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ABSTRACT 

 

Track Assignment Considering Crosstalk-Induced Performance Degradation.  

(May 2012) 

Qiong Zhao, B.S., Beijing University of Posts and Telecommunications 

Chair of Advisory Committee: Dr. Jiang Hu 

 Track assignment is a critical step between global routing and detailed routing in 

modern VLSI chip designs. It greatly affects some very important design characteristics, 

such as routability, via usage and timing performance. Crosstalk, which is largely 

decided by wire adjacency, has significant impact on interconnect delay and circuit 

performance. Therefore, the amount of crosstalk should be restrained in order to satisfy 

timing constraints. In this work, a track assignment approach is proposed to control 

crosstalk-induced performance degradation. The problem is formulated as a Traveling 

Salesman Problem (TSP) and solved by a graph-based heuristic. The proposed approach 

is implemented and tested on benchmark circuits from the ISPD2011 contest and the 

experimental results are quite promising. 
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1. INTRODUCTION 

 

1.1 Routing in VLSI Circuits  

In VLSI design, routing is an important and complex step. Global routing, followed 

by detailed routing, is performed after placement is done, and it outputs the rough 

locations of nets. Exact location and layer for each segment of a net is decided by 

detailed routing.  

In the global routing step, the whole routing region is divided into grids. Each grid, 

or tile, is a rectangular region which provides limited routing resource in both horizontal 

and vertical direction. Fig. 1 illustrates the gridded routing region. Routing resource is 

represented by the number of tracks across each edge of a grid. 

 

 

Fig. 1. A routing region divided into 4x4 grids. Each grid has a capacity of 4 horizontal tracks 
and 4 vertical tracks. 

 

____________ 
This thesis follows the style of IEEE Transactions on Computer Aided Design of 
Integrated Circuits and System. 
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1.2 Track Assignment 

Due to the variety of constraints, detailed routing can be very complex. Thus, an 

intermediate step is needed between global routing and detailed routing, i.e., track 

assignment [1]. Taking the global routing result as input, this intermediate stage assigns 

a track for each wire segment. Several types of constraints can be taken into account in 

the track assignment procedure, such as wire conflict, timing constraints, and delay 

increment. Fig. 2 and Fig. 3 show a simple example of track assignment. The original 

positions of wire segments are illustrated in Fig. 2, and one feasible assignment for those 

wires are shown in Fig. 3. 

 

Fig. 2. Original positions of 9 wire segments which are to be assigned. 



3 
 

  

Track #

1

2

3

4

5

a

b

c

d

e

f

g

h

i

 

Fig. 3. A feasible track assignment for wires given in Fig. 2. 

1.3 Crosstalk 

If we only consider wire conflict, there are off-the-shelf algorithms that can be 

applied to solving the track assignment problem, for example the left-edge algorithm [2]. 

However, in real circuits there are many other constraints that need to be taken care of, 

and one important constraint is delay increment. Delay increment is mainly induced by 

crosstalk noise between parallel wires adjacent with each other. Crosstalk is usually 

estimated using coupling capacitance [3], which appears when two wires carrying 

signals are parallel and near to each other. The exact value of coupling capacitance 

depends on the coupling length, the distance between the two wires and the switching 

factor [4]. The expression can be written as follows [5], [6], [7]: 

 𝐶𝐶(𝑖, 𝑗) = 𝛼 ∙ 𝑓𝑖𝑗 ∙
𝑙𝑖𝑗
𝑑𝑖𝑗
𝛽          (1) 
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where i and j are two adjacent wire segments, α and β are technology dependent 

constants, lij is the coupling length, dij is the wire spacing between i and j, and fij is the 

switching factor for i and j. 

Since we only consider crosstalk between wires in neighboring tracks, and the 

switching factor can be a constant, generally the crosstalk value increases 

proportionately with the coupling length. Fig.4 gives an illustration on this capacitive 

coupling. 

 

Driven

Victim

Coupling 
Capacitance

 

Fig. 4. Coupling capacitance between two adjacent wires. 

1.4 Delay Increment 

Crosstalk noise can have a great negative impact on wire delay. In this project we 

use the Elmore delay model for delay increment analysis. A simple example illustrating 

this model is given in Fig. 5, where two wire segments of different nets are assigned to 

adjacent tracks. Suppose the coupling capacitance between wire a and b is CC. 

According to the Elmore delay model, the delay increment at sink a2 induced by wire b 

is 𝑑𝑎𝑏 = 𝑅𝑎0,𝑎1 ∙ 𝐶𝐶 + 𝑅𝑎1,𝑎2 ∙
𝐶𝐶
2

, where 𝑅𝑎0,𝑎1 is the resistance between a0 and a1, 

and 𝑅𝑎1,𝑎2 is the resistance between a1 and a2. 
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a
a0 a1 a2

b
b0 b1 b2

CC/2 CC/2

 

Fig. 5. π-model for delay increment induced by coupling capacitance. 

In real circuits, the amount of extra delay caused by crosstalk should be limited to a 

bearable range. In the problem formulated in this project, we set a bound of delay 

increment for each wire segment, and our task is to do track assignment for wire 

segments such that there is no wire conflict and all the bounds are satisfied. 

1.5 Related Work 

 There are prior works on crosstalk-aware routing resource assignment problems. An 

ILP formulation is proposed in [8], where decision variables are stored in a 0-1 matrix 

indicating the track assignment for each wire. A redundant variable matrix indicating 

wire adjacency information is introduced to build the expressions of the crosstalk 

constraints. However, those redundant variables greatly increase the complexity of the 

problem, and therefore limit the applicability of this formulation. In [9], an ILP 

formulation based on wire packing graph (WPG) is built. A maximal clique is found in 

the conflict graph for all wires, and a WPG is constructed with each vertex indicating a 

possible wire-track combination. There are no redundant variables, but the size of the 

graph can be very big because the number of vertices is the product of the number of 

wires and the number of tracks. Battery [1] proposed a graph model, weighted bipartite 
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matching, for track assignment problems. In this model, wires are represented by 

vertices on one side of the Bipartite graph, and tracks are on the other side. A minimum 

weight matching solution is therefore a feasible assignment. However this model is not 

suitable for problems with dynamically changing weight. In Wu’s work [5] a method 

based on Hamiltonian path is proposed. Considering both coupling capacitance induced 

delay and the detour induced delay, they formulate the track assignment problem as a 

Sequential Ordering Problem (SOP) and solve it using an SOP solver. Their objective is 

to maximize the minimum slack, which is different from our constraint-based problem. 

Another work [10] on crosstalk-aware track assignment introduces a method based on 

the linear assignment algorithm. A cost matrix is built to store the estimated cost on 

every possible assignment for each wire segment. The linear assignment algorithm is 

applied repeatedly to assign the maximum clique found in the interval graph during each 

step. The algorithm does not take into account the dynamically changing accumulated 

crosstalk. Xue’s work [11] considers bounds on crosstalk, and they partitioned the bound 

of every net according to the routing regions that the net passes through. Inside each 

region, crosstalk is evaluated in terms of risk. They tune the bounds in different regions 

of the same net in order to maximize the chance to find a risk-free assignment. However, 

in our project the bound of each net segment is treated as a whole. 
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2. PROBLEM FORMULATION 

 

The track assignment problem, as well as many other CAD problems, can be 

formulated using an Integer Linear Programming (ILP) model. Although there is no 

specific objective to maximize or minimize in our track assignment problem, we do have 

different types of constraints. Further in this section we will show that the problem can 

actually be formulated as a 0-1 ILP problem. 

We make such assumptions in this problem formulation:  

i). Wires in one layer are all in same direction (horizontal or vertical); There is no 

crosstalk between layers;  

ii). Only consider crosstalk between wires in adjacent tracks on the same layer. 

With the assumptions above, the track assignment considering cross-talk induced 

performance degradation problem can be formulated as follows. 

Given a global routing result which contains the initial positions of a set of wire 

segments W, a vector of delay increment bounds B, a matrix D of delay increment 

between each pair of potentially adjacent wire segments, and a set of available tracks 

M, find a feasible solution such that each wire segment 𝒊 ∈ 𝑾 is assigned to a track 

𝒌 ∈ 𝑴 without causing any overlap, and in the meantime no delay increment bound is 

violated.  

The main computing complexity of this track assignment problem lies in the delay 

increment calculation, because the delay increment of every wire segment is changing 

dynamically with the modification of each wire position. Each time a wire segment is 
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assigned, its delay increment caused by all of its neighbor wires should be added. At the 

same time, the delay increment of every neighbor wire caused by the newly assigned 

wire should be updated as well. If any bound violation occurs, we drop the solution 

immediately. To make it convenient for calculation, we do track assignment for one row 

of tiles at a time, and repeat the same procedure for the rest of the rows.  

Another important factor to be considered is that the delay increment matrix D is not 

symmetric. For any pair of adjacent wires that have overlap in span, the delay increment 

caused by each other can be different because they may have different upstream 

resistance. This is illustrated in Fig. 6.  

i

j

Djßi ≠ Dißj

 

Fig. 6. Delay increment is not symmetric. 

2.1 Types of Constraints 

 From analysis above, we deduce three types of constraints that are required in our 

problem formulation: 

 i). Every wire segment should be assigned to an available track, and no wire 

segment can occupy more than one track; 

 ii). Wire segments assigned to the same track should not have overlap in span, i.e. 

they should not conflict with each other; 
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 iii). For each wire segment, the sum of delay increment caused by its neighbor wires 

should not exceed the given bound. 

 Next, we introduce the following matrices to facilitate later detailed discussion on 

these constraints used by the ILP model. The decision variables are constructed as a 0-1 

matrix T with: 

     𝑡𝑖𝑘 = �1,  𝑖𝑓 𝑤𝑖𝑟𝑒 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑡𝑟𝑎𝑐𝑘 𝑘
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                (2) 

where i = 1, … , m with m being the total number of wire segments, and k = 1, … , n 

with n being the total number of available tracks. The matrix T has m rows and n 

columns, so the total number of decision variables is m×n. Since all variables are binary, 

the problem becomes a 0-1 ILP problem. 

 We also construct some constant matrices. The first one is the 0-1 matrix O, which 

stores the overlap information among wire segments: 

    𝑜𝑖𝑗 = �1,  𝑖𝑓 𝑤𝑖𝑟𝑒 𝑖 𝑎𝑛𝑑 𝑤𝑖𝑟𝑒 𝑗 ℎ𝑎𝑣𝑒 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑖𝑛 𝑠𝑝𝑎𝑛
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          (3) 

where i, j = 1, … , m. The values of elements in matrix O can be obtained from the given 

positions of wire segments. For the convenience of calculation, we set oii = 0. 

 Another constant matrix is the delay increment matrix D, whose elements represent 

the potential delay increment between pairs of wires if they are adjacent: 

   𝑑𝑖𝑗 = 𝑑𝑒𝑙𝑎𝑦 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑤𝑖𝑟𝑒 𝑖 𝑐𝑎𝑢𝑠𝑒𝑑 𝑏𝑦 𝑖𝑡𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑤𝑖𝑟𝑒 𝑗     (4)  

 Note that matrix D is not symmetric, as demonstrated earlier in this section. 𝑑𝑖𝑖 = 0 

because a wire segment does not have coupling capacitance with itself. The values of 

elements in matrix D can be calculated using (1) and the Elmore delay model. 
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 We also assume a given constant matrix, or vector, 𝑩 = (𝐵1, … ,𝐵𝑚) where Bi is 

the delay increment bound of wire i. 

 The three types of constraints are constructed based on the elements of those 

matrices. Constraints of type i) can be expressed as follows: 

         ∑ 𝑡𝑖𝑘 = 1𝑛
𝑘=1          (5) 

where i = 1, … , m. These constraints ensure that each wire segment is assigned to one 

and only one track. 

 Type ii) constraints guarantee that there is no wire conflict, and is in the form of: 

         𝑡𝑖𝑘 + 𝑡𝑗𝑘 ≤ 2 − 𝑜𝑖𝑗         (6) 

where i = 1, … , m and k = 1, … , n. The oij is an element of matrix O, as described in 

formula (3). If two wires i and j are both assigned to track k and they have overlap in 

span, i.e., oij = 1, this inequality will be violated with LHS = 2 and RHS = 1. Otherwise 

the inequality holds because the LHS is at most 1 and the RHS is at least 1. 

 The last type of constraints is the most complex. In order to prevent the delay 

increment of any wire from exceeding its bound, we must consider all kinds of possible 

adjacencies. Redundant decision variables could be created to represent the adjacency 

information, as described in [8], when the circuit scale is not very large. However, real 

circuits often have millions of wires. In such cases redundant variables will greatly 

increase the complexity of the ILP problem and significantly slow down the solving 

procedure. To improve scalability we explored the structure of the decision matrix T and 

propose a new way to represent these constraints using only the decision variables in T.  
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 For each tik, we look at its adjacent two columns t*,(k-1) and t*,(k+1), as illustrated in 

Fig. 7. Among the three numbers tik, tj,(k-1) and tj,(k+1), at most two of them can be ‘1’. 

That is to say,  

        𝑡𝑖𝑘 + 𝑡𝑗,(𝑘−1) + 𝑡𝑗,(𝑘+1) − 1 ≤ 1        (7) 

where i, j = 1, … , m and k = 1, … , n; and we define that tj,(-1)=0 and tj,(n+1)=0. Equality 

holds only when wire i and wire k are adjacent. This expression contains all possible 

adjacencies for every possible assignment of each wire. Based on them we can derive the 

final expressions of constraints considering delay increment bound as follows: 

     ∑ (𝑡𝑖𝑘 + 𝑡𝑗,(𝑘−1) + 𝑡𝑗,(𝑘+1) − 1) × 𝑑𝑖𝑗𝑗 ≤ 𝐵𝑖         (8) 

For each wire i, it has n constraints (k = 1, … , n) with the above form. Only one of 

them, however, is effective, which is when 𝑡𝑖𝑘 = 1 i.e. wire i is assigned to track k. For 

all other cases when 𝑡𝑖𝑘 = 0, the value of the LHS of the inequality would be no more 

than zero, thus would not contribute to bound violation. This expression guarantees that 

the delay increment bound for each wire segment is satisfied, since it provides a traversal 

of all possible adjacencies of all pairs of wire segments. 

Matrix 
T:

1 ... n
1

...

m

0 1
1

1
1

1
1

0 0
000
000
00
0

0
0

0
0

00

... ...

 

Fig. 7. Explore the structure of the decision variable matrix T. The sum of any three numbers 
connected by a blue dashed line is no more than two. 
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2.2 Solving Integer Linear Programming Problem 

With all three types of constraints constructed, our track assignment problem is 

completely formulated as a constraint based 0-1 ILP problem. We built and solved this 

ILP model using a commonly known ILP solver CPLEX. A toy case was used to test the 

correctness of this model. The wire positions in this case are the same as shown in Fig. 2, 

and the solver generated solution as in Fig. 3. The delay increment values were set 

according to the coupling length, and the bounds were set randomly. There is no bound 

violation in this solution. However, in certain cases the bounds may have been set to 

tight for the solver to find a feasible solution, i.e., the problem becomes unsatisfiable.  

Actually this 0-1 ILP problem can be transformed to Satisfiability (SAT) problem in 

polynomial time by the NP-complete theory [12], [13], and there is existing algorithm to 

do this transform [14]. To compare results, we also tested the same toy case using a 

public domain SAT solver PBS [15]. The solution given by the SAT solver was not 

exactly the same as the solution given by CPLEX, but was quite similar. This is true 

since there could be multiple feasible solutions. Both solvers seem to work well on test 

cases with small number of wires and tracks. 

TABLE I 

RESULTS GIVEN BY CPLEX OF SEVERAL TEST CASES 

num_wire num_track runtime memory num_var 

9 5 15''' 0.77M 81 

50 50 4''15''' 148M 3725 

100 100 45''92''' 1.18G 14950 
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Table 1 shows the runtime and memory consumed by CPLEX for various problem 

sizes. As can be observed, the exponential relationship implies a critical limitation of 

ILP solvers as well as SAT solvers. ILP solvers are a little better, but still quite slow 

when the number of wires reaches the hundreds level. This is not a feasible method for 

real world circuits, which typically have millions of wire segments and far more exceed 

the capability of current ILP solvers. Therefore, in the next section, a novel heuristic 

algorithm with significantly lower time and space complexity is developed to make the 

track assignment task applicable to real-world complex cases. 
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3. ALGORITHM 

 

 The heuristic algorithm is intended to solve the track assignment problem more 

efficiently. From the previous section we see that the ILP model works for small cases, 

but when it comes to real circuit the performance of the ILP solver greatly degrades 

because of the increasing number of variables and constraints. In our heuristic method, 

we make use of graph theory to formulate graph models for real circuit, such as wire 

conflict graph and adjacency graph.  

 The initial positions of wire segments are given by a global router. At this step, 

wires are grouped into panels which are horizontal rows of grids. Wire segments in the 

same panel are packed together vertically, so they are highly overlapping. The routing 

resource inside each panel is a fixed number of available tracks. The task is to assign 

these wire segments within the same panel to different tracks such that no wire conflict 

occurs and all bounds on performance degradation are satisfied. 

3.1 Graph Construction 

3.1.1 Conflict Graph (Interval Graph) 

A conflict graph G(V,E) can be created for the wire segments. Each wire segment is 

represented by a vertex v ∈ V, and an edge (u, v) between vertex u and v means that 

wire u and wire v have overlap in span. This is illustrated in Fig. 8 below. 
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i  

Fig. 8. Conflict graph for 9 wires. 

3.1.2 Clique 

A clique [16] in an undirected graph is a sub-graph which is complete. There is an 

edge connecting every pair of vertices in the clique. The maximum clique of a graph is a 

clique with the largest size (the most vertices). Fig. 9 shows a maximum clique in the 

conflict graph given in Fig. 8. In our case, the vertices in a clique are wires that have 

overlap in span with each other. No pairs of them can share the same track. Thus the size 
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of the maximum clique actually represents the minimum number of tracks needed in 

order to assign all wires in an overlapping-free manner. 

 

a

d

b

c

e

 

Fig. 9. A maximum clique inside the conflict graph in Fig. 8. Wire a, b, c, d and e have overlap 
in span with each other, so they cannot be assigned to a same track. To assign the 9 wires 
without wire conflict, a minimum number of 5 tracks are needed. 
 

3.1.3 Adjacency Graph 

To add crosstalk information into the graph, we introduce a new type of conflict 

graph, i.e., adjacency graph. This graph is developed based on the clique in the original 

conflict graph, but with weight for all the edges. We know that wires in a clique have 

overlap in span and must be assigned to different tracks, so any pairs of those wires are 

potential neighbors. That is to say, they could be assigned to adjacent tracks and there 

could be crosstalk between them. To limit the delay degradation caused by crosstalk, we 

should take control of the potential adjacencies and forbid those that can cause too much 

delay increment. 

 We set a weighting factor wij for edge e(i, j) connecting vertex i and j. The value of 

wij is the sum of delay increment of the two wires caused by each other when they are 

assigned to adjacent parallel tracks: 
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         𝑤𝑖𝑗 = 𝑑𝑖𝑗 + 𝑑𝑗𝑖         (9) 

where dij is the delay increment of wire i caused by its neighbor wire j, and dji is the 

delay increment of wire j caused by wire i.  

 After assigning the weighting factor to edges in the clique, we need to check if there 

are any forbidden adjacencies. For each edge e(i, j), we check if dij ≤ Bi and dji ≤ Bj , and 

we remove edge e(i, j) if any of the two inequalities is violated. Because each wire in 

this clique can have two neighbors (neighbor in track above or below) at the same time, 

we also consider the case that the sum of delay increment caused by the two neighbors 

exceeds the bound. The details of this method are discussed in section 3.2. The graph in 

Fig. 9 is reduced to the one shown in Fig. 10 by the edge removing step. Note that if 

there are more available tracks than what is needed, i.e., the size of the maximum clique, 

we can add dummy vertices into the reduced graph. Each dummy vertex represents a 

spare track, i.e., a virtual wire and it connects to all the other vertices via zero weighted 

edges in the graph because an empty track can be neighbor of any wire with no crosstalk. 

a

d

b

c

e

 

Fig. 10. The remaining graph after removing edges from the clique in Fig. 9. 
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 Next heuristic is to find a Hamiltonian path inside the reduced graph, which gives 

the order of tracks that the wires are assigned to. For example in Fig. 10, a possible 

Hamiltonian path is abecd, which corresponds to the track assignment that wire 

a is assigned to track 1, wire b is assigned to track 2, etc. When finding the Hamiltonian 

path we also need to consider the weights of edges, since we want to find a minimum 

weight path to limit the total crosstalk, and leave a less noisy environment for all the 

unassigned wires. In our case there is no specific requirement on deciding the beginning 

and ending point of the path, so we can make use of the algorithms for Traveling 

Salesman Problem (TSP) [17] to find a circle, and cut one edge to form a path. 

3.1.4 Extended Bipartite Graph 

After assigning the wires corresponding to the vertices of the maximum clique, we 

apply a greedy algorithm to assign the rest of the wire segments. Note that the 

“Hamiltonian path” was not applied to assigning the rest of wires, because some tracks 

are already occupied, and when considering delay increment we need to take into 

account both assigned and unassigned wire segments. That is to say, delay increment of 

each wire is changing dynamically with different choices of assignment. We repeat the 

step of finding maximum clique among the rest of wires until all wires are assigned, and 

construct an extended bipartite graph for each one of the cliques.  
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Fig. 11. Assigning a clique of wire segments: i, h and f. Starting from the one with the least 
number of track candidates, find a legal path from left to right without causing any bound 
violation. 
 

For example in Fig. 11, there are three wire segments i, h, f left to be assigned. The 

numbers listed under each wire segment are the indices of tracks that are available for 

this particular segment. The choices of tracks are decided by the current assigned wire 

segments. The rule is that newly assigned wire segments should not conflict with 

previously assigned wires, and the new assignment should not cause any bound 

violations. In the case shown in Fig. 11, wire i has only one track candidate, i.e., it can 

only be assigned to track 4, and wire h and f both have three available track options. If 

any one of h and f is assigned first and occupies track 4, wire i would have no valid 

candidate tracks. A similar condition is discussed in [1], but instead of taking their 

look-ahead heuristic, we do a sorting for all the wire segments before assigning them. 

We sort the wire segments according to their number of candidate tracks. Segments with 

less track options are given higher priority such that less flexible variable is fixed first, 

resulting in a greater overall flexibility among the whole system of variables. So in Fig. 

11, wire i is given highest priority since it has only one choice of tracks. After putting i 

in track 4, we immediately update the track options for wire h which will be assigned 

next. Wire h cannot be assigned to track 4 anymore because wire i has taken the place. 
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So we remove track 4 from its track candidates. Then we randomly choose from track 2 

and 5 for wire h and check whether it is a legal assignment. If assigning wire h to track 5 

does not cause any bound violations we will continue the same procedure to assign the 

next wire segment. If such an assignment causes bound violation, we remove this track 

candidate and try its fellow candidates. In the case that all track candidates are visited 

but no one can satisfy the bound restriction, we go back one step to reassign the previous 

wire segment to another legal track candidate. The current amount of delay increment of 

both previous wire segment and the segment to be assigned should be updated, as well as 

the occupation information of track candidates. 

The path from the left end to the right end represents the order of tracks that the 

corresponding wire segments are assigned to. When a path is found, the assignment of 

the current clique is done. All these wires will be marked as assigned and there will be a 

new record for each track storing the name of wires that occupy this track. We can 

continue to find the next maximum clique in the set of unassigned wires, and apply the 

same procedure of assignment until all wires are properly assigned. 

3.2 Flowchart and Detailed Algorithms 

 This heuristic algorithm solves track assignment problem for wires in a single layer. 

It is targets at a whole panel at a time, and repeats until all panels are processed. The 

whole procedure can be divided into two steps: assigning the largest clique and assigning 

the rest of wires. The first step is transformed into a minimum weight Hamiltonian path 
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problem, and the second step is implemented in a greedy way as interpreted in the 

previous section. The flow chart below shows the outline of this algorithm. 

Start

Find max clique

Remove illegal 
adjacency

Find min weight 
Hamiltonian path

Assign according 
to path order

Remove from 
{unassigned}

{unassigned}=
all wires

{unassigned}=
empty?

Find max clique

No

Sort nodes in clique in 
ascending order according 
to the # of possible tracks

Assign this sorted 
clique

Remove from 
{unassigned}

Finish

Yes

 

Fig. 12. Flow chart of the heuristic algorithm. 

3.2.1 Step 1: Assign the Maximum Clique 

 The left half of the flow chart shown in Fig. 12 describes the first step of the 

algorithm. We define an array unassigned to store the indices of wire segments that have 

not yet been assigned. Initially it contains all the wire segments that are generated by 
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global routing. Once a segment is fixed, its index is removed from unassigned. The 

algorithm comes to an end when the array unassigned is empty. 

 Find Maximum Clique. The information of wire position is obtained from a global 

router, the coalesCgrip [18]. From its output we can read in the initial position of all wire 

segments for each panel p, and calculate the potential delay increment matrix D. The 

overlap matrix O is also created, and a conflict graph CG(V, E) is built where each 

vertex 𝑣𝑖 ∈ 𝑉 corresponds to a wire segment in panel p. There is an edge connecting 

vertex vi and vj if wire i and wire j overlap in span.  

The target is to find the maximum clique in this conflict graph, and the first step is 

to find all cliques. An off-the-shelf algorithm ‘segment tree’ [19] is used to find all 

cliques. Each wire is seen as an interval, with a head node (left end) and a rear node 

(right end). Considering all wires located in a panel, sort the corresponding nodes 

according to their horizontal coordinates. Then the set of all cliques can be obtained by 

sweeping through all the nodes from left to right. For each node, if it is a head node then 

its corresponding wire is added to the current clique; otherwise the wire is removed from 

the current clique.  

Fig. 13 illustrates this procedure. Suppose there are five wires numbered from 1 to 

5, and their head and rear nodes are sorted and indexed from 0 to 9. The blue dashed line 

sweeps from the left to the right, adding or removing wires from cliques. Each time it 

comes across a node, a new clique is created. In this particular case the cliques found 

are: {1}, {1,3}, {1,2,3}, {1,2,3,5}, {1,3,5}, {1,3,4,5}, {1,4,5}, {1,4} and {4}. Thus the 

cliques with maximum size are {1,2,3,5} and {1,3,4,5}. 
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Fig. 13. Illustration of the segment tree method. 

When all cliques are found, they are sorted in descending order of their sizes. If 

several cliques are about the same size, the one with biggest total wire length comes 

first. We choose to assign longer wires first because longer wires have relatively less 

chances to be assigned legally if not given priority. 

Having the maximum clique chosen, we convert it to an adjacency graph by adding 

weighting factor into the clique, as described in section 3.1.3.  

Remove Illegal Adjacency. The max clique is a complete graph, implying that no 

pair of wires in this clique can be assigned to the same track. It also implies the 

possibility for any pair of wires to be assigned to neighboring tracks. However, some of 

these adjacencies are illegal since they might cause violations of the delay increment 

bounds of certain wires. Two kinds of illegal adjacencies are considered in this 

algorithm, and an edge removing approach is performed accordingly. 

i) for each vertex vi check all edges e(vi, vj) connecting to it: 

if 𝑑𝑖𝑗 > 𝐵𝑖, remove edge e(vi, vj), where Bi is the delay increment bound of wire i. 
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ii) for each vertex vi check every pair of edges e(vi, vj) and e(vi, vk): 

if 𝑑𝑖𝑗 + 𝑑𝑖𝑘 > 𝐵𝑖, remove one of these two edges. 

In the actual implementation, violations of type i) are processed prior to those of type 

ii), because they are ‘hard’ violations. After removing all violations of type i), vertices 

which still have violations of type ii) are added into a set S. Removal of type ii) illegal 

adjacencies is done inside set S.  

When handling the second type of illegal adjacency, generally the edge with larger 

weight is removed. For example, if vertex vi is in set S and wik > wij then edge e(vi, vk) is 

chosen to be removed. However, if vertex vj is also an element of S while vertex vk is 

not, then edge e(vi, vj) is removed with priority regardless of its weight.  

Each time an edge e(vi, vj) is removed, we check vertices vi and vj to see if they still 

have type ii) bound violation. If any one of them no longer has bound violation, it is 

removed from set S. This procedure is repeated until S is empty. 

Find Minimum Weight Hamiltonian Path. The problem is now to find a 

minimum weight Hamiltonian path in the edge removed graph. If the number of tracks is 

greater than the size of max clique, spare tracks are added to the graph as new vertices 

with zero weight edges connecting to all existing vertices. Since there are no specified 

starting and ending points, the problem is actually equivalent to the Traveling Salesman 

Problem. An existing heuristic nearest insertion [20] is applied here. It finds and returns 

a circle if there is any, thus a path can be formed by breaking any one of the edges. An 

example of a Hamiltonian path (colored in blue) is given in Fig. 14. 
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Fig. 14. An example of Hamiltonian path a-b-e-d-c. 

In the test benches (IBM superblue 4 for example), the maximum clique size is 80 

which is not too big for this heuristic to give a result in reasonable time. The wires in the 

max clique are then assigned to tracks according to the order of the vertices along the 

path. 

3.2.2 Step 2: Assign the Rest of Wires 

 The procedure of step 1 cannot be reused for step 2, because most of the tracks are 

already occupied and the delay increment between wires changes dynamically when 

assigning the rest of the wires. Nevertheless, part of step 1 is still applicable for step 2.  

Firstly the interval tree heuristic is performed to find the max clique among all 

unassigned wires. For each wire in the max clique, we count the number of candidate 

tracks (tracks that this wire can be assigned to without causing overlap), and then sort 

these wires in an ascending order according to this number. That is to say, wires with 

less track options are considered first. 

Track assignment is then performed starting from the very beginning of the sorted 

clique, until the whole clique is assigned. For a particular wire, a candidate track is 

selected randomly from the set of candidate tracks belonging to this wire, and this track 
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is marked as tried. We try to assign the wire to this track, and check if this assignment is 

legal (if it will cause any bound violations). This attempt is repeated until a legal 

assignment is found. Then the track is marked as occupied so that other wires in the 

same clique cannot be assigned to the same track later. If all candidates are tried but 

none of the attempts is legal, we trace one step back and reassign the previous wire to a 

different track. 

Same procedure is performed for the max clique found in each step, until all the 

wires in panel p are assigned. A whole circuit may contain hundreds of panels, and all of 

those panels are independent in our case. The algorithm can be reused for each one of 

the panels, and it comes to an end when all panels are done. 

Theoretically, if the problem case has a feasible solution (all wire segments can be 

assigned without any bound violation), the heuristic algorithm should be able to find it. 

However, in real cases it is hard to create a problem which has a feasible solution for 

sure. This is because there are often millions of wire segments on a single circuit, and it 

is impossible to set proper bounds for all of the wires. In our project we set the bounds 

randomly in a certain range. So there are situations when not all wire segments can be 

legally assigned. To deal with those situations, our algorithm can also accept tolerable 

violations when there is no way to avoid them.  

3.2.3 Delay Calculation and Bound Setting 

 The method of calculating delay increment caused by crosstalk is given in previous 

chapter, and here we describe the calculation in detail. For any wire segment i, the 

relative position between i and its neighbor j can be any case shown in Fig. 15. Suppose 
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the overlapping length is lo, the upstream length from the source point of i to the overlap 

starting point is lup, and accordingly the downstream length after the overlapping part is 

ldown. In Fig. 15 (A) the neighbor wire j is much longer than wire i and the overlapping 

length is the length of i. Thus the delay increment of i caused by j can be written as 

        dij = r ∙ lo ∙
c∙lo
2

         (10) 

where r is the unit length resistance and c is the unit length coupling capacitance. In case 

(B) the overlapping length is only part of the wire length. The delay increment is 

expressed as 

       dij = r ∙ lup ∙ c ∙ lo + r ∙ lo ∙
c∙lo
2

.      (11) 

In case (C) the expression is the same as (11) because the downstream length has no 

effect on delay increment. Similarly the expression in case (D) is the same as in case (A) 

regardless of the downstream length. 

(A) (B)

(C) (D)

i

j

i

ii

j

jj

lup lolo

lo lolup ldown ldown

 

Fig. 15. Cases of relative positions of two neighboring wires. 
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 Note that formula (10) is a special case of (11) with lup= 0. Therefore formula (11) 

is a general expression of the delay increment in all cases. Since the horizontal 

coordinates of all wire segments are known, we can easily calculate lup and lo, and 

thereafter get the delay increment matrix D.  

Another fact is that the delay increment reaches the maximum when the entire wire 

overlaps with a neighbor wire, i.e., lo = li. This can be proven by transforming formula 

(11) into 

       dij = r ∙ c ∙ lo ∙ (li −
lo
2
− ldown)      (12) 

by replacing lup with li – ldown. It is obvious that dij can reach the maximum only when 

ldown = 0. The formula then becomes 

        dij = r ∙ c ∙ lo ∙ (li −
lo
2

)       (13) 

This is a concave function with curve shown in Fig. 16. The function value reaches the 

maximum 𝑑𝑖𝑗 = 𝑟𝑐𝑙𝑖
2

2
 when and only when lo = li. 

0 lo

dij

2lili

 

Fig. 16. Function curve of dij. Feasible domain is 0 ≤ lo ≤ li, where dij is monotonically increasing. 
Maximum value is reached when lo = li. 
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Fig. 17. An example of a fully overlapped wire segment. 

To set proper bounds for each wire segment, we need to know the maximum total 

delay increment a wire segment can have. We know that for a certain wire i, its delay 

increment is di = ∑ dijj , where j represents any neighbor wire in the track above or 

below wire i. We also know from above analysis that delay increment is maximal when 

the entire length is overlapped. We take the case shown in Fig. 17 as an example. 

Suppose wire segment i is surrounded by four neighboring wires 1, 2, 3 and 4. The 

corresponding overlapping lengths are l1, l2, l3 and l4. The total delay increment of wire 

segment i can be written as 

      di = rcl12

2
+ rcl1l2 + rcl22

2
+ rcl32

2
+ rcl3l4 + rcl42

2
 

      = rc
2

(l1 + l2)2 + rc
2

(l3 + l4)2  

      = rc
2
∙ 2li

2 = rcli2    (14) 

where li is the length of wire i. Formula (14) gives an upper bound of the delay 

increment a wire can have: dmax = rcl2 . According to this we set the delay increment 
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bound for every wire segment to be a random number in the range (0, dmax). However, it 

is meaningless to have a bound which is too small, because in this case there would be 

no feasible solution to the track assignment problem. So we should set reasonable 

bounds for our test benches. To make it convenient for comparison, we set three cases of 

ranges: (0.25dmax, dmax), (0.5dmax, dmax) and (0.75dmax, dmax). We will compare the results 

of these cases in the next section. 
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4. EXPERIMENTAL RESULTS 

 

 We carried out several experiments to evaluate the efficiency of our algorithm. Our 

test cases are from the IBM ISPD 2011 contest. The test benches we used are circuits 

Superblue1, Superblue 4 and Superblue 10. We employ global router coalesCgrip and 

feed the original test bench to the router. The router then generates a global routing 

output containing the initial horizontal positions of wires. In this output file wires are 

grouped into panels (about 500 to 900 panels for a particular test bench), where inside 

each panel wires are given the same vertical coordinate. That is to say, initially all the 

wires in one panel are overlapping with each other. Each panel has around 700 to 3000 

wires, and panels are independent with each other. Thus we can do track assignment 

panel by panel, dealing with thousands of wires at a time instead of millions as a whole. 

 We parse the output file of the global router and create an input file for our program. 

The max clique size in our test benches is 80, and we set the number of available tracks 

to be 85, a little bigger than the max size. This is to leave some space for multiple 

feasible solutions, and at the same time do not make the problem too easy to solve. 

Parameters on resistance and capacitance as well as delay increment bounds are set 

according to section 3.2.3. Results of different test benches are compared according to 

the number of wires having bound violations, and the amount of violations.  

 Fig. 18 shows the results of our algorithm for circuit Superblue4, which contains 

523,388 wire segments. Bars in different colors represent different bound ranges as 

described in section 3.2.3. Fig. 19 shows the results for circuit Superblue1, which 
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contains 722,904 wire segments. Fig. 20 is for circuit Superblue10, containing 928,278 

wire segments. From these three figures we can see that our algorithm performs very 

well in controlling bound violations. It can achieve zero violation when the bounds are 

not too tight. Even if bounds are tight, it can generate a solution with very low bound 

violation rate. 

 Fig. 21 gives an inside look of a part of a certain panel after track assignment. It 

shows the positions of real wire segments, and we can see clearly that there is no wire 

conflict. This figure is generated by MATLAB by reading the output file of our 

algorithm. 

 

 
 

Fig. 18. Number of violated wires in test case Superblue4. 
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Fig. 19. Number of violated wires in test case Superblue1. 
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Fig. 20. Number of violated wires in test case Superblue10. 
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Fig. 21. Part of a panel after track assignment. 
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We also perform two other track assignment methods for comparison. One method 

recursively finds min-weight Hamiltonian paths for cliques in the set of unassigned 

wires, and assigns wires according to the order of vertices in path. The idea comes from 

Di Wu’s work [5]. This method is referred to as Approach 2. The other one is similar to 

our approach but only considers wire conflict when doing the second step, and it is 

named as Approach 3. Table II shows that our approach is not only fast, but also 

superior in eliminating bound violations. 

Besides, comparison is also made between the heuristic method and the ILP method. 

Table III gives the results of those two methods on several test cases. The heuristic is 

very fast that the run time is nearly zero for the small test cases, while the ILP becomes 

rather slow when constraints are tight even if the problem size is not big. However, the 

heuristic may not find the exact violation-free solution when routing resource is very 

limited. Instead, it gives a solution with some tolerance on bound violations. The ILP 

method can guarantee a feasible solution if there exists one, at the cost of long running 

time. 
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TABLE II 

COMPARISON OF THREE APPROACHES 

 Test Cases Our Approach Approach 2 Approach 3 

Number of wires 
violating delay 

increment 
bounds 

Superblue4 
(total # wires 523,388) 461 48,179 22,526 

Superblue1 
(total # wires 722,904) 286 65,470 27,484 

Superblue10 
(total # wires 928,278) 329 75,951 30,310 

Average amount 
of violation per 
violated wire 

Superblue4 
 17.71 238.50 443.10 

Superblue1 
 14.18 215.79 305.03 

Superblue10 
 25.79 222.84 361.93 

Total delay 
increment in the 

entire circuit 
 

Superblue4 
 2.84×107 5.16×107 4.91×107 

Superblue1 
 3.00×107 6.42×107 4.53×107 

Superblue10 
 3.34×107 8.16×107 5.89×107 

Run time 

Superblue4 
 16’17’’ 18’36’’ 15’38’’ 

Superblue1 
 24’46’’ 24’47’’ 22’7’’ 

Superblue10 
 26’15’’ 26’10’’ 22’32’’ 

The number of available tracks is set to be 90, and the bound range is (0.25dimax, dimax), same for 
all three approaches. “ ’ ” stands for minute, and “ ’’ ” stands for second. 
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TABLE III 

COMPARISON OF HEURISTIC AND ILP METHOD 

Test Cases 

Heuristic ILP 
Number of 

wires violating 
bounds 

Run time 
Number of 

wires violating 
bounds 

Run time 

# wires: 
182 

# tracks: 
33 

bound: 
(0.25~1) 

 
2 
 

0’’ 0 7’44’’ 

bound: 
(0.25~0.75) 

 
4 
 

0’’ 0 2hr 38’1’’ 

# wires: 
205 

# tracks: 
21 

bound: 
(0.25~1) 2 0’’ 0 1hr 33’55’’ 

bound: 
(0.25~0.75) 7 0’’ 0 15hr 10’43’’ 

# wires: 
269 

# tracks: 
23 

bound: 
(0.25~1) 0 0’’ 0 5’9’’ 

bound: 
(0.25~0.75) 1 0’’ 0 1hr 48’49’’ 

# wires: 
305 

# tracks: 
27 

bound: 
(0.25~1) 4 0’’ 0 9hr 44’5’’ 

bound: 
(0.25~0.75) 5 0’’ N/A >48hr 

Test cases are randomly picked, small enough for the ILP solver to solve.  
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5. CONCLUSION 

 

In this work we propose and implement a novel heuristic approach to solve 

constraint-based track assignment problems. Our algorithm utilizes the nearest insertion 

method targeting at the Traveling Salesman Problem, and applies a greedy method on an 

extended Bipartite graph. Different from most previous works, our approach takes into 

account the dynamically changing delay increment on each wire segment. This adds 

great difficulty to implementation, but experimental results show that our approach has 

achieved significant success in eliminating performance degradation induced by 

crosstalk.  
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