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ABSTRACT

Hybrid Nanophotonic NoC Design For GPGPU. (May 2012)

Wen Yuan, B.S., National University of Defense Technology

Chair of Advisory Committee: Dr. Eun Jung Kim

Due to the massive computational power, Graphics Processing Units (GPUs)

have become a popular platform for executing general purpose parallel applications.

The majority of on-chip communications in GPU architecture occur between memory

controllers and compute cores, thus memory controllers become hot spots and bot-

tle neck when conventional mesh interconnection networks are used. Leveraging this

observation, we reduce the network latency and improve throughput by providing a

nanophotonic ring network which connects all memory controllers. This new intercon-

nection network employs a new routing algorithm that combines Dimension Ordered

Routing (DOR) and nanophotonic ring algorithms. By exploring this new topology,

we can achieve to reduce interconnection network latency by 17% on average (up to

32%) and improve IPC by 5% on average (up to 11.5%). We also analyze applica-

tion characteristics of six CUDA benchmarks on the GPGPU-Sim simulator to obtain

better perspective for designing high performance GPU interconnection network.
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CHAPTER I

INTRODUCTION

Advances in technology have made it possible to accommodate an increasing number

of transistors on a die, enabling designers to integrate a vast number of diverse compo-

nents on a single chip. This has lead to chip multiprocessors(CMP) and systems-on-

chip(SoC) becoming the norm in the computing world. This trend has also facilitated,

the Modern Graphic Processing Units (GPUs) to have a huge number of parallel pro-

cessors. Accordingly, the recent GPUs managed to break the teraflop barrier [1] and

are being made easier to program for non-graphics applications. Therefore, General

Purpose GPU (GPGPU) has recently obtained attention as a cost-effective approach

for accelerating compute- and data-intensive applications. The sheer number of com-

ponents on a modern chip, raises the issue of being able to connect them.

Networks-on-chip(NoC) have emerged as an efficient and scalable solution to the

communication problem, replacing the buses that were prevalent up to now [3]. An

NoC is implemented as a switched network connecting cores in a scalable and flexible

manner, which achieves higher performance and lower power consumption than a

crossbar-based interconnect. The performance of the NoCs has become a crucial

component of the CMP and GPU performance. Many interconnection topologies

and routing algorithms have been proposed for CMPs, of which the Two dimensional

mesh is a popular and efficient topology. Although the interconnection network has

been well researched in Chip-Multi-Processors (CMPs) [4], the same design techniques

cannot be directly used in GPGPU architecture, where communication patterns are

different from those in CMPs.

This thesis follows the style of IEEE Transactions on Automatic Control.
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In the GPGPU paradigm, the threads which are supposed to communicate with

each other are allocated and executed on Hardware units(compute cores) that are

located in a tightly-knitted cluster. In turn, the threads running in parallel in the

different clusters of compute cores have minimal communication [6]. As the number

of pins on a chip is increasing by only 10% per year [34], the number of Memory

Controllers (MCs) on a GPU is limited. However, the number of compute cores on

the GPU increases with the transistor density . This results in the many-to-few-to-

many traffic pattern, where requests are sent from many compute cores to a few MCs,

and replies are received inversely. Therefore, MCs become the hot spots and bottle

neck in conventional mesh interconnect networks. When these MCs are at the central

part of a mesh, the traffic being routed through these nodes becomes even heavier.
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Fig. 1. Ratio of Communication with The Nearest MCs.

Figure 1 shows the ratio of compute cores sending request to the nearest MCs.

This ratio is relatively low. It hurts system performance when a large amount of

memory requests have to go through distances to reach corresponding MCs to be
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served. Considering this traffic pattern in GPU interconnection networks, the mesh

network is not suitable for high performance on-chip networks design.
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Fig. 2. Many-to-Few-to-Many On-Chip Traffic.

The high level diagram of many-to-few-to-many traffic is depicted in Figure 2.

In the figure, C nodes and MC nodes denote the compute cores and the memory

controllers, respectively.

Exploiting the many-to-few-to-many traffic behavior of GPGPU architecture, we

attempt to optimize the design of NoC for GPGPU architecture. In this research, we

first analyze application characteristics of six common GPGPU benchmarks written

in CUDA. Since different applications vary in many aspects, including load/store

ratio, read request/write request ratios and number of accesses to shared memory,

constant memory, texture memory, local memory and global memory, it is important

to know these key metrics for further improvement of the GPGPU interconnection

network design. Furthermore, based on the conventional mesh network drawback

we observed, we propose to add a nanophotonic ring network to further reduce the

interconnection network latency and improve the system performance. By exploring
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this new topology, we can reduce interconnection network latency by 17% on average

(up to 32%) and improve IPC by 5% on average (up to 11.5%).

The rest of this thesis is organized as follows: Chapter II presents detailed in-

formation about the GPGPU architecture, Chapter III gives an overview of several

important aspects of NoC design, Chapter IV describes nanophotonic ring networks

architecture, Chapter V presents the simulator we used in this research, Chapter VI

conveys the idea of our proposed work, Chapter VII describes experimental method-

ology and results, Chapter VIII summarizes related work and we conclude our work

in Chapter IX.
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CHAPTER II

GPGPU HARDWARE AND SOFTWARE ARCHITECTURE

In this chapter, we illustrate the GPGPU hardware architecture and software applica-

tion specifications and describe the CUDA benchmarks we simulated in the GPGPU-

Sim for this research.

A. A GPGPU Baseline Architecture

Core Core Core Core Core Core

ShaderCores

Interconnection Network
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MC

DRAM
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MC

DRAM
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MC

DRAM

L2

MC

DRAM

Application
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Kenel

PTX code

CPU

Memory

Statistics

Fig. 3. GPGPU Overview.

Figure 3 shows our baseline GPGPU architecture. The GPGPU consists of a

group of small data-parallel compute cores, which labeled shader cores in the figure,

connected by an interconnection network to multiple memory controllers. Threads are

evenly spreaded to shader cores at the granularity of CTAs, such as shared memory
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space, registers and thread slots, are not released until all threads within a CTA have

finished execution. If the resource is abundant, multiple CTAs can be grouped into

a single shader core, this is to share a pipeline for their execution.
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Fig. 4. Details of Shader Core.

Figure 4 illustrates the detailed implementation of a single shader core. In our

research, each shader core has a SIMD width of 8 and uses a 24-stage pipeline without

forwarding. The 24-stage pipelines are motivated by details in the CUDA program-

ming guide [2], which denotes that at least 192 active threads are needed to avoid

stalling for data dependencies between consecutive instructions from a single thread.

Warp [24] schedules threads to the SIMD pipeline in a fixed group of thirty-two

threads. All the thirty-two threads in a given warp execute the same instruction with

different data values over 4 consecutive clock cycles in all pipelines.

With no overhead on a fine-grained basis, threads scheduling inside a shader
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core is performed. Every four cycles, warps available for execution are chosen by the

warp scheduler and issued to the SIMD pipelines in a loose round-robin fashion which

skips non-available warps (e.g. these waiting on global memory accesses). This means

whenever any thread inside a warp are taken out of the scheduling pool until the long-

delay operation is over. At the same time, others warps which are not waiting are

issued to the pipeline for execution in a round-robin manner. The multiple threads

running on different shader core thus permit a shader core to tolerate long-delay

operations without degrading throughput.

To access global memory, the requests should be sent via an interconnection

network to the corresponding Memory Controllers (MCs), which are physically dis-

tributed over the chip. Every on-chip MC then connects to 2 off-chip GDDR3 DRAM

chips. Figure 5 illustrates the physical layout of the MCs in 8X8 mesh configuration

as blue areas. The address decoding method is implemented in a way such that suc-

cessive 2KB pages [27] are spread across various banks and different chips to maximize

row locality while distributing the load among the MC.

B. CUDA Programming Model and Flow

At the high level, CUDA can be considered as a set of extensions to the C program-

ming language which allows developers to distinguish between highly multithreaded

GPU functions, and native host functions. Kernels are presented as SIMD programs

and explicitly control the GPU memory hierarchies. Kernels are managed by a series

of API calls implemented by the CUDA runtime that allocate GPU memory, launch

kernels and copy data between the host and GPGPU memories, etc. The CUDA

compiler compiles kernels to PTX that is an intermediate virtual ISA that is trans-

lated to the native ISA at load time. The compiled PTX kernels are packed into a
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Shader Core MC

Fig. 5. MC Layout in 8X8 Mesh Network.

fat binary structure contains separate entries for each kernel and is stored as a static

array along with the C code to be executed in the host. The resulting source file is

a pure C source file, which is then propagated to a native compiler such as msvcc or

gcc. The final source file includes references to the CUDA API functions, and must

be linked against an implementation of the CUDA runtime to be executed.

Figure 6 illustrates how a CUDA application can be compiled to run on GPG-

PUs. The compilation flow uses cudafe to translate the source code of CUDA ap-

plications into host code running on CPUs and device code running on GPGPUs.

The GPGPU C code is then compiled into PTX assembly (marked as “.ptx” in Fig-

ure 6) by nvopencc, which is an open source compiler provided by NVIDIA based

on Open64 [35]. The PTX assembly code is then assembled by the PTX assembler

(ptxas) into the target GPGPU’s native ISA (marked as “cubin.bin” in Figure 6). The

assembled code is combined with the host C code and compiled into one executable

linked with the CUDA runtime API library (marked as “libcude.a” in Figure 6) by
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Fig. 6. CUDA Flow with GPU Hardware.

a C compiler such as gcc. In this normal compilation flow, the generated executable

calls the CUDA runtime API to launch and invoke compute kernels onto the GPGPU

via the NVIDIA CUDA driver.

C. Benchmarks

The benchmarks we used to import to the GPGPU-Sim are listed in Table I together

with important application properties, such as the grid dimensions, CTA dimen-

sions, total threads and instruction count. Below, we present some details about

these benchmarks we simulated in this research which are not from NVIDIA’s CUDA

Software Development Kit (SDK). These CUDA applications were developed by the
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researchers which are cited below and kept the original version on the simulator.

Graph Algorithm: Breadth First Search (BFS) [28] This application, de-

veloped by Harish and Narayanan [28], implements breadth first search on a graph.

As each thread maps in the graph maps to a different node, the amount of paral-

lelism in this applications scales with the size of the input graph. BFS suffers from

performance loss due to branch divergence and heavy global memory traffic. We run

breadth first search on a arbitrary graph with 65,536 nodes and an average of 6 edges

per node.

AES Encryption (AES) [29] Developed by Manavski [29], this application per-

forms the Advanced Encryption Standard (AES) algorithm in CUDA to encrypt/decrypt

files. It is optimized by Manavski so that the input data processed in shared memory,

constants are stored in constant memory, and the expanded key stored in the texture

memory. In the experiments, we encrypt a 256KB picture using 128-bit encryption.

MUMmerGPU (MUM) [30] This application implements a parallel pairwise

local sequence alignment which matches query strings consisting of standard DNA

nucleotides to reference string for purposes such as genome re-sequencing, genotyping,

and metagenomics [30]. The reference strings have been arranged to exploit the

texture cache’s optimization for 2D locality and are stored as suffix trees in texture

memory. In our experiments, we utilize the first 140000 characters of the Bacillus

anthracis string. Ames genomes as the reference string and 50000 25-character queries

randomly generated applying the complete genome as the seed.

Ray Tracing (RAY) [32] RAY is a approach of rendering graphics with near

photo realism. In this application each rendered pixel corresponds to scalar threads in

CUDA. It limits 5 levels of reflections and shadows are taken into account, therefore

threads behavior rely on what object the ray hits, forcing the kernels susceptible to

branch divergence. In our experiments, we simulate rendering of a 256X256 image.
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StoreGPU (STO) [33] This application is a library which speeds up hashing

based primitives designed for middleware [33]. In this research we decide to use the

sliding window implementation version of the MD5 algorithm on an input file of size

192KB. The off-chip memory traffic is minimized by the developers by applying the

fast shared memory.

N-Queens Solver (NQU) [31] This application solves a classic puzzle of placing

N queens on a NxN chess-board such that no queen can capture another [31]. The

N-Queen solver applies a simple backtracking algorithm to try to decide all possible

solutions. The search space denotes that the execution time increases exponentially

with N.

Table I. Benchmark Properties.

Benchmark Abr. Grid CTA Total Inst.

Dim. Dim. Threads Count

Graph Alg.: BFS (128,1,1) (512,1,1) 65536 17M

Breadth First Search [28]

AES Cryptography [29] AES (257,1,1) (256,1,1) 65792 28M

MUMmerGPU [30] MUM (782,1,1) (64,1,1) 50000 77M

N-Qqueens Solver [31] NQU (223,1,1) (96,1,1) 21408 2M

Ray Tracing [32] RAY (16,32,1,) (16,8,1) 65536 71M

StoreGPU [33] STO (384,1,1) (128,1,1) 49152 134M
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CHAPTER III

NOC ARCHITECTURE

This chapter describes some of the NoC architectural design options which are related

to our research. The on-chip interconnection network can be designed in different ways

based on the performance and cost. Performance is determined by by bandwidth,

latency and path diversity of the network. Cost depends on number of routers and

complexity as well as density and length of wires.

A. A Generic NoC Router Overview

Crossbar

Routing 

Computation

INJECTION

WEST WEST

EAST

NORTH

SOUTH

EAST

NORTH

SOUTH

EJECTION

VC 

Allocation

Switch 

Allocation

Fig. 7. Generic NoC Router Architecture.

In 2D Mesh topology, there are 5 ports in the router: four from/to the four

cardinal directions (NORTH, EAST, SOUTH and WEST) and one from/to local
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Processing Element (PE), as depicted in Figure 7. The main building blocks are

input buffer, route computation logic, VC allocator, switch allocator, and crossbar.

We will describe more in detail of these components in Section B. To achieve high

performance, routers process packets with four pipeline stages, which are routing

computation (RC), VC allocation (VA), switch allocation (SA), and switch traversal

(ST). We will discuss more on pipeline designs in Section C. Due to the stringent

area budget of a chip, routers use flit level buffering in a wormhole-switching network

as opposed to packet level buffering. Additionally, the buffer is managed with credit-

based flow control, where downstream routers provide back-pressure to upstream

routers to prevent buffer overflow.

Considering that only the head flit needs routing computation and middle flits

always have to stall at the RC stage, low latency router designs parallelize RC, VA

and SA using lookahead routing [22] and speculative switch allocation [23]. The

functionality of lookahead routing is the same as the normal RC stage, calculating

the output ports. However, instead of calculating routing information for the current

router, lookahead routing does the same for the downstream router and stores the

routing information in the head flit. In this way the RC and VA stages can be

overlapped because the VC allocator does not need to wait for the output of the

RC logic. Speculative switch allocation [23] predicts the winner of the VA stage and

performs SA based on the prediction. If the packet fails to allocate a VC, the pipeline

stalls and both the VA and SA stages will be repeated in the next cycle. These two

modifications lead to two-stage and even single-stage routers, which parallelize the

various stages in the router.
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B. Router Component

A NoC router is composed of a set of registers, function units, switches, and control

logic that logically and physically implement the routing and flow control functions

required to buffer and forward flits to their destinations. Although various router

implementation exist, in this section, we examine the components of a typical virtual

channel router.

To begin advancing a packet, component route computation (marked as Routing

Computation in Figure 7) must first be performed to determine the output port

to which the packet can be forwarded. Given the output port which obtains from

route computation, the packet requests an output Virtual Channel (VC) from the VC

allocator (marked as VC Allocation in Figure 7). Once a route has been determined

and a virtual channel allocated, every flit belongs the packet is relayed over this

virtual channel by allocating a timeslot on the switch and output port using the

switch allocator (marked as Switch Allocation in Figure 7) and forwarding the flit

to the corresponding output port during the timeslot. After granting the timeslot

during the switch allocation, the flit pass through the crossbar (marked as Crossbar

in Figure 7) Finally, the output unit forwards the flit to the next router in the packet’s

route.

C. Router Pipeline

Based on the overview of the Section A, we describe the on-chip router pipeline

more in detail in this section. Modern routers are pipelined at the flit level. Every

head flit proceed through pipeline stages which perform routing computation and

VC allocation (VA) and all flits pass through switch allocation and switch traversal

stages. Pipeline stalls occur if a specific pipeline stage cannot be completed in the
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current cycle time. These stalls halt operation of all pipeline stages because flits must

remain proceeding in order.

The routing process begins when the head flit of a packet arrives at the router.

Then, the RC stage directs a packet to a proper output port by looking up its des-

tination address. In parallel with routing computation, the first body flit arrives at

the router. Next, the VA stage allocates one available VC of the downstream router

determined by RC. During this stage, the head flit enters the VA stage, the first

body flit passes through the RC stage, and the second body flit arrives at the router.

The result of the RC, is input to the VC allocator. If it is successful, the allocator

grants a single output VC on the output channel. From this time until the release

of the VC by the tail flit, this VC is reserved by this packet. For the next stage, all

of the packet-based processing is finished and all remaining control is the flit by flit

switch allocation. The SA stage arbitrates input and output ports of the crossbar,

and successfully granted flits traverse the crossbar during the ST stage. The head

flit starts this SA stage, but it is handled no difference with any other flit. After SA

stage, all the flits of the packets pass through the crossbar one by one at the current

cycle during ST stage and pass the LT stage to the next router.

D. Topology

Butterfly network topology offers minimal hop count for a arbitrary router radix

however it does not have path diversity and requiring very long distance wires. A

crossbar interconnect can be considered one stage butterfly and scales quadratically

in area as the number of ports grows. From the perspective of a single input port,

the butterfly looks like a tree [3]. Each level of the tree contains routing nodes, which

unlike the terminal nodes, do not receive or send packets, but merely pass packets
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along the way. Additionally, each of the channels is unidirectional, flowing from the

input to the output nodes.

A 2D torus topology can be fabricated on chip with almost uniformly short wires

and provides good path diversity which may lead to a more load balanced design [3].

Mesh interconnects is a special type of torus interconnects. These topologies are at-

tractive for various reasons. These normal physical arrangements are well matched to

packaging constraints. At low dimensions, torus have uniformly short wires allowing

high frequency operations without repeaters. Logically minimal paths in torus are

almost usually physically minimal as well. This physical conservation allows mesh

and torus topologies to exploit physical locality between computation nodes. For

local traffic patterns, such as each node sending to its neighbor in the first dimension,

throughput is much higher and latency is much lower than for other random traffic

patterns. Butterfly topology, on the other hand, is unable to exploit this locality.

Torus have good path diversity and can have good load balance even on permutation

traffic which always has poor performance on other topologies. Also, since all channels

in a mesh or torus are bidirectional, bidirectional signaling can be exploited, making

more efficient use of wires and pins. The main disadvantage of the mesh topology

is its own relatively high latency due to more hop counts. As we will show in Sec-

tion VII, the benchmarks are not sensitive to latency so that we use mesh network as

our baseline while enjoying the simple design of the mesh topology.
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CHAPTER IV

NANOPHOTONIC ARCHITECTURE

In this chapter, we present an overview of optical interconnects, including communi-

cation components, interconnect patterns, arbitration and flow control.

A. Optical Communication Components

Optical communication structures consist of a laser source (normally located off-chip),

waveguides carrying light, and micro-rings or silicon ring resonators that modulate

and detect optical signals. Light from the laser source travels unidirectionally in the

waveguides with negligible losses. Multiple wavelengths can use the same waveguide

with no interference. With dense-wavelength-division-multiplexing (DWDM), up to

128 wavelengths can be generated and carried by the waveguides [41]. Micro-rings are

tuned to a particular wavelength and can be used to modulate or detect light of the

particular wavelength when placed next to a waveguide. Meanwhile, rings can switch

the light from one waveguide to another. The modulation, detection and diversion

are controlled by an electrical signal, which tunes the ring between resonance “on”

and “off” states. Functioning ring resonators are described in [39] and Figure 8 shows

a conceptual optical link.

Ring detection is destructive, which means that an active ring detector removes

all the light during the process of detection. Thus, any downstream detectors will not

be able to detect the light. In other words, an active detector detects a light signal

only when no upstream detector is activated. A ring splitter is used for switching a

fraction of light to another waveguide without affecting modulated light signals.



18

� � � � �� � � �� � � � � � � � 	
 � � �  � 	� � � � � � � � 
 � 	� � � � � � �� � � �� � � � � � � �
� � � � � � � � �!� " � � �!� "

Fig. 8. A Conceptual Optical Link.

B. Interconnect Patterns

In traditional electrical interconnects, each node is connected to its neighboring nodes

using separate electrical links, such as a 2D Mesh network, while in optical intercon-

nects nodes are normally attached to a single communication media1 forming a ring-

based network as shown in Figure 9. 64 nodes, each of which contains 4 cores, are

connected through unidirectional optical rings. The ring-based optical interconnect

falls into two categories: Multiple Write Single Read (MWSR) such as Corona [39],

or Single Write Multiple Read (SWMR) such as Firefly [40]. Figure 10 shows these

two interconnects. In MWSR, a node can write to all the channels except one spe-

cific channel from which the node can read, while in SWMR a node can write to a

specific channel from which any other nodes can read. MWSR needs arbitration in

the sender side, since a destination node can only receive one light signal at a time.

SWMR benefits from not requiring any arbitration in the sender, but introduces ex-

tra communication complexity. Considering multiple nodes can read from one given

channel in SWMR, a reader should activate its detector. Since ring detection is de-

1This single communication media is composed of many separate channels, and
each channel consists of a couple of waveguides.
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structive, we cannot allow all the nodes to keep their detectors activated all the time.

Only the destination node is allowed to open its detector. To handle this situation,

before sending data signals, the sender must notify the receiver of the future commu-

nication to activate the receiver’s detector, which costs extra bandwidth and needs

relatively expensive broadcast waveguides. Although our handshake schemes can be

applied to both MWSR and SWMR, we choose MWSR as our interconnect pattern

for its simplicity and low cost.

C. Arbitration and Flow Control

With limited on-chip channel and buffer resources, arbitration and flow control be-

come the most critical factors in the NoC design. In nanophotonic interconnects,
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packets traverse through optical channels in a wave-pipelined manner, which allows

a single optical channel to be divided into several segments, and each segment is

similar to a single-cycle bus. For example, on a 576 mm2 chip with 64 nodes and a

5GHz clock, the round trip time for an optical channel is 8 cycles [39], so it can be

divided into 8 segments. Considering the specific characteristics of optical channels,

the arbitration of a shared optical channel can take two methods: global arbitration

or distributed arbitration. Global arbitration is like a bus-based interconnect. In

the whole round trip time, only one sender and one receiver will use the channel.

Distributed arbitration considers the wave-pipelined manner of packet transmission.

If two packets are not overlapped in the same segment at the same time, they can

traverse in the same optical channel. Prior work [41, 40] adopts token-based arbi-

tration, in which a photonic token represents the right of transmitting packets on

a channel. Token channel is proposed for global arbitration, while token slot and
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token stream are designed as distributed arbitration. Traditional electrical on-chip

interconnects hire credit-based flow control, in which upstream routers keep a record

of the number of free buffers in downstream routers. When a router forwards a flit

to the next hop, it sends a credit backward to its upstream router. Inherited from

credit-based flow control, all the above token-based arbitration schemes integrate the

credit information into the arbitration token.
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CHAPTER V

GPGPU-SIM ARCHITECTURE

In this chapter, we present a detail illustration of the three-layer GPGPU-Sim infras-

tructure we simulated.

A. CUDA-Sim

CUDA-Sim is a functional simulator that executes PTX kernels generated by NVCC

or OpenCL compiler. This is the first layer of the GPGPU-Sim, which runs CUDA

applications and makes the API calls. The API calls which is in the libcuda, as we

stated in Section B. It implements the PTX functional simulation engine for GPGPU-

Sim. The interface between CUDA-Sim and GPGPU-Sim is contained in the libcuda.

In the CUDA-Sim, instructions used for functional execution are represented as an

instruction object contained within a function object. Instructions are decoded by

calling appropriate functions and passing correct information, which provides basic

information to the timing model about the next instruction a thread will execute.

B. GPGPU-Sim

Figure 3 also depicts an overview of the system we simulate in this research. The

GPGPU-Sim is a performance simulator that simulates the timing behavior of a

GPGPU. In the CUDA programing model, we consider GPGPU as a co-processor onto

which an application running on a CPU can generate a massively parallel compute

kernel. The kernel is comprised of a grid of scalar threads. Each thread is marked a

unique ID, which can be used to help divide up work among all threads. Within a

single grid, threads are grouped into blocks, which are also called Cooperative Thread
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Arrays (CTA). Threads have access to common fast memories, which are also referred

to as shared memory within a grid.

The GPGPU-Sim models the pipeline stage with 6 logical stages (fetch, decode,

execute, mem1, mem2 and write-back). The GPGPU-Sim employs the immediate

post-dominator reconvergence where several scalar threads within a warp evaluate a

branch as “taken” and others are “not taken”. Threads running on the GPGPU in

the CUDA programming models can access several memory regions, such as local,

global, texture, constant and shared [2]. The GPGPU-Sim models accesses to each

of those memory regions. Global and local memory accesses usually require off-chip

memory accesses in the baseline configuration. For the constant cache, the GPGPU-

Sim only allows single cycle access if every thread in a warp is requesting the same

memory address. The GPGPU-Sim implements a 4D blocking address scheme as

described in [25] for the per-core texture cache, which basically permutes the bits in

requested addresses to improve spatial locality. Concurrent memory accesses from

threads, which belongs to a single warp to a localized region, are coalesced into fewer

wide memory accesses to promote DRAM efficiency. In order to alleviate the DRAM

bandwidth bottleneck, which most applications face, a common technique applied by

CUDA programmers is to load frequently accessed data into the fast on-chip shared

memory [26].

C. Intersim

The Intersim is the interconnection network simulator adopted from Bill Dally’s Book-

Sim [14]. This simulator is developed using C and C++, and it can be downloaded

from Stanford University [36]. It is a cycle-accurate network simulator that models

all NoC router pipeline delays, components, topologies and wire latencies, which we
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presented in Section III.

The Intersim has a command line interface for defining various parameters of an

interconnection network. In other words, the user can customize the network size,

packet size distribution, buffer size, routing algorithm, scheduling strategy, packet

injection rate, traffic time distribution, traffic pattern, and hot-spot traffic distribu-

tion. The simulator allows NoC evaluation in terms of latency, throughput, chip area

and power consumption. This information is delivered to the user both in terms

of average and per-communication-basis results. Additionally, the user is allowed

to collect different evaluation metrics including global average throughput, the total

number of received packets/flits, total energy consumption, max/min global delay,

per-communications delay/throughput/energy, and etc.
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CHAPTER VI

DESIGN AND IMPLEMENTATION

In this chapter, we first present the drawback of conventional mesh network in

GPGPU architecture design. Then, we propose adding nanophotonic ring network to

mesh network design scheme.

A. Conventional Mesh Drawback

As we discussed in Section D, mesh network is common in NoC design because this

regular physical arrangement is well matched to packaging constraints [3]. One draw-

back of mesh network is that it has a larger hop count than other logarithmic networks.

This increases the pin cost of the network and gives it a slightly higher latency than

the minimum bound. One should note, in exchange, that some increase in hop count

is required for path diversity.

Due to the physical nature of mesh network, the nodes placed in the center of the

mesh have higher workload rates because more packets are forwarded through these

“central” nodes. This causes workload in mesh network to be slightly unbalanced. On

the other hand, because the special communications in GPGPU architecture is not

considered, the “pure” mesh network is not quite suitable for a throughput friendly

design.

B. Nanophotonic Ring Network

In Section II we discussed the traffic pattern in GPGPU architecture. The most

communication is the traffic between memory controllers and shader cores while cores

to cores communication is rare. Due to the physical nature of mesh network, the
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interconnection network design, which only employs mesh network, does not consider

these traffic patterns. Due to the inefficiency of mesh network, we propose to add a

nanophotonic ring to the mesh network to improve throughput. This nanophotonic

ring connects all memory controllers in the mesh network, as depicted in Figure 11.

The mesh network is the original topology we used in this research. The orange curve

is the nanophotonic ring which connects all memory controllers.

Shader Core MC Ring

Fig. 11. Nanophotonic Ring Added to Mesh Network.

Because every communication in nanophotonic ring network is only one hop away,

as we mentioned in Section B, the hop count of every communication between memory

controller and shader core is dramatically decreased. By adding the nanophotonic ring

we can reduce the average hop count for routing a packet. Therefore we improve the

network throughput.

There are four different types of traffics in detail implementation. Shader core

to shader core traffic, though it is rare, employs normal Dimension Order Routing

(DOR) algorithm such as XY routing. For shader core to memory controller traffic,
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it should be first sent to the nearest memory controller and then relays the traffic

to the destination through the nanophotonic ring network. It is a similar case if the

source is memory controller and destination is shader core. However, this is in a

reversed way which first routes the traffic through the nanophotonic ring network to

the nearest memory controller. Then we employ normal DOR routing to send the

traffic to shader core. If both the source and destination are memory controllers, we

directly send the packet to the destination through the ring within one hop.
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CHAPTER VII

EXPERIMENTAL RESULTS

In this chapter, we present experimental results for our throughput-effective on-chip

network for GPGPU architecture. We begin with showing our simulation configura-

tion, then analyze several important metrics of six CUDA benchmarks, and finally

present the impact of adding a nanophotonic ring network.

A. Methodology

Table II describes the GPGPU-Sim simulator configuration we simulated in the exper-

iments. We use a modified version of GPGPU-Sim which was presented in Section V.

The modification is to bring a nanophotonic ring network into the interconnection net-

work. To simulate the mesh interconnection network, we use a detailed cycle-accurate

network simulator, Intersim Section C. We show the interconnection configuration

used in our simulations in Table III.

B. CUDA Workloads Analysis

In this section we analyze several important characteristics of the six CUDA bench-

marks used in this research which was introduced in Section C. Figure 12 illustrates

the classification of each benchmark’s memory access. As we mentioned before in Sec-

tion I, a thread can access shared memory, constant memory, texture memory, local

memory and global memory. Note that “parameter” memory denotes to parameters

that pass through the GPU kernel call. These are considered as cache hits. There is a

huge variation in different types of memory instructions executed among benchmarks:

for AES nearly 90% of accesses are to shared memory while for BFS half of accesses
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Table II. Hardware Configuration.

Number of Shader Cores 56

Warp Size 32

SIMD Pipeline Width 8

Number of Threads / Core 1024

Number of CTAs / Core 8

Shared Memory / Core (KB) 16 (16 banks, 1 access/cycle/bank)

Constant Cache Size / Core (KB) 8 (2-way set associate. 64B lines LRU)

Texture Cache Size / Core (KB) 64 (2-way set associate. 64B lines LRU)

Number of Memory Channels 8

Bandwidth per Memory Module 8 (Bytes/Cycle)

Average Memory Fetch Latency 16

DRAM Request Queue Capacity 32

Memory Controller Out of Order (FR-FCFS)

Branch Divergence Method Immediate Post Dominator

Warp Scheduling Policy Round-Robin among Ready Warps

are to global and the rest are to parameter. For RAY more than 80% are accesses to

constant memory while for MUM over 50% are accesses to texture memory.

Figure 13 shows the ratio of load/store instructions executed in each benchmark.

The variation of the ratio of each benchmark is not that significant as “memory

instructions breakdown”. High ratio of load instruction benchmarks, namely BFS,

MUM, and STO, are more sensitive to memory bandwidth because load instructions

usually lie in the critical path. We can also observe this phenomena reflected in

Figure 14.
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Table III. Interconnect Configuration.

Topology 2D Mesh

Routing Algorithm Dimension Order

Routing Delay 4 cycles

Virtual Channels 4

Virtual Channel buffers 8

SW Allocator iSLIP

Allocation Iteration 1

Input Speedup 1

Flit Size (Bytes) 16

Figure 14 shows the performance of our baseline configuration which was de-

scribed in Table II and Table III. The metrics are measured in terms of scalar in-

structions per cycle (IPC) which is also normalized for comparison purposes. In terms

of IPC, the higher value is better. As a comparison, we also show the performance

assuming a perfect memory system that has no memory access latency. Note that

the maximum achievable IPC for the configuration is 448 (56 shader core X 8 wide

pipelines).

We also show the effects on IPC of adding caches to the whole system in Figure 15.

The first two bars denote the relative normalized IPC of adding 32KB or 64KB L1

cache to each shader core. The last two bars illustrate the effects of adding 128KB

or 256KB L2 cache to each memory controller while keeping the 64KB L1 cache

in shader cores. Among six benchmarks, we can see MUM, RAY and STO obtain

significant IPC improvement due to addition of extra cache (37%, 10% and 11%,

respectively). This is because these benchmarks have the highest portion of global
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Fig. 12. Memory Instructions Breakdown.

memory instructions among all of them. However, only BFS experiences a slowdown

due to the the method write misses, and evictions of dirty lines are resolved. The

baseline writes to memory merely causes the memory controller to read data out of

off-chip memory if a part of cache block is modified. When we bring caches for global

and local memory accesses, a write miss prevents a warp from being scheduled until

the 16B is read from off-chip memory. Moreover, the whole cache line is written to

off-chip memory when a dirty line is evicted even if only a single word of that cache

line is changed. These benchmarks which make extensive use of shared memory, such

as AES and QNU, do not access significantly to caches.

C. Nanophotonic Ring Network

In this section, we evaluate the design proposed in Section B. Figure 16 illustrates

the normalized interconnection network latencies of six CUDA benchmarks. In terms

of network latency, the less value is better. As we mentioned in Section B, the

dominant part of communication in GPGPU architecture is core-to-memory-to-core

traffic. Since we connect all memory controllers with a nanophotonic ring, which
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Fig. 13. Load/Store Instruction Analysis.

means every memory controller to memory controller is one single hop away, we can

achieve significant throughput improvement. The more load instructions access the

DRAM, the more the nanophotonic ring network is improved. The simulation results

we can see here meet the expectation in Figure 13. For BFS, MUM and STO, we

achieved 27%, 32% and 18% throughput improvement, respectively.

Figure 17 shows the normalized IPC values of proposed nanophotonic ring net-

work compares to baseline GPU architecture. Simulation results demonstrate that

employing nanophotonic ring network improves system performance by 5% in aver-

age and up to 11.5% (MUM). This meets our expectation from previous experiment

results in Figure 16 We obtain much improvement in system performance due to dra-

matic reduction of the interconnection network latencies by adding a nanophotonic

ring network. This is because a request always sends to the nearest MC then relays

to the destination MC in one cycle. Therefore, we physically reduce the average hop

count. Since requests can arrive to destinations sooner, the GPU will not waste much

execution time to wait for the data to be replied back.
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CHAPTER VIII

RELATED WORK

Rigel [6] is an accelerator which provides a more flexible programming model com-

pared to CUDA and chooses a MIMD model rather than SIMT. The Cell [7] archi-

tecture’s NoC design is an example of making trade-offs between network’s area and

latency. It consists of a controlling processor and a set of SIMD co-processors each

with independent instruction memory and program counters. The Cell researchers

chose a ring over a crossbar to meet their area and power constraints [8]. Merrimac [9]

and Imagine [10] are both streaming processor architectures provided by Stanford Uni-

versity. Bakhoda et al. analyze popular CUDA workloads using GPGPU-Sim [11]. In

our research, we use GPGPU-Sim to simulate the GPU behavior and try to improve

throughput of the GPU architecture.

Bakhoda et al. propose half router to reduce the fabricate chip area while main-

taining comparable performance for the GPGPU on-chip networks in [5]. Their idea

is to provide some simpler routers among all routers and MCs to reduce the chip

area. Area savings is 10% if we assume 25% reduction in full router and 75% of

half router. Existing graphics-oriented GPU simulators include Qsilver [12], which

does not model programmable shaders, and ATTILLA [13], which focuses on graph-

ics specific features. The [14] uses CUDA to speed up a variety of relatively easily

parallelizable scientific applications. They explore the use of conventional code op-

timization techniques and take advantage of the various memory types available on

NVIDIA’s 8800GTX to achieve the speedup.

Khailany et al. examine VLSI costs and performance of a stream processor as

the number of streaming clusters and ALUs per cluster scales [20]. The benchmarks

they use also have a huge portion of ALU operations to memory references which is a
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property that eases memory reqirements of streaming applications. The UltraSPARC

T2 microprocessor [21] is a multi-threading, multi-core CPU which belongs to the

SPARC family, with each core capable of running 8 threads concurrently. They have

4, 6 and 8 core variation versions and all have a crossbar between the L2 and the

processor cores. Although the T1 and T2 support many concurrent threads compared

to other contemporary CPUs, this number is very small compared to the number on a

high end contemporary GPU (for example, the NVIDIA Geforce 8800 GTX supports

12,288 threads per chip).

Significant research in the Network-on-Chip (NoC) and application specific de-

sign communities addresses the challenge of how best to map tasks to physical cores

on-chip [15]. There are also much research has focused on the impact of different

memory technologies and their respective trade-offs in providing adequate off-chip

latency and bandwidth [16, 17]. [18] gives significant research on different memory

controller placement in many-core CMPs. They propose various memory controller

placements and routing of many-to-few-to-many traffic in on-chip networks. Prior

work [19] illustrated that if the pipeline delay of adaptive routing is considered, then

the O1Turn routing algorithm outperformed adaptive routing algorithm. Moreover,

adaptive routing algorithm can only be used for response packets - deterministic

routes are necessary to preserve order of the read/write request packets to the mem-

ory controllers.
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CHAPTER IX

CONCLUSIONS

In this research, we exploit the many-to-few-to-many traffic behavior of GPGPU ar-

chitecture and attempt to optimize the design of on-chip interconnection network

for GPGPU architecture. We first analyze the application characteristics of six

CUDA benchmarks. Because different applications vary in load/store ratio, read

request/write request ratios and number of accesses to shared memory, constant mem-

ory, texture memory, local memory and global memory, it is important to know these

key metrics to further improve the GPGPU design. Besides that, we propose to add

a nanophotonic ring network to the conventional mesh network to further explore

GPGPU performance. Our experiment results show that the proposed scheme re-

duces the interconnection network latency and improves system IPC for the six CUDA

benchmarks. We believe the observations made in this research provides meaningful

guidance for indicating future GPGPU architecture and CUDA research.
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