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ABSTRACT

A Phase Based Dense Stereo Algorithm

Implemented in CUDA. (May 2011)

Brent Macomber, B.A., University of California at Berkeley

Chair of Advisory Committee: Dr. John Junkins

Stereo imaging is routinely used in Simultaneous Localization and Mapping

(SLAM) systems for the navigation and control of autonomous spacecraft proxim-

ity operations, advanced robotics, and robotic mapping and surveying applications.

A key step (and generally the most computationally expensive step) in the genera-

tion of high fidelity geometric environment models from image data is the solution

of the dense stereo correspondence problem. A novel method for solving the stereo

correspondence problem to sub-pixel accuracy in the Fourier frequency domain by

exploiting the Convolution Theorem is developed. The method is tailored to chal-

lenging aerospace applications by incorporation of correction factors for common error

sources. Error-checking metrics verify correspondence matches to ensure high quality

depth reconstructions are generated. The effect of geometric foreshortening caused by

the baseline displacement of the cameras is modeled and corrected, drastically improv-

ing correspondence matching on highly off-normal surfaces. A metric for quantifying

the strength of correspondence matches is developed and implemented to recognize

and reject weak correspondences, and a separate cross-check verification provides a

final defense against erroneous matches. The core components of this phase based

dense stereo algorithm are implemented and optimized in the Compute Unified De-

vice Architecture (CUDA) parallel computation environment onboard an NVIDIA

Graphics Processing Unit (GPU). Accurate dense stereo correspondence matching is

performed on stereo image pairs at a rate of nearly 10Hz.
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CHAPTER I

INTRODUCTION

A. Motivation

As humanity continues to push the frontier of exploration into space, our species is

developing more intelligent and observant robotic vehicles which can perceive and

interact with their environment. More nations are becoming involved in space activi-

ties and each new launch adds to the collection of objects in orbit around our planet

and beyond. Additionally, many missions are being planned to small solar system

bodies for the purpose of surveying and possibly colonizing in the future. Near Earth

Asteroids zip harmlessly by our planet, but one day the asteroid that will not zip by,

but instead is on a collision course, will be discovered and will need to be surveyed

and diverted or destroyed. For all of these reasons it is essential that the spacecraft

that are launched from this point onward have the ability to accurately sense objects,

both natural and man-made, in their immediate environment.

As the number of man made objects in orbit grows, the probability of collisions

between these objects also grows, especially in densely populated orbits. Every col-

lision causes more space debris, which in turn increases the likelihood of another

collision. Kessler and Cour-Palais predict that the number of objects in orbital de-

bris belts caused by collisions could increase exponentially if actions are not taken to

avert the problem [1]. Many proposed solutions to the orbital debris problem involve

sending custodial spacecraft to the vicinity of large disabled spacecraft and causing

them to de-orbit by directly interacting with them ([2, 3] for instance). The custodial

spacecraft sent to interact with disabled satellites obviously need to be keenly aware

The journal model is IEEE Transactions on Automatic Control.
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of their surroundings and know their position relative to the disabled object to avoid

causing an orbital collision of the type they are trying to prevent. They need to be

able to see and understand their environment, and from the information gathered

by their environmental sensors, be able to successfully maneuver in the vicinity the

disabled spacecraft.

Robotic interaction and intervention with space objects is not limited to man

made satellites. The day will someday come when mankind must face the challenge

of asteroid mitigation. There are hundreds of asteroids which are classified by the

International Astronomical Union as Potentially Hazardous, including the most well

known, asteroid (99942) Apophis [4, 5]. Many asteroid mitigation strategies involve

close proximity operations of spacecraft to the asteroid [6]. Missions of this type

require a spacecraft to be able to “see” the asteroid and know its own position relative

to it with a high accuracy. Indeed, the fate of the world could depend on it. A notable

strategy for deflecting an asteroid is by exploiting the Yarkovsky effect [7] whereby a

slight orbital perturbation of the asteroid could be achieved by modifying its surface

albedo (i.e. painting it). In order to determine the proper location in which to apply

the paint job, an accurate three dimensional model of the asteroid with its native

texture is required. This information can only be acquired in sufficient detail by

sensors onboard spacecraft in the near proximity of the asteroid.

The need for high fidelity sensing systems for robotic exploration is not restricted

only to spacecraft operations. Planetary rovers need to be very aware of their sur-

roundings at all times to avoid collisions with obstacles, or other hazards involved

in navigation with a long time delay for instructions. There is a precedent of using

vision based sensors to navigate planetary exploration vehicles. Goldberg, Maimone

and Matthies [8] describe the stereo vision based rover navigation algorithm which

has been successfully guiding the twin Mars rovers since 2004. Many others have
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also studied the problem of autonomous navigation and mapping using vision based

sensors (see for instance [9, 10] and the references therein).

For all the applications above, vision based sensors are the mission critical piece

of hardware that allows the spacecraft/rover to sense its surroundings and successfully

interact with them. Every aerospace application for autonomous exploration has its

own unique set of challenges for the vision based sensing system to overcome. For this

reason, there are several classes of vision based sensors. LIDAR/LADAR systems are

an example of an active sensing system. Their mode of operation is to emit a pulse of

light which flies to the nearest surface along the scan direction and is reflected back

to the sensor. The sensor measures the round trip time of flight of the light, and thus

the distance to the object. Stereo vision is an example of a passive sensing system

(usually, although some modified active stereo systems make use of a structured light

projection system to paint surface texture onto the scene). In a stereo vision system,

two cameras image the same scene from a slightly displaced relative location, or the

same camera is displaced with time, and the three dimensionality of the scene is

reconstructed by triangulation.

Stereo vision is an excellent choice as a vision sensor for any of the mission

types described above. Because it is a nominally passive system (i.e. with no pro-

jected light or moving parts), there are few failure modes for the hardware involved

in a stereo system. This is beneficial because equipment for space exploration takes a

beating. Between acceleration, shock, and vibration during launch and planetary sur-

face landing, and radiation exposure in the space environment, high precision sensing

equipment for the space environment must also be designed to be robust. Addition-

ally, stereo vision uses a low amount of power when compared to a LADAR/LIDAR

system which must project beams of light out to the scene and recover the reflection,

so a stereo system may be run in a space environment on a limited power budget
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such as that provided by solar panels at a large distance from the sun. Additionally,

stereo vision has been proven to be able to perform high quality three dimensional

reconstructions of scenes with relatively inexpensive equipment [11].

B. Stereo Background

Stereo vision is the process of solving the correspondence problem for points located

in the overlapping region of a stereo pair of images, essentially locating the same point

in two images which are taken from different locations. Fig. 1 shows a pair of images

of the same space object taken from two different locations. The difference of the

camera’s position between images may be modeled as an arbitrary rotation matrix R

and a translation vector t.

Fig. 1. Image pair of same scene taken from locations of arbitrary relative rotation

and translation, illustrating correspondence problem.
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1. Feature Based Stereo

Humans are excellent at pattern matching and can easily distinguish the same land-

marks in pairs of images, such as the few that are connected by the arrows in Fig. 1.

It is more difficult (but not impossible) to write an algorithm such that a computer

can match landmark features in images that are rotated and translated by an arbi-

trary (R, t). Since digital images have become available, people have been working

on the problem of feature detection and feature based stereo correspondence (see for

instance [12, 13]). This can be summarized as the process of identifying landmark

locations in images, and by comparing the displaced locations of these landmarks

in multiple images, calculating the depth to the object in the image whose surface

contains the landmark feature. A common problem with feature matching is that as

the images involved degrade in quality, lighting conditions change between images,

or the viewpoint from which the images are acquired is significantly different, the

feature match quality degrades. A new generation of feature matching algorithms

has enabled more robust matches to be made despite all the challenges stated above

[14, 15].

2. Dense Stereo

Dense stereo is the process of solving the stereo correspondence problem for every pixel

in the overlapping region of a pair of stereo images, thus being able to generate a high

confidence three dimensional reconstruction of the entire scene with no interpolation

necessary. In contrast to sparse (feature based) stereo matching of a few highly

distinct features (e.g. Fig. 1), humans are not capable of solving the dense stereo

correspondence problem without the aid of computer based algorithms. There are,

however, hundreds of dense stereo algorithms available for solving the correspondence
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problem. Scharstein and Szeliski provide an excellent survey of the methods available

for dense stereo, as well as a comparison of the relative performance of the methods

based upon several quality metrics [16]. They also provide datasets and metrics for

evaluating dense stereo algorithms and comparing their relative performance [17].

An industry standard method for computing dense stereo correspondence match-

ing is called Sum of Squared Differences (SSD). In this method a small mask of one

image is compared across the search space for that mask in the other image. The

best match is deemed to be the one that minimizes a cost function which is generated

by comparing the square of the differences of the pixel intensity values [18]. A close

cousin of this method is called Sum of Absolute Differences (SAD), whereby the cost

function to be minimized is generated by the absolute value of the pixel intensity

differences (see [19], for example).

In many dense stereo techniques, a small mask of one image is convolved with

another image to compare how similar the two appear. Another method of convo-

lution for performing dense stereo image correspondence matches is to exploit the

Convolution Theorem, which may be stated as

f(x) ∗ g(x)↔ F (s)G(s) (1.1)

where ∗ denotes a convolution operation, f(x) and g(x) are spatial domain functions,

and F (s) and G(s) are the Fourier transformed frequency domain representations of

the spatial functions f and g. Thus, the theorem says that a convolution in the spatial

domain may be accomplished by an elementwise multiplication in the frequency do-

main, and vice versa [20]. Correspondence matching in the Fourier frequency domain

is not a new concept (see for instance [21, 22, 23, 24] and the references therein).

Other techniques use different operators such as Gabor filters or wavelet decomposi-

tions to transform to the frequency domain (for example [25, 26]) before perfoming
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correspondence matching.

3. Epipolar Geometry

Above it is stated that the relative position between cameras in a stereo pair of images

may be described by a rotation matrix R and a translation vector t. The line that

connects the two camera centers, as shown in Fig. 2, is called the line of centers of

the stereo pair (also called the baseline). For the case of fixed baseline stereo, the

translation vector t is in a fixed direction and has a fixed length B, so the stereo

image pair is generated by two cameras rigidly fixed side by side or one above the

other. A plane containing the line of centers of the cameras and a point in object

space is called an epipolar plane (there are an infinite number of them).

Fig. 2. Rectified stereo pair, illustrating epipolar geometry.
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A transformation process called stereo rectification may be applied to the images

of a stereo pair that warps them such that they appear as they would if the focal

planes of the cameras generating the images were co-planar. Mathematically this is

equivalent to stating that the relative rotation matrix R becomes an identity matrix.

The amount to warp the images, and in which direction, is a consequence of the rela-

tive R and t of the stereo imaging system, and also of the intrinsic parameters of the

cameras in the stereo imager (focal length, and principle point offset). In the process

of rectification, non-linear lens effects caused by the cameras are also removed (these

effects must be quantified by calibration prior to applying the rectification process).

The result of applying the rectification process on a stereo pair of images is that the

intersection of an arbitrary epipolar plane with the image planes of the two cameras

is horizontal, and is at the same vertical location on both image planes (for the case of

a horizontal baseline camera system). The implication is that image features appear

in the same row in both images, and the stereo correspondence problem is reduced

to a one dimensional search problem. Thus with a bit of clever geometric insight, the

search space for correspondence matching is reduced from containing the entire image

to containing a single row of the image. For more information on epipolar geometry

refer to Hartley and Zisserman [27].

All stereo images that are discussed in this document are assumed to be rectified,

and thus the same object features occur on the same row in the left and right images.

The problem of stereo correspondence matching is thus reduced to finding the one

dimensional offset of the same object space point between the left and right image,

a quantity which is called the disparity. The disparity of a pixel may be defined

numerically as

d = xL − xR (1.2)
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where xL is the column number of the location of an image feature in the left image,

and xR is the same feature’s location column number in the right image. Solving the

stereo correspondence problem for every single pixel in the overlapping region of the

stereo image pair, and placing the solved disparity value into that pixel’s location in

a new image generates a construction called a disparity map. The disparity value of

a point in two dimensional image space is used to reproject the location of the point

back to three dimensional object space. The equations which map from disparity

space (x, y, d) to three dimensional object space (X, Y, Z) assuming two identical

ideal pinhole cameras are

Z =
Bf

d
(1.3)

X =
Zx

f
=
xB

d

Y =
Zy

f
=
yB

d

where B is the baseline distance between the two cameras and f is the focal length

[28]. Using the phase based dense stereo algorithm to generate three dimensional

reconstructions of scenes is addressed in Section C of Chapter III.

4. Challenges to Stereo Correspondence Matching

The stereo correspondence problem is to find the same object space point in two

images of the same scene captured from different locations. For a variety of reasons,

the scene may not look the same from these two locations, or the region of the

images may not contain enough information to match between images, and in these

cases a stereo correspondence algorithm (even a perfect one) is destined to fail. By

understanding situations where the algorithm is destined to fail, it can be made to

fail more gracefully by knowing that it is in trouble and reporting that it has a low
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confidence in the reported best correspondence matches.

Fig. 3 shows a left and right stereo image pair of a scale model of the Hubble

telescope which exemplify different challenges to stereo correspondence matching that

are present in a space environment. The images were acquired with a horizontal

baseline stereo camera system consisting of two identical cameras rigidly mounted

approximately 24 centimeters apart. The differences in the images are caused by

the fact that the cameras are located at geometrically different locations while they

acquire the images, so the scene is bound to appear differently as seen from the

location of each camera. The multi-colored circles are not present in object space,

they are added to the images to denote regions of interest.

Fig. 3. Left and right stereo image pair, illustrating challenges to stereo correspondence

matching algorithms.

The area in the left and right images that is circled and denoted by the letter A

is an example of a region in the scene with periodic surface texture. An algorithm

attempting to match a small chunk of the image within the circle on the left has

several equally good choices as to where the chunk matches in the right circle, and
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thus several possible disparity values may be assigned. Only one of these equally

appealing (to the algorithm) choices is correct. Space objects (and man-made objects

in general) will frequently have many repeated textures, so this is bound to be a

recurring problem that any algorithm must take into account.

The image regions denoted by the letter B are an example of a non-Lambertian

surface texture causing the same location in object space to appear differently when

viewed from two different angles. The solar panels are shiny, and the overhead lab-

oratory lights are reflecting the light directly into the right camera but not the left.

An algorithm attempting to match the circled region from the left camera will have

no hope of locating the correct region in the right because the two appear entirely

differently. Non-Lambertian surfaces may cause glare in one or both cameras, or they

may cause reflections of one part of the scene to appear as surface texture in another

part, both of which are challenging for a stereo correspondence matching program.

This problem (like the repeated surface texture problem) is more prevalent in space

objects than in natural objects because there are many shiny surfaces on spacecraft.

Additionally, the lighting in space is never gentle, objects in space will either be

exposed to direct sunlight or they will be in darkness.

The regions labeled C are an example of an area with bland surface texture. Any

small chunk of texture from within the circle in the left image could equally likely

match any region within the circle in the right image. Bland surface texture regions

are a difficult problem for a stereo matching algorithm, but not a fatal one. The stereo

imaging system can be equipped with a pattern projection device which projects a

surface texture onto the scene at the same times as the cameras acquire images. By

performing stereo correspondence matching using the projected texture, the scene

may be successfully mapped. If this pattern projection system is not an option, a

simple check may be performed on the object prior to choosing a correspondence



12

match to see if there is enough resident texture available for successful matching. For

the phase based dense stereo algorithm, this check is easily performed in frequency

space by examining the Fourier coefficients and ensuring that enough of them are

non-zero (there is interesting spatial frequency information at several scales) that a

successful match may be made.

The regions marked by D are an example of the most general type of difficulty for

a stereo matching algorithm, called occlusion. Notice in the left image the mounting

bracket for the solar panel is visible, but comparing the similar region in the right

image the bracket is not visible behind the endcap of the telescope. Because of the

geometric displacement between the cameras, one part of the scene is causing another

to not be visible to both cameras. Obviously something that cannot be seen by both

cameras cannot be matched between the images.

A final challenge to dense stereo correspondence matches are sharp depth dis-

continuities, such as the antenna mast marked by the letter E. Discontinuities are

challenging because dense stereo algorithms use a finite sized mask from one image

to localize within the other image. If this mask happens to contain information from

the front-most surface and the rear-most surface across a depth discontinuity, multi-

ple correct disparity values could be assigned. Typically this leads to blurring across

depth boundaries. The phase based dense stereo algorithm has an advantage in that

the ultimate implementation uses one dimensional horizontal image strips for corre-

spondence matching, so it is only susceptible to blurring across vertically orientated

depth discontinuities. On the other hand, because the phase based algorithm uses one

dimensional image strips, it must use relatively long image strips in order to contain

as much information for matching purposes as an equivalent algorithm using a square

mask. Thus, the region of blurring across vertically oriented depth discontinuities is

wider than other algorithms.
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By understanding the likely failure modes of a stereo correspondence matching

algorithm such as the ones described above, software mechanisms may be put into

place to detect failure of the algorithm and preventative measures may be taken. In

the case that these failures are causing incorrect correspondence matches to occur,

the affected regions may be flagged and removed from the disparity map. Removal

from the disparity map is equivalent to not including those parts in the three dimen-

sional reconstruction of the scene that the disparity map will be used to generate.

Frequently, these gaps in the three dimensional reconstruction of the scene may be

filled in by subsequent images from other more favorable vantage points. Chapter III

discusses methods of quantifying the quality of disparity measurement and methods

for removing incorrect correspondence matches.
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CHAPTER II

PHASE BASED DENSE STEREO ALGORITHM1

In this chapter, the core components of the phase based dense stereo algorithm are

presented. In Section A.1 a simple one dimensional example is derived that shows

the underlying concepts of phase based correlation, and a dense stereo algorithm for

performing stereo correspondence matching is described in Sections C and D using

these concepts. This one dimensional implementation is based upon the developments

of Shibahara et al. [24]. A similar process using two dimensional phase based corre-

lation is proposed by Muquit et al. [23], and this is the basis for a simple example

in Section A.2 and a two dimensional implementation that is described in Section B.

Thus, this thesis is a direct extension of [23, 24].

A. Theory

1. 1-Dimensional Example

To illustrate 1-dimensional phase correspondence consider a simple sine wave of fre-

quency ω0, call this signal the “right signal.” Also consider another sine wave of

frequency ω0, but shifted to the right by a distance x0. Call this second signal the

“left signal.” Multiply the right signal by a step function whose value is one for x

greater than zero, and zero for x less than zero. Multiply the left signal by a shifted

step function whose value is one for x greater than x0 and zero for x less than x0.

This construction is shown graphically in Fig. 4, and the left and right signals are

1Portions of this chapter are in preparation for publication [29].
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Fig. 4. 1-Dimensional phase correspondence example, constructed left and right signal.

given by:

r(x) = sin(ω0x)u(x)

l(x) = sin(ω0(x− x0))u(x− x0)

u(x) =


0 : x < 0

1 : x > 0.
(2.1)

Taking a 1-dimensional Fourier Transform of the right signal gives Eq. 2.2. The

lower bound of integration is shifted to zero because the step function states that any

contributions of the other terms for x less than zero are multiplied by zero.

F {r(x)} =
∫ ∞
−∞

sin(ω0x)u(x)e−jωxdx

=
∫ ∞
0

sin(ω0x)e−jωxdx. (2.2)

Taking a similar Fourier Transform of the left signal gives Eq. 2.3. As with the right

signal the lower limit of integration is changed, but in this case the step function
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states that the contribution from any x less than x0 is zero.

F {l(x)} =
∫ ∞
−∞

sin(ω0(x− x0))u(x− x0)e−jωxdx

=
∫ ∞
x0

sin(ω0(x− x0))e−jωxdx (2.3)

Introducing the substitution X = x − x0, which also means dX = dx (since x0 is a

constant), allows F {l(x)} to be simplified as shown in Eq. 2.4. Once again, the lower

limit of integration may be changed. Because the step function ensures that there

is no contribution from x less than x0 in the integration, the lower limit is changed

from x0 to 0 with no change of meaning.

F {l(x)} =
∫ ∞
x0

sin(ω0X)e−jω(X+x0)dX

= e−jωx0
∫ ∞
0

sin(ω0X)e−jωXdX (2.4)

Eq. 2.4 looks remarkably similar to Eq. 2.2, the only difference is the exponential

term in the front. This implies that the left and right signals obey the relation:

F {l(x)} = e−jωx0F {r(x)} . (2.5)

Multiplying the Fourier transformed left signal by the complex conjugate of the trans-

formed right signal and dividing by the magnitude of that quantity forms the fre-

quency domain correlation function R(ω), as given by Eq. 2.6. This quantity is called

the cross-correlation, and is used in all branches of signal processing for measuring

correlation between two signals. The particular implementation in this case is a nor-

malized cross-correlation, ensuring that the correlation value is between 0 and 1. The

final simplification in Eq. 2.6 is possible because the magnitude of a complex number

|Aejθ| is A, which in the case of ejωx0 is one.

R(ω) =
F {r(x)}F {l(x)}
|F {r(x)}F {l(x)} |

=
ejωx0F {r(x)}F {r(x)}
|ejωx0 ||F {r(x)}F {r(x)}|

= ejωx0 (2.6)
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This quantity in Eq. 2.6 is the one dimensional frequency domain correlation function.

It is a function of the frequency ω and the disparity x0, which is the quantity of

interest. To determine the value of the disparity from this complex, frequency domain

representation, a one dimensional Inverse Fourier Transform is performed on R(ω),

which leads to

F−1 {R(ω)} =
1

2π

∫ ∞
−∞

ejωx0ejωxdω

=
1

2π

∫ ∞
−∞

ejω(x+x0)dω

= Aδ(x− x0) (2.7)

Eq. 2.7 is the spatial correlation function. It is a delta function, shifted from the

origin by the disparity x0. Thus the theoretical disparity between the left and right

signal is found by locating the peak of this delta function in the spatial correlation

function.

Fig. 5 shows the spatial correlation function from Eq. 2.7, computed using Fast

Fourier Transforms. It has a clear delta function peak centered at the expected value

of x0, which is 200 pixels in this example.

From Fig. 4, it is clear that the left signal is shifted by 200 pixels, and thus

the delta function in Fig. 5 centered at x0 = 200 pixels is marking the correct value

of disparity. But somewhat less satisfactorily, there are other spikes and bumps in

the correlation function, even for this perfectly noise free signal. Because the above

derivation uses the formulae of Continuous Fourier Transformations, but the actual

implementation is performed with Discrete Fourier Transforms (FFTs in MATLAB

in this case), the result is not perfect. Additionally, the Fourier Transform treats a

signal as continuous, and assumes it to wrap around the end back to the beginning.

The evenly spaced extra spikes are due to this periodicity. In the presence of noise
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Fig. 5. 1-Dimensional phase correspondence example, spatial correlation function.

(as would be present in an actual image signal), noise-induced spikes could grow to

the same size or even higher than the correct delta function spike, and in doing so,

cause the algorithm to associate an incorrect value of disparity to the pixel of interest.

Making the (not-unreasonable) assumption that it is known a priori the minimum

and maximum possible disparity value in the scene, a spike that lies between the two

bounds may be chosen as the correct delta function spike marking the disparity. If the

dense stereo algorithm is being used in a SLAM system then it is a valid assumption

that at least an estimate of the minimum and maximum possible disparity for the

stereo pair are known quantities because a coarse estimate of the geometry is deter-

mined during the feature matching step when the relative movement of the camera

system between frames is estimated. Fig. 6 shows an example of using knowledge of
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the upper and lower bounds of the possible solution set to eliminate the potential for

false matches in the spatial correlation function.

Fig. 6. 1-Dimensional phase correspondence example, bounded spatial correlation

function.

2. 2-Dimensional Example

The example in Section A.1 calculates the disparity (shift between left and right

signals) for a 1-dimensional signal. A similar technique can be applied in 2-dimensions

by taking 2D patches of images as input signals and applying 2-dimensional Fourier

Transforms to correlate in the frequency domain and 2-dimensional Inverse Fourier

Transforms to retrieve the answer in the spatial domain. For example, consider the

two images shown in Fig 7. Call the image in Fig. 7(a) the “search space,” and the
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image in Fig. 7(b) the “object of interest.” Knowing that the object of interest is

contained within the search space, the 2D phase correspondence technique can be

used to find the location.

(a) (b)

Fig. 7. 2-Dimensional phase correspondence example: (a) Search space image; (b)

Object of interest image.

The first step is to pad the search space image with zeros, and then pad the object

of interest image to the same size as the enlarged search space. The zero-padding is

a widely used practice to mitigate edge effects at the borders of the image that result

from the periodicity of the Fourier Transform, as is described above in Section A.1.

The images must be padded to the same size so that Discrete Fourier Transforms

of the same number of samples may be applied and array-wise multiplications of

the transformed images may be performed. Fig. 8(a) shows the search space image

which has been enlarged by padding it with zeros on the right and bottom edges, and
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Fig. 8(b) shows the object of interest image which has been padded to the same size

as the newly enlarged search space.

(a) (b)

Fig. 8. 2-Dimensional phase correspondence example, padded images: (a) Padded

search space image; (b) Padded object of interest image.

Taking a 2D Fourier Transform of the padded search space and object of interest

images yield 2D complex arrays that contain 2D spectra of the spatial frequency

information contained within the two images. Constructing the frequency domain

correlation function follows a similar process as the one dimensional case given by

Eq. 2.6, except in this case the multiplications and divisions are 2D element-wise

operations. Performing a 2D Inverse Fourier Transform on the frequency correlation

function gives the spatial correlation function, which is also a 2D function. Finding

the maximum delta function peak of this 2D function gives the x and y coordinates

of the object of interest image within the search space image. Searching for the

maximum value of the array in this example yields (x, y) = (160, 160). A plot of row
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number 160 of the spatial correlation function is shown in Fig. 9(a), and a plot of

column number 160 of the spatial correlation function is shown in Fig. 9(b).

Intuitively this result makes sense. In Fig. 9(a) there are three spikes of cor-

relation strength, corresponding to the three possible solutions of the three circles

centered on row 160 of the search space image. The central peak is the highest be-

cause it is (by inspection) the correct answer, but mathematically it is higher because

the regions of the image corresponding to the other two circles do not look as much

like the object of interest as the correct region does. The peak on the left is taller than

the peak on the right because it is a circle of the same diameter as the correct answer,

but it lacks the distinguishing internal features of the central circle corresponding to

the central peak. In Fig. 9(b) there are also three spikes corresponding to the three

circles centered along column 160 in the search space image. The left and right peaks

are the same height because the circles are identical to each other, but they are a less

identical match than the central peak corresponding to the correct central circle.

This example shows a situation where the 2-dimensional method allows the

proper correspondence matching to be realized, despite the fact that there is not

one, and only one, clear cut correct answer. The 1-dimensional method would have

more trouble choosing the correct match in this situation. To see why, consider a

column plot of the column which passes through the center of the concentric circles

of the object of interest image in Fig. 8(b). The central column does not contain any

of the interior features of the object of interest, so the column plot is simply a step

function which has the value one for 0 < y < D (choosing the top left corner of the

image as the origin), and zero for y > D, where D is the diameter of the exterior

white circle in the object of interest image. Considering a column plot through the

centers of the three white circles in Fig. 8(a), it is intuitive to see that there will be

three step functions of the same shape as the one in the column plot from the object
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(a)

(b)

Fig. 9. 2-Dimensional phase correspondence example, plots of spatial correlation func-

tion: (a) Row plot of row number 160 of spatial correlation function; (b) Col-

umn plot of column number 160 of spatial correlation function.
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of interest image. Looking at the problem from this 1-dimensional point of view, each

of the three circles in Fig. 8(a) is equally as correct of an answer as the others because

the centered 1-dimensional strip does not contain enough information to distinguish

between them. This scenario is rather contrived to expose this issue, usually the 1D

algorithm does not encounter a uniqueness problem of this degree. This situation

falls under the category of repeated texture regions, as is described in Section 4 of

Chapter I.

B. An Initial 2-Dimensional Implementation in MATLAB

This section presents a 2-dimensional stereo correspondence algorithm to test the

power of phase based dense stereo in an easy to debug environment before migrating

to C code and parallelization. It is an un-optimized implementation to match single

pixels between left and right images of stereo image pairs from representative scenes,

intended as a simple check of the robustness of the algorithm. Had the algorithm

failed to satisfactorily find correspondence in real data, a new approach could have

been chosen at this point. Consider the rectified left and right image from the

stereo image pair shown in Fig. 10. Choosing a random point in the right image, it

is desirable for the algorithm to be able to successfully find the same object space

point in the left image. Selecting a small square of the right image centered around

the point of interest (this square has an adjustable side length in pixels, which can be

treated as a tuning parameter), the object of interest image is created. Because the

input images are rectified, is is known that the corresponding point in the left image

of the stereo pair lies in the same row as it is in the right image. Thus by taking a

strip from the left image of the same height as the as the square from the right image,

and which covers the entire width of the left image, the search space image is formed.
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(a) (b)

Fig. 10. Stereo image pair, rectified left and right image: (a) Left image; (b) Right

image.

From the stereo geometry it is known that the corresponding point in the left image

is located in a column number that is greater than or equal to the column number

which contains it in the right image.

MATLAB’s fft2() function takes a 1-dimensional Fast Fourier Transform first

along the column direction of the input array and then takes another 1-D FFT along

the row direction. Since the algorithm utilizes 2-dimensional Fourier Transforms, the

search space and the object of interest images must be padded with zeros both in the

horizontal and the vertical direction. Typical padded object of interest and search

space images are shown in Fig. 11.

2-Dimensional FFTs are taken of the padded search space and the padded ob-

ject of interest image, resulting in two arrays containing the complex 2-dimensional

frequency components. Multiplying these together by the same process as in the

2-dimensional example in Section A.2 of this chapter, the 2-dimensional frequency

domain correlation function is formed. Taking a 2-dimensional Inverse Fast Fourier

transform using MATLAB’s ifft2() function results in the spatial correlation func-

tion. Solving the stereo correspondence problem between the left and right images of
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(a)

(b)

Fig. 11. 2-Dimensional implementation, object of interest and search space images:

(a) Padded object of interest image; (b) Padded search space image.

the stereo pair is thus reduced to finding the delta function peak in spatial correlation

function. A row plot of the spatial correlation function containing the delta function

peak for the object of interest and search space images in Figs. 11 is shown in Fig. 12.

The delta function peak representing the solution to the stereo correspondence prob-

lem between the object of interest image and the search space image is clearly visible.

Using the equation of disparity that is given in Section B.3 of Chapter I to locate the

central point of the object of interest image in left image of the stereo pair, and then

drawing a box of the same size, yields the two corresponding regions in the left and

right images of the stereo pair, shown in Fig 13.

Thus it is verified that the algorithm can successfully solve the correspondence

problem between the left and right image and locate the same point in each for a

typical stereo image pair. The next step is to see how reliably it can solve for stereo

correspondences, which is to say, if it solves for the correspondence match for every

pixel in the overlapping region of the stereo pair, will it generate an accurate disparity

map of the scene. By running the matching code in a double for loop as a simple,

brute force application, its performance over the entire image may be evaluated.

Because this MATLAB code is implemented as a proof of concept for the ability of
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Fig. 12. 2-Dimensional implementation, row plot from typical spatial correlation func-

tion.

Fig. 13. 2-Dimensional implementation, matched regions in left and right image.
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the algorithm to find correspondence matches between single points of left and right

images, it is not optimized for speed or efficiency, and this test for every pixel in the

overlapping area takes much longer to run than an algorithm designed to run across

entire images would.

Run time aside, the results are promising. Fig 14 shows the resulting right

image disparity map for the stereo image pair in Fig. 10. In this image, lighter shades

correspond to larger disparity, and thus closer points to the camera in object space.

Darker shades represent lower disparity, and black represents zero disparity regions,

where no correspondence could be solved. The reason for the black border around

the outside of the image is that a large object of interest image (a 64 pixel by 64

pixel mask) is used in these initial tests to ensure correspondence matching can be

achieved, and thus the pixels within half the size of object of interest mask from the

edge of the image cannot be solved. This border is larger on the right side of the

image because this is a right disparity image (referenced to the right image in the

stereo pair), and so the far right pixels are not visible in the left camera, and thus no

correspondence is possible in this area.

By visual inspection, this disparity map appears to be a decent representation of

the scene, however, it is corrupted by salt and pepper noise (individual pixels whose

values are much higher or lower than those of their neighbors). This salt and pepper

noise is due to the fact that the disparity value for each pixel is solved independently,

and thus there is no smoothing. Many dense stereo algorithms have constraints that

force continuity between pixels in disparity space. No such constraints are present

in the phase based dense stereo algorithm. The fact that the noise is fairly evenly

distributed, and is not more prevalent than it is, is actually a testament to the self-

consistency of the algorithm. Since each pixel is individually solved, a mostly smooth

disparity map indicates that the solution to the correspondence problem is at least
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Fig. 14. 2-Dimensional implementation, resulting raw disparity map.

similar and repeatable for neighboring pixels. Most of the salt and pepper noise for

isolated pixels can be statistically eliminated by convolving the disparity map with a

non-linear median filter. Fig. 15 shows the disparity image of Fig. 14 which has been

median filtered. More rigorous tests of the actual accuracy of the resulting disparity

maps from the algorithm are presented in Chapters III and V.

C. 1-Dimensional Implementation in C

The algorithm discussed in Section II.B is effective for solving the correspondence

problem of matching between left and right images, but because it is implemented in

MATLAB, and utilizes 2-dimensional FFTs, it runs much too slowly for any practical

application. This section describes a 1-dimensional version implemented in C which

is much faster. This algorithm was developed in 64-bit Debug mode in Microsoft

Visual Studio 2008 on a computer with Microsoft Windows Vista, and utilizes many

pre-programmed functions from the open source software package OpenCV 2.1.
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Fig. 15. 2-Dimensional implementation, resulting median filtered disparity map.

OpenCV is a library of optimized functions for computer vision, designed to

allow a user to quickly build and debug computer vision related programs. It is a

platform invariant library containing C structures and functions, C++ classes, and

Python bindings. The algorithm in question utilizes OpenCV data structures, image

manipulation and filtering functions, and FFT functions. The library has excellent

documentation, both online in wiki format [30], and in book format [19].

This 1-dimensional implementation works along entire image columns at a time,

solving the correspondence problem for each row individually. Because 1D FFTs are

used, the images need only be padded in the horizontal direction. With the assump-

tion that the input images are rectified, the correct solution to the correspondence

problem between left and right image is restricted to a one dimensional search along

epipolar lines bounded by the minimum and maximum possible disparity. For each

column in the right image, a vertical strip of the image is taken, centered around that

particular column, which forms the object of interest array. From the left image, a
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vertical strip is also selected, its location being chosen by the column number from

the right image plus an initial guess of the disparity (the minimum disparity is used),

and its length being the strip length from the right image (a tuning parameter) plus

the maximum disparity (so that the same strip will always be visible in both images).

These image strip boundaries are summarized by Eq. 2.8.

Xmin
ObjOfInterest = ColNum− StripLength/2 (2.8)

Xmax
ObjOfInterest = ColNum+ StripLength/2− 1

Xmin
SearchSpace = ColNum+ InitGuess− StripLength/2

Xmax
SearchSpace = ColNum+ InitGuess+ StripLength/2 +MaxDis− 1

In these equations, the term InitGuess is an estimate of the disparity value for the

pixel of interest. This guess may come either from a feature based stereo algorithm

which has been run on the image pair prior to the dense stereo, or in the absence of

that, the value of MinDis may be used.

To eliminate the edge effects caused by the periodic nature of the Fourier Trans-

form, each row is multiplied by a Hann Function of length Xmax − Xmin. This

multiplication is carried out as an arraywise multiplication in the spatial domain, be-

fore any FFTs are taken. The purpose of this window function is to allow the image

signal in each row to smoothly transition between the high values in the area of the

image strip to the zero values in the padding strip without a sharp discontinuity. If

the region being matched is a bland or otherwise difficult part of the image to match,

this discontinuity (which shows up in the Frequency Domain as a very low frequency

feature) will dominate the image signal and cause false matches. A Hann Window

function of length M is given by Eq. 2.9,
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h(x) = c+ (c− 1) cos
2πx

M − 1
(2.9)

where 0 ≤ x ≤ (M − 1) [31].

An example object of interest array and a search space array are shown in Fig. 16.

These arrays are typical of what would be encountered solving the correspondence

problem for a column of pixels in the stereo pair of images from the ditch scene of

Fig. 10. Each row in these arrays is an individual 1D correspondence problem, the

solution of which is the disparity value for one single pixel in the right image. The

value of the disparity is found by the same method detailed in the 1 dimensional

example of Section A.1 of this chapter.

(a) (b)

Fig. 16. 1-Dimensional implementation, padded search space and object of interest

arrays: (a) Padded search space array; (b) Padded object of interest array.
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An example of the typical spectral response for a column of pixels in a well

textured scene like the stereo image pair in Fig. 10 is shown in Fig. 17. Each row of the

2-dimesional spatial correlation response array is the equivalent to the 1-dimensional

spatial correlation function shown in Fig. 5 for the simple sine wave example. For

example, the row indicated by the horizontal white stripe is plotted. A clear peak

is seen, the offset of this peak from the left edge of the array denoting the disparity

value of the pixel of interest. Each row is the solution for a different pixel, and each

column has a similar 2-dimensional array.

Fig. 17. 1-Dimensional implementation, typical spatial correlation function response

for a single column.

By solving for the disparity of each pixel in the overlapping region of the stereo

pair, and by placing the value of the disparity in a separate array, its location in

the array determined by the location of the pixel of interest in the original image,
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a disparity map is formed. Because there are two (or more) cameras required to

capture a stereo pair of images, different disparity maps may be generated for the

same image pair which are referenced to the different cameras. Fig. 18 shows a

resultant disparity map of the ditch scene from the stereo image pair of Fig. 10. This

particular disparity map is referenced to the right stereo image, meaning the right

image was used to generate the search space arrays, and the left image was used to

generate the object of interest arrays. It is easy to generate a left referenced disparity

map simply by switching the input images (much more on this in Ch. III). In this

image, lighter shades correspond to larger disparity, and thus closer points to the

camera in object space. Darker shades represent lower disparity, and black represents

zero disparity regions, where no correspondence could be solved.

Fig. 18. 1-Dimensional implementation, typical right referenced disparity map.
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This resulting disparity map shown in Fig. 18 resembles the one which is produced

by the two dimensional MATLAB algorithm of Section B, shown in Fig. 15. There

appear to be more fine details and closer spaced disparity steps in this image, and that

is because the 2D disparity map was generated using a huge spatial mask (64 pixels

by 64 pixels), so any image features of size less than that are blurred. This is not as

prevalent for the 1D implementation (at least in the vertical direction), because one

dimensional image strips are used. There is still blurring in the horizontal direction,

the extent of which is determined by the size of image strip used. This concept is

explored more in Chapter V.

Although the disparity map shown in Fig. 18 could be classified as “better” than

the resultant disparity map of the two dimensional implementation, it still is not

perfect. There clearly remain incorrect solutions to the correspondence problem for

some pixels (for a variety of reasons), i.e., the pixels near the top of the images which

contain the lamp post and the wood pile. There are also pixels near the edge of the

disparity map where a good correspondence could not be solved because the pixels

are close to the edge of the image and not enough information was available. These

incorrectly matched correspondences must be removed in order to have confidence

in the accuracy of the reconstructed geometry of the scene. In Chapter III, the

quality of the correspondence match for each pixel is quantified, and routines are

developed for the removal of pixels which have been incorrectly matched. Also, several

improvements to the algorithm are developed in this thesis, which drastically decrease

the number of incorrectly matched pixels.
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D. 1-Dimensional Implementation in MATLAB

As a verification step during the development of the one dimensional phase based

dense stereo algorithm in C and CUDA, the same algorithm was developed simul-

taneously in MATLAB. This served the purpose of allowing rapid development of

improvements, and also as an independent verification of results. All three imple-

mentations return the same results, as is explored in Chapter IV.
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CHAPTER III

ALGORITHMIC IMPROVEMENTS, QUALITY METRICS, AND 3D

RECONSTRUCTIONS1

This chapter presents algorithmic improvements to enhance the performance and

accuracy of the phase based dense stereo algorithm, as well as quality control methods

that remove incorrect correspondence matches from the resulting disparity maps. Also

discussed is an implementation of the reprojection from disparity space to object

space.

A. Algorithmic Improvements

1. Averaging Spatial Correlation Functions

Fig. 17 shows a typical spatial correlation array. This array is the solution to the

correspondence problem for an entire column of image pixels, each row a separate

solution for a separate pixel within the column. A clear delta function peak is visible

for most rows (seen as a bright white stripe through the array). In some cases the

correspondence match may not be so clear, and the correct peak may be lost within

the noise. This scenario where the signal to noise ratio becomes close to one is visible

near the bottom of the spatial correlation array where the white stripe becomes less

clearly defined. Shibahara et al. [24] call the ratio of the height of the correct peak

to the background noise (visible as the other spiky noise in Fig. 17) the Peak-to-

Noise Ratio (PNR), and their proposed solution to improve the PNR in bad regions

is to average together the one dimensional correlation functions from several rows.

The reasoning behind this is that the noise will be randomly distributed whereas the

1Portions of this chapter are in preparation for publication [29].
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correct correlation peak will be in the same location (or nearly the same location)

in consecutive rows. An obvious assumption that is being imposed here is that the

disparity does not vary too quickly across rows, so it is essential to only average a

small number of rows together or significant error can potentially be introduced.

(a) (b)

Fig. 19. Averaging spatial correlation functions, effect on one dimensional spatial cor-

relation function: (a) Un-averaged typical spatial correlation function; (b)

Result of averaging 9 spatial correlation functions of consecutive rows.

Fig. 19 shows the improvement by averaging together several spatial correlation

functions from adjacent rows above and below the row of interest. In Fig. 19(a) the

PNR of a single one dimensional spatial correlation function from a noisy section of the

image exhibiting poor matching is about 1.5, however by averaging the correlation

functions from 9 consecutive rows, the PNR is increased to about 3 as shown in

Fig. 19(b).

2. Sub-Pixel Disparity Calculation

In Section A.1 of Ch. II the one dimensional spatial correlation function is defined

as the result of the Inverse FFT of the frequency domain correlation function. The
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maximum delta function spike located in the spatial correlation function marks the

disparity shift of the pixel of interest. Shibahara et al. [24] state that the peak in the

spatial correlation function may be modeled as

r(n) ' α

N

sin{π(n+ δ)}
sin{( π

N
(n+ δ)}

(3.1)

where n = −M, ...,M is the index number of the element of the function, N = 2M+1

is the length of the Fourier Transform, and α is a scaling parameter. By using this

approximation to the true peak shape, a curve may be fit to the spatial correlation

function using α and δ as fitting parameters. Thus the disparity is estimated as a

constant quantity instead of as an integer quantity (recall that in the description in

Ch. II, simply the index number of the maximum value of the correlation function

is taken to be the value of the disparity). Estimating the disparity as a continuous

quantity allows for smoother surfaces and eliminates the jaggedness in disparity maps

and 3D reconstructions caused by forcing disparity to assume an integer value. The

idea of a non-integer disparity algorithm is nothing new. Tian and Huhns [32] provide

an excellent survey (written early in the history of digital dense stereo calculation

history) of available sub-pixel disparity estimation techniques.

The peak shape function in Eq. 3.1 is an approximation to a sinc function, which

itself is an approximation to a delta function. A one dimensional Gaussian may more

easily and efficiently be fit to the peak shape, which is a simple linear least squares

estimation problem. The problem may be summarized as taking a small strip of

length n from the one dimensional spatial correlation function containing the peak

and fitting an n point Gaussian of the form

m̃i = a exp

(
−(xi − µ)2

2σ2

)
(3.2)

where a is the amplitude, xi is the index location of the ith point, µ is the mean, and
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σ2 is the variance. To perform the fit, the variable ξi is defined as

ξi = ln m̃i = ln a− (xi − µ)2

2γ
(3.3)

where γ = σ2. This expression may be simplified to

x2i = 2γ ln a− µ2 + 2µxi − 2ξiγ, (3.4)

which when the substitutions c = 2γ ln a− µ2 and x2i = ỹi are introduced, becomes

ỹi = c+ 2µxi − 2γξi. (3.5)

Writing this equation as a matrix yields

ỹ =


1 2x1 −2ξ1
...

...
...

1 2xn −2ξn




c

µ

γ

 (3.6)

ỹ = Hx̂.

Therefore the parameters may be estimated using the standard equation of linear

least squares [33, 34]

x̂ = (HTH)−1HT ỹ. (3.7)

The estimated parameter µ is the mean of the Gaussian function, which corresponds to

the estimated peak location. An important distinction to make is that this function

must be fit to an un-averaged correlation function. The averaging of correlation

functions (as described in the previous section) will change the shape of the functions.

Therefore, the averaged functions can be used to located the correct delta function

spike in the spatial correlation function, but the Gaussian function should be fit to

an un-averaged signal.

The reason for estimating disparity as a constant quantity is because disparity is
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inversely related to depth (Z) normal to the focal plane of the camera. If disparity is

estimated as an integer value there will be discrete steps in the Z direction in the three

dimensional reconstructions of the scene at which all the pixels will lie. Obviously

reality does not contain discrete steps (at least not at the scale in question here),

so in order to get lifelike reconstructions of scenes, disparity must be estimated as a

continuous quantity.

Fig. 20 shows constructed disparity maps for a well textured plane that is al-

most fronto-parallel to the stereo camera system. Because the plane is nearly fronto-

parallel, the discrete disparity map only contains six levels that are easily distin-

guished in this false color image. The disparity map of the same scene generated

by treating disparity as a continuous quantity shows much smoother variation. The

variation is still not perfect, (meaning the disparity map is not a perfect gradient)

but it is a much better approximation to the surface than the stair stepped discrete

version. The results here are shown in disparity space, in Section C three dimensional

reconstructions generated with disparity as a constant quantity are shown.

3. Geometric Foreshortening Correction

Because of the baseline distance between the cameras in a stereo imaging system,

objects imaged by the pair will appear slightly differently from one image to the

next. For example, Fig. 21 shows a stereo pair of images (taken with a horizontal

baseline between the cameras of 24cm) of a textured plane, in this case a Mayan

blanket, which is rotated horizontally with respect to the focal plane of the cameras.

By looking at the apparent horizontal size of the black circles near the bottom of

the blanket the foreshortening effect is evident, for example, the second black circle

from the left, which contains a tall bird creature. Because the left and the right

camera see the circle object from different off-normal angles, there is forshortening
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(a) (b)

Fig. 20. Disparity map of nearly fronto-parallel plane, discrete and continuous dispar-

ity versions: (a) Disparity map of nearly fronto-parallel plane, discrete dis-

parity version; (b) Disparity map of nearly fronto-parallel plane, continuous

disparity version.

between the two camera views, and thus the circle appears horizontally compressed or

expanded depending which image is taken as the reference image. This foreshortening

effect represents a stretching or compression factor of the local texture, which in

frequency space corresponds to a stretching or compression of the spatial frequency

components. In order to most accurately solve for disparity, the foreshortening effect

must be modeled and accounted for. Maimone and Schafer [35] present a method for

modeling the foreshortening effect and derive a scaling factor between left and right

images in a stereo pair to correct for the effect. Similarly, El-Etriby, Al-Hamadi,

and Michaelis [36] provide the same scaling factor. Jones and Malik [37] use the

foreshortening spatial frequency effects as a cue for their dense stereo.

Fig. 22 is a geometric cartoon of the Mayan blanket scene from Fig. 21 as seen by

an observer looking from above. This geometry figure, and the ensuing developments

to model the effects of foreshortening follow the arguments of Maimone and Shafer
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(a) (b)

Fig. 21. Stereo image pair, exemplifying foreshortening effects: (a) Left image; (b)

Right image.

Fig. 22. Foreshortening effect geometry, stereo camera and off-normal rotated plane.
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[35]. In Fig. 22 the plane of the Mayan blanket is denoted by the line which connects

the point O (the point which lies on the plane that is directly in front of the left

camera), and the point l. The plane is tilted in the horizontal direction by the angle

θ from the focal planes of the left and right cameras L and R. The cameras both

have focal length f and are separated by baseline B. xL and xR are the points of

intersection with the left and right camera focal planes of the ray originating from

the edge of the blanket at point l.

The goal is to model the ratio of the projection into the left and right image

spaces (xL and xR) of the distance l (in object space). This sampling ratio is given

by horizontal projection into the left camera image space divided by the horizontal

projection into the right camera image space, which in equation form is

SamplingRatio =
δl
δxL
δl
δxR

=
δxR
δxL

. (3.8)

This equation is a function of the left and right focal plane image projection size,

which are both a function of the disparity. Since the disparity is the quantity of

interest, a geometric description is necessary in order to continue.

By making use of the principle of similar triangles it is apparent that the following

two relations are true:

xL
f

=
l cos θ

Z + l sin θ
(3.9)

xR
f

=
l cos θ −B
Z + l sin θ

.

Solving both of these for l yields

l =
ZxL

f cos θ − xL sin θ
(3.10)

l =
ZxR +Bf

f cos θ − xR sin θ
.
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By setting the two expressions in Eq. 3.10 equal to each other and solving for xR, the

expression

xR = xL

(
1 +

B tan θ

Z

)
− Bf

Z
(3.11)

is revealed. This expression is useful to convert the sampling ratio of Eq. 3.8 into a

form containing only geometric quantities, which is accomplished by substitution of

the equation of xR in geometric terms (Eq. 3.11) into the equation of the sampling

ratio (Eq. 3.8). Doing so yields

δxR
δxL

=
δ
(
xL
(
1 + B tan θ

Z

)
− Bf

Z

)
δxL

(3.12)

= 1 +
B tan θ

Z
.

It is necessary to eliminate the distance between the camera and the object (Z) from

Eq. 3.12 because that is not a known quantity when solving for the disparity in image

space. This may be accomplished by invoking the definition of disparity as described

in Chapter I:

disparity = xL − xR (3.13)

= −xL
B

Z
tan θ +

Bf

Z
.

Solving Eq. 3.13 for the quantity B
Z

yields

B

Z
=

disparity

f − xL tan θ
(3.14)

which, when substituted into Eq. 3.12 for the geometric form of the sampling ratio

gives the final version of the sampling ratio between left and right cameras

SamplingRatio = 1 +
disparity tan θ

f − xL tan θ
. (3.15)

This sampling ratio is a function of the horizontal component of the off normal angle
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of the surface θ, the position horizontally in the image xL, the focal length f , and

the disparity. At first glance this seems like an unrealistic set of a priori information

to have while calculating correspondence matches since disparity is the quantity of

interest, but later in this section it is described why this is not the case.

To reiterate, because the left and right cameras in a horizontal baseline stereo

imaging system observe a non fronto-parallel object from slightly different angles due

to the baseline separation between them, the same scene will appear differently as

observed by the two cameras. The sampling ratio of Eq. 3.15 is the ratio of the

apparent size of an object in 3-dimensional image space, as it appears projected into

the 2-dimensional image space of the left and right camera. Equivalently, it is the

factor of stretching or subsampling that must be done to make a small strip of one

of the images have the same spatial scale as the other. It is important to note that,

because one of the arrays is stretched or compressed relative to the other, it is essential

to apply a correction factor to the disparity that is calculated using the modified

array, serving to normalize the estimated disparity value by the correction factor.

Thus, knowing the sampling ratio between the two images, the effect of geometric

foreshortening may be corrected for in the dense stereo algorithms described in Ch. II

and Ch. IV.

In order to portray the importance of this correction factor, its effect is demon-

strated on the well textured (planar) Mayan blanket scene of Fig. 21. Uncorrected

for geometric foreshortening, the native texture of the blanket is compressed drasti-

cally due to the 45 degree horizontal off normality of the plane of the blanket with

respect to the focal planes of the cameras. This angle causes the phase based dense

stereo algorithm (without the correction factor) to have difficulty performing corre-

spondence matching even on the well textured plane, as illustrated by the left and

right uncorrected disparity maps in Fig. 23. These disparity maps are admittedly not
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very good, examination reveals that the plane of the blanket is almost entirely lost

within the noise caused by incorrect matches. For this planar laboratory test case,

(a) (b)

Fig. 23. Left and right referenced disparity maps from Mayan blanket scene, uncor-

rected for geometric foreshortening effect: (a) Left referenced uncorrected

disparity map; (b) Right referenced uncorrected disparity map.

the off-normal inclination of the Mayan blanket plane is known to be 45 degrees. In

order to make use of this information, a first cut dense stereo correspondence match

is executed across the image pair to generate uncorrected disparity maps as shown

in Fig. 23. Using these uncorrected disparity maps a rough idea of the disparity is

found, which is subsequently used in the corrective stretching or condensing formula

to match the image strip from one image with the other. The correction factor causes

the spatial frequency of the native texture to be corrected for the sampling error

caused by the different points of view and the phase based dense stereo algorithm can

achieve better correspondence matching. Fig. 24 shows left and right disparity maps

for the planar Mayan blanket scene which have had the geometric foreshortening

correction applied. These corrected versions, when compared with the uncorrected

disparity maps of Fig. 23 show the immense improvement to off-normal surfaces with



48

the geometric foreshortening factor applied. The plane is clearly visible as the light

to dark gradient of the disparity maps from left to right. There are much fewer spikes

caused by incorrect disparity matches (with some exceptions in places where the tex-

ture shows little variation or has a periodic repeating pattern), and those that do exist

may easily be removed by the error checking mechanisms described in Section B.

(a) (b)

Fig. 24. Left and right referenced disparity maps from Mayan blanket scene, corrected

for geometric foreshortening effect: (a) Left referenced foreshortening cor-

rected disparity map; (b) Right referenced foreshortening corrected disparity

map.

Fig. 25 shows a representative row plot from the disparity maps of Fig. 23 and

Fig. 24. In this figure, the noisy red curve is the uncorrected disparity row plot. The

extent to which the noise dominates the signal is apparent. The blue curve is the row

plot from the corrected disparity map. It is almost entirely free of noise, and follows

the slope of the plane. The spiky parts at the ends are from the parts of the image

which do not contain the plane (i.e. the black curtains on the right side of the images

in Fig. 21).

The benefit derived from the geometric foreshortening correction is apparent by
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(a) (b)

Fig. 25. Typical row plot from left and right referenced disparity map of Mayan blan-

ket scene, uncorrected versus foreshortening effect corrected: (a) Left refer-

enced disparity map row plot, typical uncorrected and foreshortening effect

corrected; (b) Right referenced disparity map row plot, typical uncorrected

and foreshortening effect corrected.

this example, however, it could be argued that this example is not valid because the

geometry was known beforehand in order to generate the foreshortening correction

factor. The reason that this argument does not have a lot of traction is because the

typical application of dense stereo, and thus this entire phase based dense stereo algo-

rithm, is as a subroutine in some kind of higher level vision based mapping or guidance

system. There are many precedents for using sparse stereo to feed dense stereo, for

instance Gallup et al. [38] use sparse stereo features (calculated during the motion

estimation phase of the SLAM problem) to drive their plane-sweep dense stereo. Sim-

ilarly, feature based stereo may be used to gain a rough idea of the geometry of the

scene, and then the phase based dense stereo algorithm with the foreshortening cor-

rection factor applied may be used to fill in the details. This procedure is used in a

rudimentary form in the analysis of Chapter V by using SURF features to calculate

the off-normal rotation angle of a planar scene.
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B. Quality Control Metrics

In the dense stereo correspondence matching process there are most certainly going

to be some percentage of pixels which are incorrectly matched between images, and

are thus assigned an incorrect disparity value. These pixels could be in areas which

are occluded in one of the images of the stereo pair, and thus there is no correct

solution to the correspondence problem. Incorrect matches could also be caused by

poor surface texture in the images, be it bland surfaces, periodic textures, or non-

Lambertian surfaces causing reflections. Two methods of detecting and eliminating

incorrect matches are presented in this section (eliminating them means the value of

these areas are set to zero in the resulting disparity maps, thus indicating that no

correspondence matching was achieved).

1. Left/Right Disparity Cross Checking

During development, the phase based dense stereo algorithm was coded and debugged

using the left image as the search space and strips of the right image as the object of

interest due to a simple mnemonic (“left=large”). This convention is not necessary,

and in fact the algorithm works equally well in reverse, using the right image as the

search space and the left image to build the object of interest array. This fact is what

makes the post-processing cross check routine so simple and powerful. By solving the

correspondence problem for the disparity value of a pixel using one convention, and

then solving for the same pixel’s value using the other convention, two independent

measurements of the disparity value are achieved. If the disparity value proposed

for the pixel by the two independent processes is the same, then it is much more

likely that it is the correct value and should be trusted. This verification method

was proposed early in the history of digital stereo correspondence solving (see [39] or
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[18]), and has become somewhat of an industry standard method.

There is one important caveat to note on the subject of left and right dispar-

ity cross checking. Performing dense stereo from right to left (i.e. using the right

image as the object of interest and the left as the search space) will generate a right-

referenced disparity map. Switching the input images will generate a left referenced

disparity map. In order to compare the two, they must be mapped into the same

reference space. By examining the equation of disparity (disparity = xL − xR), the

transformation between right and left referenced disparity maps becomes apparent

(xL = xR + disparity, and xR = xL − disparity). That is to say, if the pixel of

interest comes from a right referenced disparity map, and it is desired to compare it

to a left referenced disparity map, comparing the pixel in the same location in each

would be in error. However, by looping over the pixels in the disparity map and

transforming them by the equation of disparity, a pseudo disparity image in the other

reference space may be generated. This pseudo disparity map may be compared with

the computed disparity map in the first reference space by performing an array-wise

subtraction to find per pixel error. Using this technique, pixels in the disparity map

which have obviously inconsistent values may be discarded.

The power of this error checking metric is illustrated for disparity maps from the

ditch scene of Fig. 10. Fig. 26 shows raw left and right disparity maps generated by

the one dimensional phase based dense stereo algorithm which are un-verified, and

thus contain some obviously inconsistent correspondence matches. For example, in

the background of the stereo image pair of Fig. 10 there is a pile of rubble and a lamp

post, both of which have many occluded areas and high frequency discontinuities. In

the corresponding locations in the disparity maps there are noisy areas which contain

many mismatches. Also, in the bottom left of the left disparity map, and the bottom
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(a) (b)

Fig. 26. Left and right referenced raw disparity maps from ditch scene: (a) Left refer-

enced raw disparity map; (b) Right referenced raw disparity map.

right of the right, there are some pixels which did not get a strong correspondence

match because the area is of high disparity and thus is very close to the edge of

the other image. A third example of correspondence problems in this scene is near

the left side of the disparity maps, on the downslope of the ditch, there are occluded

areas which the algorithm had trouble matching, and which show up as discontinuous

regions in the otherwise smooth disparity images.

Fig. 27 shows the pseudo left and right disparity maps generated by transforming

the raw disparity maps of Fig. 26 by the equation of disparity to transform them to

the other reference space. On the pseudo left disparity map, in the bottom left (in

the same place as in the actual left disparity map) there is no disparity information,

indicating that the right disparity map does not contain correspondence information

for this region.

Fig. 28 shows the result of removing from the raw disparity maps the pixels

for which the disparity value in the calculated disparity map does not agree with

the value in the pseudo projected disparity map. The noisy erroneous values from

the rubble pile and lamp post at the top are removed, as is the lower left erroneous
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(a) (b)

Fig. 27. Left and right referenced psuedo disparity maps, generated by transforming

right and left raw disparity maps: (a) Left referenced pseudo disparity map;

(b) Right referenced pseudo disparity map.

region in the left disparity map. The downslope of the ditch and its occlusions have

been thinned out, and the remaining values have an overall gradient that follows the

terrain, as opposed to the noisy spikes that were there in the raw disparity maps.

Thus by cross checking two independent measurements from right to left dense

stereo and left to right dense stereo, correspondence matching errors caused by a

variety of issues may be removed.

2. Correlation Peak Strength

During the process of correspondence matching with the phase based dense stereo

algorithm, the location of the delta function peak in the spatial correlation function

must determined. The process may be as simple as locating the maximum value

of the function at the discrete index points and calling that the peak as described

in Ch. II, or a curve may be fit the data using the analytical equation of the peak

shape as described earlier in this chapter. Regardless of the method used, at the

time that the location of the peak is found and recorded, it is just as easy to also
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(a) (b)

Fig. 28. Left and right referenced verified disparity maps: (a) Left referenced verified

disparity map; (b) Right referenced verified disparity map.

record the height of the correlation function peak. This peak height is a measure

of the correspondence match certainty. By setting a minimum peak height that

correspondence matches must meet to be considered valid, spurious matches may be

discarded. This is essentially thresholding the correspondence matches and retaining

only those which have a certainty greater than the threshold.

Mandating that correspondence matches have a given confidence before accepting

them as true is not a new idea, nor is it unique to phase based dense stereo. See for

instance Rzeszotarski et al. [40] in which a confidence metric is applied to the Sum

of Absolute Difference (SAD) method of dense stereo and is used to threshold which

correspondence matches to include in disparity maps.

This minimum peak height metric is useful, but it should be noted that it is not

a golden rule, and requires (scene-dependent) tuning before it will properly discard

erroneous matches. Even with tuning it is not guaranteed to properly eliminate bad

correspondence matches while preserving correct matches. No guarantee can be made

because a correct match may have a low peak strength (and thus a low certainty),

while an incorrect match may have a very high peak strength. Consider pixels in a
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bland surface texture region which are just barely able to be to correctly matched,

and thus have a low certainty despite being the correct solution. Compare these to

pixels in a region of very strong surface texture which is also periodic. The repetitive

texture would cause multiple strong correlation spikes, and in the presence of noise

the wrong one could be chosen as a match, but still have a very high certainty. In this

case the thresholding might eliminate the correct match and preserve the incorrect

match. Obviously this is a single scenario, and is more the exception than the rule,

but it is meant to illustrate that the peak strength metric (like any process) has its

weaknesses. Pointing out the weaknesses of the minimum peak height metric is not

intended to imply that it is worthless. In fact, quite contrarily, it is very useful either

alone, or in conjunction with the left/right cross checking method described in the

previous section.

The correlation peak height metric may be used in two different operation modes,

either in real-time with an absolute global threshold, or as a post-processing step

with a relative threshold. The absolute thresholding method checks correspondence

matches as they occur, ensuring that they are greater than a pre-determined global

threshold and rejecting them if they are not. The relative thresholding method waits

until the entire stereo image pair has had correspondence matches solved for, and

then filters out matches with a correlation peak height lower than a relative threshold

(empirically, this value is usually about 0.25 ∗MaxPeakHeight).

Fig. 29(b) is a right referenced correlation peak height map for the ditch scene,

of which the right stereo image is shown in Fig. 29(a). Representing the information

in this form is not particularly useful for analysis, it is mostly included for the sake

of examination. This peak height map is a double precision image where the value

for each pixel is the height of the correlation function peak that was chosen as the

correct solution, the range is theoretically between zero and one (but in practice the
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highest correlation spikes are around 0.7).

Fig. 30(a) shows the raw right referenced disparity map for the ditch scene. There

are many areas which have obviously incorrect correspondence matches that need to

be removed in order to have confidence in any 3D reconstruction. Fig. 30(b) is the

same right referenced disparity map for which any pixel with a correlation peak height

of less than 0.25 ∗MaxPeakHeight is set to zero. The peak strength metric does a

decent job of removing incorrect correspondence matches. The occluded regions on

the downslope of the ditch do not have the noisy spikes that are present in the raw

disparity map, and the spikiness of the rubble pile in the background is for the most

part cleaned up.

(a) (b)

Fig. 29. Ditch scene, right image of stereo pair and right referenced correlation peak

height map: (a) Ditch scene, right image of stereo image pair; (b) Right

referenced correlation peak height map.

It is interesting to note that, by examination of Fig. 29(b), the high values

of correlation (appearing as light gray in the figure) are located where one would

expect, namely fronto-parallel surfaces with strong surface texture at varied spatial
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(a) (b)

Fig. 30. Ditch scene, right referenced raw disparity map and right referenced filtered

disparity map: (a) Right referenced raw disparity map; (b) Right referenced

filtered disparity map.

frequencies. Weak correlation peaks are also located where one would expect, which

are occluded regions, and areas with sharp discontinuities or bland surface texture.

3. Comparison of Quality Control Methods

By visual inspection both methods detailed in this section do a decent job of elim-

inating pixels from the disparity map which are blatantly incorrect solutions to the

correspondence problem. Both methods have their pros and cons.

The pros of the left/right cross checking method are that every pixel that it leaves

in the disparity map has been verified by comparing two independent measurements.

Additionally, it can remove pixels which have a strong correlation value but are still

incorrect, such as pixels taken from a section of periodic texture or non-Lambertian

surface reflection. The downside of the method is that in order to use it, every

correspondence match must be performed twice, once in a right to left stereo mode

and then again in a left to right mode. This is computationally expensive, nearly

doubling the computation time per stereo image pair (not exactly doubling since
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many aspects of the dense stereo algorithm are initialized in the same way regardless

of operation mode, and thus do not need to be re-initialized for both operation modes).

The correlation peak height metric is much less computationally expensive than

the left/right checking method because hardly any additional processing beyond the

base phase based dense stereo is required to implement it. The downside is that it

requires some scene dependent tuning in order to function properly. An appropriate

threshold must be chosen such that the blatantly erroneous pixels are removed but

not too many correct ones are. It is better to declare a slightly higher threshold (err

on the side of caution), which will cause a higher percentage of incorrect matches to

be removed, but also more correct matches will be removed.

C. 3D Reconstructions from Dense Stereo

The goal of computer vision is to allow computers and robots to sense and interact

with their surroundings, thus enabling them to have a higher degree of autonomy

and artificial intelligence. Stereo cameras are one type of sensor that can passively

create three dimensional reconstructions of the scene being imaged without disturbing

the scene or announcing their presence. A camera captures an image by saving the

appearance of the projection of three dimensional object space on its two dimensional

image plane. By observing the scene with two cameras that are slightly displaced from

each other, it is possible to geometrically reproject the two dimensional image space

coordinates, together with the disparity shift between the two images, (x, y, d) back

into three dimensional object space (X, Y, Z) using Eqs. 1.3 in Ch. I.

OpenCV contains an excellent function for reprojecting from disparity space to

object space which does not use the ideal equations, but instead uses a reprojec-

tion matrix Q containing camera parameters (which must be known from calibration
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beforehand) [19]. In this implementation the OpenCV function is used to build an

algorithm that takes disparity maps as input and generates three dimensional recon-

structions as an output. After reprojection to object space, the scenes are written to

VRML world files (.wrl) so that the results may be inspected by humans [41]. For

this application, no meshing or surface fitting is attempted, the points are simply

displayed in a VRML points node, and given a color from the original stereo image

pair which was used to solve the stereo correspondence problem.

Below is shown an example three dimensional reconstruction for the ditch scene

of Fig. 10. This reconstruction is from the C implementation of the phase based dense

stereo algorithm, using sub-pixel disparity estimation as described in Section A.2 of

this chapter, and has had spurious results removed with the peak strength metric as

described in Section B.2.

Fig. 31. Three dimensional reconstruction of ditch scene from phase based dense stereo

algorithm.
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Examining Fig. 31 the utility of a three dimensional reconstruction becomes

clear. By looking at this image it is much easier to comprehend the geometry of

the scene than by looking at the original stereo image pair in Fig. 10, or than by

studying disparity space representations such as Fig. 26. The ideal way of viewing

this reconstruction is by looking at the VRML file on a computer in a VRML viewer

program. This way the user may rotate the scene and view it from all angles, even

zoom in on details for a closer look, which is much more enlightening and intuitive

than a static picture on a page.

As a practical use, this local model from one stereo image pair is saved as a VRML

file which is then merged into a global model consisting of models from adjacent

image pairs displayed together. In order to merge the models coherently, a tracking

algorithm must be employed to estimate the camera motion with respect to the

scene. Knowing the camera motion, an inverse motion may be applied to determine

the orientation of one local model with respect to the rest. This is main problem

statement of the SLAM problem, and the main reason for performing dense stereo.
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CHAPTER IV

CUDA IMPLEMENTATION1

The process of implementing and optimizing an algorithm in CUDA is a non-trivial

undertaking. A developer must intuitively understand the hardware layout of the

Graphics Processing Unit (GPU) in order to successfully tailor their implementation

to the device’s strengths. Additionally, the mindset while developing an applica-

tion for parallel processing is different than the traditional approach to coding an

algorithm. The Land Air and Space Robotics (LASR) Laboratory at Texas A&M

University has a collaboration with the research group of Dr. Jan-Michael Frahm at

the University of North Carolina Chapel Hill. Under the watchful eye of Dr. Frahm

and his post-doc Dr. Pierre Georgel, and graduate student Tim Johnson, strategies

for CUDA development and optimization were instilled which allowed for the opti-

mization of this particular CUDA algorithm. This chapter briefly covers some of the

basic concepts of developing in CUDA, discusses some recent advances in dense stereo

due to parallel computing, and describes the phase based dense stereo algorithm im-

plemented in CUDA.

A. CUDA Background

CUDA (Compute Unified Device Architecture) is a computational architecture devel-

oped by NVIDIA to bring the parallel computational power of a modern day super-

computer to the average desktop computer. Designed to run on NVIDIA Graphics

Processing Units (GPUs), CUDA is a set of C extensions and a runtime library that

allows a programmer to control the launch and execution of user defined functions

1Portions of this chapter are in preparation for publication [29].
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on the GPU (called kernels). A program developed in CUDA has standard C code

running on the CPU (the host), and CUDA code running on the GPU (the device) si-

multaneously. Overall program execution tasks such as memory transfers to and from

the CUDA device and kernel launches are controlled by the host. The CUDA API

is documented excellently by NVIDIA CUDA reference manuals [42, 43]. Some basic

discussion of CUDA fundamentals are developed in this section, but the interested

reader should refer to the above sources.

1. Program Flow

CUDA functions (kernels) that execute on the device must be designed by the pro-

grammer in a non-traditional way. These functions act n times in parallel, where

n is a configuration parameter that is defined at the time the kernel is launched.

Thus, instead of designing intricate loops and repetitions to cause the program to act

across the entire range of the input data, the program may be configured to act in

parallel across the range of the data, for example, by having one thread acting upon

each member of the input data set simultaneously. This is best illustrated with an

example. Listing 1 shows a simple CUDA kernel definition, as well as the mechanism

for calling said kernel.

Listing IV.1 Basic CUDA kernel which squares the elements of a vector.
1 // de f i n e k e rne l
2 g l o b a l void squareVectorElements ( f loat ∗ inVec , f loat ∗

outVec ) {
3 int j = threadIdx . x ;
4 outVec [ j ] = inVec [ j ] ∗ inVec [ j ] ;
5 }
6
7 int main ( ) {
8 // b l ah b l ah b l ah main program
9 squareVectorElements<<<1, n>>>( vec1 , vec2 ) ;

10 // f i n i s h main program
11 }
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There are two parts to the code shown in Listing. 1. The first part, specified by

the declaration __global__ is the kernel definition. A kernel is defined similarly to

a standard function definition in C, except that one must be mindful that the code

executed by the kernel will be happening simultaneously for many threads. CUDA

has a built in variable called threadIdx, which is a three dimensional indexing system

for keeping track of the threads executing in a kernel. The threadIdx is a unique

addressing system used to access data elements and perform operations on multi-

dimensional data. In this case, threadIdx.x ranges from 0 to n−1, and threadIdx.y

and threadIdx.z are 0. Thus, the kernel above launchs n threads, each of which

simultaneously grab one element of the vector inV ec, square it, and save the result

to the corresponding element of outV ec.

The fact that this particular kernel is launched with n threads is no coincidence.

The terms within the <<<>>> brackets (in this case <<< 1, n >>>) tell CUDA

how many blocks and threads to launch for the task of carrying out the instructions

given by the kernel definition. A block (short for thread block) is a group of threads

executing the same task, working from the same shared memory, on the same proces-

sor core. Thread blocks have their own unique three dimensional addressing system

blockIdx. Thus, in this example, one block of n threads is launched for the vec-

tor element squaring kernel. All blocks launched simultaneously for a certain task

have the same shape and dimension. By using this identification scheme, it is easy

to specify which part of the data a block, and then within a block, a thread, is to

operate upon. All the threads work separately on their own part of the data and then

reconvene after the computations have been completed. CUDA provides functions

for manually managing the timing and synchronization of threads and blocks such as

__synchthreads(), which forces all the threads in a block to wait until every other

one has finished before anything new can begin. Really, the miracle of working with
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CUDA is that such a powerful architecture is simplified to the point that a user that

is comfortable working in C can program powerful parallel algorithms with a little

bit of practice.

2. Memory Structure and Kernel Optimization

In order for a CUDA kernel to be able to operate on a data structure, that structure

must be contained in device memory. Device memory is physically contained on the

video card, and is entirely separate from host memory which is owned by the host

computer. Therefore data must be transferred from host to device before it may be

manipulated by any CUDA kernel, and must subsequently be transferred back to

the host before it may be manipulated by any host code. Within the class of device

memory there are several different types, each optimized for its own purpose and

access pattern.

The reason for the importance of the division of labor between threads and

blocks as described in Section 1 is because of the scope of the different types of

device memory. Threads within the same block may communicate with each other

and cooperate through shared memory, whereas threads in different blocks may not.

Global memory is a large repository that any thread may access at any time, but it

is much slower to access because it is not located physically on the processor chip

like shared memory is. Texture memory is also located off chip, but it is a cached

memory bank, and thus may be accessed much more quickly than global memory.

At a smaller scale, individual threads each have their own private store of memory

(called local memory and registers) which are used during the lifetime of the thread.

It is important for a CUDA developer to understand the types of memory and the

most efficient access patterns therein. Global memory prefers to be read or written

in certain sized chunks (called words). Attempting to access the memory bank in a
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non-multiple of the word size, or in random scattered batches will greatly reduce the

efficiency of the memory access because CUDA will treat the single access as multiple

steps that must be executed in serial. The process of accessing the memory in the

correct word size, and in adjacent locations is called coalescing the memory accesses.

Shared memory has a common issue in that it is divided into smaller chunks called

banks which are designed to be accessed in parallel. If a single bank is asked to

read or write twice at the same time the situation is called a bank conflict and the

access will happen in serial, thus effectively scaling the access time by the number of

accesses that are called for. If the access pattern the programmer wishes to use is

not well suited to global or shared memory, texture memory may be a good option.

Texture memory is designed to be accessed at locations that are close together in

two dimensions, (a square chunk of an image for example). Memory access conflicts

may be avoided by understanding the structure of the different types of memory

and designing code that effectively works around the access types. Good algorithmic

performance requires that good memory practices be observed, the difference between

efficient and inefficient memory use may be as drastic as an order of magnitude when

translated to algorithmic run time. Techniques for optimizing a CUDA algorithm

using proper memory types and access patterns, block shape, and function calls are

documented by NVIDA in their “Best Practices” manual [44].

The process of optimizing a CUDA application requires a deeper understanding

than the scope of this discussion. The learning curve is somewhat steep, but with

patience and practice, optimization is a challenge that is possible to overcome [45].

There are many fine books, websites/blogs, and training courses available for learning

and refining CUDA skills [46, 47, 48].
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3. CUFFT Library

NVIDIA has designed a package of Fast Fourier Transform functions, implemented in

CUDA, which are highly optimized for transforms of any size (i.e., not restricted to

powers of two) and dimensionality up to three, and this CUFFT package is included

in a CUDA installation. This API is designed according to the model of FFTW [49],

which means that prior to taking any transforms, the user develops an FFT “plan”

that configures the transform optimally from several types of available transformation

algorithms. Using this same plan, an arbitrary number of transformations may be

taken with little overhead. The CUFFT plans automatically configure the GPU

resources and thread launch parameters for an optimal FFT or IFFT with little

interference necessary by the user [50].

B. Existing Parallel Dense Stereo Algorithms

Because dense stereo is generally the most computationally expensive step of the

SLAM problem, the incentive to reduce computation time by parallelizing the pro-

cess is high. Also, because dense stereo involves many repetitive calculations, it is

inherently massively parallel. Yang, Pollefeys, and Li’s early parallel Sum of Absolute

Differences (SAD) algorithm is able to achieve over 289 million disparity evaluations

per second [51]. Recently, much attention has been devoted to parallelizing the process

of dense stereo, including many approaches implemented in CUDA. Zhu, Butenuth,

and d’Angelo compare GPU implementations of SAD and Semi-Global Matching

(SGM) algorithms in CUDA with similar CPU algorithms and find comparable qual-

ity and substantially higher speed on GPU [52]. Many other parallel approaches have

been implemented that promise dense stereo in real time (for instance [53, 54, 55]).

A notable implementation in CUDA is documented by Stam [56], and source code
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and instruction is given.

C. 1-Dimensional Implementation in CUDA

The CUDA implementation of the phase based dense stereo algorithm is quite similar

to the C implementation described in Section C of Chapter II. However, instead

of utilizing convenient OpenCV functions as the building blocks of the algorithm,

CUDA kernels had to be designed from scratch and optimized for efficiency (the

only exception being the CUFFT library as described above). The result is that the

core modules of the phase based dense stereo algorithm (the same core modules as

described in Ch. II) are implemented in CUDA, and function efficiently enough to

generate disparity map information at a rate of nearly ten frames per second for a

640 by 480 image. All the algorithmic improvements (as described in Ch. III) could

be added to the CUDA implementation to improve the quality of results by the same

factor as they improved the results of the C algorithm, however adding these features

will increase the computational cost of the CUDA algorithm.

Fig. 32 is a flow chart of the CUDA phase based dense stereo algorithm, intended

to portray a top level view of the algorithmic flow. All the processing occurs on the

GPU. The stereo image pair is transfered to the device memory at the beginning of

the program, and the answer (the disparity map) is transfered back to host memory

when the GPU has finished its computations.

In Fig. 16 the search space and object of interest arrays are shown as utilized

in the serial implementation for the disparity calculation of a single column of image

pixels (these are taken from strips of the images that are then padded with zeros).

In these images, each row may be treated as a separate correspondence problem and

solved independently. Thus the disparity is calculated for all the image pixels in the
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Fig. 32. Flow chart of CUDA implementation of phase based dense stereo algorithm.
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column using this array, and then new arrays are formed for the next column and

all the rows therein are solved independently, and so on for all the columns in the

overlapping region of the stereo images. For the case of the CPU implementation,

row-wise FFTs are taken of the image pairs and then elementwise multiplications

are performed to find the frequency domain correlation function. Row-wise inverse

FFTs are then taken of the frequency domain correlation function, to form the spatial

correlation function, for which the delta function peak in each row is located. Each

step is performed by a function call, whose launch carries a small amount of overhead

time. Since all of the operations involved are quite repetitive, this leads to highly

inefficient use of processor resources. In the CUDA version, instead of working on

one column worth of pixels at a time and solving the stereo correspondence problem

for each row, a large stack of these search space and object of interest arrays may be

formed and solved simultaneously.

A large number (100 in the current implementation) of image arrays (like those

in Fig. 16) are built and stacked for parallel processing. Fourier transforms are taken

across the rows in parallel. Elementwise multiplications are performed on the arrays

simultaneously, and inverse FFTs are taken across rows in parallel. The amount

of memory taken up by the huge arrays of stacked image columns, and the arrays

to hold the complex number results of Fourier transforms take up a large amount

of memory, and thus the images must be processed in “chunks” at a time. The

chunks are controlled by a main loop (indicated by the outer box in Fig. 32). The

necessity for this loop is regrettable in an otherwise completely parallel algorithm as

it does linearly scale the overhead time for internal memory transfers in preparation

for FFTs and IFFTs by the number of repetitions of the loop, but for the current

program structure it is unavoidable. The silver lining is that the “chunking” process is

all done onboard the GPU to minimize host to device transfers. 100 columns worth of
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the image translates to roughly 20% of the overlapping region for a 640 by 480 image

of an average scene, so usually only five repititions of the main loop are necessary

(that is the number used in all the discussion here).

Each of the subroutine steps within the main CUDA loop in Fig. 32 corresponds

to a kernel (or two in the case of “Padded Arrays”). Each CUDA kernel has a kernel

definition which specifies what each thread is to do during the execution of that

particular kernel. Each kernel also has a C “wrapper” function which is compiled

and run on the host computer. Thus, even though all the actual computational work

is done on the GPU, the kernel launches are configured and initialized on the host

computer. The wrapper functions are limited to extremely trivial operations which

take hardly any time to execute, such as pointer calculations and definition of thread

and block configurations. The subsections below describe the kernels that accomplish

each of the tasks in the flow chart of Fig. 32.

1. Initialization

Before any calculations are carried out (and before the main loop begins), memory is

allocated for all the arrays that will be used for the entire process. FFT and IFFT

plans are also initialized before the main loop begins, as these can be used repeatedly,

and only need to be created once. Next, the left and right stereo images are transfered

to the device and bound to texture memory. Texture memory allows for faster access

to the data stored therein than regular global memory since it is a cached memory

bank. Once the images are stored and ready, the main loop begins. As mentioned

above, the size of the arrays formed for the calculations involved are the restricting

factor in how many disparities may be calculated at once.
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2. Padded Arrays

Giant stacks of 1D padded search space and object of interest arrays are formed by

grabbing strips of images centered around certain columns and placing them within

larger arrays filled with zeros to form the padded boundary regions. The locations

and lengths of the strips are governed by the same equations as those of the C imple-

mentation described in Chapter II (Eqs. 2.8). The kernels cudaPadBigKernel() and

cudaPadLilKernel() access the left and right image data from texture memory and

construct the stacks. The process of accessing the images in texture memory requires

specialized function calls called texture fetches. The overall size of the arrays formed

by this texture fetching process is critical because the CUFFT package uses different

FFT algorithms depending on the number of sample points within the FFT. The

fastest and most efficient transform of relevant length is of length 256 (28) because

the package is most efficient for lengths which decompose under prime factorization

to a single, small number. Thus, all arrays used are of size (100m, 256), where m is

the vertical size of the input images.

3. Fourier Transforms

Fast Fourier Transforms are carried out in the row-wise direction of the arrays gen-

erated by the kernels described above. These transforms are governed by FFT plan

structures created by the cufftPlan1d() function during the initialization phase.

The transforms are of the type real-to-complex, and perform the transformations in

parallel for the 100m rows.
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4. Array Multiplication

The kernel modulateAndNormalizeKernel() performs the elementwise multiplication

defined by the first term in Eq. 2.6. All of the complex numbers in this project are

stored in a C structure which allows easy access to the real and imaginary part, thus

complex number multiplication is easy, even when complex conjugates are involved.

Simultaneous with the complex multiplication, a normalization factor is applied be-

cause the FFT algorithms in the CUFFT package do not perform a normalization.

5. Inverse FFT

Using the IFFT plan defined before the main loop began, 100m inverse transforms are

performed in parallel across the rows of the frequency domain correlation functions

generated by the kernel in the last section. The IFFTs are of the type complex-to-

real, and the result in each row is the spatial correlation function for that particular

pixel.

6. Locate Maxima

Algorithmically, the maxima location kernel is the most difficult to implement. The

input to the function is an array of size (100m, 256), where each row is an individ-

ual 1D spatial correlation function. Also input is a guess as to the minimum and

maximum disparity (i.e. a region within the 1D functions in which to search for the

maximum). The most efficient way to to calculate a maximum in parallel is by a

process called reduction. In this implementation, one block is launched per row of

the spatial correlation function array, each of these blocks containing one thread per

element of the array. At the launch, the 1D correlation function for that particu-

lar row is loaded into shared memory for the block so that all the threads within the
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block may access it. The process of reduction consists of threads comparing their own

value to another value which is located at their own location in memory plus exactly

half the size of the array. Thus, for a size 8 array, the first thread compares its value

with the fifth thread, the second with the sixth, and so on. In these comparison, the

higher value is kept while the lower is discarded. The higher value is stored in shared

memory at the location of the thread doing the comparison, and the original index

location of the “winning” value is stored in a separate indices array created to keep

track of the location of the larger values. This process is repeated over and over, and

at each step the number of comparisons is reduced by half. Thus, for a 256 element

input array, a total of eight comparison steps are needed to determine the maximum.

For more information on the process of parallel reduction refer to NVIDIA’s guide on

the subject [57].

The kernel cudaFindMaxKernel() launches 100m blocks simultaneously, each of

them performing a reduction on one row of the array of spatial correlation functions.

The returned value for each row is the location of the delta function peak, which marks

the disparity value of the pixel whose correspondence problem is being solved by that

row. These disparities are assembled into an image, which becomes the disparity map

for the scene. Each iteration of the main loop populates another 100 image columns

worth of pixels, each column containing m separate correspondence problems, where

m is the height of the input image.

7. Termination

After all of the iterations of the main loop have concluded, the disparity image is

fully assembled and is then transfered from device memory to the host. The transfer

signifies the end of the dense stereo problem for the stereo image pair. At this point,

the memory can be freed and the CUDA context can be terminated, or the arrays
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can be cleared and a new stereo image pair can be transfered to the device and the

process can start over.
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CHAPTER V

COMPARISON OF RESULTS1

In this chapter the quality of the disparity maps and 3D object space reconstructions

generated by the phase based dense stereo algorithm are examined. Because the core

components of the phase based dense stereo algorithm are implemented in CUDA,

but the algorithmic improvements and quality control checks are not, the CUDA

implementation is first compared to the core C and MATLAB implementation. This

comparison ensures that the parallel CUDA algorithm returns the same results as the

serial versions. Thus the accuracy of the serial implementations represents the overall

achievable accuracy of the parallel version. From there, the full serial algorithm is

compared to industry standard lab truth disparity maps. The results of two open

source dense stereo algorithms from the OpenCV library are compared against the

same truth maps to determine the relative quality of the phase based method. Finally,

3D object space reconstructions from the serial phase based dense stereo algorithm

are compared against reconstructions from a standard Sum of Absolute Differences

algorithm for a plane at various off-normal rotation angles. This experiment illustrates

the effectiveness of the phase based method on highly geometrically foreshortened

surfaces.

A. CUDA Implementation Results

In Fig. 33 a disparity map generated by the CUDA algorithm for a well textured

and nearly fronto-parallel planar scene is compared to the disparity map for the

same scene generated by the one dimensional MATLAB implementation described in

1Portions of this chapter are in preparation for publication [29].
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Section D of chapter II. These disparity maps are generated by the core components

of each algorithm, meaning none of the algorithmic improvements or error checking

from Ch. III are applied to either.

(a) (b)

Fig. 33. Resulting disparity map, CUDA versus MATLAB: (a) Disparity map of nearly

fronto-parallel plane generated by CUDA algorithm; (b) Disparity map of

nearly fronto-parallel plane generated by MATLAB algorithm.

By examination it is hard to determine whether the disparity maps from the

two different algorithms are actually the same. To shed more light, Fig. 34 shows

a column plot of the same column from both of these disparity maps. Because the

scene contains a nearly fronto-parallel plane, there are only five distinct disparity

steps. The CUDA algorithm is plotted in red, and the MATLAB result in blue.

The two algorithms produce exactly the same disparity value in all locations except

in the transition between discrete disparity steps, although these transition regions

occur in the same locations. The reason that the disparity steps are somewhat noisy

in Fig. 34 (they jump back and forth in the transition regions) is because there is

no averaging of rows of correlation functions to improve the signal to noise in these



77

core implementations, nor is there sub-pixel estimation to cause the plane to appear

continuous and smooth. Additionally, there are spikes of incorrect correspondence

matches present for both algorithms because the error checking methods have not

been used to remove bad correspondence matches.

Thus, the results of the core CUDA implementation and the core MATLAB

implementation are consistent. The fact that the uncorrected versions of both al-

gorithms produce the same results implies that implementation of the algorithmic

improvements and quality control checks in CUDA will yield equally good disparity

maps as those produced by the serial algorithm in MATLAB or C.

Fig. 34. Column plot comparison of CUDA disparity map and MATLAB disparity

map for nearly fronto-parallel planar scene.

To better illustrate the result of the CUDA implementation for the Mayan blanket
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scene, a three dimensional reconstruction from the disparity map shown in Fig. 33(a)

is shown in Fig. 35. The plane is rotated in this image (it is a three dimensional

collection of points being displayed as VRML file) to better show the fact that it

is planar. There are some noisy points caused by incorrect correspondence matches

in areas of bland or repetitive texture, and the disparity values are discrete, but

otherwise the reconstruction is planar.

Fig. 35. Three dimensional reconstruction generated by CUDA phase based dense

stereo algorithm, from nearly fronto-parallel Mayan blanket plane scene.
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B. Comparison to Ground Truth Disparity Maps

Scharstein and Pal [58], and Hirschmuller and Scharstein [59] provide stereo image

pairs and ground truth disparity maps for verification of dense stereo algorithms,

such as the image pair in Fig. 36. This image pair is designed to have many areas

of occlusions and extreme depth variations, the vicinity of which are difficult for

any dense stereo algorithm to provide accurate correspondence matches. The right

referenced ground truth disparity map for the rocks scene is shown in Fig. 37(a), and

will be used to test the accuracy of the disparity maps generated by the phase based

dense stereo algorithm.

(a) (b)

Fig. 36. Left and right stereo image pair, rocks scene: (a) Left stereo image of rocks

scene; (b) Right stereo image of rocks scene.

Fig. 37 is a comparison of the right-referenced ground truth disparity map for

the rocks scene to the output of the serial phase based dense stereo algorithm (C

implementation results shown in Fig. 37(b)). In the truth map, the occluded regions

for which no disparity may be calculated have been removed. Within the phase based
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algorithm, the threshold for the correlation strength metric was set high to eliminate

as many incorrect matches as possible, and left/right cross check verification was

performed.

(a) (b)

Fig. 37. Right referenced disparity maps from rocks scene, ground truth and phase

based dense stereo algorithm output: (a) Ground truth disparity map; (b)

Output of serial phase based dense stereo.

The absolute value of the difference between the phase based algorithm output

disparity maps and the truth map forms an error map for the scene, as shown in

Fig. 38. For better visibility the error map is converted to a binary image where

the black regions designate correct correspondence matches by the algorithm and the

white regions are places where the disparity did not match the truth map to within

one pixel. For areas where the algorithm did not report a disparity (i.e. the error

checking methods discarded the correspondence match due to a lack of confidence

in the estimate), the error map is set to zero. Comparing this error map to the

right stereo image, it can be seen that the main regions of error occur along depth

discontinuities. This is because a finite strip length of the image must be compared
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Fig. 38. Disparity error map for rocks scene compared to ground truth.

between the left and right image to find correspondence matches. When the strip

contains information from both sides of a discontinuity the correspondence match is

bound to be error prone. This is a general problem with dense stereo algorithms, but

the effect is somewhat more prevalent in the phase based method because relatively

long (usually about 40 pixel) one dimensional strips are used as the object of interest

mask.

As a point of further comparison, the error maps from two open source dense

stereo algorithms from the OpenCV package for the same scene are shown in Fig. 39.

OpenCV contains a block matching (SAD) algorithm, and a graph cut algorithm [30].

The block matching algorithm performed correspondence matches using a 5 pixel by

5 pixel mask. The graph cut method achieves better results when it is initialized

using a rough disparity map, such as the result of a sparse stereo, a trait it has in

common with the phase based dense stereo. Because the phase based dense stereo in
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this case was not initialized with a coarse disparity map, it is not a “fair” comparison

to initialize the graph cut method with one either. Thus the graph cut result shown

here is from an un-initialized implementation.

(a) (b)

Fig. 39. OpenCV open source block matching and graph cut dense stereo algorithms

error maps for Middlebury rocks scene.: (a) Error map for OpenCV block

matching algorithm; (b) Error map for OpenCV graph cut algorithm.

The error regions for all three methods are similar. All three fail in the vicinity

of sharp depth discontinuities or occlusions, and all three do well on well textured,

non-occluded regions. Thus, for this scene, the results of the phase based dense stereo

algorithm are competitive with the results from two open source, well optimized dense

stereo methods.

C. Comparison to Planar Lab Truth

To demonstrate the effectiveness of the phase based dense stereo algorithm on off-

normal (with respect to the focal plane of the cameras) surfaces, the algorithm is
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compared to a standard Sum of Absolute Differences (SAD) algorithm working on

a planar surface at different off-normal angles. The planar surface is a vertical wall

of the laboratory upon which a texture that is friendly to dense stereo matching

is projected with a digital projector. The surface is known to be planar (to within

building codes), so any variation from planarity in the results is solely due to the dense

stereo algorithm. The stereo imaging system is moved in a semi-circle to image the

scene from different angles ranging from approximately -35 degrees to +35 degrees of

off-normality. At the extreme angles, the effect of the geometric foreshortening effect

is drastic, as is illustrated by the results of the experiment.

To determine the laboratory truth, the Speeded Up Robust Features (SURF)

algorithm in OpenCV is used to locate feature points in each stereo image pair [15, 19].

The matching feature points between each left and right stereo pair are reprojected

into object space (X, Y, Z) and a plane is fit. By using a very high threshold for

feature extraction and matching, the sparse (feature based) stereo provides a very

accurate representation of the plane. Additionally, the plane that is fit may be used

to calculate the θ off-normal angle needed in the geometric foreshortening factor (as

given by Eq. 3.15). This is an example of a sparse stereo algorithm being used to

drive a dense stereo algorithm.

Fig. 40 is a graph of the statistics of the plane fit to the SURF points. The

red (lower) line is the mean absolute value of the residual error of the plane fit (in

meters), and the blue (top) line is the residual error variance. A very high threshold

was used in feature extraction and, depending on the angle, anywhere between 10 to

25 points were used in the plane fitting. The number varies because the ability of

SURF points to successfully be matched decreases as the off-normal angle increases.

The bi-peaked shape of the curves is hypothesized to be caused by the fact that the

texture is being projected by a digital projector (a point light source), which causes
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the non-Lambertian reflection properties of the surface to affect the accuracy of the

feature matches, and thus the accuracy of the three dimensional reconstruction. The

asymmetry of the curve is most likely caused by the large windows in the room which

provide uneven surface glare. Fig. 41 is an example of a typical plane fit to the

reprojected feature points.

Fig. 40. Statistics for plane fit to SURF points as laboratory truth.

The C implementation of the phase based dense stereo algorithm is used to gen-

erate dense stereo reconstructions of the planar scenes. The angle θ for the geometric

foreshortening factor is found from the plane fit to the SURF points. This result

is compared to a simple Sum of Absolute Differences (SAD) algorithm [60]. The

SAD algorithm does not have a left/right cross checking quality control function to

remove incorrect matches, but a simple threshold is placed on the SAD cost function

to eliminate as many spurious correspondence matches as possible. Because of the
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Fig. 41. Typical plane fit to SURF points as laboratory truth.

primitive nature of the error checking mechanisms, the SAD error is always higher

than the phase based method’s error, even for a fronto-parallel plane. Disparity is

estimated as a discrete quantity for both algorithms because the SAD algorithm (this

implementation of it) does not have continuous disparity estimation ability. The SAD

algorithm uses a constant mask size of 11 pixels by 11 pixels, while the phased based

algorithm uses a constant strip length of 40 pixels.

Fig. 42 shows the mean of the absolute value of the residual errors for each dense

stereo reconstruction of the planar scenes by the SAD and the phase based algorithm,

and Fig. 43 shows the variance of the residual error. Looking at residual error plot it

is clear that the geometric foreshortening effect is a major factor as the plane becomes

more rotated away from fronto-parallel. The residual error of the phase based algo-

rithm with the foreshortening correction factor applied remains relatively flat, always

remaining between 10 and 18 mm, whereas the error for the SAD algorithm grows

rapidly as the plane becomes more rotated and thus more foreshortened. Looking at

the variance it is clear that the SAD algorithm is returning noisy results with large de-

viations from planarity at higher off-normal angles, whereas the phase based method

is returning clean, smooth results (the error checking mechanisms are discarding the

incorrect noisy points). It is interesting to note that the residual error for the phase
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based algorithm has a bi-peaked shape, similar to to the SURF points. Again, this

is most likely caused by the fact that the texture is being projected onto the surface

from a point source, and thus has a reflection intensity which varies with angle.

Fig. 42. Mean absolute value of residual errors for phase based dense stereo algorithm

and SAD algorithm for planar scenes.

As an interesting side note, credit must be given to the OpenCV Block Matching

algorithm. It is able to return extremely planar (and extremely clean) reconstructions

of the scene, even at off-normal angles up to 50 degrees. This algorithm has many

refinement and smoothing sub-routines, and seems extremely well suited for planar

scenes such as this one. It is able to maintain residual errors as low as the SURF

errors across the range of the rotations in this experiment (and beyond!). For example,

Fig. 44 shows the resulting reprojection for the well textured plane rotated off-normal

by 50 degrees.

Thus it is shown that the phase based dense stereo algorithm provides accurate
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Fig. 43. Variance of residual errors for phase based dense stereo algorithm and SAD

algorithm for planar scenes.

Fig. 44. OpenCV block matching algorithm 3D reconstruction of off-normal planar

scene at extreme angle.



88

three dimensional reconstructions of non fronto-parallel scenes. The residual error

and the error variance of the reprojection of the scene by the phase based dense

stereo is far lower than the error and error variance by a Sum of Absolute Differences

algorithm that does not correct for geometric foreshortening.
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CHAPTER VI

CONCLUSION

This thesis presents a novel phase based dense stereo algorithm which is capable of

creating high accuracy three dimensional geometric reconstructions of scenes using

imagery from a stereo camera system. The algorithm is implemented in MATLAB

and C, and the core components are implemented in the NVIDIA CUDA parallel

computing environment, where they are capable of solving the dense stereo corre-

spondence problem at a rate of 10Hz (for a 640 by 480 image pair). A series of

algorithmic improvements have been developed in MATLAB and C which greatly

improve the quality of the stereo disparity map for general scenes above standard

phase correlation. These improvements, when migrated into the CUDA environment

will provide equally drastic improvement over the core components. Error checking

metrics are also developed which eliminate incorrect correspondence matches.

The C implementation of the phase based dense stereo algorithm has been com-

pared to two open source dense stereo algorithms included in the OpenCV library by

using ground truth disparity maps, and has been shown to be competitive in terms

of quality. A comparison of the three dimensional object space reconstruction of the

scene by the serial phase based dense stereo algorithm is shown to be superior to a

comparable reconstruction by a SAD algorithm that does not correct for geometric

foreshortening. The optimized parallel CUDA core version has been proved to return

the same resulting disparity maps as the serial C implementation core components,

but it does so at a frame rate of 10Hz. Thus, it is reasonable to expect that with

the full complement of improvements and error checks implemented in CUDA, dense

stereo correspondences could be solved across image pairs to create high quality three

dimensional reconstructions at many frames per second.
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Future work on this project naturally entails migrating the quality improvements

and error checks to the CUDA environment. Accomplishing this would create a

powerful and self-verifying dense stereo tool, capable of creating high quality three

dimensional object space models at a rate of many frames per second. This result

may be used in a variety of aerospace applications, ranging from spacecraft guidance

for proximity operations to planetary rover navigation and mapping.
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