

TRACK ASSIGNMENT CONSIDERING CROSSTALK-INDUCED PERFORMANCE

DEGRADATION

A Thesis

by

QIONG ZHAO

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2012

Major Subject: Computer Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/9069128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TRACK ASSIGNMENT CONSIDERING CROSSTALK-INDUCED PERFORMANCE

DEGRADATION

A Thesis

by

QIONG ZHAO

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Jiang Hu
Committee Members, Peng Li
 Rabi N. Mahapatra
Head of Department, Costas N. Georghiades

May 2012

Major Subject: Computer Engineering

iii

ABSTRACT

Track Assignment Considering Crosstalk-Induced Performance Degradation.

(May 2012)

Qiong Zhao, B.S., Beijing University of Posts and Telecommunications

Chair of Advisory Committee: Dr. Jiang Hu

 Track assignment is a critical step between global routing and detailed routing in

modern VLSI chip designs. It greatly affects some very important design characteristics,

such as routability, via usage and timing performance. Crosstalk, which is largely

decided by wire adjacency, has significant impact on interconnect delay and circuit

performance. Therefore, the amount of crosstalk should be restrained in order to satisfy

timing constraints. In this work, a track assignment approach is proposed to control

crosstalk-induced performance degradation. The problem is formulated as a Traveling

Salesman Problem (TSP) and solved by a graph-based heuristic. The proposed approach

is implemented and tested on benchmark circuits from the ISPD2011 contest and the

experimental results are quite promising.

iv

To my family

v

ACKNOWLEDGEMENTS

 I would like to thank all of those who encouraged me and helped me during my

study and research at Texas A&M University.

Especially, I would like to extend my heartfelt gratitude to my advisor, Dr. Jiang

Hu, who gave me constant guidance as well as warm encouragement throughout this

research project. He was always patient and kind whenever I had questions or met

problems. Sometimes I got stuck at some point, and he would explain the problem in

every detail until I understand. I could not have completed this thesis without his help

and guidance. I also would like to thank Dr. Peng Li and Dr. Rabi Mahapatra for being

my committee members, and for their suggestions and support on this project.

I would like to thank Dr. Zhuo Li from IBM for his constructive suggestions on this

project, and Dr. Natarajan Viswanathan from IBM for his very helpful information and

explanation on the benchmark circuits.

I would also like to thank my parents for their ceaseless support and encouragement,

without which I would never have been able to complete my graduate study. I also thank

my husband who gave me endless love and understanding.

Last but not least, thanks also to my friends and colleagues and the department

faculty and staff for giving me a warm and kind environment for study, and for helping

me in every aspect during my life at Texas A&M University.

vi

TABLE OF CONTENTS

 Page

ABSTRACT .. iii

DEDICATION .. iv

ACKNOWLEDGEMENTS .. v

TABLE OF CONTENTS .. vi

LIST OF FIGURES ... viii

LIST OF TABLES .. x

1. INTRODUCTION ... 1

 1.1 Routing in VLSI Circuits ... 1
 1.2 Track Assignment .. 2
 1.3 Crosstalk ... 3
 1.4 Delay Increment ... 4
 1.5 Related Work .. 5

2. PROBLEM FORMULATION .. 7

 2.1 Types of Constraints ... 8
 2.2 Solving Integer Linear Programming Problem 12

3. ALGORITHM ... 14

 3.1 Graph Construction .. 14
 3.1.1 Conflict Graph (Interval Graph) ... 14
 3.1.2 Clique ... 15
 3.1.3 Adjacency Graph .. 16
 3.1.4 Extended Bipartite Graph ... 18
 3.2 Flowchart and Detailed Algorithms ... 20
 3.2.1 Step 1: Assign the Maximum Clique 21
 3.2.2 Step 2: Assign the Rest of Wires .. 25
 3.2.3 Delay Calculation and Bound Setting 26

4. EXPERIMENTAL RESULTS .. 31

vii

 Page

5. CONCLUSION ... 39

REFERENCES .. 40

VITA ... 43

viii

LIST OF FIGURES

FIGURE Page

 1 A routing region divided into 4x4 grids. Each grid has a capacity
 of 4 horizontal tracks and 4 vertical tracks. ... 1

 2 Original positions of 9 wire segments which are to be assigned 2

 3 A feasible track assignment for wires given in Fig. 2. 3

 4 Coupling capacitance between two adjacent wires 4

 5 π-model for delay increment induced by coupling capacitance 5

 6 Delay increment is not symmetric .. 8

 7 Explore the structure of the decision variable matrix T.
 The sum of any three numbers connected by a blue dashed line
 is no more than two. ... 11

 8 Conflict graph for 9 wires .. 15

 9 A maximum clique inside the conflict graph in Fig. 8.
 Wire a, b, c, d and e have overlap in span with each other,
 so they cannot be assigned to a same track. To assign the 9 wires
 without wire conflict, a minimum number of 5 tracks are needed. 16

 10 remaining graph after removing edges from the clique in Fig. 9. 17

 11 Assigning a clique of wire segments: i, h and f. Starting from
 the one with the least number of track candidates, find a legal path
 from left to right without causing any bound violation. 19

 12 Flow chart of the heuristic algorithm ... 21

 13 Illustration of the segment tree method .. 23

 14 An example of Hamiltonian path a-b-e-d-c .. 25

 15 Cases of relative positions of two neighboring wires 27

ix

 Page

 16 Function curve of dij. Feasible domain is 0 ≤ lo ≤ li,
 where dij is monotonically increasing. Maximum value
 is reached when lo = li. ... 28

 17 An example of a fully overlapped wire segment .. 29

 18 Number of violated wires in test case Superblue4 32

 19 Number of violated wires in test case Superblue1 33

 20 Number of violated wires in test case Superblue10 34

 21 Part of a panel after track assignment .. 35

x

LIST OF TABLES

TABLE Page

 I Results given by CPLEX of several test cases ... 12

 II Comparison of three approaches .. 37

 III Comparison of heuristic and ILP method .. 38

1

1. INTRODUCTION

1.1 Routing in VLSI Circuits

In VLSI design, routing is an important and complex step. Global routing, followed

by detailed routing, is performed after placement is done, and it outputs the rough

locations of nets. Exact location and layer for each segment of a net is decided by

detailed routing.

In the global routing step, the whole routing region is divided into grids. Each grid,

or tile, is a rectangular region which provides limited routing resource in both horizontal

and vertical direction. Fig. 1 illustrates the gridded routing region. Routing resource is

represented by the number of tracks across each edge of a grid.

Fig. 1. A routing region divided into 4x4 grids. Each grid has a capacity of 4 horizontal tracks
and 4 vertical tracks.

This thesis follows the style of IEEE Transactions on Computer Aided Design of
Integrated Circuits and System.

2

1.2 Track Assignment

Due to the variety of constraints, detailed routing can be very complex. Thus, an

intermediate step is needed between global routing and detailed routing, i.e., track

assignment [1]. Taking the global routing result as input, this intermediate stage assigns

a track for each wire segment. Several types of constraints can be taken into account in

the track assignment procedure, such as wire conflict, timing constraints, and delay

increment. Fig. 2 and Fig. 3 show a simple example of track assignment. The original

positions of wire segments are illustrated in Fig. 2, and one feasible assignment for those

wires are shown in Fig. 3.

Fig. 2. Original positions of 9 wire segments which are to be assigned.

3

Track #

1

2

3

4

5

a

b

c

d

e

f

g

h

i

Fig. 3. A feasible track assignment for wires given in Fig. 2.

1.3 Crosstalk

If we only consider wire conflict, there are off-the-shelf algorithms that can be

applied to solving the track assignment problem, for example the left-edge algorithm [2].

However, in real circuits there are many other constraints that need to be taken care of,

and one important constraint is delay increment. Delay increment is mainly induced by

crosstalk noise between parallel wires adjacent with each other. Crosstalk is usually

estimated using coupling capacitance [3], which appears when two wires carrying

signals are parallel and near to each other. The exact value of coupling capacitance

depends on the coupling length, the distance between the two wires and the switching

factor [4]. The expression can be written as follows [5], [6], [7]:

 𝐶𝐶(𝑖, 𝑗) = 𝛼 ∙ 𝑓𝑖𝑗 ∙
𝑙𝑖𝑗
𝑑𝑖𝑗
𝛽 (1)

4

where i and j are two adjacent wire segments, α and β are technology dependent

constants, lij is the coupling length, dij is the wire spacing between i and j, and fij is the

switching factor for i and j.

Since we only consider crosstalk between wires in neighboring tracks, and the

switching factor can be a constant, generally the crosstalk value increases

proportionately with the coupling length. Fig.4 gives an illustration on this capacitive

coupling.

Driven

Victim

Coupling
Capacitance

Fig. 4. Coupling capacitance between two adjacent wires.

1.4 Delay Increment

Crosstalk noise can have a great negative impact on wire delay. In this project we

use the Elmore delay model for delay increment analysis. A simple example illustrating

this model is given in Fig. 5, where two wire segments of different nets are assigned to

adjacent tracks. Suppose the coupling capacitance between wire a and b is CC.

According to the Elmore delay model, the delay increment at sink a2 induced by wire b

is 𝑑𝑎𝑏 = 𝑅𝑎0,𝑎1 ∙ 𝐶𝐶 + 𝑅𝑎1,𝑎2 ∙
𝐶𝐶
2

, where 𝑅𝑎0,𝑎1 is the resistance between a0 and a1,

and 𝑅𝑎1,𝑎2 is the resistance between a1 and a2.

5

a
a0 a1 a2

b
b0 b1 b2

CC/2 CC/2

Fig. 5. π-model for delay increment induced by coupling capacitance.

In real circuits, the amount of extra delay caused by crosstalk should be limited to a

bearable range. In the problem formulated in this project, we set a bound of delay

increment for each wire segment, and our task is to do track assignment for wire

segments such that there is no wire conflict and all the bounds are satisfied.

1.5 Related Work

 There are prior works on crosstalk-aware routing resource assignment problems. An

ILP formulation is proposed in [8], where decision variables are stored in a 0-1 matrix

indicating the track assignment for each wire. A redundant variable matrix indicating

wire adjacency information is introduced to build the expressions of the crosstalk

constraints. However, those redundant variables greatly increase the complexity of the

problem, and therefore limit the applicability of this formulation. In [9], an ILP

formulation based on wire packing graph (WPG) is built. A maximal clique is found in

the conflict graph for all wires, and a WPG is constructed with each vertex indicating a

possible wire-track combination. There are no redundant variables, but the size of the

graph can be very big because the number of vertices is the product of the number of

wires and the number of tracks. Battery [1] proposed a graph model, weighted bipartite

6

matching, for track assignment problems. In this model, wires are represented by

vertices on one side of the Bipartite graph, and tracks are on the other side. A minimum

weight matching solution is therefore a feasible assignment. However this model is not

suitable for problems with dynamically changing weight. In Wu’s work [5] a method

based on Hamiltonian path is proposed. Considering both coupling capacitance induced

delay and the detour induced delay, they formulate the track assignment problem as a

Sequential Ordering Problem (SOP) and solve it using an SOP solver. Their objective is

to maximize the minimum slack, which is different from our constraint-based problem.

Another work [10] on crosstalk-aware track assignment introduces a method based on

the linear assignment algorithm. A cost matrix is built to store the estimated cost on

every possible assignment for each wire segment. The linear assignment algorithm is

applied repeatedly to assign the maximum clique found in the interval graph during each

step. The algorithm does not take into account the dynamically changing accumulated

crosstalk. Xue’s work [11] considers bounds on crosstalk, and they partitioned the bound

of every net according to the routing regions that the net passes through. Inside each

region, crosstalk is evaluated in terms of risk. They tune the bounds in different regions

of the same net in order to maximize the chance to find a risk-free assignment. However,

in our project the bound of each net segment is treated as a whole.

7

2. PROBLEM FORMULATION

The track assignment problem, as well as many other CAD problems, can be

formulated using an Integer Linear Programming (ILP) model. Although there is no

specific objective to maximize or minimize in our track assignment problem, we do have

different types of constraints. Further in this section we will show that the problem can

actually be formulated as a 0-1 ILP problem.

We make such assumptions in this problem formulation:

i). Wires in one layer are all in same direction (horizontal or vertical); There is no

crosstalk between layers;

ii). Only consider crosstalk between wires in adjacent tracks on the same layer.

With the assumptions above, the track assignment considering cross-talk induced

performance degradation problem can be formulated as follows.

Given a global routing result which contains the initial positions of a set of wire

segments W, a vector of delay increment bounds B, a matrix D of delay increment

between each pair of potentially adjacent wire segments, and a set of available tracks

M, find a feasible solution such that each wire segment 𝒊 ∈ 𝑾 is assigned to a track

𝒌 ∈ 𝑴 without causing any overlap, and in the meantime no delay increment bound is

violated.

The main computing complexity of this track assignment problem lies in the delay

increment calculation, because the delay increment of every wire segment is changing

dynamically with the modification of each wire position. Each time a wire segment is

8

assigned, its delay increment caused by all of its neighbor wires should be added. At the

same time, the delay increment of every neighbor wire caused by the newly assigned

wire should be updated as well. If any bound violation occurs, we drop the solution

immediately. To make it convenient for calculation, we do track assignment for one row

of tiles at a time, and repeat the same procedure for the rest of the rows.

Another important factor to be considered is that the delay increment matrix D is not

symmetric. For any pair of adjacent wires that have overlap in span, the delay increment

caused by each other can be different because they may have different upstream

resistance. This is illustrated in Fig. 6.

i

j

Djßi ≠ Dißj

Fig. 6. Delay increment is not symmetric.

2.1 Types of Constraints

 From analysis above, we deduce three types of constraints that are required in our

problem formulation:

 i). Every wire segment should be assigned to an available track, and no wire

segment can occupy more than one track;

 ii). Wire segments assigned to the same track should not have overlap in span, i.e.

they should not conflict with each other;

9

 iii). For each wire segment, the sum of delay increment caused by its neighbor wires

should not exceed the given bound.

 Next, we introduce the following matrices to facilitate later detailed discussion on

these constraints used by the ILP model. The decision variables are constructed as a 0-1

matrix T with:

 𝑡𝑖𝑘 = �1, 𝑖𝑓 𝑤𝑖𝑟𝑒 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑡𝑟𝑎𝑐𝑘 𝑘
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (2)

where i = 1, … , m with m being the total number of wire segments, and k = 1, … , n

with n being the total number of available tracks. The matrix T has m rows and n

columns, so the total number of decision variables is m×n. Since all variables are binary,

the problem becomes a 0-1 ILP problem.

 We also construct some constant matrices. The first one is the 0-1 matrix O, which

stores the overlap information among wire segments:

 𝑜𝑖𝑗 = �1, 𝑖𝑓 𝑤𝑖𝑟𝑒 𝑖 𝑎𝑛𝑑 𝑤𝑖𝑟𝑒 𝑗 ℎ𝑎𝑣𝑒 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑖𝑛 𝑠𝑝𝑎𝑛
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (3)

where i, j = 1, … , m. The values of elements in matrix O can be obtained from the given

positions of wire segments. For the convenience of calculation, we set oii = 0.

 Another constant matrix is the delay increment matrix D, whose elements represent

the potential delay increment between pairs of wires if they are adjacent:

 𝑑𝑖𝑗 = 𝑑𝑒𝑙𝑎𝑦 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑤𝑖𝑟𝑒 𝑖 𝑐𝑎𝑢𝑠𝑒𝑑 𝑏𝑦 𝑖𝑡𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑤𝑖𝑟𝑒 𝑗 (4)

 Note that matrix D is not symmetric, as demonstrated earlier in this section. 𝑑𝑖𝑖 = 0

because a wire segment does not have coupling capacitance with itself. The values of

elements in matrix D can be calculated using (1) and the Elmore delay model.

10

 We also assume a given constant matrix, or vector, 𝑩 = (𝐵1, … ,𝐵𝑚) where Bi is

the delay increment bound of wire i.

 The three types of constraints are constructed based on the elements of those

matrices. Constraints of type i) can be expressed as follows:

 ∑ 𝑡𝑖𝑘 = 1𝑛
𝑘=1 (5)

where i = 1, … , m. These constraints ensure that each wire segment is assigned to one

and only one track.

 Type ii) constraints guarantee that there is no wire conflict, and is in the form of:

 𝑡𝑖𝑘 + 𝑡𝑗𝑘 ≤ 2 − 𝑜𝑖𝑗 (6)

where i = 1, … , m and k = 1, … , n. The oij is an element of matrix O, as described in

formula (3). If two wires i and j are both assigned to track k and they have overlap in

span, i.e., oij = 1, this inequality will be violated with LHS = 2 and RHS = 1. Otherwise

the inequality holds because the LHS is at most 1 and the RHS is at least 1.

 The last type of constraints is the most complex. In order to prevent the delay

increment of any wire from exceeding its bound, we must consider all kinds of possible

adjacencies. Redundant decision variables could be created to represent the adjacency

information, as described in [8], when the circuit scale is not very large. However, real

circuits often have millions of wires. In such cases redundant variables will greatly

increase the complexity of the ILP problem and significantly slow down the solving

procedure. To improve scalability we explored the structure of the decision matrix T and

propose a new way to represent these constraints using only the decision variables in T.

11

 For each tik, we look at its adjacent two columns t*,(k-1) and t*,(k+1), as illustrated in

Fig. 7. Among the three numbers tik, tj,(k-1) and tj,(k+1), at most two of them can be ‘1’.

That is to say,

 𝑡𝑖𝑘 + 𝑡𝑗,(𝑘−1) + 𝑡𝑗,(𝑘+1) − 1 ≤ 1 (7)

where i, j = 1, … , m and k = 1, … , n; and we define that tj,(-1)=0 and tj,(n+1)=0. Equality

holds only when wire i and wire k are adjacent. This expression contains all possible

adjacencies for every possible assignment of each wire. Based on them we can derive the

final expressions of constraints considering delay increment bound as follows:

 ∑ (𝑡𝑖𝑘 + 𝑡𝑗,(𝑘−1) + 𝑡𝑗,(𝑘+1) − 1) × 𝑑𝑖𝑗𝑗 ≤ 𝐵𝑖 (8)

For each wire i, it has n constraints (k = 1, … , n) with the above form. Only one of

them, however, is effective, which is when 𝑡𝑖𝑘 = 1 i.e. wire i is assigned to track k. For

all other cases when 𝑡𝑖𝑘 = 0, the value of the LHS of the inequality would be no more

than zero, thus would not contribute to bound violation. This expression guarantees that

the delay increment bound for each wire segment is satisfied, since it provides a traversal

of all possible adjacencies of all pairs of wire segments.

Matrix
T:

1 ... n
1

...

m

0 1
1

1
1

1
1

0 0
000
000
00
0

0
0

0
0

00

... ...

Fig. 7. Explore the structure of the decision variable matrix T. The sum of any three numbers
connected by a blue dashed line is no more than two.

12

2.2 Solving Integer Linear Programming Problem

With all three types of constraints constructed, our track assignment problem is

completely formulated as a constraint based 0-1 ILP problem. We built and solved this

ILP model using a commonly known ILP solver CPLEX. A toy case was used to test the

correctness of this model. The wire positions in this case are the same as shown in Fig. 2,

and the solver generated solution as in Fig. 3. The delay increment values were set

according to the coupling length, and the bounds were set randomly. There is no bound

violation in this solution. However, in certain cases the bounds may have been set to

tight for the solver to find a feasible solution, i.e., the problem becomes unsatisfiable.

Actually this 0-1 ILP problem can be transformed to Satisfiability (SAT) problem in

polynomial time by the NP-complete theory [12], [13], and there is existing algorithm to

do this transform [14]. To compare results, we also tested the same toy case using a

public domain SAT solver PBS [15]. The solution given by the SAT solver was not

exactly the same as the solution given by CPLEX, but was quite similar. This is true

since there could be multiple feasible solutions. Both solvers seem to work well on test

cases with small number of wires and tracks.

TABLE I

RESULTS GIVEN BY CPLEX OF SEVERAL TEST CASES

num_wire num_track runtime memory num_var

9 5 15''' 0.77M 81

50 50 4''15''' 148M 3725

100 100 45''92''' 1.18G 14950

13

Table 1 shows the runtime and memory consumed by CPLEX for various problem

sizes. As can be observed, the exponential relationship implies a critical limitation of

ILP solvers as well as SAT solvers. ILP solvers are a little better, but still quite slow

when the number of wires reaches the hundreds level. This is not a feasible method for

real world circuits, which typically have millions of wire segments and far more exceed

the capability of current ILP solvers. Therefore, in the next section, a novel heuristic

algorithm with significantly lower time and space complexity is developed to make the

track assignment task applicable to real-world complex cases.

14

3. ALGORITHM

 The heuristic algorithm is intended to solve the track assignment problem more

efficiently. From the previous section we see that the ILP model works for small cases,

but when it comes to real circuit the performance of the ILP solver greatly degrades

because of the increasing number of variables and constraints. In our heuristic method,

we make use of graph theory to formulate graph models for real circuit, such as wire

conflict graph and adjacency graph.

 The initial positions of wire segments are given by a global router. At this step,

wires are grouped into panels which are horizontal rows of grids. Wire segments in the

same panel are packed together vertically, so they are highly overlapping. The routing

resource inside each panel is a fixed number of available tracks. The task is to assign

these wire segments within the same panel to different tracks such that no wire conflict

occurs and all bounds on performance degradation are satisfied.

3.1 Graph Construction

3.1.1 Conflict Graph (Interval Graph)

A conflict graph G(V,E) can be created for the wire segments. Each wire segment is

represented by a vertex v ∈ V, and an edge (u, v) between vertex u and v means that

wire u and wire v have overlap in span. This is illustrated in Fig. 8 below.

15

a b

c

d

e

f g

h

i

a

b

c

d

e

f

g

h

i

Fig. 8. Conflict graph for 9 wires.

3.1.2 Clique

A clique [16] in an undirected graph is a sub-graph which is complete. There is an

edge connecting every pair of vertices in the clique. The maximum clique of a graph is a

clique with the largest size (the most vertices). Fig. 9 shows a maximum clique in the

conflict graph given in Fig. 8. In our case, the vertices in a clique are wires that have

overlap in span with each other. No pairs of them can share the same track. Thus the size

16

of the maximum clique actually represents the minimum number of tracks needed in

order to assign all wires in an overlapping-free manner.

a

d

b

c

e

Fig. 9. A maximum clique inside the conflict graph in Fig. 8. Wire a, b, c, d and e have overlap
in span with each other, so they cannot be assigned to a same track. To assign the 9 wires
without wire conflict, a minimum number of 5 tracks are needed.

3.1.3 Adjacency Graph

To add crosstalk information into the graph, we introduce a new type of conflict

graph, i.e., adjacency graph. This graph is developed based on the clique in the original

conflict graph, but with weight for all the edges. We know that wires in a clique have

overlap in span and must be assigned to different tracks, so any pairs of those wires are

potential neighbors. That is to say, they could be assigned to adjacent tracks and there

could be crosstalk between them. To limit the delay degradation caused by crosstalk, we

should take control of the potential adjacencies and forbid those that can cause too much

delay increment.

 We set a weighting factor wij for edge e(i, j) connecting vertex i and j. The value of

wij is the sum of delay increment of the two wires caused by each other when they are

assigned to adjacent parallel tracks:

17

 𝑤𝑖𝑗 = 𝑑𝑖𝑗 + 𝑑𝑗𝑖 (9)

where dij is the delay increment of wire i caused by its neighbor wire j, and dji is the

delay increment of wire j caused by wire i.

 After assigning the weighting factor to edges in the clique, we need to check if there

are any forbidden adjacencies. For each edge e(i, j), we check if dij ≤ Bi and dji ≤ Bj , and

we remove edge e(i, j) if any of the two inequalities is violated. Because each wire in

this clique can have two neighbors (neighbor in track above or below) at the same time,

we also consider the case that the sum of delay increment caused by the two neighbors

exceeds the bound. The details of this method are discussed in section 3.2. The graph in

Fig. 9 is reduced to the one shown in Fig. 10 by the edge removing step. Note that if

there are more available tracks than what is needed, i.e., the size of the maximum clique,

we can add dummy vertices into the reduced graph. Each dummy vertex represents a

spare track, i.e., a virtual wire and it connects to all the other vertices via zero weighted

edges in the graph because an empty track can be neighbor of any wire with no crosstalk.

a

d

b

c

e

Fig. 10. The remaining graph after removing edges from the clique in Fig. 9.

18

 Next heuristic is to find a Hamiltonian path inside the reduced graph, which gives

the order of tracks that the wires are assigned to. For example in Fig. 10, a possible

Hamiltonian path is abecd, which corresponds to the track assignment that wire

a is assigned to track 1, wire b is assigned to track 2, etc. When finding the Hamiltonian

path we also need to consider the weights of edges, since we want to find a minimum

weight path to limit the total crosstalk, and leave a less noisy environment for all the

unassigned wires. In our case there is no specific requirement on deciding the beginning

and ending point of the path, so we can make use of the algorithms for Traveling

Salesman Problem (TSP) [17] to find a circle, and cut one edge to form a path.

3.1.4 Extended Bipartite Graph

After assigning the wires corresponding to the vertices of the maximum clique, we

apply a greedy algorithm to assign the rest of the wire segments. Note that the

“Hamiltonian path” was not applied to assigning the rest of wires, because some tracks

are already occupied, and when considering delay increment we need to take into

account both assigned and unassigned wire segments. That is to say, delay increment of

each wire is changing dynamically with different choices of assignment. We repeat the

step of finding maximum clique among the rest of wires until all wires are assigned, and

construct an extended bipartite graph for each one of the cliques.

19

i h f

4 4 4

2 2

55

Fig. 11. Assigning a clique of wire segments: i, h and f. Starting from the one with the least
number of track candidates, find a legal path from left to right without causing any bound
violation.

For example in Fig. 11, there are three wire segments i, h, f left to be assigned. The

numbers listed under each wire segment are the indices of tracks that are available for

this particular segment. The choices of tracks are decided by the current assigned wire

segments. The rule is that newly assigned wire segments should not conflict with

previously assigned wires, and the new assignment should not cause any bound

violations. In the case shown in Fig. 11, wire i has only one track candidate, i.e., it can

only be assigned to track 4, and wire h and f both have three available track options. If

any one of h and f is assigned first and occupies track 4, wire i would have no valid

candidate tracks. A similar condition is discussed in [1], but instead of taking their

look-ahead heuristic, we do a sorting for all the wire segments before assigning them.

We sort the wire segments according to their number of candidate tracks. Segments with

less track options are given higher priority such that less flexible variable is fixed first,

resulting in a greater overall flexibility among the whole system of variables. So in Fig.

11, wire i is given highest priority since it has only one choice of tracks. After putting i

in track 4, we immediately update the track options for wire h which will be assigned

next. Wire h cannot be assigned to track 4 anymore because wire i has taken the place.

20

So we remove track 4 from its track candidates. Then we randomly choose from track 2

and 5 for wire h and check whether it is a legal assignment. If assigning wire h to track 5

does not cause any bound violations we will continue the same procedure to assign the

next wire segment. If such an assignment causes bound violation, we remove this track

candidate and try its fellow candidates. In the case that all track candidates are visited

but no one can satisfy the bound restriction, we go back one step to reassign the previous

wire segment to another legal track candidate. The current amount of delay increment of

both previous wire segment and the segment to be assigned should be updated, as well as

the occupation information of track candidates.

The path from the left end to the right end represents the order of tracks that the

corresponding wire segments are assigned to. When a path is found, the assignment of

the current clique is done. All these wires will be marked as assigned and there will be a

new record for each track storing the name of wires that occupy this track. We can

continue to find the next maximum clique in the set of unassigned wires, and apply the

same procedure of assignment until all wires are properly assigned.

3.2 Flowchart and Detailed Algorithms

 This heuristic algorithm solves track assignment problem for wires in a single layer.

It is targets at a whole panel at a time, and repeats until all panels are processed. The

whole procedure can be divided into two steps: assigning the largest clique and assigning

the rest of wires. The first step is transformed into a minimum weight Hamiltonian path

21

problem, and the second step is implemented in a greedy way as interpreted in the

previous section. The flow chart below shows the outline of this algorithm.

Start

Find max clique

Remove illegal
adjacency

Find min weight
Hamiltonian path

Assign according
to path order

Remove from
{unassigned}

{unassigned}=
all wires

{unassigned}=
empty?

Find max clique

No

Sort nodes in clique in
ascending order according
to the # of possible tracks

Assign this sorted
clique

Remove from
{unassigned}

Finish

Yes

Fig. 12. Flow chart of the heuristic algorithm.

3.2.1 Step 1: Assign the Maximum Clique

 The left half of the flow chart shown in Fig. 12 describes the first step of the

algorithm. We define an array unassigned to store the indices of wire segments that have

not yet been assigned. Initially it contains all the wire segments that are generated by

22

global routing. Once a segment is fixed, its index is removed from unassigned. The

algorithm comes to an end when the array unassigned is empty.

 Find Maximum Clique. The information of wire position is obtained from a global

router, the coalesCgrip [18]. From its output we can read in the initial position of all wire

segments for each panel p, and calculate the potential delay increment matrix D. The

overlap matrix O is also created, and a conflict graph CG(V, E) is built where each

vertex 𝑣𝑖 ∈ 𝑉 corresponds to a wire segment in panel p. There is an edge connecting

vertex vi and vj if wire i and wire j overlap in span.

The target is to find the maximum clique in this conflict graph, and the first step is

to find all cliques. An off-the-shelf algorithm ‘segment tree’ [19] is used to find all

cliques. Each wire is seen as an interval, with a head node (left end) and a rear node

(right end). Considering all wires located in a panel, sort the corresponding nodes

according to their horizontal coordinates. Then the set of all cliques can be obtained by

sweeping through all the nodes from left to right. For each node, if it is a head node then

its corresponding wire is added to the current clique; otherwise the wire is removed from

the current clique.

Fig. 13 illustrates this procedure. Suppose there are five wires numbered from 1 to

5, and their head and rear nodes are sorted and indexed from 0 to 9. The blue dashed line

sweeps from the left to the right, adding or removing wires from cliques. Each time it

comes across a node, a new clique is created. In this particular case the cliques found

are: {1}, {1,3}, {1,2,3}, {1,2,3,5}, {1,3,5}, {1,3,4,5}, {1,4,5}, {1,4} and {4}. Thus the

cliques with maximum size are {1,2,3,5} and {1,3,4,5}.

23

0

1

2

1

2

3

4

5
3

4

5

6

7

8

9

Fig. 13. Illustration of the segment tree method.

When all cliques are found, they are sorted in descending order of their sizes. If

several cliques are about the same size, the one with biggest total wire length comes

first. We choose to assign longer wires first because longer wires have relatively less

chances to be assigned legally if not given priority.

Having the maximum clique chosen, we convert it to an adjacency graph by adding

weighting factor into the clique, as described in section 3.1.3.

Remove Illegal Adjacency. The max clique is a complete graph, implying that no

pair of wires in this clique can be assigned to the same track. It also implies the

possibility for any pair of wires to be assigned to neighboring tracks. However, some of

these adjacencies are illegal since they might cause violations of the delay increment

bounds of certain wires. Two kinds of illegal adjacencies are considered in this

algorithm, and an edge removing approach is performed accordingly.

i) for each vertex vi check all edges e(vi, vj) connecting to it:

if 𝑑𝑖𝑗 > 𝐵𝑖, remove edge e(vi, vj), where Bi is the delay increment bound of wire i.

24

ii) for each vertex vi check every pair of edges e(vi, vj) and e(vi, vk):

if 𝑑𝑖𝑗 + 𝑑𝑖𝑘 > 𝐵𝑖, remove one of these two edges.

In the actual implementation, violations of type i) are processed prior to those of type

ii), because they are ‘hard’ violations. After removing all violations of type i), vertices

which still have violations of type ii) are added into a set S. Removal of type ii) illegal

adjacencies is done inside set S.

When handling the second type of illegal adjacency, generally the edge with larger

weight is removed. For example, if vertex vi is in set S and wik > wij then edge e(vi, vk) is

chosen to be removed. However, if vertex vj is also an element of S while vertex vk is

not, then edge e(vi, vj) is removed with priority regardless of its weight.

Each time an edge e(vi, vj) is removed, we check vertices vi and vj to see if they still

have type ii) bound violation. If any one of them no longer has bound violation, it is

removed from set S. This procedure is repeated until S is empty.

Find Minimum Weight Hamiltonian Path. The problem is now to find a

minimum weight Hamiltonian path in the edge removed graph. If the number of tracks is

greater than the size of max clique, spare tracks are added to the graph as new vertices

with zero weight edges connecting to all existing vertices. Since there are no specified

starting and ending points, the problem is actually equivalent to the Traveling Salesman

Problem. An existing heuristic nearest insertion [20] is applied here. It finds and returns

a circle if there is any, thus a path can be formed by breaking any one of the edges. An

example of a Hamiltonian path (colored in blue) is given in Fig. 14.

25

a

d

b

c

e

Fig. 14. An example of Hamiltonian path a-b-e-d-c.

In the test benches (IBM superblue 4 for example), the maximum clique size is 80

which is not too big for this heuristic to give a result in reasonable time. The wires in the

max clique are then assigned to tracks according to the order of the vertices along the

path.

3.2.2 Step 2: Assign the Rest of Wires

 The procedure of step 1 cannot be reused for step 2, because most of the tracks are

already occupied and the delay increment between wires changes dynamically when

assigning the rest of the wires. Nevertheless, part of step 1 is still applicable for step 2.

Firstly the interval tree heuristic is performed to find the max clique among all

unassigned wires. For each wire in the max clique, we count the number of candidate

tracks (tracks that this wire can be assigned to without causing overlap), and then sort

these wires in an ascending order according to this number. That is to say, wires with

less track options are considered first.

Track assignment is then performed starting from the very beginning of the sorted

clique, until the whole clique is assigned. For a particular wire, a candidate track is

selected randomly from the set of candidate tracks belonging to this wire, and this track

26

is marked as tried. We try to assign the wire to this track, and check if this assignment is

legal (if it will cause any bound violations). This attempt is repeated until a legal

assignment is found. Then the track is marked as occupied so that other wires in the

same clique cannot be assigned to the same track later. If all candidates are tried but

none of the attempts is legal, we trace one step back and reassign the previous wire to a

different track.

Same procedure is performed for the max clique found in each step, until all the

wires in panel p are assigned. A whole circuit may contain hundreds of panels, and all of

those panels are independent in our case. The algorithm can be reused for each one of

the panels, and it comes to an end when all panels are done.

Theoretically, if the problem case has a feasible solution (all wire segments can be

assigned without any bound violation), the heuristic algorithm should be able to find it.

However, in real cases it is hard to create a problem which has a feasible solution for

sure. This is because there are often millions of wire segments on a single circuit, and it

is impossible to set proper bounds for all of the wires. In our project we set the bounds

randomly in a certain range. So there are situations when not all wire segments can be

legally assigned. To deal with those situations, our algorithm can also accept tolerable

violations when there is no way to avoid them.

3.2.3 Delay Calculation and Bound Setting

 The method of calculating delay increment caused by crosstalk is given in previous

chapter, and here we describe the calculation in detail. For any wire segment i, the

relative position between i and its neighbor j can be any case shown in Fig. 15. Suppose

27

the overlapping length is lo, the upstream length from the source point of i to the overlap

starting point is lup, and accordingly the downstream length after the overlapping part is

ldown. In Fig. 15 (A) the neighbor wire j is much longer than wire i and the overlapping

length is the length of i. Thus the delay increment of i caused by j can be written as

 dij = r ∙ lo ∙
c∙lo
2

 (10)

where r is the unit length resistance and c is the unit length coupling capacitance. In case

(B) the overlapping length is only part of the wire length. The delay increment is

expressed as

 dij = r ∙ lup ∙ c ∙ lo + r ∙ lo ∙
c∙lo
2

. (11)

In case (C) the expression is the same as (11) because the downstream length has no

effect on delay increment. Similarly the expression in case (D) is the same as in case (A)

regardless of the downstream length.

(A) (B)

(C) (D)

i

j

i

ii

j

jj

lup lolo

lo lolup ldown ldown

Fig. 15. Cases of relative positions of two neighboring wires.

28

 Note that formula (10) is a special case of (11) with lup= 0. Therefore formula (11)

is a general expression of the delay increment in all cases. Since the horizontal

coordinates of all wire segments are known, we can easily calculate lup and lo, and

thereafter get the delay increment matrix D.

Another fact is that the delay increment reaches the maximum when the entire wire

overlaps with a neighbor wire, i.e., lo = li. This can be proven by transforming formula

(11) into

 dij = r ∙ c ∙ lo ∙ (li −
lo
2
− ldown) (12)

by replacing lup with li – ldown. It is obvious that dij can reach the maximum only when

ldown = 0. The formula then becomes

 dij = r ∙ c ∙ lo ∙ (li −
lo
2

) (13)

This is a concave function with curve shown in Fig. 16. The function value reaches the

maximum 𝑑𝑖𝑗 = 𝑟𝑐𝑙𝑖
2

2
 when and only when lo = li.

0 lo

dij

2lili

Fig. 16. Function curve of dij. Feasible domain is 0 ≤ lo ≤ li, where dij is monotonically increasing.
Maximum value is reached when lo = li.

29

1 2

3 4

i
l1 l2

l3 l4

Fig. 17. An example of a fully overlapped wire segment.

To set proper bounds for each wire segment, we need to know the maximum total

delay increment a wire segment can have. We know that for a certain wire i, its delay

increment is di = ∑ dijj , where j represents any neighbor wire in the track above or

below wire i. We also know from above analysis that delay increment is maximal when

the entire length is overlapped. We take the case shown in Fig. 17 as an example.

Suppose wire segment i is surrounded by four neighboring wires 1, 2, 3 and 4. The

corresponding overlapping lengths are l1, l2, l3 and l4. The total delay increment of wire

segment i can be written as

 di = rcl12

2
+ rcl1l2 + rcl22

2
+ rcl32

2
+ rcl3l4 + rcl42

2

 = rc
2

(l1 + l2)2 + rc
2

(l3 + l4)2

 = rc
2
∙ 2li

2 = rcli2 (14)

where li is the length of wire i. Formula (14) gives an upper bound of the delay

increment a wire can have: dmax = rcl2 . According to this we set the delay increment

30

bound for every wire segment to be a random number in the range (0, dmax). However, it

is meaningless to have a bound which is too small, because in this case there would be

no feasible solution to the track assignment problem. So we should set reasonable

bounds for our test benches. To make it convenient for comparison, we set three cases of

ranges: (0.25dmax, dmax), (0.5dmax, dmax) and (0.75dmax, dmax). We will compare the results

of these cases in the next section.

31

4. EXPERIMENTAL RESULTS

 We carried out several experiments to evaluate the efficiency of our algorithm. Our

test cases are from the IBM ISPD 2011 contest. The test benches we used are circuits

Superblue1, Superblue 4 and Superblue 10. We employ global router coalesCgrip and

feed the original test bench to the router. The router then generates a global routing

output containing the initial horizontal positions of wires. In this output file wires are

grouped into panels (about 500 to 900 panels for a particular test bench), where inside

each panel wires are given the same vertical coordinate. That is to say, initially all the

wires in one panel are overlapping with each other. Each panel has around 700 to 3000

wires, and panels are independent with each other. Thus we can do track assignment

panel by panel, dealing with thousands of wires at a time instead of millions as a whole.

 We parse the output file of the global router and create an input file for our program.

The max clique size in our test benches is 80, and we set the number of available tracks

to be 85, a little bigger than the max size. This is to leave some space for multiple

feasible solutions, and at the same time do not make the problem too easy to solve.

Parameters on resistance and capacitance as well as delay increment bounds are set

according to section 3.2.3. Results of different test benches are compared according to

the number of wires having bound violations, and the amount of violations.

 Fig. 18 shows the results of our algorithm for circuit Superblue4, which contains

523,388 wire segments. Bars in different colors represent different bound ranges as

described in section 3.2.3. Fig. 19 shows the results for circuit Superblue1, which

32

contains 722,904 wire segments. Fig. 20 is for circuit Superblue10, containing 928,278

wire segments. From these three figures we can see that our algorithm performs very

well in controlling bound violations. It can achieve zero violation when the bounds are

not too tight. Even if bounds are tight, it can generate a solution with very low bound

violation rate.

 Fig. 21 gives an inside look of a part of a certain panel after track assignment. It

shows the positions of real wire segments, and we can see clearly that there is no wire

conflict. This figure is generated by MATLAB by reading the output file of our

algorithm.

Fig. 18. Number of violated wires in test case Superblue4.

0

50

100

150

200

250

0~10 10~20 20~30 30~40 40~50 >50

N
um

be
r o

f W
ire

s

Amount of delay increment exceeding the bound

Superblue4
--Number of violated wires under different bound settings

bound range: 0.75 ~ 1

bound range: 0.5 ~ 1

bound range: 0.25 ~ 1

33

Fig. 19. Number of violated wires in test case Superblue1.

0

20

40

60

80

100

120

140

160

180

0~10 10~20 20~30 30~40 40~50 >50

N
um

be
r o

f W
ire

s

Amount of delay increment exceeding the bound

Superblue1
--Number of violated wires under different bound settings

bound range: 0.75 ~ 1

bound range: 0.5 ~ 1

bound range: 0.25 ~ 1

34

Fig. 20. Number of violated wires in test case Superblue10.

0

10

20

30

40

50

60

70

80

90

100

0~10 10~20 20~30 30~40 40~50 >50

N
um

be
r o

f W
ire

s

Amount of delay increment exceeding the bound

Superblue10
--Number of violated wires under different bound settings

bound range: 0.75 ~ 1

bound range: 0.5 ~ 1

bound range: 0.25 ~ 1

35

Fig. 21. Part of a panel after track assignment.

36

We also perform two other track assignment methods for comparison. One method

recursively finds min-weight Hamiltonian paths for cliques in the set of unassigned

wires, and assigns wires according to the order of vertices in path. The idea comes from

Di Wu’s work [5]. This method is referred to as Approach 2. The other one is similar to

our approach but only considers wire conflict when doing the second step, and it is

named as Approach 3. Table II shows that our approach is not only fast, but also

superior in eliminating bound violations.

Besides, comparison is also made between the heuristic method and the ILP method.

Table III gives the results of those two methods on several test cases. The heuristic is

very fast that the run time is nearly zero for the small test cases, while the ILP becomes

rather slow when constraints are tight even if the problem size is not big. However, the

heuristic may not find the exact violation-free solution when routing resource is very

limited. Instead, it gives a solution with some tolerance on bound violations. The ILP

method can guarantee a feasible solution if there exists one, at the cost of long running

time.

37

TABLE II

COMPARISON OF THREE APPROACHES

 Test Cases Our Approach Approach 2 Approach 3

Number of wires
violating delay

increment
bounds

Superblue4
(total # wires 523,388) 461 48,179 22,526

Superblue1
(total # wires 722,904) 286 65,470 27,484

Superblue10
(total # wires 928,278) 329 75,951 30,310

Average amount
of violation per
violated wire

Superblue4
 17.71 238.50 443.10

Superblue1
 14.18 215.79 305.03

Superblue10
 25.79 222.84 361.93

Total delay
increment in the

entire circuit

Superblue4
 2.84×107 5.16×107 4.91×107

Superblue1
 3.00×107 6.42×107 4.53×107

Superblue10
 3.34×107 8.16×107 5.89×107

Run time

Superblue4
 16’17’’ 18’36’’ 15’38’’

Superblue1
 24’46’’ 24’47’’ 22’7’’

Superblue10
 26’15’’ 26’10’’ 22’32’’

The number of available tracks is set to be 90, and the bound range is (0.25dimax, dimax), same for
all three approaches. “ ’ ” stands for minute, and “ ’’ ” stands for second.

38

TABLE III

COMPARISON OF HEURISTIC AND ILP METHOD

Test Cases

Heuristic ILP
Number of

wires violating
bounds

Run time
Number of

wires violating
bounds

Run time

wires:
182

tracks:
33

bound:
(0.25~1)

2

0’’ 0 7’44’’

bound:
(0.25~0.75)

4

0’’ 0 2hr 38’1’’

wires:
205

tracks:
21

bound:
(0.25~1) 2 0’’ 0 1hr 33’55’’

bound:
(0.25~0.75) 7 0’’ 0 15hr 10’43’’

wires:
269

tracks:
23

bound:
(0.25~1) 0 0’’ 0 5’9’’

bound:
(0.25~0.75) 1 0’’ 0 1hr 48’49’’

wires:
305

tracks:
27

bound:
(0.25~1) 4 0’’ 0 9hr 44’5’’

bound:
(0.25~0.75) 5 0’’ N/A >48hr

Test cases are randomly picked, small enough for the ILP solver to solve.

39

5. CONCLUSION

In this work we propose and implement a novel heuristic approach to solve

constraint-based track assignment problems. Our algorithm utilizes the nearest insertion

method targeting at the Traveling Salesman Problem, and applies a greedy method on an

extended Bipartite graph. Different from most previous works, our approach takes into

account the dynamically changing delay increment on each wire segment. This adds

great difficulty to implementation, but experimental results show that our approach has

achieved significant success in eliminating performance degradation induced by

crosstalk.

40

REFERENCES

[1] S. Batterywala, N. Shenoy, W, Nicholls, and H. Zhou, “Track Assignment: A

Desirable Intermediate Step Between Global Routing and Detailed Routing,” in

Proc. IEEE Int. Conf. on Computer-Aided Design, pp. 59-66, 2002.

[2] B. W. Kernighan, D. G. Schweikert, and G. Persky, “An Optimum

Channel-routing Algorithm for Polycell Layouts of Integrated Circuits,” in Proc.

10th Des. Automation Workshop, pp. 50-59, 1973.

[3] P. Heydari and M. Pedram, “Capacitive Coupling Noise in High-Speed VLSI

Circuits,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol.

24, p. 478 , 2005.

[4] A. B. Kahng, S. Muddu, and E. Sarto, “On Switching Factor Based Analysis of

Coupled RC Interconnects”, in Proc. IEEE/ACM Design Automation

Conference, pp. 79-84 , 2000.

[5] D. Wu, J. Hu, M. Zhao and R. Mahapatra, “Timing Driven Track Routing

Considering Coupling Capacitance,” in Proc. Asia South Pac. Des. Autom.

Conf., p. 1156, 2005.

[6] H. Zhou and D. F. Wong, “Global routing with crosstalk constraints,” IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 18, no. 11, pp.

1683-1688, 1999.

41

[7] H.-P. Tseng, L. Sheffer and C. Sechen, “Timing- and crosstalk- driven area

routing,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 20, no.

4, pp. 528-544, 2001.

[8] T. Gao and C.L. Liu, “Minimum Crosstalk Channel Routing,” in Proc. IEEE Int.

Conf. on Computer-Aided Design, pp. 692-696, 1993.

[9] R. Kay and R. A. Rutenbar, “Wire Packing: A Strong Formulation of

Crosstalk-Aware Chip-Level Track/Layer Assignment with an Efficient Integer

Programming Solution,” in Proc. Int. Symp. on Physical Design, pp. 61-68,

2000.

[10] H. Yao, Q. Zhou, X. Hong and Y. Cai, “Crosstalk Aware Routing Resource

Assignment,” J. Comput. Sci. Technol., vol. 20, pp. 231-236, 2005.

[11] T. Xue, E. S. Kuh and D. Wang, “Post Global Routing Crosstalk Risk

Estimation and Reduction,” in Proc. IEEE Int. Conf. on Computer-Aided

Design, pp. 302-309, 1996.

[12] R. Li , D. Zhou and D. Du, “Satisfiability and integer programming as

complementary tools,” in Proc. of the 2004 Asia and South Pacific Design

Automation Conf., Yokohama, Japan, January 27-30, 2004.

[13] S. A. Cook, “The complexity if theorem proving procedures,” in Proc. of 3rd

Annual ACM Symposium on the Theory of Computing, New York, 1971, pp.

151-158.

http://dl.acm.org/citation.cfm?id=1015324&CFID=65210890&CFTOKEN=84617622
http://dl.acm.org/citation.cfm?id=1015324&CFID=65210890&CFTOKEN=84617622
http://dl.acm.org/citation.cfm?id=1015324&CFID=65210890&CFTOKEN=84617622

42

[14] J. P. Warners, “A linear-time transformation of linear inequalities into

conjunctive normal form,” Information Processing Letters, vol. 68, pp. 63-69,

1998.

[15] F. Aloul, A. Ramani, I. Markov, and K. Sakallah, “PBS: A Backtrack Search

Pseudo Boolean Solver and Optimizer,” in Symposium on the Theory and

Applications os Satisfiability Testing (SAT), pp. 346-353, 2002.

[16] R. Diestel, Graph Theory. Heidelberg, Germany: Springer-Verlag, 2010.

[17] D.L. Applegate, R.E. Bixby, V. Chvatal and W.J. Cook, The Traveling

Salesman Problem: A Computational Study. Princeton, NJ: Princeton

University Press, 2007.

[18] H. Shojaei, A. Davoodi, and J. Linderoth, “Congestion analysis for global

routing via integer programming,” Int'l Conf. on Computer-Aided Design

(ICCAD'11), pp. 256-262, November 2011.

[19] D. P. Mehta and S. Sahni, Handbook of data structures and applications,

Chapman and Hall/CRC, 2005.

[20] D. J. Rosenkrantz, R. E. Stearns and P. M. Lewis, “An analysis of several

heuristics for the traveling salesman problem,” SIAM J. Comput., vol. 6, pp. 563

- 581, 1977.

http://homepages.cae.wisc.edu/~adavoodi/papers/CGRIP-ICCAD11.pdf
http://homepages.cae.wisc.edu/~adavoodi/papers/CGRIP-ICCAD11.pdf
http://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22Dinesh+P.+Mehta%22
http://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22Sartaj+Sahni%22

43

VITA

 Qiong Zhao received her Bachelor of Engineering degree in communication

engineering from Beijing University of Posts and Telecommunications, Beijing, China

in 2009. She graduated with Master of Science degree in computer engineering from

Texas A&M University in May 2012. Her research interests include VLSI Computer

Aided Design algorithms for floorplanning, routing and track assignment.

 She can be reached at the Department of Electrical and Computer Engineering, 238

Zachry Engineering Center, Texas A&M University, College Station, TX 77843-3128.

Her email is qiongzhao@tamu.edu.

