x x x c x x

dT dT n
         

 

 1/2 1/2 1/2 1/2 1/2 1/2 1/22
2 8 5 4 8 6 7 8 11 8 9 4 8 6 10 6 8

2
2 0

df d r
c x c x x x c x x x c x x x c x x

dT dT n
           

 

 1/2 1/2 1/2 1/23
3 11 7 8 11 11 6 10 6 8

2
0

df d r
x c x x x xc c x x

dT dT n
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1 1 1 1 1

2 2 2 2 2
1 4 2 8 3 11 4 5 4 8 6

1 1
1/2 1/24 2 2

7 8 11 8 9 4 8 10 6 8 11

1/2
6 10 6 8

2

1

0

c x c x c x x c x x x

df d
c x x x c x x c x x x

dT dT
r

x c x x
n

 
     

 
      
 

    
 



 

 
1/2 1/2 1/21/2

1/25 4 8 9 4 81 1 4 4
6 10 6 8

( ) (2 )( ) (2 ) d c x x d c x xdf d c x d x d m
x c x x

dT dT dT dT dT dT n
         

 

   

1/2
1/2 1/2 1/251 4 4
4 1 4 8

1/2 1/2 1/2
1/24 8 9 4 8

5 4 8 9 6

1/2 1/2
10 6 8 10 6 8

( )( ) ( ) (2 )

( ) (2 ) ( )
2 ( )

d cd c d x d x
x c x x

dT dT dT dT

d x x d c d x x m d
c x x c x

dT dT dT n dT
m d m d

c x x c x x
n dT n dT

   

   

 

 

 

1/2
1/2 1/2 1/251 4 4 4 4
4 1 4 8

4 4

1/21/2
1/2 1/2 1/28 8 94 4

5 8 5 4 4 8
4 8

1/2
1/2 8 8 6 64 4

9 8 9 4
4 8 6

10
6

( )( ) ( ) (2 )

( ) (2 )( )

( ) ( )( )
2 2

d cd c x dx x dx
x c x x

dT x dT x dT dT

x dx d cx dx
c x c x x x

x dT x dT dT

x dx x dxx dx m
c x c x

x dT x dT n x dT

d cm
x

n dT

 
   

 


  

 

 
  

  


1/2

1/2 1/26 6 8 8
8 10 8 10 6

6 8

( ) ( )x dx x dxm m
x c x c x

n x dT n x dT

 
 

 

 

 

 101/2 1/2 1/2 1/2 1/25 91
4 4 8 4 8 6 8

1/2 1/2
1/2 1/24 4 4 4 4

1 5 8 9 8
4 4 4 4

1/26 6 6
10 8

6 6

1/2
1/8

5 4
8

( ) (2 )( )

( ) (2 ) ( ) ( )
2

( ) ( )

( )

d cd c d cd c m
x x x x x x x

dT dT dT n dT

x x x x dx
c c x c x

x x x x dT

x x dxm m
c x

n x n x dT

x
c x

x

 
    
 
    

        
  

     






1/2 1/2
2 8 8 8

9 4 10 6
8 8

( ) ( )
2

x x dxm
c x c x

x n x dT
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 1/21/21/2
101/2 1/2 1/2 1/2 1/25 91

4 4 8 4 8 6 8

1/2 1/2
1/2 1/2 1/26 6 64 4 4 4 4

1 5 8 9 8 10 8
4 4 4 4 6 6

( ) (2 )( / )

( ) ( )( ) (2 ) ( ) ( )
2

d K Pd K d K Pd K P m
x x x x x x x

dT dT dT n dT

x x dxx x x x dx m m
c c x c x c x

x x x x dT n x n x dT

      
  

       
                 


1/2 1/2 1/2

1/28 8 8 8
5 4 9 4 10 6

8 8 8

( ) ( ) ( )
2

x x x dxm
c x c x c x

x x n x dT

   
     

 

 
Thus, 

 1/2
101/2 1/2 1/2 1/2 1/2 1/25 91 1 4

4 8 4 8 6 81/2

1/2 1/2 1/2 1/2 1/2 64
1 4 5 4 8 9 8 10 8

1/2 1/2 1/2 1
5 8 4 9 8 4 10 8

( ) ( )( )
2

1 1
2 2

2 2

1 1

2 2

d Kd K d Kdf d K x m
x x P x x P x x

dT dT P dT dT n dT

dxdx m m
c x c x x c x c x

dT n n dT

m
c x x c x x c x

n

 

  

 
    
 

            
   

   /2 8
6

dx
x

dT
 
 
 

 

 
In a similar way,  
 

   1/2
10 101/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/28 5 7 92 2

4 8 8 11 4 8 6 8 6 81/2

1
1/2 1/2 1/2 64 2

5 4 8 9 8 10 8

( ) 2
2

1 2
1 (1 )

2

d K d Kx dK dK d Kdf dK r
x x x x P x x P x x P x x

dT dT P dT dT dT dT n dT

dxdx r
c x x c x c x

dT n dT


 
      
 

         
   

 

 
1/2

1/2 1/2 1/2 1/23 3 7 1011
8 11 6 81/2

1'
1/2 1/2 1/26 82

10 8 7 8 11 10 8 6

1/2 1/2 1/2 11
3 11 7 8 11

2 '

2 1 2 ' 1
(1 )

2 2

1 1
1

2 2

df dK dK dKx r
x x P x x

dT dT P dT n dT

dx dxr r
c x c x x c x x

n dT n dT

dx
c x c x x

dT

 

 

 
   
 

          
  

    
 

 

 
1 11/21/2 1/2

1/2 1/2 1/2 1/28 3 5 7 91 4 1 11 2 2
4 8 8 11 4 81/2 1/2 1/2

4

1/2 1/2 1/2 1/210 10
6 8 6 8

1/2 1/2 1/2 1/2 4
1 4 5 4 8 9 8

"

1 1
1 2

2 2

x dK dK dK dKdK x dK x
x x x x P x x

df dT P dT P dT P dT dT dT
dT dK dKr

P x x P x x
dT n dT

dx
c x c x x c x

d
 

 
        

    
     
 

 1/2 1/2 6
10 8 10 8

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 8
2 8 5 8 4 7 8 11 9 8 4 10 8 6 10 8 6

1/2 1/2 1/2 11
3 11 7 8 11

"
1 1

1 1 1 1 1 "
2

2 2 2 2 2

1 1
1

2 2

T

dxr
c x c x

n dT

dxr
c x c x x c x x c x x c x x c x x

n dT

dx
c x c x x

dT
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The equilibrium constants calculated based on JANAF Tables [32] by Olikara et 

al. [38] are expressed as: 

2log lnp A A A
A

B
K A T C D T E T

T
         

where constants A, B, C, D, and E are shown in Table A 2.  

 TA is defined as T/1000. 

 
Table A 2 Equilibrium constants. 

    Constants 
 

Reaction 
A B C D E 

2

1

2
H H  0.432168 2-0.112464 10 10.267269 10 10.745744 10 

20.242484 10
 

2

1

2
O O  0.310805

 

2-0.129540 10 10.321779 10 10.738336 10 
20.344645 10

 

2

1

2
N N  0.389716 20.245828 10  10.314505 10 10.963730 10 

20.585643 10
 

2 2

1 1

2 2
H O OH 

 

0.141784

 

10.213308 10 0.853461

 

10.355015 10 

 

0.310227 10 
 

2 2

1 1

2 2
O N NO 

 

10.150879 10 10.470959 10  0.646096

 

20.272805 10

 

0.154444 10 
 

2 2 2

1

2
H O H O 

 

0.752364

 

20.124210 10 10.260286 10  0.259556

 

0.162687 10 
 

2 2

1

2
CO O CO   

20.415302 10 

 

20.148627 10 10.475746 10  0.124699 0.900227 10 
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APPENDIX B 

 

This section is the summary of the work done by Szekely et al. [31]. The details 

of the derivation of mass at both stoichiometric and lean zones are shown. It is used to 

calculate the rate of heat release in the two-stage model.  

B.1. Calculation of the initial mass of each zone 

 
The initial mass of each zone is estimated as the following explanation. The total 

mass at the first stage is expressed as: 

1 2 3+m +mtotalm m m m m m    B 1 

 

The subscript indicator, i, is designated to be 1 for the burned stoichiometric-

zone, 2 for the unburned stoichiometric-zone, 3 for the burned lean-zone, and 4 for the 

unburned lean-zone. The total mass of fuel and air is written as: 

, ,1 ,2 ,3+m +ma total a a am m   B 2 

, ,1 ,2 ,3+m +mf total f f fm m   B 3 

where subscripts a and f mean air and fuel, respectively.  
 

By using the definition of equivalence ratio, it is expressed with the mass of fuel 

and air as 

,1 ,2 ,3 ,

,1 ,2 ,3 ,

+m +m 1 1

+m +m
f f f f total

avg
a a a s a total s

m m

m FA m FA
       B 4

 

where avg is average equivalence ratio 

sFA is stoichiometric fuel/air ratio. 
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The equivalence ratio of the burned stoichiometric-zone, for example, can be 

expressed with the following equation.  

,1
1

,1

1f

a s

m

m FA
      B 5 

Multiplying by ,1am and, then, dividing by am yields 

,1,1
1

, ,

1fa

a total a total s

mm

m m FA
      B 6 

 

Similarly, this manipulation can be applied to the other zones. Each manipulated 

results have the common denominator, a sm FA , so the overall equivalence ratio can be 

rewritten as 

,

,

,1 ,2 ,3

, , ,

,1 ,2 ,3
1 2 3

, , ,

1

1 1 1

f total
avg

a total s

f f f

a total s a total s a total s

a a a

a total a total a total

m

m FA

m m m

m FA m FA m FA

m m m

m m m



  

 

     

     

   B 7 

Arranging the overall equivalence ratio for ,2am  gives 

 , ,1 1 ,3 3

,2
2

a total avg a a

a

m m m
m

  



    
    B 8

 

Substituting into ,2am the equation of total mass of air as 

 
, 1 2 3

, ,1 1 ,3 3

1 3
2

+m +m

+ +m

a total a a a

a total avg a a

a a

m m

m m m
m

  




    


 

  B 9 
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Rearranging above equation for the mass of air in the unburned lean-zone, 

1
, ,1

2 2
,3

3

2

1 1

m

1

avg
a total a

a

m m
 
 




   
       

   
 
 

 

  B 10
 

As 1 2  , 

 
 

,
22

,3 ,
2 33

2

1

m

1

avg
a total

avg

a a total

m

m


 
 



 
      

 
 

 

  B 11 

 
Since the total mass is expressed as  

, ,+mtotal a total f totalm m   B 12 

 
Dividing by ,m a total yields 

,

1+ 1+total
act s avg

a total

m
FA FA

m
    

, 1+
total

a total
s

m
m

FA 



   B 13 

 
Similarly the mass of air in the unburned lean zone can be expressed as 

3
,3

31+a
s

m
m

FA 



   B 14 

 
 3 ,3 31+a sm m FA   

 
  B 15 

 

Therefore, the total mass of the unburned lean zone can be calculated by 

substituting B11 and B13 into B15 as 
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3 ,3 3

2

3
2 3

2

3
2 3

23

2 3

1+

1+

1+
1+

1+

1+

a s

avg

a s

avg total
s

s avg

avgs
total

s avg

m m FA

m FA

m
FA

FA

FA
m

FA



 


 

 


  

 
 

  


   




   

 


  



   B 16 

 

B.2. Stoichiometric-zone combustion with no fuel injection 

The total cylinder mass is constant due to the assumption that stoichiometric-

zone combustion takes place without fuel injection: 

dm
=0

d
   B 17 

where   designates the crank angle. 
 
 

The mass of the unburned-lean zone does not change while the unburned-

stoichiometric zone is combusting: 

3dm
=0

d
  B 18 

Since the total mass is constant and so is the mass of unburned-lean zone, the 

exchange between the burned and the unburned-stoichiometric zone can be expressed: 

2 1dm dm

d d 
    B 19 

 
The unburned zones (unburned-stoichiometric and lean zone) have a uniform 

mixture without fuel injection. Thus, the ideal-gas constants for unburned zones are 
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constant. The differential derivative of the ideal-gas law can be simplified for the 

unburned-lean zone: 

3 3

3 3

1 1 1
, 0

dT dVdp dR

p d T d V d d   
     B 20 

 
Unburned-stoichiometric zone: 

2 2 2

2 2 2

1 1 1 1dm dT dVdp

p d m d T d V d   
     B 21 

 
Rearrange the above equations for the volume derivative: 

2 2 2 2 2 2

2 2

dV V dT V dm V dp

d T d m d p d   
    

where   2 1dm dm

d d 
   

 
Thus,  

2 2 2 2 1 2

2 2

dV V dT V dm V dp

d T d m d p d   
     B 22 

3 3 3 3

3

dV V dT V dp

d T d p d  
      B 23 

 
The volume derivative of the burned-stoichiometric zone can be obtained by 

using the volume equation and the above equations as: 

31 2

3 3 32 2 2 1 2

2 2 3

3 3 2 32 1 2 2

2 2 3

dVdV dVdV

d d d d

V dT VV dT V dm VdV dp dp

d T d m d p d T d p d

V dT V VV dm V dTdV dp

d m d T d T d p d

   

     

    

  

  
       

   
 

      
 

 B 24 
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Since the exchange of mass between stoichiometric-zones occurs with the same 

equivalence ratio, there is no change of equivalence ratio. This is also true with the 

unburned-lean zone. Thus, the derivatives of ideal-gas constant and internal energy can 

be reduced as: 

dR R dp R dT

d p d T d  
 

 
 

  B 25 

du u dp u dT

d p d T d  
 

 
 

   B 26 

 
Substituting all the above equations into the derivative of internal energy yields: 

Burned-stoichiometric zone: 

1 1 1 1 1 1 1
1 1 1

1

u u dT dm dV Q dmdp
m u p h

p d T d d d d d


     

  
        

  B 27 

 
Unburned-stoichiometric zone: 

2 2 2 2 2 2 2
2 2 2

2

u u dT dm dV Q dmdp
m u p h

p d T d d d d d


     

  
        

  B 28 

 
Unburned-lean zone: 

3 3 3 3 3 3
3 3

3

u u dT dm dV Qdp
m u p

p d T d d d d


    

  
       

  B 29 

where 3 0
dm

d
  

 
By substituting equations   B 22 and   B 23 into equations 

 B 28 and   B 29, the temperature derivative for the two unburned 

zones can be obtained: 
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2 2 2 2 2 2 2 1 2 2 2
2 2 2

2 2 2

u u dT dm V dT V dm V Q dmdp dp
m u p h

p d T d d T d m d p d d d


       

    
              

 

 2 2 2 2 2 2 2 1 2
2 2 2 2

2 2 2

u V dT u V dm V dm Qdp
m p m p u h p

T T d p p d d m d d


    

    
            

 

 
where  

 

 

2 2 1 2 2
2 2 2 2

2 2

2 2
2 2

2

2
2 2

0

dm V dm V dm
u h p u h p

d m d m d

V dm
u p h

m d

dm
h h

d

  





 
     

 
  

    
  

 

  
 
 
Thus, 

2 2
2 2

2

2 2
2

2 2

u Qdp
V m

p d ddT

d u V
m p

T T


 



  
     
 

  

  B 30 

 
Similarly, 

32
3 3

3

3 3
3

3 3

Qu dp
V m

p d ddT

d u V
m p

T T


 



  
     
 

  

  B 31 

 
For the burned-stoichiometric zone, substituting equation  B 25 into the 

differentiated ideal gas equation yields the temperature derivative: 
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1 1 1 1

1 1 1 1

1 1 1 1 1dm dR dT dVdp

p d m d R d T d V d    
     

1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1dm R R dT dT dVdp dp

p d m d R p d T d T d V d     
  

       
 

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1R dT R dV dmdp

T R T d p R p d V d m d   
    

           
 

1 1 1

1 1 11

1

1 1 1

1 1 1 1

1 1

R dV dmdp
p R p d V d m ddT

d R
T R T

  


 
    

 
  

  B 32 

where 















1

1

11

1
11

1

T

R

RT



 
 
 
 The mass derivative of the burned-stoichiometric region can be expressed by 

substituting equations B 24 and B 32 into equation  B 27: 

 

1 1 1 1 1 1
1 1 1

1 1 1 1

1 1 1
1

1 1 1 1u R dV dm u dmdp dp
m u

T p R p d V d m d p d d

dV Q dm
p h

d d d


    


  

                   

   

 

1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1

1 1 1 1 1 1

1 1 1
1

1 1u R m u dV m u dm u dmdp dp
m m u

T p R p d V T d m T d p d d

dV Q dm
p h

d d d

 
    


  

     
          

   

 

1 1 1 1 1 1
1 1 1 1 1

1 1 1

1 1 1 1 1 1
1

1 1

1 1u R u dm u dmdp dp
m m u

T p R p d T d p d d

m u dV Q dm
p h

V T d d d

 
   

 
  

    
         

 
      

  B 33 

 
 Substituting equation B 24 into equation B 33: 
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1 1 1 1 1 1
1 1 1 1 1

1 1 1

3 3 2 31 1 1 2 1 2 2 1 1
1

1 1 2 2 3

1 1u R u dm u dmdp dp
m m u

T p R p d T d p d d

V dT V Vm u V dm V dT Q dmdV dp
p h

V T d m d T d T d p d d d

 
   

 
      

    
        

    
                

 

 

1 1 2 1 1 1
1 1 1

1 2 2 1

3 32 2 1 1 1 1 1 1 1 1 1

2 1 1 3 1 1 1 1

1 1 1 1 2
1 1 1

1 1 2

1 1

dm u V m u
u h p

d T m V T

dT VdT V m u m u m udV
p p p

d T V T d T V T d V T

Q u R u Vdp
m m

d d T p R p p T




  
  

 
 

   
         
          

                       

   
         

2 31 1 1

1 1

V Vm u
p

V T p

   
       

  B 34 

 

 The left hand side: 

1 1 2 1 1 1
1 1 1

1 2 2 1

1 2 1 1 2
1 1 1

2 1 1 2

1

dm u V m u
u h p

d T m V T

dm V m u pV
u h

d m V T m







   
         
   

         

 

 

where 2
2

2 RT
m

pV
   and 21 hh    

 
 Thus, 

 

1 2 1 1
1 1 2

2 1 1

1 2 1 1
1 1 2 1

2 1 1

1 2 1 1
1 2 1

2 1 1

1

1

1

dm V m u
u h RT

d m V T

dm V m u
u h RT

d m V T

dm V m u
u u

d m V T










   
        

   
         

   
          

 
 
 The right hand side, 
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3 32 2 1 1 1 1 1 1 1 1 1

2 1 1 3 1 1 1 1

2 31 1 1 1 2 1 1 1
1 1 1

1 1 2 1 1

2 2
1

2

1 1

dT VdT V m u m u m udV
p p p

d T V T d T V T d V T

V VQ u R u V m udp
m m p

d d T p R p p T V T p

dT pV

d T

  
  

 
 




          
                      

        
                    

  3 3 1 31 2 1 1 1 1 1
1

1 2 1 3 1 3 1 1 1

2 31 1 1 1
2 3 1 1 1

1 1 1

1 1

dT pV mVmV u u m udV
p

V T T d T V T T d V T

V VQ u u Rdp
V V m m

d d p T p R p V p


 

 
 

      
             

    
              

 
 
 Therefore, equation B 34 is rewritten as: 

1 2 1 1
1 2 1

2 1 1

3 3 1 32 2 1 2 1 1 1 1 1
1 1

2 1 2 1 3 1 3 1 1 1

2 31 1 1 1
2 3 1 1 1

1 1 1

1

1 1

dm V m u
u u

d m V T

dT pV mVdT pV mV u u m udV
p

d T V T T d T V T T d V T

V VQ u u Rdp
V V m m

d d p T p R p V p




 
  

 
 

   
       

      
               

    
            



 

 

3 3 1 32 2 1 2 1 1 1 1 1
1 1

2 1 2 1 3 1 3 1 1 1

2 31 1 1 1
2 3 1 1 1

1 1 11

2 1
1 2 1

2 1

1 1

1

dT pV mVdT pV mV u u m udV
p

d T V T T d T V T T d V T

V VQ u u Rdp
V V m m

d d p T p R p V pdm

d V m
u u

m V

 
  

 
 




       
                

 
                   


  


1

1

u
T
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B.3. Lean-zone combustion with no product mixing 

Since only the unburned-lean zone is combusting, the mass of the burned-

stoichiometric zone is constant: 

1 0
dm

d
  B 35 

 
Since only the exchange of mass between lean-zones takes place, the relation can 

be expressed as:  

34 dmdm

d d 
    B 36 

 
For the burned-stoichiometric zone, there is no mass change. Thus, the 

differential form of ideal gas constant can be written as: 

1 1 1 1

1

dR R R dTdp

d p d T d  
 

 
 

   B 37 

 
Similarly before, the derivative of the ideal gas law can be expressed as: 

1 1 1 1

1 1 1 1

1 1 1 1 1dm dR dT dVdp

p d m d R d T d V d    
      B 38 

where 1 0
dm

d
  

 
Substituting equation    B 37 into equation B 38 yields: 

1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1dm R R dT dT dVdp dp

p d m d R p d T d T d V d     
  

       
 

1 1 1 1

1 1 1 1 1

1 1 1 1 1dV R dT R dp

V d T R T d p R p d  
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1 1 1 1 1 1 1 1

1 1 1

dV V V R dT V V R dp

d T R p d p R p d  
    

          
   B 39 

 
For the unburned-lean zone, the derivative of the ideal gas law can be written as 

below and it is rearranged in respect of volume: 

 

3 3 3 3

3 3 3 3

1 1 1 1 1dm dR dT dVdp

p d m dc R d T d V d   
     

where 03 
dc

dR

 
 
 

Thus, 

3 3 3 3 3 3

3 3

dV V dT V dm V dp

d T d m d p d   
     B 40 

An expression for the volume derivative of the burned-lean zone can be induced 

as: 

34 1

3 3 3 3 31 1 1 1 1 1 1

1 1 1 3 3

dVdV dVdV

d d d d

V dT V dm VV V R dT V V RdV dp dp

d T R p d p R p d T d m d p d

   

     

  

                             

 

where 3 4dm dm

d d 
 

 
 

 Thus, 

3 3 3 3 1 34 1 1 1 1 1 1

3 1 1 3 1

V dm V dT V VdV V V R dT V RdV dp

d d m d T R p d T d p R p d     
    

             
  B 41

 

 
The energy equation of each zone can be written similarly to the previous 

derivations as: 
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1 1 1 1 1 1
1 1

1

u u dT dm dV Qdp
m u p

p d T d d d d


    

  
       

  B 42 

3 3 3 3 3 3 3
3 3 3

3

u u dT dm dV Q dmdp
m u p h

p d T d d d d d


     

  
        

  B 43 

 
And 

4 4 4 4 4 4 4
4 4 4

4

u u dT dm dV Q dmdp
m u p h

p d T d d d d d


     

  
        

  B 44 

 

In order to obtain the temperature derivatives for the burned stoichiometric and 

the unburned-lean zones, equations  B 39 and  B 40 are substituted into equations 

B 42 and  B 43. 

 

Burned-stoichiometric zone: 

1 1 1 1 1 1 1 1 1 1 1 1
1 1

1 1 1 1 1

u u dT dm V V R dT V V R Qdp dp
m u p

p d T d d T R T d p R p d d


     

                                 
 

1 1 1 1 1 1 1 1 1
1 1 1

1 1 1 1 1

dT u pV pV R pV R u Qdp
m V m

d T T R T R p p d d


  
      

              
 

 

where 11
1

1 Tm
R

pV
   

 
 

Thus, 

1 1 1 1
1 1

11

1 1 1
1 1 1

1 1 1

pV R u Qdp
V m

R p p d ddT

d u pV R
m m T

T T T


 



  
     
  

    

  B 45 
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Similarly, the energy equation of the burned-stoichiometric region is rearranged 

as: 

3 3 3 3 3 3 3 3 3 3 3
3 3 3

3 3 3

u u dT dm V dT V dm V Q dmdp dp
m u p h

p d T d d T d m d p d d d


       

    
              

 

 3 3 3 3 3 3
3 3 3 3 3

3 3

dT u pV u dm Qdp
m V m h u

d T T d p d d


   
    

           
 

 

Since 3 0
dm

d
 , 

3 3
3 3

3

3 3
3

3 3

u Qdp
V m

d p ddT

d u pV
m

T T
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For the unburned-lean zone, the temperature derivative is obtained as following: 

4 4 4 4

4 4 4 4

1 1 1 1 1dm dR dT dVdp

p d m d R d T d V d    
     

where 4 4 4 4

4

dR R R dTdp

d p d T d  
 

 
 

  

 
Thus, 

4 4 4 4 4 4

4 4 4 4 4

1 1 1 1 1dm R R dT dT dVdp dp

p d m d R p d T d T d V d     
  

         
 

4 4 4 4 4

4 4 4 4 4 4

1 1 1 1 1 1dT R R dV dmdp

d T R T p R p d V d m d   
    

             
 

4 4 4

4 4 44

4

4 4 4

1 1 1 1

1 1

R dV dmdp
p R p d V d m ddT

d R
T R T

  


 
    

 
    

 

4 4 4 4
4

4 4 4

1 1 1 1dT R dV dmdp

d p R p d V d m d


   
 

     
  B 47 
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where 















4

4

44

4
11

1

T

R

RT

   

 
The mass derivative for the burned-lean region can be obtained by substituting 

equations  B 45 and  B 47 into the expanded energy equation B 44: 

 

4 4 4 4 4 4 4
4 4 4

4

u u dT dm dV Q dmdp
m u p h

p d T d d d d d


     

  
        

 

4 4 4 4 4 4 4 4 4
4 4 4 4

4 4 4 4

1 1 1 1u u R dV dm dm dV Q dmdp dp
m u p h

p d T p R p d V d m d d d d d


       

                        

4 4 4 4 4 4 4 4 4 4
4 4 4 4 4

4 4 4 4 4

1 1 1u u R dm dm m u dV Q dmdp dp
m u p h

p d T p R p d m d d V T d d d

 
      

                               

4 4 4 4 4
4 4 4

4 4 4

3 3 3 3 1 34 4 1 1 1 1 1 1 4 4
4 4

4 4 3 1 1 3 1

1 1 1u u R dm dmdp dp
m u

p d T p R p d m d d

V dm V dT V Vm u V V R dT V R Q dmdV dp
p h

V T d m d T R p d T d p R p d d d


   


      

                  
                                    

34 4 4 4
4 4 4 4 4

4 4 4 3

3 31 4 4 1 1 1 4 4
4 4

4 4 1 1 3 4 4

4 4
4

4 4

4 4
4 4

4 4

1 1

Vdm u m u
m u p h

d T V T m

dT VdT m u V V R m u
p p

d V T T R p d T V T

m udV
p

d V T

u Rdp
m m

d T p R p

 


 
 







   
         
         

                    
 

   

  
     

1 34 4 4 1 1
4 4

4 4 1

4

V Vu m u V R
p

p V T p R p

Q

d






                    



 B 48 

 
 

The right hand side of the above equation is rearranged as: 
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3 3 3 44 4 4 4 4 4
4 4 4 4 4 4 4 4

4 4 4 3 3 4 3 4

1
V pV V mdm u m u dm u

m u p h u h
d T V T m d m V m T

  
 

         
                          

 

Since 3
3

3

pV
RT

m
  and 3 4h h , 

3 3 44 4 4 4 4 4
4 4 4 4 4 4 3 4

4 4 4 3 4 3 4

1
V V mdm u m u dm u

m u p h u u
d T V T m d V m T

  
 

       
                       

 

Therefore, equation B 48 is rewritten as following: 

3 44 4
4 3 4

4 3 4

3 31 4 4 1 1 1 4 4
4 4

4 4 1 1 3 4 4

4 4
4

4 4

4 1 1 4
1 3 4 4 4

1 4 4

1

1 1

V mdm u
u u

d V m T

dT VdT m u V V R m u
p p

d V T T R p d T V T

m udV
p

d V T

u pV R udp
V V m m

d p R p T p R




 
 







  
      

         
                    

 
   

  
     

  
1 34 1 1

4 4 1

4

V VR V R

p pV V R p

Q

d




           


 

 

3 31 4 4 1 1 1 4 4
4 4

4 4 1 1 3 4 4

4 4
4

4 4

1 34 1 1 4 4 1 1
1 3 4 4 4

1 4 4 4 4 1

4

1 1

dT VdT m u V V R m u
p p

d V T T R p d T V T

m udV
p

d V T

V Vu pV R u R V Rdp
V V m m

d p R p T p R p pV VR p

dm

d

 
 









         
                   

 
   

                    



4

3 4 4
4 3 4

4 3 4

1

Q

d

Vm u
u u

Vm T
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