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ABSTRACT 

 

A Low Power Low Noise Instrumentation Amplifier for ECG Recording Applications. 

(May 2012) 

Jesse Coulon, B.Sc., Kwame Nkrumah University of Science and Technology 

Co-Chairs of Advisory Committee: Dr. Kamran Entesari  

                                                                    Dr. Edgar Sanchez-Sinencio 

 

 The instrumentation amplifier (IA) is one of the crucial blocks in an 

electrocardiogram recording system. It is the first block in the analog front-end chain 

that processes the ECG signal from the human body and thus it defines some of the most 

important specifications of the ECG system like the noise and common mode rejection 

ratio (CMRR). The extremely low ECG signal bandwidth also makes it difficult to 

achieve a fully ECG recording integrated system.  

 In this thesis, a fully integrated IA topology is presented that achieves low noise 

levels and low power dissipation. The chopper stabilized technique is implemented 

together with an AC coupled amplifier to reduce the effect of flicker noise while 

eliminating the effect of the differential electrode offset (DEO). An ultra low power 

operational transconductance amplifier (OTA) is the only active power consuming block 

in the IA and so overall low power consumption is achieved. A new implementation of a 

large resistor using the T-network is presented which makes it easy to achieve a fully 

integrated solution. The proposed IA operates on a 2V supply and consumes a total 



 iv

current of 1.4µA while achieving an integrated noise of 1.2µVrms within the bandwidth. 

The proposed IA will relax the power and noise requirements of the analog-to-digital 

converter (ADC) that immediately follows it in the signal chain and thus reduce the cost 

and increase the lifetime of the recording device.  

 The proposed IA has been implemented in the ONSEMI 0.5µm CMOS 

technology. 
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1. INTRODUCTION 

1.1 Background 

Biopotential signal monitoring and recording is an important part of medical 

diagnosis and modern clinical practice requires these signals to be routinely recorded. It 

is usually the practice that patients are connected to cumbersome recording devices for 

the purpose of acquiring signals from the body to aid in diagnosis. This affects their 

mobility and causes general discomfort for them. Acquisition time reduces as a result of 

this and prevents the continuous monitoring of the patients which affects the general 

diagnosis of ailments [1]. 

Consequently, there has been the growing demand for low-noise and ultra low-

power, miniature ambulatory biopotential acquisition devices. This has necessitated 

extensive research in the design of such interfaces and the eventual objective is to be 

able to design a biopotential miniature recording system that is comfortable, with long-

term power autonomy, has high signal quality and can be configured to make it useful 

for many biomedical applications [1-7]. 

The design of such systems to monitor biopotential signals is challenging owing 

to the unique electrical properties of these signals. Typically, these signals have 

amplitudes ranging from a few tens of microvolts to a few millivolts. Again, depending 

on the type of biopotential signal that is to be monitored, it will have different frequency 
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bands from sub-hertz to a few hundred hertz and this makes it difficult to design one 

system for monitoring the different biopotential signals. 

To be able to design a suitable system to monitor and record biopotential signals, 

the properties of the signal need to be clearly understood. Figure 1 [8] shows a diagram 

of the signal amplitudes and the frequencies of the various biopotential signals. These 

properties will be discussed in detail for electrocardiogram (ECG) systems which is the 

focus of this work. Electromyogram (EMG), electrocorticogram (ECoG), and 

electroencephalogram (EEG) are the other medical standards that are based on 

biopotential signals. Also shown in the plot in Figure 1 are the local field potentials and 

the action potentials. 

 

 

Figure 1 Properties of different biopotential signal 
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Electrocardiography is one of the most common types of biopotential signal 

monitoring. It essentially deals with the monitoring of human heart signals to determine 

heart related diseases. The holter monitors and the portable arrhythmia monitors are 

examples of portable devices that are used for monitoring the heart activity. These 

devices are unsuitable for long-term monitoring of the heart activity of a patient, albeit 

not very bulky.  In the light of these conditions, fully integrated systems which have 

good power capability for long-term monitoring are desirable. 

 

1.2 Overview of the ECG Monitoring System 

Figure 2 shows a typical ECG monitoring system. It consists of the electrostatic 

discharge (ESD) and defibrillator protection, multiplexer (MUX), the front-end 

instrumentation amplifier (INAMP), the analog-to-digital converter (ADC), then 

subsequently a wireless transceiver. 

In modern ECG systems, a defibrillator protection is implemented together with 

the ESD protection circuit before the analog front-end to enhance the safety of the 

patient, the user of the device and the device itself in the event of discharges and 

emergencies. 

The multiplexer immediately after the ESD protection selects the channels to 

feed the instrumentation amplifiers. 

Immediately after the MUX is the instrumentation amplifier (indicated INAMP 

in Figure 2). This amplifies the signal and filters out-of-band frequencies in the presence 

of very little noise. The skin-electrode interface also generates offset which also has a 
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potential to saturate the blocks in the signal chain if not dealt with. To alleviate this 

offset, the instrumentation amplifier is designed to have a high pass response to filter out 

 

 

 

Figure 2 Block diagram of an ECG recording system 

 

 

the DC offset. Interference due to electromagnetic fields, electrostatic fields and power 

mains are considered common mode signals and thus the instrumentation amplifier 

should be designed to have a high common mode rejection ratio (CMRR) to be able to 

reject as much of this common mode interference as possible. The low frequency nature 

of the ECG signal means the instrumentation amplifier should have very low flicker 

noise. The overall power consumption of the system is significantly dependent on the 

power consumption of this block and thus requires circuit techniques to reduce power as 

much as possible. 
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Next after the instrumentation amplifier is the ADC which digitizes the signal 

before it is transmitted. For an ECG with a maximum dynamic range of 60dB, a 10-bit 

ADC is required. A good choice for this resolution of the ADC and the low frequency 

sampling is the successive approximation ADC. This can be achieved while dissipating 

reasonably small amount of power. 

The digitized data is then processed in a central processing unit, where the data is 

displayed through the LCD and/or transmitted to a base station where the data is 

received. This received data is analyzed by the physician to determine the condition of 

the patient. 

 

1.3 Thesis Organization 

This thesis describes the design of a low power low noise instrumentation 

amplifier for ECG recording applications. The challenge is to achieve low power 

dissipation, low noise and to have a fully integrated system with reasonably small 

capacitors. A simple chopped AC coupled topology is proposed to achieve the desired 

specification. A new implementation of large resistors is also proposed to make it easier 

to fully integrate the system in complementary metal-oxide semiconductor (CMOS) 

process. 

Section 2 introduces the concept of electrocardiography. The section begins with 

defining electrocardiography and highlighting the historical background to it. The 

generation of the signal and its electrical properties are then discussed. The section 

closes with mentioning a few applications of ECG. 
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Section 3 discusses the details about designing biopotential instrumentation 

amplifiers. Key features of such amplifiers are mentioned. The noise considerations of 

such amplifiers are talked about subsequently. The section ends with discussing a few 

topologies of the instrumentation amplifier found in literature. 

Section 4 talks about the proposed solution. It begins with stating the problem to 

be tackled and then talks about the architecture showing mathematical analysis and 

simulations results to justify the architecture.  

Sections 5 talks about the actual transistor level design of the instrumentation 

amplifier. The design considerations for the various blocks are discussed and the design 

parameters are highlighted. The complete schematic is then presented. 

Section 6 highlights the critical layout considerations and shows the layout of 

some individual blocks and the whole chip. The section also shows the final post layout 

simulation results and presents the comparison of results of this work to other state-of-

the-art instrumentation amplifier performance. 

Section 7 presents the conclusion of this thesis.  
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2. ELECTROCARDIOGRAPHY 

2.1 Definition of Electrocardiogram 

The electrocardiogram (ECG) or elektrocardiogram (EKG) is a medical standard 

for testing the human heart for defects and diseases [9].  It is a simple non-invasive 

method to record electrical activity of the heart. Together with clinical symptoms, 

electrocardiogram forms the initial diagnosis for most heart related diseases [10]. 

 

2.2 Background and History of Electrocardiography 

The idea of studying effects of electricity on biological tissue dates back to 1786 

when Luigi Galvani began some study into animal electricity. But it was Marey who in 

1867 conducted the first electrical measurement from the heart. Augustus D. Waller later 

published the first recorded human ECG in 1887. Subsequently in 1893 Willem 

Einthoven introduced the term electrocardiogram, and then in 1912 invented the 

Einthoven triangle which formed the basis for most ECG recording systems [11] 

Electrocardiography is the best way to measure and diagnose abnormal rhythms 

of the heart [12], particularly abnormal rhythms caused by damage to the conductive 

tissue that carries electrical signals or electrolyte imbalance [13].  In a myocardial 

infarction (MI), the ECG can identify damages in specific areas in the heart muscle, 

though not all areas of the heart are covered [14]. Other pathological conditions that can 

be seen in the ECG are hypocalcaemia, coronary ischemia, among others. These are 
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detected based on how the actual ECG signal from the body of the patient varies with the 

typical ECG signal [15]. The properties of the ECG signal will be discussed in the next 

section. 

 

2.3 The ECG Signal and Its Properties 

2.3.1 Generation of the ECG 

The human heart consists of four compartments namely the left and right atria 

(upper chambers) and the left and right ventricles (lower chambers) as shown in Figure 3 

[9]. The action of these chambers manages blood flow to and from the lungs and to the 

circulatory systems.  

  

 

Figure 3 The human heart 
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The right atrium pumps blood to the right ventricle which provides blood to the 

lungs. Correspondingly, the left atrium pumps blood to the right ventricle and from there 

blood is pumped throughout the body [16]. 

The source of the human heart beat is an electrical pulse that is generated by a 

cluster of cells within the heart called the sinoatrial (SA) node or the pacemaker. The 

pulse from the pacemaker, which is generated at regular intervals, travels though the 

surrounding cells and the heart to the atrioventricular (AV) node.  The AV node serves 

as the medium to allow the atria to complete contraction before the pulse moves to the 

ventricles [9].  As different heart cells are excited by these signals, they are depolarized 

thus resulting in a change in the cells chemical balance. The changes in the cells 

chemical balance can be translated into a voltage called the action potential.  These 

periodic changes results in the ECG wave [16]. 

Generally, twelve leads are used to monitor cardiac signals with the most 

prevalent signal coming from the second lead [17]. A typical signal from the lead two is 

shown in Figure 4. The various segments of the signal and their sources are shown in 

Table 1. 
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Figure 4 A typical ECG signal showing the various segments of the signal 

 

 

Table 1 Sections of ECG signal and their sources. 

Segment of ECG Signal Source 

P-Wave Atria Depolarization 

QRS-Complex Atria repolarization and Ventricle depolarization 

T-Wave Ventricle repolarization 

P-Q Interval Depolarization timing delay 
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The ECG signal that comes from the body through the electrode is composed of 

three main components namely the actual differential ECG signal, the differential 

electrode offset (DEO) and the common mode signals [18]. 

The actual differential ECG signal has amplitudes ranging from about 100µV to 

5mV and has frequencies ranging from about 0.1Hz to a little over 100Hz. These two 

properties of the ECG signal determine the dynamic range and bandwidth requirements 

of the analog front end [18]. 

The differential DC electrode offset which is inherent in the ECG signal results 

from the mismatch in the half cell potentials generated at the electrode skin interfaces. 

This offset voltage can be very large and so need to be eliminated to prevent saturation 

of the blocks in the signal chain. AC coupled systems [19] and current feedback 

techniques are some of the ways to reduce the effect of this DEO. Figure 5 shows an 

equivalent RC circuit at the skin-electrode interface and the half cell potential that give 

rise to the electrode offset. 

 

 

 

Figure 5 Charge distribution and equivalent RC circuit at electrode skin interface 
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• Cp and Rp represent the impedance associated  with the 

electrode/electrolyte interface [8]. 

• Ehc is the half cell potential (HCP) resulting from the charge distribution 

in the electrode/electrolyte interface 

• Rs is the resistance of electrolyte solution [1]. 

The mismatch between the HCPs at the two electrodes interfaces is the differential DC 

offset. 

 

 

Figure 6 Sources of ECG signal errors and interference 
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Common mode signals which are picked up by the human body interfere with the 

ECG signals. Among these sources of common mode interference are signals from 60Hz 

power lines which are capacitively coupled to the body creating a displacement current 

which flows through body. This results in an AC common mode signal at the input of the 

front-end amplifier. Electromagnetic signals and electrostatic signals from other devices 

in the hospitals and homes induce EMF in the leads that connect the electrode to the 

input of the amplifier resulting in common mode signals at the input of the amplifier.  

 Differential systems with high CMRR help to significantly reduce this 

interference. The right leg drive is another way to cancel the common mode signals. 

Figure 6 [1] shows a representation of the sources of interference and how they 

couple to the human body and the readout circuit. The 60Hz power line is capacitively 

coupled to the body through Cbp creating a displacement current which splits between 

Ciso and Cbg [8]. 

Thus the common mode voltage due to this displacement current is given by: 

 VCM = ID

2
 × Rgnd 

 

(1) 

 

 

Rgnd is resistance connected from the amplifier ground to the right leg electrode.  

This common mode that appears at the inputs of the amplifier is significantly 

reduced if a fully-differential amplifier is used. In some cases, inverting amplifier is 

connected from the common mode of the amplifier to the right leg to eliminate this 

common mode voltage [20]. 
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However if there is mismatch between the two impedances Re1 and Re2, a 

differential signals given by 

 ∆Vdiff = Re1  - Re2

Rin

 × VCM 

 

(2) 

 

 

is amplified and appears at the output of the amplifier together with the amplified ECG 

signal [8]. Thus the amplified version of this differential signal interferes with the actual 

ECG differential signal. Rin is the input resistance of the amplifier.  

 

2.3.2 Other Sources of Errors in the ECG Signal 

Other sources of interference with the ECG signals are motion artifacts and pacer 

pulses. In particular involuntary muscle contractions of the muscle pectoralis major in 

the anterior chest wall can cause an artifact in the ECG that stimulates atria flutter. 

Proper positioning of the electrode can reduce these artifact [21].  These forms of 

interference need to be filtered either in the analog domain in the analog frontend  or in 

the digital domain after the ADC [18]. 

 

2.4 Applications of ECG 

ECG recording find applications in professional health care and consumer 

products. In professional healthcare, ECG is used in embedded systems like the 

ambulatory cardiac event recorders, ambulatory long-term monitoring devices, vital 

signs monitoring equipment, holter monitors, automated external defribrillators (AED), 
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and for general diagnostics [22]. In the consumer market, ECG systems are used in 

commercial fitness equipment, and some home health and wellness devices. Most 

treadmills used in the gyms have a heart rate monitor which records the heart signals by 

handgrip or wirelessly through a chest strap. In more recent applications, training shoes 

and iPods worn on the arms provide another means of monitoring the heart rate. 
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3. BIOPOTENTIAL INSTRUMENTATION AMPIFIERS 

3.1 Introduction 

The demand for long term power autonomy and high signal quality in 

biopotential recording devices puts strict design constraints on the analog front-end 

circuit. This makes the front-end instrumentation amplifier a very critical block in the 

whole biopotential acquisition system. Due to fact that it is the first block in the signal 

chain, it defines the noise level and the CMRR of the overall system [23]. It should also 

have a technique to filter the differential DC electrode offset. It is usually the most 

power consuming building block of the analog frontend [1] and the design efforts should 

be focused on keeping a good trade-off between noise and power.  

 

3.1 General Properties and  Design Challenges 

The instrumentation amplifier acquires, amplifies and records the biopotential 

signal with very small noise and interference so that the subsequent blocks can process 

the acquired signal. As mentioned earlier, the ECG signal typically has amplitudes 

between 0.1mV – 5mV and are very low frequency as well (0.1-100Hz). Because of the 

nature of the signal, the dominant flicker (1/f) noise of MOS transistors will greatly limit 

the minimum detectable signal if not dealt with [24]. Furthermore, there is a problem of 

DC offset generated at the skin electrode interface [18]. Metal-oxide semiconductor 

(MOS) transistors also show poor input DC offset performance.  
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In addition to the above, the problem of common-mode interference due to 60Hz 

coupling correlate with the ECG signals. This even becomes more significant in wired 

systems.  

In the light of these challenges, the biopotential amplifier should be designed to 

have the following characteristics [1]: 

1. It should have high input impedance. The skin electrode interface has equivalent 

impedance which may be high within the bandwidth. To be able to transfer the 

ECG signal without any attenuation, the analog interface should have high input 

impedance.  

2. It should have a high CMRR to reject common mode interference. This is 

typically achieved using a fully differential amplifier. However in most fully 

differential biopotential amplifiers, mismatches degrade the CMRR. In most 

recent publications, the current feedback approach has been used to greatly 

maximize the CMRR of the instrumentation amplifier. 

3. It should have a high pass filtering characteristics to reduce the effect of 

differential electrode offset. This can be achieved using an AC coupled network 

[19] and in some cases, using a feedback to sense this offset and feeding it back 

to cancel the effect. The high pass characteristic requires a very low cut off 

frequency to pass the required signals while rejecting the DC offsets as well. This 

mostly requires very large capacitors and resistors to implement the large time-

constant of this frequency making it difficult to achieve a fully integrated system. 
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4. It should achieve low-noise response for high signal quality. The chopper 

stabilized technique has been used in most instrumentation amplifiers to greatly 

reduce the flicker noise. But in some few cases, the autozeroing technique is used 

as well. These two techniques will be discussed later on this section. 

5. It should be designed to have low power dissipation for longer battery life and 

enhanced continuous monitoring. This is usually achieved at the expense of 

noise. The design approach where transistors are designed to operate in weak and 

moderate inversion is suitable for low power designs. 

6. It should have programmable gain and bandwidth to make it useable for different 

biopotential signals and different applications [1].  

 

3.2 Noise Consideration in Instrumentation Amplifiers 

The three main noise sources in instrumentation amplifiers are the flicker and 

thermal noise of the amplifier circuit itself, electromagnetic and electrostatic signals 

coupling through the cables and the human body, and the electrode noise.  

Using shorter length of cables of the leads greatly minimizes the problem of 

noise coupling through cables. The coupling to human body can also be minimized by 

designing a high CMRR instrumentation amplifier. 

The electrode impedance by itself will generate some noise which corrupts the 

signal being detected. The type of electrode used, its chemical makeup and the surface of 
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the human body determine the value of this impedance and the noise voltage it produces 

[8].  

The circuit noise consists of the thermal noise and flicker noise. The thermal 

noise is defined by the transconductance of the amplifier. For a large gm, a lower noise 

voltage is obtained. The flicker noise is more dependent on process. Increasing the gate 

area reduces the flicker noise [25]. To have a good signal-to-noise ratio (SNR), the 1/f 

noise component which is the most significant noise component in biopotential 

instrumentation amplifiers must be lower than the smallest signal of interest [8]. For this 

reason most topologies used in such instrumentation amplifiers employ additional 

techniques to deal with the noise. 

In the design of instrumentation amplifiers, the target is to achieve both low 

noise and low power characteristics. But usually it is difficult to achieve both. The trade-

off between noise and power plays an important role in the design of such blocks and the 

aim of modern biopotential amplifiers is to increase the noise efficiency factor (NEF) 

which quantifies the power efficiency in terms of noise [26]. The NEF describes how 

many times the noise of a system with the same total current and bandwidth is higher 

compared to the ideal case. 

The NEF of an amplifier with a 3-dB Bandwidth of BW and input referred noise 

voltage Vin,rms is given by: 

 NEF=Vin,rms� 2×Itot

π×Vt×4kT×BW
 

(3) 
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Itot is the total current used in the amplifier, Vt is the thermal voltage of the transistor, k is 

the Boltzmann’s constant and T is the absolute temperature. 

A lower value of NEF means that for a given noise level the amplifier can 

achieve a lower power dissipation [8].  

 

3.3 Noise and Offset Reduction Techniques in Instrumentation Amplifiers 

3.3.1 The Chopper Stabilization Technique  

Chopper stabilization is a technique used to minimize the effect of flicker noise 

and offset. It uses the principle of modulation and demodulation to shift the low 

frequency flicker noise band and DC offset to higher frequency in a manner such that, 

applying a filter subsequently attenuates the effect of the flicker noise and the input 

offset of the amplifier. 

Unlike the sampling techniques discussed later in the section, chopping works by 

multiplying the noise by a square wave and thus produces harmonics of the noise 

spectrum at odd multiples of the chopping frequency.  

The operation of the chopper stabilization technique as applied to amplifiers is 

described in Figure 7. To prevent aliasing the bandwidth of the signal must be smaller 

than one half of the chopping frequency [1]. For an input signal, x(t) applied to a 

chopper amplifier, the signal is first modulated using a square wave, m(t) having a 

frequency of fchop. This results in a frequency spectrum with the input signal X(f) shifted 
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to the odd harmonics of the chopping frequency. The up-converted input signal and the 

1/f noise N(f) are then amplified. At the output of the amplifier, the amplified version of  

 

 

Figure 7 The chopping operation as applied to an amplifier 

 

 

X(f) is demodulated with m(t) while the 1/f noise is modulated. Replicas of the amplified 

input signal as well as the 1/f noise remain at odd harmonics of fchop. These unwanted 

signals can be filtered by a low pass filter (LPF). By this DC offsets and flicker noise 

can be greatly reduced in the amplifier [27].  

 The following shows the mathematical concept of the chopper amplifiers [28]. 

The modulation signal m(t) can be expanded in a fourier series as follows: 

 m�t� = 2

jπ
 �  1

n
exp �j2πnt

T
�  

∞

n=-∞
n=odd

 

 

(4) 

 

 

with an equivalent frequency transform given by: 
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 |M�f�|2 = 4

π2
 �  1

n2
δ 	f - n

T

  

∞

n=-∞
n=odd

 

 

(5) 

 

 

For a random input signal, x(t) that is amplified by a gain of A(f) and chopped by 

m(t), the resulting power spectral density at the output is obtained by convolving the 

amplified random signal and chopping signal as follows: 

 Syy (f) = �Sxx�f� |A�f�|2 � ⊗ |M�f��|2 (6) 

 

Substituting M(f) into the above: 

 Syy(f) = 4

π2
 �  1

n2
 �A 	f-

n

T

�2

Sxx  	f - n

T

  

∞ 
n=-∞
n=odd

 

 

(7) 

 

 

 

• Effect of Chopping on White Noise 

For an amplifier with a first order response given by: 

 
A (f) = 1

1 + j f
fo

 
 

(8) 

 

 

The power spectral density of the noise at the output, where  

 Sxx  �f� =  Swhite 

 

(9) 

 

 

is given by: 
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 Syy (f) = 4

π2
 �  1

n2
  Swhite

1 + 	fT - n
foT


2
 

∞

n=-∞
n=odd

 

  

(10) 

 

 

 

Simplifying using the Poisson summation [29] results in 

 

Syy  �f� ≈  Swhite  
 

for foT≫1 

 

(11) 

 

 

Thus for bandwidth of the amplifier greater than the chopping frequency, chopping has 

very little influence on the white noise. 

 

• Effect of Chopping on Flicker Noise 

For flicker noise, 

 Sxx �f� = c

f
 

 

(12) 

 

 

where c is a constant that depends on process and the dimensions of the transistors. 

The power spectral density at the output after chopping will thus be: 

 Sxx �f� = c

f
 

 

(13) 

 

 

 
Syy �f� = cT 4

π2
 �  1

n2
 1|fT - n|  1�1 + 	fT - n

foT

2�  

∞

n=-∞
n=odd

 
 

(14) 

 

 

For foT greater than 1, the power spectral density is greatly reduced at low frequencies. 
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The effect of chopping on the flicker noise is the same effect it has on the input 

referred offset voltage of the amplifier and thus the offset of chopper amplifiers is also 

reduced by chopping. 

Chopping is beneficial in reducing flicker noise but it has one key drawback. For 

a chopper stabilized amplifier in closed loop, the input voltage will exhibit residual 

offset which is mainly from clock skew in the chopper clocks and parasitic capacitance 

imbalance in the choppers [30].  

 

3.3.2 The Principle of Autozeroing 

Autozeroing is a principle that is used to reduce the effect of offset and noise in 

amplifiers. It generally consist of two phases; the storage phase, during which the offset 

or noise voltage is estimated and stored on a capacitor and the cancellation phase, during 

which the signal is amplified and the offset or noise is subtracted from the signal [31]. 

 

 

Figure 8 Schematic of autozeroing technique with output offset storage 
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Two ways to implement the storage phase of the autozero technique are the 

output offset storage and the input offset storage [31].  

In Figure 8 [31], capacitor C1 is used to store the output referred offset in one 

clock phase and subtract it from the signal in the second clock phase. This is called the 

open-loop offset cancellation [27]. 

 

 

Figure 9 Schematic of autozeroing technique with input offset storage 

 

 

Figure 9 [31] shows a simple schematic of the autozero technique with input 

offset storage. This is also called the closed loop offset cancellation [27] and it is the 

more common approach used in instrumentation amplifiers for biomedical application.  

In the sampling phase, the voltage that is stored on capacitor C1 is given by 

 Vc = A

A + 1  Vos 

 

(15) 

 

 

During the subtraction or cancellation phase the net output voltage is given by 
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 Vout = �Vin  + 1

A + 1  Vos � A  

 

(16) 

 

 

For a high gain amplifier, the effect due to the offset is almost zero. 

The autozeroing approach has the same effect on the 1/f noise as it has on the 

input offset.  

The effect of autozeroing on thermal noise is however different. The under-

sampling of thermal noise results in noise folding and so in essence the autozero 

techniques improves DC offset and flicker noise at the expense of higher thermal noise 

at baseband frequencies [32]. 

Besides the issue of noise folding, autozero technique also suffers from residual 

offset due to charge injection when using MOS switches. Mismatches in the switches 

causes a significant increase in the residual offset and thus a compensation of the 

increase in the autozero capacitor is required which is not always desirable. 

A third method that has been used to deal with the 1/f noise, is the correlated 

double sampling (CDS) [32]. This method also uses sample and hold circuitry to 

estimate and subtract the sampled noise from the input signal so that ideally, the output 

will be free of the offset voltage and the low frequency noise. This suffers from the 

problem of noise fold over as in the autozero technique. 
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3.4 Existing Instrumentation Amplifier Topologies 

A well known topology of biopotential amplifiers is the three operational 

amplifier (opamp) instrumentation amplifiers [33-35] shown in Figure 10. This topology 

has a high input impedance, and the gain of the system is obtained from the ratio of the 

feedback resistors [35]. The CMRR of this topology depends on the matching of the 

resistors [36]. In standard CMOS technology, the matching of resistors can be made 

accurate by laser trimming but this is expensive. This topology is simple to implement 

but not very efficient in low noise and low power applications. On the other hand, an 

additional circuitry is required for the DC electrode offset elimination and a low pass 

filter to define the high cut-off frequency. This further increases the power and 

complexity of the circuit as well. Also the three opamps required results in high power 

dissipation in this topology. 

 

 

Figure 10 The schematic of the three opamp instrumentation amplifier 
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Another topology of instrumentation amplifiers is based on switched-capacitor 

(SC) circuits shown in Figure 11 [37]. The SC amplifier architectures have an inherent 

autozero mechanism and thus capable of eliminating the 1/f noise of the CMOS 

amplifiers. It however suffer from noise fold-over above the Nyquist frequency [27]. 

This results in a significant increase in the thermal noise level. To be able to still achieve 

good noise performance for the SC amplifiers, more power has to be dissipated. Hence 

the SC instrumentation amplifier topology is not power efficient approach for low noise 

systems. It also has reduced input impedance due to the sampling mechanism at the input 

of the amplifier.  

 

 

Figure 11 The schematic of a switched capacitor instrumentation amplifier 
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The current balancing (current feedback) instrumentation amplifier (CBIA) [38-

40] is another topology for implementing biopotential IAs. In this topology, the ratio of 

two resistors, R1 and R2 is the overall gain of the instrumentation amplifier as shown in 

Figure 12. This topology eliminates the stringent need for matched resistors for high 

CMRR and the need for low output impedance [1]. Thus very high CMRR can be 

achieved with this implementation. This implementation is different from the 

conventional current-mode open-loop instrumentation amplifier because it has a 

feedback current, I1 flowing through R1 rather than the input buffers. In this way, the 

currents of the input buffers are balanced by the current from the feedback and so the 

buffers are essentially only buffering the input [8]. Unlike the open loop current-mode 

instrumentation amplifiers, R1 is not limited by the output resistance of the input stage 

and this becomes important for low noise applications [41]. Power consumption is 

however high in CBIAs. 

In [39], a low noise amplifier is proposed which implements the CBIA and 

chopping modulation [27] to reduce the 1/f noise of the noise of the system. This system 

is however not fully integrated since very large capacitors are required in the 

implementation which is not feasible in most CMOS processes. 

In [19], a biopotential amplifier is designed with capacitive coupled network to 

reject the DC electrode offset. This has been employed in different other works. This 

provides a simple topology to achieve the desired frequency response as well as the 

input impedance required for recording biopotential signals. The ratio of capacitors 

determines the gain of the system. It has the advantage of an extremely low power 
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Figure 12 The schematic of a current feedback instrumentation amplifier 

 

dissipation because it only requires a simple amplifier which can be designed for low 

power applications. Also a pseudo resistive network is implemented with MOS to have a 

large resistance and hence relaxes the constraint on the size of the capacitors and so 

makes it easy to fully integrate the amplifier. However the disadvantage of this topology 

is the very high noise response because no additional circuitry is implemented to reduce 

the flicker noise.  

In [42] an instrumentation amplifier is proposed for the front-end of an EEG 

system. This system implements a chopper stabilized low noise amplifier. The chopping 

at the virtual nodes of the amplifier results in a parasitic resistance which reduces the 

overall input impedance of the amplifier. This effect is corrected by a feedback which 

uses an OTA and a capacitor and resistor. This system requires a low pass filter to limit 
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the bandwidth to the desired frequency. The front-end is low power and low noise. It is 

however not fully integrated since the capacitors required are not achievable in CMOS 

processes. 
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4. PROPOSED SOLUTION 

4.1 Definition of Problem 

In section 3, the noise-power trade off in instrumentation amplifiers was 

discussed. In many of the publications on this subject, emphasis is placed on one of these 

parameters (noise and power dissipation), while the other is minimized as much as 

possible. However the demand for low power and low noise ECG systems is the driving 

force of research recently.  

Also the need for a fully integrated system that can adequately cover the entire 

frequency band of an ECG signal is desired. This requires large resistors and capacitors 

to implement the large time-constant for the high pass characteristic. A number of ways 

to implement large resistors has been proposed but most of these still require a large 

capacitor to be integrated in addition to realize this time constant.  

The problem is to design a fully integrated ECG instrumentation amplifier which 

achieves both low noise for enhanced signal detection and low power for continuous 

monitoring. 

 

4.2 Architecture 

In this work, the chopper stabilized technique is used together with the AC 

coupled technique to achieve overall better performance. The objective is to achieve the 
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desirable features of the two techniques while dealing with the issues of combining the 

two techniques.  

The configuration in Figure 13 shows a chopper stabilized operational 

transconductance amplifier (OTA) with an AC coupled feedback system which has a 

band pass response desired for such systems. The ratio of the input and feedback 

capacitor provides the mid-band gain for the system. The input capacitors eliminate the 

effect of the differential electrode offset that is inherent in the biopotential signal.  

 

 

Figure 13 Block diagram of the proposed architecture 

 

 

The resistor R2 and capacitor C2 combine to determine the low cut off frequency, 

whereas the transconductance of the OTA, the mid-band gain and the output capacitance 
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together determine the high cut off frequency. An OTA is used instead of an opamp to 

eliminate the need of an additional filtering stage at the output of the second chopper. In 

this way the output chopper operates on the output current of the OTA before this 

current is integrated by the output capacitor. This topology has the advantage of lower 

power, lower noise and ease of design since the OTA is the only active block. 

In the topology used in [19], the input impedance of the system is very high and 

that is one key requirement of any instrumentation amplifier. In the case of the proposed 

system, the chopping at the virtual ground nodes of the OTA generates a parasitic 

resistor which is not desirable. The equivalent circuit for the parasitic resistor is shown 

in Figure 14. This resistor acts in parallel with the input impedance of the OTA to reduce 

its overall input impedance. 

The lower this resistance, the lower the overall input impedance and hence the 

more the system deviates from ideal behavior. System level derivations and analysis 

further discusses this problem and the proposed solution.  

 

 

Figure 14 The switched capacitor resistor 
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Also in this work, a new implementation of the large resistor R2 using the T-

network [43] with pseudo resistors is proposed. This relaxes the constraint of having a 

high parasitic resistance to achieve desired performance and makes it easier to achieve a 

fully integrated solution on chip. 

The CMRR of this topology is mainly determined by the proper matching of the 

two input and two feedback capacitors. There is systemic common mode gain that is also 

inherent in the topology. The common mode rejection (CMR) is defined as the ratio of 

the differential voltage at the output of the amplifier due to common mode input signal 

to the common mode signal itself.  

Chopping at the virtual node of the OTA has a drawback of the reduced CMRR 

[42] since a small mismatch in the input capacitors can result in the common mode 

signal appearing as a large differential signal at the output.  

 

4.3 Justification for the Architecture 

4.3.1 Frequency Response and Noise Analysis of the Topology 

 Figure 15 shows a single-ended equivalent circuit of the proposed architecture.  

Rp is used to represent the parasitic resistor from the switched capacitor effect at the 

virtual node of the OTA. Figure 16 is a mathematical model of the single-ended to 

analyze the frequency response and noise of the architecture. The mathematical model 

shows the ideal transfer function in the block diagram from the summing node (the non-

inverting terminal) to the output.  
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This ideal transfer function is given by: 

 

 

T�f� = 
1

C1 �s + 1
RpC1

� 	s + Gm

Cout

 

 

 

(17) 

 

 

 

 

Figure 15 Single-ended version with the switched capacitor resistor 

 

 

 

 

Figure 16 Model to analyze the system for stability and noise 
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• Loop Gain 

The loop gain of the system is obtained by multiplying the feedback factor by the 

open loop gain. This is given by: 

 LG (s) = Aol 	s + 1
R2C2


 �s + Gm

AmC
out

�
C1 �s + 1

RpC1
� 	s + Gm

Cout

  

 

(18) 

 

 

Aol is the open loop gain which is simply the DC gain of the OTA which is given by: 

 Aol = Gm Rout 

 

(19) 

 

 

The overall transfer system transfer function is obtained from a general closed 

loop system as: 

 H (s) = Aol

1 + LG(s)
 

 

(20) 

 

 

Substituting (17) and (18) into (19) results in the closed loop transfer function given by:  

 
H (s) = Ams 	s + 1

R2C2

 �s + Gm

AmC
out

� 
 

(21) 

 

 

Am is the midband gain of the closed loop transfer function given by: 

 Am  = C1

C2

 

 

(22) 
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The closed loop response has low cut-off frequency (ωLCF) and high cut-off frequency 

(ωHCF) located at: 

 ωLCF  = 1

R2C2

   

(23) 

 

 

 ωHCF  = Gm

AmC
out

  

 

(24) 

 

 

 

• Noise Transfer Functions 

1. Resistors 

The noise of the parasitic resistor and feedback resistor are analyzed in a similar 

way using the model in Figure 16. The noise transfer function is obtained by multiplying 

the noise voltage and the ideal transfer function in equation 17. 

The noise transfer function of the feedback resistor is given by: 

 
Hn,R2 = s C2R2 	s + 1

R2C2

 �s + Gm

AmC
out

� 
 

(25) 

 

 

The noise spectral density at the output is obtained by multiplying the noise 

transfer function by the noise power due to R2, v
2

n2.  

 SR2  (f) = vn2
2 � s

C2R2 	s + 1
R2C2


 �s + Gm

AmC
out

��
2

 

 

(26) 
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The input referred noise spectral density is found by dividing equation 26 by the 

square of the ideal transfer function from the summing node to the output. 

 SR2,input (f) = vn2
2  � 1

sC2R2

�2

 

 

27 

 

 

Similarly, the input referred noise spectral density of Rp is given by 

 SRp,input (f) = vnp
2  � 1

sC2R2

�2

 28 

 

The noise is inversely proportional to the value of the resistance. This makes the 

noise of Rp is significantly larger than that of R2. 

 

2. OTA 

This is the biggest contributor of noise in the system. The flicker noise of the 

OTA is significantly reduced by the chopping operation. The noise is thus modeled as 

white noise as follows; 

The noise transfer function is: 

 Hn,Gm = sAm �s + 1
RpC1

�
Rx 	s + 1

RC2

 �s + Gm

AmC
out

� 

 

(29) 

 

 

The noise spectral density at the output is thus given by: 

 SGm = � sAm �s + 1
RpC1

�
Rx 	s + 1

RC2

 �s + Gm

AmC
out

�� vn,Gm
2  

 

(30) 

 

 

where vn,GM  is the noise power of the OTA 
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The input referred spectral noise density is thus given by: 

 SGm,input = �s + 1
RpC1

s
�

2

vn,Gm
2  

 

(31) 

 

 

The white noise of the OTA is shaped by the transfer function above. The shaping effect 

is minimized by choosing 
1

RpC1

  to be smaller than frequency band of interest. 

 

4.3.2 Simulation Results from Mathematical Model 

The transfer function for the proposed instrumentation amplifier is given by: 

 

Vo

Vin

 = sC1�s2Cout
Gm

�C1 + C2� - s �Cout
Gm

� 1
Rp + 1

R2 
�  + C2�  - G2� 

 

(32) 

 

 

For an infinite value of Rp, the ideal transfer function is given by:  

 

Vo

Vin

 = C1s

C2 	s + 1
R2C2


 �s + C2Gm

C1C
out

� 
 

(33) 

 

 

This transfer function is plotted in MATLAB for different values of the parasitic 

resistance and the feedback resistance. 

In the simulation, the mid-band gain (given by the ratio of C1 and C2) is chosen 

to be 40dB. C1 and C2 are chosen to be 20pF and 200fF respectively to be able integrate 

in CMOS process. Cout is chosen to be 20pF and the Gm is chosen accordingly to obtain 

low pass bandwidth of 100Hz.   
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Figure 17 Frequency response of the IA for different values of the parasitic resistance 
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Figure 18 Frequency response of the IA for different values of the feedback resistors 

 

 

4.3.3 Discussion of Mathematical Model Results 

The plot in Figure 17 shows the frequency response obtained for different values 

of the parasitic resistance for a given fixed feedback resistance of 1 TΩ. For values of 

the parasitic resistance greater than 500 MΩ, a very good response is obtained. The 

value of this resistor is dependent on the chopping frequency and the input capacitance 

of the OTA. Proper choice of these parameters results in better overall response. This 
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also places limits on the chopping frequency; the chopping frequency should be chosen 

to be greater than the 3dB frequency of the OTA and also greater than the flicker noise 

corner. Details of this are discussed later in this section. 

The plot in Figure 18 shows the variation of the frequency response with the 

value of the feedback resistance for a given value of the parasitic resistance. From this 

plot, it is observed that the greater the value of the feedback resistor, the better the 

response. For the given parasitic resistance of 1 GΩ, a feedback resistor greater than 1 

TΩ is required to obtain the desired frequency response.  This however comes at the cost 

of the size of the input capacitor to provide the gain for the circuit. This necessitates an 

implementation of a large resistor which is discussed later in this section. 

 

4.3.4 Macromodel Simulation 

In this system-level implementation in the CADENCE analog environment, the 

macromodel of the fully differential OTA shown in Figure 19 is used. One important 

parameter that is modeled is the input capacitance, Cin of the OTA since this directly 

affects the size of the parasitic resistor. Rnd and Cnd model the non-dominant pole, Rout is 

the output resistance of the OTA. In this system, a very large feedback resistance is used 

in the order of 1 TΩ.   
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Figure 19 OTA macromodel 

 

 

The objective of this simulation is to determine the minimum value of the 

parasitic resistor that will ensure the proper operation of the circuit. This is done by 

optimizing the input capacitance (which is largely dependent on parasitics) and the 

chopping frequency. The value of the parasitic resistor for one half of the switched 

capacitor network in Figure 14 is shown in Figure 20. 

 

 

Figure 20 Switched capacitor equivalent half circuit 
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The switched capacitor resistance of the half circuit is found by calculating the 

charge transfer from Vin+ to Vin- in one clock cycle. This results in an effective resistance 

given by: 

 Rp = 2

Cin  × fchop

 

 

(34) 

 

 

where Cin is the input impedance of the OTA and fchop is the chopping frequency of the 

OTA. 

 

4.3.5 Design Considerations on the Chopping Frequency 

To ensure that the chopped signal is not filtered out by the frequency response of 

the OTA, the chopping frequency is chosen to be smaller than 3-dB bandwidth of the 

amplifier [44]. The smallest noise is achieved when chopping frequency is chosen to be 

equal to the amplifier corner frequency [27]. To ensure that the whole flicker noise band 

is modulated and thus prevent issues of noise folding back to DC, the chopping 

frequency is chosen to be greater than the flicker noise corner of the amplifier. 

 

4.3.6 Design Considerations on the Input Capacitance 

The input capacitance of the amplifier is largely accounted for by the parasitics. 

Much effort is required in the layout to minimize this capacitance. 

The input capacitance depends on the sizing of the transistors. The larger the 

area, the larger the parasitics and hence the input capacitance. In low noise amplifier 



 

 

 

46

designs, the input transistors are sized as large as possible to achieve very small noise. 

This comes at the cost of the parasitic capacitance.  

The choice of the input capacitance also has a direct effect on the frequency of 

the spikes due to charge injection. The higher the input capacitance, the larger the time 

constant of the spikes and the lower the frequency of the spikes which increases the 

residual offset. Thus the input capacitance should be minimized to reduce this effect. 

 

4.3.7 Design Consideration on the Input Modulator 

One of the critical issues in the design of this amplifier is the design of the input 

modulator. The effect of charge injection and parasitic coupling causes spikes in the 

output of the input modulator as mentioned earlier. The spikes are amplified and 

demodulated resulting in residual offset at the main output. However, the energy of the 

spikes will be located at high frequency and so if the OTA is designed to have a 

bandwidth less than the frequency of the spikes, the spikes will be significantly 

attenuated before demodulation. The residual offset will thus be significantly reduced 

[45]. Using an OTA with a very wide bandwidth is desirable, but that will also have a 

very large input offset since the spectral components of the spikes will all contribute 

[27]. 

The time constant for the charge injected signal is determined by the switch ON 

resistance of the modulator and the input capacitance of the amplifier. This is made 

small such that frequency component of the spikes are higher than the OTA’s bandwidth 

and thus result in a significantly low residual offset. 
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Figure 21 Model for evaluating the residual offset of the amplifier 

 

 

Figure 21 shows a model for evaluating the residual offset due to mismatch 

imbalance in the input chopper. The residual offset that results due to charge injection is 

given by the expression below [31]. 

 Vos  = 2 �R1 + R2��CP1 - CP2� Vf × Fchop 

 

(35) 

 

 

R1 and R2 are the switch ON resistance of the input switches. Cp1 and Cp2 are the 

parasitic capacitance due to the two inputs. Vf  is the amplitude of the square wave 

chopping signal and fchop is the chopping frequency. 

The equation above shows the importance of careful layout of the input chopper. 

Minimizing the mismatches in the parasitics results in a significantly lower residual 

offset. Using a lower chopping frequency also reduces the residual offset as can be seen 

in the equation.  
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 Another consideration on the input modulator is noise. The thermal noise of the 

input modulator should be much smaller than the thermal noise of the OTA so that it 

would not significantly increase the thermal noise floor of the system. The input 

modulator switches should thus be designed to have a lower thermal noise. The thermal 

noise of the output chopper is not critical and should be sized to reduce parasitics. 

 

 

Figure 22 Frequency response of the IA for different chopping frequencies 
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Figure 23 Frequency response of the IA for different values of the input capacitance 

 

 

4.3.8 Discussion of the Macromodel Simulation Results 

As already predicted by the model in earlier in the section, the desired response is 
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capacitance we obtain a much deviated response from the ideal situation. Better results 

are obtained by minimizing both of these parameters. 

 

4.4 Trade-off Between Input Impedance and Noise 

 

 

Figure 24 Plot showing tradeoff between input capacitance and  input referred noise 
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impedance of the instrumentation amplifier. The chopping frequency varies inversely 

with the parasitic resistance for a fixed input capacitance of the OTA. Thus the higher 

the chopping frequency, the less the input impedance which causes a reduction in the 

overall gain of the instrumentation amplifier. Reduced gain of the instrumentation 

amplifier results in a higher input referred noise as can be seen in the input noise versus 

chopping frequency plot. 

For chopping frequencies less than the flicker noise corner of the OTA, the input 

referred noise rises slightly as can be seen in the plot. This is because the modulation of 

the flicker noise happens for only part of the flicker noise band and thus a slight increase 

in the noise at very low chopping frequencies. 

 

4.5 Proposed Implementation of Large Resistor 

The T-network has been used to implement a continuous impedance multiplier in 

[43].  

 

 

Figure 25 T-network of resistors 
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The effective resistance of a T-network of resistors shown in Figure 25 is 

determined as follows. 

Assuming either Va  or Vb  is at approximately zero potential, the effective resistance 

seen across the T-network can be calculated as: 

 Reff  = Ra + Rb + RaRb

Rg

 

 

(36) 

 

 

Proper choice of Ra, Rb and Rg can result in a very large resistance. Using a poly 

resistor will result in a very significant increase in the noise of the circuit. To prevent 

this issue, a diode connected transistor is used to implement the resistors Ra and Rb. The 

diode connected transistor can implement a very large resistance by itself [19], so using 

it in this configuration will even make the resistance significantly larger. Rg can be 

implemented using a simple poly resistor with a very small resistance value or a 

transistor in triode region. 

The diode connected transistor is used to generate the resistor because the 

voltage variations across the amplifier results in very small current through the diode 

resulting in very large resistance in the range of 1TΩ. If the diode connected transistor is 

used in the T-network, an equivalent resistance greater than 10TΩ can be achieved. This 

relaxes the specification of the parasitic switched capacitor resistor. The proposed 

implementation is shown in Figure 26. 
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Figure 26 T-network implementation using the diode connected NMOS 
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5.  TRANSISTOR LEVEL IMPLEMENTATION 

5.1 Operational Transconductance Amplifier 

The current mirror OTA is a popular OTA topology. Compared with the folded 

cascode and telescopic topologies, the current mirror OTA is advantageous in terms of 

headroom and so for applications which require low power, the voltage supplies can be 

reduced with little effect on the design. Figure 27 shows the schematic of the fully 

differential current mirror OTA. 

 

 

Figure 27 The fully differential current mirror OTA 

 



 

 

 

55

5.1.1 General Design Consideration 

• DC Gain 

The DC Gain for the OTA is given by: 

 Ao  = Gm Rout 
(37) 

 

where the Transconductance for a given mirroring factor, K is given by: 

 Gm = Kg
M1

 (38) 

 

The frequency dependent Transconductance of the OTA is given by 

 Gm = Kg
M1

1 + s
wND

 (39) 

 

where wND is a non-dominant pole which is located at: 

 wND = g
M2

CGS2�1 + K� (40) 

 

The Gm depends on the mirroring ratio, denoted K. The higher the mirroring 

ratio, the more the Gm that can be obtained and hence the greater the DC gain. However 

the increase in K results in a proportional increase in the size of the output transistor of 

the mirror and hence an increase in the parasitics at the mirroring node, and thus a 

reduction in the bandwidth. Also increasing the K factor means increasing the power 

consumption of the OTA. 

The output resistance of the OTA is mainly determined by the sizing of the 

output transistors and the amount of current in the output arms. The lengths of the 

transistors can be increased to obtain a higher resistance but that will also result in 
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increasing the parasitic at the output node.  To boost the output resistance, a set of 

cascode transistors can be used at the output but this will come at the cost of voltage 

headroom. The cascode devices will also introduce an additional pole that will reduce 

the bandwidth of the OTA. 

 

• Input Referred Noise 

The input referred thermal noise of the OTA is given by: 

 vn
2  = 16kT

3g
M1

�1 + g
M2

g
M1

 + g
M3

 + g
M4

K2g
M1

� 

 

(41) 

 

 

It is observed from equation 41 that, the most important parameter for the noise 

is the gm of the input devices. Increasing the gm will reduce the noise but this requires 

an increase of bias current, transistor dimensions or both.  Again using a K factor greater 

than one also reduces the noise. This however increases the power consumption and also 

results in larger parasitics at the non-dominant pole location. 

Flicker noise is minimized by using PMOS input devices with much lower 

flicker coefficient, and sizing them as well to have a larger area and reduce the noise. 

 

• Power Consumption and Maximum Signal Swing 

The power consumption and maximum signal swing of this topology are given by: 

 P= �1 + K� Itail × (Vdd - Vss) 
(42) 
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Vswing  = (V
dd

 - Vss) - 2Vdsat 

 

 

(43) 

 

 

 

5.1.2 Designing Using the ACM All Region Equation 

The current mirror OTA topology is a standard topology for driving capacitive 

loads as in our case [19], but to ensure a very low noise and very low power design, 

much effort is required in the design of the transistors to ensure the required low power 

and noise. For the design, important features of the ACM transistor model (named after 

the three individuals that formulated the model – Ana, Carlos, Marcio) [46] is exploited 

to properly optimize the noise and power of the OTA. 

The ACM model is a very attractive model of the transistor that allows transistors 

to be designed for any inversion level; weak, moderate or deep inversion, using the same 

set of equations. In this case where very low power is desired, it is obvious that most of 

the transistors will be operating in weak or moderate inversion since very small bias 

currents are used. To properly characterize the behavior of these transistors, it is more 

appropriate to use the all region ACM model. 

The ACM model for the MOS transistor is defined by the following equations. 

 Id = g
m

× n × ∅t

1 + �1 + if
2

 

 

(44) 

 

 

 W
L�  = g

m

µCOX∅t

� 1�1 + if  -1� 

 

(45) 
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 fT  = µ∅t

2πL2
 �2�1 + if -1  

 

(46) 

 

 

Id is the transistor drain current, gm is the transconductance in saturation region, n is the 

slope factor which is typically chosen as 1, if is the inversion level or coefficient, W and 

L are the width and lengths of the transistor, µ is the mobility of the holes or electrons of 

the transistor, φt is the thermal voltage of the transistor and fT is the intrinsic cut-off 

frequency of the transistor. 

If if  is greater than one, the device operates in strong inversion and the gm is 

proportional to the square root of Id. If if is much less than one, the device operates in 

weak inversion and the gm is proportional to Id. By appropriately setting these 

parameters a much optimized design solution is obtained. Table 2 summarizes design 

parameters of the OTA. 

 

Table 2 Summary of the ACM design of the OTA 

Device Dimensions 

(W/L) 
ID Inversion 

coefficient 

Gm efficiency 

(Gm/ID) 

M1 5µm/0.6µm 150n 0.2178 22.67 

M2 20 µm /10 µm 150n 0.24 20.70 

M3 20 µm /10 µm 150n 0.24 20.73 

M4 30 µm /10 µm 150n 1.8 18.48 

M(Itail) 10 µm /2 µm 300n 10.2 4.0 
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As shown in the Table 2, most of the transistors used in this OTA are designed to 

operate in the weak inversion. This allows us to use very small bias current and still get a 

good gm efficiency and hence good performance for the OTA for the application. A tail 

current of 300nA was used. Minimum channel length was used for the input devices to 

minimize the gate capacitance to keep the parasitic resistance at the desired value. The 

output devices were designed to have large L to increase the output resistance and hence 

the DC gain of the OTA. 

 

5.2 The Common Mode Feedback Circuit 

In fully differential amplifiers, a common mode feedback circuit (CMFB) is 

required to stabilize the output DC level of the amplifier. This is necessary because for a 

small mismatch in currents in the two arms, owing to the large output impedance, the 

equivalent DC voltage difference between the two outputs is significantly large and can 

throw the amplifier off balance and thus degrade the performance drastically.  

A typical CMFB circuit has a common mode detector which is used to determine 

the common mode voltage level of the amplifier. This voltage is compared with the 

desired reference and the error voltage is fed back into the amplifier to correct the error. 

In this  topology of the CMFB used shown in Figure 28, the two output are 

individually compared to the desired reference, in this case, GND, then the individual 

errors are summed up and fed back to the tail current to correct the error. 

This is a simpler way to implement the CMFB without using large resistors and 

capacitors as common detectors which takes up some area as well. The disadvantage is 
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that to obtain the same loop performance of the CMFB loop as the original amplifier, the 

same amount of power used in the amplifier is needed in the two differential pairs. 

 

 

 

Figure 28 The common mode feedback circuit 

 

 

Table 3 Device dimension of the CMFB 

Device Dimensions (W/L) ID 

M5 5µm/0.6µm 150n 

M6 10 µm /2 µm Error Current 

M(Itail) 10 µm /5 µm 300n 
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 Table 3 summarizes the design parameters of the CMFB. It is designed to have 

the same AC behavior as the OTA. 

 

5.3  T-network Pseudo Resistor 

 

Figure 29 T-network pseudo resistor 

 

 

Figure 29 shows the T-network pseudo resistor. Grounded resistor Rg is 

implemented using a transistor, Mg with a gate bias and sized to realize the required 

resistance. 

The equivalent resistance, given by the source-drain resistance, Rds of the 

transistor is derived from: 

 Rds=
L

µCoxW�VGS-VT-VDS� 

 

(47) 

 

 

Table 4 shows the dimensions of the transistors used in the implementation of the T-

network. 
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Table 4 Device dimension for T-network 

Device Dimension (W/L) 

M1 5µm/2.5µm 

Mg  160µm/0.6µm 

 

 

5.4 The Chopper 

 

Figure 30 Schematic of the modulator 

 

Figure 30 shows the schematic of the chopper modulator. The chopper should be 

driven with a non-overlapping clock to prevent noise leakage. On the other hand the duty 

cycle of the clock should be almost 50% to have proper modulation [32]. 

In designing the transistors for the chopper, the main considerations are the ON 

resistance, and the parasitic capacitance of the switches of the modulator. To obtain a 

small ON resistance which is desirable to reduce significantly the residual offset, a small 
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device length is required. Also, a small ON resistance ensures higher frequency of the 

chopping spikes which reduces the resulting residual offset. The switch resistance is also 

a noise source and thus should be reduced as much as possible.  

The implementation of the switches is another issue of critical importance. To 

reduce the charge injection which results in residual offset, a CMOS switch will be 

preferred to either an NMOS or a PMOS switch. However this also adds some more 

parasitic capacitance because of the number of devices. Thus a choice of a simple 

NMOS is chosen which provides a good trade-off between the two limitations.  

The switch dimensions used in the chopper is shown in Table 5. 

 

 

Table 5 Device dimension for chopper 

Device W/L 

M1 2.5µm/0.6µm 

 

5.5 Non-Overlapping Clock Generator 

The two phase non-overlapping clock generator is implemented using the 

schematic in Figure 31. It basically consists of two NAND and seven NOT gates. The 

logic gates are designed to minimize parasitic capacitance as much as possible to 

minimize the delay.  This also ensures a duty cycle for both phases being approximately 

50%. 
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The non-overlapping clock phases are shown in Figure 32. They exhibit very fast 

rise and fall times as well as approximately 50% duty cycle. 

 

 

 

Figure 31 The two phase non-overlapping clock generator 

 

 

 

Figure 32 The two clock phases generated by the clock generator 
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5.6 The Buffers 

Buffers are designed to drive the outputs of the instrumentation amplifier. This is 

implemented using a unity gain feedback configuration of an opamp. 

A two stage opamp with miller compensation was designed for this purpose. The 

main requirement here was a very large DC gain and a large gain bandwidth product 

(GBW) as well to be able to ensure good performance when used in feedback.  

Figure 33 shows the schematic of the opamp used to implement the buffer. Table 

6 shows the device dimensions used for the design of the opamp. 

 

 

 

Figure 33 Two stage operational amplifier with miller compensation 
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Table 6 Deviced dimension for Opamp for buffer implementation 

Device Dimension (W/L) ID(A) 

M1 25µm/0.6µm 100n 

M2 10 µm /1 µm 100n 

M3 10 µm /1 µm 200n 

M4 20 µm /2 µm 200n 

M5 50µm/1µm 200n 

M6 20µm/1µm 200n 

M(Itail) 20 µm /2 µm 200n 

 

 

5.7 Complete Schematic 

The complete schematic is shown in Figure 34. Results from simulating the 

whole system is be discussed in section 6. 
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Figure 34 Complete schematic
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6. LAYOUTS AND POST-LAYOUT SIMULATION RESULTS 

6.1 Critical Layout Issues 

The most critical considerations in the layout are the parasitics of the input 

chopper, the matching of the two input and feedback capacitors and the layout of the 

OTA. 

For the input chopper, much effort is spent in reducing parasitic mismatches by 

making the layer routings the same for all the switches. The mismatches in the parasitic 

capacitance of the input chopper will lead to larger chopping spikes and more significant 

residual offsets.  

Another important aspect of the layout of the OTA is managing the input 

capacitance due to parasitics. The objective here is to reduce the parasitics as much as 

possible to ensure the accurate performance of the topology. The input capacitance as 

was discussed earlier, directly affects the parasitic resistance due to chopping at the 

virtual nodes. This in turn affects the value of the chopping frequency that is chosen. 

The third most critical section of the layout is the matching of the two inputs and 

feedback capacitors. Proper matching of this is very essential to achieve a good CMRR 

and power supply rejection ratio (PSRR).  
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Figure 35 Layout of the two input capacitors 

 

 

 

Figure 36 Layout of two feedback capacitors 
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Figures 35 and 36 show the layouts of the two input and two feedback capacitors 

respectively.  The common centroid and inter-digitized layout approach are adopted in 

both layouts to ensure a proper matching of the two capacitors. 

 

 

Figure 37 Layout of the OTA 

 

 

Figure 37 shows the final layout of the OTA. Inter-digitization is used in the 

layout of all the devices. The layout of the input differential pair is done to minimize 

parasitics as much possible. 
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Figure 38 Layout of the input chopper 

 

 

 Figure 38 shows the layout of the input chopper. As shown the metal routings are 

made as symmetric as possible to minimize the mismatch in the parasitics.  
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6.2 Complete Layout 

 

 

Figure 39 Floor plan of the layout 

 

 

 The floor plan for the final layout is shown in Figure 39. A large portion of the 

layout is taken by the two 20pF input capacitors. Figure 40 shows the complete layout 

without the pins. It covers an area of 0.45mm X 1mm. The final chip layout with all the 

pins is shown in Figure 41. The dimension of the chip is 1.5mm X 1.5mm. 
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Figure 40 Complete layout
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Figure 41 Final chip layout with pins 
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6.3 Post Layout Simulation Results  

6.3.1 The OTA 

Figure 42 The frequency response of the OTA 

 

 

The post layout simulation shows that the DC gain of the OTA is 60.8dB as 

shown in Figure 42. The required Gm is 1.4uA/V. This results in the high cut off 

frequency of the overall instrumentation amplifier of 100Hz. The power consumption of 

the OTA exclusively determines the power consumption of the instrumentation 

amplifier. By using the ACM model to design the OTA, power consumption was greatly 

reduced. Also the topology of the OTA allows the use of a 2V supply. The noise of the 
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OTA is the most significant noise source in the whole instrumentation amplifier so 

efforts were made to minimize this. The spot noise at 100Hz was 720nV/√Hz as shown 

in the input referred noise plot in Figure 43. This value is dominated by flicker noise 

since the flicker noise corner is 1 kHz. The OTA performance is summarized in Table 7. 

 

 

 

Figure 43 The input referred noise of OTA 
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Table 7 Summary of OTA performance 

Parameter Result 

DC Gain 60.81dB 

3-dB Bandwidth 4.2kHz 

Spot Noise @100Hz 720nV/rtHz 

Current Consumption 1.4uA 

Supply 2V 

 

 

6.3.2 The Buffers 

 

 

Figure 44 The magnitude and phase response of the opamp used for buffers 
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Table 8 Summary of the Opamp performance 

Parameter Result 

DC Gain 94dB 

Gain Bandwidth Product 23.4kHz 

Phase Margin 75deg 

Power consumption 1.2uW 

 

 

The magnitude and phase response of the opamp used to implement the buffer is 

shown in Figure 44. The table summarizing the performance is also shown in Table 8. It 

has a gain of 94dB and a GBW of 23 kHz which is much larger than requirement for this 

application. The phase margin is 75 degrees and the power consumption of 1.2µW.  
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6.3.3 The Final Results  

 

Figure 45 Overall frequency response of the instrumentation amplifier 

 

 

Figure 45 shows the frequency response of the complete instrumentation 

amplifier. It shows the expected mid-band gain of 40dB with the bandwidth from 0.06Hz 

to 100Hz which is the expected bandwidth range for ECG applications. The low 

frequency of this is however limited by the parasitic resistance due to the chopping. The 

frequency response of the system without chopping shows the same mid-band gain but 

the low cutoff frequency is 0.006Hz which is a decade smaller than that with chopping. 

The frequency response of the instrumentation amplifier without chopping is shown in 

Figure 46. 
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Figure 46 Frequency response of instrumentation amplifier without chopping 

 

 

 

Figure 47 Input referred noise voltage of the instrumentation amplifier 
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Figure 48 Input referred noise voltage (dB) of the instrumentation amplifier. 

 

 

Figures 47 and 48 shows the input referred noise voltage in absolute and decibel 

(dB) respectively. The noise response for the system shows a thermal noise floor of 

96nV/√Hz and a flicker corner of 1Hz. This greatly reduces the overall integrated noise 

in the bandwidth. The flicker noise corner for the system with no chopping shown in 

Figure 49 is about 1kHz and so the overall integrated noise within the given bandwidth 

will be much greater than the case with chopping. This reduces the integrated noise in 

the bandwidth to 1.2µVrms. 
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Figure 49 Input referred noise of instrumentation amplifier without chopping 

 

 

 

Figure 50 Transient output test using a 2mVpp Sine Signal 
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 The response of the instrumentation amplifier when a 2mVpp sinusoidal signal at 

10Hz is applied is shown in Figure 50. It shows the signal correctly amplified by a gain 

of 100V/V and very clean with barely any noise. 

The CMRR plot of the system is shown in Figure 51. Its values range from 78dB 

to 95dB for the given bandwidth. This is good enough for this application. Better CMRR 

is achievable with current feedback instrumentation amplifiers. The PSRR is the 

measured for VDD and VSS and the results are shown in Figures 52 and 53.  Its values 

range from 63dB to 95dB within the bandwidth of interest. 

The overall power consumption is 2.8µW which makes it good for continuous 

monitoring systems. 

   

 

Figure 51 CMRR of the instrumentation amplifier 
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Figure 52 PSRR+ of the instrumentation amplifier 

 

 

 

Figure 53 PSRR- of the instrumentation amplifier 
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Table 9 Summary of performance of the instrumentation amplifier 

Parameter Results 

Mid-band Gain 40dB 

Bandwidth 0.05-100Hz 

CMRR >75dB 

PSRR >65dB 

Input Referred Noise, Vrms (0.1-100Hz) 1.2µVrms 

Flicker Noise Corner 1Hz 

Supply 2V 

Total Current Consumption 1.4µA 

Power Consumption 2.8µW 

Output Swing 500mV 

 

 

Table 9 shows a final summary of the performance of the instrumentation 

amplifier. Table 10 shows the comparison between this work and other state-of-the-art 

instrumentation amplifiers for biomedical application in the literature.   

 

 

 

 

 



 

 

 

86

 

Table 10 Comparison of results 

Parameter [19] [39] [42] This Work 

Gain 40dB 51-68dB 60dB 40dB 

Power 0.9µW 60µW 3.5µW 2.8µW 

Bandwidth (2.2 – 30)Hz 0.3 Hz -100* <1Hz – 100Hz 0.05-150Hz 

CMRR 88dB >110dB >60dB >75dB 

PSRR 80dB >78dB - >60dB 

Integrated Noise 

(0.5 – 100Hz) 
2.4µVrms 0.67µVrms 1.3µVrms 1.1µVrms** 

External caps No Yes Yes No 

 

 

* The high cut-off frequency in this paper is programmable 

** This is the integrated noise for bandwidth 0.5 – 100Hz for the purpose of comparison. 
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7. CONCLUSION 

An instrumentation amplifier for ECG recording has been proposed in this thesis. 

It implements an AC coupled with a chopper stabilized OTA to achieve low power and 

low noise. A new approach to implement extremely large resistors using a T-network 

with pseudo-resistors is also proposed. By this new approach a very low high pass 

response can be obtained in this instrumentation amplifier which is desirable for this 

application. 

The instrumentation amplifier has a mid-band gain of 40dB with a bandwidth of 

0.05 to 100Hz while consuming 2.8uW of power. The integrated noise within the 

bandwidth is 1.2µVrms with a flicker noise corner reduced from 1kHz to 1Hz by 

chopping. 

 The performance of this amplifier is however limited by the parasitic resistance 

which results from the chopping operation at the virtual node of the OTA. Proper choice 

of input capacitance and chopping frequency reduces the effect of this parasitic 

resistance on the amplifier. However there is a trade-off between this and noise and a 

very good balance is needed to achieve optimized performance. 

 The instrumentation amplifier has been designed in ON semiconductor 0.5µm 

CMOS process.  

 This instrumentation amplifier can find applications in many ECG monitoring 

and recording system as the front end amplifier to process the heart signals in the 

presence of very low noise and also achieve very long lifetime. 
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